Note

Before using this information and the product it supports, read the information in “Notices” on page 707.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions.

Last updated: 2019-07-08

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Part 2. Configuring your system for PKI Services

Chapter 3. Installing and configuring prerequisite products
Tasks to perform before setting up PKI Services
Installing and configuring the IBM HTTP Server - Powered by Apache
Installing and configuring WebSphere Application Server for z/OS
Installing and configuring LDAP
Installing and configuring ICSF
Configuring sendmail (optional)
Installing and configuring Db2
Steps for performing RACF tasks using IKYSETUP
Steps for setting up the var directory
Establishing a secure connection with LDAP (optional)
Setting up authorization to create and access CRLs and certificates
Steps for updating the IBM HTTP Server - Powered by Apache
Steps for tailoring the LDAP section of the configuration file
Storing information for encrypted passwords for your LDAP servers
Excerpt of LDAP section
Configuring your system for PKI Services

Chapter 4. Running IKYSETUP to perform RACF administration
Overview of IKYSETUP
Before you begin
Variables whose values must change
Variables whose values might change depending on setup
Variables you can optionally change
Steps for performing RACF tasks using IKYSETUP
Sample IKYSETUP log data set

Chapter 5. Configuring the UNIX runtime environment
Steps for copying files
Optionally updating PKI Services environment variables
(Optional) Steps for updating PKI Services environment variables
Optionally updating the pkiserv.conf configuration file
(Optional) Steps for updating the configuration file
Updating pkiserv.conf after installing a new release of z/OS
Steps for setting up the var directory

Chapter 6. Tailoring the LDAP configuration for PKI Services
Steps for loading schema.user.ldif
Setting up authorization to create and access CRLs and certificates
Establishing a secure connection with LDAP (optional)

Chapter 7. Updating IBM HTTP Server - Powered by Apache configuration and starting the server
Setting up IBM HTTP Server - Powered by Apache httpd.conf
Steps for updating the IBM HTTP Server - Powered by Apache configuration files
Starting and stopping the IBM HTTP Server - Powered by Apache

Chapter 8. Tailoring the PKI Services configuration file for LDAP
Excerpt of LDAP section
Storing information for encrypted passwords for your LDAP servers
Steps for tailoring the LDAP section of the configuration file

Chapter 9. Creating the object store and ICL
The object store and ICL
Creating the object store and ICL using VSAM data sets
Sysplex considerations
Planning VSAM storage requirements
(Optional) preliminary steps for establishing VSAM RLS
Steps for creating the VSAM object store and ICL data sets and indexes
(Optional) steps for enabling existing PKI Services VSAM data sets for VSAM RLS
Chapter 14. Advanced customization ................................................................. 283
Scaling for high volume installations ................................................................. 283
Using certificate policies .................................................................................... 284
Steps for creating the CertificatePolicies extension on a global basis ............... 284
Steps for creating the CertificatePolicies extension on a template basis .......... 286
Updating the signature algorithm ..................................................................... 287
Steps for changing the signature algorithm ...................................................... 288
Certificate revocation status ............................................................................. 289
How distribution point CRLs/ARLs work .......................................................... 289
How DP CRLs are published ............................................................................ 289
How DP CRLs are partitioned ......................................................................... 289
What about CA certificates? ............................................................................. 290
Customizing distribution point CRLs ............................................................... 290
Specifying the URI format ............................................................................. 291
Determining CRLDistURI .............................................................................. 291
Determining CRLDistDirPath ......................................................................... 292
Steps for customizing distribution point CRLs ................................................. 293
Creating a distribution point ARL ................................................................. 295
Enabling support for large CRLs ...................................................................... 297
Steps for enabling support for large CRLs ...................................................... 298
Using the OCSP responder .......................................................................... 298
Adding an application domain ...................................................................... 298
Creating application domains when you use REXX CGIs to implement the web application ........................................................................ 299
Creating application domains when you use JSPs to implement the web application ................................................................. 301
Adding a new CA domain ................................................................................ 302
Task overview ............................................................................................... 303
Task roadmap for adding CA domains ......................................................... 304
Recording your progress adding CA domains .............................................. 305
Subtask 1: Steps for planning additional CA domains .................................. 306
Subtask 2: Steps for reconfiguring your initial CA domain to allow it to coexist with other CA domains .......................................................... 307
Subtask 3: Steps for running the IKYSETUP exec ........................................ 309
Subtask 4: Steps for configuring the UNIX environment .............................. 311
Subtask 5: Steps for updating the PKI Services template file or JSP files .... 312
Subtask 6: Steps for updating the web server configuration ........................ 314
Subtask 7: Creating the object store and ICL .............................................. 316
Subtask 8: Steps for starting PKI Services ............................................... 317
Customizing email notifications sent to users .............................................. 318
Steps for customizing email notification forms ............................................ 322
Setting up automatic renewal of certificates ................................................. 323
Steps for setting up automatic certificate renewal .................................... 323
Setting up synchronous certificate requests .................................................. 325
Setting up PKI Services to generate keys for certificate requests ................ 325
Steps for setting up PKI Services to generate keys for certificate requests ..... 326
Adding custom extensions to certificates .................................................... 328
Steps for adding a custom extension to a certificate template if you are using REXX CGI execs ................................................................. 328
Steps for adding a custom extension to a certificate template if you are using JSPs ............................................................................... 329
Forming the CustomExt value for CertPlist for the R_PKIServ callable service ......................................................................................... 330
Part 4. Using PKI Services .......................................................................................... 373

Chapter 15. Enabling Simple Certificate Enrollment Protocol (SCEP) .......................................................... 333
Overview of SCEP requester enhancement.............................................................................................................. 333
Steps for converting existing VSAM object store and ICL to the new format.................................................. 333
Steps for converting existing Db2 object store and ICL to the new format..................................................... 333
Enabling Simple Certificate Enrollment Protocol (SCEP)................................................................................. 334
Overview of SCEP preregistration.......................................................................................................................... 334
Overview of certificate request processing for preregistered SCEP clients..................................................... 335
Checking certificate fingerprints............................................................................................................................ 337
Steps for enabling Simple Certificate Enrollment Protocol (SCEP)........................................................................ 337

Chapter 16. Using Enrollment over Secure Transport (EST)................................................................................. 341
Set up PKI Services as an EST CA.......................................................................................................................... 341
Steps to enable EST processing on the PKI EST CA instance............................................................................. 341
Preregistering EST client..................................................................................................................................... 342
Processing an EST request.................................................................................................................................. 342
Tracing the PKI EST program............................................................................................................................... 343
Messages and codes returned from the EST functions....................................................................................... 344

Chapter 17. Customizing with installation exit routines.......................................................................................... 349
Exit routine processing for automatic certificate renewal.................................................................................... 349
Steps for updating the exit routine code sample.................................................................................................. 350
Using the exit routine for pre- and post-processing............................................................................................ 350
Scenario for using the exit routine.......................................................................................................................... 351
Exit routine processing for the PKI Services CGIs.................................................................................................. 352
Steps for updating the exit routine code sample.................................................................................................. 352
Using the exit routine for pre- and post-processing............................................................................................ 353
Scenarios for using the exit routine.......................................................................................................................... 359
Exit routine processing for JavaServer pages (JSPs)............................................................................................. 361
Class UserExit.......................................................................................................................................................... 362
Class ExportCert...................................................................................................................................................... 368
Class QRecover...................................................................................................................................................... 368
Class RevokeCert..................................................................................................................................................... 369
Class UserExitException....................................................................................................................................... 369
Class CertPlist.......................................................................................................................................................... 369
Class PkiCertificate............................................................................................................................................... 370
Class QrecoverResultsList..................................................................................................................................... 371
Class RpkiservException....................................................................................................................................... 372

Part 4. Using PKI Services .......................................................................................... 373

Chapter 18. Using the end-user web pages........................................................................................................... 375
Steps for accessing the end-user web pages........................................................................................................... 376
Summary of fields..................................................................................................................................................... 379
Steps for requesting a new certificate.................................................................................................................... 384
Retrieving your certificate........................................................................................................................................ 390
Steps for retrieving your certificate from the bookmarked web page.............................................................. 391
Steps for retrieving your certificate from the PKI Services home page........................................................... 392
Steps for retrieving a PKI generated key certificate............................................................................................. 393
Steps for renewing a certificate............................................................................................................................... 394
Steps for revoking or suspending a certificate........................................................................................................ 397
Recovering a certificate whose keys were generated by PKI Services............................................................ 398
Steps for recovering a certificate whose keys were generated by PKI Services............................................... 398
Steps for preregistering an SCEP or EST client........................................................................................................ 402

Chapter 19. Using the administration web pages................................................................................................ 405
Steps for accessing the administration home page................................................................................................ 405
Fields in the administration web pages.................................................................408
Processing certificate requests...........................................................................409
  Status of certificate requests............................................................................409
  Actions on certificate requests.........................................................................410
  Using the PKI Services administration home page.............................................410
Processing certificates........................................................................................421
  Status of certificates........................................................................................421
  Actions for certificates.....................................................................................422
  Steps for processing a single certificate..........................................................422
  Steps for processing certificates by performing searches...........................424
  Relationship between certificate requests and matching certificates.............428

Chapter 20. Using PKI Services utilities..............................................................431
  Using the createcrls utility.............................................................................431
  Using the db2conv utility...............................................................................432
  Using the iclview utility.................................................................................433
  Using the pkiprereg utility............................................................................437
  Using the postcerts utility.............................................................................441
  Using the TemplateTool utility.......................................................................442
  Using the vosview utility...............................................................................444
  Sample record 1............................................................................................446
  Sample record 2............................................................................................447
  Sample record 3............................................................................................447
  Sample certificate request record...................................................................447
  Using the vsam2db2 utility...........................................................................448
  Using the vsamconv utility............................................................................450

Chapter 21. Using the certificate management protocol (CMP) with PKI Services...453
  Support for CMP messages...........................................................................454
  Support for the CMP certificate request message (type cr).............................456
  Support for the CMP PKCS #10 certificate request message (type p10cr).......457
  Support for the CMP certificate response message (type cp).........................458
  Support for the CMP revocation request message (type rr)............................459
  Support for the CMP revocation response message (type rp).........................459
  Support for the CMP error message (type errer)............................................460
  Determining the CA domain to which a request is routed............................460
  How PKI Services interprets distinguished names (DNs) on CMP requests.......462
  Setting up a client to make CMP requests to PKI Services............................463
  Steps for setting up a certificate for a CMP requester .....................................463
  Setting up PKI Services to process CMP requests.........................................463
  Enabling the CMP support.............................................................................464
  Setting up PKI Services to create private keys for CMP clients......................464
  Setting up the HTTP Server for CMP..............................................................466
  Tracing the PKI CMP CGI program...............................................................474
  Messages and codes returned from the CMP functions.................................474

Part 5. Administering security for PKI Services..................................................479

Chapter 22. RACF administration for PKI Services.............................................481
  Authorizing users for the PKI Services administration group.........................481
  Connecting members to the group...................................................................481
  Deleting members from groups.......................................................................481
  Authorizing users for inquiry access..............................................................481
  Steps for authorizing users for inquiry access.................................................482
  Administering HostIdMappings extensions.....................................................482
  Steps for administering HostIdMappings extensions.......................................483
  Locating your PKI Services certificates and key ring....................................484
Setting up access control to protect PKI Services.......................................................... 619
Establishing your CA and RA certificates...................................................................... 622
Conﬁguring the IBM HTTP Server - Powered by Apache for SSL mode.......................... 623
Using RACF to obtain a certificate for the web server................................................... 623
Enabling the IBM HTTP Server - Powered by Apache for surrogate operation.............. 624
Allowing PKI Services to generate key pairs for certificate requests.......................... 624
IKYSETUP sample........................................................................................................... 624

Chapter 31. Other code samples....................................................................................... 649
IBM HTTP Server - Powered by Apache conﬁguration directives.................................... 649
WebSphere Liberty........................................................................................................... 654
IKYCDB2......................................................................................................................... 655
IKYCDBV1....................................................................................................................... 658
IKYCVSAM...................................................................................................................... 661
IKYCVSV1....................................................................................................................... 665
IKYRSAM......................................................................................................................... 670
IKYRVS1......................................................................................................................... 673
IKYSBIND....................................................................................................................... 678
IKYSGRNT....................................................................................................................... 679
IKYVBKUP...................................................................................................................... 680
IKYVREST....................................................................................................................... 681
PKISERVD sample procedure to start PKI Services daemon........................................... 682

Chapter 32. SMF recording............................................................................................... 685
PKI Services event code................................................................................................... 685
Relocate section variable data......................................................................................... 685

Appendix A. LDAP directory server requirements......................................................... 687

Appendix B. Using a gskkyman key database for your certificate store....................... 691
Steps for using a gskkyman key database for your certificate store................................. 691

Appendix C. Using the PKI Services web application with Internet Explorer on Windows systems............................................................................................................ 693
User tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application .................................................................................. 693
Installing the PKI Services ActiveX program.................................................................. 693
Configuring Internet Explorer to trust PKI Services on a Windows system.................. 696
Installing the PKI Services CA certificate on a Microsoft Windows system.................. 696
Administrator tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application................................................................. 698
Signing the PKI Services ActiveX programs.................................................................... 698

Appendix D. Accessibility............................................................................................... 703
Accessibility features....................................................................................................... 703
Consult assistive technologies.......................................................................................... 703
Keyboard navigation of the user interface....................................................................... 703
Dotted decimal syntax diagrams..................................................................................... 703

Notices........................................................................................................................... 707
Terms and conditions for product documentation.......................................................... 708
IBM Online Privacy Statement....................................................................................... 709
Policy for unsupported hardware.................................................................................... 709
Minimum supported hardware....................................................................................... 710
Programming interface information............................................................................... 710
Trademarks...................................................................................................................... 710
Figures

1. Component diagram of a typical PKI Services system .......................................................... 6
2. Flowchart of the process of updating IKYSETUP .......................................................... 61
3. Partial listing of the AltOther_1_2_3_4_6 sample INSERT showing the lines you are most likely to customize ........................................................................................................ 230
4. A certreq_template tag ........................................................................................................ 239
5. Configuring WebSphere for application security .......................................................... 244
6. Configuring Websphere for application security using SAF authorization .................. 245
7. SAF authorization options .................................................................................................. 245
8. Renewing or revoking a browser certificate ...................................................................... 248
9. WebSphere SSL certificate and key management page ................................................ 249
10. WebSphere page for creating a new keystore .............................................................. 250
11. Viewing the signer certificate .......................................................................................... 250
12. WebSphere new SSL configuration page ....................................................................... 251
13. WebSphere quality of protection settings page ............................................................ 252
14. Defining a new port ............................................................................................................. 253
15. Assigning a port to the application server ....................................................................... 254
16. Assigning your new port to the application server .......................................................... 255
17. Selecting web container transport chains ....................................................................... 256
18. Selecting a transport chain template ............................................................................... 256
19. All existing transport chains ............................................................................................ 257
20. Setting the SSL inbound channel properties .................................................................. 257
21. A portion of the JSP file notbefore.jsp, without customization ........................................ 258
22. A portion of the JSP file notbefore.jsp, with customization ........................................... 259
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>The WebSphere Shared Libraries window</td>
<td>262</td>
</tr>
<tr>
<td>24</td>
<td>The WebSphere Shared Libraries window with isolated class loader box checked</td>
<td>263</td>
</tr>
<tr>
<td>25</td>
<td>Message indicating that changes have been made to your local configuration</td>
<td>264</td>
</tr>
<tr>
<td>26</td>
<td>Window for specifying the EAR file</td>
<td>264</td>
</tr>
<tr>
<td>27</td>
<td>The WebSphere Install New Application window</td>
<td>265</td>
</tr>
<tr>
<td>28</td>
<td>Application properties page</td>
<td>266</td>
</tr>
<tr>
<td>29</td>
<td>Shared library mapping for modules page</td>
<td>266</td>
</tr>
<tr>
<td>30</td>
<td>The WebSphere Enterprise Applications Context Root for Web Modules</td>
<td>267</td>
</tr>
<tr>
<td>31</td>
<td>A portion of the JSP file notbefore.jsp, without customization</td>
<td>273</td>
</tr>
<tr>
<td>32</td>
<td>A portion of the JSP file notbefore.jsp, with customization</td>
<td>274</td>
</tr>
<tr>
<td>33</td>
<td>A sample CRLDistributionPoints extension for a certificate authority (CA) certificate</td>
<td>297</td>
</tr>
<tr>
<td>34</td>
<td>Illustration of two CA domains, one for employees and one for customers, administered by a single shared administrator who administers both domains</td>
<td>303</td>
</tr>
<tr>
<td>35</td>
<td>Sample of readymsg.form</td>
<td>319</td>
</tr>
<tr>
<td>36</td>
<td>Sample of rejectmsg.form</td>
<td>319</td>
</tr>
<tr>
<td>37</td>
<td>Sample of expiringmsg.form</td>
<td>319</td>
</tr>
<tr>
<td>38</td>
<td>Sample of renewcertmsg.form</td>
<td>320</td>
</tr>
<tr>
<td>39</td>
<td>Sample of pendingmsg.form</td>
<td>320</td>
</tr>
<tr>
<td>40</td>
<td>Sample of pendingmsg2.form</td>
<td>320</td>
</tr>
<tr>
<td>41</td>
<td>Sample of recoverymsg.form</td>
<td>320</td>
</tr>
<tr>
<td>42</td>
<td>PKI Services end-user home page for certificate generation</td>
<td>377</td>
</tr>
<tr>
<td>43</td>
<td>The certificate window for installing the CA certificate</td>
<td>378</td>
</tr>
<tr>
<td>44</td>
<td>One-year SSL browser certificate request form</td>
<td>386</td>
</tr>
<tr>
<td>45</td>
<td>Supplying the PKCS #10 certificate request for a server or device certificate</td>
<td>388</td>
</tr>
<tr>
<td>46</td>
<td>Successful request displays transaction ID</td>
<td>389</td>
</tr>
<tr>
<td>47</td>
<td>Web page to retrieve your certificate</td>
<td>390</td>
</tr>
</tbody>
</table>
48. Successful request for a one-year PKI generated key certificate................................. 390
49. Browser certificate installation web page........................................................................... 391
50. Server certificate installation web page............................................................................ 392
51. Email notification that your PKI generated key certificate is ready for pickup.................. 393
52. Web page for retrieving a PKI generated key certificate..................................................... 394
53. Window asking whether to open or save the PKCS #12 package..................................... 394
54. Popup window listing certificates...................................................................................... 395
55. Renew or revoke a certificate web page.............................................................................. 396
56. Web page to recover a certificate...................................................................................... 398
57. Web page requesting answers to security questions when you have forgotten the passphrase... 399
58. Web page listing certificates that can be recovered............................................................. 399
59. Web page showing the passphrase for a certificate to be recovered.................................. 400
60. Sample email that lists certificates that can be recovered.................................................. 400
61. Web page to retrieve a recovered certificate...................................................................... 401
62. Window asking whether to open or save the PKCS #12 package.................................... 401
63. SCEP preregistration request form.................................................................................... 402
64. Successful preregistration request.................................................................................... 403
65. PKI Services administration start page............................................................................. 406
66. The certificate popup window for installing the CA certificate......................................... 407
67. Entering your user ID and password.................................................................................. 408
68. PKI Services administration home page........................................................................... 411
69. Single request approval web page..................................................................................... 412
70. Processing successful web page.......................................................................................... 413
71. Restriction note on the modify and approve request web page........................................ 413
72. Modifying the request web page....................................................................................... 415
73. Processing requests after searching................................................................. 418
74. Request processing was successful web page.................................................. 420
75. Request processing was not successful web page.............................................. 420
76. Request processing was partially successful web page..................................... 421
77. Processing a certificate from the single certificate web page............................. 423
78. Processing certificates using searches............................................................... 425
79. Processing of certificate was successful web page............................................ 427
80. Processing of certificate was not successful web page...................................... 428
81. Processing of certificate was partially successful web page............................. 428
82. Examples of organizations, certificates, and chains.......................................... 508
83. Sample LOGREC data (part 1 of 2)................................................................. 534
84. Sample LOGREC data (part 2 of 2)................................................................. 535
85. Separating the job files..................................................................................... 538
86. Selecting a file to view..................................................................................... 539
87. Messages contained in the file.......................................................................... 540
88. File download window..................................................................................... 694
89. Security warning window................................................................................ 694
90. ActiveX control setup wizard.......................................................................... 694
91. Message window............................................................................................. 695
# Tables

1. Basic components of PKI Services and related products ................................................................. 4
2. Types of certificates you can request .................................................................................................. 7
3. File system directory variables ......................................................................................................... 11
4. Tasks and skills needed for installing prerequisite products ............................................................. 15
5. Roles, tasks, and skills for setting up PKI Services ........................................................................ 17
6. Considerations before installing and configuring PKI Services ...................................................... 19
7. Task roadmap for implementing PKI Services .................................................................................. 26
8. IBM HTTP Server - Powered by Apache information you need to record ....................................... 31
9. LDAP information you need to record ............................................................................................ 32
10. IKYSETUP structure and divisions ................................................................................................. 40
11. IKYSETUP variables whose values must change .......................................................................... 41
12. Decision table for key_backup ........................................................................................................ 45
13. Decision table for key_type ............................................................................................................ 45
14. Decision table for restrict_surrog ................................................................................................... 47
15. Decision table for unix_sec .............................................................................................................. 47
16. Decision table for db2_repos and db2_subsys ............................................................................... 48
17. Decision table for AdminGranularControl .................................................................................... 48
18. IKYSETUP variables you might want to change depending on setup ............................................ 50
19. IKYSETUP variables you can optionally change .......................................................................... 55
20. Deciding which files to copy and change ........................................................................................ 67
21. Information needed for updating the configuration file .................................................................. 74
22. LDAP information you need for tailoring LDAP configuration ...................................................... 97
23. Virtual host files ............................................................................................................................ 102
49. Supported signature algorithms for each CA certificate key type ......................................................... 287
50. Task roadmap for creating multiple application domains ........................................................................... 299
51. Task roadmap for adding a new CA domain ............................................................................................ 304
52. Multiple CA domains: Worksheet #1 for recording progress adding new CA domains ................................ 305
53. Multiple CA domains: Worksheet #2 for planning your domain names .................................................. 307
54. Multiple CA domains: Worksheet #3 for planning your RACF identifiers, z/OS UNIX identifiers, and VSAM data set names or Db2 package names ................................................................................. 307
55. Descriptions of variables for forms ........................................................................................................ 321
56. Summary of substitution variables in forms .......................................................................................... 322
57. Information you need to enable Simple Certificate Enrollment Protocol (SCEP) ........................................ 337
58. HTTP Server environment variables used to control tracing ................................................................... 344
59. HTTP status code, CGI error code and the description .............................................................................. 345
60. Files for the pkiexit.c exit routine ........................................................................................................... 349
61. Values of arguments for pre- and post-processing .................................................................................. 350
62. Values of arguments for pre- and post-processing .................................................................................. 353
63. Package and class summary for JSP exit processing .............................................................................. 362
64. Methods in class UserExit ....................................................................................................................... 362
65. Types of certificates you can request ......................................................................................................... 375
66. Summary of fields in end-user web pages ............................................................................................... 379
67. KeyUsage values and their intended purpose and possible PKIX bits ...................................................... 384
68. Summary of fields in the administration pages ....................................................................................... 408
69. Statuses of certificate requests ................................................................................................................ 409
70. Summary of actions to perform on requests and required status ................................................................ 410
71. Searches to display certificate requests .................................................................................................. 416
72. Status of certificates ............................................................................................................................... 421
73. Summary of actions to perform and required status to do so .................................................................. 422
74. Searches to display certificates..............................................................................................................424
75. List of valid field names for use in the preregistration record as input to the pkiprereg utility............439
76. List of valid field names for use in the preregistration record as input to the pkiprereg utility but not intended for use with SCEP certificates........................................................................................................440
77. Format of tcp-messages.........................................................................................................................453
78. Supported fields in the PKIMessage structure......................................................................................454
79. Supported fields in the PKIHeader structure.........................................................................................455
80. Supported values in the PKIBody structure. These are the CMP message types that PKI Services supports................................................................................................................................................... 455
81. Supported fields in the CMP certificate request message (type cr)......................................................456
82. Supported fields in the CMP PKCS #10 certificate request message (type p10cr)..............................457
83. Support for fields in the CMP certificate response message (type cp)................................................. 458
84. Supported fields in the CMP revocation request message (type rr)......................................................459
85. Supported fields in the CMP revocation response message (type rp).................................................. 459
86. Supported fields in the CMP error message (type error)....................................................................... 460
87. HTTP Server environment variables used to determine the CA............................................................466
88. HTTP Server environment variables used to control the content of the certificate within a CA........ 467
89. HTTP Server environment variables used to configure the certificate recipients............................... 472
90. HTTP Server environment variables used to control tracing..................................................................473
91. HTTP Server environment variable used to control the FIPS level....................................................... 474
92. CMP error codes......................................................................................................................................474
93. Information you need for locating your PKI Services certificates and key ring...................................484
94. Information you need for establishing PKI Services as an intermediate CA........................................ 487
95. Information you need for renewing your PKI Services certificate authority certificate..........................489
96. Information you need for renewing your PKI Services RA certificate..................................................490
97. Information you need for recovering a CA certificate profile............................................................... 491
98. Summary of access authorities required for PKI Services requests....................................................497
About this document

This document supports z/OS® (5650-ZOS). This document contains information about planning, customizing, administering, and using the PKI Services component of the z/OS Cryptographic Services. PKI Services provides a certificate authority for the z/OS environment and enables you to issue and administer digital certificates, so that you do not have to purchase them from an external certificate authority. This document provides you with the information you need to become productive with PKI Services. It contains information about the following topics:

- Procedures for setting up PKI Services on the z/OS platform.
- Using the PKI Services administration and user web pages, you can easily issue digital certificates to trusted parties and control whether a certificate is renewed or revoked.
- Guidelines to help you plan for PKI Services, such as how to integrate PKI Services components with other products installed at your site.

Who should use this document

This document should be used by those who plan, install, customize, administer, and use PKI Services. It should also be used by those who install, configure, or provide support in the following areas:

- Lightweight Directory Access Protocol (LDAP)
- Resource Access Control Facility (RACF®)
- z/OS
- z/OS UNIX System Services
- Integrated Cryptographic Service Facility (ICSF)

The areas where this document should be used are optional:

- IBM® HTTP Server - Powered by Apache
- Open Cryptographic Enhanced Plug-ins (OCEP)
- Open Cryptographic Services Facility (OCSF)
- z/OS Communications Server's sendmail utility
- WebSphere Application Server

This document assumes that you have experience with installing and configuring products in a network environment. You should be knowledgeable about the following concepts and protocols:

- Hardware installation and configuration
- Internet communications protocols, in particular Transmission Control Protocol/Internet Protocol (TCP/IP) and Secure Sockets Layer (SSL)
- Public key infrastructure (PKI) technology, including directory schemas, the X.509 version 3 standard, and the Lightweight Directory Access Protocol (LDAP)

How to use this document

This document contains several parts:

- Part 1, “Planning,” on page 1 includes the following topics:
  - Chapter 1, “Introducing PKI Services,” on page 3 introduces PKI Services, describing its basic components and related products. It also describes supported standards, certificate types, fields, and extensions.
Chapter 2, “Planning your implementation,” on page 11 provides a planning overview for your implementation. It contains information about the components that work with PKI Services and the team members you need to implement PKI Services and the skills they need.

Chapter 3, “Installing and configuring prerequisite products,” on page 29 describes installing and configuring related products: the IBM HTTP Server - Powered by Apache, OCSF, LDAP, and ICSF.

Part 2, “Configuring your system for PKI Services,” on page 37 describes the tasks your team members need to perform to configure PKI Services.

Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 describes how the RACF administrator updates and runs IKYSETUP, a REXX exec to perform RACF administration tasks, such as setting up the daemon user ID and giving accesses.

Chapter 5, “Configuring the UNIX runtime environment,” on page 67 explains UNIX programmer tasks including how to copy files, update environment variables, update the PKI Services configuration file, and set up the /var/pkiserv file system directory.

Chapter 6, “Tailoring the LDAP configuration for PKI Services,” on page 97 explains how the LDAP programmer updates LDAP configuration for PKI Services.

Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101 explains how the web server programmer updates the IBM HTTP Server configuration files and starts the IBM HTTP Server.

Chapter 8, “Tailoring the PKI Services configuration file for LDAP,” on page 107 explains how the UNIX programmer updates the LDAP section of the PKI Services configuration file.

Chapter 9, “Creating the object store and ICL,” on page 115 explains how the MVS™ programmer creates VSAM data sets or the Db2 database administrator creates Db2 objects for the object store and issued certificate list (ICL).

Chapter 10, “Starting and stopping PKI Services,” on page 129 explains how the MVS programmer starts and stops the PKI Services daemon.

Part 3, “Customizing PKI Services,” on page 133 explains how to customize end-user and administration web pages and perform advanced customization, including customization using an exit routine.

Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 provides an overview of the pkiserv.tmpl file, which contains the certificate templates, and explains how to customize the end-user web pages.

Chapter 12, “Customizing the administration web pages if you use REXX CGI execs,” on page 233 provides an overview of the CGI scripts and explains how to customize the administration web pages.

Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 describes how to use Java™ server pages (JSPs) and an XML template file to create and customize the PKI Services web application.

Chapter 14, “Advanced customization,” on page 283 explains how to use certificate policies, update the signature algorithm, enable automatic renewal of certificates, set up PKI Services to generate keys for certificates, and add custom extensions to certificates.

Chapter 17, “Customizing with installation exit routines,” on page 349 explains how to use the PKI Services exit routine.

Part 4, “Using PKI Services,” on page 373 explains using the end-user and administration web pages, using the PKI Services utilities, and using the certificate management protocol (CMP) with PKI Services.

Chapter 18, “Using the end-user web pages,” on page 375 shows the end-user web pages and explains how to request a certificate, obtain the certificate, and renew or revoke a certificate.

Chapter 19, “Using the administration web pages,” on page 405 shows the administration web pages and explains how to process certificate requests and certificates.

Chapter 20, “Using PKI Services utilities,” on page 431 explains using the PKI Services utilities.

Chapter 21, “Using the certificate management protocol (CMP) with PKI Services,” on page 453 describes the support for CMP that PKI Services provides.
• Part 5, “Administering security for PKI Services,” on page 479 explains how to perform many RACF administration tasks that are needed for PKI Services, such as authorizing users, administering extensions, and locating your PKI Services certificate and key ring.

• Part 6, “Using the certificate validation service,” on page 505 describes how to set up and use the PKI Services Trust Policy (PKITP) plug-in for OCSF.

• Part 7, “Troubleshooting,” on page 527 explains using logs:
  – Chapter 24, “Using information from SYS1.LOGREC,” on page 529 describes SYS1.LOGREC - which is used to record unusual runtime events, such as an exception.
  – Chapter 25, “Using information from the PKI Services logs,” on page 537 contains information about using the PKI Services logs to debug problems and explains how to change logging options and display log options settings.

• Part 8, “Reference information,” on page 543 provides reference information including messages and important code samples.
  – Chapter 26, “Messages,” on page 547 explains PKI Services messages.
  – Chapter 27, “File directory structure,” on page 603 describes product and file system directories for PKI Services and files that are contained in them.
  – Chapter 29, “Environment variables,” on page 615 explains the pkiserv.envars environment variables file and provides a code sample.
  – Chapter 30, “The IKYSETUP REXX exec,” on page 619 explains the contents of the IKYSETUP REXX exec that performs RACF administration and provides a code sample.
  – Chapter 31, “Other code samples,” on page 649 provides additional code samples.
  – Chapter 32, “SMF recording,” on page 685 describes the SMF record that PKI Services produces.

• There are several appendixes, including:
  – Appendix A, “LDAP directory server requirements,” on page 687 explains using a non-z/OS LDAP server.
  – Appendix B, “Using a gskkyman key database for your certificate store,” on page 691 explains an alternative method for setting up your key database.
  – Appendix C, “Using the PKI Services web application with Internet Explorer on Windows systems,” on page 693 describes how you might need to set up a Windows system to work with PKI Services.

z/OS information

This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using shortened versions of the document title. For complete titles and order numbers of the documents for all products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSLTBW/welcome).
How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps to ensure accurate and high-quality information.

**Important:** If your comment regards a technical question or problem, see instead “If you have a technical problem” on page xxxi.

Submit your feedback by using the appropriate method for your type of comment or question:

**Feedback on z/OS function**
If your comment or question is about z/OS itself, submit a request through the IBM RFE Community (www.ibm.com/developerworks/rfe/).

**Feedback on IBM Knowledge Center function**
If your comment or question is about the IBM Knowledge Center functionality, for example search capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center Support at ibmkc@us.ibm.com.

**Feedback on the z/OS product documentation and content**
If your comment is about the information that is provided in the z/OS product documentation library, send a detailed email to mhvrdfs@us.ibm.com. We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

- Your name, company/university/institution name, and email address
- The following deliverable title and order number: z/OS Cryptographic Services PKI Services Guide and Reference, SA23-2286-40
- The section title of the specific information to which your comment relates
- The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

**If you have a technical problem**

If you have a technical problem or question, do not use the feedback methods that are provided for sending documentation comments. Instead, take one or more of the following actions:

- Go to the IBM Support Portal (support.ibm.com).
- Contact your IBM service representative.
- Call IBM technical support.
Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or additions to the text and illustrations for the current edition are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 4 (V2R4)

The following changes are made to z/OS Version 2 Release 4 (V2R4).

The most recent updates are listed at the top of each section.

**New**

- A new topic has been added for Using Enrollment over Secure Transport (EST). See Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341 for more information. Additional updates for EST include:
  - A new EST entry has been added to the “Supported standards” on page 6 topic.
  - A new template for EST requests has been added to pkiserv.tmpl, see “Examining the CUSTOMERS application” on page 168, “Locating code for customizing end-user web pages” on page 225, and “Examining the TEMPLATE section” on page 179.
  - New statements have been added to the configuration file for vhost80.conf, vhost443.conf, and vhost1443.conf see “IBM HTTP Server - Powered by Apache configuration directives” on page 649.
  - SYS1.SAMPLIB has been updated to add Subject Alternate Name (SAN) for generation of root EST CA certificate and web server certificate. See “IKYSETUP sample” on page 624.
  - New entries have been added for the 2-Year EST Certificate - Preregistration. See “TEMPLATE sections” on page 151.
  - The description for “Examining the pkitmpl.xml file” on page 237 has been updated with EST updates.
  - The request page's dropdown box for extended key usage has been updated to include five new values and new values have been added to the extended keyusage INSERT in pkiserv.tmpl. See “Examining the INSERT section” on page 185.
  - New key values have been added to the entry for Extended key usage in the Summary of fields in end-user pages table. See “Summary of fields” on page 379.
  - The description of the _PKISERV_CMP_EXTKEYUSAGE_domain in the HTTP Server environment variables table has been updated. See “Setting up the HTTP Server for CMP” on page 466.
  - New keywords EnableEST, ESTCAFile and ESTTemplate under the CertPolicy section of the pkiserv.conf. See Chapter 28, “The pkiserv.conf configuration file,” on page 607.

- A new topic has been added for setting up PKI Services to generate certificates synchronously when requesting certificates through the web interfaces. See “Setting up synchronous certificate requests” on page 325. For additional information about fulfilling synchronous certificates, see the following topics:
  - A new paragraph describing the SYNCHRONOUS tag has been added to “TEMPLATE sections” on page 151.
  - Information about the SYNCHRONOUS tag has been added to “Examining the TEMPLATE section” on page 179 and “Examining the pkitmpl.xml file” on page 237.

- Three RSAPSS signing algorithms are now supported by PKI Services. See “Updating the signature algorithm” on page 287 and Chapter 28, “The pkiserv.conf configuration file,” on page 607 for more information:
Summary of changes for z/OS Version 2 Release 3 (V2R3)

The following changes are made to z/OS Version 2 Release 3 (V2R3).
The most recent updates are listed at the top of each section.

New

• New alternative to WebSphere Application Server, WebSphere Liberty (optional), added to “Basic components of PKI Services and related products” on page 4 and “Component diagram” on page 5.
• New section added for “Requirements for FIPS” on page 12.
• “WebSphere Application Server / z/OS Liberty Embedded (optional)” on page 13 is updated to include new alternative, z/OS Liberty Embedded.
• New skill requirements identified in “Skills for setting up prerequisite products” on page 15 for Liberty.
• New step added to “(Optional) Steps for updating PKI Services environment variables” on page 72 to include _PKISERV_FIPS_LEVEL.
• New parameters are added to Table 21 on page 74 and Chapter 28, “The pkiserv.conf configuration file,” on page 607:
  - DBVersion
  - DBWaitTime
  - ObjectSCEPTidDSN
  - ICLSCEPTidDSN
• New section added, “Sysplex considerations” on page 116, for VSAM.
• New task added for creating multiple applications using Traditional WebSphere Application Server, “Steps for creating multiple applications” on page 260.
• New task, “Steps for creating a new EAR alongside your existing EAR” on page 261, is added.
• New task added for giving WebSphere users authorization to use PKI Services functions in Liberty, “Steps for giving Liberty users authorization to use PKI Services functions” on page 268.
• New task added for allowing Liberty users to set up the key ring, “Steps for setting up the key ring” on page 271.
New sections added for SCEP requester enhancement, “Overview of SCEP requester enhancement” on page 333, “Steps for converting existing VSAM object store and ICL to the new format” on page 333, and “Steps for converting existing Db2 object store and ICL to the new format” on page 333.

New conversion utilities added, “Using the db2conv utility” on page 432 and “Using the vsamconv utility” on page 450.

New table added, HTTP Server environment variables used to control the FIPS level, within “Setting up the HTTP Server for CMP” on page 466.

New CMP error codes added in “Messages and codes returned from the CMP functions” on page 474.

New procedure added, “Steps to retire and replace the PKI Services non-FIPS compliant CA private key for the PKI templates” on page 493.

New bullet for, CBRDBRM/ACBRDBRM, added to “Product libraries” on page 603.

New keyword, _PKISERV_FIPS_LEVEL, added to “The pkiserv.envars environment variables file” on page 617.

New code sample, server.xml, added in “WebSphere Liberty” on page 654.

New sample jobs “IKYCDBV1” on page 658, “IKYCVSV1” on page 665, and “IKYRVSV1” on page 673 are added and reflected in Table 103 on page 543 and “Product libraries” on page 603.

Messages:

IKYC091I
IKYC092I
IKYC093I
IKYC094I
IKYC095I
IKYC096I
IKYC097I
IKYC904I
IKYC905I
IKYO007I
IKYP047I
IKYP048I
IKYP049I
IKYP050I
IKYP051I
IKYP052I
IKYP053I
IKYP054I
IKYU019I

Changed

“Steps for establishing your CA and RA certificates” on page 622 is updated to include RDATALIB support.

The following updates are in support of the Communications Server sendmail change in Version 2 Release 3:
– “Configuring sendmail (optional)” on page 34
– “Optionally updating PKI Services environment variables” on page 70
– “(Optional) Steps for updating PKI Services environment variables” on page 72
– “The pkiserv.envars environment variables file” on page 617

The use of ICSF is required for PKI Services as reflected in “Basic components of PKI Services and related products” on page 4.
• Chapter 2, “Planning your implementation,” on page 11, “ICSF” on page 14, and “Planning considerations for installing and configuring PKI Services” on page 19 are updated to reflect ICSF changes and FIPS mode support.

• Note added to “Deciding the value of key_type” on page 45 for FIPS compliance.

• “Table of IKYSETUP variables that you might want to change” on page 49 updated to include FIPS support.

• Note added to “The object store and ICL” on page 115 to include SCEP requester enhancement support.

The following are updated to reflect VSAM changes due to SCEP requester enhancement:

– “Planning VSAM storage requirements” on page 116
– “(Optional) steps for enabling existing PKI Services VSAM data sets for VSAM RLS” on page 119
– “Tuning VSAM performance” on page 120

The following are updated to reflect Db2 changes due to SCEP requester enhancement:

– “Creating the object store and ICL using Db2 tables” on page 122
– “Sysplex considerations” on page 123
– “Planning Db2 storage requirements” on page 123
– “Steps for creating the object store and ICL Db2 tables” on page 123
– “Steps for converting the object store and ICL from VSAM to Db2” on page 125
– “Columns in the ICL and object store Db2 tables” on page 126

• “Using the iclview utility” on page 433 and “Using the vsamconv utility” on page 450 are updated to include new parameters for the version specification of a Db2 package.

• “Using the vsam2db2 utility” on page 448 and Chapter 28, “The pkiserv.conf configuration file,” on page 607 descriptions are updated to include new keywords and options.

• “IKYSETUP sample” on page 624, “IKYSBIND” on page 678, and “IKYSGRNT” on page 679 are updated to include new sample jobs.

The following information is updated to include modifications for the removal of support for PKIXEnroll:

– “Examining the APPLICATION section” on page 166
– “Examining the PKISERV application” on page 166
– “Examining the CUSTOMERS application” on page 168
– “Examining the INSERT section” on page 185
– “Examining the pkitmpl.xml file” on page 237
– “File system directory and subdirectories” on page 603
– The sample configuration directives in “IBM HTTP Server - Powered by Apache configuration directives” on page 649
– “Administrator tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application” on page 698
– “Steps for signing the PKI Services ActiveX programs” on page 698
– “Steps for building the installer programs using Microsoft Visual Studio” on page 699

• Messages:
  IKYP003I
  IKYP025I
  IKYP040I

**Deleted**

• Appendix C. Configuring PKI Service as an Identrust certificate authority is deleted.

• Messages:
The following changes are made to z/OS Version 2 Release 2 (V2R2) as updated March 2017.

New
• The parameter, CRLEnhancements is added to Table 21 on page 74.

Changed
• The Information needed section in Table 21 on page 74 is updated for the parameter, CRLDuration.
• The Information needed section in Table 21 on page 74 is updated for the parameter, EnableLargeCRLPosting.
• A note is added to “Enabling support for large CRLs” on page 297.
• Chapter 28, “The pkiserv.conf configuration file,” on page 607 is updated to include the new parameter, CRLEnhancements.

Summary of changes for z/OS Version 2 Release 2 (V2R2)
The following changes are made to z/OS Version 2 Release 2 (V2R2).

New
• “Planning considerations for installing and configuring PKI Services” on page 19 information is added.
• Variables AdminNotifyModForm and PKCS12Content are added to Table 21 on page 74.
• New Inserts ObjectHeaderIEXP and ObjectHeaderIENONXP are added to Table 31 on page 138. For more information, see “INSERT sections” on page 137, “What are substitution variables?” on page 136, and “Examining the INSERT section” on page 185.
• New template keyword ADMINNUM, has been added in “TEMPLATE sections” on page 151 and “Examining the pkitmpl.xml file” on page 237.
• “Customizing email notifications sent to users” on page 318 is updated to add the %%modreqlist%% variable.
• Signing algorithms for DSA are added to Chapter 28, “The pkiserv.conf configuration file,” on page 607 and “Updating the signature algorithm” on page 287.
• Module IRRSPX64 is added. For more information, see “Basic components of PKI Services and related products” on page 4.
• “Locating JSP files for customizing web pages” on page 276 and “Examining the INSERT section” on page 185 are updated because VBScript is no longer used.
• “Steps for accessing the end-user web pages” on page 376, “Steps for renewing a certificate” on page 394, “User tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application ” on page 693, “Installing the PKI Services ActiveX program” on page 693, “Steps for installing the PKI Services ActiveX program when you renew a certificate” on page 695, “Administrator tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application” on page 698, and Appendix C, “Using the PKI Services web application with Internet Explorer on Windows systems,” on page 693 are updated because CAPICOM is no longer supported.
• Messages:
  – IKYC090I

**Changed**

• IBM HTTP Server 5.3 is no longer available. IBM HTTP Server - Powered by Apache is used, and updates can be found in these topics:
  – “Basic components of PKI Services and related products” on page 4
  – “IBM HTTP Server - Powered by Apache (optional)” on page 13
  – Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101
  – “IBM HTTP Server - Powered by Apache configuration directives” on page 649

• The pkiserv.tmpl file is updated in the following sections:
  – “Examining the PKISERV application” on page 166
  – “Examining the CUSTOMERS application” on page 168
  – “Examining the TEMPLATE section” on page 179
  – “Examining the INSERT section” on page 185

• The Native Library Path field in “Steps for deploying the EAR file to a Traditional WebSphere Application Server” on page 262 is changed.

• The TemplateTool utility is updated support to handle multiple approvers.
Part 1. Planning

The Planning part includes the following topics:

• Chapter 1, “Introducing PKI Services,” on page 3 provides an overview of PKI Services, its components, and related concepts.

• Chapter 2, “Planning your implementation,” on page 11 provides a planning overview for your implementation, including information about the components that work with PKI Services. It also contains information about the team members you need to implement PKI Services and the skills they needed.

• Chapter 3, “Installing and configuring prerequisite products,” on page 29 describes installing and configuring related products: the IBM HTTP Server - Powered by Apache, LDAP, ICSF and OCSF.
Chapter 1. Introducing PKI Services

This topic provides an overview of PKI Services. It covers the following topics:

- “What is PKI Services?” on page 3
- “What is a certificate authority?” on page 3
- “What is PKI?” on page 4
- “Basic components of PKI Services and related products” on page 4
- “Component diagram” on page 5
- “Supported standards” on page 6
- “Supported certificate types” on page 7
- “Supported certificate fields and extensions” on page 8

What is PKI Services?

z/OS Cryptographic Services PKI Services allows you to use z/OS to establish a PKI infrastructure and serve as a certificate authority for your internal and external users, issuing and administering digital certificates in accordance with your own organization's policies. Your users can use a PKI Services application to request and obtain certificates through their own web browsers, while your authorized PKI administrators approve, modify, or reject these requests through their own web browsers. The web applications provided with PKI Services are highly customizable, and a programming exit is also included for advanced customization. You can allow automatic approval for certificate requests from certain users and, to provide additional authentication, add host IDs, such as RACF user IDs, to certificates you issue for certain users. You can also issue your own certificates for browsers, servers, and other purposes, such as virtual private network (VPN) devices, smart cards, and secure email.

PKI Services supports Public Key Infrastructure for X.509 version 3 (PKIX) and Common Data Security Architecture (CDSA) cryptographic standards. It also supports the following functions:

- The delivery of certificates through the Secure Sockets Layer (SSL) for use with applications that are accessed from a web browser or web server.
- The delivery of certificates that support the Internet Protocol Security standard (IPSEC) for use with secure VPN applications or IPSEC-enabled devices.
- The delivery of certificates that support Secure Multipurpose Internet Mail Extensions (S/MIME), for use with secure email applications.

What is a certificate authority?

The certificate authority, commonly called a CA, acts as a trusted third party to ensure that users who engage in e-business can trust each other. A certificate authority vouches for the identity of each party through the certificates it issues. In addition to proving the identity of the user, each certificate includes a public key that enables the user to verify and encrypt communications.

The trustworthiness of the parties depends on the trust that is placed in the CA that issued the certificates. To ensure the integrity of a certificate, the CA digitally signs the certificate as part of creating it, using its signing private key. Trying to alter a certificate invalidates the signature and renders it unusable.

Protecting the CA's signing private key is critical to the integrity of the CA. For this reason, you should consider using ICSF to securely store your PKI Services CA's private key.

As a CA using PKI Services, you can do the following tasks:
• Track certificates you issue with an issued certificate list (ICL) that contains a copy of each certificate, indexed by serial number
• Track revoked certificates using certificate revocation lists (CRLs). When a certificate is revoked, PKI Services updates the CRL during the next periodic update. Just as it signs certificates, the CA digitally signs all CRLs to vouch for their integrity.

What is PKI?

The public key infrastructure (PKI) provides applications with a framework for performing the following types of security-related activities:
• Authenticate all parties that engage in electronic transactions
• Authorize access to sensitive systems and repositories
• Verify the author of each message through its digital signature
• Encrypt the content of all communications.

The PKIX standard evolved from PKI to support the interoperability of applications that engage in e-business. Its main advantage is that it enables organizations to conduct secure electronic transactions without regard for operating platform or application software package.


Basic components of PKI Services and related products

| Table 1. Basic components of PKI Services and related products |
| --- | --- |
| **Component** | **Description** |
| Administration web application | Assists authorized administrators to review requests for certificates, approve or reject requests, renew certificates, or revoke certificates through their own web browsers. The application consists of sample screens that you can easily customize to display your organization's logo. It also supports the following tasks: |
| | • Reviewing pending certificate requests |
| | • Querying pending requests to process those that meet certain criteria |
| | • Displaying detailed information about a certificate or request |
| | • Monitoring certificate information, such as validity period |
| | • Annotating the reason for an administrative action |
| Db2 (optional) | Provides an alternative to VSAM data sets as the repository for the object store (request database) and issued certificate list (ICL). |
| End-user web application | Guides your users to request, obtain, and renew certificates through their web browsers. The application consists of sample screens that you can easily customize to meet your organization's needs for certificate content and standards for appearance. It offers several certificate templates that you can use to create requests for various certificate types, based on the certificate's intended purpose and validity period, and supports certificate requests that are automatically approved. |
Table 1. Basic components of PKI Services and related products (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
<td>Provides advanced customization including additional authorization checking, additional validation, changes to parameters on calls to the R_PKIServ callable service (IRRSPX00 and IRRSPX64), and capture of certificates for further processing. An exit program can be called from the daemon, for automatic certificate renewal, or from the PKIServ CGIs. Exit methods can be called from JavaServer pages (JSPs). The exit program and methods support both preprocessing and post-processing functions. A code sample in C language code is included.</td>
</tr>
<tr>
<td>IBM HTTP Server (optional)</td>
<td>PKI Services uses the web server to encrypt messages, authenticate requests, and transfer certificates to intended recipients if you implement the PKI Services web application using REXX CGI scripts. You can use IBM HTTP Server - Powered by Apache as the web server.</td>
</tr>
<tr>
<td>ICSF</td>
<td>Provides cryptographic functions including key generation and stronger protection of keys generated by PKI Services and the CA key.</td>
</tr>
<tr>
<td>LDAP</td>
<td>The directory that maintains information about the valid and revoked certificates that PKI Services issues in an LDAP-compliant format. You can use an LDAP server such as the one provided by IBM Tivoli® Directory Server for z/OS.</td>
</tr>
<tr>
<td>PKI Services daemon</td>
<td>The server daemon that acts as your certificate authority, confirming the identities of users and servers, verifying that they are entitled to certificates with the requested attributes, and approving and rejecting requests to issue and renew certificates. It includes support for:</td>
</tr>
<tr>
<td></td>
<td>• An issued certificate list (ICL) to track issued certificates</td>
</tr>
<tr>
<td></td>
<td>• Certificate revocation lists (CRLs) to track revoked certificates</td>
</tr>
<tr>
<td>R_PKIServ callable service (IRRSPX00 and IRRSPX64)</td>
<td>The application programming interface (API) that allows authorized applications, such as servers, to programmatically request the functions of PKI Services to generate, retrieve and administer certificates.</td>
</tr>
<tr>
<td>RACF (or equivalent)</td>
<td>Protects the components of your PKI Services system by controlling who can use the functions of the R_PKIServ callable service. The RACF (or equivalent) database is where the certificate authority's certificate, private key (or private key label, if ICSF is chosen to store the private key) and key ring are stored. RACF (or equivalent) can also be used to create the certificate authority's certificate and key directly.</td>
</tr>
<tr>
<td>WebSphere Application Server (optional)</td>
<td>Serves as the application server if you implement the PKI Services web application using JavaServer pages (JSPs).</td>
</tr>
<tr>
<td>z/OS Liberty Embedded (optional)</td>
<td>An alternative to WebSphere Application Server to implement PKI Services web application using JavaServer pages (JSPs).</td>
</tr>
</tbody>
</table>

Component diagram

Figure 1 on page 6 shows a typical PKI Services system.
**Supported standards**

PKI Services supports the following standards for public key cryptography:

- Secure Sockets Layer (SSL) version 2 and version 3, with client authentication
- PKCS #10 browser and server certificate format, with a base64-encoded response
- IPSEC certificate format
- S/MIME certificate format
- Browser certificates for:
  - 32-bit versions of Microsoft Internet Explorer
  - Mozilla-based browsers such as Mozilla Firefox
- Server certificates
- LDAP standard for communications with the directory
- X.509v3 certificates
- Certificate revocation lists (CRLv2)
- Key lengths up to 4096 bits for the RSA CA signing private keys and up to 1024 bits for DSA keys
- RSA algorithms for encryption and signing
- DSA algorithms for signing
- ECC algorithms for encryption and signing
- RFC 2560 (tools.ietf.org/html/rfc2560)
- RFC 4291 (tools.ietf.org/html/rfc4291)
- RFC 4210 (tools.ietf.org/html/rfc4210)
- RFC 4211 (tools.ietf.org/html/rfc4211)
- RFC 6277 (tools.ietf.org/html/rfc6277)
- RFC7030 (tools.ietf.org/html/rfc7030)
- Cisco Systems' Simple Certificate Enrollment Protocol (SCEP)

The LDAP standard that PKI Services supports is LDAP Version 2. A directory using LDAP Version 3 (with RFC 1779 (tools.ietf.org/html/rfc1779) syntax) is acceptable if it is backwardly compatible with Version 2.

PKI Services supports the RDNs needed for an Extended Validation (EV) certificate. The criteria for issuing EV certificates are defined by the Extended Validation Certificate Guidelines (cabforum.org/extended-validation) produced by the CA/Browser Forum. PKI Services does not enforce these criteria. If you want to issue EV certificates, it is your responsibility to enforce the criteria.

### Supported certificate types

Table 2 on page 7 lists the types of certificates that you can request, based on the certificate templates that are included with PKI Services. Certificate templates are samples of the most commonly requested certificate types. You can add, modify, and remove certificate templates to customize the variety of certificate types you offer to your users.

<table>
<thead>
<tr>
<th>Type of certificate</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-year PKI SSL browser certificate</td>
<td>End-user client authentication using SSL</td>
</tr>
<tr>
<td>One-year PKI S/MIME browser certificate</td>
<td>Browser-based email encryption</td>
</tr>
<tr>
<td>One-year PKI generated key certificate</td>
<td>Generation of public and private keys by PKI Services</td>
</tr>
<tr>
<td>Two-year EV SSL server certificate</td>
<td>SSL web server certification with verification of the subject’s identity meeting the guidelines for extended validation (EV) certificates.</td>
</tr>
<tr>
<td>Two-year PKI browser certificate for authenticating to z/OS</td>
<td>End-user client authorization using SSL when logging on to z/OS</td>
</tr>
<tr>
<td>Two-year PKI Authenticode - code signing server certificate</td>
<td>Software signing</td>
</tr>
<tr>
<td>Two-year PKI Windows logon certificate</td>
<td>End-user client authentication for an Active Directory user logging in to a Windows desktop using a smart card</td>
</tr>
<tr>
<td>Five-year PKI SSL server certificate</td>
<td>SSL web server certification</td>
</tr>
<tr>
<td>Five-year PKI IPSEC server (firewall) certificate</td>
<td>Firewall server identification and key exchange</td>
</tr>
<tr>
<td>Five-year PKI intermediate CA server certificate</td>
<td>Subordinate (non-self-signed) certificate authority certification</td>
</tr>
</tbody>
</table>
Table 2. Types of certificates you can request (continued)

<table>
<thead>
<tr>
<th>Type of certificate</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five-year SCEP certificate</td>
<td>Creation of a preregistration record for certificate requestors. (Certificate requestors using Simple Certificate Enrollment Protocol (SCEP) must be preregistered.) Unlike other templates, this template is intended for administration use only.</td>
</tr>
<tr>
<td>Two-year EST certificate</td>
<td>Preregister a user or device for an EST certificate and for EST certificate fulfillment.</td>
</tr>
<tr>
<td>n-year PKI browser certificate for extensions demonstration</td>
<td>Demonstration of all extensions supported by PKI Services</td>
</tr>
</tbody>
</table>
| One-year SAF browser certificate                          | End-user client authentication where the security product (RACF, not PKI Services) is the certificate provider  
  **Note:** The certificate generated by this template cannot be managed by the PKI Services administrator. |
| One-year SAF server certificate                           | Web server SSL certification where the security product (RACF, not PKI Services) is the certificate provider  
  **Note:** The certificate generated by this template cannot be managed by the PKI Services administrator. |

**Note:** You can customize certificate templates to add, modify, and remove certificate types.

### Supported certificate fields and extensions

PKI Services certificates support most of the fields and extensions defined in the X.509 version 3 (X.509v3) standard. This support lets you use these certificates for most cryptographic purposes, such as SSL, IPSEC, VPN, and S/MIME.

PKI Services supports Basic Latin and Latin-1 supplement characters in the Subject Distinguished Name, Issuer Distinguished Name and Othername in Subject Alternate Name.

PKI Services certificates can include the following types of extensions:

#### Standard extensions

The standard X.509v3 certificate extensions:

- authority information access
- authority key identifier
- basic constraints
- certificate policies
- certificate revocation list (CRL) distribution points
- extended key usage
- key usage
- subject alternate name
- subject key identifier
Other extensions

Extensions that are unique to PKI Services, such as host identity mapping. This extension associates the subject of a certificate with a corresponding identity on a host system, such as with a RACF user ID.

To support your organization's policies, PKI Services provides the means for you to select and customize the supported certificate extensions. For example, you can change the extensions that are specified in the default certificate templates or create templates that return certificates with different extensions. In addition, you can include your own extensions in your certificates by defining custom extensions.
Chapter 2. Planning your implementation

The implementation of PKI Services requires the interaction of several software products, each with its own required skills. Therefore, it is important to understand the tasks involved and to plan your implementation.

This topic provides the information you need to understand the task of implementing PKI Services, determine which skills are required to complete your implementation team, and create your own implementation plan.

This topic covers the following topics:

- “Installing PKI Services” on page 11
- “Requirements for sysplex support” on page 11
- “Requirements for FIPS” on page 12
- “Determining prerequisite products” on page 12
- “Identifying skill requirements” on page 14
- “Creating an implementation plan” on page 19.

Installing PKI Services

Your MVS programmer uses SMP/E to install PKI Services into a file system directory. By default, PKI Services is installed in the /usr/lpp/pkiserv directory but the MVS programmer can determine whether to change the default for this and other directories. Before your team begins installing and configuring prerequisite products and setting up PKI Services, you need to know which file system directories were used so you can customize the installation process.

Table 3 on page 11 shows each file system variable with its description and default value. Your MVS programmer should review the rightmost column of this table, crossing out any defaults that have changed and recording the correct directory names.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Default value or customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>variables-dir</td>
<td>The file system directory where PKI Services creates working files.</td>
<td>/var/pkiserv</td>
</tr>
<tr>
<td>install-dir</td>
<td>The file system directory where PKI Services is installed.</td>
<td>/usr/lpp/pkiserv</td>
</tr>
<tr>
<td>runtime-dir</td>
<td>The file system directory where PKI Services looks for configuration files.</td>
<td>/etc/pkiserv</td>
</tr>
</tbody>
</table>

Requirements for sysplex support

If your installation plans to use sysplex support (running multiple independent instances of PKI Services, one per image, that work in unison):

- If you are using VSAM data sets for the object store and ICL, all systems in the sysplex that run PKI Services must have the same release of z/OS installed, and all instances of PKI Services must share the same VSAM data sets. To do so, they use VSAM record-level sharing (RLS). This requires setting up a coupling facility for data sharing (lock and cache).
- If you are using Db2 tables for the object store and ICL, all systems in the sysplex that run PKI Services must be at z/OS V1R13 or later and have the same release of z/OS installed. Db2 Version 9 or later must
be installed and the Db2 subsystems that share data must belong to a Db2 data sharing group that runs on a sysplex cluster.

See “(Optional) preliminary steps for establishing VSAM RLS” on page 117 for information about creating VSAM data sets suitable for VSAM RLS. For information about establishing a Parallel Sysplex® environment with a coupling facility, see z/OS MVS Programming: Sysplex Services Guide. For more information about establishing data sharing for VSAM RLS, see z/OS DFSMS Introduction and z/OS DFSMSdfp Storage Administration.

Requirements for FIPS

PKI Services provides the capability to execute securely to meet the National Institute Standards and Technology (NIST) Federal Information Processing Standards (FIPS) levels supported by System SSL and ICSF PKCS#11. System SSL supports 3 FIPS levels. Each level has different requirements on key size and signature algorithms. The FIPS level to be used by PKI Services is specified by the environment variable _PKISERV_FIPS_LEVEL:

- Level 1 corresponds to FIPS 140-2.
- Level 2 corresponds to SP800-131-A with exception.
- Level 3 corresponds to SP800-131-A without exception.

Requirements for the CA certificate

Based on the requirements from System SSL, the CA certificate must meet the following requirements:

- The key must not be stored in ICSF Public Key Data Set (PKDS)
- The key cannot be a Brainpool ECC key.
- For RSA and DSA key, key size must be at least 1024 bits (FIPS level 1) or 2048 bits (FIPS level 2 and 3); for NIST ECC key, key size must be at least 192 bits (FIPS level 1) or 224 (FIPS level 2 and 3).
- The hash algorithm used in the signature on the CA certificate must be SHA1 or higher (FIPS level 1 and 2) or SHA224 (FIPS level 3) or higher.

**Note:** If the CA certificate is a DSA certificate generated by RACF RACDCERT prior to z/OS V2R2 or V2R2 without PTF UA80493 installed, it is not FIPS compliant. You will need to perform the REKEY and ROLLOVER process if you want to enable PKI Services to run in FIPS mode using the DSA CA certificate. This process is discussed in the section “Retiring and replacing the PKI Services CA private key” on page 491.

Requirements for the RA certificate

When PKI Services is configured to provide SCEP processing and an RA certificate is specified, the RA certificate must meet the same requirements as a CA certificate using an RSA key for the desired FIPS level.

Requirements for the signing algorithm

The hash algorithm used by PKI Services to sign issued certificates and CRLs must be SHA or higher for FIPS level 1, or SHA224 or higher for FIPS level 2 and 3. This hash algorithm is specified by the SigAlg1 configuration keyword, described in Table 21 on page 74.

Determining prerequisite products

The installation and use of PKI Services requires the following products:

- “IBM HTTP Server - Powered by Apache (optional)” on page 13
- “WebSphere Application Server / z/OS Liberty Embedded (optional)” on page 13
The installation and use of RACF, or an equivalent security product, is required.

**IBM HTTP Server - Powered by Apache (optional)**

In a PKI Services system, if you implement the web application using REXX CGI execs the HTTP server handles all requests that it receives from a web browser. The requests can include requests for new certificates and requests to renew or revoke existing certificates. If needed, it performs authentication before allowing any exchange of information to take place. The IBM HTTP Server - Powered by Apache is required if you use the REXX CGI web application or if you use one or more of the CGI programs. CGI programs provide OCSP, SCEP, EST, and the CMP support for PKI Services.

PKI Services supports IBM HTTP Server - Powered by Apache. It is part of the IBM z/OS operating system. For more information, see IBM HTTP Server (www.ibm.com/software/products/http-servers). It is also included with WebSphere Application Server.

The HTTP server must be installed on the same system on which PKI Services is installed. SSL-enablement is required. If your HTTP server is SSL-enabled, your key file can be a RACF key ring, or a key file created by another product. For more information, see “Steps for installing and configuring the IBM HTTP Server - Powered by Apache to work with PKI Services” on page 30.

**WebSphere Application Server / z/OS Liberty Embedded (optional)**

If you implement the PKI Services web application using JavaServer pages (JSPs), you must use WebSphere Application Server 7.0 or later or z/OS Liberty Embedded 8.5 or later. Liberty is included in the base level of z/OS Version 2 Release 3. An application server is a Java virtual machine (JVM) running user applications. WebSphere Application Server provides application servers that handle web application requests.

If you implement the PKI Services web application using REXX CGI execs, WebSphere Application Server or Liberty is not required.

**LDAP directory server**

Use of an LDAP server is required to maintain information about PKI Services certificates in a centralized location. The z/OS LDAP server provided by IBM Tivoli Directory Server for z/OS is preferred, but you can use a non-z/OS LDAP server if it can support the objectclasses and attributes that PKI Services uses. Typical PKI Services usage requires an LDAP directory server that supports the LDAP (Version 2) protocol (and the PKIX schema). If you use the z/OS LDAP server provided by IBM Tivoli Directory Server for z/OS, configure it for either the TDBM or LDBM backend.

Through the integration of the z/OS LDAP server with Db2, the directory can support millions of directory entries. It also allows client applications, such as PKI Services, to perform database storage, update, and retrieval transactions. For more information, see “Steps for installing and configuring LDAP” on page 31.

**OCSF**

You need to install and configure OCSF if your installation plans to write an application to implement the use of PKI Trust Policy (PKITP). For more information, see “Installing and configuring OCSF” on page 35.
ICSF

Beginning with z/OS V2R3, PKI Services relies on ICSF to provide basic cryptographic functions in addition to those that involve key generation and stronger protection of keys generated by PKI Services and the CA key. For more information, see “Installing and configuring ICSF” on page 33.

sendmail (optional)

You need to configure sendmail if your installation plans to send email notifications to users for certificate-related events, such as certificate expiration. For more information, see “Configuring sendmail (optional)” on page 34.

OCEP (optional)

You need to install and configure OCEP if your installation plans to write an application to implement the use of PKI Trust Policy (PKITP). For more information, see “Configuring and getting started with PKITP” on page 511.

Db2 (optional)

You need to install and configure Db2 if your installation chooses to implement the object store and issued certificate list (ICL) using Db2 instead of VSAM. For more information, see Chapter 9, “Creating the object store and ICL,” on page 115.

Identifying skill requirements

The implementation of PKI Services requires the interaction of several software products, each with its own required skills. This means that your team might consist of people from several different disciplines, particularly if you work with a large organization.

This section provides the information that you need to determine which skills are required to complete your implementation. These skills are presented in terms of job titles for people who specialize in those skills. For example, a task requiring MVS skills is referred to as a task for an MVS programmer. Therefore, if some of your team members have multiple skills, you might require fewer individuals to complete your team.

Team members

Your team for installing and configuring prerequisite products and setting up PKI Services should include the following members:

- Db2 database administrator (DBA) (optional)
- ICSF programmer
- LDAP programmer
- MVS programmer
- OCEP programmer (optional)
- OCSF programmer (optional)
- RACF administrator
- UNIX programmer
- Web server programmer

You might want to include a web page designer to customize your PKI Services web applications. This task is listed in the topic as a task for a web server programmer.

One or more PKI administrators are needed to manage your ongoing operation as a certificate authority when your PKI Services system is set up. The responsibilities of these administrators include approving,
modifying, and rejecting certificate requests and revoking certificates. It might be advisable to appoint a PKI administrator early, and involve this person in your planning.

**Important:** PKI administrators play a powerful role in your organization. The decisions that they make when managing certificates and certificate requests determine who accesses your computer systems and what privileges they have when doing so. Assign PKI administration duties to only highly trusted individuals.

**Skills for setting up prerequisite products**

The following table lists team members (alphabetically) and tasks and required skills needed for installing and configuring prerequisite products:

<table>
<thead>
<tr>
<th>Role</th>
<th>Tasks</th>
<th>Required skills</th>
<th>Documented in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Db2 database administrator (DBA)</td>
<td>(Optionally) installing and configuring Db2 (if not already done)</td>
<td>Db2 installation and configuration skills                                         • <em>Installation Guide</em> for your version of Db2.</td>
<td></td>
</tr>
<tr>
<td>ICSF programmer</td>
<td>Installing and configuring ICSF (if not already done)</td>
<td>ICSF installation and configuration skills                                        • <em>z/OS Cryptographic Services ICSF Administrator’s Guide</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting up the ICSF PKCS #11 token data set (TKDS) (if not already done)</td>
<td>• <em>z/OS Cryptographic Services ICSF Application Programmer’s Guide</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <em>z/OS Cryptographic Services ICSF System Programmer’s Guide</em></td>
<td></td>
</tr>
<tr>
<td>LDAP programmer</td>
<td>Installing and configuring LDAP (if not already done) and recording information</td>
<td>LDAP installation and configuration skills                                         • <em>z/OS IBM Tivoli Directory Server Administration and Use for z/OS</em></td>
<td></td>
</tr>
<tr>
<td>OCEP programmer</td>
<td>(Optionally) Installing and configuring OCEP for use with PKITP</td>
<td>OCEP installation and configuration skills                                         • <em>z/OS Integrated Security Services Open Cryptographic Enhanced Plug-ins Application Programming</em></td>
<td></td>
</tr>
<tr>
<td>OCSF programmer</td>
<td>(Optionally) Installing and configuring OCSF for use with PKITP</td>
<td>OCSF installation and configuration skills                                         • <em>z/OS Open Cryptographic Services Facility Application Programming</em></td>
<td></td>
</tr>
<tr>
<td>UNIX programmer</td>
<td>(Optionally) Configuring sendmail if your installation is planning to send email notifications to users about certificates</td>
<td>Basic UNIX commands such as the <strong>cp</strong> (copy) command and <strong>mkdir</strong> (make directory) command • sendmail configuration skills • <em>z/OS Communications Server: IP Configuration Guide</em></td>
<td></td>
</tr>
</tbody>
</table>

**Planning your implementation**
Your team needs to install and configure prerequisite products before setting up PKI Services:

1. The web server programmer installs and configures the IBM HTTP Server - Powered by Apache (if you are implementing the PKI Services web application using REXX CGI execs or intend to use OCSP, SCEP, EST, or CMP protocols) or WebSphere Application Server (if you are implementing the PKI Services web application using JavaServer pages).
2. The LDAP programmer installs and configures LDAP.
3. The ICSF programmer installs and configures ICSF, and sets up the token data set (TKDS).
4. Optionally, the OCEP programmer installs and configures the OCEP.
5. Optionally, the OCSF programmer installs and configures the OCSF.
6. Optionally, the Db2 database administrator installs and configures Db2.

See Chapter 3, “Installing and configuring prerequisite products,” on page 29 for details about performing these tasks.

Skills for setting up PKI Services

The following table lists team members (alphabetically) and the tasks and skills needed for setting up PKI Services:
<table>
<thead>
<tr>
<th>Role</th>
<th>Tasks</th>
<th>Required skills</th>
<th>Documented in:</th>
</tr>
</thead>
</table>
| Db2 database administrator | • Creates Db2 tables, package, and plan for the object store and issued certificate list (ICL). | • Db2 programming skills  
  • Db2 administration skills | • Application Programming and SQL Guide  
  • Command Reference  
  • SQL Reference  
  for your version of Db2. |
| LDAP programmer          | • Customizes LDAP configuration for PKI Services                      | • LDAP customization skills                         | • z/OS IBM Tivoli Directory Server Administration and Use for z/OS                                        |
| MVS programmer           | • (Optionally) Creates VSAM object store and ICL data sets and indexes  
  • (Optionally) sets up VSAM RLS  
  • Starts the PKI Services daemon | • Basic MVS skills  
  – Editing a data set  
  – ISPF COPY command  
  – MVS console START command  
  • JCL knowledge to change job card  
  • Basic browser and web skills | • z/OS MVS System Commands |
| RACF administrator       | • Adds groups and user IDs  
  • Sets up access control  
  • Creates certificates  
  • Sets up daemon security | • RACF administration  
  • REXX skills (for working with IKYSETUP REXX exec)  
  • RACF commands such as:  
    – ADDGROUP  
    – ADDSD  
    – ADDUSER  
    – RACDCERT  
    – RDEFINE  
    – PERMIT  
    – SETROPTS  
  • TSO skills | • z/OS TSO/E REXX Reference  
  • z/OS UNIX System Services Planning  
  • z/OS Security Server RACF Security Administrator’s Guide |

Planning your implementation 17
### Table 5. Roles, tasks, and skills for setting up PKI Services (continued)

<table>
<thead>
<tr>
<th>Role</th>
<th>Tasks</th>
<th>Required skills</th>
<th>Documented in:</th>
</tr>
</thead>
</table>
| UNIX programmer       | • Copies files  
  • (Optionally) customizes environment variables  
  • (Optionally) customizes (non-LDAP sections of) pkiserv.conf configuration file  
  • Sets up /var/pkiserv directory  
  • Updates the LDAP section of the pkiserv.conf configuration file | • Basic UNIX commands, such as the cp (copy) command  
  • Getting superuser authority | • z/OS UNIX System Services Command Reference  
  • z/OS UNIX System Services Planning |
| Web server programmer | • Helps set up PKI Services  
  - If you are implementing the PKI Services web application using REXX CGI execs: Updates the IBM HTTP Server - Powered by Apache configuration files and starts the IBM HTTP Server - Powered by Apache  
  - If you are implementing the PKI Services web application using JavaServer pages (JSPs), updates the enterprise archive (EAR) file and deploys updated JSP files to a WebSphere Application Server.  
  • Customizes the PKI Services web pages | • IBM HTTP Server - Powered by Apache customization skills  
  • WebSphere Application Server customization and administration skills  
  • Editing configuration files  
  • Customizing the web pages | WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP) |
Creating an implementation plan

Your implementation plan should include major subtasks, responsible parties, and a realistic estimate of time and effort required. The major tasks for implementing PKI Services are provided here as a basis for you to build your own plan.

Planning considerations for installing and configuring PKI Services

Table 6 on page 19 contains information that might affect how PKI Services is installed and configured. These concerns can help you to assess the size of your administrative staff, determine what required products might be needed, and what features of PKI Services might need to be used to meet your needs.

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Affects on PKI Services configuration and operation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability considerations:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What types of certificates does this installation of PKI Services support?</td>
<td>Impacts how the template files pkiserv.tmpl and pkitmpl.xml are modified when deciding what certificate types to support, and whether any customized types are supported.</td>
<td>See “Supported certificate types” on page 7 for the list of supported certificate types. See Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 for more information about the pkiserv.tmpl file.</td>
</tr>
<tr>
<td>Does this installation provide customized certificate types or unique certificate types?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does this installation of PKI Services need to be able to generate key pairs on behalf of the certificate requester?</td>
<td>Deciding whether to configure PKI Services to generate key pairs determines whether an ICSF programmer is needed, and what tasks are needed to be performed. This also affects how the IKYSETUP script is customized.</td>
<td>See “Installing and configuring ICSF” on page 33.</td>
</tr>
<tr>
<td>Considerations</td>
<td>Affects on PKI Services configuration and operation</td>
<td>Topic</td>
</tr>
<tr>
<td>--------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>How do your PKI Services administrators and clients request and manage certificates? Does this installation provide a web browser interface to your clients?</td>
<td>Providing a browser interface requires a choice between using JavaServer Pages (JSPs) or REXX CGI execs to implement the web pages. This choice decides whether WebSphere Application Server or the IBM HTTP Server (IHS) is used to handle the web browser traffic. A web server programmer is needed to configure either server. Choosing a web browser interface might require updates to the pkiserv.tmpl for REXX CGI execs or pkitmpl.xml and JSPs installed by PKI Services. This is to support the specific features that this installation wants to provide to administrator and clients. This impacts how the template files pkiserv.tmpl and pkitmpl.xml are modified.</td>
<td>For assistance on customizing the IBM HTTP Server (IHS), see Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101. Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 contains information about customizing the default JSPs. See Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 for more information about the pkiserv.tmpl file.</td>
</tr>
<tr>
<td>Does this installation allow certificate management through SCEP, EST, OCSP, or CMP protocols?</td>
<td>Supporting SCEP, EST, OCSP, or CMP protocols requires that the IBM HTTP Server (IHS) is enabled, regardless of the choice that is made for any web browser support. A web server programmer must configure the IBM HTTP Server.</td>
<td>For more information about using SCEP, EST, and OCSP, see Chapter 14, “Advanced customization,” on page 283. For more information about CMP, see Chapter 21, “Using the certificate management protocol (CMP) with PKI Services,” on page 453.</td>
</tr>
<tr>
<td>Considerations</td>
<td>Affects on PKI Services configuration and operation</td>
<td>Topic</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Does this installation need to provide certificate revocation information. If so, does it provide this information through OCSP protocols or through certificate revocation lists (CRLs)? | To provided CRL information, modifications might be required to the PKI Services configuration file pkiserv.conf.  
To provided OCSP information, modifications might be required to the PKI Services template file pkiserv.tmpl or pkitmpl.xml.  
A z/OS UNIX System Services programmer might be needed if CRLs are stored to a z/OS UNIX System Services directory. New PKI Services installations should use this feature. Existing PKI Services installations should enable and upgrade to this feature.  
An LDAP programmer might be needed if CRLs are to be posted to an LDAP directory server.  
If certificate revocation information is made available through OCSP or CRL using http protocol, a web server programmer must configure the IBM HTTP Server - Powered by Apache. | See “Optionally updating the pkiserv.conf configuration file” on page 72 for details about the options for the pkiserv.conf file.  
Assistance for configuring the LDAP server for PKI Services is provided in Chapter 6, “Tailoring the LDAP configuration for PKI Services,” on page 97. To store CRL information in a z/OS UNIX System Services directory, see “Enabling support for large CRLs” on page 297.  
Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101 contains descriptions of the IBM HTTP Server configuration features required by PKI Services. |
| Do you want to run in FIPS mode?                                              | Ensure that the signing algorithm and the CA certificates fulfill requirements corresponding to the desired FIPS level specified in the pkiserv.envars file. | See Chapter 2 section, “Requirements for FIPS” on page 12 and Chapter 5 section, “(Optional) Steps for updating PKI Services environment variables” on page 72.                                               |
## Table 6. Considerations before installing and configuring PKI Services (continued)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Affects on PKI Services configuration and operation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Scaling considerations:</strong></td>
<td>The expected volume of request traffic and managed certificates affects how many PKI Services administrators are needed to provide complete coverage. The number of PKI Services administrators affects how the sample IKYSETUP script is modified for this installation.</td>
<td>Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 contains information about how to tailor the IKYSETUP script for the needs of your installation.</td>
</tr>
<tr>
<td><strong>What volume of certificate requests is this installation expected to handle?</strong></td>
<td>This consideration also impacts the choice of backend storage for PKI Services: the default VSAM storage mechanism for typical installations; the optional Db2 storage mechanism for large-scale installations.</td>
<td>To set up VSAM as the backing storage, see “Creating the object store and ICL using VSAM data sets” on page 116 and the IKYSETUP instructions in Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39.</td>
</tr>
<tr>
<td><strong>How many certificates is this installation expected to manage and track?</strong></td>
<td>If Db2 is used as the backend storage, Db2 must be installed before installing and configuring PKI Services, and the services of a Db2 database administrator is required.</td>
<td>To set up Db2 as the backing storage when Db2 is installed and configured, see “Creating the object store and ICL using Db2 tables” on page 122. To correctly modify IKYSETUP to configure PKI Services for Db2, see “Deciding the value of db2_repos and db2_subsys” on page 47.</td>
</tr>
<tr>
<td></td>
<td>Also, the more certificates that are issued by a CA, the more certificates that can be potentially revoked. New PKI Services installations should choose to use the large CRL support in PKI Services; existing PKI Services installations should consider enabling and upgrading to the large CRL support. A z/OS UNIX System Services programmer is needed to enable and configure this feature.</td>
<td>For instructions about enabling large CRL support and storing CRLs in a z/OS UNIX System Services directory, see “Enabling support for large CRLs” on page 297.</td>
</tr>
<tr>
<td></td>
<td>Large scale PKI Services installations that can generate a large volume of certificates or CRLs also impacts the planning tasks of the LDAP programmer, who must account for the storage that these certificates and CRLs can consume in LDAP.</td>
<td>For information about configuring LDAP to support PKI Services, see Chapter 6, “Tailoring the LDAP configuration for PKI Services,” on page 97.</td>
</tr>
<tr>
<td><strong>Do you plan to suspend and resume certificates as a regular task in your normal operation?</strong></td>
<td>If suspension and resumption of certificates are a regular occurrence, this increases the number of revoked certificates, and also factors in to the CRL support that is chosen for this installation.</td>
<td>For instructions on storing large CRLs, see “Enabling support for large CRLs” on page 297.</td>
</tr>
<tr>
<td>Considerations</td>
<td>Affects on PKI Services configuration and operation</td>
<td>Topic</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| **Structural considerations:**  
Is more than one CA hosted by a single z/OS image? | PKI Services can support multiple concurrently operating CAs within a single installation. Each CA operates within its own PKI Services CA domain. | Information about using and establishing multiple CA domains is in “Adding a new CA domain” on page 302. |
| Is this installation of PKI Services acting as a root certificate authority (CA) or an intermediate certificate authority? | By default, PKI Services is configured to be a single root certificate authority. PKI Services can be configured to be an intermediate CA using additional procedures. | The procedure for changing PKI Services to an intermediate CA are in “Establishing PKI Services as an intermediate CA” on page 486. |
| **Procedural considerations:**  
Do clients of PKI Services expect around-the-clock support?  
What vetting procedures are used to determine whether certificate requests should be approved or rejected? Do any of these procedures require the approval of multiple parties? | Administrative coverage and vetting procedures influence how many people are designated to be PKI Services administrators. The identities of PKI Services administrators are needed to correctly update the IKYSETUP script.  
If multiple parties are involved in vetting individual requests, the templates that are used for those requests in the pkiserv.tmpl and pkitmpl.xml files should be updated to enable multiple administrative approvals. | Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 contains information about how to tailor the IKYSETUP script for the needs of your installation.  
For more information about granting administrative access to users, see “Authorizing administrative functions” on page 497.  
See Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 for more information about the pkiserv.tmpl file.  
Multiple party approval is described in the ADMINNUM=value, where value is a numeric subsection of the template. |
<table>
<thead>
<tr>
<th>Considerations</th>
<th>Affects on PKI Services configuration and operation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>What procedures indicate whether certificates should be suspended, revoked, or renewed?</td>
<td>If certain requests can be automatically approved or rejected, or if certain certificates are allowed to be automatically renewed, the templates that are used for those requests in the pkiserv.tmpl and pkitmpl.xml files should be updated to enable these automated actions. If multiple parties are involved in vetting individual requests, the templates that are used for those requests should be updated to enable multiple administrative approvals.</td>
<td>See Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 for more information about the pkiserv.tmpl file. Also, included are instructions to set templates for automated approval or rejection. Multiple party approval is described in the ADMINNUM= value, where value is a numeric subsection of the template.</td>
</tr>
<tr>
<td>Do any of these procedures require the approval of multiple parties?</td>
<td>If there is a separation of duties between different PKI Services administrators (for example, if the administrators that approve browser certificates are not given authority to approve server certificates too), need to enable PKI Services granular authorization controls. The IKYSETUP script sets the pkiserv.conf file to enable these granular controls. The RACF programmer must create the necessary RACF resource profiles to control PKI Services administrator authority.</td>
<td>To set up PKI Services to use granular administrative controls, see “Deciding the value of AdminGranularControl” on page 48. The specific control for this option is described in Table 21 on page 74. The RACF classes and resources necessary to implement these controls are in “Using the PKISERV class to control access to administrative functions” on page 499.</td>
</tr>
</tbody>
</table>
### Table 6. Considerations before installing and configuring PKI Services (continued)

<table>
<thead>
<tr>
<th>Considerations</th>
<th>Affects on PKI Services configuration and operation</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Administrative considerations:</strong></td>
<td>Administrative coverage and vetting procedures influence how many people are designated to be PKI Services administrators. The identities of PKI Services administrators are needed to correctly update the IKYSETUP script.</td>
<td>Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 contains information about how to tailor the IKYSETUP script for the needs of your installation.</td>
</tr>
<tr>
<td>What is the best way to structure the group of PKI Services administrators?</td>
<td>If any PKI Services administrators are being created only to monitor and audit the system, those administrators require READ access to the IRR.PKISERV.PKIADMIN and related RACF facility resource. PKI Services administrators that handle certificates and requests require UPDATE access to these RACF resources. The level of authority for each administrator affects how the IKYSETUP script is modified for this installation.</td>
<td>For more information about granting administrative access to users, see “Authorizing administrative functions” on page 497.</td>
</tr>
<tr>
<td>If multiple CAs are being hosted by a single z/OS image, are certain PKI Services administrators responsible only for specific CAs?</td>
<td>If there is a separation of duties between different PKI Services administrators (for example, if the administrators that approve browser certificates are not given authority to approve server certificates too), need to enable PKI Services granular authorization controls. The IKYSETUP script sets the pkiserv.conf file to enable these granular controls. The RACF programmer must create the necessary RACF resource profiles to control PKI Services administrator authority.</td>
<td>To set up PKI Services to use granular administrative controls, see “Deciding the value of AdminGranularControl” on page 48. The specific control for this option is in Table 21 on page 74.</td>
</tr>
<tr>
<td>Are certain PKI Services administrators authorized to perform only a subset of the administrative tasks?</td>
<td>The RACF classes and resources necessary to implement these controls are in “Using the PKISERV class to control access to administrative functions” on page 499.</td>
<td></td>
</tr>
<tr>
<td>Are certain PKI Services administrators authorized to perform any administrative task?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 6. Considerations before installing and configuring PKI Services (continued)

| Considerations                                                                 | Affects on PKI Services configuration and operation                                                                                                                                                                                                                                                                   | Topic                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How frequently does this installation handle SCEP-based requests for certificates? | How frequently your installation processes SCEP-based certificate requests are of concern for administrators of existing PKI Services installations that are upgrading to PKI Services Version 2 Release 3 or later. This question affects your decision on the format version to use for the Object Store and ICL, which is determined from the DBVersion, ObjectSCEPTidDSN, and ICLSCEPTidDSN keyword in the pkiserv.conf configuration file. If SCEP-based requests are rarely handled, you do not need to convert your existing Object Store and ICL from their existing format. You can continue to use the existing format by leaving DBVersion, ObjectSCEPTidDSN, and ICLSCEPTidDSN unset. For installations that frequently handle SCEP-based certificate requests, consider converting your existing Object Store and ICL to the new format version to allow for improved tracking of these requests. New installations of PKI Services should set up their installation to use the enhanced requester SCEP functionality that is provided in PKI Services Version 2 Release 3 and later. | For more information about SCEP-based requests for certificates, see “Creating the object store and ICL using VSAM data sets” on page 116 and “Creating the object store and ICL using Db2 tables” on page 122. |

### Task roadmap for implementing PKI Services

**Table 7 on page 26 shows the subtasks and associated procedures for implementing PKI Services. These tasks comprise of the major part of your implementation plan.**

**Table 7. Task roadmap for implementing PKI Services**

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Associated procedure (See …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing and configuring prerequisite products:</td>
<td>Chapter 3, “Installing and configuring prerequisite products,” on page 29</td>
</tr>
<tr>
<td>• “IBM HTTP Server - Powered by Apache (optional)” on page 13</td>
<td>“Steps for installing and configuring the IBM HTTP Server - Powered by Apache to work with PKI Services ” on page 30</td>
</tr>
<tr>
<td>• “OCSF” on page 13</td>
<td>“Installing and configuring OCSF” on page 35</td>
</tr>
<tr>
<td>Subtask</td>
<td>Associated procedure (See ...</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>“LDAP directory server” on page 13</td>
<td>“Steps for installing and configuring LDAP” on page 31</td>
</tr>
<tr>
<td>“ICSF” on page 14</td>
<td>“Installing and configuring ICSF” on page 33</td>
</tr>
<tr>
<td>“OCEP (optional)” on page 14</td>
<td>“Configuring and getting started with PKITP” on page 511</td>
</tr>
<tr>
<td>“sendmail (optional)” on page 14</td>
<td>“Configuring sendmail (optional)” on page 34</td>
</tr>
<tr>
<td>“Db2 (optional)” on page 14</td>
<td>“Installing and configuring Db2” on page 35</td>
</tr>
<tr>
<td>Configuring your system for PKI Services:</td>
<td>Part 2, “Configuring your system for PKI Services,” on page 37</td>
</tr>
<tr>
<td>RACF</td>
<td>Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39</td>
</tr>
<tr>
<td>z/OS UNIX</td>
<td>Chapter 5, “Configuring the UNIX runtime environment,” on page 67</td>
</tr>
<tr>
<td>LDAP configuration</td>
<td>Chapter 6, “Tailoring the LDAP configuration for PKI Services,” on page 97</td>
</tr>
<tr>
<td>HTTP server</td>
<td>Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101</td>
</tr>
<tr>
<td>LDAP</td>
<td>Chapter 8, “Tailoring the PKI Services configuration file for LDAP,” on page 107</td>
</tr>
<tr>
<td>Set up the object store and issued certificate list (ICL)</td>
<td>Chapter 9, “Creating the object store and ICL,” on page 115</td>
</tr>
<tr>
<td></td>
<td>Chapter 10, “Starting and stopping PKI Services,” on page 129</td>
</tr>
<tr>
<td>Customizing PKI Services:</td>
<td>Part 3, “Customizing PKI Services,” on page 133</td>
</tr>
<tr>
<td>Customizing end-user web pages</td>
<td>Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135</td>
</tr>
<tr>
<td>Customizing administration web pages</td>
<td>Chapter 12, “Customizing the administration web pages if you use REXX CGI execs,” on page 233</td>
</tr>
<tr>
<td>Advanced customizing</td>
<td>Chapter 14, “Advanced customization,” on page 283</td>
</tr>
<tr>
<td>Using end-user web pages</td>
<td>Chapter 18, “Using the end-user web pages,” on page 375</td>
</tr>
<tr>
<td>Subtask</td>
<td>Associated procedure (See ...)</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>---------------------------------------------------------------------</td>
</tr>
<tr>
<td>• Using administration web pages</td>
<td>• Chapter 19, “Using the administration web pages,” on page 405</td>
</tr>
<tr>
<td>Administering PKI Services:</td>
<td>Part 5, “Administering security for PKI Services,” on page 479</td>
</tr>
<tr>
<td>• RACF</td>
<td>• Chapter 22, “RACF administration for PKI Services,” on page 481</td>
</tr>
</tbody>
</table>
Chapter 3. Installing and configuring prerequisite products

After the MVS programmer installs PKI Services using SMP/E (but before team members set up PKI Services, see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 through Chapter 9, “Creating the object store and ICL,” on page 115), your team needs to set up prerequisite products:

- An HTTP server - to handle requests through a web server
- WebSphere Application Server for z/OS (optional)- provides the web server if you implement the PKI Services web application using JavaServer pages (JSPs)
- LDAP - for posting certificates and CRLs
- ICSF - provides cryptographic functions that PKI Services will rely on, such as the storage of the CA's private key in hardware and the generation and storage of key pairs for PKI Services certificate requests.
- sendmail (optional) - for sending email notifications to certificate requestors and administrators
- OCSF (optional) - used by the PKI Trust Policy (PKITP)
- OCEP (optional) - used by the PKI Trust Policy (PKITP)
- Db2 (optional) - can be used to store the object store and issued certificate list (ICL) if VSAM data sets are not used

You need to install and configure the HTTP server and LDAP only if you are setting up prerequisite products for PKI Services for the first time.

Tasks to perform before setting up PKI Services

Before you can set up PKI Services, your team needs to set up prerequisite software products by completing the following tasks, if not already done:

1. “Installing and configuring the IBM HTTP Server - Powered by Apache” on page 29
2. “Installing and configuring WebSphere Application Server for z/OS” on page 31
3. “Installing and configuring LDAP” on page 31
4. “Installing and configuring ICSF” on page 33
5. “Configuring sendmail (optional)” on page 34
6. “Installing and configuring Db2” on page 35

This topic explains these tasks in more detail.

Installing and configuring the IBM HTTP Server - Powered by Apache

You need to perform this task only if you are setting up prerequisite products for PKI Services for the first time.

PKI Services requires that you have the IBM HTTP Server - Powered by Apache installed and configured for at least non-SSL page retrieval. Tasks of other team members, such as the RACF administrator and web server programmer (see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 and Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101) assume that this is already done.
Steps for installing and configuring the IBM HTTP Server - Powered by Apache to work with PKI Services

Before you begin:
1. You need web server programming skills to complete this procedure.
2. You might need to refer to the documentation for the IBM HTTP Server - Powered by Apache which is available in the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP).

Procedure
Perform the following steps to install and configure the IBM HTTP Server - Powered by Apache to work with PKI Services:

1. Use the following table to decide what you need to do:

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IBM HTTP Server - Powered by Apache is not installed and configured ...</td>
<td>Install and configure IBM HTTP Server - Powered by Apache by following the instructions in the installation section of IBM HTTP Server - Powered by Apache documentation.</td>
<td>Guideline: For PKI Services, when you install the IBM HTTP Server - Powered by Apache, do not use a password file.</td>
</tr>
<tr>
<td>The IBM HTTP Server - Powered by Apache is installed but not configured for SSL ...</td>
<td>Fill in the missing values in the table in the next step. (The RACF programmer needs information for setting up PKI Services; see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39.)</td>
<td>—</td>
</tr>
<tr>
<td>The IBM HTTP Server - Powered by Apache is installed and configured for SSL using a RACF key ring ...</td>
<td>Fill in the missing values in the table in the next step. (The RACF programmer needs information for setting up PKI Services; see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39.)</td>
<td>—</td>
</tr>
<tr>
<td>The IBM HTTP Server - Powered by Apache is installed and configured for SSL using gskkyman ...</td>
<td>Fill in the missing values in the table in the next step. (The RACF programmer needs information for setting up PKI Services; see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39. The RACF programmer also needs to add your CA certificate to an existing keyfile; see Appendix B, “Using a gskkyman key database for your certificate store,” on page 691 for information about gskkyman steps.)</td>
<td>—</td>
</tr>
</tbody>
</table>

You can now perform the steps for the decision you have made.
2. Fill in the rightmost column of the following table with information from the configuration:

<table>
<thead>
<tr>
<th>IBM HTTP Server - Powered by Apache information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM HTTP Server - Powered by Apache fully qualified domain name</td>
<td>A fully qualified domain name is the name of a host system. It includes a series of subnames (each of which is a domain name). For example, ralvm7.vnet.ibm.com is a fully qualified domain name that includes the domain names ibm.com and vnet.ibm.com. (The RACF administrator needs to know the fully qualified domain name when setting up PKI Services.)</td>
<td></td>
</tr>
<tr>
<td>The full UNIX path name of your httpd.conf and vhost.conf configuration files</td>
<td>(The web server programmer needs to know the full UNIX path name when updating the httpd.conf and vhost.conf configuration files to support PKI Services.)</td>
<td></td>
</tr>
</tbody>
</table>

**Installing and configuring WebSphere Application Server for z/OS**

You need to perform this task only if you are setting up prerequisite products for PKI Services for the first time, or if you are implementing the PKI Services web application using JavaServer pages (JSPs) for the first time.

If you implement the PKI Services web application using JavaServer pages (JSPs), you must install WebSphere Application Server with the supported version and configure an SSL configuration that uses client authentication. For more information, see Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 and the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP) for your release of WebSphere Application Server.

You do not need to install WebSphere Application Server if you implement the PKI Services web application using REXX CGI execs.

**Installing and configuring LDAP**

The LDAP programmer installs and configures LDAP for the TDBM Db2 backend and records entries that are needed later.

**Steps for installing and configuring LDAP**

You need to perform this task only if you are setting up prerequisite products for PKI Services for the first time.

Although it can be configured otherwise, typical PKI Services usage requires access to an LDAP directory server. Install the LDAP directory server separately from PKI Services. After the installation is complete, LDAP needs to be configured for PKI Services. The directory stores issued certificates and certification revocation lists. The z/OS LDAP server provided by IBM Tivoli Directory Server for z/OS is preferred but not required. The remainder of this topic assumes you are using the IBM Tivoli Directory Server for z/OS LDAP server.

**Note:** The default name of the LDAP server configuration file is ds.conf.

You can use a non-z/OS LDAP server if it can support the object classes and attributes that PKI Services uses. For information about using a non-z/OS LDAP server, see Appendix A, “LDAP directory server requirements,” on page 687.
Before you begin

1. You need LDAP programming skills to complete this procedure.
2. For more information, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

Procedure

Perform the following steps to install and configure LDAP to work with PKI Services:

1. Use the following table to decide what you need to do:

<table>
<thead>
<tr>
<th>If …</th>
<th>Then…</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You do not have LDAP installed and configured ...</td>
<td>Follow the instructions in the Administration section of z/OS IBM Tivoli Directory Server Administration and Use for z/OS.</td>
<td></td>
</tr>
<tr>
<td>You have LDAP installed and configured but not for the TDBM or LDBM backend ...</td>
<td>You need to migrate to the TDBM or LDBM backend. See z/OS IBM Tivoli Directory Server Administration and Use for z/OS for details about how to do this.</td>
<td>--</td>
</tr>
<tr>
<td>You have LDAP installed and configured for the TDBM or LDBM backend ...</td>
<td>Go to the next step.</td>
<td>--</td>
</tr>
</tbody>
</table>

You can now perform the steps for the decision you have made.

2. Record the entries and values from the LDAP configuration step in the following table. (Your team needs this information when setting up PKI Services.)

<table>
<thead>
<tr>
<th>LDAP information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinguished name</td>
<td>This is the distinguished name to use for LDAP binding. A distinguished name is the unique name of a data entry that identifies its position in the hierarchical structure of the directory. A distinguished name consists of the relative distinguished name (RDN) concatenated with the names of its ancestor entries. For example, an entry for Tim Jones could have an RDN of CN=Tim Jones and a DN of:</td>
<td>CN=Tim Jones, O=IBM, C=US</td>
</tr>
<tr>
<td></td>
<td>Any RDN type supported by the LDAP server can be used. The distinguished name can be a RACF-style distinguished name. For information about RACF-style distinguished names, see z/OS IBM Tivoli Directory Server Administration and Use for z/OS. For example, an entry for RACF user ID timjones is:</td>
<td>RACFID=timjones, PROFILETYPE=user, O=racfdb, C=us</td>
</tr>
</tbody>
</table>
### Table 9. LDAP information you need to record (continued)

<table>
<thead>
<tr>
<th>LDAP information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinguished name password</td>
<td>This is the password that is defined for the distinguished name, for use by PKI to bind to the LDAP server. RACF passwords can be case-sensitive, so make sure that the password specified for a RACF-style distinguished name in the pkiserv.conf file or in the LDAPBIND profile matches the RACF password exactly.</td>
<td></td>
</tr>
<tr>
<td>LDAP fully qualified domain name and port</td>
<td>This is the domain name on which the LDAP server is listening. For example, for ldap.widgets.com:389, the fully qualified domain name is ldap.widgets.com and the port is 389. See Table 8 on page 31 for a definition of fully qualified domain name.</td>
<td></td>
</tr>
</tbody>
</table>
| Suffix                               | A suffix in LDAP is the upper-level name of the subtree. For example, for the following distinguished name:  

\[
\text{OU}=\text{your-CA’s-friendly-name}, \text{O}=\text{your-organization}, \text{C}=\text{your-country-abbreviation}
\]

the suffix could be either “O=your company, C=your-country-abbreviation” or “C=your-country-abbreviation”  

The suffix value is specified after the suffix keyword in the LDAP server configuration file:  

\[
\text{suffix } "\text{O}=\text{your-company}, \text{C}=\text{your-country-abbreviation}"
\]

**Note:** If you have more than one suffix, record the suffix you intend to use as the root for storing the PKI Services CA certificate.                                                                                                                                                                                                                                                                                           |       |

3. The topics that follow require the LDAP server to be running. Follow the instructions in the topic about running the LDAP server in *z/OS IBM Tivoli Directory Server Administration and Use for z/OS*.                                                                                                                                                                                                                                                                                     |-------|

---

**Installing and configuring ICSF**

PKI Services relies on ICSF to perform general cryptographic functions and provides key storage and generation as follows:

- The PKI Services CA signing key can be securely generated and stored in the ICSF's Public Key Data Set (PKDS) or Token Key Data Set (TKDS) if directed to do so. For this to be successful, the ICSF programmer must configure the ICSF CCA cryptographic coprocessor and the PKDS or configure ICSF PKCS#11 cryptographic coprocessor and the TKDS. (The RACF administrator uses the IKYSETUP REXX exec to set up any RACF profiles that are needed to control access to ICSF services and keys. For more information, see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39.)

- PKI Services uses ICSF's PKCS#11 function to generate key pair for the regular request and the Certificate Management Protocol (CMP) request. For the regular request, the key pair is stored in the Token Key Data Set (TKDS). Furthermore, if secure key is needed in the TKDS, the PKCS#11 coprocessor is required. For the CMP request, TKDS is not required as the CMP CGI does not store keys.  

**Note:** A CAA Cryptographic Coprocessor is needed if you want your PKI Services CA key to be protected by the master key in the Public Key Data Set (PKDS). A PKCS#11 Cryptographic Coprocessor is needed if you want your PKI Services CA key or the key generated by PKI Services to be protected by the master key in the Token Key Data Set (TKDS).
Before you begin

• You need ICSF programming skills to complete this procedure.
• You might need to refer to the following documents:
  - z/OS Cryptographic Services ICSF Administrator's Guide
    This document provides information about managing cryptographic keys, setting up and maintaining
    the PKDS, controlling who can use cryptographic keys and services, and general information about
    ICSF and cryptographic keys.
  - z/OS Cryptographic Services ICSF Writing PKCS #11 Applications
    This document describes the ICSF support for PKCS #11, and provides information about setting up
    the TKDS.

Procedure

If ICSF is not already installed and configured for PKA, do this by following the instructions in z/OS
Cryptographic Services ICSF Administrator's Guide. If you want PKI Services to generate key pairs for
certificate requests, set up the TKDS by following the instructions in z/OS Cryptographic Services ICSF
Writing PKCS #11 Applications.

Configuring sendmail (optional)

The UNIX programmer needs to configure sendmail if your installation plans to use any of the following
functions:
• Sending email notifications to users whose certificate request is rejected, ready for retrieval, or about to
  expire
• Sending email notifications to administrators who have requests pending
• Automatic certificate renewal
• Requesting certificates for which the key pair (public key and private key) is generated by PKI Services

Note: Before you begin, you need the following document:
• z/OS Communications Server: IP Configuration Guide

Follow the instructions in z/OS Communications Server: IP Configuration Guide for configuring the CSSMTP
application sendmail. In general, you need to perform the following steps:

1. Configure and start CSSMTP.
2. Configure JES spool data set for CSSMTP.

Notes: Since the PKI Services daemon invokes the sendmail command to send email notifications, the
PATH environment variable in the pkiserv.envs file must be updated to include the directory where
the sendmail command is located. By default, the sendmail command is located in the /bin directory.

Once the CSSMTP application has been configured, perform the following steps to test your sendmail
configuration:

1. From the UNIX command line, create a mail file named mail.txt with the following information.
   Replace target-email@address.com with the email address you want to send the email to, and
   replace the source-email@address.com with the email address of the sender of the email.

   To: target-email@address.com
   From: source-email@address.com
   Subject: This is a test

2. Enter the command:

   /bin/sendmail -t mail.txt
Installing and configuring Db2

You need to perform this task only if you are implementing the PKI Services object store and issued certificate list (ICL) using Db2 tables for the first time.

For information about installing and configuring Db2, see DB2 for z/OS in IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSEPEK/db2z_prodhome.html) for your release of Db2.

You do not need to install Db2 if you implement the PKI Services object store and issued certificate list (ICL) using VSAM data sets.

For information about implementing the PKI Services object store and ICL, see Chapter 9, “Creating the object store and ICL,” on page 115.

Tasks to perform before configuring PKITP

If you plan to use the PKI Services Trust Policy (PKITP), your team first needs to set up prerequisite software products by completing the following tasks, if not already done:

1. “Installing and configuring OCSF” on page 35
2. “Installing and configuring OCEP” on page 35

Installing and configuring OCSF

PKI Services Trust Policy (PKITP) requires OCSF to be installed and configured. If OCSF is not already installed and configured, follow the instructions for doing so in z/OS Open Cryptographic Services Facility Application Programming.

Before you begin

1. Although the base feature of z/OS includes OCSF, if you are in the United States or Canada, make sure that you ordered and installed the additional OCSF Security Level 3 feature. (There is no charge for this feature.)
2. You need OCSF programming skills to complete this procedure.

Installing and configuring OCEP

To install and configure OCEP, follow the instructions in z/OS Integrated Security Services Open Cryptographic Enhanced Plug-ins Application Programming. Then follow the instructions in “Configuring and getting started with PKITP” on page 511.

You need to perform this task only if you are setting up prerequisite products for PKITP for the first time.
Installing and configuring prerequisites
Part 2. Configuring your system for PKI Services

After the MVS programmer installs PKI Services into the file system directory, your team needs to perform additional tasks to configure PKI Services, including the following tasks:

- **Chapter 4, “Running IKYSETUP to perform RACF administration,”** on page 39 describes how the RACF administrator updates and runs IKYSETUP, a REXX exec to perform RACF administration tasks, such as setting up the daemon user ID and giving accesses.

- **Chapter 5, “Configuring the UNIX runtime environment,”** on page 67 explains:
  - Copying files, such as the PKI Services configuration file
  - Updating environment variables
  - Updating the PKI Services configuration file
  - Setting up the /var/pkiserv file system directory.

- **Chapter 6, “Tailoring the LDAP configuration for PKI Services,”** on page 97 explains how to update your LDAP configuration (performed earlier, see “Installing and configuring LDAP” on page 31) for PKI Services.

- **Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,”** on page 101 describes updating the IBM HTTP Server configuration files and starting the IBM HTTP Server.

- **Chapter 8, “Tailoring the PKI Services configuration file for LDAP,”** on page 107 explains how to update the **LDAP** section of the PKI Services configuration file.

- **Chapter 9, “Creating the object store and ICL,”** on page 115 explains how to create the VSAM data sets or Db2 objects for the PKI Services object store and issued certificate list (ICL).

- **Chapter 10, “Starting and stopping PKI Services,”** on page 129 explains how to start and stop the PKI Services daemon.
You need to perform this task if you are configuring PKI Services for the first time or adding a new CA domain. PKI Services provides SYS1.SAMPLIB(IKYSETUP), a REXX exec, to perform RACF administration tasks for setting up PKI Services. The RACF administrator updates and runs this REXX exec, which issues RACF commands to perform the following tasks:

- Adding groups and user IDs
  - Setting up the PKI Services administration group
  - Creating the PKI Services daemon user ID
  - Giving appropriate access to the RACF group
  - Creating the surrogate user ID and giving the surrogate user ID authority to generate certificates

  A surrogate user ID is the identity that is assigned to client processes when they are requesting certificate services. A surrogate user ID is required for external clients. **Guideline:** For simplicity, use surrogate user IDs for internal clients also, rather than allowing them to access PKI Services under their own identities.

- Associated the PKI Services daemon user ID with the PKI Services started procedure.

- Setting up access control to protect end-user and administrative functions of PKI Services:
  - Authorizing the PKI Services daemon user ID for CA functions
  - Authorizing the PKI Services daemon user ID to access the Resource Recovery Services access facility (RRSAF), if you use Db2 as the repository for the object store and ICL
  - Giving administrators access to VSAM data sets, if you use VSAM as the repository for the object store and ICL
  - Authorizing PKI Services for ICSF resources.
  - Optionally defining granular administrative controls

- Creating certificate authority (CA), registration authority (RA), and SSL certificates:
  - Creating a CA certificate and private key
  - Backing them up to a password-protected MVS data set
  - Optionally migrating the private key to ICSF
  - Optionally creating an RA certificate and private key for Simple Certificate Enrollment Protocol (SCEP)
  - Creating a SAF key ring and associating it with the certificate
  - Exporting the CA certificate to an MVS data set and file system file
  - Generating a server certificate signed by the new CA
  - Creating a key ring for the web server
  - Associating the web server and any trusted CA certificates to the key ring.

- Setting up the IBM HTTP Server for surrogate operation.

- Allowing PKI Services to generate key pairs for certificate requests

**Overview of IKYSETUP**

IKYSETUP consists of several parts:

- A configurable section. This section assigns values to variables.
A section that issues RACF commands to perform RACF administration tasks. (See “Actions IKYSETUP performs by issuing RACF commands” on page 619 for details about the actions that various sections of code perform.)

A section that writes information (such as the name of the PKI Services administration group) to the log data set. The log itself consists of two parts: commands that are issued and other information. (See “Sample IKYSETUP log data set” on page 63.)

Note: By default, IKYSETUP creates the log. You can disable recording information to the log by changing the value of one of the variables in IKYSETUP (log_dsn) to null.

The configurable section contains three parts:

• Values that you must change (by making them specific to your company, such as your company's name)
• Values that you might change depending on how you want PKI Services set up
• Values that you can optionally change (these defaults are acceptable without change, but you might want to change them to make them more specific to your company, for example the name of the PKI Services administration group, which by default is PKIGRP)

The following table illustrates the structure and divisions of IKYSETUP:

<table>
<thead>
<tr>
<th>Table 10. IKYSETUP structure and divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Structure and divisions of IKYSETUP</strong></td>
</tr>
<tr>
<td>Configurable section, assigns values to variables</td>
</tr>
<tr>
<td>• Values that you must change to customize (See Table 11 on page 41.)</td>
</tr>
<tr>
<td>• Values that you might change that are related to set up (See Table 18 on page 50.)</td>
</tr>
<tr>
<td>• Values that you can optionally change (See Table 19 on page 55.)</td>
</tr>
<tr>
<td>Issues RACF commands</td>
</tr>
<tr>
<td>Records information in the log data set</td>
</tr>
</tbody>
</table>

**Before you begin**

Important: Update and run IKYSETUP only if you have not done so previously for an earlier release (or if you are changing the value of one or more variables).

You need to collect the following documents:

• z/OS Security Server RACF Command Language Reference
• z/OS Security Server RACF Security Administrator's Guide
• z/OS TSO/E REXX Reference

The RACF administrator needs to decide the values of variables in IKYSETUP and to record these values for future reference. Review and update as necessary the following three variables tables. There are three tables because there are three categories of variables:

• Variables whose values you are required to change, such as ones containing your company name
• Variables whose values you might want to change, depending based on how you are setting up PKI Services
• Variables whose values you can optionally change.

There is some overlap between the three types of variables, for example, if you are already using the RACF sample web application, PKISERV.

Guideline: If you are running IKYSETUP for the first time, at a minimum, you need to complete the following tasks:
• Fill in Table 11 on page 41
• Fill in Table 15 on page 47
• Fill in the rows of Table 18 on page 50 concerning z/OS UNIX level security:
  – unix_sec
  – bpx_userid. and pgnctl1_dsn. (if z/OS level security is already set up)
• Review the default values in all the tables.

Several values that are described in this topic, particularly for variables in Table 11 on page 41 and Table 19 on page 55, can be qualified with a ca_domain value based on whether you implement multiple CA domains. For information about implementing multiple CA domains, see “Adding a new CA domain” on page 302.

Variables whose values must change

Fill in the blank lines in the rightmost column with your company's information (and cross out the defaults in these cells).

<table>
<thead>
<tr>
<th>Table 11. IKYSETUP variables whose values must change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable name</td>
</tr>
<tr>
<td>----------------</td>
</tr>
</tbody>
</table>
| ca_dn           | The CA's distinguished name. (For a definition of distinguished name, see Table 9 on page 32.) | The suffix of the PKI Services CA's distinguished name must match the LDAP suffix. (The LDAP suffix in the LDAP server configuration file. See Table 9 on page 32 for a definition of suffix.) | When you also set ca_domain:
O('ca_domain Human Resources Certificate Authority')
When you do not set ca_domain:
O('Human Resources Certificate Authority')
O('Your Company')
C('Your Country 2 Letter Abbreviation') |

Note: However, do not specify a C('value') if it is not present in your LDAP suffix.
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value and your company's information</th>
</tr>
</thead>
</table>
| ca_label      | The CA certificate label. If you already have your CA certificate and private key set up in RACF (and your CA certificate's label differs from the default), you need to set ca_label to your CA certificate's label.     | No                    | When you also set ca_domain: **ca_domain** Local PKI CA  
(Replace the default if you already have your CA certificate and private key set up in RACF.)  
(Record the member IDs:)                                                                                                                                                                                                                     |
| daemon_uid    | The z/OS UNIX user identifier (UID) associated with the PKI Services daemon user ID.                                                                                                                     | No                    | 554                                                                                                                                                                                                                                             |
| pki_gid       | The z/OS UNIX group identifier (GID) for the PKI Services administration group.                                                                                                                           | No                    | 655                                                                                                                                                                                                                                             |
| pkigroup_mem  | Members of the PKI administration group are responsible for administering PKI Services functions. **Guideline:** Assign PKI administration duties to only highly trusted individuals.  
pkigroup_mem is a list in which pkigroup_mem.0 is the number of members in the list and the rest of the entries are their user IDs. You must change the pkigroup_mem.0 to at least 1, and change pkigroup_mem.1 through pkigroup_mem.n to the member user IDs. | No                    | 0 (default for pkigroup_mem.0, the number of member user IDs)  
**Note:** You must change the default to at least 1.  
(Record the member IDs:)                                                                                                                                                           |
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value and your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ra_dn</strong></td>
<td>The RA's distinguished name for use with Simple Certificate Enrollment Protocol (SCEP). (For a definition of distinguished name, see Table 9 on page 32.) This name should be similar but not identical to your CA's distinguished name. If you do not want to have PKI Services operate with a separate RA certificate, set ra_dn=&quot;&quot;.</td>
<td>No</td>
<td>CN('Registration Authority') OU('Human Resources Certificate Authority') O('Your Company') C('Your Country 2 Letter Abbreviation')</td>
</tr>
<tr>
<td><strong>ra_label</strong></td>
<td>The certificate label of your RA certificate in RACF.</td>
<td>No</td>
<td>When you also set ca_domain:ca_domain Local PKI RA When you do not set ca_domain: Local PKI RA</td>
</tr>
<tr>
<td><strong>surrog_uid</strong></td>
<td>The UID associated with the surrogate user ID.</td>
<td>No</td>
<td>555</td>
</tr>
<tr>
<td>Variable name</td>
<td>Description</td>
<td>Referenced elsewhere</td>
<td>Default value and your company's information</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---------------------------------------------</td>
</tr>
</tbody>
</table>
| web_dn        | Your web server's distinguished name. (For a definition of distinguished name, see Table 9 on page 32.) | The value of the web server's common name (CN), which is your server's symbol IP address. For example, www.YourCompany.com must match your web server's fully qualified domain name. | CN('www.YourCompany.com')
O('Your Company')
L('Your City')
SP('Your Full State or Province Name')
C('Your Country 2 Letter Abbreviation') |

**Notes:**
1. The RACF administrator copies the fully qualified domain name from an earlier table: Table 8 on page 31.
2. If you already have your web server configured for SSL:
   - Set web_dn=""
   - Update the web_ring row (You need to connect your PKI Services CA certificate to your key ring. See the web_ring row for directions.)

<table>
<thead>
<tr>
<th>web_ring</th>
<th>The name of the web server's SAF key ring.</th>
</tr>
</thead>
</table>
|          | If your web server is configured for SSL and you are using a RACF key ring, set web_ring to the value of the RACF key ring. If your web server is configured for SSL and you are using gskkyman, set web_ring="" and see Appendix B, “Using a gskkyman key database for your certificate store,” on page 691 for additional directions. | vhost443.conf
Host file for SSL requests with server authentication
vhost1443.conf
Host file for SSL requests with client authentication |
|          | SSLring |

**Variables whose values might change depending on setup**

To help in completing the next table of variables (see Table 18 on page 50) fill out the decision tables in “Deciding the value of key_backup” on page 45, “Deciding the value of key_type” on page 45, “Deciding the value of restrict_surrog” on page 46, “Deciding the value of unix_sec” on page 47, and “Deciding the value of db2_repos and db2_subsys” on page 47.
Deciding the value of key_backup

Use the following decision table to determine the value of key_backup in Table 18 on page 50. The key_backup variable determines whether the PKI Services CA certificate and private key should be backed up to an encrypted data set.

Table 12. Decision table for key_backup

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to back up your CA’s certificate and private key to a passphrase encrypted data set ...</td>
<td>Do not change the default key_backup=1</td>
<td>When you use IKYSETUP, you need to enter a passphrase whose display is not inhibited, it appears on the screen in the clear. You cannot back up the key stored in the PKDS or TKDS (key_type=2, 6, 7, 8, 9, 10) to a data set.</td>
</tr>
<tr>
<td>You do not want to back up your CA’s certificate and private key to a data set ...</td>
<td>Set key_backup=0</td>
<td>—</td>
</tr>
</tbody>
</table>

Deciding the value of key_type

Use the following decision table to determine the value of key_type in Table 18 on page 50. The key_type variable determines the key type (RSA, DSA, NIST ECC or BP ECC) and the location (RACF, PKDS or TKDS) of the private key.

By default, IKYSETUP generates RSA key pair using software cryptography.

Guideline: Do not change the default the first time you run IKYSETUP but change it before going into a production environment. (For information about installing and configuring ICSF, see "Installing and configuring ICSF" on page 33.)

Table 13. Decision table for key_type

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to generate the RSA key pair using software cryptography and store the private key in RACF ...</td>
<td>Do not change the default key_type=0</td>
<td>—</td>
</tr>
<tr>
<td>You want to generate the RSA key pair using the ICSF CCA cryptographic coprocessor and store the private key in Public Key Data Set (PKDS) ...</td>
<td>Set key_type=2</td>
<td>PKI Services does not automatically back up the private key when you select the 2 value. Review and possibly change the following additional variables in Table 18 on page 50: • csfkeys_profile • csfserv_profile • csfusers_grp</td>
</tr>
<tr>
<td>Note: This key type is not FIPS compliant.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You want to generate the DSA key pair using software cryptography and store the private key in RACF ...</td>
<td>Set key_type=3</td>
<td></td>
</tr>
</tbody>
</table>

Running IKYSETUP to perform RACF administration 45
<table>
<thead>
<tr>
<th>If ...</th>
<th>Then</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to generate the NIST ECC key pair using software cryptography and store the private key in RACF ...</td>
<td>Set key_type=4</td>
<td></td>
</tr>
<tr>
<td>You want to generate the Brainpool (BP) ECC key pair using software cryptography and store the private key in RACF ...</td>
<td>Set key_type=5</td>
<td><strong>Note:</strong> This key type is not FIPS compliant.</td>
</tr>
</tbody>
</table>
| You want to generate the NIST ECC key pair using the ICSF CCA cryptographic coprocessor and store the private key in Public Key Data Set (PKDS) ... | Set key_type=6 | Review and possibly change the following additional variables in Table 18 on page 50:  
  - csfkeys_profile  
  - csfserv_profile  
  - csfusers_grp |
| You want to generate the Brainpool (BP) ECC key pair using the ICSF CCA cryptographic coprocessor and store the private key in Public Key Data Set (PKDS) ... | Set key_type=7 | Review and possibly change the following additional variables in Table 18 on page 50:  
  - csfkeys_profile  
  - csfserv_profile  
  - csfusers_grp |
| You want to generate the RSA key pair using the ICSF PKCS#11 cryptographic coprocessor and store the private key in Token Key Data Set (TKDS) | Set key_type=8 | The key is stored in the token daemon.CATOKEN. For example, PKISRVD.CATOKEN. |
| You want to generate the NIST ECC key pair using the ICSF PKCS#11 cryptographic coprocessor and store the private key in Token Key Data Set (TKDS) | Set key_type=9 | The key is stored in the token daemon.CATOKEN. For example, PKISRVD.CATOKEN. |
| You want to generate the Brainpool (BP) ECC key pair using the ICSF PKCS#11 cryptographic coprocessor and store the private key in Token Key Data Set (TKDS) | Set key_type=10 | The key is stored in the token daemon.CATOKEN. For example, PKISRVD.CATOKEN. |

**Deciding the value of restrict_surrog**

Use the following decision table to determine the value of restrict_surrog in Table 18 on page 50. The restrict_surrog variable determines if the RESTRICTED attribute is assigned to the surrogate user ID. The RESTRICTED attribute limits the resources available to this user ID.

By default, IKYSETUP does not assign the RESTRICTED attribute to the surrogate user ID. **Guideline:** Do not change the default the first time you run IKYSETUP but change it before going into a production environment. For more information, see the topic about defining groups and users in z/OS Security Server RACF Security Administrator’s Guide.
### Table 14. Decision table for restrict_surrog

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to assign the RESTRICTED attribute to the surrogate user ID ...</td>
<td>Set restrict_surrog=1</td>
<td></td>
</tr>
<tr>
<td>You do not want to assign the RESTRICTED attribute to the surrogate user ID ...</td>
<td>Do not change the default restrict_surrog=0</td>
<td></td>
</tr>
</tbody>
</table>

### Deciding the value of unix_sec

Use the following decision table to determine the value of unix_sec in Table 18 on page 50. The unix_sec variable determines whether you want to use z/OS UNIX security, which is a higher level of security. z/OS UNIX provides two levels of security:

**UNIX level security**
This is a less stringent level of security than z/OS UNIX level security. It is for installations where system programmers have been granted superuser authority. Programs that run with superuser authority have daemon level authority and can issue MVS identity-changing services without entering a `_passwd()` for the target user ID. With this level of security, the BPX.DAEMON profile in the FACILITY class is not defined.

**z/OS UNIX level security**
This is a higher level of security than z/OS UNIX level security. It lets your system exercise more control over superusers. With this level of security, the BPX.DAEMON profile in the FACILITY class is defined.

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You already have z/OS UNIX security set up ...</td>
<td>Set unix_sec=1</td>
<td>—</td>
</tr>
<tr>
<td>You do not have z/OS UNIX security set up and you do not want to set it up ...</td>
<td>Do not change the default of unix_sec=0</td>
<td>—</td>
</tr>
<tr>
<td>You do not have z/OS UNIX security set up and you want to set it up for the first time ...</td>
<td>Set unix_sec=2</td>
<td>1. For information about additional manual configuration, see the section about establishing z/OS UNIX security in <a href="#">z/OS UNIX System Services Planning</a>.  2. If you are setting unix_sec=2, you must update the following variables:  • <code>bpx_userid</code>.  • <code>pgmcntl_dsn</code>.</td>
</tr>
</tbody>
</table>

### Deciding the value of db2_repos and db2_subsys

Use the following decision table to determine the value of db2_repos and db2_subsys in Table 18 on page 50. You have the option of using either VSAM data sets or Db2 tables as the repositories for the PKI Services object store and ICL. For information about these options, see Chapter 9, “Creating the object store and ICL,” on page 115. If you use Db2, the PKI Services daemon needs authorization to the Db2 Resource Recovery Services Access Facility (RRSAF). If you use VSAM, the PKI Services daemon and administrator need authorization to the VSAM data sets.
Table 16. Decision table for db2_repos and db2_subsys

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You plan to use VSAM ...</td>
<td>Do not change the default of db2_repos=0. Do not change db2_subsys; it is ignored.</td>
<td>The value of db2_repos should be consistent with the value of the DBType parameter in the pkiserv.conf configuration file.</td>
</tr>
<tr>
<td>You plan to use Db2 ...</td>
<td>Set db2_repos=1. Set db2_subsys to the name of the local Db2 subsystem or the group attachment name for the object store and ICL.</td>
<td>The value of db2_repos should be consistent with the value of the DBType parameter in the pkiserv.conf configuration file. The value of db2_subsys should be the same as the value of the DBSubsystem parameter in the pkiserv.conf configuration file.</td>
</tr>
</tbody>
</table>

Deciding the value of AdminGranularControl

Use the following decision table to determine the value of AdminGranularControl in Table 18 on page 50. The AdminGranularControl variable determines whether the IKYSETUP exec creates profiles to control the additional administrative function access controls described in “Using the PKISERV class to control access to administrative functions” on page 499.

Note: The AdminGranularControl parameter in pkiserv.conf determines whether the additional administrative function access controls described in “Using the PKISERV class to control access to administrative functions” on page 499 are enabled.

Table 17. Decision table for AdminGranularControl

<table>
<thead>
<tr>
<th>If ...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You do not want to restrict certain administrative functions to certain PKI Services administrators and the value of the AdminGranularControl variable in pkiserv.conf is F ...</td>
<td>Do not change the default of AdminGranularControl = 0.</td>
<td></td>
</tr>
</tbody>
</table>

Running IKYSETUP
Table 17. Decision table for AdminGranularControl (continued)

<table>
<thead>
<tr>
<th>If...</th>
<th>Then ...</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>You want to restrict certain administrative functions to certain PKI Services administrators and the value of the AdminGranularControl variable in pkiserv.conf is T...</td>
<td>Set AdminGranularControl = 1.</td>
<td>You must also modify the pkigroup1_mem and possibly pkigroup2_mem array variables to specify the number of PKI Services administrators that are to be given access to administrative functions and their user IDs. Depending on the controls that you want to set, the number of PKI Services administrators, and the templates configured for the system, you might also need to add templateX, pkigroupX, pki_gidX, pkigroupX_mem, and actionsX variables to the IKYSETUP exec. For more information about granular control of administrator functions, see “Using the PKISERV class to control access to administrative functions” on page 499.</td>
</tr>
</tbody>
</table>

Table of IKYSETUP variables that you might want to change

Update Table 18 on page 50 based on your answers in the decision tables in “Deciding the value of key_backup” on page 45, “Deciding the value of key_type” on page 45, “Deciding the value of restrict_surrog” on page 46, “Deciding the value of unix_sec” on page 47, and “Deciding the value of db2_repos and db2_subsys” on page 47. If you have decided to change any of the defaults in the rightmost column, cross out the defaults and enter your company’s information:
Table 18. IKYSETUP variables you might want to change depending on setup

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdminGranularControl</td>
<td>Specifies whether IKYSETUP is to set up profiles in the PKISERV class to control authorization to administration functions.</td>
<td>The AdminGranularControl keyword in pkiserv.conf</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0  Do not set up the profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1  Set up the profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If set to 1, other variable names must be set. See “Deciding the value of AdminGranularControl” on page 48.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bpx_userid</td>
<td>A list of user IDs with daemon and server authority. The bpx_userid.0 is the number of items in the list and the rest of the entries are the z/OS UNIX user IDs. (This is non-applicable if unix_sec is not set to 2.)</td>
<td>No</td>
<td>1 (default for number of items) OMVSKERN</td>
</tr>
<tr>
<td>Variable name</td>
<td>Description</td>
<td>Referenced elsewhere</td>
<td>Default value or your company's information</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>ca_keysize</td>
<td>The size in bits of the certificate-authority's private key.</td>
<td>No</td>
<td>2048</td>
</tr>
<tr>
<td><strong>RSA key</strong></td>
<td>key_type=0 or key_type=2, the acceptable range is 512 to 4096; key_type=8, the acceptable range is 1024 to 4096.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>DSA key</strong></td>
<td>key_type=3, the acceptable range is 512 to 2048.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>NIST ECC key</strong></td>
<td>key_type=4, key_type=6 or key_type=9, the acceptable values are 192, 224, 256, 384 and 521.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>BP ECC key</strong></td>
<td>key_type=5, key_type=7 or key_type=10, the acceptable values are 160, 192, 224, 256, 320, 384 and 512.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cryptoz_grp</td>
<td>The name of a RACF group for users who are authorized to use PKCS #11 tokens. Applies only if you set key_gen = 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>csfkeys_profile</td>
<td>A profile to protect the PKI Services key in ICSF. (This variable is non-applicable if key_type has the value 0, 3, 4, or 5.) If you do not want IKYSETUP to create the profile, set csfkeys_profile=&quot;&quot;. <strong>Note:</strong> When RACF stores the private key in the PKDS, it generates the label as: <code>IRR.DIGTCERT.CERTIFICATEUTH.*' unique-time-stamp</code></td>
<td>No</td>
<td>IRR.DIGTCERT.CERTIFICATEUTH.*</td>
</tr>
<tr>
<td>Variable name</td>
<td>Description</td>
<td>Referenced elsewhere</td>
<td>Default value or your company's information</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>----------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>csfserv_profile</td>
<td>A profile to protect ICSF services. (This is non-applicable if key_type=0 or key_type=3 and key_gen=0.)</td>
<td>No</td>
<td>CSF*</td>
</tr>
<tr>
<td>csfusers_grp</td>
<td>A group of authorized ICSF service users. (This is non-applicable if csfkeys_profile=&quot;&quot; and csfserv_profile=&quot;&quot;.)</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>db2_repos</td>
<td>Specifies whether the repository for the PKI Services object store and ICL is Db2 or VSAM.</td>
<td>pkiserv.conf – DBType parameter</td>
<td>0 (VSAM)</td>
</tr>
<tr>
<td></td>
<td>0 VSAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Db2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>db2_subsys</td>
<td>Specifies the name of the local Db2 subsystem or the group attachment name for the object store and ICL repositories, if db2_repos is 1. This is a name of 1 - 4 alphanumeric characters.</td>
<td>pkiserv.conf – DBSubsystem parameter</td>
<td>DSN9</td>
</tr>
<tr>
<td>key_backup</td>
<td>Specifies whether the PKI Services CA certificate and private key should be backed up to a data set. The value can be:</td>
<td>No</td>
<td>1 (yes)</td>
</tr>
<tr>
<td></td>
<td>1 Yes - default</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note:</strong> This value is ignored when the value of key_type is 2, 6, 7, 8, 9 or 10. When you use IKYSETUP with key_backup=1, you need to enter a passphrase whose display is not inhibited - it appears on the screen in the clear.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable name</td>
<td>Description</td>
<td>Referenced elsewhere</td>
<td>Default value or your company's information</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>key_gen</td>
<td>Specifies whether you want PKI Services to generate key pairs (public key and private key) for certificate requests, if asked to do so. Set to 1 to allow PKI Services to generate key pairs for certificate requests.</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>key_type</td>
<td>Refer to the Table 13 on page 45 for information.</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>pgmcntl_dsn</td>
<td>A list in which pgmcntl_dsn.0 is the number of items in the list and the rest of the entries are a list of load libraries to be program controlled. <strong>Rule:</strong> If you set unix_sec=2, you must update the list of data sets.</td>
<td>No</td>
<td>8 (default for number of items) • 'CEE.SCEERUN' • 'CBC.SCLBDLL' • 'SYS1.SIEALNKE' • 'SYS1.CSSLIB' • 'TCP/IP.SEZALOAD' • 'SYS1.LINKLIB' • 'CSF.SCSFMOD0' • 'CSF.SCSFMOD1'</td>
</tr>
<tr>
<td>pkigroup1_mem</td>
<td>Lists of users who are connected to PKI Services administrative groups. pkigroup1_mem.0 is the number of members to connect to pkigroup1, and pkigroup1_mem.n specifies the users to connect. These variables are ignored if AdminGranularControl = 0.</td>
<td>No</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td>pkigroup2_mem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18. IKYSETUP variables you might want to change depending on setup (continued)
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>restrict_surrog</td>
<td>Specifies whether the surrogate user ID should be marked restricted. The value can be: 0 1 No - default Yes</td>
<td>No</td>
<td>0 (no)</td>
</tr>
<tr>
<td>unix_sec</td>
<td>Specifies whether to set up z/OS UNIX level security. (See “Deciding the value of unix_sec” on page 47 for a definition of z/OS UNIX level security.) The value can be: 0 1 2 Do not set up - default Already set up Add this level of security</td>
<td>For unix_sec=2, the names of the load libraries need to change.</td>
<td>0 (no)</td>
</tr>
</tbody>
</table>

### Variables you can optionally change

To help in filling out the next table of variables (Table 19 on page 55), see “Specifying when the CA certificate and web server certificates expire” on page 54.

#### Specifying when the CA certificate and web server certificates expire

By default, IKYSETUP creates a CA certificate that expires in 20 years and a web server SSL certificate that expires in five years from the date when the IKYSETUP script is run. If these expiration times are compliant with your security guidelines, no changes are needed to the ca_exyears, ca_expires, web_exyears, and web_expires variables in Table 19 on page 55.

You can shorten or extend the lifetime of the CA certificate by altering the value of the ca_exyears variable. This variable specifies the lifetime of the CA certificate in years. The default value is 20. You can
shorten or extend the lifetime of the web server certificate by altering the value of the web_exyears variable. The default value is 5. These variables are listed in IKYSETUP in "Part 3", in the subsection titled "Method 1". Ensure that the value for web_exyears is less than the value of ca_exyears. If it is not, the web server certificate might be added to the RACF database with the NOTRUST option.

If your security guidelines require that the CA certificate and web server certificate expire at specific dates, you can set these expiration dates in IKYSETUP. Ensure that the web server certificate expires before the date that the CA certificate expires. If you do not, the web server certificate might be added to the RACF database with the NOTRUST option.

**Steps for setting the expiration dates for the CA certificate and web server certificate**

Perform the following steps to set the expiration dates for the CA certificate and web server certificate in IKYSETUP.

**Procedure**

1. Comment out all instructions in "Part 3, Method 1" of IKYSETUP. These are the instructions that calculate expiration dates by adding the life spans specified in the ca_exyears and web_exyears variables to the date that IKYSETUP runs. You must disable these instructions to set the expiration dates to specific dates. ____________________________________________________________

2. Remove the comment delimiters from the sample instructions that are listed in "Part 3, Method 2" of IKYSETUP. These are the instructions that set the expiration dates to specific date values. You must enable these instructions.

3. Change the value of the ca_expires variable to the date when the CA certificate should expire, in the format yyyy/mm/dd:  

4. Change the value of the web_expires variable to the date when the web server certificate should expire, in the format yyyy/mm/dd. Specify a date that is before the date specified by the ca_expires variable. ____________________________________________________________

5. Save your changes. ____________________________________________________________

**Results**

When you are done, you have set the CA certificate expiration date and the web server certificate expiration date that takes effect the next time that you run IKYSETUP.

**Table of IKYSETUP variables you can optionally change**

Review the values of the variables in Table 19 on page 55 to determine if you want to change any of the defaults in the rightmost column. If you decide to change any value, cross out the default in the rightmost column and record your company’s information.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup_dsn</td>
<td>The data set that contains a backup copy of the PKI Services certificate and private key.</td>
<td>No</td>
<td>When you also set ca_domain: <code>daemon.ca_domain.KEY.BACKUP.P12B IN</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>When you do not set ca_domain: <code>daemon.KEY.BACKUP.P12BIN</code></td>
</tr>
</tbody>
</table>

**Note:** The daemon refers to the daemon variable in this table.
<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca_domain</td>
<td>The unique name for the CA when you establish multiple PKI Services CAs. If specified, the first eight characters must uniquely identify the CA. The characters of the CA_domain value are limited to the following character set: alphanumeric characters (a - z, A - Z, 0 - 9) and the hyphen (-). In addition, the first character must not be a number or hyphen.</td>
<td>No</td>
<td>&quot;&quot;</td>
</tr>
<tr>
<td></td>
<td><strong>Guideline:</strong> Do not change the default (null) value until you perform advanced customization. (See “Adding a new CA domain” on page 302.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ca_expires</td>
<td>The date that the PKI Services CA certificate expires. By default, IKYSETUP calculates the CA certificate expiration date based on the value of ca_exyears. For information about setting this variable, see “Specifying when the CA certificate and web server certificates expire” on page 54.</td>
<td>No</td>
<td>2030/01/01</td>
</tr>
<tr>
<td></td>
<td>The date format is yyyy/mm/dd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ca_exyears</td>
<td>The life span of the PKI Services CA certificate, expressed in years. By default, IKYSETUP calculates the expiration date for the CA certificate by adding the number of years specified in ca_exyears to the date that IKYSETUP is run. For information about setting this variable, see “Specifying when the CA certificate and web server certificates expire” on page 54.</td>
<td>No</td>
<td>20</td>
</tr>
</tbody>
</table>
### Table 19. IKYSETUP variables you can optionally change (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
</table>
| ca_ring       | The name of the PKI Services SAF key ring. | pkiserv.conf SAF KeyRing value | When you also set ca_domain: CAring.ca_domain  
When you do not set ca_domain: CAring |
| cacert_dsn    | The data set that contains the PKI Services certificate to assist the backup process. | No | When you also set ca_domain:  
'daemon.ca_domain.CACERT.DERBIN'  
When you do not set ca_domain:  
'daemon.CACERT.DERBIN' |
| caStore       | The name of the PKI Services PKCS #11 token | No | When you also set ca_comain or daemon:  
daemon.CATOKEN.ca_domain  
When you do not set ca_comain or daemon: CATOKEN |
| daemon        | The PKI Services daemon user ID.  
If you also set ca_domain, you can choose to assign a unique user ID to the daemon for each CA domain. **Example:** For a ca_domain called BankA, you might choose user ID PKISRVD. | pkiserv.conf SAF KeyRing value | PKISRVD |
| export_dsn    | The data set that contains the web server's root CA certificate for copying to file system. | No | When you also set ca_domain:  
'daemon.ca_domain.WEBROOT.DERBIN'  
When you do not set ca_domain:  
'daemon.WEBROOT.DERBIN' |

**Note:** daemon refers to the daemon variable in this table.
Table 19. IKYSETUP variables you can optionally change (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
</table>
| log_dsn       | The log data set name. | No                   | When you also set `ca_domain`:  
|               |             |                      | 'your-id.ca_domain.IKYSETUP.LOG'            |
|               |             |                      | When you do not set `ca_domain`:            |
|               |             |                      | 'your-id.IKYSETUP.LOG'                      |
|               |             |                      | Notes:                                      |
|               |             |                      | 1. The `your-id` refers to the RACF ID of the person running IKYSETUP. (You do not need to add this; MVS adds this for you.) |
|               |             |                      | 2. Changing the default is not suggested.    |
| pkigroup      | The PKI Services administration group. This is a RACF group containing the list of user IDs that are authorized to use PKI Services administration functions.  
|               |             | No                   | PKIGRP                                      |
|               |             |                      | If you also set `ca_domain`, you can choose to assign a unique group name to the administration group for each CA domain.  
|               |             |                      | **Example:** For a `ca_domain` called BankA, you might choose group name PKIGRPA. |
| pkigroup1, pkigroup2 | PKI Services administrative groups for granular control of administrative functions. | No | PKIGRP1, PKIGRP2 |
| ra_backup_dsn | The data set that contains a backup copy of the PKI Services RA certificate and private key.  
|               |             | No                   | When you also set `ca_domain`:              |
|               |             |                      | 'daemon.ca_domain.RAKEY.BACKUP.P12BIN'      |
|               |             |                      | When you do not set `ca_domain`:            |
|               |             |                      | 'daemon.RAKEY.BACKUP.P12BIN'                |
|               |             |                      | **Note:** The `daemon` refers to the daemon variable in this table. |
Table 19. IKYSETUP variables you can optionally change (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>signing_ca_label</td>
<td>The label of the CA certificate that is the superior (signer) of the PKI Services CA. If specified, the value must match the label of an existing CERTAUTH certificate in RACF that has a private key. Use this value to create a CA hierarchy when you establish multiple PKI Services CAs.</td>
<td>No</td>
<td>***</td>
</tr>
<tr>
<td>surrog</td>
<td>The surrogate user ID for PKI Services. If you also set ca_domain, you can choose to assign a unique user ID as the surrogate user ID for each CA domain. <strong>Example:</strong> For a ca_domain called BankA, you might choose user ID PKISERVA. <strong>Note:</strong> This cannot be an existing user ID (because IKYSETUP creates the user ID with the NOPASSWORD attribute).</td>
<td>Surrogate user ID in httpd*.conf</td>
<td>PKISERV</td>
</tr>
<tr>
<td>vsamhlq</td>
<td>The high-level qualifier of the VSAM data sets for PKI Services. <strong>Note:</strong> The RACF administrator gets this information from the MVS programmer.</td>
<td>• ObjectStore *DSN values in pkiserv.conf • Data sets names in IKYCVSV1</td>
<td>Same as the daemon variable earlier in this table.</td>
</tr>
<tr>
<td>web_expires</td>
<td>The date that the web server certificate expires. By default, IKYSETUP calculates the web server certificate expiration date based on the value of web_exyears. For information about setting this variable, see “Specifying when the CA certificate and web server certificates expire” on page 54.</td>
<td>No</td>
<td>2015/01/01 The date format is yyyy/mm/dd.</td>
</tr>
</tbody>
</table>
### Table 19. IKYSETUP variables you can optionally change (continued)

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Description</th>
<th>Referenced elsewhere</th>
<th>Default value or your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>web_exyears</td>
<td>The life span of the web server certificate, expressed in years. By default, IKYSETUP calculates the expiration date for the web server certificate by adding the number of years specified in web_exyears to the date when IKYSETUP is run. For information about setting this variable, see “Specifying when the CA certificate and web server certificates expire” on page 54.</td>
<td>No</td>
<td>5</td>
</tr>
<tr>
<td>web_label</td>
<td>The label for the web server's certificate.</td>
<td>No</td>
<td>SSL Cert</td>
</tr>
<tr>
<td>webserv    er</td>
<td>The web server's daemon user ID.</td>
<td>See web server documentation.</td>
<td>WEBSRV</td>
</tr>
</tbody>
</table>

### Steps for performing RACF tasks using IKYSETUP

Use the following directions to run IKYSETUP only if you have not done so for a previous release (or if you are changing values).

You can use the following directions to run IKYSETUP with minimal changes or to extensively customize it.

**Guideline:** If this is your first attempt to use IKYSETUP, change only the IKYSETUP variables in the section Things you must change. You can refine IKYSETUP later, after you are familiar with the process of updating and running it.

The following flowchart illustrates the iterative nature of the process of updating IKYSETUP:
Perform the following steps to use IKYSETUP to perform RACF administration tasks:

1. Copy SYS1.SAMPLIB(IKYSETUP) to a data set you are permitted to edit.

2. Edit the IKYSETUP code to update the values of variables you changed in Table 11 on page 41. The following example shows how to change the pkigroup_mem variables. (Remember that for pkigroup_mem, you set pkigroup_mem.0 to the number of items in the list and pkigroup_mem.1 through pkigroup_mem.n to the PKI Services administration group member IDs.)
Running IKYSETUP

3. If necessary, update the values of variables you changed in Table 18 on page 50.

The following example shows how to change the key_type variable.

Example:

```
key_type=1
```

4. Optionally update any variables you changed in Table 19 on page 55.

The following example shows how to change the log_dsn variable.

Example:

```
log_dsn="PRIVATE.IKYSETUP.LOG"
```

If you are changing the values of ca_exyears, ca_expires, web_exyears, or web_expires, see “Specifying when the CA certificate and web server certificates expire” on page 54 for instructions.

5. Run IKYSETUP by entering the following command:

```
EX 'data-set-name(IKYSETUP)' 'RUN(NO)'
```

Notes:

a. The user ID that runs IKYSETUP must be a RACF SPECIAL user ID.

b. When IKYSETUP runs, it prompts you to enter your secret passphrase. (This is for encrypting the backup copy of your CA certificate and private key.) Be aware that asterisks do not replace the secret passphrase; it appears on the screen in the clear.

   **Important:** Make a note of this passphrase. If you forget it, your backup is useless.

c. The NO option in the command specifies displaying the commands only. (This creates a log data set listing the commands and other information. Alternative parameters are: YES, which indicates running IKYSETUP as is, and PROMPT, indicates prompting the user before running each command.)

6. Review the log data set. (See “Sample IKYSETUP log data set” on page 63 for an example of the data that appears on your display when you are running IKYSETUP; this is similar to the contents of the log data set.) The first part identifies the tasks and shows the commands that run to perform those tasks. Review this to ensure that the issued commands match your expectations. (For more information about these commands, see “Actions IKYSETUP performs by issuing RACF commands” on page 619.) The bottom part provides a record of important information that you need for later steps, such the name of your daemon user ID. Review this information to ensure that the values are the ones you want.

   If you want to change any of the commands or information in the log data set, you need to change additional values in IKYSETUP. Remember to record any additional changes in Table 11 on page 41, Table 18 on page 50, and Table 19 on page 55. Then go back to Step “3” on page 62.
7. If the log data set includes the commands and information you want, rerun the IKYSETUP code by entering the following command:

```
EX 'data-set-name(IKYSETUP)\' 'RUN(YES)'
```

8. After running IKYSETUP with RUN(YES), examine the results recorded in the log data set. Investigate and rerun (potentially by hand) any failing commands. Investigate informational messages and make any necessary corrections. (Informational messages usually indicate a setup problem that might affect operations later. For example, any informational message from the RACDCERT commands that indicate that the certificate has been marked NO TRUST is an error.)

9. If you intend to use encrypted LDAP passwords, you need to perform additional RACF administration tasks; see “Using encrypted passwords for LDAP servers” on page 501.

Sample IKYSETUP log data set

Here is an example of the data that appears when you run IKYSETUP.

```
Creating users and groups ...
ADDUSER PKISRVD name('PKI Srvs Daemon') nopassword omvs(uid(554) assize(256000000) threads(512))
ADDUSER PKISERV nopassword omvs(uid(555)) name('PKI Srvs Surrogate')
ADDGROUPOPKIGRP OMVS(GID(655))
SETROPTS EGN GENERIC(DATASET)
ADDSD 'PKISRVD.**' UACC(NONE)
PERMIT 'PKISRVD.**' ID(PKISRVD) ACCESS(ALTER)

Allowing administrators to access PKI VSAM databases ...
PERMIT 'PKISRVD.**' ID(PKIGRP) ACCESS(CONTROL)
SETROPTS GENERIC(DATASET) REFRESH

Creating the CA certificate ...
RACDCERT GENCERT CERTAUTH SUBJECTSDN(OU('Human Resources Certificate Authority') O('Your Company') C('Your Country 2 Letter Abbreviation')) WITHLABEL('Local PKI CA') NOTAFTER(DATE(2033/06/14)) SIZE(2048)

Backing up the CA certificate ...
RACDCERT CERTAUTH EXPORT(LABEL('Local PKI CA')) DSN('PKISRVD.KEY.BACKUP.P12BIN') FORMAT(PKCS12DER) PASSWORD('******')

Marking CA certificate as HIGHTRUST ...
RACDCERT CERTAUTH ALTER(LABEL('Local PKI CA')) HIGHTRUST

Saving the CA certificate to a data set ...
RACDCERT CERTAUTH EXPORT(LABEL('Local PKI CA')) DSN('PKISRVD.CACERT.DERBIN') FORMAT(CERTDER)

Creating the RA certificate ...
RACDCERT ID(PKISRVD) GENCERT SUBJECTSDN(CN('Registration Authority') OU('Human Resources Certificate Authority') O('Your Company') C('Your Country 2 Letter Abbreviation')) KEYUSAGE(HANDSHAKE) SIGNWITH(CERTAUTH LABEL('Local PKI CA')) NOTAFTER(DATE(2033/06/14)) WITHLABEL('Local PKI RA')

Backing up RA certificate ...
RACDCERT ID(PKISRVD) EXPORT(LABEL('Local PKI RA')) DSN('PKISRVD.RAKEY.BACKUP.P12BIN') FORMAT(PKCS12DER) PASSWORD('******')

Creating the PKI Services keyring ...
RACDCERT ADDRING(CAring) ID(PKISRVD)
RACDCERT ID(PKISRVD) CONNECT(CERTAUTH LABEL('Local PKI CA') RING(CAring) USAGE(PERSONAL) DEFAULT)
RACDCERT ID(PKISRVD) CONNECT(LABEL('Local PKI RA') RING(CAring) USAGE(PERSONAL))

Creating the Webserver SSL certificate and keyring ...
RACDCERT GENCERT ID(WEBSRV) SIGNWITH(CERTAUTH LABEL('Local PKI CA')) WITHLABEL('SSL Cert') SUBJECTSDN(CN('www.YourCompany.com') O('Your Company') L('Your City') SP('Your Full State or Province Name') C('Your Country 2 Letter Abbreviation')) NOTAFTER(DATE(2018/06/14))
RACDCERT ADDRING(SSLring) ID(WEBSRV)
```
RACDCERT ID(WEBSRV) CONNECT(ID(WEBSRV) LABEL('SSL Cert') RING(SSLring) USAGE(PERSONAL) DEFAULT)
RACDCERT ID(WEBSRV) CONNECT(CERTAUTH LABEL('Local PKI CA') RING(SSLring))

Saving the webserver's root CA certificate to a data set for OPUT ...
RACDCERT CERTAUTH EXPORT(LABEL('Local PKI CA')) DSN('PKISRVD.WEBROOT.DERBIN') FORMAT(CERTDER)

Giving PKISRVD access to BPX.SERVER ...
RDEFINE FACILITY BPX.SERVER
PERMIT BPX.SERVER CLASS(FACILITY) ID(PKISRVD) ACCESS(READ)

Allowing the PKI Services daemon to act as a CA ...
RDEFINE FACILITY IRR.DIGTCERT.GENCERT
RDEFINE FACILITY IRR.DIGTCERT.LISTRING
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(PKISRVD) ACCESS(CONTROL)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(PKISRVD) ACCESS(READ)

Allowing the Webserver to access its keyring ...
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(WEBSRV) ACCESS(READ)

Allowing the Webserver to switch identity to PKISERV ...
SETROPTS CLASSACT(SURROGAT)
RDEFINE SURROGAT BPX.SRV.PKISERV
PERMIT BPX.SRV.PKISERV CLASS(SURROGAT) ID(WEBSRV) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

Allowing the PKI Services daemon to use ICSF ...
SETROPTS GENERIC(CSFKEYS CSFSERV)
SETROPTS GENERIC(CSFKEYS CSFSERV) REFRESH
RDEFINE CSFKEYS IRR.DIGTCERT.CERTIFAUTH.* UACC(NONE)
PERMIT IRR.DIGTCERT.CERTIFAUTH.* CLASS(CSFKEYS) ID(PKISRVD) ACCESS(READ)
SETROPTS CLASSACT(CSFKEYS) RACLIST(CSFKEYS)
SETROPTS CSFKEYS REFRESH

Creating the STARTED class profile for the daemon ...
RDEFINE STARTED PKISERVD.* STDATA(USER(PKISRVD))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED) REFRESH

Allowing PKISERV to request certificate functions ...
SETR GENERIC(FACILITY)
RDEFINE FACILITY IRR.RPKISERV.**
PERMIT IRR.RPKISERV.** CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)

Creating the profile to protect PKI Admin functions ...
RDEFINE FACILITY IRR.RPKISERV.PKIADMIN
PERMIT IRR.RPKISERV.PKIADMIN CLASS(FACILITY) ID(PKIGRP) ACCESS(UPDATE)
PERMIT IRR.RPKISERV.PKIADMIN CLASS(FACILITY) ID(PKISERV) ACCESS(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

Information needed for PKI Services UNIX set up:

The daemon user ID is:
   PKISRVD

The VSAM high level qualifier is:
   PKISRVD
This is needed for the [ObjectStore] section in pkiserv.conf

The PKI Services' DER encoded certificate is in data set:
   'PKISRVD.CACERT.DERBIN'

The webserver's DER encoded root CA certificate is in data set:
   'PKISRVD.WEBROOT.DERBIN'
This must be OPUT to /var/pkiserv/cacert.der with the BINARY option

The fully qualified PKI Services' SAF keyring is:
   PKISRVD/CAring
This is needed for the [SAF] section in pkiserv.conf

The label of the PKI Services' RA certificate is:
   Local PKI RA
This is needed for the [SAF] section in pkiserv.conf

The PKI Services CA DN is:
   OU=Human Resources Certificate Authority, O=Your Company, C=Your Country 2 Letter Abbreviation
The suffix must match the LDAP suffix in slapd.conf

The PKI Services RA DN is:
   CN=Registration Authority, OU=Human Resources Certificate Authority, O=Your Company,
C=Your Country 2 Letter Abbreviation
The suffix must match the LDAP suffix in slapd.conf

The recommended location for the pkiserv.conf and pkiserv.tmpl is:
/etc/pkiserv

Set the following environment variables in pkiserv.envvars:
_PKISERV_CONFIG_PATH=/etc/pkiserv

Set the following environment variable in your httpd envvars files:
_PKISERV_CONFIG_PATH=/etc/pkiserv

The webserver's SAF keyring is:
SSLring
This is needed for the KeyFile directive in virtual host files

The webserver's DN is:
CN=www.YourCompany.com,O=Your Company,L=Your City,ST=Your Full State or Province Name,
C=Your Country 2 Letter Abbreviation
The left most RDN must be the webserver's fully qualified domain name
Running IKYSETUP
Chapter 5. Configuring the UNIX runtime environment

You need to perform all of the tasks in this topic if you are configuring PKI Services for the first time. If you have already configured PKI Services for an earlier release, you might need to perform some of the tasks in this topic if you are adding support for a function.

After the RACF administrator performs the tasks necessary to set up PKI Services, the UNIX programmer needs to perform the following tasks:

• If necessary, copy files.
• If necessary, update the environment variables file.
• If necessary, update the configuration file.
• If configuring PKI Services for the first time or adding a new CA domain, set up the /var/pkiserv directory.

The following table summarizes information about copying and updating files. To view the contents of any of these files, see Chapter 31, “Other code samples,” on page 649.

<table>
<thead>
<tr>
<th>File</th>
<th>Purpose</th>
<th>Need to copy?</th>
<th>Need to change?</th>
</tr>
</thead>
<tbody>
<tr>
<td>expiringmsg.fo r m</td>
<td>The form for an email sent to a user when a certificate is going to expire.</td>
<td>Only if your company sends an email notification to a user about a certificate that is going to expire.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>pendingmsg.for m</td>
<td>The form for an email sent to an administrator when requests are pending approval.</td>
<td>Only if your company sends an email notification to an administrator about requests that are pending approval.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>pendingmsg2.for m</td>
<td>The form for an email sent to an administrator when requests are approved with modifications.</td>
<td>Only if your company sends an email notification to an administrator about requests approved with modifications.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>File</td>
<td>Purpose</td>
<td>Need to copy?</td>
<td>Need to change?</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------------------------------------</td>
<td>---------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>pkiserv.conf</td>
<td>Configuration file. Contains various settings and values PKI Services needs.</td>
<td>Only if you are configuring PKI Services for the first time.</td>
<td>The UNIX programmer might need to change the LDAP section of this file. <strong>Guideline:</strong> Do not change it now but change it later when you perform “Steps for tailoring the LDAP section of the configuration file” on page 108. The UNIX programmer might need to update the non-LDAP section of the pkiserv.conf configuration file when you add support for a function. For more information, see “Optionally updating the pkiserv.conf configuration file” on page 72.</td>
</tr>
<tr>
<td>pkiserv.envars</td>
<td>The environment variables file.</td>
<td>Only if you are configuring PKI Services for the first time and the file needs changes.</td>
<td>UNIX programmer might have to update this file. See “Optionally updating PKI Services environment variables” on page 70.</td>
</tr>
<tr>
<td>pkiserv.tmpl</td>
<td>The certificate templates file used with REXX CGI execs. It contains HTML-style code that builds the web pages underlying certificate requests.</td>
<td>Only if you are configuring PKI Services for the first time and using the REXX CGI execs to implement the PKI Services web application.</td>
<td><strong>Guideline:</strong> Make no changes to this file until later. See Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 for details about making changes.</td>
</tr>
<tr>
<td>PKIServ.xsd</td>
<td>The XML schema that defines the syntax of the XML certificate templates file pkitmpl.xml.</td>
<td>Only if you are configuring PKI Services for the first time and using the JavaServer pages (JSPs) to implement the PKI Services web application.</td>
<td><strong>Rule:</strong> Do not make changes to this file.</td>
</tr>
<tr>
<td>pkitmpl.xml</td>
<td>The certificate templates file used with JavaServer pages (JSPs). It defines applications and certificates in XML.</td>
<td>Only if you are configuring PKI Services for the first time and using the JSPs to implement the PKI Services web application.</td>
<td><strong>Guideline:</strong> Make no changes to this file until later. See Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 for details about making changes.</td>
</tr>
</tbody>
</table>
### Table 20. Deciding which files to copy and change (continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Purpose</th>
<th>Need to copy?</th>
<th>Need to change?</th>
</tr>
</thead>
<tbody>
<tr>
<td>readymsg.form</td>
<td>The form for an email sent to a user when the PKI Services administrator has approved a certificate request and the certificate is ready for retrieval.</td>
<td>Only if your company sends an email notification to a user after the PKI Services administrator has approved a certificate request and the certificate is ready for retrieval.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>rejectmsg.form</td>
<td>The form for an email sent to a user when the PKI Services administrator has rejected a certificate request.</td>
<td>Only if your company sends an email notification to a user after the PKI Services administrator has rejected a certificate request.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>renewcertmsg.form</td>
<td>The form for an email sent to a user when PKI Services has automatically renewed an expiring certificate.</td>
<td>Only if your company enables automatic renewal of certificates.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
<tr>
<td>recoverymsg.form</td>
<td>The form for an email sent to a user who has requested that PKI Services recover a certificate for which PKI Services generated the key pair.</td>
<td>Only if your company allows users to request that PKI Services generate key pairs for certificate requests.</td>
<td>Guideline: Make no changes to this file until later. See “Customizing email notifications sent to users” on page 318 for details about making changes.</td>
</tr>
</tbody>
</table>

### Steps for copying files

#### Before you begin

- You need to obtain the following document:
  - *z/OS UNIX System Services Planning*
- You need to know the file system directory where the MVS programmer installed PKI Services and the runtime directory, `install-dir` and `runtime-dir` in the commands that follow. The defaults are `/usr/lpp/pkiserv/` and `/etc/pkiserv/`, in that order. The MVS programmer was asked to record any changes to these defaults; see Table 3 on page 11.
- The user ID you use for copying files must have superuser authority.

Perform the following steps to copy the files:

1. If you are configuring PKI Services for the first time, copy the configuration file by entering the following command from the UNIX command line:

   ```bash
   cp -p /install-dir/samples/pkiserv.conf runtime-dir
   ```

2. If you are configuring PKI Services for the first time, copy the templates files. Do either Step “2.a” on page 70 or Step “2.b” on page 70.
a. If you are using REXX CGIs to implement the PKI Services web application, copy the text template file by entering the following command from the UNIX command line:

```bash
cp -p /install-dir/samples/pkiserv.tmpl runtime-dir
```

b. If you are using JavaServer pages (JSPs) to implement the PKI Services web application, copy the XML template file and the XML schema file by entering the following commands from the UNIX command line:

```bash
cp -p /install-dir/samples/pkitmpl.xml runtime-dir
cp -p /install-dir/samples/PKIServ.xsd runtime-dir
```

3. If your company is sending email notifications to users (when certificate requests are rejected or when certificates are ready for retrieval or expiring), copy the appropriate notification files from the samples directory to the runtime directory. For example:

```bash
cp -p /install-dir/samples/rejectmsg.form runtime-dir
cp -p /install-dir/samples/readymsg.form runtime-dir
cp -p /install-dir/samples/expiringmsg.form runtime-dir
```

4. If your company is sending email notifications to administrators when certificate requests are pending approval, copy the pendingmsg.form notification file from the samples directory to the runtime directory. For example:

```bash
cp -p /install-dir/samples/pendingmsg.form runtime-dir
```

5. If your company is sending email notifications to administrators when certificate requests are approved with modifications, copy the pendingmsg2.form notification file from the samples directory to the runtime directory. For example:

```bash
cp -p /install-dir/samples/pendingmsg2.form runtime-dir
```

6. If your company allows users to request that PKI Services create key pairs (private key and public key) for certificate requests, copy the notification file that is used when a user requests that PKI Services recover a certificate for which it created the keys. For example:

```bash
cp -p /install-dir/samples/recoverymsg.form runtime-dir
```

7. If you are configuring PKI Services for the first time, examine the values in the environment variables file (by default, pkiserv.envars). If any values need to change, copy this file by entering the following command:

```bash
cp -p /install-dir/samples/pkiserv.envars runtime-dir
```

---

**Optionally updating PKI Services environment variables**

You need to perform this task only if any one of the following conditions is true:

- You are configuring PKI Services for the first time.
• You are adding an additional CA domain.
• You want to send email notifications (for rejected certificate requests or certificates that are ready for retrieval or expiring) and you did not use the default location for sendmail (/bin/sendmail).
• You intend to use automatic certificate renewal.
• You are implementing an autorenew exit.
• You intend to use JavaServer pages (JSPs) instead of REXX CGIs for the PKI Services web pages.
• You intend to run PKI Services in FIPS mode.

You need to define certain environment variables (such as LIBPATH) for the PKI Services daemon to run. There are two files related to environment variables:

• A sample environment variables file, pkiserv.envars (by default in /usr/lpp/pkiserv/samples/)
• SYS1.PROCLIB member PKISERVD (You can use the ENVAR parameter to point to the environment variables file.)

You can use pkiserv.envars to set environment variables for the PKI Services daemon. This file contains most of the environment variables needed to run the daemon.

You need to change the file if you did not use the default for any of these things:
• The install directory for PKI Service (/usr/lpp/pkiserv)
• The message level
• The location for sendmail (/bin/sendmail)

Guideline: If you need to make changes to the pkiserv.envars file, copy the file to another directory (such as /etc/pkiserv) and make changes only to the copy.

PKISERVD is the sample procedure to start PKI Services. (For sample code, see “PKISERVD sample procedure to start PKI Services daemon” on page 682.) PKISERVD sets the TZ (time zone) environment variable because it is very likely that the value of this variable needs to change. PKISERVD also includes parameters specifying the directory containing the environment variables file (DIR) and the file name of the environment variables file (FN). If you make a copy of pkiserv.envars as suggested, you also need to change the name of the directory in PKISERVD (for example, DIR="/etc/pkiserv") and possibly the file name (for example, FN="pki.env").

Note: You can change all of the following on the START command:
• Environment variables directory
• File name
• Job output class
• Region size
• Standard output
• Standard error
• Time zone

See “Steps for starting the PKI Services daemon” on page 129.

Because of the limitation of the number of characters allowed in the PARM= operand on the JCL EXEC card, take care to ensure that the total length of the environment variables directory and file name, TZ value, and stdout and stderr redirection values do not exceed the 100 character maximum.

You must specify any environment variables that PKI Services requires either in the PKISERVD procedure or in the environment variables file (pkiserv.envars). Guideline: Make your additions and changes to the environment variables file, rather than to the PKISERVD procedure.
(Optional) Steps for updating PKI Services environment variables

Before you begin
Examine the values in the environment variables file (by default, pkiserv.envars) and determine whether you need to update any values. (See “Environment variables in the environment variables file” on page 615 for a description of the environment variables and “The pkiserv.envars environment variables file” on page 617 for a code sample of the environment variables file.)

Procedure
Perform the following steps to update PKI Services environment variables:

1. If you did not install sendmail in its default location (/bin), update the PATH environment variable to the location of sendmail.

2. Make any needed changes to PKISERVD, such as updating the path name of the environment variables file (FN and DIR parameters). (See “PKISERVD sample procedure to start PKI Services daemon” on page 682 for a code sample of the PKISERVD procedure.)

3. _PKISERV_VARDIR specifies the path name for a directory in which PKI Services writes persistent data. The maximum length of the path name is 256 characters, including the trailing /. The default value (if you do not set the environment variable) is /var/pkiserv. For example:

   _PKISERV_VARDIR=/var/mypkiserv/

4. If you do not define _PKISERV_EXIT or if it contains a null value, the PKI exit processing is disabled. If you have implemented an AUTORENEW exit, set _PKISERV_EXIT to the absolute path name of the exit program name. The maximum length is 256 characters including the program name. For example:

   _PKISERV_EXIT=/mydir/renewexit

5. If you want to run PKI Services in FIPS mode, update _PKISERV_FIPS_LEVEL to the desired FIPS level. For example:

   _PKISERV_FIPS_LEVEL=1

   Prior to changing this environment variable, make sure all of the requests have a status of Completed. Otherwise, certificates may not be issued for pending or approved requests that are not compliant with the new FIPS level.

   For a description of the _PKISERV_FIPS_LEVEL environment variable and the appropriate values, see “Environment variables in the environment variables file” on page 615.

6. Update any other values as necessary.

Optionally updating the pkiserv.conf configuration file

You need to update the pkiserv.conf configuration file if you meet any of the following conditions:

- You are configuring PKI Services for the first time
- You are adding support for:
  - Running multiple instances of PKI Services in a sysplex.
  - Running multiple CA domains on a single z/OS image. (See “Adding a new CA domain” on page 302.)
- Sending email notifications to users if the PKI Services administrator rejects certificate requests or certificates are ready for retrieval or expiring
- Customizing certificate revocation list (CRL) distribution point processing. (See “Customizing distribution point CRLs” on page 290 for details.)
- Automatic renewal of expiring certificates
- Sending email notifications to administrators if any requests are pending approval
- A timeout value for the PKI Services exit.
- Generation of key pairs (public and private key) for certificates
- Setting the time that the daily maintenance task runs, or the days that it runs, or specifying that it is not to run when the PKI Services daemon starts
- The certificate management protocol (CMP)
- Using Db2 tables instead of VSAM files for the object store and ICL.
- Creating CRLs without the Issuing Distribution Point extension.
- Constraining the CA path length.
- Granular control of administrative functions.
- WTO notification.
- SCEP request enhancement.
- Enrollment over Secure Tunneling protocol (EST)
- RSASSA-PSS signature algorithm

- You installed a new release of z/OS and had configured PKI Services on the earlier release. (For more information see “Updating pkiserv.conf after installing a new release of z/OS” on page 94.

You can also optionally update the file if you want to change certain default values.

The pkiserv.conf configuration file for the PKI Services daemon consists of sections of name-value pairs. **Important:** Everything in the pkiserv.conf file, including section names, keys, and values, is case-sensitive.

Each section of the pkiserv.conf configuration file has a title enclosed in square brackets. The configuration file includes the following sections:

**[OIDs]**

The OIDs section specifies the object identifiers for various nicknames PKI Services uses internally. The OIDs are specified in the following form:

```
name=dotted-decimal
```

The following excerpt is from the OIDs section:

```
[OIDs]
: MyPolicy=1.2.3.4
```

**[ObjectStore]**

The ObjectStore section specifies operational information for the object store and issued certificate list (ICL).

The following excerpt is from the ObjectStore section:

```
[ObjectStore]
ObjectDSN='pkisrvd.vsam.ost'
```

**[CertPolicy]**

The CertPolicy section is for CA policy information.
The following excerpt is from the CertPolicy section:

```plaintext
[CertPolicy]
SigAlg1=sha-256WithRSAEncryption
```

**[General]**

The General section is for general information.

The following excerpt is from the General section:

```plaintext
[General]
InitialThreadCount=10
```

**[SAF]**

The SAF section is for information about the SAF (RACF) key ring that is used for CA certificate and private key storage.

The following excerpt is from the SAF section:

```plaintext
[SAF]
KeyRing=PKISRVD/CAring
```

**[LDAP]**

The LDAP section contains information about the LDAP server for posting certificates and CRLs.

The following excerpt is from the LDAP section:

```plaintext
[LDAP]
NumServers=1
```

The UNIX programmer needs to update the LDAP section of this file. **Guideline:** Do not change it now but change it later when you perform “Steps for tailoring the LDAP section of the configuration file” on page 108.

(Optional) Steps for updating the configuration file

**Before you begin**

The following table provides information about parameters in the `pkiserv.conf` configuration file. (It omits parameters for the LDAP section. For information about these parameters, see Table 25 on page 108.) Read the parameter descriptions, and examine the values that are provided in the sample configuration file, which is shown in the rightmost column to ensure that the values meet your company's requirements. As necessary, cross out the sample values and enter the information appropriate to your own organization's needs and policies.

<table>
<thead>
<tr>
<th>Table 21. Information needed for updating the configuration file</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameter</strong></td>
</tr>
<tr>
<td>OIDs section</td>
</tr>
</tbody>
</table>
Table 21. Information needed for updating the configuration file (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyPolicy</td>
<td>A registered Object ID identifying your organization's usage policy, for example:</td>
<td>If you are creating your own certificate policy, see &quot;Using certificate policies&quot; on page 284 for information about creating certificate policies. Otherwise, do not change this information.</td>
<td>1.2.3.4</td>
</tr>
<tr>
<td></td>
<td>1.2.3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you need to use the CertificatePolicies extension, replace 1.2.3.4 with the value of your Object ID:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObjectStore section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBType</td>
<td>Repository for the object store and issued certificate list (ICL). Valid values are:</td>
<td>UNIX programmer decides this value.</td>
<td>VSAM</td>
</tr>
<tr>
<td></td>
<td>• VSAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DB2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The default value is VSAM.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If DBType is VSAM, specify values for the parameters ObjectDSN, ObjectTidDSN,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ObjectStatusDSN, ObjectIdRequestorDSN, ICLDSN, ICLStatusDSN, and ICLObjectIdRequestorDSN. If DBType is DB2, these parameters are ignored.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If DBType is DB2, specify values for the parameters DBPackage, DBSubsystem, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DBWaitTime. If DBType is VSAM, these parameters are ignored.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBVersion</td>
<td>The format version in use by the PKI Services backing storage. The following two</td>
<td>Unix programmer decides this value.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>format versions are supported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>If you are upgrading an existing PKI Services installation, do not change this value until the software upgrade is complete on this installation and all other installations within the sysplex. For more information, see &quot;Creating the object store and ICL using VSAM data sets&quot; on page 116 and &quot;Creating the object store and ICL using Db2 tables&quot; on page 122.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Original PKI Services back storage data format, supported by all PKI Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>releases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extended PKI Services back storage data format with improved requester and SCEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>transaction ID tracking, supported by PKI Services Version 2 Release 3 and later.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the parameter is not specified, a value of 0 is assumed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBPackage</td>
<td>Name of the Db2 package this instance of PKI Services uses for the object store and ICL in the Db2 subsystem specified by the DBSubsystem parameter. If DBType is VSAM, this parameter is ignored.</td>
<td>Db2 programmer decides this value.</td>
<td>MasterCA</td>
</tr>
<tr>
<td>DBSubsystem</td>
<td>Name of the Db2 subsystem or group attachment that is used by this instance of PKI Services. If DBType is VSAM, this parameter is ignored.</td>
<td>Db2 programmer decides this value.</td>
<td>DSN9</td>
</tr>
</tbody>
</table>
Table 21. Information needed for updating the configuration file (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBWaitTime</td>
<td>Specifies the amount of time that PKI Services will wait for Db2 to restore operations if Db2 should become unavailable while PKI Services is running. If DBType is VSAM, this parameter is ignored.</td>
<td>Db2 programmer decides this value.</td>
<td>30m</td>
</tr>
<tr>
<td>ObjectDSN</td>
<td>VSAM data set name for the object store base cluster. This is the request database. Each VSAM request record consists of a fixed header followed by a variable-length section. If DBType is DB2, this parameter is ignored. <strong>Guideline:</strong> If you are adding a new CA domain, insert the ca_domain value from Table 19 on page 55 as the second qualifier in the data set name. <strong>Example:</strong> 'pkisrvd.employee.vsam.ost'</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names. 'pkisrvd.vsam.ost' Note that this begins with the VSAM high-level qualifier.</td>
<td></td>
</tr>
<tr>
<td>ObjectTidDSN</td>
<td>VSAM data set name for the object store transaction ID (TID) alternate index. If DBType is DB2, this parameter is ignored. <strong>Guideline:</strong> If you are adding a new CA domain, insert the ca_domain value from Table 19 on page 55 as the second qualifier in the data set name. <strong>Example:</strong> 'pkisrvd.employee.vsam.ost.path'</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names. 'pkisrvd.vsam.ost.path' Note that this begins with the VSAM high-level qualifier.</td>
<td></td>
</tr>
<tr>
<td>ObjectStatusDSN</td>
<td>VSAM data set name for the object store status alternate index. If DBType is DB2, this parameter is ignored. <strong>Guideline:</strong> If you are adding a new CA domain, insert the ca_domain value from Table 19 on page 55 as the second qualifier in the data set name. <strong>Example:</strong> 'pkisrvd.employee.vsam.ost.status'</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names. 'pkisrvd.vsam.ost.status' Note that this begins with the VSAM high-level qualifier.</td>
<td></td>
</tr>
<tr>
<td>ObjectRequestorDSN</td>
<td>VSAM data set name for the object store requestor alternate index. If DBType is DB2, this parameter is ignored. <strong>Guideline:</strong> If you are adding a new CA domain, insert the ca_domain value from Table 19 on page 55 as the second qualifier in the data set name. <strong>Example:</strong> 'pkisrvd.employee.vsam.ost.requestor'</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names. 'pkisrvd.vsam.ost.requestor' Note that this begins with the VSAM high-level qualifier.</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ObjectSCEPTidDSN</td>
<td>VSAM data set name for the object SCEP transaction ID alternate index.</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names.</td>
<td>'pkisrvd.vsam.ost.sceptid' Note that this begins with the VSAM high-level qualifier.</td>
</tr>
<tr>
<td>ICLDSN</td>
<td>VSAM data set name for the ICL base cluster. This data set contains the certificates that have been issued. Each VSAM ICL record consists of a fixed header followed by a variable-length section containing the BER-encoded certificates. If DBType is DB2, this parameter is ignored. <strong>Guideline:</strong> If you are adding a new CA domain, insert the ca_domain value from Table 19 on page 55 as the second qualifier in the data set name. <strong>Example:</strong> 'pkisrvd.employee.vsam.ost.sceptid'</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names.</td>
<td>'pkisrvd.vsam.icl' Note that this begins with the VSAM high-level qualifier.</td>
</tr>
<tr>
<td>ICLStatusDSN</td>
<td>VSAM data set name for ICL status alternate index.</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names.</td>
<td>'pkisrvd.vsam.icl.status' Note that this begins with the VSAM high-level qualifier.</td>
</tr>
<tr>
<td>ICLRequestorDSN</td>
<td>VSAM data set name for ICL requestor alternate index.</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55. The name of the file, following the period, can change; the MVS programmer who creates the VSAM data sets usually decides these names.</td>
<td>'pkisrvd.vsam.icl.request' Note that this begins with the VSAM high-level qualifier.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ICLSCEPTidDSN</td>
<td>VSAM data set name for the ICL SCEP transaction ID alternate index.</td>
<td>For the high-level qualifier that precedes the period, see the vsamhlq variable in Table 19 on page 55.</td>
<td>'pkisrvd.vsam.icl.sceptid' Note that this begins with the VSAM high-level qualifier.</td>
</tr>
<tr>
<td>RemoveCompletedReqs</td>
<td>Time period that completed certificate requests remain in the object store before automatic deletion. This is a number followed by d (days) or w (weeks). If not specified, the default is 1w (1 week). The value 0d disables the deletion of completed requests (not suggested).</td>
<td>UNIX programmer decides this value.</td>
<td>1w</td>
</tr>
<tr>
<td>RemoveInactiveReqs</td>
<td>Time period that incomplete, inactive certificate requests remain in the object store before automatic deletion. This is a number followed by d (days) or w (weeks). If not specified, the default is 4w (4 weeks). The value 0d disables the deletion of inactive requests (not suggested).</td>
<td>UNIX programmer decides this value.</td>
<td>4w</td>
</tr>
<tr>
<td>RemoveExpiredCertsAndKeys</td>
<td>Time period that keys and expired certificates with keys generated by PKI Services remain in the ICL and TKDS before automatic deletion. This is a number followed by d (days) or w (weeks). If you do not specify this parameter, or you set the value to 0d, expired certificates are not removed.</td>
<td>UNIX programmer decides this value.</td>
<td>520w</td>
</tr>
<tr>
<td>RemoveExpiredCerts</td>
<td>Time period that expired certificates with keys that were not generated by PKI Services remain in the ICL before automatic deletion. This is a number followed by d (days) or w (weeks). If you do not specify this parameter, or you set the value to 0d, expired certificates are not removed.</td>
<td>UNIX programmer decides this value.</td>
<td>0d</td>
</tr>
<tr>
<td>SharedPLEX</td>
<td>Indicates whether you intend to share a single copy of the PKI Services object store and the issued certificate list (ICL) among multiple images in a sysplex. This is a number followed by d (days) or w (weeks). If you do not specify this parameter, or you set the value to 0d, expired certificates are not removed.</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
</tbody>
</table>

**CertPolicy section**
Table 21. Information needed for updating the configuration file (continued)

<p>| Parameter               | Information needed                                                                                                                                                                                                 | Where to get this information                                                                                     | Sample value or your customized value |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| AdminGranularControl    | Enables granular authority control for administrative functions that are based on CA domain name, certificate template name, and the administrative function being performed. If enabled, appropriate RACF protection profiles must be set up. If <code>T</code> (True), granular authority control is enabled. If <code>F</code> (False), granular authority is disabled. <code>F</code> is the default. | UNIX programmer decides this value.                                                                             | <code>F</code>                                                                                                           |
| AdminNotifyNewn         | The email address to which notification should be sent immediately when a request is created and requires approval. The notification is only sent once. There can be multiple entries, where <code>n</code> is 1 for the first entry and increases sequentially for additional entries. The mailing address is in the form <code>&lt;userid&gt;@&lt;system&gt;</code>. | UNIX programmer decides this value. Do not change this information until you set up administrator notification of requests pending approval. | <code>abigail@mycompany.com</code>                                                                                       |
| AdminNotifyReminder     | The email address to which reminder notifications of requests pending approval should be sent when the daily maintenance task runs. There can be multiple entries, where <code>n</code> is 1 for the first entry and increases sequentially for additional entries. The mailing address is in the form <code>&lt;userid&gt;@&lt;system&gt;</code>. | UNIX programmer decides this value. Do not change this information until you set up administrator notification of requests pending approval. | <code>abigail@mycompany.com</code>                                                                                       |
| ARLDist                 | Indicates whether an authority revocation list (ARL) distribution point is created. <code>F</code> (the default) indicates that no ARL distribution point is created. <code>T</code> indicates that an ARL distribution point is created if <code>CRLDistSize</code> is greater than zero. | UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Creating a distribution point ARL” on page 295 for more information. | <code>F</code>                                                                                                           |
| CertValidityConstraint  | Specifies whether the validity period of a certificate should be constrained within the CA's certificate life time. If <code>T</code> (True), requests with a validity period that exceeds the CA's validity period fail. If <code>F</code> (False), requests are not constrained to the CA's validity period. <code>F</code> is the default. | UNIX programmer decides this value.                                                                             | <code>F</code>                                                                                                           |
| CPSn                    | The Uniform Resource Identifier (URI) for the Certification Practice Statement (CPS) that is associated with <code>PolicyNameN</code>. The value is in the form: <code>http://www.mycompany.com/cps.html</code> | Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information. | <code>http://www.mycompany.com/cps.html</code>                                                                         |
| CreateInterval          | How often the certificate creation thread scans the database for approved requests. This is a number followed by <code>w</code> (weeks), <code>d</code> (days), <code>h</code> (hours), <code>m</code> (minutes), or <code>s</code> (seconds). | UNIX programmer decides this value.                                                                             | <code>3m</code>                                                                                                          |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLDistDirPath</td>
<td>The full path for the file system directory where PKI Services is to save each DP CRL, as specified by the HTTP URI in the CRLDistributionPoints extension. This value is ignored if you do not create a CRLDistributionPoints extension or if the URI protocol is ldap. This value can be specified with or without the trailing slash. The default value is /var/pkiserv/.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Customizing distribution point CRLs” on page 290 for more information.</td>
<td>/var/pkiserv/</td>
</tr>
<tr>
<td>CRLDistName</td>
<td>Constant portion of the (leaf-node) relative distinguished name for a distribution point (DP) CRL, if DP CRL processing is being performed. The default value is CRL.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Customizing distribution point CRLs” on page 290 for more information.</td>
<td>CRL</td>
</tr>
<tr>
<td>CRLDistSize</td>
<td>An integer value that represents the maximum number of certificates that can appear on one DP CRL. If you do not specify this parameter, or you set the value to 0, DP CRLs are not created.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Customizing distribution point CRLs” on page 290 for more information.</td>
<td>500</td>
</tr>
<tr>
<td>CRLDistURI</td>
<td>Optional: Specifies a URI format name for the DP CRL. You can specify multiple names using parameters CRLDistURI1, CRLDistURI2, and so forth. This value is ignored if you do not create DP CRLs by specifying CRLDistSize with a value greater than zero. Specify this only if you want a URI-format name, in addition to the distinguished name format, which is built in the CRLDistributionPoints extension.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Customizing distribution point CRLs” on page 290 for more information.</td>
<td>*</td>
</tr>
<tr>
<td>CRLDuration</td>
<td>The amount of time that a certificate revocation list is valid. This is a number followed by w (weeks), d (days), h (hours), m (minutes), or s (seconds).</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Customizing distribution point CRLs” on page 290 for more information.</td>
<td>2d</td>
</tr>
<tr>
<td>CRLEnhancements</td>
<td>This keyword was introduced in z/OS Version 2 Release 1 and Version 2 Release 2 with the PTFs for the new function APAR OA51588. In z/OS Version 2 Release 3, the CRL processing enhancements are used by default and can no longer be disabled. As a result, the CRLEnhancements keyword is no longer supported. In addition, the restriction of the CRLDuration value being rounded up to the nearest number of days is removed. The value that is specified for CRLDuration is used unmodified. For more information about unsupported keywords, see the notes section following this table.</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>CRLIDPExt</td>
<td>Specifies whether certificate revocation lists (CRLs) should be created with a critical Issuing Distribution Point (IDP) extension. If T (True), CRLs are created with a critical IDP extension. If F (False), CRLs are created without the IDP extension. The default is T.</td>
<td>UNIX programmer decides this value.</td>
<td>T</td>
</tr>
<tr>
<td>CRLWTONotification</td>
<td>Specifies whether a console message is issued when CRL processing ends. If set to none, no console message is issued. If set to file, a console message is issued after the CRL is available in the file system. This keyword is ignored if either of the following conditions are true: • HTTP protocol is not specified for CRL distribution. • Large CRL posting is not enabled.</td>
<td>UNIX programmer decides this value.</td>
<td>none</td>
</tr>
<tr>
<td>EnableCMP</td>
<td>Specifies whether support for certificate management protocol (CMP) messages is enabled. If T (True), CMP messages that are supported are accepted. If F (False), all CMP messages are rejected. F is the default.</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
<tr>
<td>EnableLargeCRLPosting</td>
<td>Specifies whether large CRL posting is enabled. If T, CRLs are saved in a z/OS UNIX directory before the LDAP posting thread processes them. If F, CRLs are saved in the object store (either VSAM data set or Db2 table, depending on which you are using), and are subject to a size limit of approximately 32 KB. The default is F.</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
<tr>
<td>EnablePathLenConstraint</td>
<td>Specifies whether certificate path length constraints are enforced by the CA. The value is T (True) or F (False). If T, the CA certificate is examined at initialization to verify that it meets path length constraint requirements. If so, the pathLenConstraint field is set in the basic constraints extension of the intermediate CA certificates created by this CA. If not specified, or F, certificate path length constraint is not enforced in the CA certificate used by the CA, and intermediate CA certificates created by this CA do not include a pathLenConstraint field in the basic constraints extension.</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
<tr>
<td>EnableEST</td>
<td>Specifies whether Enrollment over Secure Transport protocol (EST) is allowed. This is T (True) or F (False).</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
</tbody>
</table>

Do not change this information until you perform advanced customization. See Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341 for more information.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnableSCEP</td>
<td>Specifies whether Simple Certificate Enrollment Protocol (SCEP) is allowed. This is T (True) or F (False).</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333 for more information.</td>
<td>F</td>
</tr>
<tr>
<td>ESTCAFile</td>
<td>Specifies the full path name of the file containing the DER-encoded EST certificate authority (CA) certificate. Required when EnableEST is set to T.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341 for more information.</td>
<td>/var/pkiserv/estcacert.der</td>
</tr>
<tr>
<td>ESTTemplate</td>
<td>Specifies the template nickname in the pkiservtmpl or pkitmpl.xml file that is to be used when preregistering EST clients and issuing certificates to EST client. This value is limited to 8 characters and is ignored if the value exceeds that length. Required when EnableEST is set to T.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341 for more information.</td>
<td>2YESTP</td>
</tr>
<tr>
<td>ExpireWarningTime</td>
<td><strong>Note:</strong> You need a value for this parameter only if you are sending email notifications to users when certificates are expiring, or automatically renewing certificates when they are expiring and sending them to the owners. This parameter indicates how soon before certificate expiration to send a warning message or a renewed certificate (that is, the number of days or weeks before the day and time the certificate expires). If automatic certificate renewal is active, this parameter indicates how soon before certificate expiration to renew the certificate and send it to the owner. This name-value pair is optional. Its absence indicates that no expiration checking is performed and no automatic certificate renewal occurs. Also, if the name-value pair is present but has an incorrect value or if PKI Services is configured to operate without LDAP, no expiration checking or automatic certificate renewal is done.</td>
<td>UNIX programmer decides this value.</td>
<td>4w</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>LargeCRLPostPath</td>
<td>The full path for the file system directory where PKI Services is to save each CRL for posting to LDAP, if support for large CRLs is enabled. This value can be specified with or without the trailing slash, and can be the same as the value of CRLDistDirPath. The default value is /var/pkiserv/.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Enabling support for large CRLs” on page 297 for more information.</td>
<td>/var/pkiserv/crls</td>
</tr>
<tr>
<td>MaxSuspendDuration</td>
<td>The length of the certificate suspension grace period in weeks or days. This is a number followed by w (weeks) or d (days). Certificates that remain suspended for longer than this period are automatically revoked. If you do not specify this parameter, or you set it to 0d, the grace period is unlimited.</td>
<td>UNIX programmer decides this value.</td>
<td>120d</td>
</tr>
<tr>
<td>OCSPType</td>
<td>The type of OCSP responder support wanted: • none (the default) • basic If you do not specify this parameter, or you set the value to none, the responder is not enabled.</td>
<td>Change to basic if you want to enable the responder.</td>
<td>none</td>
</tr>
<tr>
<td>PathLength</td>
<td>Specifies the certificate path length constraint value to be included in the basic constraints extension of intermediate CA certificates that are created by the CA. Valid values are 0 - 16. The value that is specified must be less than the pathLenConstraint value in the PKI CA certificate, if it is present. This keyword is ignored if the EnablePathLenConstraint keyword is not set to T.</td>
<td>UNIX programmer decides this value.</td>
<td>1</td>
</tr>
<tr>
<td>PKCS12Content</td>
<td>Specifies which certificates PKI Services includes in the PKCS#12 returned to the requester when the certificate is retrieved. (This only applies to certificates where PKI Services generated the public/private key pair). Acceptable values for this keyword are: • I - The returned PKCS#12 contains the requested certificate and private key and contains the CA certificate that is used to sign the requested certificate. This is the default value if the keyword is omitted or if an unsupported value is specified. • C - The returned PKCS#12 contains the requested certificate and private key. It also contains the complete signing certificate chain including the root CA certificate, provided the CA certificates are connected to the key ring. • E - The returned PKCS#12 contains the requested certificate and private key. None of the CA certificates of the signing chain are included.</td>
<td>UNIX programmer decides this value.</td>
<td>I</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>PolicyCritical</td>
<td>Indicates whether the CertificatePolicies extension should be marked critical. The value is T (True) or F (False).</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>F</td>
</tr>
<tr>
<td>PolicyRequired</td>
<td>Indicates whether the CertificatePolicies extension should be included in all certificates that are created. The value is T (True) or F (False). T indicates that the CertificatePolicies extension is added to all certificates, and includes all PolicyName entries that are specified in the configuration file. Any policies that are specified in the CertPolicies input parameter or listed in the CONSTANT subsection in the template file are ignored. F indicates that the CertificatePolicies extension is added to a certificate only when a certificate policy is specified in the CertPolicies input parameter or in the CONSTANT section of the template when a certificate is requested.</td>
<td>UNIX programmer decides this value. Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>F</td>
</tr>
<tr>
<td>PolicyNameN</td>
<td>A list of CertificatePolicies extensions that are added to all created certificates when PolicyRequired=T. The policy name is the symbolic name for a certificate policy OID and must match the name of a policy that is listed in the OIDs section.</td>
<td>Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>MyPolicy If you changed PolicyRequired=F to PolicyRequired=T, replace the name MyPolicy with the same policy name used in the OIDs section.</td>
</tr>
<tr>
<td>PolicyOrg</td>
<td>The name of the organization that prepared the User Notice Reference information that is associated with PolicyNameN. For example: International Business Machines, Inc.</td>
<td>Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>My Company, Inc. If you changed PolicyRequired=F to PolicyRequired=T, you need to specify your own value for this.</td>
</tr>
<tr>
<td>PolicyNoticeM</td>
<td>Specifies the number of a textual statement, which is prepared by PolicyOrg for the User Notice Reference that is associated with PolicyNameN. More than one textual statement can apply.</td>
<td>Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>1 If you changed PolicyRequired=F to PolicyRequired=T, you need to specify your own value for this parameter.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>SigAlg1</td>
<td>The nickname that is assigned to the Object ID for the signature algorithm in the OIDs section. The supported algorithms and their nicknames are listed in Table 49 on page 287.</td>
<td>The supported algorithms and their nicknames are listed in Table 49 on page 287. Do not change this information until you perform advanced customization. See “Updating the signature algorithm” on page 287 for more information.</td>
<td>sha-256WithRSAEncryption</td>
</tr>
<tr>
<td>TimeBetweenCRLs</td>
<td>How often a certificate revocation list (CRL) should be created. This is a number followed by w (weeks), d (days), h (hours), m (minutes), or s (seconds). <strong>Tip:</strong> If you want PKI Services to create a CRL immediately, instead of waiting for the TimeBetweenCRLs interval to pass, use the createcrls utility. For more information, see “Using the createcrls utility” on page 431.</td>
<td>UNIX programmer decides this value.</td>
<td>1d</td>
</tr>
<tr>
<td>UserNoticeTextn</td>
<td>The User Notice Explicit Text information that is associated with PolicyNameFor example: Certificate for IBM internal use only. For the CA to conform with current standards, this textual statement must not exceed 200 characters.</td>
<td>Do not change this information until you perform advanced customization. See “Using certificate policies” on page 284 for more information.</td>
<td>statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>If you changed PolicyRequired=F to PolicyRequired=T, you need to replace the variable statement with your own value.</td>
</tr>
<tr>
<td>General section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExitTimeout</td>
<td>Length of time that PKI Services waits for the autorenew preprocessing and postprocessing exit to return. If not specified, PKI Services waits for at most 30 seconds. PKI Services cancels the exit program if it runs longer than the specified time. The maximum value that is allowed is 1 hour. Any time specified greater is run for the maximum amount of time.</td>
<td>UNIX programmer decides this value.</td>
<td>10s</td>
</tr>
<tr>
<td>InitialThreadCount</td>
<td>Number of threads (at least 2 and no more than 100) the PKI Services daemon should create at program initialization.</td>
<td>UNIX programmer decides this value.</td>
<td>10</td>
</tr>
<tr>
<td>MaintRunDays</td>
<td>The days on which the daily maintenance task is to run. This is a list of digits between 0 and 6, representing the days of the week, with 0 representing Sunday, and 6 representing Saturday. The digits that are listed represent the days on which the task is to run. No spaces or other characters can be specified, and digits cannot be repeated. The digits can be specified in any order. If not specified, the task runs every day.</td>
<td>UNIX programmer decides this value.</td>
<td>0123456</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Sample value or your customized value</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>MaintRunTime</td>
<td>The time (local time) at which the daily maintenance task is to run, in the format ( hh:mm ), where ( hh ) represents the hour (00 to 23) and ( mm ) represents the minutes (00 to 59). ( 00:00 ) represents midnight. If not specified, the task runs once per day at midnight local time.</td>
<td>UNIX programmer decides this value.</td>
<td>01:00</td>
</tr>
<tr>
<td>RunMaintAtStart</td>
<td>Indicates whether the daily maintenance task should run during PKI Services startup, in addition to the time and days that are specified by the MaintRunTime and MaintRunDays parameters. The value T (True) indicates that the task should run during PKI Services startup. The value F (False) indicates that the task should not run during PKI Services startup. If not specified, the daily maintenance task runs during PKI Services startup.</td>
<td>UNIX programmer decides this value.</td>
<td>T</td>
</tr>
<tr>
<td>ReadyMessageForm</td>
<td>The full path name or data set name containing the &quot;Your certificate is ready&quot; message form.</td>
<td>UNIX programmer decides this value.</td>
<td>/etc/pkiserv/readymsg.form</td>
</tr>
<tr>
<td>RejectMessageForm</td>
<td>The full path name or data set name containing the &quot;Your certificate request has been rejected&quot; message form. By default, no message is issued. Using this name-value pair is optional. <strong>Guideline:</strong> If you are adding a new CA domain, use the ca_domain value from Table 19 on page 55 as the second qualifier in the path name. <strong>Example:</strong> /etc/pkiserv/employees/rejectmsg.form</td>
<td>UNIX programmer decides this value.</td>
<td>/etc/pkiserv/rejectmsg.form</td>
</tr>
<tr>
<td>ExpiringMessageForm</td>
<td>The full path name or data set name containing the &quot;Your certificate is about to expire&quot; message form. By default, no message is issued. If your team specified a value for ExpireWarningTime (see the ExpireWarningTime row in this table), then ExpiringMessageForm is required. Otherwise, an error is logged and no expiring message processing is performed. <strong>Guideline:</strong> If you are adding a new CA domain, use the ca_domain value from Table 19 on page 55 as the second qualifier in the path name. <strong>Example:</strong> /etc/pkiserv/employees/expiringmsg.form</td>
<td>UNIX programmer decides this value.</td>
<td>/etc/pkiserv/expiringmsg.form</td>
</tr>
</tbody>
</table>
Table 21. Information needed for updating the configuration file (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdminNotifyForm</td>
<td>The full path name or data set name containing the &quot;request(s) pending for approval&quot; message form. Defaults to no notification sent. <strong>Guideline:</strong> If you are adding a new CA domain, use the <code>ca_domain</code> value from Table 19 on page 55 as the second qualifier in the path name. <em>Example:</em> <code>/etc/pkiserv/employees/pendingmsgform</code></td>
<td>UNIX programmer decides this value.</td>
<td><code>/etc/pkiserv/pendingmsgform</code></td>
</tr>
<tr>
<td>AdminNotifyModForm</td>
<td>The full path name or data set name containing the &quot;request(s) approved with modifications&quot; message form. Defaults to no notification sent.</td>
<td>UNIX programmer decides this value.</td>
<td><code>/etc/pkiserv/pendingmsg2form</code></td>
</tr>
<tr>
<td>RenewCertForm</td>
<td>The full path name or data set name containing the &quot;renewed certificate&quot;. Defaults to no certificate sent. <strong>Guideline:</strong> If you are adding a new CA domain, use the <code>ca_domain</code> value from Table 19 on page 55 as the second qualifier in the path name. <em>Example:</em> <code>/etc/pkiserv/employees/renewcertmsgform</code></td>
<td>UNIX programmer decides this value.</td>
<td><code>/etc/pkiserv/renewcertmsgform</code></td>
</tr>
<tr>
<td>RecoverForm</td>
<td>The full path name or data set name containing the &quot;list of certificates that satisfy your search criteria for recovery&quot; message form. Use this name-value pair if you are setting up PKI Services to generate keys for certificate requests, and want users to be able to recover those certificates. <strong>Guideline:</strong> If you are adding a new CA domain, use the <code>ca_domain</code> value from Table 19 on page 55 as the second qualifier in the path name. <em>Example:</em> <code>/etc/pkiserv/employees/recoverymsgform</code></td>
<td>UNIX programmer decides this value.</td>
<td><code>/etc/pkiserv/recoverymsgform</code></td>
</tr>
<tr>
<td>SAF section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeyRing</td>
<td>The fully qualified name of the SAF key ring for PKI Services to use. (This must consist of an uppercase user ID and a case-sensitive ring name that is separated by a slash (/).)</td>
<td>See the <code>co_ring</code> and <code>daemon</code> values in Table 19 on page 55.</td>
<td>PKISRVD/CAring</td>
</tr>
<tr>
<td>RA_label</td>
<td>The label of your PKI Services registration authority (RA) certificate.</td>
<td>See the <code>ra_label</code> value in Table 11 on page 41.</td>
<td>Local PKI RA</td>
</tr>
<tr>
<td>SecureKey</td>
<td>Indicates whether keys generated by PKI Services are secure keys or clear keys. The value can be T (True) or F (False). T indicates that secure keys are generated in the TKDS. F or the absence of this keyword indicates that clear keys or secure keys are generated in the TKDS according to the installation configuration policy. <code>SecureKey</code> is ignored if <code>TokenName</code> is not specified.</td>
<td>UNIX programmer decides this value.</td>
<td>F</td>
</tr>
</tbody>
</table>
Table 21. Information needed for updating the configuration file (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Sample value or your customized value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TokenName</td>
<td>The name of a token in the ICSF PKCS #11 token data set (TKDS) that PKI Services uses to store key pairs that it generates for certificates. If this keyword is not specified, PKI Services cannot generate key pairs for certificates. If this keyword is specified, the TKDS must be set up before PKI Services starts. For information about setting up the TKDS, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.</td>
<td>UNIX programmer decides this value. It must meet the requirements for a token name: • Up to 32 characters in length • Permitted characters are: - Alphanumeric - National: @ \x5b, # \x7b, or $ \x7c - Period . \x4b • The first character must be alphabetic or national • Lowercase letters can be used, but are folded to uppercase • The IBM1047 code page is assumed</td>
<td>PKISRVD.PKIToken</td>
</tr>
</tbody>
</table>

LDAP section

For information about the LDAP section, see Table 25 on page 108.

Notes:

1. Keep in mind that everything in the pkiserv.conf file, including section names, keys, and values, is case-sensitive.
2. For boolean values, any of the following values are accepted for True: T, t, Y, y, or 1. Any of the following values are accepted for False: F, f, N, n, or 0
3. If an unsupported keyword is entered, or a supported keyword is entered in the wrong section of the pkiserv.conf file, the informational message IKYCO45I is logged in the PKI Services job log. The keyword name and section are specified in the informational message. If this occurs, the keyword is ignored and PKI Services initialization continues.

Procedure

Perform the following steps to update the pkiserv.conf configuration file:

1. If necessary, update the ObjectStore section:
   a. If you want to use Db2 tables for the object store and issued certificate list (ICL) instead of VSAM files, uncomment the following line by removing the "# " at the beginning of the line:

   ```
   # DBType=DB2
   ```

   and leave the following line commented out:

   ```
   # DBType=VSAM
   ```

   If you want to use VSAM files, leave both lines commented out, or uncomment the following line:
b. If you are installing PKI Services for the first time, remove the # from the beginning of the line:

```
# DBVersion=1
```

If you are installing PKI Services from an earlier release and you want to use the SCEP requester enhancements available in Version 2 Release 3, you must upgrade all instances of PKI Services within the sysplex to the current release and convert the existing object store and ICL to the new format version. After converting the object store and ICL, remove the # from the beginning of the line:

```
# DBVersion=1
```

c. If DBType is set to DB2 (see step “1.a” on page 88), uncomment the following lines, and if necessary change the Db2 package name and subsystem name in the following lines to the names you chose in the DBPackage and DBSubsystem rows in Table 21 on page 74:

```
# DBPackage=MasterCA
# DBSubsystem=DSN9
# DBWaitTime=30m
```

d. If DBType is set to VSAM, or commented out, or not present (see step “1.a” on page 88), change the data set names in the following lines, if necessary, to the names you chose in the ObjectDSN, ObjectTidDSN, ObjectStatusDSN, ObjectRequestorDSN, ObjectSCEPTidDSN, ICLDSN, ICLStatusDSN, and ICLRequestorDSN and ICLSCEPTidDSN rows in Table 21 on page 74. If DBVersion is set to 0, commented out, or not present, do not uncomment or activate the ObjectSCEPTidDSN and ICLSCEPTidDSN entries.

For example, when DBVersion is set to a value of 0:

```
DBVersion=0
ObjectDSN='pkisrvd.vsam.ost'
ObjectTidDSN='pkisrvd.vsam.ost.path'
ObjectStatusDSN='pkisrvd.vsam.ost.status'
ObjectRequestorDSN='pkisrvd.vsam.ost.requestr'
# ObjectSCEPTidDSN='pkiservd.vsam.ost.sceptid'
ICLDSN='pkisrvd.vsam.icl'
ICLStatusDSN='pkisrvd.vsam.icl.status'
ICLRequestorDSN='pkisrvd.vsam.icl.requestr'
# ICLSCEPTidDSN='pkiservd.vsam.icl.sceptid'
```

When DBVersion is set to a value of 1:

```
DBVersion=1
ObjectDSN='pkisrvd.vsam.ost'
ObjectTidDSN='pkisrvd.vsam.ost.path'
ObjectStatusDSN='pkisrvd.vsam.ost.status'
ObjectRequestorDSN='pkisrvd.vsam.ost.requestr'
ObjectSCEPTidDSN='pkiservd.vsam.ost.sceptid'
ICLDSN='pkisrvd.vsam.icl'
ICLStatusDSN='pkisrvd.vsam.icl.status'
ICLRequestorDSN='pkisrvd.vsam.icl.requestr'
ICLsCEPTidDSN='pkiservd.vsam.icl.sceptid'
```

If you are configuring PKI Services for the first time, be aware that the high-level qualifier of the VSAM data set names must match the name of the RACF user ID assigned to the PKI Services daemon (by default, PKISRVD). If you change from the default to another user ID, you need to change the high-level qualifier in the pkiserv.conf configuration file too. If the MVS programmer changes the data set names (see Step “2.d” on page 119), you must make equivalent changes in pkiserv.conf.
e. If necessary, change 1w in the following line to the value in the RemoveCompletedReqs row in Table 21 on page 74:

RemoveCompletedReqs=1w

f. If necessary, change 4w in the following line to the value in the RemoveInactiveReqs row in Table 21 on page 74:

RemoveInactiveReqs=4w

g. If necessary, uncomment the following line and, optionally, change 26w to the value in the RemoveExpiredCerts row in Table 21 on page 74:

RemoveExpiredCerts=26w

h. If necessary, uncomment the following line and, optionally, change 520w to the value in the RemoveExpiredCertsAndKeys row in Table 21 on page 74:

RemoveExpiredCertsAndKeys=520w

i. If necessary, update the SharedPLEX line:

• If you intend to use a sysplex and you are configuring PKI Services for the first time, change F in the following line to T:

SharedPLEX=F

• If you are not using a sysplex (regardless of whether you are configuring PKI Services for the first time), you do not need to do anything.

2. If necessary, update the CertPolicy section.

a. If necessary, change 3m in the following line to the value in the CreateInterval row in Table 21 on page 74:

CreateInterval=3m

b. If necessary, update the ExpireWarningTime line or lines:

• If you are sending email notifications and you are configuring PKI Services for the first time, if necessary change the value 4w in the following line to the value in the ExpireWarningTime row of Table 21 on page 74.

ExpireWarningTime=4w

• If you are not using email notifications and you are configuring PKI Services for the first time, remove the ExpireWarningTime=4w line from the pkiserv.conf file.

c. If necessary, change 1d in the following line to the value in the TimeBetweenCRLs row in Table 21 on page 74:

TimeBetweenCRLs=1d

d. If necessary, change 2d in the following line to the value in the CRLDuration row in Table 21 on page 74:

CRLDuration=2d

e. If necessary, change F in the following line to the value in the PolicyRequired row in Table 21 on page 74:

PolicyRequired=F

For more information about this parameter, see “Using certificate policies” on page 284.
If necessary, change F in the following line to the value in the PolicyCritical row in Table 21 on page 74:

| PolicyCritical=F |

For more information about this parameter, see “Using certificate policies” on page 284.

If necessary, change 120d in the following line to the value in the MaxSuspendDuration row in Table 21 on page 74:

| MaxSuspendDuration=120d |

If necessary, establish distribution point (DP) certificate revocation lists (CRLs) and a DP authority revocation list (ARL). Follow the procedure that is shown in “Steps for customizing distribution point CRLs” on page 293 to determine the values for Table 21 on page 74.

If you want to enable the OCSP responder, change OCSPType=none to OCSPType=basic.

If you want to allow certificate management protocol (CMP) clients to send requests to PKI Services, change EnableCMP=F to EnableCMP=T. For information about support for CMP, see Chapter 21, “Using the certificate management protocol (CMP) with PKI Services,” on page 453.

If you want to enable support for CRLs larger than 32 KB, change F in the following row to T and set LargeCRLPostingPath to the full path of the file system directory where PKI Services is to save CRLs for posting to LDAP.

| EnableLargeCRLPosting=F |

For more information, see “Enabling support for large CRLs” on page 297.

If you want certificate revocation lists (CRLs) to be created without the Issuing Distribution Point (IDP) extension, uncomment the following line by removing the "#" character and change T to F:

| #IDPExtCRL=T |

If you want to enable Enrollment Over Secure Transport (EST), change "EnableEST=D to EnableEST=T. Other configuration options also control EST function. See Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341.


If you want to enable granular authority control for administration functions, uncomment the following line by removing the "#" character and change F to T:

| #AdminGranularControl=F |

Before you enable granular authority control, the security administrator must set up profiles in the PKISERV class to control which functions each PKI administrator can perform. For more information, see “Using the PKISERV class to control access to administrative functions” on page 499.

If you want to enable certificate path length constraint, uncomment the following line by removing the "#" character and change F to T:

| #EnablePathLenConstraint=F |

Then uncomment the following line by removing the "#" character and change 1 to the value that you want the pathLenConstraint field to be set to in the basic constraints extension of intermediate CA certificates that are created by the CA. The value that you specify must be in the range 0 - 16, and must be less than the value of pathLenConstraint in the PKI CA certificate if it is present.

| #PathLength=1 |
3. If you want a console message to be issued when CRL processing finishes, change the following line:

```
CRLWTONotification=none
```

to

```
CRLWTONotification=file
```

4. If necessary, update the **General** section:

a. If necessary, change 10 in the following line to the value in the InitialThreadCount row in Table 21 on page 74:

```
InitialThreadCount=10
```

b. If necessary, change 10 in the following line to the value in the ExitTimeout row in Table 21 on page 74:

```
ExitTimeout=30s
```

c. If you choose, you can customize the time at which the daily maintenance task runs, the days on which it runs, and whether it also runs when the PKI Services daemon starts. This task is named `daily_Timer`, and performs functions such as:

- Removing old and expired certificates
- Removing inactive and completed certificate requests from the object store
- Updating the low CRL distribution point that is based on expired certificates
- Processing certificate expiration notification warning messages and automatic certificate renewal messages

To specify that the daily maintenance task is to run at a time other than the default of midnight local time, remove the "#" from the following line and change 01:00 to the time that you want the task to run.

```
#MaintRunTime=01:00
```

To specify the days on which the daily maintenance task is to run, remove the "#" from the following line and change 0123456 to the list of digits representing the days on which you want the task to run. For example, specify 15 to run the task every Monday and Friday.

```
#MaintRunDays=0123456
```

To specify that the daily maintenance task is not to run when the PKI Services daemon starts, remove the "#" from the following line and change T to F.

```
#RunMaintAtStart=T
```

d. If necessary update the `ReadyMessageForm`, `RejectMessageForm`, `ExpiringMessageForm`, `AdminNotifyForm`, `RenewCertForm`, and `RecoverForm` lines:

- If you are sending email notifications and you are configuring PKI Services for the first time, if necessary, change the values of the path name in the following lines to the corresponding values in Table 21 on page 74:

```
ReadyMessageForm=/etc/pkiserv/readymsg.form
RejectMessageForm=/etc/pkiserv/rejectmsg.form
ExpiringMessageForm=/etc/pkiserv/expiringmsg.form
AdminNotifyForm=/etc/pkiserv/pendingmsg.form
```
If you are allowing PKI Services to generate key pairs for certificates, if necessary change the value of the path name in the following lines to the corresponding value in Table 21 on page 74:

- AdminNotifyModForm=/etc/pkiserv/pendingmsg2.form
- RenewCertForm=/etc/pkiserv/renewcertmsg.form
- ReadyMessageForm=/etc/pkiserv/readymsg.form
- RecoverForm=/etc/pkiserv/recoverymsg.form

If you are not sending email notifications and you are configuring PKI Services for the first time, comment out the following lines in the pkiserv.conf configuration file by putting a "#" character in the first position of each line that does not already have a "#" character in it, as shown here:

```plaintext
# full pathname or data set name containing the 'your certificate request has been rejected' message form. Defaults to no message issued
# RejectMessageForm=/etc/pkiserv/rejectmsg.form

# full pathname or data set name containing the 'your certificate is about to expire' message form. Defaults to no message issued
# ExpiringMessageForm=/etc/pkiserv/expiringmsg.form

# full pathname or data set name containing the 'request(s) pending for approval' message form. Defaults to no notification sent
# AdminNotifyForm=/etc/pkiserv/pendingmsg.form

# full pathname or data set name containing the request(s) approved with modifications message form. Defaults to no notification sent.
# AdminNotifyModForm=/etc/pkiserv/pendingmsg2.form

# full pathname or data set name containing the renewed certificate.
# Defaults to no certificate sent
# RenewCertForm=/etc/pkiserv/renewcertmsg.form
```

If you are not sending email notifications and you are not allowing PKI Services to generate keys for certificates, and you are configuring PKI Services for the first time, comment out the following lines in the pkiserv.conf configuration file, as shown here:

```plaintext
# full pathname or data set name containing the 'your certificate is ready' message form. Defaults to no message issued
# ReadyMessageForm=/etc/pkiserv/readymsg.form
```
• If you are not allowing PKI Services to generate keys for certificates, and you are configuring PKI Services for the first time, comment out the following lines in the pkiserv.conf configuration file, as shown here:

```plaintext
# full pathname or data set name containing information on certificate(s)  # needed to be recovered.
# RecoverForm=/etc/pkiserv/recoverymsg.form
```

• If you are allowing PKI Services to generate keys for certificates, and you are not configuring PKI Services for the first time, and you previously deleted the following lines in the pkiserv.conf configuration file, restore the following lines:

```plaintext
# full pathname or data set name containing information on certificate(s)  # needed to be recovered.
# RecoverForm=/etc/pkiserv/recoverymsg.form
```

5. If necessary, update the SAF section:
   a. If necessary, change PKISRV/D/CARing in the following line to the value in the KeyRing row in Table 21 on page 74:

```plaintext
KeyRing=PKISRV/D/CARing
```

   b. If you specified EnableSCEP=T in Step “2.n” on page 91, change Local PKI RA in the following line to the value in the ra_label row in Table 11 on page 41:

```plaintext
RALabel=Local PKI RA
```

   c. If you want PKI Services to be able to generate and store key pairs for certificate requests, and the ICSF programmer set up the ICSF PKCS #11 token data set (TKDS), uncomment the following line and change PKISRV.D.PKIToken to the value you chose in the TokenName row in Table 21 on page 74:

```plaintext
TokenName=PKISRV.D.PKIToken
```

6. Restart PKI Services. Your changes do not take effect until you do this. For information about starting PKI Services see Chapter 10, “Starting and stopping PKI Services,” on page 129.

----------------------------------------

**Updating pkiserv.conf after installing a new release of z/OS**

After you install a new release of z/OS, you have two versions of the pkiserv.conf file on your system:

• The version that you used on the previous release of z/OS, which contains the changes you made to configure PKI Services.

• The sample version shipped with the new release of z/OS, which contains changes that IBM made to support the new function shipped in the release. This version does not contain any of your configuration changes.

You can continue to use the version from the previous release, but you might not be able to use the new function shipped in the new release until you merge the configuration changes you made in your version of the file with the updates that IBM made in the version shipped in the new release. One approach to merging the files is to compare your version of pkiserv.conf with the new sample version, located by default in the /usr/lpp/pkiserv/samples/ directory. Update your version to match the changes made to the sample version. You should be able to cut and paste between the two versions of the file. To identify the lines that changed, you can refer to the sample of pkiserv.conf in Chapter 28, “The pkiserv.conf configuration file,” on page 607, which marks the lines that were changed with a bar in the
left margin. But be aware that the sample shown might not be identical to the sample shipped with PKI Services.

**Steps for setting up the var directory**

You need to perform this task only if you are configuring PKI Services for the first time or adding a new CA domain.

**Before you begin**

Replace the following default values (used in the command examples) with values appropriate for your configuration:

<table>
<thead>
<tr>
<th>Default value</th>
<th>Your value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKISRVD</td>
<td>Use your daemon value in Table 19 on page 55.</td>
</tr>
<tr>
<td>'pkisrvd.webroot.derbin'</td>
<td>Use your export_dsn value in Table 19 on page 55.</td>
</tr>
<tr>
<td>'pkisrvd.cacert.derbin'</td>
<td>Use your cacert_dsn value in Table 19 on page 55.</td>
</tr>
<tr>
<td>/var/pkiserv</td>
<td>Guideline: Use your ca_domain value from Table 19 on page 55 to qualify the directory location if you are adding a new CA domain. For example, /var/pkiserv/employees.</td>
</tr>
</tbody>
</table>

**Procedure**

Perform the following steps to set up a UNIX directory and copy certain files that PKI Services needs into that directory:

1. Change ownership of the directory to the user ID of the PKI Services daemon by entering the following command from the UNIX command line:
   
   **Example:**
   
   ```sh
chown PKISRVD /var/pkiserv
   ```

2. Copy the required certificates from their MVS data sets to the /var/pkiserv directory.

   Copy the web server certificate to the cacert.der file by entering the following command from the UNIX command line.
   
   **Example:**
   
   ```sh
cp "/'pkisrvd.webroot.derbin'" /var/pkiserv/cacert.der
   ```

   If the Enroll over Secure Transport protocol (EST) is to be enabled for this certificate authority, copy the EST CA certificate to the estcacert.der file by entering the following on the UNIX command line:
   
   **Example:**
   
   ```sh
cp "/'pkisrvd.cacert.derbin'" /var/pkiserv/estcacert.der
   ```

3. Copy the permission settings of the certificate files.

   Change the permissions for the Web Server certificate file by entering the following command from the UNIX command line.
Example:

```bash
chmod 644 /var/pkiserv/cacert.der
```

If an Enroll over Secure Transport protocol (EST) CA certificate file was created, change the permissions of this file by entering the following on the UNIX command line:

Example:

```bash
chmod 644 /var/pkiserv/estcacert.der
```

---

4. Change the ownership of the certificate files by entering the following command from the UNIX command line:

Example:

```bash
chown pkisrvd /var/pkiserv/*
```
Chapter 6. Tailoring the LDAP configuration for PKI Services

If you are configuring PKI Services for the first time, the LDAP programmer needs to load the LDAP schema file.

If you intend to use a non-z/OS LDAP product, refer to the documentation for that product. See Appendix A, “LDAP directory server requirements,” on page 687 for information about installing a non-z/OS LDAP.

If you are configuring PKI Services for the first time, the LDAP programmer needs to set up an LDAP access control list (ACL) to allow any user to read CRLs, and might also need to set up another LDAP ACL to allow the distinguished name used for LDAP binding to create certificates and CRLs. For more information, see “Setting up authorization to create and access CRLs and certificates” on page 98.

You can optionally set up a secure connection with the LDAP server. For more information, see “Establishing a secure connection with LDAP (optional)” on page 98.

Steps for loading schema.user.ldif

Before you begin

• You need LDAP programming skills to complete this procedure.

• Make sure that the LDAP server is started before beginning these steps. If you are unsure about this, see “Steps for installing and configuring LDAP” on page 31.

• You need to know the following information from LDAP installation. Copy the information into the following table from (completed) Table 9 on page 32:

<table>
<thead>
<tr>
<th>LDAP information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator’s distinguished name</td>
<td>This is the distinguished name to use for LDAP binding. (For a definition of distinguished name, see Table 9 on page 32. The LDAP administrator defines the administrator’s distinguished name with the adminDN keyword in the LDAP server configuration file. For example, the value is &quot;cn=Admin&quot; in adminDN “cn=Admin&quot;</td>
<td></td>
</tr>
<tr>
<td>Administrator password</td>
<td>This is the password to use for LDAP binding. The LDAP programmer can set this in several ways, for example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– By specifying the password as a TDBM entry by using the userPassword attribute in the ldif2tdbm load utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– By using the adminPW keyword in the LDAP server configuration file (not suggested)</td>
<td></td>
</tr>
<tr>
<td>LDAP fully qualified domain name and port</td>
<td>This is the IP address and port on which the LDAP server is listening. For example, for ldap.widgets.com:389, the fully qualified domain name is ldap.widgets.com and the port is 389. See Table 8 on page 31 for a definition of fully qualified domain name. You can specify this address with or without the preceding string &quot;ldap://&quot; or &quot;ldaps://&quot;.</td>
<td></td>
</tr>
</tbody>
</table>
Table 22. LDAP information you need for tailoring LDAP configuration (continued)

<table>
<thead>
<tr>
<th>LDAP information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suffix</td>
<td>(For a definition of suffix, see Table 9 on page 32.) The suffix value is specified after the suffix keyword in the LDAP server configuration file.</td>
<td>suffix &quot;o=your-company,c=your-country-abbreviation&quot;</td>
</tr>
</tbody>
</table>

You need to load the schema.user.ldif file only if you are configuring PKI Services for the first time, whether you are using LDBM or TDBM. For more information, see the chapter on LDAP directory schema in z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

Procedure

1. If you are configuring PKI Services for the first time, issue the following command to load the schema. Replace adminDN and passwd with the adminDN and adminPW values from Table 22 on page 97.

   ```bash
   ldapmodify -D adminDN -w passwd -f /usr/lpp/ldap/etc/schema.user.ldif
   ```

Setting up authorization to create and access CRLs and certificates

Certificate revocation lists (CRLs) in an LDAP directory have an attribute of critical, which allows only the LDAP administrator to read them. If you are configuring PKI Services for the first time, the LDAP programmer needs to set up an LDAP access control list (ACL) to allow users other than the LDAP administrator to read CRLs. If the ACL is not set up, only the LDAP administrator can retrieve CRLs from LDAP. Other users might get access violation messages if they attempt to retrieve a CRL from LDAP, and LDAP does not return the CRL.

In addition, if the distinguished name to be used for LDAP binding is not the LDAP administrator, the LDAP programmer needs to set up another LDAP ACL to allow that distinguished name to create CRLs and certificates. You define the distinguished name to be used for LDAP binding in the AuthName1 line of the pkiserv.conf file. For more information about the AuthName1 line, see Chapter 8, “Tailoring the PKI Services configuration file for LDAP,” on page 107.

For information about setting up LDAP ACLs, see the information about access control in z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

Tips: When setting up an LDAP ACL for PKI Services, consider these facts:

- You can use the entryOwner attribute to allow an application to read and write LDAP entries without having to use the LDAP administrator bind credentials.
- You can use a propagating ACL (the aclPropagate attribute is set to TRUE) to allow the defined ACL to cover new CRLs created by PKI Services.

Establishing a secure connection with LDAP (optional)

You can optionally set up a secure connection between PKI Services and the LDAP server to prevent the bind password from flowing in the clear. The secure connection uses the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, provided by z/OS Cryptographic Services System SSL services, to maintain an encrypted communications path between PKI Services and the LDAP server. For information about how to configure LDAP to use a secure connection, see the topic on using SSL/TLS protected communications in z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you are using a secure connection with LDAP, the RACF administrator needs to add a certificate to the PKI Services key ring for validating the LDAP server:
If the LDAP server you are using is using a self-signed certificate, add that self-signed certificate to the PKI Services key ring.

If the LDAP server is using a certificate signed by a certificate authority (CA), add the certificate for the CA to the PKI Services key ring, if it is not already there. Use whatever means the CA provides to obtain the CA's certificate.

For the name of the PKI Services key ring, see Table 19 on page 55. The RACF administrator uses the RACF RACDCERT command to add a certificate to the key ring. For information about RACDCERT, see z/OS Security Server RACF Command Language Reference.
Tailoring the LDAP configuration for PKI Services
Chapter 7. Updating IBM HTTP Server - Powered by Apache configuration and starting the server

PKI Services uses the IBM HTTP Server - Powered by Apache for the following functions:

- The PKI Services web application, if you implement it using REXX CGI scripts.
- OCSP support
- SCEP support
- EST support
- CMP support

You need to perform the tasks in this topic only if you are configuring PKI Services for the first time and use one or more of these functions. If you do not use any of these functions, you can skip the tasks in this topic.

PKI Services supports IBM HTTP Server - Powered by Apache. It is part of the IBM z/OS operating system. For more information, see IBM HTTP Server (www.ibm.com/software/products/http-servers). It is also included with WebSphere Application Server.

Setting up IBM HTTP Server - Powered by Apache httpd.conf

Starting the web server requires having a configuration file for it. This topic describes how the web server programmer performs the following tasks for IBM HTTP Server httpd.conf:

- Updating the IBM HTTP Server - Powered by Apache configuration files by cutting and pasting directives from the PKI Services samples directory into them
- Starting the IBM HTTP Server - Powered by Apache.

Before you begin

- The IBM HTTP Server - Powered by Apache must already be configured.
- It would be helpful to have the documentation for IBM HTTP Server available, see the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP).

Steps for updating the IBM HTTP Server - Powered by Apache configuration files

PKI Services ships sample IBM HTTP Server - Powered by Apache configuration files

- The main configuration file (httpd.conf)
- Virtual host files:
  - vhost80.conf - Virtual Host file for non-SSL requests
  - vhost443.conf - Virtual Host file for SSL requests with server authentication
  - vhost1443.conf - Virtual Host file for SSL requests with client authentication

These files are used by the IP-based virtual hosting feature of the IBM HTTP Server - Powered by Apache. IP-based virtual hosting is a method to apply different directives that are based on the IP address and port on which a request is received. PKI Services provides sample virtual host files for non-SSL requests, SSL requests, and SSL requests with client authentication on different ports.

Table 23 on page 102 summarizes the virtual host files that are used for normal HTTP traffic and SSL traffic with specific ports.
Before you begin

- You must perform these steps only if you are configuring IBM HTTP Server - Powered by Apache for PKI Services for the first time. If you are using IBM HTTP Server - Powered by Apache and you are now updating the configuration for use with PKI Services, some of the following steps are not required.

- This information assumes that you used the installer program (bin/install_ihs) to install IBM HTTP Server - Powered by Apache. You must know the installation directory for the server instance, which is referred to as ihs-install-dir in the sample commands. (This directory must be different from the product directory, usually /usr/lpp/ihsa_zos).

- You must know the file system installation directory (the file system directory where the MVS programmer installed PKI Services), called pki-install-dir in the commands that follow. The default is /usr/lpp/pkiserv/. The MVS programmer was asked to record any changes to the defaults; see Table 3 on page 11.

- You must know the following LDAP information. Record the information in the rightmost column of Table 24 on page 102.

  Note: The default name of the LDAP server configuration file is ds.conf for the LDAP server that is provided by IBM Tivoli Directory Server.

### Table 23. Virtual host files

<table>
<thead>
<tr>
<th>Virtual host configuration file</th>
<th>Protocol</th>
<th>SSL</th>
<th>Server authentication</th>
<th>Client authentication</th>
<th>Port number</th>
</tr>
</thead>
<tbody>
<tr>
<td>vhost80.conf</td>
<td>HTTP</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>80</td>
</tr>
<tr>
<td>vhost443.conf</td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>443</td>
</tr>
<tr>
<td>vhost1443.conf</td>
<td>HTTPS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>1443</td>
</tr>
</tbody>
</table>

### Table 24. LDAP information you need for tailoring IBM HTTP Server - Powered by Apache configuration

<table>
<thead>
<tr>
<th>LDAP information</th>
<th>Explanation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator's distinguished name</td>
<td>The distinguished name to use for LDAP binding. (For a definition of distinguished name, see Table 9 on page 32.) The LDAP administrator defines the administrator’s distinguished name with the adminDN keyword in the LDAP server configuration file. For example, the value is “cn=Admin” in adminDN “cn=Admin”</td>
<td></td>
</tr>
<tr>
<td>Administrator password</td>
<td>The password to use for LDAP binding. The LDAP programmer can set this password in several ways; for example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- By specifying the password as a TDBM entry by using the userPassword attribute in the ldif2tdbm load utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- By using the adminPW keyword in the LDAP server configuration file (not suggested)</td>
<td></td>
</tr>
<tr>
<td>LDAP fully qualified domain name</td>
<td>The IP address on which the LDAP server is listening, for example, ldap.widgets.com. See Table 8 on page 31 for a definition of fully qualified domain name.</td>
<td></td>
</tr>
<tr>
<td>LDAP port</td>
<td>The port for LDAP, for example, 389 in ldap.widgets.com:389</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

Perform the following steps to update the IBM HTTP Server - Powered by Apache configuration files:
1. Copy the IBM HTTP Server - Powered by Apache directives from the PKI Services samples configuration file, pki-install-dir/samples/httpd.conf to the HTTP server configuration file, ihs-install-dir/conf/httpd.conf, and make the following updates.

   **Note:** The file pki-install-dir/samples/httpd.conf is not a complete httpd.conf file. It contains only the directives that might not be present in your httpd.conf file and that might be unique to the PKI Services CGI scripts and programs.

   a. Use the load module directive to add the required modules to the list of modules, if they do not exist:
      - rewrite_module modules/mod_rewrite.so
      - authnz_saf_module modules/mod_authnz_saf.so
      - ibm_ssl_module modules/mod_ibm_ssl.so
      - alias_module modules/mod_alias.so
   b. Add the addtype directives to your list of addtypes if they do not exist:
      ```
      AddType application/x-x509-user-cert .cer
      AddType application/x-x509-ca-cert .der
      AddType application/octet-stream .msi
      AddType application/pkix-crl .crl
      ```
   c. Copy the Keyfile and the Include directives as is, replacing any existing values.
   d. If your organization customized the value of web_ring (see Table 11 on page 41), change SSLring in the Keyfile directive in the following line to the customized value:
      ```
      Keyfile /saf SSLring
      ```

2. If the virtual host files (vhost80.conf, vhost443.conf, vhost1443.conf) do not exist, create them by copying them from pki-install-dir/samples to ihs-install-dir/conf/vhost80.conf, ihs-install-dir/conf/vhost443.conf, and ihs-install-dir/conf/vhost1443.conf. For example, assuming the default pki-install-dir and an ihs-install-dir of /etc/websrv1, the following command copies all three vhost files to the /etc/websrv1/conf directory:

   ```
   cp /usr/lpp/pkiserv/samples/vhost*.conf /etc/websrv1/conf
   ```

3. Make the following updates to each of the virtual host files:
   a. Change all instances of server-domain-name to the fully qualified domain name of your web server. For example, www.ibm.com. (For information about your web server’s fully qualified domain name, see Table 8 on page 31.)
   b. Change all instances of application-root to the value of pki-install-dir, which is/usr/lpp/pkiserv by default.
   c. If necessary, change the environment variable _PKISERV_CONFIG_PATH to identify the runtime directory of your CA domain. (See Table 53 on page 307.)
   d. (Optional) If you intend to have a dedicated set of administrators for each CA domain, add an environment variable that specifies the runtime directory for each administrative domain. (See Table 53 on page 307.)

   **Example:**
   ```
   SetEnv _PKISERV_CONFIG_PATH_PKIServ "/etc/pkiserv"
   ```

   **Note:** In the vhost80.conf file, which defines directives for non-SSL requests, a Listen directive is not specified. It is assumed that the Listen directive is defined in the main httpd.conf file that tells the server to accept incoming requests on the specified port. If you do not have a Listen directive in the httpd.conf file, add the Listen 80 directive on the line before the VirtualHost *:80 directive in the vhost80.conf file.

4. Perform the following step to update the vhost443.conf virtual host configuration file.
a. If your organization customized the value of web\_ring (see Table 11 on page 41), change SSL\_ring in the Keyfile directive in the following line to the customized value:

```
Keyfile /saf SSL\_ring
```

5. Perform the following steps to update the vhost1443\_conf virtual host configuration file.

a. If your organization customized the value of web\_ring (see Table 11 on page 41), change SSL\_ring in the Keyfile directive in the following line to the customized value:

```
Keyfile /saf SSL\_ring
```

b. If you would like the IBM HTTP Server to perform revocation checking, add the following directives after the SSLClientAuth directive:

- SSLCRLHostName
- SSLCRLPort
- SSLCRLUserID
- SSLStashfile

**Note:** SSLStashfile is the fully qualified path to the file that contains the password for the user name on the LDAP server. This directive is not required for an anonymous bind. Use it when you specify a user ID. Use the `sslstash` command, which is in the bin directory of IBM HTTP Server, to create your CRL password stash file. Specify the password that you use to log in to your LDAP server as the password on the `sslstash` command. The format of the `sslstash` command is:

```
sslstash [-c] file function password
```

where:

- `-c` Creates a new stash file. If not specified, an existing file is updated.

- `file` Is the fully qualified name of the file to create or update.

- `function` Indicates the function for which the password is to be used. Valid values include `crl` and `crypto`.

- `password` Is the password to stash.

---

### Starting and stopping the IBM HTTP Server - Powered by Apache

**Steps for starting the IBM HTTP Server - Powered by Apache**

Perform the following steps to start the IBM HTTP Server - Powered by Apache.

1. Make sure that the LDAP server is started. (For more information, see “Steps for installing and configuring LDAP” on page 31.)

2. Take one of the following actions:

- Issue the following command from the IBM HTTP Server - Powered by Apache installation directory:

```
ihs\-install\-dir/bin/apachectl start
```

- To start the IBM HTTP Server - Powered by Apache using an alternative configuration file, issue the following command:

```
apachectl -k start -f path_to_configuration_file
```
• If you want to use the sample JCL procedure from hlq.SIWOJCL(IWOAPROC), copy the JCL to the system procedure library. If you copy the JCL to a procedure called WEBSRV1, start the server by entering the following MVS console command:

```
S WEBSRV1
```

Steps for stopping the IBM HTTP Server - Powered by Apache
To stop the IBM HTTP Server - Powered by Apache, perform the following step:

1. Enter the following MVS console command:

```
S WEBSRV1,ACTION='stop'
```
Chapter 8. Tailoring the PKI Services configuration file for LDAP

You need to tailor the LDAP section of the pkiserv.conf configuration file only if you meet one of the following conditions:

- You are configuring PKI Services for the first time
- You intend to use encrypted passwords for your LDAP servers

Chapter 5, “Configuring the UNIX runtime environment,” on page 67 describes tasks the UNIX programmer performs. The other team members perform additional tasks before the UNIX programmer updates the LDAP section of the pkiserv.conf configuration file (described in this topic) and starts the PKI Services daemon (described in Chapter 10, “Starting and stopping PKI Services,” on page 129).

Excerpt of LDAP section

The following excerpt shows the LDAP section of the pkiserv.conf configuration file as it is shipped:

```
[LDAP]
NumServers=1
PostInterval=5m
Server1=myldapservserver.mycompany.com:389
AuthName1=CN=root
AuthPwd1=root
CreateOUValue= Created by PKI Services
RetryMissingSuffix=T
# Name of the LDAPBIND Class profile containing the bind information for LDAP
# server 1. This key is optional. Used in place of keys Server1, AuthName1.
# and AuthPwd1
#BindProfile1=LOCALPKI.BINDINFO.LDAP1
```

You use the LDAP section of the pkiserv.conf file to provide information for one or more LDAP servers. The NumServers line specifies the number of servers.

Storing information for encrypted passwords for your LDAP servers

You store information about passwords for binding to LDAP directories in the pkiserv.conf configuration file. Passwords can be in clear text or encrypted. By default, the pkiserv.conf configuration file contains Server1, AuthName1, and AuthPwd1 parameters; these lines are for specifying your LDAP bind information, including passwords, in clear text: (For more than one LDAP server, you add additional lines, Server2, AuthName2, AuthPwd2, Server3, AuthName3, AuthPwd3, and so forth.) If you want to use encrypted passwords for your LDAP servers, you delete all these lines, uncomment (remove the #) from the BindProfile1 line at the end of the file, and correct the profile value that is specified, if necessary. (See “Using encrypted passwords for LDAP servers” on page 501 for information about setting up this bind profile in RACF). For more than one LDAP server, you add additional lines: BindProfile2, BindProfile3, and so forth.

PKI Services performs the following processing when locating LDAP bind information:

1. The Servern line specifies the fully qualified domain and port of your LDAP server. If your file contains a Servern line, PKI Services looks for the matching AuthName and AuthPwdn lines and uses these values.

2. The BindProfilen parameter specifies the name of the LDAPBIND class profile. If your file does not contain a Servern line but does contain a BindProfilen line, PKI Services looks for the bind information
in the LDAPBIND class profile. (If Server
 is present, PKI Services does not look for bind information in BindProfile, even if the value in Server
 is incorrect.)

3. If neither is present for a specific server, then PKI Services uses the default from IRR.PROXY.DEFAULTS in the FACILITY class.

Steps for tailoring the LDAP section of the configuration file

Before you begin

• **Important:** You need to update the LDAP section of the pkiserv.conf configuration file only if you are configuring PKI Services for the first time or your company is using encrypted passwords for your LDAP servers.

• You need UNIX programming skills to complete this procedure.

• Table 25 on page 108 lists some parameters that are in the LDAP section of the pkiserv.conf configuration file. The rightmost column lists the default values. You need to change some of these values. Fill in the blank lines with your company’s information (and cross out these defaults). If you decide to change any of the other defaults, cross out these values and record your company’s information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Default value and your company’s information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumServers=</td>
<td>The number of available LDAP servers. These are replicas that can post certificates and CRLs.</td>
<td>From LDAP programmer</td>
<td>1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Information needed</td>
<td>Where to get this information</td>
<td>Default value and your company's information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>PostInterval=</td>
<td>How often the posting thread scans the request database for certificates and CRLs to post to the LDAP server in weeks (w), days (d), hours (h), minutes (m), or seconds (s) if NumServers &gt; 0.</td>
<td>UNIX programmer decides this. Specify a number followed by h (hours), m (minutes), or s (seconds). Example: 6m</td>
<td>5m</td>
</tr>
</tbody>
</table>

**Notes:**

1. If the post is unsuccessful for a certificate, the post is tried again at the next post interval. If the post continues to be unsuccessful after 3 attempts, the post frequency for this certificate is reduced to no more than once per hour. After 26 unsuccessful attempts, it is further reduced to no more than once per day. After 33 unsuccessful attempts, the post request for this certificate is deleted from the request database.

2. Certificates created when NumServers is set to 0 are not posted to LDAP. If the value of NumServers is changed later to enable posting, the new value applies to new certificates only.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Default value and your company's information</th>
</tr>
</thead>
</table>
| Server1=          | You use this parameter only if you are storing LDAP passwords in the clear.  
This parameter's value is the fully qualified domain name (domain name or IP address and port) for the first LDAP server.  
If you are using a Secure Sockets Layer (SSL) session, the fully qualified domain name should be preceded by ldaps://. | Copy this information from the earlier (completed) table, Table 9 on page 32.                                                                                      | myldapserver.mycompany.com:389  
Note: If the number of servers (the value in the row containing NumServers=) is greater than one, you need one value for each server. |
| UseBinaryAttr1=   | Specifies whether the CA posts certificates and CRLs to the LDAP server with the binary attribute. Valid values are T (True) or F (False). If NumServers is greater than 1, specify a value for each server; for example, specify UseBinaryAttr2 for server 2. If a value of UseBinaryAttrn is not specified, it defaults to F. | UNIX programmer decides this (after consulting with LDAP programmer)                                              | F                                                                                                               |
| AuthName1=        | You use this parameter only if you are storing LDAP passwords in the clear.  
This parameter's value is the distinguished name to use for LDAP binding.  
(See Table 9 on page 32 for a definition of distinguished name.) | Copy this information from the earlier (completed) table, Table 9 on page 32.                                                                                     | CN=root  
Notes:  
- If the number of servers (the value in the row containing NumServers=) is greater than one, you need one value for each server.  
- The default name of the LDAP server configuration file is ds.conf for the IBM Tivoli Directory Server for z/OS LDAP server. |
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Default value and your company’s information</th>
</tr>
</thead>
</table>
| AuthPwd1=  | You use this parameter only if you are storing LDAP passwords in the clear. This parameter’s value is the password to use for LDAP binding. The LDAP programmer sets this.  
**Note:** Include this parameter, Server1, and AuthName1 only if you are storing the LDAP password in the clear. Alternately, if you encrypt the password for an LDAP server, use the BindProfile1 parameter. Omitting BindProfile1 and Server1 specifies using the PROXY segment information from the IRR.PROXY.DEFAULTS profile in the FACILITY class. (For more information, see “Using encrypted passwords for LDAP servers” on page 501.) | Copy this information from the earlier (completed) table, Table 9 on page 32.                                                                                                                                                                                                                         | root                                                                                                                                                                                                                                                                                      |
<p>| CreateOUValue= | Value to use for the OU attribute when creating LDAP entries under the objectclass organizationalUnit. (See Table 112 on page 687.) This is used only when no OU value is specified in the relative distinguished name.                                                                                                                                                                                                                                                                  | UNIX programmer decides this (after consulting with LDAP programmer)                                                                                                                                                                                                                         | Created by PKI Services                                                                                                                                                                                                                                                                     |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Information needed</th>
<th>Where to get this information</th>
<th>Default value and your company's information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetryMissingSuffix=</td>
<td>True (T) or False (F) setting that indicates whether LDAP post requests should be</td>
<td>UNIX programmer decides this (after consulting with LDAP programmer)</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>tried again later if the distinguished name suffix does not exist. When set to F,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LDAP post requests that fail because of a missing suffix are discarded.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BindProfile1=</td>
<td>You use this parameter only if you intend to use an encrypted password for your</td>
<td>Get the profile name from the RACF administrator who creates the profile. See “Using encrypted</td>
<td>LOCALPKI.BINDINFO.LDAP1</td>
</tr>
<tr>
<td></td>
<td>LDAP server.</td>
<td>passwords for LDAP servers” on page 501 for more information.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This parameter’s value is the name of the LDAPBIND class profile containing the bind</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>information for the LDAP server. (For more information, see “Using encrypted passwords for LDAP servers” on page 501.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If the number of servers (the value in the row containing NumServers=) is greater than one, you need one value for each server.</td>
<td></td>
</tr>
</tbody>
</table>

**Procedure**

Perform the following steps to update the LDAP section of the pkiserv.conf configuration file (if you are configuring PKI Services for the first time or using encrypted passwords for your LDAP servers):

1. If necessary, change 1 (the default) in the following line to the number of available LDAP servers listed in Table 25 on page 108:

   ```
   NumServers=1
   ```

2. Optionally change 5m in the following line to the posting interval in Table 25 on page 108:

   ```
   PostInterval=5m
   ```

3. If necessary, update the BindProfile1 line or the Server1, AuthName1, and AuthPwd1 lines:
   - If you intend to use an encrypted password for your LDAP server and you are configuring PKI Services for the first time, perform the following steps:
a. If you are using an LDAPBIND class profile, remove the comment delimiter (#) from the start of the following line and change LOCALPKI.BINDINFO.LDAP1 to the name of the LDAPBIND class profile. (See Step “3” on page 502).

```
# BindProfile1=LOCALPKI.BINDINFO.LDAP1
```

b. Delete the following three lines in the LDAP section:

```
Server1=myldapserver.mycompany.com:389
AuthName1=CN=root
AuthPwd1=root
```

- If you are not using an encrypted password for your LDAP server and are configuring PKI Services for the first time, perform the following steps:

a. Change `your-ldap-server-address:port` to your fully qualified domain name and port as listed in Table 25 on page 108:

```
Server1=your-ldap-server-address:port
```

b. Change `CN=root` in the following line to the value of the administrator distinguished name in Table 25 on page 108:

```
AuthName1=CN=root
```

c. Change `root` in the following line to the value of the administrator password in Table 25 on page 108:

```
AuthPwd1=root
```

4. If the value of `NumServers=` is greater than 1, repeat Step “3” on page 112 for each additional server. (You need to increment the number in the parameter names for each additional server, for example `Server2`, `AuthName2`, `AuthPwd2`.

5. If necessary, change `Created by PKI Services` in the following line to the OU attribute value in Table 25 on page 108:

```
CreateOUValue=Created by PKI Services
```

6. If necessary, change `T` in the following line to the `RetryMissingSuffix` value in Table 25 on page 108:

```
RetryMissingSuffix=T
```

7. If you want certificates and CRLs posted to the LDAP server with the binary attribute, remove the comment delimiter (#) from the start of the following line and change `F` to `T`:

```
#UseBinaryAttr1=F
```

If the value of `NumServers=` is greater than 1, repeat this step for each server. Increment the number in the parameter name for each additional server, for example `UseBinaryAttr2`.

---

Tailoring the PKI Services configuration file for LDAP
Tailoring the PKI Services configuration file for LDAP
Chapter 9. Creating the object store and ICL

This topic includes the following procedures:

• “Planning VSAM storage requirements” on page 116
• “(Optional) preliminary steps for establishing VSAM RLS” on page 117
• “Steps for creating the VSAM object store and ICL data sets and indexes” on page 118
• “(Optional) steps for enabling existing PKI Services VSAM data sets for VSAM RLS” on page 119
• “(Optional) steps for adding VSAM buffer space” on page 120
• “Backing up and restoring the VSAM data sets” on page 121
• “Steps for creating the object store and ICL Db2 tables” on page 123
• “Converting the object store and ICL from VSAM to Db2” on page 125

You need to perform the tasks in this topic if:

• You are configuring PKI Services for the first time or adding a new CA domain.
• Your organization is using a sysplex for PKI Services daemons.
• You want to tune VSAM performance.
• Your object store and ICL are in VSAM data sets, and you want to convert them to Db2 tables

The object store and ICL

PKI Services maintains two databases containing information about certificate requests and issued certificates:

• The object store, or request database, holds records to track active certificate requests and posting objects for certificates and certificate revocation lists. Object store records are not permanent. They are deleted when they are no longer needed:
  − CRL posting requests and certificate posting requests are removed when they are successfully posted to LDAP.
  − Revocation requests are deleted at the end of revocation processing.
  − When a certificate is retrieved by the requester, the certificate request is deleted after the time period specified by the parameter RemovedCompletedReqs in the configuration file (by default one week).
  − If a certificate is not retrieved by the requester, the certificate request is deleted after the time period specified by the parameter RemovedInactiveReqs in the configuration file (by default four weeks).
• The issued certificate list (ICL) contains a permanent record for each certificate that PKI Services issues. There is one ICL record for each issued certificate.

You have two options for implementation of the object store and ICL:

• VSAM data sets.
• Db2 tables. (This option was introduced in z/OS V1R13).

Some things to consider when choosing which option to use:

• VSAM is shipped with z/OS, but you must purchase Db2.
• VSAM supports limited query functions and does not allow users to create their own queries. Db2 allows users to create queries.

Certificate revocation lists (CRLs) created temporarily in the object store for LDAP posting are limited in size to approximately 32 KB. You can avoid this limitation by enabling support for large CRLs, which
causes CRLs to be stored in the z/OS UNIX file system instead of the object store. For more information, see "Enabling support for large CRLs" on page 297.

**Note:** In Version 2 Release 3, the addition of new fields within the object store and ICL to support the SCEP requester enhancement cause the object store and ICL to be restructured. The old structure is considered to be a version 0 format and the new structure is considered to be a version 1 format. The following samples are added to create or alter the version 1 object store and ICL.

- IKYCVSV1 (similar to IKYCVSAM)
- IKYCDBV1 (similar to IKYCDB2)
- IKYRVSV1 (similar to IKYRVSAM)

If you are configuring PKI Services for the first time or adding a new CA domain, use the new samples to create version 1 object store and ICL. If the creation of the version 0 object store and ICL is required, you can use the following original samples, IKYCVSAM, IKYCDB2, and IKYRVSAM.

---

### Creating the object store and ICL using VSAM data sets

The MVS programmer performs the following tasks:

- If configuring PKI Services for the first time, create the VSAM object store and ICL data sets and indexes.
- If you want, tune VSAM data set performance.

### Sysplex considerations

If you are configuring the PKI Services to run in a sysplex environment, as a single PKI instance, perform the preliminary steps for establishing VSAM record-level sharing or RLS.

If you want to enable the SCEP requester enhancement, ensure that all members are migrated to Version 2 Release 3. The migration to Version 2 Release 3 must be complete before the conversion of object store and ICL to the new version for each instance of PKI. If the PKI instance starts successfully from all of the members, you can start to convert the object store and ICL for each instance with the following steps:

- Run IKYCVSV1 to create the new VSAM data sets with the alternate index for the SCEP transID field.
- Stop the instance of PKI from all members.
- Run the conversion utility, vsamconv.
- Update pkiserv.conf to specify the DBVersion to 1 and point to the new VSAM data sets from all members.
- Start the instance of PKI from all members.

### Planning VSAM storage requirements

The MVS programmer uses the IKYCVSV1 sample JCL to create two VSAM data sets (clusters):

- A data set for the request database (object store)
- A data set for the issued certificate list (ICL).

The MVS programmer also uses the same sample JCL to create five alternate index data sets (paths):

1. Transaction ID alternate index into the object store
2. Status alternate index into the object store
3. Requestor alternate index into the object store
4. Status alternate index into the ICL
5. Requestor alternate index into the ICL.
The IKYCVSV1 sample JCL contains default values for the primary and secondary extent allocations for these data sets. The default allocation for base clusters is CYL(3,1). For alternate indexes, it is TRK(5,1). You need to update these values based on your anticipated future needs. Use the guidelines in “Determining storage needs for the ICL” on page 117 and “Determining storage needs for the object store” on page 117 to update the space allocation parameters for the DEFINE CLUSTER and DEFINE ALTERNATEINDEX statements. (For more information about IDCAMS, see z/OS DFSMS Access Method Services Commands.)

Determining storage needs for the ICL

Unless set up otherwise, the ICL grows continuously over time as more certificates are issued. The size of a certificate varies depending on many factors; for example, the public key type and size, the length of the issuer and subject names, the number and size of Subject Alternative names, and the number and size of certificate extensions. Assume an average size of 1024 bytes of storage for each ICL record. With an allocation of CYL(3,1), the data set can have a maximum of 125 cylinders on a single 3390 volume for a total size of 105 MB. This would mean that the data set should be able to hold at least 102,500 certificates. If multiple volume support is used, you can double this amount.

If your anticipated needs differ greatly from the preceding value, you need to adjust the space allocation parameters CYL(3,1) on the DEFINE CLUSTER statement for the ICL. (This is the second DEFINE CLUSTER statement in IKYCVSV1. See “IKYCVSV1” on page 665 for a code sample of this file.) You might also want to proportionally adjust the space allocation parameters TRK(5,1) on the DEFINE ALTERNATEINDEX statements for the ICL. These are defined in the DEFALTDX job step. (Their names contain the icl qualifier.)

Determining storage needs for the object store

Object store records are not permanent. They are deleted when they are no longer needed. Unlike the ICL, the object store does not grow beyond a certain point, unless there is a sharp increase in certificate request activity. Typically, a certificate request record is less than twice the size of the ICL record. Assume that one object store record and its companion posting record occupy a total of 2560 bytes of storage. With a space allocation of CYL(3,1), the data set can have a maximum of 125 cylinders on a single 3390 volume for a total size of 105 MB, which would hold at least 41,000 concurrent certificate requests. If multiple volume support is used, you can double this amount.

If your anticipated needs differ greatly from the preceding value, you need to adjust the space allocation parameters CYL(3,1) on the DEFINE CLUSTER statement for the object store. (This is the first DEFINE CLUSTER statement in IKYCVSV1. See “IKYCVSV1” on page 665 for a code sample of this file.) You might also want to proportionally adjust the space allocation parameters TRK(5,1) on the DEFINE ALTERNATEINDEX statements for the object store. These are defined in the DEFALTDX job step. (Their names contain the ost qualifier.)

If you set the RemoveInactiveReqs and RemoveCompletedReqs parameters in the configuration file to 0d, certificate request records are not deleted and you should adjust the space allocation accordingly.

(Optional) preliminary steps for establishing VSAM RLS

Your team can configure PKI Services to take advantage of a Parallel Sysplex environment. This enables you to start multiple instances of the PKI Services daemon (one per image) that work in unison. The daemons are totally independent of each other, but they all act upon a single common data store containing the ICL and object store VSAM data sets.

If you want to run multiple instances of PKI Services in a Parallel Sysplex (one per image), you must first establish the data sharing environment suitable for VSAM record-level sharing (RLS).

Before you begin

The following steps assume that the coupling facility is already set up. If not, see z/OS MVS Programming: Sysplex Services Guide for information about how to set up the coupling facility. Also, see “(Optional) steps for enabling existing PKI Services VSAM data sets for VSAM RLS” on page 119 for additional information about setting up VSAM data sets to run PKI Services in a sysplex.
Procedure
Perform the following steps to establish VSAM RLS. For specific information on how to perform these steps, see the topic about administering VSAM record level sharing in z/OS DFSMSdfp Storage Administration.

1. Define and activate at least two sharing control data sets (SHCDS) and one spare SHCDS for recovery purposes.

2. Define CF lock structure to MVS.

3. Define CF lock structure in the SMS base configuration.

4. Define at least one storage class for VSAM record-level sharing (RLS).
   You must record the name of this storage class for use in creating the VSAM data sets for PKI Services.

<table>
<thead>
<tr>
<th>Table 26. VSAM RLS information you need to record</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSAM information you need to record</td>
</tr>
<tr>
<td>Name of storage class for VSAM RLS</td>
</tr>
</tbody>
</table>

Steps for creating the VSAM object store and ICL data sets and indexes
You need to perform this task only if you are configuring PKI Services for the first time.
PKI Services uses VSAM data sets to store requests in progress and issued certificates. You need to create these data sets manually.

If you expect the object store or ICL data sets to exceed 4 GB in size, consider using VSAM extended addressability. For more information, see z/OS DFSMS Using Data Sets.

Before you begin
If you also want to run multiple instances of PKI Services in a Parallel Sysplex (one per image), you need to have performed the steps that are described in “(Optional) preliminary steps for establishing VSAM RLS” on page 117.

Procedure
Perform the following steps to create the VSAM object store and ICL data sets and indexes (if you are configuring PKI Services for the first time):

1. Copy the sample JCL in SYS1.SAMPLIB(IKYCVSV1) to your JCL data set. (See “IKYCVSV1” on page 665 for a code sample of this file.)

2. Update your data set as directed in the instructions in the prolog of the sample JCL:
   a. Change the JOB card.
   b. Change the VOL statements.
If you are running multiple instances of PKI Services in a Parallel Sysplex, replace the VOL statements with STORCLAS statements that specify the storage class recorded in Table 26 on page 118, for example:

```
STORCLAS(VSAMRLS)
```

If you are running without a Parallel Sysplex, replace the `vvvvvv` in the VOL statements with a `VOL=SER` suitable for your VSAM data sets.

c. If you are running multiple instances of PKI Services in a Parallel Sysplex, remove the SPANNED and CISIZE statements in the file. Make sure that you do not delete a closing parenthesis that is still needed. For example, change:

```
DATA -
(NAME(PKISRVD.VSAM.ICL.DA) -
CISZ(4096) -
SPANNED) -
```

to

```
DATA -
(NAME(PKISRVD.VSAM.ICL.DA)) -
```

d. You can optionally change the data set names but must remember to make equivalent changes in the `pkiserv.conf` file if you do so. (See Step “1.d” on page 89.)

e. Update the primary and secondary extent allocations based on your anticipated future needs. (See “Planning VSAM storage requirements” on page 116 for guidelines on determining the space that you need.) These are the default allocations for each type of data set:

- **Base cluster**
  
  CYL(3,1)

- **Alternate indexes**
  
  TRK(5,1)

**Guideline:** Do not change any numeric values, other than the primary and secondary space allocation values for the base cluster and alternate index data sets.

3. Submit the job when your changes are complete.

(Optional) steps for enabling existing PKI Services VSAM data sets for VSAM RLS

To run PKI Services in parallel, the UNIX programmer must specify `SharedPLEX=T` in the `pkiserv.conf` configuration file. (See the `SharedPLEX=T` row in Table 21 on page 74.) The MVS programmer enables the sysplex to access the VSAM data sets.

**Before you begin**

You need to have performed the steps that are described in “(Optional) preliminary steps for establishing VSAM RLS” on page 117.

**Procedure**

Perform the following steps to enable your existing PKI Services data sets for VSAM record-level sharing (RLS).

1. Copy the sample reallocation JCL in `SYS1.SAMPLIB(IKRYVSAM)` or `SYS1.SAMPLIB(IKRYSVSV1)` to your JCL data set.

   **Attention:** Do not confuse `IKYCVSV1` with `IKYRVSV1`, because the former destroys your existing VSAM data sets.
2. Update your data set, following the instructions in the prolog of the sample JCL:
   a. Change the JOB card.
   b. Change the STORCLAS statements.
      **Note:** Before submitting this job, check your access control service (ACS) routines for naming
      convention definitions that are used to create the VSAM RLS data sets.
   c. Rename the source data sets to the names of your existing object store and ICL data sets.
   d. Change the destination data set names.
      **Note:** Remember to give the UNIX programmer the data set names so the UNIX programmer can
      make equivalent changes in the `pkiserv.conf` file. See “(Optional) Steps for updating the
      configuration file” on page 74.
   e. Update the primary and secondary extent allocations based on your anticipated future needs. (See
      “Planning VSAM storage requirements” on page 116 for guidelines on determining the space that
      you need.) These are the default allocations for each type of data set:

      **Base cluster**
      
      CYL (3,1)

      **Alternate indexes**
      
      TRK (5,1)

      **Guideline:** Do not change any numeric values, other than the primary and secondary space
      allocation values for the base cluster and alternate index data sets.

3. Submit the job when your changes are complete.

---

**Tuning VSAM performance**

Depending on your environment, your VSAM performance might be improved by providing buffer space for
the VSAM data sets as part of the IKYSPROC (alias PKISERVD) started procedure.

**(Optional) steps for adding VSAM buffer space**

Perform the following steps to add buffer space for the VSAM data sets as part of the IKYSPROC (alias
PKISERVD) started procedure. When completed, you need to stop and restart PKI Services before your
changes take effect.

1. Make a backup copy of `SYS1.PROCLIB(PKISERVD)`. (See “PKISERVD sample procedure to start PKI
   Services daemon” on page 682 for a code sample of this file.)

2. Edit the JCL in `SYS1.PROCLIB(PKISERVD)` in the following ways.
   a. Append the DD statements that are shown in the following example to the end of the PKISERVD
      procedure.
   b. Change the names of the VSAM data sets shown in the example to the names that you used when
      you executed the IKYCVSV1 sample job to allocate the data sets. (See “Steps for creating the VSAM
      object store and ICL data sets and indexes” on page 118.)

   **Example:**

   ```
   // * ObjectDSN data set
   // OST DD DSN=PKISERVD.VSAM.OST,DISP=SHR,
   // AMP=('BUFNI=6,BUFND=4')
   // * ObjectTidDSN data
   // TID DD DSN=PKISERVD.VSAM.OST.PATH,DISP=SHR,
   // AMP=('BUFNI=6,BUFND=4')
   // * ObjectStatusDSN data
   // OSTAT DD DSN=PKISERVD.VSAM.OST.STATUS,DISP=SHR,
   // AMP=('BUFNI=1,BUFND=4')
   // * ObjectRequestorDSN data set
   ```
3. Edit the names in the new DD statements to match the data sets in the **ObjectStore** section of the PKI Services configuration file (pkiserv.conf).

4. Optionally, you might need to adjust the numeric values for BUFNI and BUFND. **Tip:** The STATUS and REQUESTOR data sets are accessed sequentially only, while the others are accessed both sequentially and directly. Keep this in mind when adjusting the values. (For more information about VSAM buffer space, see *z/OS DFSMS Using Data Sets*.)

5. Edit the **ObjectStore** section of the PKI Services configuration file (pkiserv.conf) to change the existing data set names to the following DD names:

<table>
<thead>
<tr>
<th>Default value</th>
<th>Suggested value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObjectDSN='pkisrvd.vsam.ost'</td>
<td>ObjectDSN=DD:OST</td>
</tr>
<tr>
<td>ObjectTidDSN='pkisrvd.vsam.ost.path'</td>
<td>ObjectTidDSN=DD:TID</td>
</tr>
<tr>
<td>ObjectStatusDSN='pkisrvd.vsam.ost.status'</td>
<td>ObjectStatusDSN=DD:OSTAT</td>
</tr>
<tr>
<td>ObjectRequestorDSN='pkisrvd.vsam.ost.requestor'</td>
<td>ObjectRequestorDSN=DD:OREQ</td>
</tr>
<tr>
<td>ICLDSN='pkisrvd.vsam.icl'</td>
<td>ICLDSN=DD:ICL</td>
</tr>
<tr>
<td>ICLStatusDSN='pkisrvd.vsam.icl.status'</td>
<td>ICLStatusDSN=DD:ISTAT</td>
</tr>
<tr>
<td>ICLRequestorDSN='pkisrvd.vsam.icl.requestor'</td>
<td>ICLRequestorDSN=DD:IREQ</td>
</tr>
</tbody>
</table>

6. Save your changes.

7. Stop and restart PKI Services.

---

**Backing up and restoring the VSAM data sets**

You can use the DFSMSdss DUMP and RESTORE commands to back up and restore the VSAM data sets. For information about these commands, see *z/OS DFSMSdss Storage Administration*.

**Steps for backing up the VSAM data sets**

Perform the following steps to back up the VSAM data sets using the DFSMSdss DUMP command.

**Procedure**

1. Copy the sample JCL in SYS1.SAMPLIB(IKYVBKUP) to your JCL data set. (See “IKYVBKUP” on page 680 for a code sample of this file.)

2. Update the JCL as directed in the instructions in the prolog of the sample JCL:
   a) Change the job card.
Creating the object store and ICL

PKI Services can use Db2 tables to store requests in progress and issued certificates. You need to create these tables (see “Steps for creating the object store and ICL Db2 tables” on page 123).

Notice that in Version 2 Release 3, the following two versions of DBRMs are shipped.

- Version 0 called IKYPDBRM
- Version 1 called IKYPDBR1

The versions are indicated in the MEMBER parameter in the sample IKYSBIND job. IKYPDBR1 is required for version 1 object store and ICL. If you need to build a version 0 package, use IKYPDBRM.
Sysplex considerations

**Requirements:** These requirements apply when you share the Db2 tables in a sysplex environment:

- If PKI Services is set up to run in a sysplex environment and share the Db2 tables for the object store and ICL, all systems in the sysplex must be running the same release of z/OS, which must be z/OS Version 1 Release 13 or later.
- Db2 Version 9 must be installed and the Db2 subsystems that share data must belong to a Db2 data sharing group that runs on a sysplex cluster.
- The `SharedPLEX` parameter in the configuration file `pkiserv.conf` must be set to `T` (true). (See the `SharedPLEX=T` row in Table 21 on page 74.)

If you want to enable the SCEP requester enhancement, ensure that all members are migrated to Version 2 Release 3. The migration to Version 2 Release 3 must be complete before the conversion of OST and ICL to the new version for each instance of PKI. If the PKI instance starts successfully from all of the members, you can start to convert the OST and ICL for each instance with the following steps:

- Run `IKYCDBV1` to create the new Db2 Object Store and ICL tables.
- Run `IKYSBIND` by using the version 1 DBRM and `IKYPDBR1` to build the new package with a new name.
- Stop the instance of PKI from all members.
- Run the conversion utility, `db2conv`.
- Update `pkiserv.conf` to specify the `DBVersion` to 1 from all members.
- Start the instance of PKI from all members.

Planning Db2 storage requirements

The space allocation for Db2 is specified in the CREATE TABLESPACE SQL statements in the `IKYCDBV1` sample. The `PRIQTY` value is 144400 in kilobytes, which holds 144,400 ICL records that are 1024 bytes in length. Assuming that an object store certificate request record is approximately twice the size of an ICL record, 144,400 kilobytes holds 72,200 object store records. No `SECQTY` keyword is specified, because Db2 calculates a secondary quantity value.

If your anticipated needs differ greatly from the amount of storage provided by the `PRIQTY` keyword in the `IKYCDBV1` sample, adjust the `PRIQTY` value.

If you set the `RemoveInactiveReqs` and `RemoveCompletedReqs` parameters in the configuration file to 0d, certificate request records are not deleted and you should adjust the space allocation accordingly.

Steps for creating the object store and ICL Db2 tables

Perform the following steps to implement the object store and ICL using Db2 tables.

**Before you begin**

- Db2 must be installed and running.
- You need to know the name of the Db2 subsystem or the group attachment name for the object store and ICL.
- You need to know the name you are using for the Db2 package. The default package name is `MASTERCA`.
- You need to know the name of the PKI Services daemon.

**About this task**

You need to perform this task only if you are configuring PKI Services for the first time. If you have been using VSAM files for the object store and ICL and want to use Db2 tables instead, follow the steps in “Converting the object store and ICL from VSAM to Db2” on page 125.
Procedure

1. Update the IKYDBV1 sample and run it to create the Db2 objects. This sample contains SQL statements that define the database, table space, tables, and indexes for the ICL and object store.
   a) Copy the sample from SYS1.SAMPLIB(IKYCDBV1). For a code sample of this file, see “IKYCDBV1” on page 658.
   b) As directed in the sample, if you have run the sample before, uncomment the statements in the first section so that the existing indexes, tables, table spaces, and database are dropped and committed.
   c) If you are using a package name other than the default name MASTERCA, change every occurrence of MASTERCA in the sample to the package name you have chosen.
   d) Run your updated copy of IKYCDBV1. You can use the Db2 SPUFI facility to run it.

2. Update the sample job IKYSBIND and run it to build the PKI Services package using the appropriate DBRM version.
   a) Copy the sample job from SYS1.SAMPLIB(IKYSBIND). For a code sample of this file, see “IKYSBIND” on page 678.
   b) If you are using a package name other than the default name MASTERCA, change every occurrence of MASTERCA in the sample job to the package name you have chosen.
   c) Run your updated copy of IKYSBIND.

3. Update the sample job IKYSGRNT and run it to grant execute privilege on the Db2 package for PKI Services to the PKI Services daemon user ID.
   a) If the PKI Services daemon has a name other than the default name of PKISRVD, change PKISRVD to the name of your PKI Services daemon. (The daemon name is determined by the daemon variable in IKYSETUP. For more information, see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39.)
   b) Change MASTERCA to the package name that was used in the IKYSBIND job.
   c) Run your updated copy of IKYSGRNT.

4. Update the IKYSETUP REXX exec to indicate that you are using Db2 tables, so that IKYSETUP gives the PKI Services daemon the access it needs to the Db2 Resource Recovery Services Access Facility (RRSAF). In “IKYSETUP sample” on page 624, see Question 6 for information about using Db2 as the repository for the Issued Certificate List (ICL) and Object Store. Change the line:

   \[ \text{db2_repos} = 0 \]

   to:

   \[ \text{db2_repos} = 1 \]

   Update the line:

   \[ \text{db2_subsys} = 'DSN9' \]

   and change 'DSN9' to the name of the Db2 subsystem or the group attachment name that provides the repository. Run the updated copy of IKYSETUP.

5. Update the configuration file, pkiserv.conf, to indicate that you are using Db2 tables.
   - In the ObjectStore section, uncomment the following line:

     \[ \# \text{DBType=DB2} \]
and make sure that the following line is commented out or omitted:

```# DBType=VSAM```

- In the **ObjectStore** section, uncomment the following line:

```# DBPackage=MasterCA```

If you used a package name other than `MasterCA` in the IKYCDBV1 and IKYSBIND samples, change `MasterCA` in this line to the package name you used.

- In the **ObjectStore** section, uncomment the following line:

```# DBSubsystem=DSN9```

If you are using a Db2 subsystem or a group attachment with a name other than `DSN9`, change `DSN9` in this line to the name of your Db2 subsystem or group attachment.

- If the object store and ICL are shared in a sysplex with other instances of PKI Services, change the line:

```
SharedPLEX=F
```

To

```
SharedPLEX=T
```

- Restart PKI Services so that your changes take effect.

---

**Results**

When you are done, you have created Db2 objects for the object store and ICL.

**Converting the object store and ICL from VSAM to Db2**

If you have previously set up PKI Services to use VSAM data sets for the object store and ICL, you can convert it to use Db2 tables instead. To do this you must copy the data in your existing VSAM data sets to Db2 tables.

**Steps for converting the object store and ICL from VSAM to Db2**

Perform the following steps to convert the object store and ICL from VSAM data sets to Db2 tables.

**Before you begin**

- Db2 must be installed and running.
- You need to know the name of the Db2 subsystem or the group attachment name.
- You need to provide the name of the Db2 package that accesses the Db2 database using the version that corresponds to the version of the VSAM storage that you are converting. The Db2 package name is assigned when IKYSBIND is run. If you are converting a version 0 VSAM object store and ICL, use the Db2 package name that is assigned when IKYSBIND is used to create a package for the IKYPDBRM Db2 DBRM. If you are converting version 1 VSAM storage, use the Db2 package name that is assigned when IKYSBIND is used to create a package for the IKYPDBR1 Db2 DBRM.
- You need to know the name of the PKI Services daemon.

**Procedure**

1. Stop the instance of PKI Services for which you want to do the conversion. For information about how to do this, see Chapter 10, “Starting and stopping PKI Services,” on page 129.
2. Update the IKYCBDV1 sample, for version 1, or the IKYCBD2 sample, for version 0. Run it to create the Db2 objects. See step “1” on page 124.

3. Update the sample job IKYSBIND to point to IKYPDBRM or IKYPDBR1 DBRM and run it to create the version 0 or version 1 Db2 package. See step “2” on page 124.

4. Update the sample job IKYSGRNT and run it to grant execute privilege on the Db2 package for PKI Services to the PKI Services daemon user ID. See step “3” on page 124.

5. Use the utility program vsam2db2 to copy the data from your VSAM data sets to the corresponding Db2 tables. See “Using the vsam2db2 utility” on page 448.

6. Update the configuration file, pkiserv.conf, to indicate that you are using Db2 tables. See step “5” on page 124.

7. Restart PKI Services. For information about how to do this, see Chapter 10, “Starting and stopping PKI Services,” on page 129.

Results
When you are done, you have copied your object store and ICL VSAM data sets to Db2 tables, and set up PKI Services to use the Db2 tables.

[NOT Programming Interface Information] Columns in the ICL and object store Db2 tables

The information in Table 27 on page 126 and Table 28 on page 127 is intended for your use when creating Db2 queries and reports. It is not a programming interface.

<table>
<thead>
<tr>
<th>Table 27. Columns in the object store Db2 tables</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Column name</strong></td>
</tr>
<tr>
<td>Header:</td>
</tr>
<tr>
<td>RECORD_KEY</td>
</tr>
<tr>
<td>RECORD_STATE</td>
</tr>
<tr>
<td>REQDATA_LEN</td>
</tr>
<tr>
<td>REQUESTOR_NAME</td>
</tr>
<tr>
<td>TRANS_ID</td>
</tr>
<tr>
<td>COMMENT</td>
</tr>
<tr>
<td>ISSUED_TIME</td>
</tr>
<tr>
<td>LAST_CHANGE_TIME</td>
</tr>
<tr>
<td>TEMPLATE_NICKNAME</td>
</tr>
<tr>
<td>SERIAL_NUM</td>
</tr>
<tr>
<td>DB_VERSION</td>
</tr>
<tr>
<td>SCEP_TRANSID</td>
</tr>
</tbody>
</table>
### Table 27. Columns in the object store Db2 tables (continued)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Format</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Body:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQDATA</td>
<td>VARBINARY(32380)</td>
<td>Request object in ASN1 format</td>
</tr>
</tbody>
</table>

### Table 28. Columns in the ICL Db2 tables

<table>
<thead>
<tr>
<th>Column name</th>
<th>Format</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Header:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIAL_NUM</td>
<td>BINARY(4)</td>
<td>Serial number</td>
</tr>
<tr>
<td>CERT_STATE</td>
<td>BINARY(4)</td>
<td></td>
</tr>
<tr>
<td>CERT_LEN</td>
<td>INTEGER</td>
<td></td>
</tr>
<tr>
<td>REQUESTOR_NAME</td>
<td>VARCHAR(32)</td>
<td>Requestor name</td>
</tr>
<tr>
<td>REVOKE_DATE</td>
<td>TIMESTAMP</td>
<td>Revocation date</td>
</tr>
<tr>
<td>INVALID_DATE</td>
<td>TIMESTAMP</td>
<td>Expiration date</td>
</tr>
<tr>
<td>REVOKE_REASON</td>
<td>INTEGER</td>
<td>Revoke reason</td>
</tr>
<tr>
<td>COMMENT</td>
<td>VARCHAR(64)</td>
<td>Comment</td>
</tr>
<tr>
<td>ISSUED_TIME</td>
<td>TIMESTAMP</td>
<td>Issued time</td>
</tr>
<tr>
<td>LAST_CHANGE_TIME</td>
<td>TIMESTAMP</td>
<td>Last changed time</td>
</tr>
<tr>
<td>TEMPLATE_NICKNAME</td>
<td>VARCHAR(8)</td>
<td>Template nickname</td>
</tr>
<tr>
<td>OBFUS_PW</td>
<td>VARBINARY(33)</td>
<td>Obfuscated passphrase</td>
</tr>
<tr>
<td>PROCESS_FLAGS</td>
<td>BINARY(4)</td>
<td>Flags</td>
</tr>
<tr>
<td>KEYID</td>
<td>BINARY(20)</td>
<td>SHA1 hash of public key</td>
</tr>
<tr>
<td>CRLDP_NUM</td>
<td>INTEGER</td>
<td>CRL DP number</td>
</tr>
<tr>
<td>EXPIRE_EPOCH_DAYS</td>
<td>INTEGER</td>
<td>Expiration date, expressed as “days since the epoch” (January 1, 1970)</td>
</tr>
<tr>
<td>EXPIRE_DATE</td>
<td>TIMESTAMP</td>
<td>Expiration date, expressed in Db2 TIMESTAMP format</td>
</tr>
<tr>
<td>KU_DIGTSIG</td>
<td>BINARY(1)</td>
<td>digitalSignature keyusage</td>
</tr>
<tr>
<td>KU_NONRPU</td>
<td>BINARY(1)</td>
<td>nonRepudiation keyusage</td>
</tr>
<tr>
<td>KU_KEYENC</td>
<td>BINARY(1)</td>
<td>keyEncipherment keyusage</td>
</tr>
<tr>
<td>KU_DATAENC</td>
<td>BINARY(1)</td>
<td>dataEncipherment keyusage</td>
</tr>
<tr>
<td>KU_KEYAGR</td>
<td>BINARY(1)</td>
<td>keyAgreement keyusage</td>
</tr>
<tr>
<td>KU_CRTSGN</td>
<td>BINARY(1)</td>
<td>keyCertSign keyusage</td>
</tr>
<tr>
<td>KU_CRLSGN</td>
<td>BINARY(1)</td>
<td>CRLSign keyusage</td>
</tr>
<tr>
<td>KU_ENCONLY</td>
<td>BINARY(1)</td>
<td>encipherOnly keyusage</td>
</tr>
<tr>
<td>KU_DECONLY</td>
<td>BINARY(1)</td>
<td>decipherOnly keyusage</td>
</tr>
</tbody>
</table>
### Table 28. Columns in the ICL Db2 tables (continued)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Format</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKU_SEVAUTH</td>
<td>BINARY(1)</td>
<td>serverAuth extended keyusage</td>
</tr>
<tr>
<td>EKU_CLIAUTH</td>
<td>BINARY(1)</td>
<td>clientAuth extended keyusage</td>
</tr>
<tr>
<td>EKU_Codesign</td>
<td>BINARY(1)</td>
<td>codeSigning extended keyusage</td>
</tr>
<tr>
<td>EKU_EMLPROT</td>
<td>BINARY(1)</td>
<td>emailProtection extended keyusage</td>
</tr>
<tr>
<td>EKU_TIMESTMP</td>
<td>BINARY(1)</td>
<td>timeStamping extended keyusage</td>
</tr>
<tr>
<td>EKU_OCSPSGN</td>
<td>BINARY(1)</td>
<td>OCSPSigning extended keyusage</td>
</tr>
<tr>
<td>EKU_MSSCLNON</td>
<td>BINARY(1)</td>
<td>Microsoft smart card logon extended keyusage</td>
</tr>
<tr>
<td>PREV_SERIAL_NUM</td>
<td>BINARY(4)</td>
<td>Previous serial number if the certificate has been renewed</td>
</tr>
<tr>
<td>SUBJ_DN</td>
<td>VARCHAR(1024)</td>
<td>Subject distinguished name</td>
</tr>
<tr>
<td>DB_VERSION</td>
<td>BINARY(1)</td>
<td>Version record of this ICL</td>
</tr>
<tr>
<td>SCEP_TRANSID</td>
<td>VARCHAR(128)</td>
<td>SCEP Transaction ID</td>
</tr>
<tr>
<td>Body:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X509CERT</td>
<td>VARBINARY(10240)</td>
<td>Certificate in ASN1 format</td>
</tr>
</tbody>
</table>
Chapter 10. Starting and stopping PKI Services

You start the PKI Services daemon or daemons the first time you are configuring PKI Services or if you are adding sysplex support to run multiple independent instances of PKI Services (one per image) on a sysplex. The MVS programmer performs these tasks.

Steps for starting the PKI Services daemon

You need to start the PKI Services daemon if:

- You are configuring PKI Services for the first time.
- You want to enable Simple Certificate Enrollment Protocol (SCEP) or Enrollment over Secure Transport protocol (EST).
- You renewed your CA or RA certificate.
- You want to use Parallel Sysplex support and need to run another instance of the PKI Services on a different image in the sysplex.
- You stopped PKI Services and need to restart it.
- You created a new (additional) CA domain and want to start it.
- The PKI Services CA certificate private key is managed by ICSF and ICSF became unavailable. After you fix the problem with ICSF, you need to stop and restart PKI Services.
- You use Db2 tables for the object store and ICL, and you need to stop Db2. You must stop PKI Services first. After Db2 restarts, restart PKI Services.

Before you begin

- ICSF must be operational.
- If you use Db2 tables for the object store and ICL, you need to start Db2.
- Your HTTP server should be SSL-enabled (see Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101) and the uncustomized PKISERV application should be ready for use.
- If you are starting PKI Services for the first time, you need to know the runtime directory, called runtime-dir in the command examples. The default is /etc/pkiserv/. The MVS programmer was asked to record any changes to the default; see Table 3 on page 11.
- If you are starting PKI Services for a new CA domain, you need to know the job name that contains the instance of the daemon you need to start. Do not use these steps. Instead, see “Adding a new CA domain” on page 302 for steps to add a new domain and start the new daemon.

Procedure

Perform the following steps to start the PKI Services daemon and view your web pages:

1. If you have not done so already, start ICSF, the web server and the LDAP server. You must also start Db2 if your implementation uses it.

2. If you want to test the configuration to this point before customizing PKI Services (preferred), you need to temporarily prevent PKI Services from posting issued certificates to LDAP because posting to LDAP is not successful. Have the UNIX programmer perform the following steps to prevent PKI Services from posting issued certificates to LDAP:

   a. Edit the PKI Services configuration file (by default, this is: /etc/pkiserv/pkiserv.conf).
Starting and stopping PKI Services

b. Set `NumServers=0` in the LDAP section of the file.

c. Exit to save your changes.

**Note:** After testing the configuration, you need to stop PKI Services and undo the change in this step (see Step “5” on page 130) and then restart PKI Services.

3. Start the PKI Services daemon from the MVS console by entering the following command:

```
S PKISERVD
```

**Notes:**

a. You must start the PKI Services daemon only from a started procedure. PKI Services rejects all other methods of starting the daemon (including INETD, `/etc/rc`, UNIX shell, or submitted JCL job).

b. Depending on the amount of customization you did, there are various versions of the preceding command to start the PKI Services daemon. For example, if you changed the `pkiserv.envars` file (see Step “7” on page 70), you need to specify its new location as a parameter in the START command:

```
S PKISERVD,DIR='runtime-dir'
```

(Single quotation marks are required to maintain the character case of the values being assigned to the substitution parameters.)

The command in the following example specifies the runtime directory and the file name of the environment variables file:

**Example:**

```
S PKISERVD,DIR='/etc/pkiserv',FN='pkiserv.envars'
```

The default time zone is EST5EDT. If you need to change this, you can supply the new value as a parameter, as in the following examples:

**Examples:**

```
S PKISERVD,TZ=PST8PDT
S PKISERVD,JOBNAME=jobname,DIR='/etc/pkiserv',FN='pkiserv.envars',TZ=PST8PDT
```

4. Go to your web pages by entering the following URL from your browser:

```
http://webserver-fully-qualified-domain-name/PKIServ/ssl-cgi/camain.rexx
```

The `webserver-fully-qualified-domain-name` is the common name (CN) portion of the web server's distinguished name; see Table 11 on page 41.

You should be able to go through your web pages to request, retrieve, and revoke a certificate of type "PKI browser certificate for authenticating to z/OS". Ensure you can do this before trying to customize the application.

5. If you elected to test the configuration, you need to stop PKI Services (see “Stopping the PKI Services daemon” on page 131), undo the change in Step “2” on page 129, and then restart PKI Services. To undo the change in Step “2” on page 129:

a. Edit the PKI Services configuration file (by default `/etc/pkiserv/pkiserv.conf`).

b. Set `NumServers=n` in the LDAP section of the file, where `n` is the same number of LDAP servers indicated in Table 25 on page 108.
c. Exit to save your changes.

Stopping the PKI Services daemon

To stop the PKI Services daemon, you can use either the MODIFY (or F) console command, or the STOP (or P) command. Enter one of the following two commands:

F PKISERVD,STOP

or

P PKISERVD
Part 3. Customizing PKI Services

PKI Services provides two ways to implement and customize the PKI Services web interface:

• Using REXX CGI scripts. This method uses a text template file.
• Using JavaServer pages (JSPs). This method uses an XML template file.

Both methods produce identical web pages with the default files shipped with PKI Services.

This part includes the following topics:

• Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 provides an overview of the pkiserv.tmpl file, which contains the certificate templates, and explains customizing the end-user web pages when you are implementing them using the REXX CGI execs.
• Chapter 12, “Customizing the administration web pages if you use REXX CGI execs,” on page 233 provides an overview of the REXX CGI execs and explains how to customize the administration web pages when you are implementing them using the REXX CGI execs.
• Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 provides an overview of customizing the PKI Services web pages when you implement them using the JavaServer pages.
• Chapter 14, “Advanced customization,” on page 283 explains:
  – “Scaling for high volume installations” on page 283
  – “Using certificate policies” on page 284
  – “Updating the signature algorithm” on page 287
  – “Customizing distribution point CRLs” on page 290
  – “Creating a distribution point ARL” on page 295
  – “Enabling support for large CRLs” on page 297
  – “Using the OCSP responder” on page 298
  – “Adding an application domain” on page 298
  – “Adding a new CA domain” on page 302
  – “Customizing email notifications sent to users” on page 318
  – “Setting up automatic renewal of certificates” on page 323
  – “Setting up PKI Services to generate keys for certificate requests” on page 325
  – “Adding custom extensions to certificates” on page 328
• Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333
• Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341
• Chapter 17, “Customizing with installation exit routines,” on page 349 explains how to use installation exits with PKI Services.
Chapter 11. Customizing the end-user web application if you use REXX CGI execs

This information applies if you are using REXX CGI execs for your PKI Services web pages. If you are using JavaServer pages (JSPs), see Chapter 13, “Implementing the web application using JavaServer pages,” on page 237.

For certificate processing to work, you need to customize the end-user web pages at least to some degree. Before you begin to customize web pages, you need to understand the pkiserv.tmpl certificate templates file. This file contains certificate templates, which define the fields that comprise a specific certificate request. This topic describes the pkiserv.tmpl certificate templates file and explains how to use it to customize the end-user web pages. This topic also explains the relationship between CGIs and the certificate templates file. Finally, this topic also contains information about customizing email notifications. (Sending email notifications is an optional feature.)

Contents of the pkiserv.tmpl certificates templates file

The pkiserv.tmpl certificate templates file contains certificate templates that define the fields that comprise a specific certificate request. The file contains a mixture of true HTML and HTML-like tags. The HTML can contain JavaScript for input field verification.

The main sections of the pkiserv.tmpl certificate templates file are listed in Table 29 on page 135:

<table>
<thead>
<tr>
<th>Table 29. Structure and main divisions of the certificate template file (pkiserv.tmpl)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Structure and main divisions of the certificate template file (pkiserv.tmpl)</strong></td>
</tr>
<tr>
<td>A prolog section of comments explaining main sections, subsections, named fields, and substitution variables.</td>
</tr>
<tr>
<td>A DEBUG flag appears directly after the prolog section. (You can change DEBUG=0 to DEBUG=1 to get CGI debugging information.)</td>
</tr>
<tr>
<td><strong>APPLICATION sections</strong></td>
</tr>
<tr>
<td>The APPLICATION sections contain subsections, which produce certain web pages, such as the PKI Services home page shown in Figure 42 on page 377. For details, see “The APPLICATION sections” on page 147.</td>
</tr>
<tr>
<td><strong>TEMPLATE sections</strong></td>
</tr>
<tr>
<td>These are the certificate templates (models) that contain the HTML to produce certificate request forms. They also define the fields that are permissible in the certificate. For details, see “TEMPLATE sections” on page 151.</td>
</tr>
<tr>
<td><strong>INSERT sections</strong></td>
</tr>
<tr>
<td>These contain HTML for certain web pages, such as the &quot;Request submitted successfully&quot; web page, and certificate field dialogs, such as text entry boxes (the common name INSERT produces a text box where the user enters this information) and drop-downs. For details, see Figure 46 on page 389.</td>
</tr>
</tbody>
</table>

The pkiserv.tmpl file begins with a prolog. This is a section of comments that explains the main sections and subsections of the file. Any line with a # in column 1 is a comment.

Only the APPLICATION sections and TEMPLATE sections can contain subsections, but all three can contain named fields and substitution variables.
What are substitution variables?

A substitution variable holds a value that HTML code can reference. At run time, the actual value replaces a substitution variable.

You use square brackets to delineate a substitution variable.

**Example:**

```
[base64cert]
```

**Notes:**

1. Substitution variables are case-sensitive.
2. Depending on the section where a substitution variable is present, it might not have a valid meaning. For example, the [base64cert] substitution variable is meaningless before the certificate is retrieved. Therefore, in this case, the value of [base64cert] would be the null string (an empty string).

Table 30 on page 136 summarizes valid substitution variables:

<table>
<thead>
<tr>
<th>Substitution variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>altrawvalue</td>
<td>The concatenated value of the AltOther fields.</td>
</tr>
<tr>
<td>base64cert</td>
<td>The requested certificate, base64-encoded.</td>
</tr>
<tr>
<td>browsertype</td>
<td>A special substitution variable to qualify named fields only. It enables Mozilla-based browsers and Internet Explorer to perform browser-specific operations, such as generating a public and private key pair. To generate a key pair, a Mozilla-based browser uses a KEYGEN HTML tag, while Internet Explorer uses ActiveX controls. An example is if %%PublicKey[browsertype]%% is specified in a TEMPLATE CONTENT section. If the user referencing this section uses the Mozilla Firefox browser, INSERT PublicKeyNS is included. If the browser that is used is Microsoft Internet Explorer, INSERT PublicKeyIE is included.</td>
</tr>
<tr>
<td>cadomain</td>
<td>The CA domain name that is used to examine the preregistration record in the Simple Certificate Enrollment Protocol (SCEP).</td>
</tr>
<tr>
<td>errorinfo</td>
<td>Information such as the return code and reason code related to a failing SAF call.</td>
</tr>
<tr>
<td>iecert</td>
<td>The requested certificate in a form that Microsoft Internet Explorer accepts.</td>
</tr>
<tr>
<td>keyid</td>
<td>The SHA1 hash of the generated public key.</td>
</tr>
<tr>
<td>optfield</td>
<td>A special substitution variable that should be placed in any certificate field name INSERT where the end user can supply the value. It makes the input field optional.</td>
</tr>
<tr>
<td>p12cert</td>
<td>A PKCS #12 package in DER encoded format, containing a certificate and the private key that PKI Services generated for the certificate.</td>
</tr>
<tr>
<td>printablecert</td>
<td>This variable contains the certificate details so that the end user can confirm that the certificate is the correct one to renew or revoke. The displayed data is extracted from the ICL entry.</td>
</tr>
</tbody>
</table>
Table 30. Substitution variables (continued)

<table>
<thead>
<tr>
<th>Substitution variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>readonly</strong></td>
<td>This substitution variable is converted to a null string when the INSERT is used for input purposes, such as when requesting a certificate. It is substituted with the string readonly when the INSERT is used for output purposes, such as when displaying request or certificate information.</td>
</tr>
<tr>
<td><strong>requestor</strong></td>
<td>The email address of the requestor, when the keys for the certificate were generated by PKI Services.</td>
</tr>
<tr>
<td><strong>serialno</strong></td>
<td>The serial number of a certificate.</td>
</tr>
<tr>
<td><strong>tmplname</strong></td>
<td>A certificate template name. This is primed from the HTML tag <code>&lt;SELECT NAME=&quot;Template&quot;&gt;</code> in the <code>&lt;APPLICATION NAME=PKISERV&gt;</code> section. The end user selects it on the first web page.</td>
</tr>
<tr>
<td><strong>transactionid</strong></td>
<td>A unique value that is returned from a certificate request.</td>
</tr>
</tbody>
</table>

What are named fields?

Named fields insert common HTML code, such as a common input field or a page header or footer, in a web page. (Each named field refers to a corresponding INSERT section.) A named field is delineated with `%%`. 

**Examples:**

```
%%Country%%
%%-pagefooter%%
```

**Note:** Named fields are case-sensitive.

A named field can include or not include a dash. A named field without a dash, such as `%%Label%%` might have a special meaning as a certificate field. Its special meaning depends on the section in which it appears. (See “Relationship between CGIs and the pkiserv.tmpl file” on page 217 for more information.)

A named field with a dash, such as `%%-pagefooter%%`, has no special meaning. PKISERV treats it simply as HTML code to insert. Any special meaning the named field might have, based on the section in which it is contained, is ignored. For example, in a TEMPLATE CONTENT section (see “TEMPLATE sections” on page 151) if you specify `%%-pagefooter%%`, `-pagefooter` is not considered a certificate field name. However, the INSERT section with the name `-pagefooter` is included in the HTML page displayed to the end user.

**INSERT sections**

Although the INSERT sections are at the end of the `pkiserv.tmpl` certificate templates file, they are explained first because of their relationship to named fields. Any named field that is used in the `pkiserv.tmpl` file must be defined in a corresponding INSERT section.

Unlike the APPLICATION sections and TEMPLATE sections, INSERT sections can have no subsections. The format of an INSERT section is:

```
<INSERT NAME=insert-name>...</INSERT>
```

An INSERT contains HTML that either:

- Defines a certificate field
- Defines other common HTML that can be referenced in other sections.

The following example of an INSERT defines a certificate field.
Example:

```html
<INSERT NAME=Country>
<p> <LABEL for="countryfield">Country [optfield]"</LABEL> <BR>
<INPUT NAME="Country" TYPE="text" SIZE=2 maxlength="2" id="countryfield">
<SCRIPT LANGUAGE="JavaScript">
function ValidCountry(frm){
  if ("[optfield]" == "" && frm.Country.value == "") {
    alert("Enter required field."); frm.Country.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</INSERT>
```

The next example defines other common HTML:

Example:

```html
<INSERT NAME=-pagefooter>
<p>email: webmaster@your_company.com
</INSERT>
```

To reference an INSERT, you use a named field of the form `%%insert-name%%`, for example `%%Country%%` or `%%-pagefooter%%`.

The `pkiserv.tmpl` certificate templates file contains INSERT sections of several main types:

- INSERTs that are for internal processing. (This is common HTML for web page content as listed in Table 31 on page 138.)
- INSERTs that are related to the certificate content. (See Table 32 on page 139.) These include:
  - X.509 fields (for example, OrgUnit)
  - Non-X.509 fields (for example UserId).

### Table 31. INSERTs that are common HTML for web page content

<table>
<thead>
<tr>
<th>INSERT NAME</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>-AdditionalHeadIE</td>
<td>ActiveX controls to enable Internet Explorer to generate a key pair.</td>
</tr>
<tr>
<td>-ChallengePassphrase, -ChallengePassPhrase2</td>
<td>HTML for a web page that requests the passphrase that was specified when a certificate request was submitted.</td>
</tr>
<tr>
<td>-ObjectHeaderIE</td>
<td>ActiveX controls to enable Internet Explorer to generate a key.</td>
</tr>
<tr>
<td>-RecoverEmail, -RecoverEmail2</td>
<td>HTML for the web page that requests the email address that was used when a certificate was requested, after a user requests to recover the certificate.</td>
</tr>
<tr>
<td>-requestok</td>
<td>HTML for the web page &quot;Request submitted successfully&quot; after a successful certificate request (for both original requests and renewals). (For a sample of this web page, see Figure 46 on page 389.)</td>
</tr>
<tr>
<td>-requestbad</td>
<td>HTML for the web page &quot;Request was not successful&quot;.</td>
</tr>
<tr>
<td>requestor</td>
<td>HTML for a web page that requests the name of a certificate requestor.</td>
</tr>
</tbody>
</table>
Table 31. INSERTs that are common HTML for web page content (continued)

<table>
<thead>
<tr>
<th>INSERT NAME</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>requestor2</td>
<td>HTML for a web page that requests the email address of a certificate requestor.</td>
</tr>
<tr>
<td>-renewkeysetIE</td>
<td>ActiveX controls to create a renewal certificate request using the original certificates key pair.</td>
</tr>
<tr>
<td>-renewkeysetNS</td>
<td>Mozilla-based browser script for renewal certificate requests.</td>
</tr>
<tr>
<td>-renewrevokeok</td>
<td>HTML for the web page &quot;Request submitted successfully&quot; after a successful attempt to revoke a certificate. (See Figure 55 on page 396 for a sample of the web page to renew or revoke a certificate.)</td>
</tr>
<tr>
<td>-renewrevokebad</td>
<td>HTML for the web page &quot;Request was not successful&quot; after an unsuccessful attempt to renew or revoke a certificate. (See Figure 55 on page 396 for a sample of the web page to renew or revoke a certificate.)</td>
</tr>
<tr>
<td>-returnp12cert</td>
<td>HTML for a web page that displays a PKCS #12 package.</td>
</tr>
<tr>
<td>-preregok</td>
<td>HTML for the web page &quot;Preregistration successful&quot; after a successful attempt to preregister a client for a certificate.</td>
</tr>
<tr>
<td>-returnpkcs10</td>
<td>This returns the server certificate in B64 format.</td>
</tr>
<tr>
<td>returnbrowsercertNS</td>
<td>This contains [base64cert], which is the base64 substitution variable.</td>
</tr>
<tr>
<td>returnbrowsercertIE</td>
<td>This contains a script for producing a popup window installing your certificate (if you are using the Microsoft Internet Explorer browser). See Figure 49 on page 391 for a sample of this web page.</td>
</tr>
</tbody>
</table>

Named fields in INSERT sections

Most of the following fields are X.509 fields. Table 32 on page 139 summarizes the named fields in INSERT sections. (See Restrictions at the end of the table.)

Table 32. Named fields in INSERT sections

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltDomain</td>
<td>The host name of the machine where a certificate is installed. This is a text field of up to 100 characters. The field can be repeated.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>AltEmail</td>
<td>The user's email address, including the @ character and any periods (.). This is a text field of up to 100 characters. The field can be repeated.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
</tbody>
</table>
Table 32. Named fields in INSERT sections (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltIPAddr</td>
<td>The unique IP address that specifies the location of the server or device on the Internet. The field can be repeated. PKI Services supports both IP version 4 and IP version 6 addresses. The IP address is a text field of up to 45 characters.</td>
</tr>
<tr>
<td></td>
<td>• For IP version 4, the IP address is in dotted decimal format; for example, 9.67.97.103.</td>
</tr>
<tr>
<td></td>
<td>• For IP version 6, the IP address is divided into eight 16-bit hexadecimal blocks separated by colons. Leading zeros in each 16-bit field are optional, and successive fields of zeros can be represented by double colons, but only once; for example 1:2::3:4 is equivalent to 0001:0002:0000:0000:0000:0003:0004.</td>
</tr>
<tr>
<td></td>
<td>• In a mixed IP version 4 and IP version 6 environment, the IP address can be expressed in the format x:x:x:x:x:x:d.d.d, where the x values are the hexadecimal values of the six high-order 16-bit pieces of the address, and the d values are the decimal values of the four low-order 8-bit pieces of the address in standard IP version 4 representation; for example, 0:0:0:0:0:ABCD:1.2.3.4 or the equivalent value : :ABCD:1.2.3.4</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>AltOther</td>
<td>A free form value for the other name of the subject's alternate name. Unlike the other INSERTs, you must customize it before you use it. The name of this INSERT consists of the string AltOther, concatenated with an underscore (_), then followed by the OID, specified in the following format: AltOther_1_2_3_4_5. (See “Customizing the OtherName field” on page 229.)</td>
</tr>
<tr>
<td></td>
<td>You can have more than one input field but the total length of these fields together with the length of the OID and the comma cannot exceed 255 bytes. The resulting AltOther field is built by concatenating the dotted decimal OID that matches the INSERT name, a comma, and the value of the input field. This is a text field of up to 255 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>AltURI</td>
<td>A name or address referring to an Internet resource; a URL is one type of uniform resource identifier. This is a text field of up to 100 characters. The field can be repeated.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>BusinessCat</td>
<td>The business category. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This field is intended for use in certificates that follow the criteria for Extended Validation (EV) certificates. For more information about the criteria, see the Extended Validation Certificate Guidelines (cabforum.org/extended-validation) produced by the CA/Browser Forum.</td>
</tr>
<tr>
<td>ChallengePassPhrase</td>
<td>The passphrase the user entered when requesting a certificate. The user types the same passphrase, exactly as entered on the request form. This is a case-sensitive text field of up to 32 characters.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ClientName</td>
<td>Name of the person or device being preregistered. This is a text field of up to 64 characters. <strong>Restriction:</strong> The first 32 characters of the name must be unique, irrespective of case, for each preregistered user.</td>
</tr>
<tr>
<td>CommonName</td>
<td>For browser certificates, this is your name, such as John Smith. (You can use your first and last name, in that order.) For server certificates, this is name by which the server’s administrator wants it to be known. For SSL servers, the SSL protocol requires the CommonName to be the fully qualified domain name of the server, for example, <a href="http://www.ibm.com">www.ibm.com</a>. CommonName is a text field of up to 64 characters. Although CommonName is a constant, no value is assigned to it. This indicates that RACF must determine the value. The user authenticates by specifying a user ID and password. (If UserId is listed in the APPL section, this means the application provides the user ID and password.) Providing the user ID and password enables RACF to look up the CommonName value in the user’s profile. <strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>Country</td>
<td>The country where your organization is located. This is a 2-character text field. <strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>CustomExt</td>
<td>A custom certificate extension. Use this field to support extensions that PKI Services does not otherwise support. This is a repeatable field. For more information, see “Adding custom extensions to certificates” on page 328.</td>
</tr>
<tr>
<td>DNQualifier</td>
<td>The subject’s distinguished name qualifier. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>DomainName</td>
<td>The subject's domain name. It contains all the domain name components in the form &lt;domain component1&gt;.&lt;domain component2&gt;. ... .&lt;domain componentn&gt;. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Email</td>
<td>This is a deprecated insert for the email address for the distinguished name; use the Mail insert instead. This is a text field of up to 64 characters. <strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>EmailAddr</td>
<td>The email address for the distinguished name. This is a text field of up to 64 characters. <strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
</tbody>
</table>
Table 32. Named fields in INSERT sections (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExtKeyUsage</td>
<td>The intended purpose of the certificate. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>clientauth                   Client side authentication</td>
</tr>
<tr>
<td></td>
<td>cmcas                        CMC archive servers</td>
</tr>
<tr>
<td></td>
<td>cmcca                        CMC certification authorities</td>
</tr>
<tr>
<td></td>
<td>cmcra                        CMC registration authorities</td>
</tr>
<tr>
<td></td>
<td>codesigning                  Code signing</td>
</tr>
<tr>
<td></td>
<td>emailprotection              Email protection</td>
</tr>
<tr>
<td></td>
<td>mssmartcardlogon             Microsoft Smartcard logon</td>
</tr>
<tr>
<td></td>
<td>ocspsigning                  OCSP response signing</td>
</tr>
<tr>
<td></td>
<td>pkinitclientauth             PKINIT client side authentication</td>
</tr>
<tr>
<td></td>
<td>pkinitkdc                    PKINIT KDC</td>
</tr>
<tr>
<td></td>
<td>serverauth                   Server side authentication</td>
</tr>
<tr>
<td></td>
<td>timestamping                 Digital timestamping.</td>
</tr>
<tr>
<td>HostIdMap</td>
<td>This is the user ID for authorization purposes, in an email type of format:</td>
</tr>
<tr>
<td></td>
<td>subject-id@host-name         For example, this could be <a href="mailto:dsmith@ibm.com">dsmith@ibm.com</a>. This is a text field of up to 100 characters.</td>
</tr>
<tr>
<td></td>
<td>There are three ways to use %%HostIdMap%%:</td>
</tr>
<tr>
<td></td>
<td>• If you place it in the CONTENT section, the end user can specify the value (or values, because it can be repeated).</td>
</tr>
<tr>
<td></td>
<td>• You can also place it in the APPL section that the application provides. If you do so, it should have the following form:</td>
</tr>
<tr>
<td></td>
<td>• A third way to specify HostIdMap is to place %%HostIdMap%% in the ADMINAPPROVE section. This allows the administrator to fill in the value when approving the certificate request. See “Administering HostIdMappings extensions” on page 482 for more information.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>InstallCert</td>
<td>(This field is for the Internet Explorer browser only.) This field contains script for producing a window that installs an automatically-renewed certificate copied from an email notification.</td>
</tr>
<tr>
<td>JurCountry</td>
<td>The jurisdiction of incorporation country name. This is a two-character text field.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This field is intended for use in certificates that follow the criteria for Extended Validation (EV) certificates. For more information about the criteria, see the Extended Validation Certificate Guidelines (cabforum.org/extended-validation) produced by the CA/Browser Forum.</td>
</tr>
<tr>
<td>JurLocality</td>
<td>The jurisdiction of incorporation locality name. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This field is intended for use in certificates that follow the criteria for Extended Validation (EV) certificates. For more information about the criteria, see the Extended Validation Certificate Guidelines (cabforum.org/extended-validation) produced by the CA/Browser Forum.</td>
</tr>
<tr>
<td>JurStateProv</td>
<td>The jurisdiction of incorporation state or province name. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This field is intended for use in certificates that follow the criteria for Extended Validation (EV) certificates. For more information about the criteria, see the Extended Validation Certificate Guidelines (cabforum.org/extended-validation) produced by the CA/Browser Forum.</td>
</tr>
<tr>
<td>KeyProt</td>
<td>(This field is for the Internet Explorer browser only.) This field asks if the user wants to enable strong private key protection. The drop-down choices are Yes and No.</td>
</tr>
<tr>
<td>KeySize</td>
<td>The size of the keys (public key and private key) in bits, if they are to be generated by PKI Services. Valid values for each key type are:</td>
</tr>
<tr>
<td></td>
<td><strong>RSA</strong> 512, 1024, 2048, 4096</td>
</tr>
<tr>
<td></td>
<td><strong>NISTECC</strong> 192, 224, 256, 384, 521</td>
</tr>
<tr>
<td></td>
<td><strong>BPECC</strong> 160, 192, 224, 256, 320, 384, 512</td>
</tr>
<tr>
<td>KeyUsage</td>
<td>The intended purpose of the certificate. Each possible value is shown in Table 33 on page 147 with its intended purpose and possible PKIX bits.</td>
</tr>
<tr>
<td>Label</td>
<td>The label assigned to the requested certificate. This is a text field of up to 32 characters.</td>
</tr>
<tr>
<td>Locality</td>
<td>The city or municipality where your organization is located, such as Pittsburgh or Paris. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject's distinguished name in the certificate.</td>
</tr>
<tr>
<td>Mail</td>
<td>The email address for the distinguished name. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> The value is one of the relative distinguished names that is saved in the subject's distinguished name in the certificate.</td>
</tr>
</tbody>
</table>
### Table 32. Named fields in INSERT sections (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotBefore</td>
<td>Number of days (0 - 30) before the certificate becomes valid.</td>
<td></td>
</tr>
<tr>
<td>NotAfter</td>
<td>Number of days (1 - 9999) that the certificate is current. For example, 365 for a one-year certificate.</td>
<td></td>
</tr>
<tr>
<td>NotifyEmail</td>
<td>The email address for notification purposes. If automatic certificate renewal is in effect, this is the email address to which PKI Services sends the certificate when it is automatically renewed. This is a text field of up to 64 characters.</td>
<td>Notes:&lt;br&gt;1. When a certificate is created and posted to LDAP, the NotifyEmail value, if specified, is posted as the MAIL attribute. If the MAIL attribute already exists in that directory entry, its value is replaced by the new value. If both NotifyEmail and Email appear on one request, they must have the same value.&lt;br&gt;2. If a certificate for which PKI Services generated the keys is renewed, the NotifyEmail field is ignored, and the renewed certificate is sent to the requestor’s email address.</td>
</tr>
<tr>
<td>Org</td>
<td>Organization. The legally registered name (or trademark name, for example, IBM) of your organization. This is a text field of up to 64 characters.</td>
<td>Note: The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>OrgUnit</td>
<td>The name of your division or department. This is a text field of up to 64 characters.</td>
<td>Note: The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>OrgUnit2</td>
<td>The name of your division or department. (There can be more than one organizational unit field on a request form. For example, one could be for your department and another for your division.) This is a text field of up to 64 characters.</td>
<td>Note: The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>PassPhrase</td>
<td>The user decides this and enters and then reenters it when requesting a certificate (and must later supply this value when retrieving the certificate). This is a case-sensitive text field of up to 32 characters. There is no minimum number of characters, and the user can use any characters, but alphanumeric characters (A - Z, a - z, and 0 - 9) are suggested.</td>
<td></td>
</tr>
<tr>
<td>PostalCode</td>
<td>The zip code or postal code. This is a text field of up to 64 characters.</td>
<td>Note: The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| PublicKey           | The base64-encoded #10 certificate request. (This is for server or device enrollment only.) You create a certificate request on behalf of another server (which could be a z/OS server or other type of server) or device for which you are requesting a certificate. You use software specific to that server to generate the #10 request before going to the PKI Services website. Save the request in a file. Then open the file in a text editor such as Windows Notepad and copy and paste the contents into the text box on the enrollment form. A text area of 70 columns and 12 rows is allocated for this certificate request. Here is an example of the certificate request:  
**-----BEGIN NEW CERTIFICATE REQUEST-----**
MIIBiDCB8gIBADAZMRcwFQYDVQQDEw5Kb2huIFEuIFBlYmxpYzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAsCT1cJHAGPqi6OjAyL+xNbtBz5ngmvq0ZV003oYu/mEnQTRM96e+2jbmDCRo5tWk1g40Yf9ZV85b1oRMJFLzttfa4AVdEvtn80H2pwcwN1Zcc1ZymSadxuUmY0k64PglllPMQ5/t8tttG4c5U8uwK6k134V4f7ps+tiAge+sCAwEAAawMc4GCs0qGSIb3QXIDm7ehM8wHQYDVR0DBBEF4A1KToyb8wFqD3A01oIhtRiuwRC9MA6GCSqSIb3QEBBQUAAADBiChVwp2yVypixX3HHmpKZPNYB5nszAJzDsgAEH51W0RI6ywhqKcLLxa9htQaG6c2c8RpfVTwk6UfdC6xMn4aFb34Tk35wyd201HxGMMH1B3EuudWw+S7Fv33hU0FLF1AJbV1+351EWWm0r6mE5W  
CathpzmG6KrRoDE5E  
**-----END NEW CERTIFICATE REQUEST-----**  
| PublicKeyIE “1” | (This field is for the Internet Explorer browser only.) This is the cryptographic service provider. The user selects a value from a drop-down list (Microsoft Base Cryptographic Provider or Microsoft Enhanced Cryptographic Provider).                                                                                                                                                                                                                     |
| PublicKeyNS “1” | (This field is for Mozilla-based browsers only.) This is the key size for your public/private key pair. The user selects a value from the drop-down list. Larger keys are more secure, but they also increase the time needed for connecting to a secure session.                                                                                                                                                                    |
| PublicKey2IE       | (This field is for the Internet Explorer browser only.) This field is the smart card cryptographic service provider. The user selects a smart card provider from a list.                                                                                                                                                                                                                                                                                      |
| PublicKey2NS       | (This field is for Mozilla-based browsers only.) This field is the keygen HTML tag. It displays a menu of key sizes from which the user must choose one. When the user clicks submit, a key pair of the selected size is generated.                                                                                                                                                                                                                                               |
| RecoverEmail,      | This field is used to recover a certificate whose keys were generated by PKI Services. It contains the email address of the requestor.                                                                                                                                                                                                                                                                                                                             |
| RecoverEmail2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Requestor “1”      | The user's name, which is used for tracking the request. This can be in any format, for example, John Smith or John. J. Smith. (This can differ from the common name, especially if the request is for a server certificate.) The value is saved with the request and issued certificate, but it is not a field in the created certificate. The default value is taken from the leftmost RDN in the subject's distinguished name, truncated to 32 characters.                                                                                                                                 |
| Requestor2         | The email address of the requestor. This field is used to request a certificate with a key pair generated by PKI Services, and to retrieve such a certificate.                                                                                                                                                                                                                                                                                                                                     |
| Security1, Security2, ... | Security questions used to assist recovering a certificate whose keys were generated by PKI Services. These fields can be used by the GENCERT, REQCERT and QRECOVER exits. You can have as many of these fields as you want, but the number you have must match the number that your exits handle. The fields should be numbered in order, beginning with Security1.                                                                                                                                                                                                 |
| Securityyn         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SerialNumber “1”   | Serial number of the subject device. This is a text field of up to 64 characters.                                                                                                                                                                                                                                                                                                                                                                                                         |
### Table 32. Named fields in INSERT sections (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| SignWith    | For PKI the component and for SAF the component and key-label used to sign this certificate, indicating the provider for certificate generation. This is a text field of up to 45 characters. It can be SAF or PKI Services, as shown in the following examples.  
Examples:  
"SAF:CERTAUTH/Local CA Cert"  
"PKI:"  
For SAF, the label of the signing certificate must be included. The first example shows the SignWith field in a SAF template. It includes the signing certificate, a CERTAUTH certificate labeled 'Local CA Cert'.  
For PKI, it is an error to include the signing certificate. The second example shows the SignWith field in a PKI template. Notice that this contains no signing certificate. |
| StateProv   | The state or province where your organization is located. Your registration policies determine whether you spell out the full name of the state or province or use an abbreviation. This is a text field of up to 64 characters.  
**Note:** The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate. |
| Street      | The street address. This is a text field of up to 64 characters.  
**Note:** The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate. |
| Title       | Job title. This is a text field of up to 64 characters.  
**Note:** The value is one of the relative distinguished names that is saved in the subject’s distinguished name in the certificate. |
| TransactionId | PKISERV web pages assign this after the user requests a certificate. When it is displayed, the user needs to record this number. This is a text field of up to 56 characters. |
| Uid         | The subject's login ID. This is a text field of up to 64 characters. |
| UnstructAddr| Unstructured address of the subject device. This is a text field of up to 64 characters. |
| UnstructName| Unstructured device name. This is a text field of up to 64 characters. |
| UserId      | The owning SAF user ID. This is a text field of up to 8 characters. |

**Restrictions:**

1. This field is applicable for only PKI certificates (certificates using the PKI: value in the SignWith field).
2. This field is applicable for only SAF certificates (certificates using the SAF: value in the SignWith field).
<table>
<thead>
<tr>
<th>KeyUsage value</th>
<th>Intended purpose</th>
<th>PKIX bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>certsign</td>
<td>Certificate and CRL signing</td>
<td>KeyCertSign and cRLSign</td>
</tr>
<tr>
<td>crlsign</td>
<td>CRL signing</td>
<td>cRLSign</td>
</tr>
<tr>
<td>dataencrypt, dataencipherment, or dataenciph</td>
<td>Data encryption</td>
<td>dataEncipherment</td>
</tr>
<tr>
<td>digitalsig or digitalsignature</td>
<td>Authentication</td>
<td>digitalSignature</td>
</tr>
<tr>
<td>docsigan or nonrepudiation</td>
<td>Document signing</td>
<td>nonRepudiation</td>
</tr>
<tr>
<td>handshake</td>
<td>Protocol handshaking (for example, SSL)</td>
<td>digitalSignature and keyEncipherment</td>
</tr>
<tr>
<td>keyagree or keyagreement</td>
<td>Key agreement</td>
<td>keyAgreement</td>
</tr>
<tr>
<td>keycertsign</td>
<td>Certificate signing</td>
<td>keyCertSign</td>
</tr>
<tr>
<td>keyencrypt, keyencipherment, or keyenciph</td>
<td>Key transport</td>
<td>keyEncipherment</td>
</tr>
</tbody>
</table>

Note: If certsign, crlsign, or keycertsign is specified, the certificate is created with the basic constraints extension to indicate that it is a certificate authority certificate, in addition to the key usage extension.

The APPLICATION sections

The APPLICATION sections identify the application domains supported by PKI Services. The default certificate templates file (pkiserv.tmpl) ships with two applications sections, PKISERV (for PKI administrators) and CUSTOMERS (for general users).

The format of the APPLICATION sections is:

```xml
<APPLICATION NAME=appl-name>...</APPLICATION>
```

Each application section begins with an application name definition.

Examples:

```xml
<APPLICATION NAME="PKISERV">
This application contains support for all templates and functions.
</APPLICATION>
```

```xml
<APPLICATION NAME="CUSTOMERS">
This application contains support for all templates and functions but does not include the button on the PKI Services home page that directs users to the administration page.
</APPLICATION>
```

Each APPLICATION section can contain the subsections that are shown in Table 34 on page 147.

<table>
<thead>
<tr>
<th>Section or subsection</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTENT</td>
<td>HTML for the &quot;PKI Services Certificate Generation Application&quot; web page. (For a sample of this web page, see Figure 42 on page 377.) This subsection should contain one or more named fields (see “What are named fields?” on page 137) identifying certificate templates to use for requesting or managing certificates through this application. These template names should match the HTML selection value that is associated with them.</td>
</tr>
<tr>
<td>Section or subsection</td>
<td>Contents</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>FAILURECONTENT</td>
<td>This subsection contains the HTML for the web page that is displayed when the certificate request submit failed. Any named fields in this subsection are interpreted as content inserts defined by INSERT sections. For PKISERV, the INSERT sections are included as part of the HTML presented to the end user.</td>
</tr>
</tbody>
</table>
| FINDRECOVERCONTENT    | This subsection contains the information for recovering a certificate in the case where the user has forgotten the passphrase.  
  **Note:** Only certificates whose keys were generated by PKI Services are recoverable. |
| RECONTENT             | HTML for the web page "Renew or revoke a browser certificate". The web page displays information about a certificate so that the end user can confirm that this is the correct certificate to renew or revoke. (For a sample of this web page, see Figure 55 on page 396.) This subsection uses the substitution variable [printablecert], which contains the data that is extracted from the ICL entry. (See “What are substitution variables?” on page 136.) |
| RECONTENT2            | This subsection is similar to the RECONTENT section except that it applies to a certificate whose key was generated by PKI Services and is to be revoked. |
| RECOVERCONTENT        | This subsection contains HTML and JavaScript functions to recover a previously issued certificate whose key was generated by PKI Services. |
| RENEWEDCERT           | This subsection contains HTML and JavaScript functions to install an automatically renewed certificate that is copied from an email notification if using the Internet Explorer browser. |
| RESUCCESSCONTENT      | Contains only the named field %%-renewrevokeok%% (whose associated INSERT contains HTML for the web page "Request submitted successfully"). |
| REFAILURECONTENT      | Contains only the named field %%-renewrevokebad%% (whose associated INSERT contains HTML for the web page "Request was not successful"). The web page is displayed to the end user when a renewal or revocation request is unsuccessful. |
| RETRIEVECONTENT2      | This subsection contains the HTML to allow the end user to retrieve a recovered certificate. |
| RETURNCERT            | This subsection contains the HTML for the web page that is displayed upon successful retrieval of a recovered certificate. This section contains the named field %%returnp12cert%%, which indicates a PKCS #12 format. |
| ADMINSCOPE            | This subsection is for an administration page. It contains only the named field %%SelectCADomain%% to prompt the administrator to choose a domain. (For more information, see “Adding a new CA domain” on page 302.) |
| ADMINHEADER           | This subsection contains the general installation-specific HTML content for the header of all administration web pages. See “Steps for customizing the administration web pages” on page 235 for more information. |
Table 34. Subsections of the APPLICATION sections (continued)

<table>
<thead>
<tr>
<th>Section or subsection</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMINFOOTER</td>
<td>This subsection contains the general installation-specific HTML content for the footer of all administration web pages. See “Steps for customizing the administration web pages” on page 235 for more information.</td>
</tr>
</tbody>
</table>

Templates that PKI Services provides

PKI Services provides the templates to request the following certificates:

- One-year SAF server certificate
- One-year SAF browser certificate
- One-year PKI SSL browser certificate (See Figure 44 on page 386 to see a sample of this web page.)
- One-year PKI SSL S/MIME browser certificate
- One-year PKI generated key certificate
- Two-year EV SSL server certificate
- Two-year PKI browser certificate for authenticating to z/OS
- Two-year PKI Authenticode - code signing server certificate
- Two-year PKI Windows logon certificate
- Five-year PKI SSL server certificate
- $n$-year PKI browser certificate for extensions demonstration
- Five-year SCEP certificate - Preregistration
- Two-Year EST Certificate Preregistration
- Five-year PKI IPSEC server (firewall) certificate
- Five-year PKI intermediate CA server certificate

The following table describes the certificate templates that PKI Services provides:

Table 35. Certificate templates PKI Services provides

<table>
<thead>
<tr>
<th>Certificate template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-year SAF server certificate</td>
<td>This template allows end users to request a server certificate using native SAF certificate generation facilities (rather than PKI Services certificate generation facilities). The certificate is used for handshaking only (for example, SSL). This certificate is auto-approved.</td>
</tr>
<tr>
<td>One-year SAF browser certificate</td>
<td>This template allows end users to request a browser certificate. SAF certificate generation facilities (rather than PKI Services certificate generation facilities) create the certificate. The requestor must input a label (see Table 32 on page 139 for descriptions of fields) because the certificate is stored in a RACF database. This certificate is auto-approved.</td>
</tr>
<tr>
<td>One-year PKI SSL browser certificate</td>
<td>This template allows end users to request a browser certificate that PKI Services generates. The end user enters the common name. (See Table 32 on page 139 for descriptions of fields.) This template contains an ADMINAPPROVE section. Therefore, certificates requested using this template require administrator approval before being issued. The user ID and password are not required but the passphrase is required.</td>
</tr>
<tr>
<td>Certificate template</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>One-year PKI S/MIME browser certificate</td>
<td>This template allows end users to request a browser certificate that PKI Services generates. This is similar to the one-year PKI SSL browser certificate except the end user selects AltEmail.</td>
</tr>
<tr>
<td>One-year PKI generated key certificate</td>
<td>This template allows end users to request a certificate that PKI Services generates, with a public key and private key that PKI Services generates. The user must supply a name, email address, passphrase, and key size. This template requires administrator approval. You need to assess the risk of using this template. The requestor provides the transaction ID and passphrase to retrieve the private key and the certificate. The transaction ID and the passphrase entered by the requestor can be shown on the administrator pages. A malicious administrator could retrieve the certificate and the private key and use them. You should implement measures to minimize the risk of this happening; for example, check the log record on the number of retrievals or create an exit to limit the number of retrievals.</td>
</tr>
<tr>
<td>Two-year EV SSL server certificate</td>
<td>This template allows end users to request a two-year extended validation server certificate.</td>
</tr>
</tbody>
</table>
| Two-year PKI browser certificate for authenticating to z/OS| This template allows end users to request a browser certificate that PKI Services generates. This certificate is similar to the one-year PKI SSL browser certificate except that it includes the %%HostIdMap%% INSERT and this certificate is auto-approved.  
%%HostIdMap%% is intended as a replacement for adding (and mapping) the certificate to a RACF user ID.  
This template specifies %%HostIdMap=@ host-name%% and % %UserId%% in the APPL section. This template does not require administrator approval but has protection through the user ID and password. (For more information about %%HostIdMap%%, see the HostIdMap field in Table 32 on page 139.) |
| Two-year PKI Authenticode - code signing server certificate| This template allows end users to request that a server certificate be used to sign software that is downloaded across an untrusted medium. It also demonstrates how to define extensions for template specific certificate policies and third party-provided OCSP. |
| Two-year PKI Windows logon certificate                    | This template allows end users to request a certificate to use when logging in with a smart card to a Windows desktop as an Active Directory user. This template supports requests from both Internet Explorer and Mozilla-based browsers, and supports the following cryptographic services providers (CSPs).  
• Datakey  
• Gemplus  
• Infineon SICRYPT  
• Schlumberger  
Support for additional CSPs can be added when you customize the template. |
<table>
<thead>
<tr>
<th>Certificate template</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five-year PKI SSL server certificate</td>
<td>This template allows end users to request a server certificate that PKI Services generates. This is similar to the SAF server template except that this template contains an ADMINAPPROVE section. Therefore, certificates requested using this template require administrator approval before being issued. The user ID and password are not required but the passphrase is required.</td>
</tr>
<tr>
<td>Five-year PKI IPSEC server (firewall) certificate</td>
<td>This template allows end users to request a server certificate that PKI Services generates. This is similar to the five-year PKI SSL server certificate except that KeyUsage constants handshake and dataencrypt are hardcoded. Also, the end user selects AltEmail, AltIPAddr, AltURI, and AltDomain.</td>
</tr>
<tr>
<td>Five-year PKI intermediate CA server certificate</td>
<td>This template allows end users to request a server certificate that PKI Services generates. This is similar to the PKI SSL server template except that KeyUsage is hardcoded as certsign. Also, this certificate is auto-approved (because it runs under the user ID of the requestor, that is the person requesting this must be highly authorized). The user ID and password are required, and the units of work should run under the client’s ID. In other words, the end user must be someone who can do this using RACDCERT alone, that is, must have CONTROL authority to IRR.DIGTCERT.GENCERT, and so forth. Given this requirement, the administrator need not approve this. The PassPhrase is required.</td>
</tr>
<tr>
<td>Five-year SCEP certificate - Preregistration</td>
<td>This template supports certificate preregistration for Simple Certificate Enrollment Protocol (SCEP) clients. The PassPhrase is required.</td>
</tr>
<tr>
<td>Two-Year EST certificate - Preregistration</td>
<td>This template supports certificate preregistration for Enrollment Over Secure Transport (EST)</td>
</tr>
<tr>
<td>n-year PKI browser certificate for extensions demonstration</td>
<td>This template creates a browser certificate that has most of its information provided by the user rather than controlled by the administrator. The certificate contains all the supported extensions.</td>
</tr>
</tbody>
</table>

**TEMPLATE sections**

TEMPLATE sections define the fields that comprise a specific certificate request. They define the certificate templates that are referenced in the APPLICATION section. The pkiserv.tmpl certificate templates file contains a TEMPLATE section for each of the certificates that are described in Table 35 on page 149.

Each template section begins with one or more template names.

```xml
<TEMPLATE NAME=tmpl-name> ... </TEMPLATE NAME>
```

The pkiserv.tmpl certificate templates file that ships with PKI Services includes lines like the following example:

**Example:**

```xml
<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSLL>
```

The true name of a certificate template is its actual complete name. This is the name in the first line, **1-Year PKI SSL Browser Certificate**. However, you can refer to a single template by more than one name by using an alias. The template name in the second line, **PKI Browser Certificate**
Certificate, is an alias. An alias differentiates browser from server certificates. Finally, renewing a certificate requires recalling the template name, so the template name must be stored with the certificate. The NICKNAME (or short name) serves this purpose.

**Notes:**

1. You can have more than one alias. (Use an additional `<TEMPLATE NAME=alias>` line for each one.)
2. The value of a NICKNAME is an 8-character string.
3. SAF certificate templates do not include nicknames.

Table 36 on page 152 shows the true name, alias, and nickname for each certificate template:

<table>
<thead>
<tr>
<th>True name</th>
<th>Alias</th>
<th>Nickname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Year PKI SSL Browser Certificate</td>
<td>PKI Browser Certificate</td>
<td>1YBSSL</td>
</tr>
<tr>
<td>1-Year PKI S/MIME Browser Certificate</td>
<td>PKI Browser Certificate</td>
<td>1YBSM</td>
</tr>
<tr>
<td>1-Year PKI Generated Key Certificate</td>
<td>PKI Key Certificate</td>
<td>1YKRC</td>
</tr>
<tr>
<td>2-Year EV SSL Server Certificate</td>
<td>PKI Server Certificate</td>
<td>2YEVSSL</td>
</tr>
<tr>
<td>2-Year PKI Browser Certificate For Authenticating To z/OS</td>
<td>PKI Browser Certificate</td>
<td>2YBZOS</td>
</tr>
<tr>
<td>2-Year PKI Authenticode - Code Signing Certificate</td>
<td>PKI Server Certificate</td>
<td>2YIACS</td>
</tr>
<tr>
<td>2-Year PKI Windows Logon Certificate</td>
<td>PKI Browser Certificate</td>
<td>2YBWLN</td>
</tr>
<tr>
<td>5-Year PKI SSL Server Certificate</td>
<td>PKI Server Certificate</td>
<td>5YSSSL</td>
</tr>
<tr>
<td>5-Year PKI IPSEC Server (Firewall) Certificate</td>
<td>PKI Server Certificate</td>
<td>5YSIPS</td>
</tr>
<tr>
<td>5-Year PKI Intermediate CA Certificate</td>
<td>PKI Server Certificate</td>
<td>5YSICA</td>
</tr>
<tr>
<td>5-Year SCEP Certificate - Preregistration</td>
<td>—</td>
<td>5YSCEPP</td>
</tr>
<tr>
<td>2-Year EST Certificate - Preregistration</td>
<td>—</td>
<td>2YESTP</td>
</tr>
<tr>
<td>n-Year PKI Certificate for Extensions Demonstration</td>
<td>PKI Browser Certificate</td>
<td>SAMPLB</td>
</tr>
<tr>
<td>1-Year SAF Browser Certificate</td>
<td>SAF Browser Certificate</td>
<td>-</td>
</tr>
<tr>
<td>1-Year SAF Server Certificate</td>
<td>SAF Server Certificate</td>
<td>-</td>
</tr>
</tbody>
</table>

The AUTORENEW tag is optional. It determines whether the certificate is to be automatically renewed when it approaches expiration. This tag has the form `<AUTORENEW=value>`, where value can have the value Y, y, N, or n. If the AUTORENEW tag has any other value, or does not immediately follow the NICKNAME tag, PKI Services operates as if the tag is not present. The tag has the following meanings:

- AUTORENEW tag not present means that the certificate is not set up for automatic renewal.
- AUTORENEW=Y means that the certificate is enabled for automatic renewal.
- AUTORENEW=N means that the certificate is eligible for automatic renewal, but automatic renewal is disabled.

**Note:** Adding the `AutoRenew=Y` does not enable all certificates to be AutoRenewed. It enables only the newly issued certificates after the template is updated. For more information about how AutoRenew processing should be added, see Chapter 19, “Using the administration web pages,” on page 405.

See “Setting up automatic renewal of certificates” on page 323 for more information.
The SYNCHRONOUS tag is optional. It determines whether the certificate is to be synchronously created when the request does not need administrator’s approval. The SYNCHRONOUS tag will be ignored if the ADMINAPPROVE tag is present.

The ADMINAPPROVE tag has the form of `<SYNCHRONOUS=value>`, where value can have the value Y, y, N, or n. If the SYNCHRONOUS tag has any other value, PKI Services operates as if the tag is not present.

The tag has the following meanings:

- The SYNCHRONOUS tag is not present or SYNCHRONOUS=N, meaning that the certificate will not be generated immediately in response to the request. Additionally, when a transaction IS is returned, the certificate has not been generated yet.

- The SYNCHRONOUS=Y means that the certificate will be generated immediately in response to the request. In other words, when a transaction ID is returned, the certificate has been generated.

See “Setting up synchronous certificate requests” on page 325 for more information.

Example:

```xml
<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSSL>
<AUTORENEW=Y>
SYNCHRONOUS=Y
</CONTENT>...
```

TEMPLATE sections can have the following subsections:

- CONTENT
- APPL
- CONSTANT
- ADMINAPPROVE
- SUCCESSCONTENT
- FAILURECONTENT
- RETRIEVECONTENT
- RETURNCERT
- PREREGISTER

This subsection contains the HTML to display a web page to the end user requesting a certificate of a specific type. (See Figure 44 on page 386 for a sample web page.) Field names on the certificate request (such as a text box where the user enters a value for Common Name) match the names of INSERT sections. The following examples show the INSERT sections corresponding to the field names %%CommonName%% and %%Requestor (optional)%%.

Examples:

```xml
<INSERT NAME=CommonName>
<p><LABEL for="commonnamefield">Common Name [optfield]</LABEL><BR>
<INPUT NAME="CommonName" TYPE="text" SIZE=64 maxlength="64" id="commonnamefield">
</INSERT>

<INSERT NAME=Requestor>
<p><LABEL for="requestorfield">Your name for tracking this request [optfield]</LABEL><BR>
<INPUT NAME="Requestor" TYPE="text" SIZE=32 maxlength="32" id="requestorfield">
</INSERT>
```

Named fields in this subsection are optional if the named field contains more than one word within the %% delimiters (as in %%Requestor (optional)%%). The user need not supply a value for Requestor.
This subsection identifies certificate fields for which the application itself should provide values. This subsection should contain only named fields, one per line. The only supported named fields that are allowed in this section are:

- UserId
- HostIdMap

Example:

```
<APPL>
 %%UserId%%
 %%HostIdMap=www.ibm.com%%
<APPL>
```

This subsection identifies certificate fields that have a constant (hardcoded) value for everyone. This subsection should contain only named fields, one per line. The syntax for specifying the values is `%%field-name=field-value%%`:

Example:

```
%%KeyUsage=handshake%%
```

In addition to the named fields listed in Table 32 on page 139, you can also include the following named fields in this subsection only.

**Critical**

Identifies a certificate extension that is to be marked critical in the issued certificates. This name-value pair can be repeated for each extension to be marked critical. Here is the list of acceptable values for **Critical**:

- BasicContraints (ignored as this extension is always marked critical)
- KeyUsage (ignored as this extension is always marked critical)
- ExtKeyUsage
- SubjectAltName, AltEmail, AltIPAddr, AltDomain, AltURI
- HostIdMappings, HostIdMap

Example:

```
%%Critical=ExtKeyUsage%%
```

**Rules:**

1. If you have specified configuration file setting `PolicyRequired=T`, then specifying `%%Critical=CertPolicies%%` is ignored. The configuration file setting `PolicyCritical` determines if the CertificatePolicies extension is marked critical. See “Using certificate policies” on page 284 for more information.

2. When ExtKeyUsage is extracted from an input PKCS #10 certificate request, the critical flag in the request is ignored. Therefore, setting `%%Critical=ExtKeyUsage%%` is the only way to get the ExtKeyUsage extension marked critical.

**CertPolicies**

Identifies the certificate policies that are to be included in the issued certificates. The value is a vector of numbers each representing one of the PolicyName values that are specified in the **CertPolicy** section of the configuration file.

Example:

```
%%CertPolicies=3 6 10%%
```
Rule: If you specified configuration file setting PolicyRequired=T, then specifying %CertPolicies=any-value%% is ignored. All issued certificates have the same certificate policies as defined in the configuration file. See “Using certificate policies” on page 284 for more information.

AuthInfoAcc
Indicates the information necessary for the AuthorityInfoAccess extension. The value specifies a two-part, comma-separated string identifying the access method (OCSP or IdentrusOCSP) and the access URL. The URL must be specified in HTTP-protocol format only. (LDAP protocol is not supported.) The name-value pair can be repeated for each value that is required in the extension.

Examples:

- %%OCSP,URL=https://ocsp.vendor.com%%
- %%IdentrusOCSP,URI=https://identrus200.identrus.com%%
- %%OCSP,URI=http://www.mycompany.com/PKIServ/public-cgi/caocsp%%

<ADMINAPPROVE>…</ADMINAPPROVE>
This optional subsection contains the named fields that the administrator can modify when approving certificate requests. (The named fields refer to INSERT sections.) When an end user requests a certificate, the certificate request might contain fields that the end user cannot see. When approving a request, the administrator can modify:

- Fields that are present and visible to the end user in the certificate request, for example Common Name
- Fields that are not visible to the end user but are hardcoded (in the CONSTANT subsection) in the template, for example Organizational Unit
- Fields that are not visible to the end user and that the PKI Services administrator can add, for example, HostIdMappings extension or an empty Organizational Unit field (these are listed in the <ADMINAPPROVE> section, and either the end user did not fill them in or they are not present on the template request form).

The presence of this section (even if empty) indicates that an administrator must approve this request. The absence of this section indicates using auto-approval.

Note: In the pkiserv.tmpl certificate templates file, the only certificate templates that are auto-approved are:

- One-year SAF server certificate
- One-year SAF browser certificate
- Two-year PKI browser certificate for authenticating to z/OS
- Five-year PKI intermediate CA server certificate

The following tags are allowed in the ADMINAPPROVE section:

- ADMINNUM
- AltDomain
- AltEmail
- AltIPAddr
- AltOther_OID
- AltURI
- AuthInfoAcc
- CertPolicies
- CommonName
- Country
- Critical
Customizing the end-user web pages using REXX CGIs

- CustomExt
- DNQualifier
- DomainName
- EmailAddr
- EndDate
- ExtKeyUsage
- HostIdMap (can repeat)
- JurCountry
- JurLocality
- JurStateProv
- KeyUsage
- Locality
- Mail
- Org
- OrgUnit (can repeat)
- PostalCode
- SerialNumber
- StartDate
- StateProv
- Street
- Title
- Uid
- UnstructName
- UnstructAddr

**Note:** The following fields are not modifiable and are ignored in the ADMINAPPROVE section:
- Label
- PublicKey
- Requestor
- SignWith
- UserId

(For information about fields, see Table 32 on page 139.)

**Example:**

```
<ADMINAPPROVE>
  %%KeyUsage%%
  %%CommonName%%
  %%OrgUnit%%
  %%Org%%
  %%Country%%
  %%HostIdMap%%
  %%HostIdMap%%
  %%HostIdMap%%
<ADMINAPPROVE>
```

The ADMINNUM tag is optional. It indicates the number of PKI Services administrators that must approve certificate requests that are using this template before certificates are issued for them. This tag has the form `<ADMINNUM=value>`, where value is a numeric value from 1 to 32. The tag has the following meanings:
By default, all certificate requests require approval by one PKI Services administrator. If the ADMINNUM tag is not present, all certificate requests that use this template require approval by one PKI Services administrator before issuing a certificate.

If the ADMINNUM tag does not occur within the ADMINAPPROVE subsection, PKI Services operates as if the tag is not present.

If the ADMINNUM value is greater than 32, a value of 32 is used.

If the ADMINNUM value is less than one or is a non-numeric value, a value of 1 is used.

Note: A request remains in Pending Approval state until the required number of individual administrative approvals is made for the request, at which time the request changes to Approved state. If an administrator issues an Approve with Modifications on a request that is in Pending Approval state, any previously made approvals are nullified, and the number of approvals that are made for the request is reset to 1.

Example:

```
<ADMINAPPROVE>
<ADMINNUM=4>
  %%KeyUsage%%
  %%CommonName%%
  %%OrgUnit%%
  %%Org%%
  %%Country%%
  %%HostIdMap%%
  %%HostIdMap%%
  %%HostIdMap%%
  %%HostIdMap%%
<ADMINAPPROVE>
```

<SUCCESSCONTENT>...</SUCCESSCONTENT>

This subsection contains the HTML to display to the end user a web page indicating that the certificate request was submitted successfully. Any named fields in this subsection are interpreted as content inserts defined by INSERT sections. For PKISERV, the INSERT sections are included as part of the HTML to display a web page to the end user.

In all of the templates included with PKI Services, <SUCCESSCONTENT> contains only the named field %%-requestok%%. (See “What are named fields?” on page 137 for an explanation of named fields.) This contains HTML for the web page "Request submitted successfully". (For a sample of this web page, see Figure 46 on page 389.)

<FAILURECONTENT>...</FAILURECONTENT>

This subsection contains the HTML to display to the end user a web page indicating the certificate request was not submitted successfully. Any named fields in this subsection are interpreted as content inserts defined by INSERT sections. For PKISERV, the INSERT sections are included as part of the HTML to display a web page to the end user.

In all of the templates included with PKI Services, <SUCCESSCONTENT> contains only the named field %%-requestbad%%. (See “What are named fields?” on page 137 for an explanation of named fields.) This contains HTML for the web page that says, "Request was not successful".

<RETRIEVECONTENT>...</RETRIEVECONTENT>

This subsection contains the HTML to display to the end user a web page to enable certificate retrieval. Any named fields in this subsection are interpreted as content inserts that the INSERT sections define. For PKISERV, the INSERT sections are included as part of the HTML presented to the end user.

For a sample of a web page this section generates, see Figure 47 on page 390. You might want to look at this web page while reading the following explanation:

In all of the templates included with PKI Services, <RETRIEVECONTENT> contains:

- The named field %%-copyright%%, which displays any copyright information. (See “What are named fields?” on page 137 for an explanation about named fields.)
Customizing the end-user web pages using REXX CGIs

- The title of the web page (This appears in the banner of your browser. Figure 47 on page 390 does not include the banner header but shows only the frame containing the content and not the browser window displaying the content.)
- A JavaScript script for processing the fields that the user enters on the web page.
- A heading that says "Retrieve Your (name of certificate)". This uses the substitution variable [tmpl1.name]. (See “What are substitution variables?” on page 136 for an explanation of substitution variables.)
- Text: a heading and paragraph about bookmarking this web page.
- The named field %%TransactionId%% - A field where you enter your transaction ID if it is not already displayed.
- A field where you enter the passphrase you entered on the certificate request form.

<RETURNCERT>…</RETURNCERT>
This subsection contains the HTML to display a web page upon successful certificate retrieval. The formats are:
- A browser certificate that can be installed into the browser.
- A server certificate that is displayed in B64 format.
- A PKCS #12 package, which contains the private key. For a browser or server certificate, this can be a single certificate or a certificate chain, depending on the authority of the user ID that does the retrieval. For a certificate with a key pair generated by PKI Services, the PKCS #12 package contains the requested certificate and its issuer certificate.

<PREREGISTER>…</PREREGISTER>
This optional subsection indicates the creation of a preregistration record for the Enrollment over Secure Transport protocol (EST) or the Simple Certificate Enrollment Protocol (SCEP) For details on these protocols, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333 and Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341. The contents of this subsection differ depending on whether it is used for SCEP or EST request approval.

Example:

```xml
<PREREGISTER>
AuthenticatedClient=AutoApprove
SemiauthenticatedClient=AdminApprove
UnauthenticatedClient=Reject
SubsequentRequest=AutoApprove
RenewalRequest=AutoApprove
</PREREGISTER>
```

The ADMINNUM tag is optional. It indicates the number of PKI Services administrators that must approve certificate requests for clients that are marked as AdminApprove before certificates are issued for those clients. This tag has the form <ADMINNUM=value>, where value can be a numeric value from 1 to 32. The tag has the following meanings:

- By default, all requests for clients that are marked as AdminApprove require the approval of one PKI Services administrator. If the ADMINNUM tag is not present, all certificate requests for clients that are marked as AdminApprove require approval by one PKI Services administrator before issuing a certificate.
- If the ADMINNUM tag does not occur within the PREREGISTER subsection, PKI Services operates as if the tag is not present.
- If the ADMINNUM value is greater than 32, a value of 32 is used.
- If the ADMINNUM value is less than one or is a non-numeric value, a value of 1 is used.

Note: A request remains in Pending Approval state until the required number of individual administrative approvals is made for the request, at which time the request changes to Approved state. If an administrator issues an Approve with Modifications on a request that is in Pending
Approval state, any previously made approvals are nullified, and the number of approvals that are made for the request is reset to 1.

Example:

```xml
<PREREGISTER>
<ADMINNUM=4>
AuthenticatedClient=AutoApprove
SemiauthenticatedClient=AdminApprove
UnauthenticatedClient=Reject
SubsequentRequest=AutoApprove
RenewalRequest=AutoApprove
</PREREGISTER>
```

In this example:

- SCEP requests originating from authenticated clients are automatically approved, and do not require an explicit approval from a PKI Services administrator.
- SCEP requests originating from a semi-authenticated client require approvals from four PKI Services administrators before a certificate is issued.
- SCEP requests originating from any unauthenticated clients are automatically rejected without an explicit action from a PKI Services administrator.
- Requests for more certificates from previously authenticated SCEP clients, including SCEP requests to renew certificates, are automatically approved, and do not require an explicit approval from a PKI Services administrator.

When intended for use in approving EST requests, this subsection must be present, but is expected to have no contents. If the subsection does have any contents, those contents are ignored.

Example:

```xml
<PREREGISTER>
</PREREGISTER>
```

Summary of subsections contained in certificate templates

Table 37 on page 159 summarizes the subsections that are present in the various certificate templates in the `pkiserv.tmpl` file (as it is shipped):

<table>
<thead>
<tr>
<th>Certificate Templates</th>
<th>CONTENT</th>
<th>APPL</th>
<th>CONSTAN T</th>
<th>ADMINAP PROVE</th>
<th>SUCCESSC ONTENT</th>
<th>FAILUREC ONTENT</th>
<th>RETRIEVE CONTENT</th>
<th>RETURNCERT</th>
<th>PREREGISTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-year PKI SSL browser</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-year PKI SSL S/MIME browser</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-year SAF browser</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-year SAF server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1-year PKI key</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2-year EV SSL server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2-year PKI browser for z/OS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2-year PKI Authenticode signing server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2-year PKI Windows logon browser</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5-year PKI SSL server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5-year PKI IPSEC server (firewall)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Summary of fields in certificate templates

The tables in this topic summarize the fields contained in each certificate template that PKI Services provides.

Table 38 on page 160, Table 39 on page 162, and Table 40 on page 164 identify each template field as one of the following:

- **Required**
- **Optional**
- **Provided by the application**
- **Constant (supplied value is shown)**
- **Blank (field is not present in either the CONTENT or CONSTANT section)**

### Table 37. Summary of subsections in certificate templates (continued)

<table>
<thead>
<tr>
<th>Certificate Templates</th>
<th>CONTENT</th>
<th>APPL</th>
<th>CONSTAN T</th>
<th>ADMINAP PRove</th>
<th>SUCCESS CONTENT</th>
<th>FAILURE CONTENT</th>
<th>RETRIEVE CONTENT</th>
<th>RETURN Content</th>
<th>PREREGIS TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year PKI intermediate CA server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5-year SCEP preregistration</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5-year EST preregistration</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>n-year PKI browser extensions demo</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

### Table 38. Summary of fields for PKI browser certificate templates

<table>
<thead>
<tr>
<th>Field name</th>
<th>One-year PKI SSL browser</th>
<th>One-year PKI S/MIME browser</th>
<th>Two-year PKI browser for z/OS</th>
<th>Two-year PKI Windows logon certificate</th>
<th>n-year PKI browser extensions demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltDomain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optional</td>
</tr>
<tr>
<td>AltEmail</td>
<td></td>
<td>Required</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltIPAddr</td>
<td>Required</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltOther_OID</td>
<td></td>
<td></td>
<td></td>
<td>Constant: “1” on page 162</td>
<td>Optional</td>
</tr>
<tr>
<td>AltURI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Optional</td>
</tr>
<tr>
<td>CertPolicies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Constant: 1</td>
</tr>
<tr>
<td>Field name</td>
<td>One-year PKI SSL browser</td>
<td>One-year PKI S/MIME browser</td>
<td>Two-year PKI browser for z/OS</td>
<td>Two-year PKI Windows logon certificate</td>
<td>n-year PKI browser extensions demonstration</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>ClientName</td>
<td>Required</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>CommonName</td>
<td>Required</td>
<td>Constant:3 on page 162</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Country</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>CustomExt</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>DomainName</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>DNQualifier</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>EmailAddr</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td>Constant: clientauth</td>
<td>Constant: clientauth</td>
<td>Constants: clientauth and mssmartlogon</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>HostIdMap</td>
<td>Application provides</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>JurCountry</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>JurLocality</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>JurStateProv</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>KeySize</td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>KeyUsage</td>
<td>Constant: handshake</td>
<td>Constant: digitalSig</td>
<td>Required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Label</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>Mail</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>NotAfter</td>
<td>Constant: 365</td>
<td>Constant: 730</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>NotBefore</td>
<td>Constant: 0</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotifyEmail</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Org</td>
<td>Constant: The Firm</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>OrgUnit</td>
<td>Constant: Class 1</td>
<td></td>
<td></td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internet Certificate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrgUnit2</td>
<td>Optional</td>
<td></td>
<td></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>PassPhrase</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostalCode</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 38. Summary of fields for PKI browser certificate templates (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>One-year PKI SSL browser</th>
<th>One-year PKI S/MIME browser</th>
<th>Two-year PKI browser for z/OS</th>
<th>Two-year PKI Windows logon certificate</th>
<th>n-year PKI browser extensions demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PublicKey</td>
<td>Browser provided &quot;5&quot; on page 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PublicKey2</td>
<td></td>
<td></td>
<td>Browser provided &quot;5&quot; on page 162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requestor</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SignWith</td>
<td>Constant: PKI:</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>StateProv</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uid</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnstructAddr</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnstructName</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UserId</td>
<td>Application provides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The constant value is _1_3_6_1_4_1_311_20_2_3.
3. Although CommonName is a constant, no value is assigned to it. This indicates that RACF must determine the value. The user authenticates by specifying a user ID and password. (If UserID is listed in the APPL section, this means the application provides the user ID and password.) Providing the user ID and password enables RACF to look up the CommonName value in the user’s profile.
4. The HostIdMap value is formed by concatenating UserID with @host-name.
5. The PublicKey and PublicKey2 fields are coded with the browsertype substitution variable.

Table 39. Summary of fields for PKI server certificate templates

<table>
<thead>
<tr>
<th>Field name</th>
<th>Two-year EV SSL server</th>
<th>Two-year PKI Authenticode code signing server</th>
<th>Five-year PKI SSL server</th>
<th>Five-year PKI IPSEC server (firewall)</th>
<th>Five-year PKI intermediate CA server</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltDomain</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltEmail</td>
<td>Optional</td>
<td>Required</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltIPAddr</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltOther_OID</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltURI</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AuthInfoAcc</td>
<td>“1” on page 164</td>
<td>Constant “2” on page 164</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field name</td>
<td>Two-year EV SSL server</td>
<td>Two-year PKI Authenticode code signing server</td>
<td>Five-year PKI SSL server</td>
<td>Five-year PKI IPSEC server (firewall)</td>
<td>Five-year PKI intermediate CA server</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>-----------------------------------------------</td>
<td>--------------------------</td>
<td>---------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>BusinessCat</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CertPolicies</td>
<td></td>
<td>Constant: 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClientName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CommonName</td>
<td>Required</td>
<td>Constant: My Company Code Signing Certificate</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Required</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td>Constant: ExtKeyUsage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CustomExt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNQualifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DomainName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EmailAddr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td></td>
<td>Constant: codesigning</td>
<td>Constant: serverauth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HostIdMap&quot;3&quot; on page 164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurCountry</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurLocality</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurStateProv</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeySize</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeyUsage</td>
<td></td>
<td>Constants: digitalsig and docsign</td>
<td>Constant: handshake</td>
<td>Constants: handshake and dataencrypt</td>
<td>Constant: certsign</td>
</tr>
<tr>
<td>Label</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Required</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mail (previously called Email)</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotAfter</td>
<td></td>
<td>Constant: 730</td>
<td>Constant: 1825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotBefore</td>
<td></td>
<td>Constant: 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotifyEmail</td>
<td>Optional</td>
<td>Required</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Org</td>
<td>Required</td>
<td>Constant: The Firm</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrgUnit</td>
<td>Required</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrgUnit2</td>
<td>Required</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PassPhrase</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PostalCode</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PublicKey</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 39. Summary of fields for PKI server certificate templates (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Two-year EV SSL server</th>
<th>Two-year PKI Authenticode code signing server</th>
<th>Five-year PKI SSL server</th>
<th>Five-year PKI IPSEC server (firewall)</th>
<th>Five-year PKI intermediate CA server</th>
</tr>
</thead>
<tbody>
<tr>
<td>PublicKey2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requestor</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SignWith</td>
<td></td>
<td>Constant: PKI:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StateProv</td>
<td>Required</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnstructAddr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UnstructName</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UserId</td>
<td></td>
<td>Application provides</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

1. The constant value is OCSP, URL=http://ocsp.dime-o-cert.com/public-cgi/caocsp
3. The HostIdMap value is formed by concatenating UserId with @host-name.

### Table 40. Summary of fields for SAF, SCEP, EST, and PKI generated key certificate templates

<table>
<thead>
<tr>
<th>Field name</th>
<th>One-year SAF server</th>
<th>One-year SAF browser</th>
<th>Five-year SCEP preregistration</th>
<th>Two-year EST preregistration</th>
<th>One-year PKI generated key</th>
</tr>
</thead>
<tbody>
<tr>
<td>AltDomain</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltEmail</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltIPAddr</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltOther_OID</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AltURI</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>AuthInfoAcc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BusinessCat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CertPolicies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClientName</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>CommonName</td>
<td>Optional</td>
<td>Constant: 1 on page 166</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
</tr>
<tr>
<td>Country</td>
<td>Required</td>
<td>Constant: US</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CustomExt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EmailAddr</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field name</td>
<td>One-year SAF server</td>
<td>One-year SAF browser</td>
<td>Five-year SCEP preregistration</td>
<td>Two-year EST preregistration</td>
<td>One-year PKI generated key</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>HostIdMap</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurCountry</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurLocality</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JurStateProv</td>
<td>Optional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeySize</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Required</td>
</tr>
<tr>
<td>KeyUsage</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Constant: handshake</td>
</tr>
<tr>
<td>Label</td>
<td>Required</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Locality</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Mail (previously called Email)</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>NotAfter</td>
<td>Constant: 365</td>
<td>Constant: 1825</td>
<td>Constant: 1825</td>
<td>Constant: 365</td>
<td></td>
</tr>
<tr>
<td>NotBefore</td>
<td>Constant: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NotifyEmail</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Org</td>
<td>Required</td>
<td>Constant: The Firm</td>
<td>Optional</td>
<td>Optional</td>
<td>Constant: The Firm</td>
</tr>
<tr>
<td>OrgUnit</td>
<td>Required</td>
<td>Constants: OrgUnit=SAF template certificate and OrgUnit=Nuts and Bolts Division</td>
<td>Optional</td>
<td>Optional</td>
<td>Constant: Class 1 Internet Certificate CA</td>
</tr>
<tr>
<td>OrgUnit2</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>PassPhrase</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>PostalCode</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>PublicKey</td>
<td>Required</td>
<td>Browser provided</td>
<td>Optional</td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>PublicKey2</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Requestor</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>SignWith</td>
<td>Constant: SAF:CERTAUTH /taca</td>
<td>Constant: PKI:</td>
<td>Constant: PKI:</td>
<td>Constant: PKI:</td>
<td></td>
</tr>
<tr>
<td>StateProv</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Street</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>UnstructAddr</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>UnstructName</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>UserId</td>
<td>Application provides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notes:
1. Although CommonName is a constant, no value is assigned to it. This indicates that RACF must determine the value. The user authenticates by specifying a user ID and password. (If UserID is listed in the APPL section, this means the application provides the user ID and password.) Providing the user ID and password enables RACF to look up the CommonName value in the user’s profile.
2. The HostIdMap value is formed by concatenating UserID with @host-name.
3. The PublicKey is the PKCS #10 request.
4. The PublicKey field is coded with the browsertype substitution variable.

Examing the pkiserv.tmpl file
This topic contains excerpts from the following sections of the pkiserv.tmpl file. Each excerpt contains numbered pointers that describe the important tags in each section.
• “Examining the APPLICATION section” on page 166
• “Examining the TEMPLATE section” on page 179
• “Examining the INSERT section” on page 185

The pkiserv.tmpl file begins with a prolog section of comments explaining main sections, subsections, named fields, and substitution variables. The prolog section is followed by a DEBUG tag that you can change from the default (DEBUG=0) to DEBUG=1 to get CGI debugging information.

Examining the APPLICATION section
The APPLICATION section of the pkiserv.tmpl file contains two sample applications named PKISERV and CUSTOMERS.
• “Examining the PKISERV application” on page 166
• “Examining the CUSTOMERS application” on page 168

Examining the PKISERV application
The following example is an excerpt of the PKISERV application in the APPLICATION section of the pkiserv.tmpl file. (The vertical ellipses indicate omitted sections.)

```
# =====================================================================
# Application - PKISERV
# The installation should customize the CONTENT, ADMINHEADER
# ADMINFOOTER, and ADMINSCOPE subsections as appropriate
# =====================================================================
<APPLICATION NAME=PKISERV>
  <CONTENT>
    #@LMA
    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">
    <HTML lang="en"><HEAD>
      #@LTM
      <!-- 17@DFD -->
      %%-copyright%%
      <TITLE>PKI Administrators Start Page</TITLE>
      <!-- 17@DFD -->
      %%-CheckXP%%
    </HEAD>
    @LTM
    <!-- 17@DFD -->
    <SCRIPT LANGUAGE="JavaScript">
      function init() {
        CheckXP(); //@LVA
      }
    </SCRIPT>
    //-->
The numbers in the following list refer to the highlighted tags in the preceding excerpt of the PKISERV application.

1. This is the beginning of the APPLICATION section. The name of the application is PKISERV.
2. This is the beginning of the CONTENT subsection. The CONTENT subsection contains HTML to display the web page where the administrator begins. The TITLE indicates the main heading of that web page, "PKI Administrators Start Page." (See Figure 65 on page 406 for a sample of that web page.)

3. The HREF tag is the link to install the CA certificate in the browser.

4. The ACTION tag indicates where to go when the user clicks the Administration Page button. (See Figure 68 on page 411 for a sample of that web page.)

5. The ACTION tag indicates where to go when the user clicks the Customers' Home Page button. (See Figure 42 on page 377 for a sample of that web page.)

6. The ADMINHEADER subsection references the %%-copyright%% named field, which is defined in the INSERT section. This should contain the copyright statement for your company.

7. The ADMINFOOTER subsection references the %%-pagefooter%% named field, which is defined in the INSERT section. This named field should specify the email address of your PKI Services administrator.

8. The ADMINSCOPE subsection references the %%SelectCADomain%% named field, which is defined in the INSERT section. When you have multiple CA domains, you can use this variable to allow PKI administrators to select a CA domain on the administrator’s home page. (See “Adding a new CA domain” on page 302 for details about implementing multiple CA domains.)

Examining the CUSTOMERS application

The following example is an excerpt of the CUSTOMERS application in the APPLICATION section of the pkiserv.tmpl file. (The vertical ellipses indicate omitted sections.)

```html
# =====================================================================
# Application - CUSTOMERS
#
# The installation should customize the CONTENT subsection as appropriate.
#
# =====================================================================
#
<APPLICATION NAME=CUSTOMERS>

<CONTENT>
```
Customizing the end-user web pages using REXX CGIs

<br/>
<!--
%-%CheckXP%%
<SCRIPT LANGUAGE="JavaScript">
<!--
function init()
{
  getBrowserType();
  CheckXP();  //@LVA
}
!-->
</SCRIPT>
</HEAD>
<!-- @DFA -->
<BODY onLoad="init();">
<div role="main"><H1>PKI Services Certificate Generation Application</H1>
<div role="region" aria-label="Installations">
<p><A HREF="/PKIServ/cacerts/cacert.der">
Install the CA certificate to enable SSL sessions for PKI Services </A>
</p>
<br/>
<p>
Install the PKI ActiveX Control to renew certificates</p>
</div>

<div role="region" aria-label="Options">
<H2>Choose one of the following:</H2>
<ul>
<li>
<div role="region" aria-label="Request A New Certificate">
<h3>Request a new certificate using a model</h3>
<form name=mainform METHOD=GET ACTION="/[application]/ssl-cgi/catmpl.rexx">
<p><LABEL for="seltemplate">Select the certificate template to use as a model</LABEL>

<select name="Template" id="seltemplate">
<option>1-Year PKI SSL Browser Certificate
<option>1-Year PKI SSL Browser Certificate
<option>1-Year PKI S/MIME Browser Certificate
<option>1-Year PKI Windows Logon Certificate
<option>1-Year PKI Windows Logon Certificate
<option>1-Year PKI SSL Server Certificate
<option>5-Year PKI SSL Server Certificate
<option>5-Year PKI IPSEC Server (Firewall) Certificate
<option>5-Year PKI Intermediate CA Certificate
<option>5-Year PKI Intermediate CA Certificate
<option>2-Year PKI Authenticode - Code Signing Certificate
<option>2-Year PKI Authenticode - Code Signing Certificate
<option>5-Year SCEP Certificate - Preregistration
<option>5-Year SCEP Certificate - Preregistration
<option>2-Year EST Certificate - Preregistration
<option>2-Year EST Certificate - Preregistration
<option>1-Year PKI Generated Key Certificate
<option>n-Year PKI Certificate for Extensions Demonstration
<option>n-Year PKI Certificate for Extensions Demonstration
<option>1-Year SAF Browser Certificate
<option>1-Year SAF Browser Certificate
<option>1-Year SAF Server Certificate
<option>1-Year SAF Server Certificate
<option>2-Year EV SSL Server Certificate
<option>2-Year EV SSL Server Certificate
</select>

<input type="submit" value="Request Certificate">
</form>
</div>
</li>
<li>
<div role="region" aria-label="Pick Up Previously Requested Certificates">
</div>
</li>
</ul>
</div>
</div>
</BODY>
<h3>Pick up a previously requested certificate</h3>

```html
<FORM name=selform METHOD=GET
   ACTION="/[application]/ssl-cgi/caretrieve.rexx" onSubmit="return ValidateEntry(this)">
  #-- User input fields and validation Javascript ------------
  <SCRIPT LANGUAGE="JavaScript">
  <!--
  function ValidateEntry(form){
  if (ValidTransactionId(form) ) {
  # Add your own Javascript here if needed --
  return true;
  } else
  return false;
  }
  //-->
  </SCRIPT>

  #%-TransactionId%
  <br>
  <LABEL for="rettemplate">Select the certificate return type </LABEL>
  <SELECT NAME="Template" id = "rettemplate">
  #%-PKI Browser Certificate%
  <OPTION>PKI Browser Certificate
  #%-PKI Server Certificate%
  <OPTION>PKI Server Certificate
  #%-PKI Key Certificate%
  <OPTION>PKI Key Certificate
  #%-SAF Browser Certificate%
  <OPTION>SAF Browser Certificate
  #%-SAF Server Certificate%
  <OPTION>SAF Server Certificate
  </SELECT>
  #-- End user input fields and validation Javascript -------------
  <p>
  <INPUT TYPE="submit" VALUE="Pick up Certificate">
  </FORM>
</div>

<li>
<div role="region" aria-label="Renew or Revoke">
<h3>Renew or revoke a previously issued browser certificate</h3>

```
Customers Renew or Revoke a Browser Certificate

Here is the certificate you selected:

If this is the correct certificate, choose one of the following:

(otherwise you need to restart your browser to pick another certificate)
Customizing the end-user web pages using REXX CGIs

```
//--></style>
</div role="region" aria-label="Actions">
<ul>
<li>
<div role="region" aria-label="Renew the above certificate">
<h3>Renew the above certificate</h3>
<form name=renform METHOD=POST
ACTION="/[application]/clientauth-cgi/camodify.rexx" OnSubmit=
"return ValidateEntry(this)">
<input name="action" TYPE="hidden" VALUE="renew">
@LVD
</form>
</div>
</li>
<li>
<div role="region" aria-label="Revoke the above certificate">
<h3>Revoke the above certificate</h3>
<form name=revform METHOD=POST
ACTION="/[application]/clientauth-cgi/camodify.rexx">
<input name="action" TYPE="hidden" VALUE="revoke">
</form>
</div>
</li>
<li>
<div role="region" aria-label="Suspend the above certificate">
<h3>Suspend the above certificate</h3>
<form name=suspform METHOD=POST
ACTION="/[application]/clientauth-cgi/camodify.rexx">
<input name="action" TYPE="hidden" VALUE="suspend">
</form>
</div>
</li>
```

Customizing the end-user web pages using REXX CGIs

172 z/OS: Cryptographic Services PKI Services Guide and Reference
<div role="region" aria-label="Home Page">
<p>
<FORM METHOD=GET ACTION="/\[application\]/ssl-cgi/camain.rexx">
<center>
<INPUT TYPE="submit" VALUE="Home Page">
</center>
</FORM>
</p>
</div>

<p>%%-pagefooter%%</p>
</div>

<p>%%-ObjectHeader[browsertype]%%</p>
<p>%%-CheckXP%%</p>

<SCRIPT LANGUAGE="JavaScript">
<!--
function init()
{
   // 1@DLD
   //LoadActiveX();
   CheckXP();  //@LVA
}
//-->
</SCRIPT>

#8@DLD
</HEAD>
#@DLC
<BODY>
<div role="main"><H1>Revoke a Browser Certificate</H1>
<TITLE> Customers Revoke a Browser Certificate </TITLE>
#13@LTD
<h3>Here is the certificate you selected:</h3>
<p>
[printablecert]
<h2>If this is the correct certificate, choose one of the following:</h2>
</p>
</div>
</body>
</html>

Customizing the end-user web application if you use REXX CGI execs 173
<INPUT TYPE="submit" VALUE="Suspend">
</FORM>
</ul>
<div role="region" aria-label="Home Page">
<p>
<FORM METHOD=GET ACTION="/\[application\]/ssl-cgi/camain.rexx">
<center>
<INPUT TYPE="submit" VALUE="Home Page">
</FORM>
</center>
</div>
<p>%%-pagefooter%%</p>
</BODY>
</HTML>

<!-- @DIA -->

<!-- @DIA -->

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html lang="en"><head>
<title> Recover Certificate </title>
<script language="JavaScript">
<!--
function init() {
    CheckXP(); //@LVA
}
//-->
</script>
</head>
<body onLoad="init();">
<div role="main">
<h1>Recover previously issued certificate</h1>
<form name=recvform method=POST action="/\[application\]/ssl-cgi-bin/caqryrcvr.rexx" onsubmit="return ValidateEntry(this)">
<!-- User input fields and validation Javascript ---------------
<script language="JavaScript">
<!--
function ValidateEntry(frm) {
    if (ValidRecoverEmail(frm) &&
        ValidChallengePassPhrase2(frm)) {
        return true;
    }
    else
        return false;
}-->
</script>
#Uncommented the following lines(GetSec script) if you implement security questions
<br><br>
<!--
function GetSec() {
    var addr=document.recvform.RecoverEmail.value;
    window.location.href="/\[application\]/ssl-cgi-bin/cagorcvr.rexx?RecoverEmail=\'+ escape(addr);"
}-->
</form>
</div>
</body>
</html>
Customizing the end-user web pages using REXX CGIs

Customizing the end-user web application if you use REXX CGI execs
Customizing the end-user web pages using REXX CGIs

Retrieve your recovered certificate

Retrieve Certificate

This ACTION forces userid/pw authentication and runs the task under the client's ID

This ACTION forces userid/pw authentication but runs the task under the surrogate ID

This ACTION is for non z/OS clients. The task runs under surrogate ID

User input fields and validation Javascript

User input fields and validation Javascript

End user input fields and validation Javascript

Key ID

Serial number

Input fields and validation Javascript

End user input fields and validation Javascript

Retrieving Certificate

Home Page

Home Page

End user input fields and validation Javascript

Field validation Javascript

Page footer

Page footer
Customizing the end-user web pages using REXX CGIs
The numbers in the following list refer to the highlighted tags in the preceding excerpt of the CUSTOMERS application.

1. This is the beginning of the APPLICATION section. The name of the application is CUSTOMERS.

2. This is the beginning of the CONTENT subsection. The CONTENT subsection contains HTML to display the web page where the end user requests or retrieves a certificate. The <H1> indicates the main heading of that web page, "PKI Certificate Generation Application." (See Figure 42 on page 377 for a sample of that web page.)

3. The HREF tag is the link to install the CA certificate in the browser.

4. The HREF tag is the link to install the PKI Services ActiveX control.

5. The ACTION tag indicates where to go when the user clicks Request certificate.

6. The SELECT tag produces a drop-down that lists the certificate templates the user can request. (The named fields, which are bracketed with %% symbols, are the names of the certificate templates.)

7. The RECONTENT section contains the HTML to display the web page where the end user renews or revokes a certificate. The main heading on this web page is "Renew or Revoke a Browser Certificate". It includes a JavaScript function that determines which PKI Services ActiveX programs should be loaded. (See Figure 55 on page 396 for a sample of that web page.)

8. The RECONTENT2 subsection is similar to the RECONTENT section except that it applies to a certificate whose key was generated by PKI Services and is to be revoked.

9. The RESUCCESSCONTENT subsection references the %%-renewrevokeok%% named field, which is defined in the INSERT section. This contains HTML for the web page displayed when the user's
attempt to revoke a certificate is successful. The main heading on this web page is "Request submitted successfully". (See Figure 46 on page 389 for a sample of that web page.)

10. The REFAILURECONTENT subsection references the %%renewrevokebad%% named field, which is defined in the INSERT section. This contains HTML for the web page displayed when the user's attempt to renew or revoke a certificate fails. The main heading on this web page is "Request was not successful".

11. The RECOVERCONTENT subsection contains the HTML and JavaScript to input parameters required to recover a previously issued certificate whose key was generated by PKI Services.

12. The FINDRECOVERCONTENT subsection displays security questions for users to answer when they want to recover a certificate and have forgotten the passphrase.

13. The RETRIEVECONTENT2 subsection contains the HTML to allow the end user to retrieve a recovered certificate.

14. The RETURNCERT subsection contains the HTML for the web page that is displayed upon successful retrieval of a recovered certificate. This section contains the named field %%returnp12cert%%, which indicates a PKCS #12 format.

15. The FAILURECONTENT subsection contains the HTML for the web page that is displayed when the certificate request submit failed. Any named fields in this subsection are interpreted as content inserts defined by INSERT sections. For PKISERV, the INSERT sections are included as part of the HTML presented to the end user.

16. The RENEWEDCERT subsection references the %%RenewKeySetIE%% named field, which is defined in the INSERT section. This field contains the HTML and JavaScript functions for the web page displayed when a user clicks a link in an email notification to install an automatically renewed certificate.

Examining the TEMPLATE section

The TEMPLATE section follows the APPLICATION section and contains several sample templates. The following example is an excerpt from the TEMPLATE section of the pkiserv.tmpl file. (The vertical ellipses indicate omitted sections.)

```
# =====================================================================
#
# Template Name - 2-Year PKI Browser Certificate For Authenticating
#                 to z/OS
#
# Function - Creates a 2-year certificate good for authenticating to
#            z/OS. If approved, the certificate becomes valid after
#            it's requested.
#            (You may delay the valid date by specifying a non zero
#             number for the value of 'NotBefore',
#            eg. NotBefore=5. That means if the request is approved,
#            the certificate will become valid 5 days after it's
#            requested.)
#            HostidMap is formed by putting %Userid% and
#            %HostIdMap=@host-name in the APPL section.
#            2@DHD
#
# Other than the user input fields, all other information is hard coded.
#
# User input fields:
#    Requestor - optional
#    PassPhrase - required
#    PublicKey - required (Provided by the browser itself)
#    NotifyEmail - optional
#
#    The presence of CommonName without a value tells SAF to determine
# the CN value from the PGMRNAME field of the user's USER profile.
# See the RACF Callable Services Guide for more information
#
#    RACF userid/password authentication : required
#    Administrator approval : not required
#
#=================================================================================
```

Customizing the end-user web application if you use REXX CGI execs 179
Customizing the end-user web pages using REXX CGIs

```html
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html lang="en"><head>
<title>Web Based PKIX Certificate Generation Application Pg 2</title>
</head>
<body onload="init();">
<div role="main"><h1>2-Year PKI Browser Certificate For Authenticating To z/OS</h1>
<div role="region" aria-label="Options">
<p><h2>Choose one of the following:</h2>
<ul>
<li><div role="region" aria-label="Request A New Certificate">
<h3>Request a New Certificate</h3>
# This ACTION forces userid/pw authentication and runs the task under
# the client's ID
<form name="CertReq" method="POST" action="/[application]/ssl-cgi-bin/auth/careq.rexx" onsubmit="return ValidateEntry(this)">
<input name="Template" type="hidden" value="[tmplname]">
<p>Enter values for the following field(s)
<script language="JavaScript">
function ValidateEntry(frm){
  if (ValidRequestor(frm) &&
    ValidNotifyEmail(frm) &&
    ValidPassPhrase(frm) &&
    ValidPublicKey(frm)){
    return true;
  } else
    return false;
}
</script>
</form></div></li>
<li><div role="region" aria-label="Request A New Certificate">
<h3>Request a New Certificate</h3>
# This ACTION forces userid/pw authentication but runs the task under
# the surrogate ID
<form name="CertReq" method="POST" action="/[application]/ssl-cgi-bin/surrogateauth/careq.rexx" onsubmit="return ValidateEntry(this)">
<input name="Template" type="hidden" value="[tmplname]">
<p>Enter values for the following field(s)
<script language="JavaScript">
function ValidateEntry(frm){
  if (ValidRequestor(frm) &&
    ValidNotifyEmail(frm) &&
    ValidPassPhrase(frm) &&
    ValidPublicKey(frm)){
    return true;
  } else
    return false;
}
</script>
</form></div></li>
</ul>
</div>
</div>
</body></html>
```
Customizing the end-user web pages using REXX CGIs

Customizing the end-user web application if you use REXX CGI execs

%#-pagefooter%}
</div>
</div>
</BODY>
</HTML>

%%UserId%%
%%HostIdMap=@host-name%%
</APPL>
<CONSTANT> %%%
%%CommonName=%%
%%OrgUnit=Class 1 Internet Certificate CA%%
%%Org=The Firm%%
%%KeyUsage=handshake%%
%%ExtKeyUsage=clientauth%%
%%NotBefore=0%%
%%NotAfter=730%%
%%SignWith=PKI:%%
</CONSTANT>
<SUCCESSCONTENT> %%%-requestok%%
</SUCCESSCONTENT>
<FAILURECONTENT> %%%-requestbad%%
</FAILURECONTENT>

<RETRIEVECONTENT> %%%
@LMA
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en"><head>
<!--
function MissingTransIdAlert(){
var STRING_MissingTransIdPrompt=
"Enter the transaction ID assigned to the certificate."
if(document.retrieveform.TransactionId.value=""){
alert(STRING_MissingTransIdPrompt);
document.retrieveform.TransactionId.focus();
return true;
}
else {
return false;
}
//-->
<br>
</script>
</head>
Since your certificate may not have been issued yet, we recommend that you create a bookmark to this location so that when you return to this bookmark, the browser will display your transaction ID. This is the easiest way to check your status.

# This ACTION forces userid/pw authentication and runs the task under the client's ID
#<FORM NAME=retrieveform METHOD=POST ACTION="/[application]/ssl-cgi-bin/auth/cagetcert.rexx" onSubmit="return ValidateEntry(this)">
# This ACTION forces userid/pw authentication but runs the task under the surrogate ID
#<FORM NAME=retrieveform METHOD=POST ACTION="/[application]/ssl-cgi-bin/surrogateauth/cagetcert.rexx" onSubmit="return ValidateEntry(this)">
# This ACTION is for non z/OS clients. The task runs under surrogate ID
#<FORM NAME=retrieveform METHOD=POST ACTION="/[application]/ssl-cgi-bin/cagetcert.rexx" onSubmit="return ValidateEntry(this)">

<!-- User input fields and validation Javascript ---------->
<SCRIPT LANGUAGE="JavaScript">
function ValidateEntry(frm){
if (ValidTransactionId(frm) &&
   ValidChallengePassPhrase(frm)) {
    # Add your own Javascript here if needed
    return true;
} else
    return false;
}
</SCRIPT>

<!-- End user input fields and validation Javascript -----------

<p>
<INPUT TYPE="submit" VALUE="Retrieve and Install Certificate">
</FORM>
</div>
</div>
</form>

# ====================================================================
#
# Template Name - 2-Year EST Certificate - Preregistration
#
# Function - Preregister a user or device for an EST certificate and for EST certificate fulfillment
#
# User input fields:
#  ClientName
#  PassPhrase
#  SerialNumber -optional
#  UnstructAddr -optional
# RACF userid/password authentication : required
#
#
# ====================================================================
#
<TEMPLATE NAME=2-Year EST Certificate - Preregistration>
<NICKNAME=2YESTP>
<CONTENT>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>Web Based PKIX Certificate Generation Application Pg 2</title>
  <script language="JavaScript">
    function init()
    {
    }
    //-->;
  </script>
</head>
<body onload="init();">
  <div role="main">
    <h1>5-Year SCEP Certificate - Preregistration</h1>
    <div role="region" aria-label="Authenticate">
      <p>
        This ACTION forces userid/pw authentication and runs the task under
        the user's ID. (Must be a PKI administrator.)
      </p>
      <form name="CertReq" method="POST" action="/[/application]/ssl-cgi-bin/auth/careq.rexx" onsubmit="return ValidateEntry(this)">
        <input name="Template" type="hidden" value="[tmplname]">
        <ul>
          <li>
            <h3>Enter values the client must provide to authenticate</h3>
            <p>
              ClientName is the only required field to preregister. ClientName
              combined with PassPhrase are the minimum required to authenticate
              the client. Any other subject name field (except UnstructName
              and CommonName) or alternate name field may be specified as
              additional authenticating information.
            </p>
            <input name="ClientName" type="text" />
            <input name="PassPhrase" type="password" />
            <input name="SerialNumber (Optional)" type="text" />
            <input name="UnstructAddr (Optional)" type="text" />
          </li>
        </ul>
        <input type="submit" value="Submit preregistration request">
        <input type="reset" value="Clear">
      </form>
    </div>
  </div>
  <p>Customizing the end-user web application if you use REXX CGI execs 183</p>
</template>

Customizing the end-user web pages using REXX CGIs
The numbers in the following list refer to the highlighted tags in the preceding excerpt of the TEMPLATE section.

1. The template begins with a block comment identifying the template and explaining its use and fields.

2. There are three names for each certificate (except for SAF templates, which do not include nicknames). The first TEMPLATE NAME line defines the true (actual, complete) name of the certificate. The next TEMPLATE NAME line defines an alias. (This simply differentiates browser from server certificates.) The NICKNAME defines an 8-character string.

In each template for which you want certificates to be automatically renewed, insert the AUTORENEW tag immediately following the NICKNAME tag, if it is not already there, and set it to Y.

In each template for which you want certificates to be synchronously created, insert the SYNCHRONOUS tag before the CONTENT tag, if it is not already there, then set it to Y.

3. The CONTENT subsection contains the HTML to display a web page to the end user requesting this type of certificate. (The CGI script catmpl.rexx displays this content.)

4. The %%-copyright%% named field displays the copyright statement.

5. The title contains the heading that appears at the beginning of the browser when the web page is displayed.

6. The heading is the main heading on the web page for requesting the selected certificate.

7. The ACTION tag indicates that the CGI script that gets control when the user clicks the Submit certificate request button is careq.rexx.

8. Fields for which the user can supply input include %%requestor%%, %%PassPhrase%%, %%NotifyEmail%%, and %%PublicKey2%%. (These fields are named fields that are defined in the INSERT section, which is shown later.) All fields not marked optional are required. %%PublicKey2%% contains the substitution variable, [browsertype]. This is replaced at run time with IE or NS, depending on the browser the user has. This is necessary because the browsers behave differently for key generation and certificates.

9. This JavaScript script provides the underlying logic for the text entry that the user must perform.

10. The %%-pagefooter%% named field is defined in the INSERT section (shown later). This contains the email address of the PKI Services administrator.

11. The APPL subsection indicates the fields that careq.rexx itself provides, in this case, %%UserId%% and %%HostIdMap%%. (These are set from the IBM HTTP Server environment variable REMOTE_USER.)

12. The CONSTANT subsection has hardcoded values to use, for example (for the non-SAF certificates), the signing certificate is PKI::.
13. The SUCCESSCONTENT subsection contains the HTML to display upon successfully requesting the certificate. It includes the %%-requestok%% named field. (This is defined in the INSERT section, shown in “Examining the INSERT section” on page 185. See list item “1” on page 216.)

14. The FAILURECONTENT subsection contains the HTML to display when the certificate request is unsuccessful. This subsection contains the %%-requestbad%% named field. (This named field is defined in the INSERT section, shown in “Examining the INSERT section” on page 185.)

15. The -requestok INSERT (mentioned in list item “13” on page 185) includes an ACTION that calls caretrieve.rexx, which displays the HTML in the RETRIEVECONTENT subsection. The first time the web page is displayed, it includes the transaction ID associated with the certificate request. If the user leaves the web page and then returns, the transaction ID field must be filled in. Entering the transaction ID and clicking the Continue button calls cagetcert.rexx.

16. The main heading on the web page is "Retrieve Your (Name of Certificate)".

17. The ACTION is to call cagetcert.rexx as list item “15” on page 185 indicates.

18. The RETURNCERT subsection contains the %%return10cert%% named field, which is defined in an INSERT. (See list item “4” on page 217.)

19. The PREREGISTER subsection for an EST template does not specify any directives and is intentionally left empty. If any directives are specified, they are ignored.

**Examining the INSERT section**

The final section of the pkiservtmpl file contains several sample INSERTS. The following example is an excerpt from the INSERT section of the pkiservtmpl file. (The vertical ellipses indicate omitted sections.)

```
# # Sample INSERTS
#
# # Sample INSERTS
# @D3C
<INSERT NAME=-AdditionalHeadIE>
#This function must be called in the init() function of your page
<SCRIPT LANGUAGE="JavaScript">
<!--
function LoadObj()
{
//12@LVD
var obj2 = document.createElement("obj2");
obj2.innerHTML = "<div role='region' aria-label='g_objWCF'>" +
"<OBJECT classid='clsid:884e2049-217d-11da-b2a4-000e7bbb2b09' id='g_objWCF'>" +
"cert enroll object is not available " +
"</OBJECT></div>";
document.body.appendChild(obj2);
//@LVD
return true;
}-->
</SCRIPT>
#13@LTD
</INSERT>

<INSERT NAME=-requestok>
#@LMA
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html lang="en"><HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<TITLE>Web Based Certificate Generation Success</TITLE></HEAD>
<BODY>
<div role="main"><H1>Request submitted successfully</H1>
[errorinfo]
<p>Here's your transaction ID. You will need it to retrieve your certificate. Press 'Continue' to retrieve the certificate.</p>
<p><TABLE BORDER><TR><TD>[transactionid]</TD></TR></TABLE>
[INPUT NAME="Template" TYPE="hidden" VALUE="[tmplname]">
<INPUT NAME="TransactionId" TYPE="hidden" VALUE="[transactionid]">
```

Customizing the end-user web application if you use REXX CGI execs 185
Customizing the end-user web pages using REXX CGIs
Customizing the end-user web pages using REXX CGIs
Customizing the end-user web pages using REXX CGIs

```javascript
function InstallCertOnClick()
{
  var pkcs7data, errmsg, rc;
  // Added for CertEnroll API processing.
  var objEnroll;
  try{
    var pkcs7data = '[iecert]';
    // CertEnroll.dll API additions follow.
    try{
      objEnroll = g_objWCF.CreateObject("X509Enrollment.CX509Enrollment");
    }catch(err){
      objEnroll = null;
    }
    if(objEnroll !== null && typeof objEnroll === 'object'){
      //CertEnroll APIs
      try{
        objEnroll.Initialize(1); // ContextUser
      }catch(err){
        errmsg = "Error Initializing Enrollment object. " + err.description;
        alert(errmsg);
        return;
      }
      try{
        objEnroll.InstallResponse(0, pkcs7data, 1, "");
      }catch(err){
        errmsg = "Error Installing Response. " + err.description;
        alert(errmsg);
        return;
      }
    }
  }
```

---

188 z/OS: Cryptographic Services PKI Services Guide and Reference
catch(err){
    errmsg = "Your new certificate failed to install. " +
    "Please ensure that you are using the same browser " +
    "that you used when making the certificate request." +
    "Also ensure that PKI ActiveX is installed."
    alert(errmsg);
    return;
    }
    errmsg = "Your new certificate installed successfully."
    alert(errmsg);
    return;
    }
</SCRIPT>
</div>
</h1>
<p>Click "Install Certificate" to store your new certificate into your browser</p>
<TABLE>
<tr><td><input type="button" onclick="InstallCertOnClick()" value="Install Certificate" name="INSTALL"
form METHOD=GET ACTION="/[application]/ssl/cgi/camain.rexx">
<input name="Template" type="hidden" value="[tmplname]">
<input type="submit" value="Home Page">
</form>
</td>
</tr>
</table>
</div>
</BODY>
</HTML>

# X.509 fields (INSERTs) valid for certificate requests

# =========================================================================

<INSERT NAME=KeyUsage>
<div role="region" aria-label="Key Usage">
<p>Indicate the key usage for the certificate [optfield]</p>
<select name="KeyUsage" multiple id="keyusagefield">
    <option value="handshake">Protocol handshaking e.g., SSL (digitalSignature, keyEncipherment)
    <option value="certsign">Certificate and CRL signing (keyCertSign, cRLSign)
    <option value="docsign">Document signing (nonRepudiation)
    <option value="dataencrypt">Data encryption (dataEncipherment)
    <option value="digitalrsig">Authentication (digitalSignature)
    <option value="keyencrypt">Key Transport (keyEncipherment)
    <option value="keycertsign">Certificate signing (keyCertSign)
    <option value="crlsign">CRL signing (cRLSign)
</select>
<script language="JavaScript">
    function ValidKeyUsage(frm) {
        if ("[optfield]" == "" || frm.KeyUsage.value == "") {
            alert("Enter required field."); frm.KeyUsage.focus();
            return false;
        }
        return true;
    }
</script>
</div>
</INSERT>

<INSERT NAME=ExtKeyUsage>
<div role="region" aria-label="Extended Key Usage">
<p>Indicate the extended key usage for the certificate [optfield]</p>
<select name="ExtKeyUsage" multiple id="extkeyusagefield">
    <option value="serverauth">Server side authentication (serverAuth)
    <option value="clientauth">Client side authentication (clientAuth)
    <option value="codesigning">Code signing (codeSigning)
    <option value="emailprotection">Email protection (emailProtection)
    <option value="timestamping">Digital time stamping (timeStamping)
    <option value="ocspsigning">OCSP response signing (OCSPSigning)
</select>
</div>
</INSERT>
<OPTION VALUE="mssmartcardlogon">Microsoft Smart Card Logon (msSmartCardLogon)
<OPTION VALUE="cmcCA">CMC Certification Authorities (cmcCA)
<OPTION VALUE="cmcRA">CMC Registration Authorities (cmcRA)
<OPTION VALUE="cmcAS">CMC Archive Servers (cmcAS)
<OPTION VALUE="pkinitKDC">PKINIT KDC (pkinitKDC)
<OPTION VALUE="pkinitClientAuth">PKINIT client side authentication (pkinitClientAuth)
</SELECT>

<SCRIPT LANGUAGE="JavaScript">
//
function ValidExtKeyUsage(frm){
  if ("[optfield]" == "" && frm.ExtKeyUsage.value == ") {
    alert("Enter required field."); frm.ExtKeyUsage.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=NotBefore>
<div role="region" aria-label="Not Before">
<p> <LABEL for="notbeforefield">Number of days after today before the certificate becomes current [optfield] </LABEL> <BR>
<select NAME="NotBefore" id="notbeforefield">
<option> 0
<option> 30
</select>
<script LANGUAGE="JavaScript">
//
function ValidNotBefore(frm){
  if ("[optfield]" == "" && frm.NotBefore.value == "") {
    alert("Enter required field."); frm.NotBefore.focus();
    return false;
  }
  return true;
}
//-->
</script>
</div>
</INSERT>

<INSERT NAME=NotAfter>
<div role="region" aria-label="Not After">
<p> <LABEL for="notafterfield">Length of time that the certificate is current [optfield] </LABEL> <BR>
<select NAME="NotAfter" id="notafterfield">
<option value="365">1 Year
<option value="730">2 Years
</select>
<script LANGUAGE="JavaScript">
//
function ValidNotAfter(frm){
  if ("[optfield]" == "" && frm.NotAfter.value == "") {
    alert("Enter required field."); frm.NotAfter.focus();
    return false;
  }
  return true;
}
//-->
</script>
</div>
</INSERT>

<INSERT NAME=Country>
<div role="region" aria-label="Country">
<p> <LABEL for="countryfield">Country [optfield]</LABEL> <BR>
<input NAME="Country" TYPE="text" SIZE=2 maxlength="2" id="countryfield">
<script LANGUAGE="JavaScript">
//
function ValidCountry(frm){
  if ("[optfield]" == "" && frm.Country.value == "") {
    alert("Enter required field."); frm.Country.focus();
    return false;
  }
  return true;
}
//-->
</script>
</div>
</INSERT>
Customizing the end-user web application if you use REXX CGI execs 191
Customizing the end-user web pages using REXX CGIs

</INSERT>

<INSERT NAME=StateProv>
<div role="region" aria-label="State or Province">
<p> <LABEL for="stateprovfield">State or Province [optfield] </LABEL> <BR>
<INPUT NAME="StateProv" TYPE="text" SIZE=64  maxlength="64" id="stateprovfield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidStateProv(frm){
  if ("[optfield]" == "" &amp; frm.StateProv.value == "") {
    alert("Enter required field."); frm.StateProv.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=CommonName>
<div role="region" aria-label="Common Name">
<p> <LABEL for="commonnamefield">Common Name [optfield] </LABEL> <BR>
<INPUT NAME="CommonName" TYPE="text" SIZE=64  maxlength="64" id="commonnamefield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidCommonName(frm){
  if ("[optfield]" == "" &amp; frm.CommonName.value == "") {
    alert("Enter required field."); frm.CommonName.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=Title>
<div role="region" aria-label="Title">
<p> <LABEL for="titlefield">Title [optfield] </LABEL> <BR>
<INPUT NAME="Title" TYPE="text" SIZE=64  maxlength="64" id="titlefield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidTitle(frm){
  if ("[optfield]" == "" &amp; frm.Title.value == "") {
    alert("Enter required field."); frm.Title.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=DNQualifier>
<div role="region" aria-label="Distinguished Name Qualifier">
<p> <LABEL for="dnqualfield">Distinguished Name Qualifier [optfield] </LABEL> <BR>
<INPUT NAME="DNQualifier" TYPE="text" SIZE=64  maxlength="64" id="dnqualfield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidDNQualifier(frm){
  if ("[optfield]" == "" &amp; frm.DNQualifier.value == "") {
    alert("Enter required field."); frm.DNQualifier.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=DomainName>
<div role="region" aria-label="Domain Name">
</div>
</INSERT>

192 z/OS: Cryptographic Services PKI Services Guide and Reference
<p>Domain Name [optfield] <BR>
<INPUT NAME="DomainName" TYPE="text" SIZE=64 maxlength="64" id="domainnamefield">
<SCRIPT LANGUAGE="JavaScript">

function ValidDomainName(frm){
    if ("[optfield]" == "" && frm.DomainName.value == "") {
        alert("Enter required field."); frm.DomainName.focus();
    } return true;
}
</SCRIPT>

<INS NAME=Uid>
<div role="region" aria-label="User Login">
<p> User Login ID [optfield] <BR>
<INPUT NAME="Uid" TYPE="text" SIZE=64 maxlength="64" id="uidfield">
<SCRIPT LANGUAGE="JavaScript">

function ValidUid(frm){
    if ("[optfield]" == "" && frm.Uid.value == "") {
        alert("Enter required field."); frm.Uid.focus();
    } return true;
}
</SCRIPT>
</div>

# AltIPAddr, AltEmail, AltURI and AltDomain are repeatable fields. If
# more than one is needed, a separate INSERT, which can be modelled
# from the original one, is needed.
# See INSERT NAME=AltDomain2 for an example.

# Updated Size and maxlength of the AltIPAddr field to 45 to allow
# for IPv6 addresses and updated field description text
<INSERT NAME=AltIPAddr>
<div role="region" aria-label="Alternate IP Address">
<p> IP address for alternate name in IPv4 or IPv6 format [optfield] <BR>
<INPUT NAME="AltIPAddr" TYPE="text" SIZE=45 maxlength="45" id="altipaddrfield">
<SCRIPT LANGUAGE="JavaScript">

function ValidAltIPAddr(frm){
    if ("[optfield]" == "" && frm.AltIPAddr.value == "") {
        alert("Enter required field."); frm.AltIPAddr.focus();
    } return true;
}
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=AltEmail>
<div role="region" aria-label="Alternate Email">
<p> Email address for alternate name [optfield] <BR>
<INPUT NAME="AltEmail" TYPE="text" SIZE=100 maxlength="100" id="altemailfield">
<SCRIPT LANGUAGE="JavaScript">

function ValidAltEmail(frm){
    if ("[optfield]" == "" && frm.AltEmail.value == "") {
        alert("Enter required field."); frm.AltEmail.focus();
    } return true;
}
</SCRIPT>
</div>
</INSERT>

Customizing the end-user web application if you use REXX CGI execs 193
Customizing the end-user web pages using REXX CGIs

<INSERT NAME=AltURI>

<INSERT NAME=AltDomain>

<INSERT NAME=AltDomain2>

<INSERT NAME=Street>

<INSERT NAME=PostalCode>
Customizing the end-user web pages using REXX CGIs

195
EMAIL= attribute [optfield] </LABEL> <BR>
# attribute defined in RFC2798, OID 1.2.840.113549.1.9.1
<INPUT NAME="EmailAddr" TYPE="text" MAXLENGTH=64 SIZE=64
id="emailaddrfield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidEmailAddr(frm){
  if ("[optfield]" == "" && frm.EmailAddr.value == "") {
    alert("Enter required field."); frm.EmailAddr.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=SignWith>
<div role="region" aria-label="Sign With">
<p> <LABEL for="signwithfield">Component:/key-Label used to sign this
certificate [optfield] </LABEL> <BR>
<p> e.g., "SAF:CERTAUTH/Local CA Cert" sign by CERTAUTH certificate
"Local CA Cert"
<INPUT NAME="SignWith" TYPE="text" SIZE=45 maxlength=45
id="signwithfield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidSignWith(frm){
  if ("[optfield]" == "" && frm.SignWith.value == "") {
    alert("Enter required field."); frm.SignWith.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=PublicKey>
<div role="region" aria-label="Public Key">
<p> <LABEL for="publickeyfield">Base64 encoded PKCS#10 certificate
request [optfield] </LABEL> <BR>
<p> <TEXTAREA NAME="PublicKey"
COLS="70"
ROWS="12"
WRAP="OFF" id="publickeyfield">
</TEXTAREA>
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidPublicKey(frm){
  if ("[optfield]" == "" && frm.PublicKey.value == "") {
    alert("Enter required field."); frm.PublicKey.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=PublicKeyNS>
<div role="region" aria-label="Select Key Size">
<p> <LABEL for="keygentag">Select a key size</LABEL>
<KEYGEN NAME="PublicKey" id="keygentag">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidPublicKey(frm){
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=PublicKeyIE>
<!converted VBScript to JavaScript
Customizing the end-user web pages using REXX CGIs
196 z/OS: Cryptographic Services PKI Services Guide and Reference
function SendReq()
{ var pkcs10data,DN,i,Message,CommonName;
  var objEnroll;
  DN= "";
  CommonName= "Unspecified Distinguished Name";
  DN= "CN= " + CommonName + ";";
  pkcs10data = "";
  // CertEnroll APIs for enrollment processing.
  try{
    objEnroll = g_objWCF.CreateObject("X509Enrollment.CX509Enrollment");
  }catch(err){
    objEnroll = null;
  }
  if(objEnroll !== null && typeof objEnroll === 'object'){
    var objPrivateKey;
    var objRequest;
    var provider;
    var selectedCSP;
    var objCSPs;
    var objName;
    var objHash;
    try{
      objPrivateKey = g_objWCF.CreateObject("X509Enrollment.CX509PrivateKey");
    }catch(err){
      Message = "Error creating Private Key object: \n" + err.description;
      alert(Message);
      return;
    }
    try{
      objRequest = g_objWCF.CreateObject("X509Enrollment.CX509CertificateRequestPkcs10");
    }catch(err){
      Message = "Error creating Request object: \n" + err.description;
      alert(Message);
      return;
    }
    //Setup Private key properties based on the selected provider
    i = document.getElementById("cspfield").options.selectedIndex;
    provider = document.getElementById("cspfield").options(i).text.toLowerCase();
    if((provider.indexOf("smart") > 0) || (provider.indexOf("card") > 0)){
      //For Smart Card Providers, retrieve the index of the selected CSP
      //and set the Private key name, type, and KeySpec
      objPrivateKey.ProviderName = document.getElementById("cspfield").options(i).text;
      objPrivateKey.ProviderType = document.getElementById("cspfield").options(i).value;
      objPrivateKey.KeySpec = 1; // XCN_AT_KEYEXCHANGE
      objPrivateKey.Length = 2048; // KeySize = 2048
    }else{
      try{
        selectedCSP = g_objWCF.CreateObject("X509Enrollment.CCspInformation");
      }catch(err){
        Message = "Error creating the a CSP Information object: /n" + err.description;
        alert(Message);
        return;
      }
      try{
        objCSPs = g_objWCF.CreateObject("X509Enrollment.CCspInformations");
      }catch(err){
        Message = "Error creating the CSP Informations object: \n" + err.description;
        alert(Message);
        return;
      }
      //Retrieve the index of the selected CSP and initialize the
      //CSPInformation object using the provider name
      selectedCSP.InitializeFromName( document.getElementById("cspfield").options(i).text );
      //Add the CSPInformation object to the CSPInformations object
      objCSPs.Add( selectedCSP );
      //Set the PrivateKey objects CspInformations to our object
      objPrivateKey.CspInformations = objCSPs;
      //Set intended usage of private key for KeyExchange purposes
      objPrivateKey.KeySpec = 1; // XCN_AT_KEYEXCHANGE
      objPrivateKey.Length = 2048; // KeySize = 2048
      //Set KeyProtection based on user input
      if(document.CertReq.KeyProt.value == 1){
        objPrivateKey.KeyProtection = 2; //XCN_NCRYPT_UI_FORCE_HIGH_PROTECTION_FLAG
      }else{
    }\}
objPrivateKey.KeyProtection = 0;
  //XCN_NCRYPT_UI_NO_PROTECTION_FLAG
}
//==================================================================
// The ExportPolicy is set to allow the private key to be exported,
// other options allow the private key to be exported only once for
// archival in a variety of formats, or prevents export of the
// private key.
// ExportPolicy = 0 = XCN_NCRYPT_ALLOW_EXPORT_NONE
// ExportPolicy = 1 = XCN_NCRYPT_ALLOW_EXPORT_FLAG
// ExportPolicy = 2 = XCN_NCRYPT_ALLOW.PLAINTEXT_EXPORT_FLAG
// ExportPolicy = 4 = XCN_NCRYPT_ALLOW.PLAINTEXT_ARCHIVING_FLAG
// ExportPolicy = 8 = XCN_NCRYPT_ALLOW.PLAINTEXT_ARCHIVING_FLAG
//==================================================================
objPrivateKey.ExportPolicy = 1; // XCN_NCRYPT_ALLOW_EXPORT_FLAG
}
try{
  objRequest.InitializeFromPrivateKey( 1, objPrivateKey, "");
}catch(err){
  Message = "Error initializing request from private key " + err.description;
  alert(Message);
  return;
}
try{
  objName = g_objWCF.CreateObject("X509Enrollment.CX500DistinguishedName");
}catch(err){
  Message = "Error creating X500DistinguishedName object: \n" + err.description;
  alert(Message);
  return;
}
try{
  objName.Encode(DN);
}catch(err){
  Message = "Error encoding the subject distinguished name \n" + err.description;
  alert(Message);
  return;
}
try{
  objRequest.Subject = objName;
}catch(err){
  Message = "Error setting the subject name in request " + err.description;
  alert(Message);
  return;
}
//setting signature algorithm SHA256 in request
try {
  objHash = g_objWCF.CreateObject("X509Enrollment.CObjectId");
  objHash.InitializeFromAlgorithmName( 4           //XCN_CRYPT_SIGN_ALG_OID_GROUP_ID
    , 0x00000000  //XCN_CRYPT_OID_INFO_PUBKEY_ANY
    , 0x00000000  //AlgorithmFlagsNone
    , "SHA256");            
  objRequest.HashAlgorithm = objHash;            //
} catch(err) {
  Message = "Error setting the signature algorithm in request 
" + err.description;       //
  alert(Message);              //
  return;                      //
}
try{
  objEnroll.InitializeFromRequest( objRequest )
}catch(err){
  Message = "Error initializing Enrollment object from request: " + err.description;
  alert(Message);
  return;
}
pkcs10data = objEnroll.CreateRequest(1); // XCN_CRYPT_STRING_BASE64
  //23@LVD
}
document.CertReq.PublicKey.value = pkcs10data;
if(pkcs10data.length <= 0){
  alert("PKCS10 Creation Failed");
}
//-->
function LoadCSPs()
{
    try {
        var i;
        var csp;
        var sv;
        // Modifications for CertEnroll API enrollment process.
        var objCSPs;
        var oOption;
        var errmsg;

        try {
            objCSPs = g_objWCF.CreateObject("X509Enrollment.CCspInformations");
        } catch (err) {
            objCSPs = null;
            alert("Failed to load CSPs");
            return;
        }

        if (objCSPs !== null && typeof objCSPs === 'object') {
            // CertEnroll APIs
            objCSPs.AddAvailableCsps();
            for (i = 0; i < objCSPs.Count; i++) {
                // Only include Legacy (Crypto API) providers at this time
                if (objCSPs.ItemByIndex(i).LegacyCsp) {
                    oOption = document.createElement("OPTION");
                    oOption.text = objCSPs.ItemByIndex(i).Name;
                    oOption.value = objCSPs.ItemByIndex(i).Type;
                    document.getElementById("cspfield").add(oOption);
                }
            }
        }

        } catch (e) {
            // handle
            alert("Failed to load CSPs");
        }
    } catch (e) {
        // handle
        alert("Failed to load CSPs");
    }
}</SCRIPT>

<p><LABEL for="cspfield">Cryptographic Service Provider</LABEL><select name="CSP" id="cspfield">
</select></p>

<p><LABEL for="strongprotfield">Enable strong private key protection?</LABEL><select name="KeyProt" id="strongprotfield">
<option value="1">Yes</option>
<option value="0" selected>No</option>
</select>
<input type="hidden" name="PublicKey" value="">

<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidPublicKey(frm){
    SendReq();
    if (document.CertReq.PublicKey.value == ")
        return false;
    else
        return true;
}
//-->
</SCRIPT>

</div>
</INSERT>

#-- Added new RenewKeySetNS insert which implements the
#-- ValidRenewKeySet function for Netscape/Mozilla based
#-- browsers. Just returns true
#
<INSERT NAME=-RenewKeySetNS>
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidRenewKeySet(frm){
    return true;
}
//-->
</SCRIPT>
</INSERT>

Customizing the end-user web pages using REXX CGIs

Customizing the end-user web application if you use REXX CGI execs 199
Customizing the end-user web pages using REXX CGIs

#-- Added new RenewKeySetIE insert which implements the
#-- ValidRenewKeySet function for MSIE browsers.
#
<INSERT NAME=-RenewKeySetIE>
<!--Removed CAPICOM support 158@LUD -->
<SCRIPT LANGUAGE=javascript>
<!--
function ActiveXRenewKeySet()
{
var flag = document.getElementById("autorenflag").value; //
if(flag == 0) //
var b64cert = "[iecert]"; //
else //
var b64cert = document.getElementById("b64cert").value; //
var certlen = b64cert.length;
var OS = navigator.userAgent;
var flag2 = false;
//@LVD
myax = document.getElementById("cenrollreq");
if(myax && myax.object)
{
flag2 = true;
}
else
{
return 1;
}
if(flag2 == true)
{
try {
  cenrollreq.CreateCEnrollRequest(b64cert,certlen);
  return 0;
} catch(e) {
  alert("PKI ActiveX failed\n" + e.description + "\nContact your PKI administrator");
  return 1;
}
//@LVD
}

-->
</SCRIPT>
</input type="hidden" name="PublicKey" value="">
<SCRIPT LANGUAGE=JavaScript>
<!--
function ValidRenewKeySet(frm){
//@LKA
//@LVD
var flag = document.getElementById("autorenflag").value; // @DFA
var res = ActiveXRenewKeySet(); // @LKA
if(res == 0)
return true;
else
{
// PKI ActiveX failed
//@LVD
var confirmstr = "Click OK to install PKICEnroll ActiveX Control to renew certificates or Cancel to cancel the renew.\n";
//@LVD
var result = confirm(confirmstr);
if(result == true)
{
//0@LVD
window.location = "/PKIServ/PKICEnroll/PKICEnrollDeploy.msi";
//@LVD
}
else
{
alert("PKI ActiveX Control has to be used to renew and install certificates");
return false;
}
//@LUD
}
//-->
</SCRIPT>
X.509 fields (INSERTs) that require customization before being used

INSERT NAME=AltOther_<OID>
Here it shows two 'AltOther' INSERTs. You may add as many as you need.
The name of this INSERT is built with the string 'AltOther_,'
concatenated with an underscore(_) separated OID that you need.
You may have more than one input fields. But the total length of the
fields together with the length of the OID and the comma can not exceed
255.
The result AltOther field is built by concatenating the dot(.) separated
OID, which matches this INSERT name, a comma, and the value(s) of the
input field(s).
Eg., in AltOther_1_2_3_4_5, the AltOther field is:
#1.2.3.4.5.<value of Other1>
Eg., in AltOther_1_2_3_4_6, the AltOther field is:
#1.2.3.4.6.<value of Other2>

Structure:
1) INSERT NAME - 'AltOther_' + <n1_n2_n3_n4_n5>
2) a hidden INPUT field with the same name as the INSERT NAME. It
   is used to hold the AltOther field value to be included in the
   certificate.
3) input field(s), with substitution variables [optfield] and [readonly].
   [optfield] is used to control whether the field is an optional field.
   [readonly] is used to control the display mode of the field: if the
   field is on a web page requesting input, it will be assigned with
   NULL, if it is on a web page for displaying request/certificate AltOther
   information, it will be assigned with the HTML attribute 'READONLY'.
4) a hidden INPUT field with name 'altrawstring_' + <n1_n2_n3_n4_n5>.
   Its value is a substitution variable [altrawvalue] which
   is used to hold the result of the returned value of the AltOther,
   excluding the OID and the comma. This is used for displaying the
   AltOther information in a request or a certificate after it is
   generated.
5) a JavaScript which will be called at load time. It contains the
   parsing logic to parse the result obtained in 4) back into
   individual input field(s) when the AltOther information
   is displayed. Make sure the parsing logic matches the input
   field(s) format.
6) a JavaScript function with the name built with a string
   'ValidAltOther_' + <n1_n2_n3_n4_n5>. The name must be of this format.
   Unlike the other validate functions in the other INSERTs which validate
   user input(s) only, it also sets the variable specified in 2) above.
   It concatenates the OID(n1.n2.n3.n4.n5) and value(s) of all the input
   field(s).
   You may customize different validation logic needed to validate
   the input field(s).
   The validation logic shown in the samples include:
   - validate the required field(s) is/are filled
   - validate the length of the input(s)
   - pad the optional field(s) with preset value(s), if there is more
     than one input field

Sample AltOther INSERT with one input field

<INSERT NAME=AltOther_1_2_3_4_5>
# @LWC
<div aria-label="AltOther_1_2_3_4_5" role="region">
<input name="AltOther_1_2_3_4_5" type="hidden" maxlength="255">
<p>Other Name for alternate name: <br>
LABEL for="other1afield" [optfield] <BR>
<input name="Other1a" type="text" size=11 maxlength="11" [readonly]
id="other1afield">
<input name="altrawstring_1_2_3_4_5" type="hidden" value="[altrawvalue]">
<script>
//This is the script that will be called at load time.
var form=document.forms[0]
if (form.altrawstring_1_2_3_4_5.value.length > 0) {
</script>
</INSERT>
// The name 'Other<x>' needs to match with the above INPUT NAME.
// Substr(start position, length)
form.Other1a.value=form.altrawstring_1_2_3_4_5.value.substr(0,11)
}
//-->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
<!--
// This is the validation script
function ValidAltOther_1_2_3_4_5(frm){
if (('[optfield]' == '' && frm.Other1a.value.length != 11) ||
    ('[optfield]' != '' && frm.Other1a.value != '' && frm.Other1a.value.length != 11)) {
  alert("Enter 11 digit account number.");
  frm.Other1a.focus();
  return false;
}

// Build the entire AltOther field.
if (frm.Other1a.value != '')
  frm.AltOther_1_2_3_4_5.value = "1.2.3.4.5," + frm.Other1a.value;
else
  frm.AltOther_1_2_3_4_5.value = "";
return true;
} //-->
</SCRIPT>

# Sample AltOther INSERT with two input fields
#===================================================================
<INSERT NAME=AltOther_1_2_3_4_6>
# @LWC
<div aria-label="AltOther_1_2_3_4_6" role="region">
  <INPUT NAME="AltOther_1_2_3_4_6" TYPE="hidden" maxlength="255">
  Other Name for alternate name: <BR>
  <LABEL for="other2afield">Customer's driver license number (9 digits)
  [optfield] </LABEL>
  <INPUT NAME="Other2a" TYPE="text" SIZE=9 maxlength="9" [readonly]
id="other2afield">
  Customer's driver license expiration date (yyyymmdd) [optfield]
  <LABEL for="other2bfield">[optfield] </LABEL>
  <INPUT NAME="Other2b" TYPE="text" SIZE=8 maxlength="8" [readonly]
id="other2bfield">

  <INPUT NAME="altrawstring_1_2_3_4_6" TYPE="hidden" VALUE="[altrawvalue]">
</INSERT>

/*---
// This is the script that will be called at load time.
var form=document.forms[0]
if (form.altrawstring_1_2_3_4_6.value.length > 0) { 
  // The name 'Other<x>' needs to match with the above INPUT NAME.
  // Substr(start position, length)
  form.Other2a.value=form.altrawstring_1_2_3_4_6.value.substr(0,9)
  form.Other2b.value=form.altrawstring_1_2_3_4_6.value.substr(9,8)
} //-->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
<!--
// This is the validation script
function ValidAltOther_1_2_3_4_6(frm){
if (('[optfield]' == '' && frm.Other2a.value.length != 9) ||
    ('[optfield]' != '' && frm.Other2a.value != '' && frm.Other2a.value.length != 9)) {
  alert("Enter 9 digit license number.");
  frm.Other2a.focus();
  return false;
}

if (('[optfield]' == '' && frm.Other2b.value.length != 8) ||
    ('[optfield]' != '' && frm.Other2b.value != '' && frm.Other2b.value.length != 8)) {
  alert("Enter date format yyyymmdd.");
  frm.Other2b.focus();
  return false;
}

if ('[optfield]' == "" && frm.Other2a.value == "" &&
    frm.Other2b.value == "") {
  alert("You must input at least one of the fields.");
</SCRIPT>
frm.Other2a.focus();
return false;
}

// Pad the empty field with desired value for optional fields
if ("[optfield]" != "") {
    if (frm.Other2a.value == "" && frm.Other2b.value != "") {
        frm.Other2a.value = "0000000000";
    } else if (frm.Other2b.value == "" && frm.Other2a.value != "") {
        frm.Other2b.value = "0000000000";
    }
}

// Build the entire AltOther field.
if (frm.Other2a.value != "" && frm.Other2b.value != "")
    frm.AltOther_1_2_3_4_6.value = "1.2.3.4.6," + frm.Other2a.value +
    frm.Other2b.value;
else
    frm.AltOther_1_2_3_4_6.value = "";
return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=UnstructName>
<div role="region" aria-label="Unstructured Name">
<p>
    <LABEL for="unstructnamefield">Unstructured device name</LABEL> <BR>
    <INPUT NAME="UnstructName" TYPE="text" SIZE=64 maxlength="64"
    id="unstructnamefield">
    <SCRIPT LANGUAGE="JavaScript">
        <!--
        function ValidUnstructName(frm){
            if ("[optfield]" == "" && frm.UnstructName.value == "") {
                alert("Enter required field."); frm.UnstructName.focus();
                return false;
            }
            return true;
        }
        //-->
    </SCRIPT>
</div>
</INSERT>

<INSERT NAME=UnstructAddr>
<div role="region" aria-label="Unstructured Address">
<p>
    <LABEL for="unstructaddrfield">Unstructured device address</LABEL> <BR>
    <INPUT NAME="UnstructAddr" TYPE="text" SIZE=64 maxlength="64"
    id="unstructaddrfield">
    <SCRIPT LANGUAGE="JavaScript">
        <!--
        function ValidUnstructAddr(frm){
            if ("[optfield]" == "" && frm.UnstructAddr.value == "") {
                alert("Enter required field."); frm.UnstructAddr.focus();
                return false;
            }
            return true;
        }
        //-->
    </SCRIPT>
</div>
</INSERT>

<INSERT NAME=SerialNumber>
<div role="region" aria-label="Serial Number">
<p>
    <LABEL for="serialnumberfield">Device serial number</LABEL> <BR>
    <INPUT NAME="SerialNumber" TYPE="text" SIZE=64 maxlength="64"
    id="serialnumberfield">
    <SCRIPT LANGUAGE="JavaScript">
        <!--
        function ValidSerialNumber(frm){
            if ("[optfield]" == "" && frm.SerialNumber.value == "") {
                alert("Enter required field."); frm.SerialNumber.focus();
                return false;
            }
        }
    </SCRIPT>
</div>
</INSERT>
return true;
}
//-->
</div>
</INSERT>

# Sample AltOther INSERT for Windows Logon
#====================================================================
<INSERT NAME=AltOther_1_3_6_1_4_1_311_20_2_3>
<DIV aria-label="AltOther_1_3_6_1_4_1_311_20_2_3" role="region">
<INPUT NAME="AltOther_1_3_6_1_4_1_311_20_2_3" TYPE="hidden" maxlength="255">
<p> Other Name for alternate name: </p>
<p> <LABEL for="other3afield">User Principal Name (max 50 chars) </LABEL> </p>
<input NAME="Other3a" TYPE="text" SIZE=50 maxlength="50" [readonly]
id="other3afield">
<input NAME="altrawstring_1_3_6_1_4_1_311_20_2_3" TYPE="hidden"
VALUE="[altrawvalue]">
</DIV>
</INSERT>

# Sample Custom Extension INSERT  @LHA
#====================================================================
# Here it shows one 'CustomExt' INSERT. You may add as many as you need.
# Structure:
# 1) INSERT NAME with format:
#      the string 'CustomExt_'||_ separated OID||'_'||
#      the critical flag in upper case: 'N' or 'C'||'_'||
#      the encode type in upper case: 'INT','PRT','IA5','BMP' or 'OCT'
# 2) a hidden INPUT field with the same name as the INSERT NAME. It
is used to hold the CustomExt field value to be included in the certificate.

3) input field(s), with substitution variables [optfield] and [readonly].
   [optfield] is used to control whether the field is an optional field.
   [readonly] is used to control the display mode of the field: if the field is on a web page requesting input, it will be assigned with NULL, if it is on a web page for displaying request/certificate CustomExt information, it will be assigned with the HTML attribute 'READONLY'.

4) a hidden INPUT field with name similar to the INSERT name, except 'CustomExt_' is replaced by 'customstring_'.
   Its value is a substitution variable [custvalue] which is used to hold the result of the returned value of the CustomExt, excluding the OID, the critical flag, the encode type and the commas. This is used for displaying the CustomExt information in a request or a certificate CustomExt field(s) format.

5) a JavaScript which will be called at load time. It contains the parsing logic to parse the result obtained in 4) back into individual input field(s) when the CustomExt information is displayed. Make sure the parsing logic matches the input field(s) format.

6) a validation JavaScript function with the name built with a string similar to the INSERT name except the part 'CustomExt' is replaced by 'ValidCustomExt_'.
   Unlike the other validate functions in the other INSERTs which validate user input(s) only, it also sets the variable specified in 2) above.
   # It concatenates the OID, the critical flag, the encode type, and the value(s) of all the input field(s).
   # You may customize different validation logic needed to validate the input field(s).
   # The validation logic shown in the sample include:
   #  - validate the required field(s) is/are filled
   #  - validate '0' is not in the input

====================================================================
# non-X.509 certificate request fields (INSERTs)

```html
#<INSERT NAME=UserId>
<div role="region" aria-label="User ID">
<p> <LABEL for="safuseridfield">Owning SAF User ID [optfield]
</LABEL> <BR>
INPUT NAME="UserId" TYPE="text" SIZE=8 maxlength="8"
id="safuseridfield">
<SCRIPT LANGUAGE="JavaScript">
/*!--
function ValidUserId(frm){
if ("[optfield]" == "" &amp;&amp; frm.UserId.value == ") {
    alert("Enter required field."); frm.UserId.focus();
    return false;
} return true;
} /*-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=Label>
<div role="region" aria-label="Label">
<p> <LABEL for="labelfield">Label assigned to certificate being
requested [optfield] </LABEL> <BR>
INPUT NAME="Label" TYPE="text" SIZE=32 maxlength="32"
id="labelfield">
<SCRIPT LANGUAGE="JavaScript">
/*!--
function ValidLabel(frm){
if ("[optfield]" == "" &amp;&amp; frm.Label.value == ") {
    alert("Enter required field."); frm.Label.focus();
    return false;
} return true;
} /*-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=Requestor>
<div role="region" aria-label="Requestor">
<p> <LABEL for="requestorfield">Your name for tracking this request
[optfield] </LABEL> <BR>
INPUT NAME="Requestor" TYPE="text" SIZE=32 maxlength="32"
id="requestorfield">
<SCRIPT LANGUAGE="JavaScript">
/*!--
function ValidRequestor(frm){
if ("[optfield]" == "" &amp;&amp; frm.Requestor.value == ") {
    alert("Enter required field."); frm.Requestor.focus();
    return false;
} return true;
} /*-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=Requestor2>
<div role="region" aria-label="Requestor Email">
<p> <LABEL for="requestor2field">Enter the requestor's email address
[optfield] </LABEL> <BR>
INPUT NAME="Requestor2" TYPE="text" SIZE=32 maxlength="32"
id="requestor2field">
<SCRIPT LANGUAGE="JavaScript">
/*!--
function ValidRequestor2(frm){
if ("[optfield]" == "" &amp;&amp; frm.Requestor2.value == ") {
    alert("Enter required field."); frm.Requestor2.focus();
    return false;
} return true;
} /*-->
</SCRIPT>
</div>
</INSERT>
```

---

Customizing the end-user web pages using REXX CGIs
Customizing the end-user web application if you use REXX CGI execs

Customizing the end-user web pages using REXX CGIs

```html
<!--
function ValidRequestor2(frm){
  if ("[optfield]" == "" & frm.Requestor.value == "") {
    alert("Enter required field."); frm.Requestor.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=PassPhrase>
<div role="region" aria-label="Password">
<p> <LABEL for="passphrasefield">Pass phrase for securing this request.
You will need to supply this value when retrieving your certificate</LABEL> <BR>
有时你可能需要提供这个值来检索你的证书
[optfield] </LABEL> <BR>
#DKC
<input NAME="PassPhrase" TYPE="password" SIZE=32 maxlength="32"
id="passphrasefield" autocomplete="off"> <BR>
<p> <LABEL for="passphrase2field">Reenter your pass phrase to
confirm </LABEL> <BR>
#DKC
<input NAME="ConfirmPassPhrase" TYPE="password" SIZE=32
maxlength="32" id="passphrase2field" autocomplete="off">
<script LANGUAGE="JavaScript">
<!--
function ValidPassPhrase(frm){
  if ("[optfield]" == "" & frm.PassPhrase.value == "") {
    alert("Enter required field."); frm.PassPhrase.focus();
    return false;
  }
  if ("[optfield]" == "" & frm.ConfirmPassPhrase.value == "") {
    alert("Reenter the pass phrase."); frm.ConfirmPassPhrase.focus();
    return false;
  }
  if (frm.PassPhrase.value != frm.ConfirmPassPhrase.value) {
    alert("Passwords don't match. Reenter."); frm.PassPhrase.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

<INSERT NAME=ChallengePassPhrase>
<div role="region" aria-label="Pass Phrase">
<p> <LABEL for="challengefield">If you specified a pass phrase when
submitting the certificate request, type it here, exactly as you
typed it on the request form </LABEL> <BR>
#DKC
<input NAME="ChallengePassPhrase" TYPE="password" SIZE=32
maxlength="32" id="challengefield" autocomplete="off">
<script LANGUAGE="JavaScript">
<!--
function ValidChallengePassPhrase(frm){
  if ("[optfield]" == "" & frm.ChallengePassPhrase.value == "") {
    alert("Enter required field."); frm.ChallengePassPhrase.focus();
    return false;
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>

#DKC
<INSERT NAME=ChallengePassPhrase2>
<div role="region" aria-label="Re-enter Pass Phrase">
<p> <LABEL for="challenge2field">Enter the same pass phrase as on
the request form </LABEL> <BR>
<INPUT NAME="ChallengePassPhrase" TYPE="password" SIZE=32
maxlength="32" id="challenge2field" autocomplete="off">
<script LANGUAGE="JavaScript">
<!--
function ValidChallengePassPhrase2(frm){
  if ("[optfield]" == "" & frm.ChallengePassPhrase.value == "") {
    alert("Enter required field."); frm.ChallengePassPhrase.focus();
  }
  return true;
}
//-->
</SCRIPT>
</div>
</INSERT>
```
HostIdMap is a repeatable field. If more than one is needed, a separate
INSERT, which can be modelled from this one, is needed.
See INSERT NAME=HostIdMap2 for an example.

```javascript
function ValidHostIdMap(frm){
    if ('[optfield]' == '' && frm.HostIdMap.value == '') {
        alert('Enter required field.'); frm.HostIdMap.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>
</INSERT>
```

# HOSTIDMAP is a repeatable field. If more than one is needed, a
# separate INSERT, which can be modelled from this one, is needed.
# See INSERT NAME=HOSTIDMAP2 for an example.

```javascript
function ValidHostIdMap2(frm){
    if ('[optfield]' == '' && frm.HostIdMap2.value == '') {
        alert('Enter required field.'); frm.HostIdMap2.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>
</INSERT>
```

```javascript
function ValidTransactionId(frm){
    if ('[optfield]' == '' && frm.TransactionId.value == '') {
        alert('Enter required field.'); frm.TransactionId.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>
</INSERT>
```

```javascript
function ValidNotifyEmail(frm){
    if ('[optfield]' == '' && frm.NotifyEmail.value == '') {
        alert('Enter required field.'); frm.NotifyEmail.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>
</INSERT>
```
alert("Enter required field."); frm.NotifyEmail.focus();
    return false;
} return true;
} //-->
</SCRIPT>
</div>
</INSERT>

#OLEA
<INSERT NAME=-RecoverEmail>
<div role="region" aria-label="Recover Email">
<p> <LABEL for="recoveremailfield">Enter the email address when the original certificate was requested [optfield] </LABEL> <BR>
<!-- @DIC -->
<input name="RecoverEmail" type="text" maxlength=32 size=32 id="recoveremailfield" value="[requestoremail]">
<script language="JavaScript">
<!--
    function ValidRecoverEmail(frm){
        if ("[optfield]" == "" && frm.RecoverEmail.value == "") {
            alert("Enter required field."); frm.RecoverEmail.focus();
            return false;
        }
        return true;
    }
    //-->
</script>
</div>
</INSERT>

#OLGA
<INSERT NAME=-RecoverEmail2>
<div role="region" aria-label="Recover Email Two">
<p> <LABEL for="recoveremail2field">Enter the email address when the original certificate was requested [optfield] </LABEL> <BR>
<input name="RecoverEmail" type="text" maxlength=32 size=32 id="recoveremail2field" value="[requestor]">
<script language="JavaScript">
<!--
    function ValidRecoverEmail(frm){
        if ("[optfield]" == "" && frm.RecoverEmail.value == "") {
            alert("Enter required field."); frm.RecoverEmail.focus();
            return false;
        }
        return true;
    }
    //-->
</script>
</div>
</INSERT>

<INSERT NAME=SelectCADomain>
<div role="region" aria-label="Select CA Domain">
<p> <LABEL for="selectcadomfield">Select the CA domain to work with </LABEL>
<select name="domain" id="selectcadomfield">
    # rename and replicate the following line for every CA domain and
    # determine which one should be SELECTED by default, if any
    <option value="Customers" selected>Customers</option>
</select>
</div>
</INSERT>

# Changed name of insert from SmartCardNS to PublicKey2NS to match CGI scripts
# Added the confirmation dialog box and <keygen> html tag
<INSERT NAME=PublicKey2NS>
<div role="region" aria-label="Public Key2 NS">
<script language="JavaScript">
<!--
    function ValidSmartcard(frm){
        var message = "Make sure you have Smart Card(s) installed and loaded \n        on the browser. Choose the appropriate Smart Card device from the upcoming \n        option list. If you cannot confirm a smart card is configured, click Cancel."

        var response = confirm(message);
        if(response == true)
            return true;
        else
            
</script>
</div>
</INSERT>

Customizing the end-user web pages using REXX CGIs 209
function SendReq(){
    var pkcs10data,DN,i,Message,CommonName;
    var objEnroll;
    DN= "";
    CommonName= "Unspecified Distinguished Name";
    DN= "CN=" + CommonName + ";";
    pkcs10data = "";
    try{
        objEnroll = g_objWCF.CreateObject("X509Enrollment.CX509Enrollment");
    }
    catch(err){
        objEnroll = null;
        return;
    }
    if(objEnroll !== null &amp;&amp; typeof objEnroll === 'object'){
        // CertEnroll API
        var objPrivateKey;
        var objRequest;
        var objName;
        var objHash;
        try{
            objPrivateKey = g_objWCF.CreateObject("X509Enrollment.CX509PrivateKey");
        }
        catch(err){
            Message = "Error creating Private Key object: \n" + err.description;
            alert(Message);
            return;
        }
        try{
            objRequest = g_objWCF.CreateObject("X509Enrollment.CX509CertificateRequestPkcs10");
        }
        catch(err){
            Message = "Error creating Request object: \n" + err.description;
            alert(Message);
            return;
        }
        try{
            i = document.getElementById("smartcardcspfield").options.selectedIndex;
            objPrivateKey.ProviderName = document.getElementById("smartcardcspfield").options(i).text;
            objPrivateKey.ProviderType = document.getElementById("smartcardcspfield").options(i).value;
            objPrivateKey.KeySpec = 1; // XCN_AT_KEYEXCHANGE
            objPrivateKey.Length = 2048; // KeySize = 2048 @LWA
            try{
                objRequest.InitializeFromPrivateKey( 1, objPrivateKey, "" );
            }
            catch(err){
                Message = "Error initializing request from private key " + err.description;
                alert(Message);
                return;
            }
            try{
                objName = g_objWCF.CreateObject("X509Enrollment.CX500DistinguishedName");
            }
            catch(err){
                Message = "Error creating X500DistinguishedName object: \n" + err.description;
                alert(Message);
                return;
            }
            try{
                objName.Encode(DN);
            }
            catch(err){
                Message = "Error encoding the subject distinguished name \n" + err.description;
                alert(Message);
                return;
            }
            try{
                objRequest.Subject = objName;
            }
            catch(err){
                Message = "Error setting the subject name in request " + err.description;
                alert(Message);
                return;
            }
    }
try {
    objHash = g_objWCF.CreateObject("X509Enrollment.CObjectId");
    objHash.InitializeFromAlgorithmName(4, 0x00000000, 0x00000000, "SHA256");
    objRequest.HashAlgorithm = objHash;
    catch(err) {
    Message = "Error setting the signature algorithm in request " + err.description;
    alert(Message);
    return;
    }
}

try{
    objEnroll.InitializeFromRequest( objRequest )
}catch(err){
    Message = "Error initializing Enrollment object from request: " + err.description;
    alert(Message);
    return;
}

pkcs10data = objEnroll.CreateRequest(1); // XCN_CRYPT_STRING_BASE64

if(pkcs10data.length <= 0){
    alert("PKCS10 Creation Failed");
}

function LoadCSPs(){
    try {
        var i;
        var csp;
        var sv;
        //Modifications for CertEnroll API enrollment process.
        var objCSPs;
        var oOption;
        var provider;
        var errmsg;
        try{
            objCSPs = g_objWCF.CreateObject("X509Enrollment.CCspInformations");
        }catch(err){
            objCSPs = null;
            alert("Failed to load CSPs");
            return;
        }
        if(objCSPs !== null && typeof objCSPs === 'object'){
            //CertEnroll APIs
            objCSPs.AddAvailableCsps();
            for(i=0 ; i < objCSPs.Count;i++){
                //Only include Legacy(Crypto API) providers at this time
                if(objCSPs.ItemByIndex(i).LegacyCsp)
                    provider = objCSPs.ItemByIndex(i).Name.toLowerCase();
                if((provider.indexOf("smart") > 0) || (provider.indexOf("card") > 0)){
                    oOption = document.createElement("OPTION");
                    oOption.text = objCSPs.ItemByIndex(i).Name;
                    oOption.value = objCSPs.ItemByIndex(i).Type;
                    document.getElementById("smartcardcspfield").add(oOption);
                }
            }
        }
    }catch (e) {
        alert("Failed to load CSPs");
    }
}
<input type="hidden" name="PublicKey" value=""/>
<p>
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidSmartcard(frm){
 SendReq()
 if (document.CertReq.PublicKey.value == "")
 return false;
 else
 return true;
 }
//-->
</SCRIPT>
</div>
</INSERT>

#####################################################################
# This INSERT is for preregistration only
#
#####################################################################
<INSERT NAME=ClientName>
<div role="region" aria-label="Client Name">
<p> <LABEL for="clientnamefield">The name of the person or device that 
the certificate represents  </LABEL> <BR>
<input NAME="ClientName" TYPE="text" SIZE=64 maxlength="64" 
id="clientnamefield">
<SCRIPT LANGUAGE="JavaScript">
<!--
function ValidClientName(frm){
if (frm.ClientName.value == "") {
 alert("Enter required field."); frm.ClientName.focus();
 return false;
 }
 return true;
 }
//-->
</SCRIPT>
</div>
</INSERT>

#####################################################
#                                                   #
# This INSERT is for PKI generated key request only #
# @LIC                                             #
#####################################################
<INSERT NAME=KeySize>
<div role="region" aria-label="Key Size Field">
<p> <LABEL for="keysizefield">Select the key type and key size 
</LABEL> <BR>
<select NAME="KeySize" id="keysizefield">
#1@LQD
<option VALUE="RSA - 1024">RSA - 1024
<option VALUE="RSA - 2048">RSA - 2048
<option VALUE="RSA - 4096">RSA - 4096
<option VALUE="NISTECC - 192">NISTECC - 192
<option VALUE="NISTECC - 224">NISTECC - 224
<option VALUE="NISTECC - 256">NISTECC - 256
<option VALUE="NISTECC - 384">NISTECC - 384
<option VALUE="NISTECC - 512">NISTECC - 512
<option VALUE="BPECC - 160">BPECC - 160
<option VALUE="BPECC - 192">BPECC - 192
<option VALUE="BPECC - 224">BPECC - 224
<option VALUE="BPECC - 256">BPECC - 256
<option VALUE="BPECC - 320">BPECC - 320
<option VALUE="BPECC - 384">BPECC - 384
<option VALUE="BPECC - 512">BPECC - 512
</select>
<SCRIPT LANGUAGE="JavaScript">
<!--
// Because keysize is a single select field, it will always have a 
// value, therefore we do not need to check if a required field was 
// provided. Also, we assume that only valid values are included in 
// the selection options.

function ValidKeySize(frm) {
 return true;
 }
//-->
</SCRIPT>
These INSERTs are used to assist the recovery of a certificate whose key is generated by PKI. You can add as many as you want. Start from Security1, then Security2 ... Securityn and so on. These are meant to be used by the GENCERT/REQCERT and QRECOVER exits. The number of these questions must match to that handled by the exits. @LEA

---

<INSERT NAME=Security1>
<div role="region" aria-label="Security Question One">
<p>What's the intended use of this certificate? [optfield] 

<input name="Security1" type="text" size=100 maxlength="100" id="security1field">
<script language="JavaScript">
function ValidSecurity1(frm){
  if ("[optfield]" == "" &amp; frm.Security1.value == "") {
    alert("Enter required field."); frm.Security1.focus();
    return false;
  }
  return true;
}
//-->
</script>
</div>
</INSERT>

<INSERT NAME=Security2>
<div role="region" aria-label="Security Question Two">
<p>What's the name of your elementary school? [optfield] 

<input name="Security2" type="text" size=100 maxlength="100" id="security2field">
<script language="JavaScript">
function ValidSecurity2(frm){
  if ("[optfield]" == "" &amp; frm.Security2.value == "") {
    alert("Enter required field."); frm.Security2.focus();
    return false;
  }
  return true;
}
//-->
</script>
</div>
</INSERT>

---

<INSERT NAME=copyright>
<!--
Licensed Materials - Property of IBM
Copyright IBM Corp. 2001, 2019
-->
</INSERT>

<INSERT NAME=pagefooter>
<div role="region" aria-label="Contact Email">
<a href="mailto:webmaster@your-company.com">email: webmaster@your-company.com</a></div>
</INSERT>

---

Customizing the end-user web application if you use REXX CGI execs
# This INSERT is for Installation of Auto Renewed certificate     // @DFA  
#                                                                                           
# Converted VBScript to JavaScript    74@LUC
<INSERT NAME=InstallCert>
<SCRIPT LANGUAGE="JavaScript">
<!--
function installCert()
{  //Function Call to install Certificate after the creation of the renewal request
  //-----BEGIN CERTIFICATE-----
  var msg;
  var pkcs7data, errmsg, rc;
  // Added for CertEnroll API processing.
  var objEnroll;
  var temp;
  var beginlen;
  var beginpos;
  var beginntag;
  try{
    var pkcs7data = document.getElementById("b64cert").value;
    //Remove begin certificate tag
    beginntag = "-----BEGIN CERTIFICATE-----"
    if(pkcs7data.indexOf(beginntag) >= 0){
      temp = pkcs7data;
      beginlen = beginntag.length;
      beginpos = temp.indexOf(beginntag) + beginlen;
      pkcs7data = temp.substring(beginpos);
    }
    // CertEnroll.dll API additions follow.
    try{
      objEnroll = g_objWCF.CreateObject("X509Enrollment.CX509Enrollment");
    }catch(err){
      objEnroll = null;
    }
    if(objEnroll !== null && typeof objEnroll === 'object'){
      try{
        //CertEnroll APIs
        objEnroll.Initialize(1);  // ContextUser
      }catch(err){
        errmsg = "Error Initializing Enrollment object. " + err.description;
        alert(errmsg);
        return 1;
      }
      try{
        objEnroll.InstallResponse(0, pkcs7data, 1, "");
      }catch(err){
        errmsg = "Error Installing Response. " + err.description;
        alert(errmsg);
        return 1;
      }
    }
  }
  // -->
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
<!--
// Function to create the renewal request. If successful, go ahead and
// call the VB script function to install the certificate on the browser
function InstallCertificate()
{
  // return failure if certificate not present
  if(document.getElementById("b64cert").value == "")
  {
    alert("Auto Renew Certificate Install failed - Missing required base64 certificate");
  }
  document.getElementById("b64cert").focus();
  return false;
}

214 z/OS: Cryptographic Services PKI Services Guide and Reference
// Call to create renewal request
var result = ValidRenewKeySet();
if (result == false)
{
    return false;
}
else
{
    var res1 = installCert();
    return res1;
}
</SCRIPT>
</INSERT>

---------------------------------------------------------------------
# This INSERT is BusinessCat
#
<!--
function ValidBusinessCat(frm){
    if ("[optfield]" == "" && frm.BusinessCat.value == ") {
        alert("Enter required field."); frm.BusinessCat.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>

---------------------------------------------------------------------
# This INSERT is JurLocality
#
<!--
function ValidJurLocality(frm){
    if ("[optfield]" == "" && frm.JurLocality.value == ") {
        alert("Enter required field."); frm.JurLocality.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>

---------------------------------------------------------------------
# This INSERT is JurStateProv
#
<!--
function ValidJurStateProv(frm){
    if ("[optfield]" == "" && frm.JurStateProv.value == ") {
        alert("Enter required field."); frm.JurStateProv.focus();
        return false;
    }
    return true;
}
//-->
</SCRIPT>
</div>
The numbers in the following list refer to the highlighted tags in the preceding excerpt of the INSERT section.

1. The -requestok INSERT has the logic to generate the certificate. If the certificate is successfully generated, a web page (whose main heading is "Request submitted successfully") is displayed. This web page includes the transaction ID.
2. The `-requestok` INSERT includes an ACTION that calls `caretrieve.rexx`, which allows the user to retrieve the certificate.

3. Alternately, if the request is not successful, the `-requestbad` INSERT gains control.

4. (The `caretrieve.rexx` CGI displays the RETRIEVECONTENT subsection (see list item “15” on page 185) HTML, which displays a web page that prompts the user for the transaction ID associated with the certificate request. The user enters the transaction ID (and any password) and clicks the `Continue` button, which calls `cagetcert.rexx`.) The `cagetcert.rexx` CGI calls `R_PKIServ` for EXPORT of the certificate. If the export is successful, `cagetcert.rexx` displays the HTML under the RETURNCERT subsection. (See list item “18” on page 185.)

5. The base64-encoded certificate is displayed on the web page by using the `[base64cert]` substitution variable.

6. This is a browser-qualified PublicKey INSERT for Internet Explorer.

7. Additional INSERTs are certificate field name INSERTs. These describe the fields using the HTML dialogs that are displayed on the web pages if the user is allowed to input these fields. For example, `PassPhrase` is a text field with a maximum length of 32 characters. The two-year PKI browser certificate for authenticating to z/OS allows the user to fill in this field. (`%%PassPhrase%%` is listed in the input fields; see list item “8” on page 184.)

### Relationship between CGIs and the pkiserv.tmpl file

CGIs for the end-user web pages are execs that gain control when the end user clicks an action button - for example, the `Request certificate` button on the PKI Services home page. The CGIs read the `pkiserv.tmpl` file to determine the action to perform. They resolve substitution variables in the `pkiserv.tmpl` file.

The CGIs for the end-user web pages (including their directories) are:

- `/usr/lpp/pkiserv/PKIServ/ssl-cgi/camain.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/catmpl.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/auth/careq.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/carecover.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/caretrieve.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/auth/cagetcert.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/auth/cagetcert2.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/cagorcvr.rexx`
- `/usr/lpp/pkiserv/PKIServ/clientauth-cgi-bin/cadisplay.rexx`
- `/usr/lpp/pkiserv/PKIServ/clientauth-cgi-bin/camodify.rexx`
- `/usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/installcert.rexx`

**Note:** `installcert.rexx` is invoked from a link in the certificate renewal email notification, not from a web page.

The following table summarizes the actions the CGIs perform:
<table>
<thead>
<tr>
<th>CGI exec</th>
<th>Action</th>
<th>Sample web page</th>
</tr>
</thead>
<tbody>
<tr>
<td>camain.rexx</td>
<td>- When the user clicks <strong>Request certificate</strong>, this CGI calls catmpl.rexx, passing it a parameter identifying the selected template.&lt;br&gt;- The user can click <strong>Pick up certificate</strong> to go directly to caretrieve.rexx (if the certificate is already requested).&lt;br&gt;- The user can click <strong>Renew or revoke certificate</strong> to go to cadisplay.rexx.</td>
<td>See Figure 42 on page 377.</td>
</tr>
<tr>
<td>catmpl.rexx</td>
<td>- Displays web page coded in the HTML under the CONTENT subsection (of a TEMPLATE section).&lt;br&gt;- When the user clicks <strong>Submit certificate request</strong>, this CGI passes template and field name parameters to careq.rexx.&lt;br&gt;- When the user clicks <strong>Retrieve your certificate</strong>, this CGI passes control to caretrieve.rexx.</td>
<td>See Figure 44 on page 386.</td>
</tr>
<tr>
<td>carecover.rexx</td>
<td>- Displays web page coded in the HTML under the RECOVERCONTENT subsection (of a TEMPLATE section).&lt;br&gt;- This HTML prompts the user to enter the requestor name and passphrase if the user entered one when requesting the certificate.&lt;br&gt;- When the user clicks <strong>Recover Certificate</strong>, this CGI passes the requestor name and passphrase to cagryrcvr.rexx.</td>
<td>See Figure 56 on page 398.</td>
</tr>
<tr>
<td>careq.rexx</td>
<td>- Processes field names under the APPL subsection (of a TEMPLATE section).&lt;br&gt;<strong>Note:</strong> Depending on the template, the field names can be: &lt;br&gt;- UserId only&lt;br&gt;- UserId and HostIdMap.&lt;br&gt;- Processes hardcoded field names under the CONSTANT subsection (of a TEMPLATE section).&lt;br&gt;- Depending on the results, displays web page coded in the HTML under the SUCCESSCONTENT or FAILURECONTENT subsection (of a TEMPLATE section): &lt;br&gt;- The SUCCESSCONTENT subsection includes a <strong>Continue</strong> button the user can click to continue to caretrieve.rexx.</td>
<td>See Figure 46 on page 389.</td>
</tr>
<tr>
<td>caretrieve.rexx</td>
<td>- Displays web page coded in the HTML under the RETRIEVECONTENT subsection (of a TEMPLATE section). This HTML prompts the user to enter the transaction ID and a password if the user entered one when requesting the certificate.&lt;br&gt;- When the user clicks <strong>Retrieve and install certificate</strong>, this CGI passes the transaction ID parameter to cagetcert.rexx.</td>
<td>See Figure 47 on page 390.</td>
</tr>
</tbody>
</table>
### Table 41. CGI actions for end-user web pages (continued)

<table>
<thead>
<tr>
<th>CGI exec</th>
<th>Action</th>
<th>Sample web page</th>
</tr>
</thead>
</table>
| cagetcert.rexx | • Displays web page coded in the HTML under RETURNCERT subsection (of a TEMPLATE section). This HTML determines which of the following forms to use when returning the certificate:  
  - as a base64-encoded certificate (for server certificates)  
  - as an ActiveX object (for Microsoft Internet Explorer browser certificates)  
  - as an application/x-x509-user-certificate MIME type (for Mozilla-based browser certificates). | See Figure 49 on page 391.                                                      |
| cagetcert2.rexx | • Displays web page coded in the HTML under RETURNCERT subsection (of a TEMPLATE section). This HTML returns the certificate and private key in PKCS #12 format. |                                                                                 |
| cagorcvr.rexx  | • Displays web page coded in HTML under the FINDRECOVERCONTENT subsection of the APPLICATION section. This subsection displays security questions for users to answer. The answers to these questions can be used to recover a passphrase, which is used to recover a certificate. |                                                                                 |
| cadisplay.rexx | • Displays web page coded in the HTML under the RECONTENT subsection (of the APPLICATION section).  
  • For renewing a certificate, the user fills in the passphrase and clicks Renew. For revoking a certificate, the user clicks Revoke. Both actions call camodify.rexx. | See Figure 55 on page 396.                                                      |
| camodify.rexx  | • Displays web page coded in the HTML under the SUCCESSCONTENT subsection (of a TEMPLATE section) for a successful renewal. The SUCCESSCONTENT subsection includes a Continue button the user can click to call caretrieve.rexx.  
  • Displays the web page coded in HTML under the RESUCCESSCONTENT subsection (of the APPLICATION section) for a successful revocation. | See Figure 46 on page 389.                                                      |
| installcert.rexx | • When a user who is using the Internet Explorer browser clicks a link in a notification email for a renewed certificate, this CGI displays a web page where the user can paste the renewed certificate sent in the email and install it in the browser. |                                                                                 |

### Steps for performing minimal customization

You need to perform these steps only if you are customizing certificate templates for the first time. If your company used an earlier release of PKI Services, you do not need to do so again.

**Before you begin**

Review the certificate templates and decide if there are any that you want to remove from the pkiserv.tmpl certificates template file. If so, do this first. (To remove a certificate template, you can simply remove its name from the appropriate APPLICATION sections.)

**Notes:**
• Fields such as `%%Org%%` and `%%Country%%` are used to form the subject's distinguished name. Therefore, make sure that the name formed has a suffix that matches a suffix that the LDAP directory supports (that is, that it matches one of the suffix values in the LDAP server configuration file).

• The default name of the LDAP server configuration file is `ds.conf` for the IBM Tivoli Directory Server for z/OS LDAP server.

Perform the following steps to do the minimal updates on the remaining certificate templates:

1. For the SAF templates, update the following fields as needed:
   a. If present, replace the OrgUnit values in the following lines with values more appropriate to your organization:

   ```
   %%OrgUnit=Nuts and Bolts Division%%
   %%OrgUnit=SAF template certificate%%
   ```

   b. Replace `taca` in the following line with the correct label of the CERTAUTH signing certificate:

   ```
   %%SignWith=SAF:CERTAUTH/taca%%
   ```

2. For the PKI templates, replace the OrgUnit value in the following line with a value more appropriate for your organization:

   ```
   %%OrgUnit=Class 1 Internet Certificate CA%%
   ```

3. If present, replace `The Firm` with the name of your company in the following `%%Org` line:

   ```
   %%Org=The Firm%%
   ```

4. If your company location is not the United States, update the following line by specifying the correct two-letter country abbreviation:

   ```
   %%Country=US%%
   ```

5. If present, replace `host-name` with the domain name of this system in the following `%%HostIdMap` line:

   ```
   %%HostIdMap=@host-name%%
   ```

You also need to follow the instructions in “Administering HostIdMappings extensions” on page 482.

6. For non-SAF certificates, you can notify users when certificate requests are rejected or when certificates are ready for retrieval or are expiring.

   a. If you do not want to have NotifyEmail appear as an input field for any non-SAF certificates, delete the NotifyEmail lines in the following locations in the TEMPLATE section for this certificate:

   ```
   # NotifyEmail - optional
   ```

   ```
   %%NotifyEmail (optional)%%
   ```
b. If you do not want to have NotifyEmail appear as an input field for renewal of any non-SAF certificates, delete the following NotifyEmail line in the APPLICATION section and in the list of fields:

```
%%NotifyEmail (optional)%%
```

7. Insert the copyright statement for your company in the -copyright named field in the INSERT section.

8. Insert the email address of your company's PKI Services administrator in the -pagefooter named field in the INSERT section.

---

**Steps for additional first-time customization**

You need to perform these steps only if you are customizing certificate templates for the first time. If your company used an earlier release of PKI Services, you do *not* need to perform these steps.

Perform the following steps if you want to perform additional customization of the end-user web pages:

1. Review the templates and decide which you need to update.

2. If necessary, change the true name, alias, or nickname, as in the following lines.

```
<TEMPLATE NAME=true_name>
<TEMPLATE NAME=alias>
<NICKNAME=nickname>
```

- **true_name**
  Is the whole and complete name of the certificate template.

- **alias**
  Differentiates browser from server certificates. An alias is not required. You can have more than one alias.

- **nickname**
  Is an 8-character name. SAF certificates do not have nicknames. If a nickname is not present, the certificate is not automatically renewable.

**Example:**

```
<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSSL>
```

3. If necessary, in the CONTENT subsection, change the certificate fields listed. The following example is from the one-year PKI SSL browser certificate template.

**Example:**

```
<p> Enter values for the following field(s)
%%CommonName%%
%%Requestor (optional)%%
%%PassPhrase%%
%%PublicKey2[browsertype]%%
```

4. If you add required fields in the preceding step, update the JavaScript code that is part of the embedded HTML to check for required fields that are missing.
Example:

ValidCommonName(frm) &&
ValidPassPhrase(frm) &&
ValidPublicKey2(frm) &&

5. If necessary, in the APPL subsection, change the list of certificate fields that the application provides. (Currently, the only supported fields are UserId and HostIdMap.) The following example is from the two-year PKI browser certificate for authenticating to z/OS:

Example:

```xml
<APPL>
  %%UserId%%
  %%HostIdMap=@host-name%%
</APPL>
```

6. If necessary, in the CONSTANT subsection, update the list of certificate fields whose values are hardcoded. The following example is from the one-year PKI SSL browser certificate template:

Example:

```xml
<CONSTANT>
  %%NotBefore=0%%
  %%NotAfter=365%%
  %%KeyUsage=handshake%%
  %%OrgUnit=Class 1 Internet Certificate CA%%
  %%Org=The Firm%%
  %%SignWith=PKI:%%
</CONSTANT>
```

**Note:** If you update the CONSTANT subsection to create subject distinguished names, make sure that the names match the LDAP suffix that are defined for your LDAP server. Otherwise, the certificates are not posted to LDAP. PKI Services constructs the subject distinguished name from the fields that are specified in the following order:

- CommonName
- Title
- OrgUnit (if repeating, in the order that they appear in the template file)
- Org
- Locality
- StateProv
- Country

7. If necessary, edit the ADMINAPPROVE subsection. (Certificates requiring an administrator's approval have an ADMINAPPROVE subsection. The absence of the ADMINAPPROVE subsection indicates that requests are automatically approved and that they can be synchronously fulfilled.) Make sure the ADMINAPPROVE subsection, if present, correctly lists the minimum set of certificate fields that the administrator can change.

**Note:**

a. There might be more fields in the ADMINAPPROVE subsection than fields that the user can complete in the certificate request (because the users do not necessarily see all fields).

b. Do not include the Requestor, Label, UserId, PublicKey, or SignWith fields in the ADMINAPPROVE subsection. These fields cannot be changed and are ignored if present. (For a list of tags that are allowed in the ADMINAPPROVE subsection, see the subsection ADMINAPPROVE, in the topic about “TEMPLATE sections” on page 151.)
Customizing the end-user web pages using REXX CGIs

c. If a request is examined and approved by more than one PKI Services administrator, include the
ADMINNUM=value tag in the ADMINAPPROVE subsection.
The following example of the ADMINAPPROVE subsection is from the one-year PKI SSL browser
certificate template:
Example:
<ADMINAPPROVE>
%%CommonName (Optional)%%
%%OrgUnit (Optional)%%
%%OrgUnit (Optional)%%
%%Org (Optional)%%
%%NotBefore (optional)%%
%%NotAfter (Optional)%%
%%KeyUsage (Optional)%%
%%HostIdMap (Optional)%%
%%HostIdMap (Optional)%%
%%HostIdMap (Optional)%%
%%HostIdMap (Optional)%%
</ADMINAPPROVE>

Note: The four %%HostIdMap%% lines in the example indicate that the approver can provide up to
four HostIdMap entries.
____________________________________________________________
8. If necessary, update the following subsections:
• The SUCCESSCONTENT subsection contains only the %%-requestok%% named field, which
contains the HTML for the web page whose main heading is "Request submitted successfully". To
make changes to this web page, update the -requestok INSERT (in the INSERT section of
pkiserv.tmpl):
<INSERT NAME=-requestok>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">
<HTML lang="en"><HEAD>
<TITLE> Web Based Certificate Generation Success</TITLE>
</HEAD>
<BODY>
<H1> Request submitted Successfully</H1>
[errorinfo]
<p> Here's your transaction ID. You will need it to retrieve your
certificate. Press 'Continue' to retrieve the certificate.
<p> <TABLE BORDER><TR><TD>[transactionid]</TD></TR></TABLE>
<FORM METHOD=GET ACTION="/PKIServ/ssl-cgi/caretrieve.rexx">
<INPUT NAME="Template" TYPE="hidden" VALUE="[tmplname]">
<INPUT NAME="TransactionId" TYPE="hidden" VALUE="[transactionid]">
<INPUT TYPE="submit" VALUE="Continue">
</FORM>
<p>%%-pagefooter%%
</BODY>
</HTML>
</INSERT>

• The FAILURECONTENT subsection contains only the %%-requestbad%% named field, which
contains the HTML for the web page whose main heading is "Request was not successful". To make
changes to this web page, update the requestbad INSERT:
<INSERT NAME=-requestbad>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN""http://www.w3.org/TR/html4/loose.dtd">
<HTML lang="en"><HEAD>
<TITLE> Web Based Certificate Generation Failure</TITLE>
</HEAD>
<BODY>
<H1> Request was not successful</H1>
<p> Please correct the problem or report the error to your Web admin
person<br>
<PRE>
[errorinfo]
</PRE>
<p>%%-pagefooter%%
</BODY>
</HTML>
</INSERT>

____________________________________________________________
9. If necessary, update the RETRIEVECONTENT subsection.
Customizing the end-user web application if you use REXX CGI execs 223


Note: See “Steps for changing the runtime user ID for retrieving certificates” on page 228 for directions for changing the runtime user ID for retrieving a certificate.

a. The RETRIEVECONTENT subsection includes the %%-copyright%% named field. If you want to make any changes in the copyright statement, update the copyright INSERT. (The following sample is the copyright INSERT as it is originally provided in the pkiserv.tmpl file. You should have previously updated this INSERT by providing information tailored to your company, as described in “Steps for performing minimal customization” on page 219.)

```html
<INSERT NAME=-copyright>
<!--
/***************************************************************************/
/*                                                                  */
/* LICENSED MATERIALS - PROPERTY OF IBM                             */
/* 5650-ZOS                                                          */
/* COPYRIGHT IBM CORP. 2001, 2019                                   */
/*                                                                  */
/***************************************************************************/
--> </INSERT>
```

b. If necessary, update any web page content (such as headers, footers, titles, background colors, frames, links, and so on) for the web page whose main heading is “Retrieve Your (certificate template name)”.

10. If you are updating the template for a server certificate, you can update the HTML in the RETURNCERT subsection to customize the returned web page. (For a browser template, you cannot change the RETURNCERT subsection. It must contain the %%returnbrowsercert%% named field, which contains the [browsertype] substitution variable. The INSERT section contains browser-specific returnbrowsercert INSERTs.)

Steps for retrofitting release changes into the PKI Services certificate templates

If you used an earlier release of PKI Services, you might need to retrofit changes in the pkiserv.tmpl certificate templates file. (You would not want to replace the file if you customized it in the previous release.)

You can use a file comparison tool to compare the new PKI Services certificates template file (/usr/lpp/pkiserv/samples/pkiserv.tmpl) and your existing PKI Services certificates template file (/etc/pkiserv/pkiserv.tmpl).

Perform the following steps to retrofit changes into the pkiserv.tmpl certificate templates file so you do not lose any customization that you made in a previous release.

1. Make a backup copy of your current certificate templates file. For example, enter from the UNIX command line:

   ```bash
cp /etc/pkiserv/pkiserv.tmpl /etc/pkiserv/pkiserv.backup
   ```

2. Copy the new sample templates file to the runtime location. (This is the copy you edit.)

   ```bash
cp /usr/lpp/pkiserv/samples/pkiserv.tmpl /etc/pkiserv/pkiserv.tmpl
   ```

3. Using a compare program of your choice, compare the two template files:

   ```bash
   • /etc/pkiserv/pkiserv.tmpl
   • /etc/pkiserv/pkiserv.backup
   ```
4. Edit the runtime copy of the templates file (/etc/pkiserv/pkiserv.tmpl). Using the compare output that is generated in Step 3, merge the changes that you made to the original template file into the runtime copy of the templates file.

-----------------------------------------------

5. Exit the file to save your changes.

-----------------------------------------------

**Locating code for customizing end-user web pages**

For ongoing customization of end-user web pages, you must know the code locations for those web pages. The following table summarizes this information:

<table>
<thead>
<tr>
<th>Table 42. Location of code for various web pages</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Main header (and sample web page if any)</strong></td>
</tr>
<tr>
<td>&quot;1-Year PKI S/MIME Browser Certificate&quot;</td>
</tr>
<tr>
<td>&quot;1-Year PKI SSL Browser Certificate&quot; (See Figure 44 on page 386.)</td>
</tr>
<tr>
<td>&quot;2-Year EV SSL server certificate&quot;</td>
</tr>
<tr>
<td>&quot;2-Year PKI Browser Certificate For Authenticating To z/OS&quot;</td>
</tr>
<tr>
<td>&quot;2-Year PKI Authenticode - Code Signing Certificate&quot;</td>
</tr>
<tr>
<td>&quot;5-Year PKI Intermediate CA Certificate&quot;</td>
</tr>
<tr>
<td>&quot;5-Year PKI IPSEC Server (Firewall) Certificate&quot;</td>
</tr>
<tr>
<td>&quot;5-Year PKI SSL Server Certificate&quot;</td>
</tr>
<tr>
<td>&quot;5-Year SCEP certificate - Preregistration&quot;</td>
</tr>
<tr>
<td>&quot;2-Year EST Certificate - Preregistration&quot;</td>
</tr>
<tr>
<td>&quot;n-Year PKI Certificate for Extensions Demonstration&quot;</td>
</tr>
<tr>
<td>&quot;Here's Your Certificate. Cut and Paste it to a File&quot;</td>
</tr>
<tr>
<td>&quot;Internet Explorer Certificate Install&quot; (See Figure 49 on page 391.)</td>
</tr>
<tr>
<td>&quot;Preregistration successful&quot;</td>
</tr>
<tr>
<td>&quot;PKI Services Certificate Generation Application&quot; (See Figure 42 on page 377.)</td>
</tr>
<tr>
<td>&quot;Renew or Revoke a Browser Certificate&quot; (See Figure 55 on page 396.)</td>
</tr>
<tr>
<td>&quot;Internet Explorer Auto Renewed Certificate Install&quot;</td>
</tr>
</tbody>
</table>
Table 42. Location of code for various web pages (continued)

<table>
<thead>
<tr>
<th>Main header (and sample web page if any)</th>
<th>Location of code in pkiserv.tmpl certificate templates file</th>
</tr>
</thead>
</table>
| "Request submitted successfully" (For submitting a successful certificate request or renewal, see Figure 46 on page 389.) | • For a successful certificate request or renewal: INSERT section, -requestok INSERT. (This is referenced in the SUCCESSCONTENT subsection of the TEMPLATE section of the appropriate certificate template.)  
  • For a successful certificate revocation: INSERT section, -renewrevokeok INSERT. (This is referenced in the RESUCCESSCONTENT subsection of the APPLICATION section.) |
| "Request was not successful"                                               | • For an unsuccessful certificate request: INSERT section, -requestbad INSERT. (This is referenced in the FAILURECONTENT subsection of the TEMPLATE section of each certificate template.)  
  • For an unsuccessful certificate revocation request: INSERT section, -renewrevokebad INSERT. (This is referenced in the REFailureCONTENT subsection of the APPLICATION section.) |
| "Retrieve Your 1-Year PKI S/MIME Browser Certificate"                      | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your 1-Year PKI SSL Browser Certificate"                         | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| (See Figure 47 on page 390.)                                               |------------------------------------------------------------------------------------------------|
| "Retrieve Your 2-Year PKI Browser Certificate For Authenticating To z/OS"   | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your 2-Year PKI Authenticode - Code Signing Certificate"         | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your 5-Year PKI Intermediate CA Certificate"                     | TEMPLATE section RETRIEVECONTENT subsection                                                      |
| "Retrieve Your 5-Year PKI IPSEC Server (Firewall) Certificate"             | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your 5-Year PKI SSL Server Certificate"                         | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your [tmplname]"                                                 | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your SAF Browser Certificate 1-Year"                            | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "Retrieve Your SAF Server Certificate 1-Year"                             | TEMPLATE section, RETRIEVECONTENT subsection                                                      |
| "SAF Browser Certificate 1-Year (Auto Approved)"                          | TEMPLATE section, CONTENT subsection                                                             |
| "SAF Server Certificate 1-Year (Auto Approved)"                           | TEMPLATE section, CONTENT subsection                                                             |

Note: Fields (such as the Key Usage (KeyUsage) drop down or the Organizational Unit (OrgUnit) text field) are defined in the pkiserv.tmpl certificate templates file, in the INSERT section. (See Table 32 on page 139 for descriptions of the fields.)
Steps for adding a new certificate template

Perform the following steps to add a new certificate template:

1. Review the contents of the certificate templates provided with PKI Services to determine the one that most closely approximates the certificate template you want to add.

2. After you determine the certificate template to use as a model, copy the section defining the model template in the certificate templates file.

3. Provide a new name, alias, and, if present, nickname for the certificate template.

4. Follow the steps for customizing certificate templates, starting at Step “3” on page 221.

Changing the runtime user ID

When the PKI Services CGIs are called, they are assigned a runtime user ID. This is the identity that is associated with the unit of work (task). This identity must be authorized to call the function being requested. (See Chapter 22, “RACF administration for PKI Services,” on page 481 for more information.) Most of the templates run under the surrogate user ID (PKISERV) for requesting a certificate and for then retrieving it.

There are two exceptions:

• The two SAF templates run under PKISERV for requesting a certificate but run under the client’s user ID for certificate retrieval.
• The five-year PKI intermediate CA template runs under the client’s user ID for requesting a certificate and for certificate retrieval.

The advantage of having PKISERV as the runtime user ID is that this is the only user ID that needs to be authorized for requesting certificates. The advantage of using the client’s user ID is that you have greater control over who can request and retrieve certificates. For example, you can require the user to authenticate by entering user ID and password before requesting or retrieving a certificate.

You can control the user ID under which a certificate request or retrieval runs by selectively commenting and uncommenting FORM statements in the pkiserv.tmpl file. (For requesting a certificate, the FORM statements are in the appropriate TEMPLATE section, in the CONTENT subsection. For retrieving a certificate, the FORM statements are in the appropriate TEMPLATE section, in the RETRIEVECONTENT subsection.)

There are three levels of access control for requesting and retrieving certificates:

• Under the client's ID with user ID and password authentication
• Under the surrogate user ID with user ID and password authentication
• Under the surrogate user ID without user ID and password authentication.

The IBM HTTP Server configuration file enforces these three levels of access control. The default configuration for PKI Services maps the three levels of access control to the following CGI directories:

• /PKIServ/ssl-cgi-bin/auth
• /PKIServ/ssl-cgi-bin/surrogateauth
• /PKIServ/ssl-cgi-bin

Each of the request and retrieve CGIs is in all three directories. Thus, when you run a CGI you get the protection established for the directory from which it is called.
Each certificate template contains several FORM statements (two commented out and one uncommented, which is active) that determines which of these apply. You can change the access control by uncommenting one of the FORM statements that is commented out and commenting out the one that is active.

Steps for changing the runtime user ID for requesting certificates

Perform the following steps to change the runtime user ID for requesting a certificate.

1. In the pkiserv.tmpl file, find the CONTENT subsection of the TEMPLATE section for the template whose user ID you want to change. Locate the lines containing the FORM statements, such as those in the following example:

Example:

```html
Example:
<h3>Request a New Certificate
# This ACTION forces userid/pw authentication and runs the task under
# the client's ID
#<FORM NAME="CertReq" METHOD=POST ACTION="'/PKIServ/ssl-cgi-bin/auth/careq.rexx" onSubmit=

# This ACTION forces userid/pw authentication but runs the task under
# the surrogate ID
#<FORM NAME="CertReq" METHOD=POST ACTION="'/PKIServ/ssl-cgi-bin/surrogateauth/careq.rexx" onSubmit=

# This ACTION is for non z/OS clients. The task runs under the
# surrogate ID
<FORM NAME="CertReq" METHOD=POST ACTION="'/PKIServ/ssl-cgi-bin/careq.rexx" onSubmit=
```

Notice that the preceding lines contain three FORM statements. The first two FORM statements are commented out, so they are not active. They are for:

- Requesting the certificate under the client's ID and using user ID and password authentication
- Requesting the certificate under the surrogate ID and using user ID and password authentication

The third FORM statement is for requesting the certificate under the surrogate user ID without user ID and password authentication. This is active (it is not commented out).

2. To change the runtime user ID, remove the comment delimiter (#) from in front of the lines for the commented-out FORM statement you want to use and insert the comment delimiter in front of the lines for the end FORM statement.

Steps for changing the runtime user ID for retrieving certificates

Perform the following steps to change the runtime user ID for retrieving a certificate.

1. In the pkiserv.tmpl file, find the RETRIEVECONTENT subsection of the TEMPLATE section for the template whose user ID you want to change. Locate the lines containing the FORM statements, such as those in the following example:

Example:

```html
Example:
<H1> Retrieve Your [tmplname]
<H3> Please bookmark this page
<p>Since your certificate may not have been issued yet, we recommend
that you create a bookmark to this location so that when you return to
this bookmark, the browser will display your transaction ID. This is
the easiest way to check your status.

# This ACTION forces userid/pw authentication and runs the task
# under the client's ID
#<FORM NAME="retrieveform" METHOD=POST ACTION="'/PKIServ/ssl-cgi-bin/auth/cagetcert.rexx" onSubmit=

# This ACTION forces userid/pw authentication but runs the task
```
Customizing the OtherName field

When you use the OtherName field, you are able to bind additional identities or owner information to the subject of the certificate using the subject alternate name extension. These identities might take different forms, such as employee numbers, customer account numbers, and other identities that you choose to use.

The OtherName value is a concatenated string that consists of one or more pairs of OIDs and their associated values. The string is saved in the subject alternate name extension in the certificate.

PKI Services implements the OtherName field as a customizable INSERT called AltOther_<OID>. The following certificate template in pkiserv.tmpl is supplied to illustrate the use of the INSERT fields.

Template Name - n-Year PKI Certificate for Extensions Demonstration

The n-year PKI certificate template builds a certificate using information provided primarily by users, rather than information that you control. For demonstration purposes, the template builds a certificate that contains all extensions that are supported by PKI Services. The template contains two sample OtherName fields:

%%AltOther_1_2_3_4_5%%
Builds one input field.

%%AltOther_1_2_3_4_6%%
Builds two input fields.

The AltOther_1_2_3_4_5 string represents an OtherName field with OID 1.2.3.4.5, an 11-character string that stores a customer account number. The AltOther_1_2_3_4_6 string represents an OtherName field with OID 1.2.3.4.6, a 17-character string that stores a 9-digit license number and an expiration date in the yyyyMMdd format.

When you choose to use the OtherName field to build the subject alternate name extension, you might also want to customize the end-user web pages to allow end-users to enter the required information using customized input screens that are easier for them to use. Rather than asking a user to enter a string, as shown in the following example, you can prompt the user to enter a 9-digit license number and its expiration date.

Example of an OtherName field value:

1.2.3.4.6, 12345678920050215
Steps for customizing the sample AltOther_<OID> INSERTs

Before you begin

- Decide what identifiers you want to add to the Subject Name Alternate extension.
- Select the registered OID value to use to represent your data string. Check the appropriate standards organization (ISO or ITU). If not already registered, register your own OID.
- Select which certificate templates you want to update to add the Subject Name Alternate extension.
- Decide whether to use a sample INSERT for your AltOther_<OID> INSERT or create your own INSERT. The sample INSERT called AltOther_1_2_3_4_5 demonstrates using one input field. The sample insert that is called AltOther_1_2_3_4_6 demonstrates using two input fields.
- Determine the following values that you want to use to customize your INSERT.
  - The OID value for your OtherName field
  - The name and length for each input field.
- Review Figure 3 on page 230. It contains a listing of the sample INSERT called AltOther_1_2_3_4_6 which demonstrates using two input fields. The lines you are most likely to customize are marked in Figure 3 on page 230. The following steps refer to the marked lines.

Procedure

Perform the following steps to customize the AltOther_<OID> INSERT using Figure 3 on page 230 as a reference.

```javascript
# Sample AltOther INSERT with two input fields
<INPUT NAME="AltOther_1_2_3_4_6" TYPE="hidden" value="\["]

 <!-- This is the script that will be called at load time. -->
if (form.altrawstring_1_2_3_4_6.value.length > 0) {
  // The name 'Otherx' needs to match with the above INPUT NAME.
  // Substr(start position, length)
  form.Other2a.value=form.altrawstring_1_2_3_4_6.value.substr(0,9)
  form.Other2b.value=form.altrawstring_1_2_3_4_6.value.substr(9,8)
}

<!-- This is the validation script -->
function ValidAltOther_1_2_3_4_6(frm)
  if (form.altrawstring_1_2_3_4_6.value.length != 255) {
    alert("Value too long.");
    return false;
  }
  //Build the entire AltOther field.
  form.AltOther_1_2_3_4_6.value = "1.2.3.4.6,\" + form.Other2a.value + form.Other2b.value;
  if (form.Other2a.value != "" && form.Other2b.value != "")
    return true;
  return false;
}
```

Figure 3. Partial listing of the AltOther_1_2_3_4_6 sample INSERT showing the lines you are most likely to customize
1. Change the OID value _1_2_3_4_6 to the OID value you need in the line marked 1 and in all other lines in the sample INSERT. For example, if you chose OID 2.16.76.1.3.1 for your OtherName field, change all occurrences of AltOther_1_2_3_4_6 to AltOther_2_16_76_1_3_1.

2. Customize the first input field description in the line marked 2 to prompt users of your web page. For example, change Customer's driver license number (9 digits) to Enter your member card number.

3. Customize the first INPUT field name "Other2a" to your value in the line marked 3 and in all other lines in the sample INSERT. For example, change all occurrences of "Other2a" to "MemNum". Also, customize SIZE and maxlength as needed.

4. Customize the next input field description in the line marked 4 to prompt users of your web page. For example, change Customer's driver license expiration date (yyyymmdd) to Enter your date of birth (yyyymmdd).

5. Customize the next INPUT field name "Other2b" to your value in the line marked 5 and in all other lines in the sample INSERT. For example, change all occurrences of "Other2b" to "Birthdate". Also, customize SIZE and maxlength as needed.

6. Customize the starting positions and lengths for each input field value in the lines marked 6 and 7. For example, if the member card number is an 11-digit number, change

   form.Other2a.value=form.altrawstring_1_2_3_4_6.value.substr(0,9) to

   form.MemNum.value=form.altrawstring_2_16_76_1_3_1.value.substr(0,11).

7. Customize the validation script that begins with the line marked 3.

8. Change the OID value 1.2.3.4.6 to the OID value you need in the line marked 9. For example, if you chose OID 2.16.76.1.3.1 for your OtherName field, change 1.2.3.4.6 to 2.16.76.1.3.1.

9. Repeat steps “2” on page 231 through “8” on page 231 for each additional input field you need.
Customizing the end-user web pages using REXX CGIs
Chapter 12. Customizing the administration web pages if you use REXX CGI execs

This information applies if you are using REXX CGI execs for your PKI Services web pages. If you are using JavaServer pages (JSPs), see Chapter 13, “Implementing the web application using JavaServer pages,” on page 237.

CGIs for administration web pages

CGIs for administration web pages are execs that gain control when the user clicks an action button and render the web pages dynamically. All of the administration CGIs are contained in the /usr/lpp/pkiserv/PKIServ/ssl-cgi-bin/auth directory.

Table 43 on page 233 (which lists the CGI execs in logical order) summarizes the actions that they perform:

<table>
<thead>
<tr>
<th>CGI exec</th>
<th>Action</th>
<th>Sample web page</th>
</tr>
</thead>
<tbody>
<tr>
<td>admmain.rexx</td>
<td>This displays the administration home page. The main heading is &quot;PKI Services Administration&quot;. This web page lets the administrator work with a single certificate request or certificate or search for certificate requests or certificates.</td>
<td>See Figure 68 on page 411.</td>
</tr>
</tbody>
</table>
| admpend.rexx   | On the administration home page, the administrator can search for certificate requests. The result of this search is one of the following web pages:  
- "Certificate Requests" web page. This web page lists certificate requests matching the criteria and allows the administrator to process certificate requests.  
- "Processing was not successful" web page. | For an example of the "Certificate Requests" web page, see Figure 73 on page 418. |
| admpendtid.rexx| On the administration home page, the administrator can enter a transaction ID to work with a single certificate request. This displays a web page whose main heading is one of the following:  
- "Single Request" - This lists the certificate request that matches the transaction ID and allows the administrator to process that certificate request.  
- "Processing was not successful" | For an example of the "Single Request" web page, see Figure 69 on page 412. |
| admmmodtid.rexx| This displays the "Modify and Approve Request" web page that appears when the administrator decides to modify a request before approving it (on the "Single Request" web page). | See Figure 72 on page 415. |
| admicl.rexx    | On the administration home page, the administrator can search for certificates. This displays a web page whose main heading is one of the following:  
- "Issued Certificates" - This lists the certificate or certificates that match the search criteria. It also allows the administrator to revoke or delete selected certificates.  
- "Processing was not successful" | For a sample of the "Issued Certificates" web page, see Figure 73 on page 418. |
<table>
<thead>
<tr>
<th>CGI exec</th>
<th>Action</th>
<th>Sample web page</th>
</tr>
</thead>
</table>
| admic1cert.rexx | On the administration home page, the administrator can enter a serial number to work with a single certificate. This displays a web page whose main heading is one of the following:  
• "Single Issued Certificate" - This lists the certificate that matches the serial number ID and allows the administrator to revoke or delete that certificate.  
• "Processing was not successful" | For a sample of the "Single Issued Certificate" web page, see Figure 77 on page 423. |
| admacttid.rexx  | Displays a web page after the administrator processes a single certificate request (approving it with or without modifications, rejecting, or deleting it). This web page has one of the following as its main heading:  
• "Processing successful"  
• "Processing was not successful" | For a sample of the web page whose main heading is "Processing successful", see Figure 70 on page 413. |
| admacttid2.rexx | This displays a web page after the administrator approves a certificate request with modifications. The web page has one of the following main headings:  
• "Processing successful"  
• "Processing was not successful" | For a sample of the web page whose main heading is "Processing successful", see Figure 70 on page 413. |
| admpendall.rexx | After the administrator searches for certificate requests and admpend.rexx displays the results, the administrator clicks a button to approve, reject, or delete selected certificate requests. This calls admpendall.rexx, whose main heading is one of the following:  
• "Processing successful" if the action was successful  
• "Processing was not successful" if the action failed (for example, if the administrator tried to delete certificate requests that were already deleted)  
• "Processing partially successful" if not all of the selected requests are processed successfully | For an example of the "Processing successful" web page, see Figure 74 on page 420.  
For an example of the "Processing was not successful" web page, see Figure 75 on page 420.  
For an example of the "Processing partially successful" web page, see Figure 76 on page 421. |
| admactcert.rexx | Displays a web page after the administrator tries to revoke or delete one or more selected certificates. The web page has one of the following main headings:  
• "Processing successful"  
• "Processing was not successful" | - |
Table 43. CGI actions for administrative web pages (continued)

<table>
<thead>
<tr>
<th>CGI exec</th>
<th>Action</th>
<th>Sample web page</th>
</tr>
</thead>
</table>
| admiclall.rexx    | After the administrator searches for certificates and admic1.rexx displays the results, the administrator clicks a button to revoke or delete selected certificates. This calls admiclall.rexx, which displays a web page whose main heading is one of the following:  
  • "Processing successful" if the action was successful  
  • "Processing was not successful" if the action failed  
  • "Processing partially successful" if not all of the selected certificates are processed successfully |                 |

Customizing the administration web pages

The administration web pages are not as customizable as the end-user web pages. You can customize page headers, footers, frames, links, colors, and so forth, but you cannot change internal web page content. Except for identifying the fields that an administrator can change when approving certificate requests, the administration web page logic is fixed.

However, you can make changes in the following subsections in the PKISERV APPLICATION section of the pkiserv.tmpl certificate template file. (These subsections appear in the application section of PKISERV only.)

**ADMINHEADER**  
Contains the general installation-specific HTML content for the header of all the administration web pages.

**ADMINFOOTER**  
Contains the general installation-specific HTML content for the footer of all the administration pages.

**ADMINSCOPE**  
This optional subsection allows the administrator to choose a different CA domain. For more information, see “Adding a new CA domain” on page 302.

Steps for customizing the administration web pages

Perform the following steps to customize the administration web pages:

1. Add any web page header for the administration pages to the ADMINHEADER subsection of the PKISERV APPLICATION section. (The ADMINHEADER subsection is near the end of the APPLICATION section.)

   **Example:**
   ```html
   <ADMINHEADER>
   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"http://www.w3.org/TR/html4/loose.dtd>
   <HTML lang="en"><HEAD><TITLE>Web-Based Certificate Generation Administration</TITLE></HEAD>
   <BODY>
   </ADMINHEADER>
   ```

2. Add any web page footer for the administration pages to the ADMINFOOTER subsection of the APPLICATION section. (The ADMINFOOTER subsection is near the end of the APPLICATION section.)

   **Example:**
   ```html
   <ADMINFOOTER>
   <p>email: webmaster@company.com
   ```
Changing the runtime behavior for accessing administration pages

When the administrator tries to access the administration pages (by clicking the Go to administration page button on the PKI Services home page), access to the administration pages is controlled in one of the following ways:

- A popup window appears, requiring the administrator to enter a user name and password. (See Figure 67 on page 408 for a sample of the authentication popup window.)
- Alternately, the administrator might have to authenticate by using a previously issued browser certificate. In other words, the administrator would need to have a certificate before going to the administration web pages.

By default, the first method is used. However, you can change the runtime behavior so that the second method is used instead. If you decide to use the second method, anyone intending to become a PKI Services administrator needs to request and retrieve a one-year PKI browser certificate for authenticating to z/OS before trying to access the administration pages.

Note: The one-year PKI browser certificate for authenticating to z/OS contains a HostIdMappings extension. (For more information, see Chapter 22, “RACF administration for PKI Services,” on page 481.)

Steps for changing control of access to administration pages

Perform the following steps to change the access control of the administration pages to require authenticating by using a certificate:

1. Edit the pkiserv.tmpl certificate templates file and find the following lines in the PKISERV APPLICATION section:

```
<FORM name=admform METHOD=GET ACTION="/PKIServ/ssl-cgi/auth/admmain.rexx">
# The following action will force userid/pw authentication for administrators
# The following action will force client certificate authentication
# for administrators
#<FORM name=admform METHOD=GET
# ACTION="/PKIServ/clientauth-cgi/auth/admmain.rexx">
<p>
<INPUT TYPE="submit" VALUE="Go to Admin Pages">
</FORM>
```

The first FORM statement in these lines is active. (It is not commented out with # characters in front of the lines.) This requires authentication by entering the user name and password in a popup window. The second FORM statement is commented out (using # characters). This requires authentication by using a previously issued browser certificate.

2. Comment out the first FORM statement (add # characters in front of the FORM and ACTION lines) and uncomment the second FORM statement (removing the # characters in front of the FORM and ACTION lines).
Chapter 13. Implementing the web application using JavaServer pages

As an alternative to the REXX CGI execs and text template file described in Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 and Chapter 12, “Customizing the administration web pages if you use REXX CGI execs,” on page 233, you can use JavaServer pages (JSPs) and an XML template file to create and customize the PKI Services web application. This approach has several advantages over the REXX CGI approach:

- It uses Java, a popular and flexible web application programming language.
- It uses XML, which is likely to be more familiar and intuitive to web application programmers than the text template file format used by the REXX CGI approach.
- You can validate the syntax of your XML template file using the TemplateTool utility (see “Using the TemplateTool utility” on page 442) or web application tools that include XML validation, such as IBM Rational® Software Development Platform.
- The XML template with modifiable JSP files is a simpler structure than the single text template file used by the REXX CGI approach.

JavaServer pages control the content or appearance of web pages through the use of Java code that runs on an application server to modify a web page before it is sent to the user who requested it. JavaServer pages can contain a mixture of HTML and Java code. For the PKI Services web application, the XML template file defines the applications and the certificates that the applications provide. The JavaServer pages define and process the web pages. The application server is assumed to be WebSphere Application Server.

Certificate templates files used with JSPs

When you implement the web application using JSPs, there are two versions of the certificate templates file:

- An XML templates file, pkitmpl.xml, used to customize the web application
- A text CGI templates file, pkixgen.tmpl, used by the PKI Services daemon

Whenever you update pkitmpl.xml, you must use the TemplateTool utility to create an equivalent copy of pkixgen.tmpl. For more information, see “Using the TemplateTool utility” on page 442. If you do not create an updated pkixgen.tmpl file, the daemon writes the following message to the daemon log file when it determines that pkixgen.tmpl is not current:

IKYC068I The templates file used may not be current

The default location of the two versions of the template file is /etc/pkiserv/. Alternatively, if the environment variable PKISERV_CONFIG_PATH is defined, PKI JSP processing uses the value of PKISERV_CONFIG_PATH as the location of pkitmpl.xml and pkixgen.tmpl. The XML schema is defined in the file PKIServ.xsd in the same directory as pkitmpl.xml.

Examining the pkitmpl.xml file

The PKI Services XML template, pkitmpl.xml, defines the following elements in the order defined by the PKIServ.xsd schema file:

- A root CA URL.
  
  The root CA URL is the URL of the PKI Services CA certificate.
- The PKI Services ActiveX install URL.
• One or more applications.

   An application is a grouping of certificate request templates. This grouping might be done because the templates are shared among a set of end users or because the templates have a common administrator. A PKI Services installation can have one or more applications defined.

• One or more certificate request templates.

   A certificate request template is a predefined set of characteristics for certificate requests and the resulting certificates. Each certificate request template defines:

   – The type of certificate request (for example, browser or server, SCEP preregistration request, EST preregistration request, SAF or PKI certificate)

   – A name for the certificate request template, which is displayed to both the end user and the administrator

   – A nickname (maximum of 8 characters) that uniquely identifies each template, which PKI Services uses to retrieve information about the template

   – The values that you want a user to input and whether those values are optional or required

   – The values that you want to supply for the user

   – The values an administrator is allowed to supply

   – Whether the certificate is automatically approved

   – Whether the certificate is automatically renewed

   – A set of preregistration rules (applicable only to SCEP preregistration requests), which define whether approval is needed based on the level of authentication provided

   – EST preregistration requests have no preregistration rules to define since it is always AutoApprove.

The XML template file, pkitmpl.xml, begins by defining the URL of the PKI Services CA certificate.

```xml
<tns:CA_cert_URL>/PKIServ/cacerts/cacert.der</tns:CA_cert_URL>
```

The CA_cert_URL is the URL of the PKI Services CA certificate. The URL can be relative to the PKIServ web root context or absolute. The URL text specified in the shipped sample pkitmpl.xml will work as it is if you have configured the IBM HTTP Server for PKI Services. This URL is displayed as a link with the text "Install the CA certificate to enable SSL sessions for PKI Services" on the home page for both end users and administrators. Users need to install the PKI Services CA certificate to use a secure connection and retrieve certificates.

Next pkitmpl.xml defines the PKI Services ActiveX install URLs.

```xml
```

The tag for CEnroll_install_URL specifies the URL of the PKI Services ActiveX control installer program. Each URL can be relative to the PKI Services web root context or absolute. The text "Install the PKI ActiveX Control to renew certificates" on the PKI Services home page for end users (see Figure 42 on page 377) links to the URL specified for the version of Microsoft Windows running on the system. Users need to install the PKI Services ActiveX control to install renewed certificates using the Internet Explorer browser.

The application tag (<tns:application>) defines a particular set of end users. The application tag consists of an application name (in this case Customers) and one or more application templates (<tns:appltemplate>).

```xml
<tns:applname>Customers</tns:applname>
<tns:appltemplate>1-Year PKI SSL Browser Certificate</tns:appltemplate>
```

The contents of the appltemplate tag ("1-Year PKI SSL Browser Certificate", for example) corresponds to the certname element of a certreq_template tag.
A certificate request template is defined by a `certreq_template` tag, shown in Figure 4 on page 239.

```
<tns:certreq_template>
  <tns:certname>1-Year PKI SSL Browser Certificate</tns:certname>
  <tns:certtype>PKI Browser Certificate</tns:certtype>
  <tns:certtype_description>PKI Browser Certificate for Secured Connections</tns:certtype_description>
</tns:certreq_template>
```

**Figure 4. A certreq_template tag**

The certificate type tag (`<tns:certtype>`) can have one of the following values:

- PKI Preregistration (for SCEP and EST preregistration requests)
- PKI Browser Certificate
- PKI Server Certificate
- PKI Key Certificate (for a certificate for which PKI Services generated the key pair)
- SAF Browser Certificate
- SAF Server Certificate

The certificate type description (`<tns:certtype_description>`) is an optional tag. Its contents are used on the web pages wherever the certificate type is to be displayed. This tag allows administrators to use words that they feel might be more understandable to their end users than the pre-defined values for the certificate types. A common use of this tag might be to translate the certificate types to another language. If this tag is omitted the contents of the certificate type tag (`<tns:certtype>`) is used as the certificate type description.

The request authentication type tag (`<tns:request_authtype>`) and retrieve authentication type tag (`<tns:retrieve_authtype>`) define the type of authentication that must be used to request or retrieve a certificate. The acceptable values for these tags are:

- **noAuthRunAsSurrogate**
  - No authentication should be used. The task runs as a surrogate user.
- **zAuthRunAsSurrogate**
  - The user is prompted to authenticate (log in) to z/OS using a RACF user ID and password. The task runs as a surrogate user.
- **zAuthRunAsClient**
  - The user is prompted to authenticate (log in) to z/OS using a RACF user ID and password. The task runs as the client.

The next element of a certificate request template is the Auto-Approve indicator (`<tns:AutoApprove>`) and Synchronous indicator (`<tns:Synchronous>`). A value of `Y` or `y` indicates that any certificate requests made with this template should be automatically approved (no administrator approval is required and the administrator does not have an opportunity to modify or reject certificate requests). A value of `N` or `n` indicates that certificate requests made with this template are not automatically approved and must be approved by an administrator.

The next element following the Auto-Approve indicator is the Synchronous indicator (`<tns:Synchronous>`) and Synchronous indicator (`<tns:Synchronous>`). A value of `Y` or `y` indicates that any certificate requests made with this template should be synchronously created. A value of `N` or `n` indicates that certificate requests made with this template are not synchronously created.

The next element of a certificate request template is the Admin-Num indicator (`<tns:AdminNum>`). The value is to set the number of administrators that are required to approve a certificate request. If both `<tns:AdminNum>` and `<tns:AutoApprove>` values exist, then `<tns:AdminNum>` takes precedence. Any improper values are handled the same way as the ADMINNUM entry in the CGI templates file.

**Note:** A request created from this template remains in Pending Approval state until the required number of individual administrative approvals is made for the request, at which time the request changes to Approved state. If an administrator issues an Approve with Modifications on a request that is in Pending Approval state, any previously made approvals are nullified, and the number of approvals that are made for the request is reset to 1.
The next element of a certificate request template is the Auto-Renew indicator (<tns:AutoRenew>). A value of Y or y indicates that any certificate created using this template is automatically renewed. A value of N or n indicates that certificates created using this template are not automatically renewed.

The following form fields are defined with tags in the certificate request template:

- AltDomain
- AltEmail
- AltIPAddr
- AltOther
- AltURI
- BusinessCat
- ClientName
- CommonName
- Country
- CustomExt
- DomainName
- DNQualifier
- EmailAddr
- ExtKeyUsage
- HostIdMap
- JurCountry
- JurLocality
- JurStateProv
- KeySize
- KeyUsage
- Label
- Locality
- Mail
- NotAfter
- NotBefore
- NotifyEmail
- Org
- OrgUnit
- PassPhrase
- PostalCode
- PublicKey
- Requestor
- Security
- SerialNumber
- SignWith
- StateProv
- Street
- Title
- Uid
- UnstructAddr
A form field tag has the form:

```xml
<tns:Name formtype="InstallationSpecified | AdminSpecified | UserSpecified"
    initvalue="xxxxx"
    optional="true | false"
    JSPfilename="xxx.jsp"/>
```

where

**Name**

is the name of the form field, for example AltOther or Security.

**formtype**

can have one of the following values:

- **UserSpecified**
  
The form field appears on the certificate request web page where the user can enter data.

- **InstallationSpecified**
  
The value is provided by the XML template and is not displayed on the certificate request web page. Instead, there is a hidden form field on the certificate request web page that specifies the value.

- **AdminSpecified**
  
The administration Approve with Modification web page should always display this form field and allow an administrator to specify a value for it.

The default for **formtype** is **UserSpecified**.

**initvalue**

The initial value of the form field. If **formtype** is **AdminSpecified** or **UserSpecified**, the form field is displayed with this initial value set but modifiable. If **formtype** is **InstallationSpecified**, this initial value is given to the hidden form field and it cannot be changed for the certificate request.

**optional**

Indicates whether this form field is optional. For **UserSpecified** form fields, **optional** indicates whether a value must be provided on the Certificate Request web page. For **AdminSpecified** form fields, **optional** indicates whether a value must be provided on the administrator’s Approve with Modifications web page. For **InstallationSpecified** form fields, the optional attribute is ignored. The default value for **optional** is false, and the form field is required.

**JSPfilename**

The file name of a JSP file that is included to display and validate the form field. The file that is included is a modifiable include file in the mod_inc directory with your web application’s EAR file. If **formtype** is **InstallationSpecified**, **JSPfilename** is ignored.

The default value for **JSPfilename** is the name of the form field, in lowercase, combined with the .jsp extension. For example, the default value for **JSPfilename** for the form field tag for PassPhrase would be passphrase.jsp.

**Rules:** You can write your own JSP files to process form fields, but they must conform to the following rules:

- The HTML form field, whether it is a select field, an input field, a text area field, or a hidden form field, must have the same name as the form field tag, but in lowercase. For example, for the tag

  ```xml
  <tns:CommonName formtype="AdminSpecified" optional="true"
      JSPfilename="cn.jsp"/>
  ```

  the form field must have the name commonname in the file cn.jsp.
• The HTML form field must contain a JavaScript function with the name Valid concatenated with the lowercase form field name. For example, for the tag

```html
<tns:CommonName formtype="AdminSpecified" optional="true" JSPfilename="cn.jsp"/>
```

cn.jsp must contain a JavaScript method named Validcommonname. This JavaScript method should verify the form field and return true if it is valid and false if not. If there is no verification to be done, the Validformfieldname method can return true in all cases.

Each of the attributes (formtype, initvalue, optional and JSPfilename) can be omitted and defaulted.

Examples of form field tags:

```html
<tns:CommonName formtype="AdminSpecified" optional="true" JSPfilename="cn.jsp"/>
<tns:PassPhrase />
```

---

**Roadmap for implementing the PKI Services web application using JSPs in Traditional WebSphere Application Server**

**About this task**

To implement the PKI Services web application using JSPs, perform the tasks in Table 44 on page 242.

**Table 44. Task roadmap for implementing the PKI Services web application using the JSPs in Traditional WebSphere Application Server**

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Associated instructions (see . . . )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>“Steps for preparing to implement the PKI Services web application using JSPs in Traditional WebSphere Application Server” on page 242</td>
</tr>
<tr>
<td>Give WebSphere users authorization to use PKI Services functions</td>
<td>“Giving WebSphere users authorization to use PKI Services functions” on page 243</td>
</tr>
<tr>
<td>Set up a WebSphere SSL configuration that uses client authentication, to allow WebSphere users to renew and revoke browser certificates</td>
<td>“Allowing WebSphere users to renew and revoke browser certificates” on page 247</td>
</tr>
<tr>
<td>Customize the web application</td>
<td>“Customizing the PKI Services web application” on page 258</td>
</tr>
<tr>
<td>• Update the template file.</td>
<td>“Updating the template file” on page 258</td>
</tr>
<tr>
<td>• (Optional) Modify the JSP files and update the EAR file with the modified JSP files.</td>
<td>“(Optional) Modifying the JSP files and the EAR file” on page 258</td>
</tr>
<tr>
<td>• Deploy the EAR file to a WebSphere Application Server.</td>
<td>“Deploying the EAR file to a WebSphere Application Server” on page 262</td>
</tr>
</tbody>
</table>

**Steps for preparing to implement the PKI Services web application using JSPs in Traditional WebSphere Application Server**

**About this task**

Perform the following steps to prepare to implement the PKI Services web application using JSPs.
Procedure
1. Set the _PKISERV_ENABLE_JSP environment variable to indicate that you are using the JSPs instead of the REXX CGIs. To do this, uncomment the following line in the environment variables file pkiserv.envvars:

   _PKISERV_ENABLE_JSP=TRUE

   (If the line is not in your copy of the environment variables file, add it.)
2. If you have not previously done so, copy the XML template file and the XML schema file from the directory in which the MVS programmer installed PKI Services to the runtime directory by entering the following commands from the UNIX command line. The default directories are /usr/lpp/pkiserv/ and /etc/pkiserv respectively. The user ID you use for copying files must have superuser authority.

   cp -p /install-dir/samples/pkitmpl.xml runtime-dir
   cp -p /install-dir/samples/PKIServ.xsd runtime-dir

Results

Note: You do not copy the file pkixgen.tmpl. PKI Services does not ship a copy of this file in the samples directory. You generate pkixgen.tmpl from pkitmpl.xml after you customize pkitmpl.xml.

When you are done, you are ready to customize the PKI Services web application.

Giving WebSphere users authorization to use PKI Services functions

You need to give each WebSphere user that uses the PKI Services web application authorization to use PKI Services functions.

Steps for giving WebSphere users authorization to use PKI Services functions using Traditional WebSphere Application Server

Before you begin
You need RACF administration skills and you must have the RACF SPECIAL attribute. You need WebSphere administration skills.

About this task
Perform the following steps to give WebSphere users authorization to use PKI Services functions using Traditional WebSphere Application Server.

Procedure
1. Log on to the WebSphere administrative console.
2. Configure WebSphere for application security using SAF authorization.
   a) In the left pane, under Security, click Global security, and verify that the Enable application security check box is selected, as shown in Figure 5 on page 244. If it is not, select it and click Apply.
b) Click **External authorization providers**, and verify that **System Authorization Facility (SAF) authorization** is selected, as shown in Figure 6 on page 245. If it is not, click **System Authorization Facility (SAF) authorization**, and then click **Configure**. Fill in the **PKI Surrogate User ID** in the **Unauthenticated user ID** field as shown in Figure 7 on page 245.
Figure 6. Configuring Websphere for application security using SAF authorization

Click **Apply** and then **Save** to go back to the page as displayed in Figure 6 on page 245.

Click **Apply** and then **Save** to save the changes to the master configuration.

Figure 7. SAF authorization options
c) From the web page shown in Figure 5 on page 244, click z/OS security options and select the Enable application server and z/OS thread identity synchronization check box, then click OK.

d) If you changed any settings, you see the message shown in Figure 25 on page 264 indicating that changes are made to your local configuration. Click Save to save the changes to the master configuration.

3. The web .xml file for PKIServ_Web defines three roles: SAFuser, PKIAdmin and PKISurrogate. You need the SAFuser role only if you want to specify z/OS authentication (either zAuthRunAsSurrogate or zAuthRunAsClient) for certificate request or retrieval authentication. In the sample pkitmpl.xml file, z/OS authentication is used for these certificate templates: 1-Year SAF Browser Certificate, 1-Year SAF Server Certificate, 2-Year PKI Browser Certificate For Authenticating To z/OS, 5-Year SCEP Certificate - Preregistration, 2-Year EST Certificate - Preregistration and 5-Year PKI Intermediate CA Certificate. The PKIAdmin role allows users assigned it to use the PKI Services administration web pages.

Enter the following TSO commands to create EJBROLE profiles to map the SAFuser and PKIAdmin roles. The first RDEFINE command creates the SAFuser role and gives it to all users who are authenticated. The second RDEFINE command creates the PKIAdmin role.

```plaintext
SETROPTS CLASSACT(EJBROLE)
RDEFINE EJBROLE SAFuser UACC(READ)
RDEFINE EJBROLE PKIAdmin UACC(NONE)
```

Then enter one of the following commands. The first PERMIT command must be entered for each user who should have authorization to use the PKI Services administration web pages.

```plaintext
PERMIT PKIAdmin CLASS(EJBROLE) ID(userid) ACCESS(READ)
```

or

```plaintext
PERMIT PKIAdmin CLASS(EJBROLE) ID(pkigrp) ACCESS(READ)
```

where pkigrp is the value of the variable pkigroup in the IKYSETUP exec (default value PKIGRP). For a description of the pkigroup variable, see Table 19 on page 55.

Create a EJBROLE profile to map the PKI Services surrogate role and specify user ID as APPLDATA.
Change the value PKISERV to the user ID you specified for the surrogate user in the IKYSETUP exec, if you specified a different user ID (See Table 19 on page 55).

```plaintext
RDEFINE EJBROLE PKISurrogate UACC(READ) APPLDATA('PKISER')
```

Refresh the EJBROLE class after all of the profile updates:

```plaintext
SETROPTS RACLIST(EJBROLE) REFRESH
```

**Note:** If your installation uses security domains the role name is qualified by the security domain, for example:

```plaintext
RDEFINE EJBROLE securitydomain.SAFuser UACC(READ)
RDEFINE EJBROLE securitydomain.PKIAdmin UACC(NONE)
PERMIT securitydomain.PKIAdmin CLASS(EJBROLE) ID(PKIGRP) ACCESS(READ)
```

4. Issue TSO commands to give WebSphere users authorization to use PKI Services.

a) Give the user ID for the WebSphere servant region address space READ access to the FACILITY class profile IRR.RPKISERV.function.ca-domain. ASSR1 is the user ID for the WebSphere servant region address space. For unnamed domains issue the command:

```plaintext
PERMIT IRR.RPKISERV.. CLASS(FACILITY) ID(ASSR1) ACCESS(READ)
```

For named domains issue the command:

```plaintext
PERMIT IRR.RPKISERV..DomainName CLASS(FACILITY) ID(ASSR1) ACCESS(READ)
```

b) Authorize the PKI Services surrogate user to use the R_PKIServ functions REQCERT, GENCERT, ADD, VERIFY, REVOKE, RESPOND, SCEPREQ, REQRENEW, GENRENEW, EXPORT, and QRECOVER.
Enter the following TSO commands. Change the value PKISERV to the user ID you specified for the surrogate user in the IKYSETUP exec, if you specified a different user ID. (See Table 19 on page 55.)

```
RDEFINE FACILITY IRR.DIGTCERT.REQCERT UACC(NONE)
PERMIT IRR.DIGTCERT.REQCERT CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)
RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)
PERMIT IRR.DIGTCERT.ADD CLASS(FACILITY) ID(PKISERV) ACCESS(UPDATE)
RDEFINE FACILITY IRR.DIGTCERT.VERIFY UACC(NONE)
PERMIT IRR.DIGTCERT.VERIFY CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.REVOKE UACC(NONE)
PERMIT IRR.DIGTCERT.REVOKE CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.RESPOND UACC(NONE)
PERMIT IRR.DIGTCERT.RESPOND CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.SCEPREQ UACC(NONE)
PERMIT IRR.DIGTCERT.SCEPREQ CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.REQRENEW UACC(NONE)
PERMIT IRR.DIGTCERT.REQRENEW CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.GENRENEW UACC(NONE)
PERMIT IRR.DIGTCERT.GENRENEW CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.EXPORT UACC(NONE)
PERMIT IRR.DIGTCERT.EXPORT CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)
RDEFINE FACILITY IRR.DIGTCERT.QRECOVER UACC(NONE)
PERMIT IRR.DIGTCERT.QRECOVER CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
```

c) If you modified pkitmpl.xml and use the zAuthRunAsClient retrieve authentication type:

```
<tns:retrieve_authtype>zAuthRunAsClient</tns:retrieve_authtype>
```

you must give any user ID that requests this kind of certificate authorization to the R_PKIServ EXPORT function:

```
PERMIT IRR.DIGTCERT.EXPORT CLASS(FACILITY) ID(userid) ACCESS(CONTROL)
```

d) Allow the WebSphere user ID to run as an authenticated RACF user. To do this, the user ID for the WebSphere control region must have CONTROL access to the resource BBO.SYNC.cell_short_name.cluster_short_name. Enter commands similar to the following example:

```
RDEFINE FACILITY BBO.SYNC.DCEIMGLX.BBOC001 UACC(NONE)
PERMIT BBO.SYNC.DCEIMGLX.BBOC001 CLASS(FACILITY) ID(ASCR1) ACCESS(CONTROL)
```

e) Refresh the in-storage profiles so that the changes you made to the FACILITY class take effect:

```
SETR RACLIST(FACILITY) REFRESH
```

**Results**

When you are done, you authorized WebSphere users to use PKI Services functions.

**Allowing WebSphere users to renew and revoke browser certificates**

WebSphere sets up server authentication automatically with the SSL certificate and key ring that is created during installation. To allow WebSphere users to renew and revoke browser certificates (see Figure 8 on page 248), you need to set up a WebSphere SSL configuration that uses client authentication. You may use the same SSL certificate and key ring that is used for server authentication for client authentication or you can create a new SSL certificate and key ring.
Steps for allowing WebSphere users to renew and revoke browser certificates

Perform the following steps to set up a WebSphere SSL configuration that uses client authentication, so that users can renew and revoke browser certificates.

Before you begin

You need RACF administration skills. You must have the RACF SPECIAL attribute or sufficient authority to IRR.DIGTCERT resources in the FACILITY class to issue the RACDCERT commands shown.

If you want to create a new SSL certificate and a new key ring, follow Step 1 and 2.

Procedure

1. (Optional) Create a RACF key ring that contains the PKI Services CA certificate for the WebSphere Control address space user ID (ASCR1 in this example):

   ```
   RACDCERT ADDRING(WASKeyring.PKI) ID(ASCR1)
   ```

2. (Optional) Create a server certificate that is signed by the PKI CA certificate, and add this certificate to the key ring.

   ```
   RACDCERT GENCERT ID(ASCR1)
   SUBJECTSDN(CN(<www.YourCompany.com>) O(<Your Company>) L(<Your City>) SP(<Your Full State or Province Name>) C(<Your Country 2 Letter Abbreviation>))
   NOTAFTER(DATE(2020/12/31))
   WITHLABEL('pki ssl cert')
   SIGNWITH(CERTAUTH LABEL('Local PKI CA')) TRUST
   RACDCERT ID(ASCR1)
   CONNECT(ID(ASCR1) LABEL('pki ssl cert') RING(WASKeyring.PKI)
   USAGE(PERSONAL))
   ```
3. If you created a new key ring in Step 1, use the following:

```
RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL('Local PKI CA')
RING(WASKeyring.PKI))
```

If you use the key ring that was created during WebSphere installation, use the following:

```
RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL('Local PKI CA')
RING(<WAS control region key ring>))
```

4. Define the RACF keystore to WebSphere. On the WebSphere administrator console, on the left side of the page expand Security and click SSL certificate and key management. You should see a web page that looks like Figure 9 on page 249.

![Figure 9. WebSphere SSL certificate and key management page](image)

Click Key stores and certificates on the right side of the page. On the next page click New to create a new keystore. On the next page, enter a name for your keystore in the Name field. In the Path field enter:

```
safkeyring:///WASKeyring.PKI
```

if you create a new ring, or

```
safkeyring:///<WAS control region key ring>
```

if you use the key ring created during WebSphere installation.

In the Password and Confirm password fields enter a password value of password. Select the Read only check box. See Figure 10 on page 250.
Click **OK** and then **Save**. You should now be able to click the name of the keystore you created and view the signer certificate. See Figure 11 on page 250.

Figure 10. **WebSphere page for creating a new keystore**

Figure 11. **Viewing the signer certificate**
5. Create a new JSSE type SSL configuration. On the left side of the page expand **Security** and click **SSL certificate and key management**. On the right side of the page click **SSL configurations**. (See Figure 9 on page 249.) The page shown in Figure 12 on page 251 is displayed.

![Integrated Solutions Console](image)

Figure 12. WebSphere new SSL configuration page

In the **Name** field enter **ClientAuthSSL**. In the **Trust store name** and **Keystore name** fields, enter the name of the keystore that you just defined. Click **Get certificate aliases** to get the alias (label) of the default certificate in your key ring. This is the value for Default server certificate alias and Default client certificate alias. Click **OK**. The page shown in Figure 13 on page 252 is displayed.
6. Define a new port for your default host. On the left side of the page, expand **Environment** and click **Virtual Hosts**. Then click **default host**, then click **Host Aliases**, then click **New**. On the page that results, the value 9444 in the **Port** field should match your client authorization port address in the web.xml file. See Figure 14 on page 253.

If you must change the authorization port address in the web.xml file, follow the instructions in “Steps for creating application domains other than Application2” on page 301, except in steps “3” on page 302 and “4” on page 302 you must find the section that looks like:

```xml
<env-entry>
  <env-entry-name>_PKISERV_CLIENTAUTH_PORT</env-entry-name>
  <env-entry-type>java.lang.String</env-entry-type>
  <env-entry-value>9444</env-entry-value>
</env-entry>
```

and change the 9444 to the value that you want to use.
Figure 14. Defining a new port

Click OK and then Save to save this new port number.

7. Assign the new port number to your application server. On the left side of the page, expand Servers and click Websphere application servers. Click the name of your application server. See Figure 15 on page 254.
Figure 15. Assigning a port to the application server

Under Communications expand **Ports** and click **New**. Click **User-defined Port**, and in the **Specify Port name** field enter client-authenticated SSL. In the **Host** field enter *. In the **Port** field enter 9444. See Figure 16 on page 255.
Click **OK** and **Save**.

8. Define transport chains associated with the new port.

   a) On the left side of the page expand **Servers** and click **Websphere application servers**. Click the name of your application server. Expand **web container settings**. See Figure 17 on page 256.
Figure 17. Selecting web container transport chains

b) Click web container transport chains, and then click New. You should see a page like Figure 18 on page 256.

Figure 18. Selecting a transport chain template
c) Choose a secure transport chain template and click **Next**. On the next page select **Use an existing port**, then click **Confirm** and then **Save**. A page opens that displays all existing transport chains. See Figure 19 on page 257.

**Figure 19. All existing transport chains**

  d) Click the name of the chain you defined, then click **SSL inbound channel**. Set the SSL inbound channel properties to use the SSL configuration you defined (which requires client authentication). See Figure 20 on page 257.

**Figure 20. Setting the SSL inbound channel properties**

9. Stop and restart the WebSphere server so that your changes take effect.

**Results**

When you are done, you set up a WebSphere SSL configuration that uses client authentication so that users can renew and revoke browser certificates.
Customizing the PKI Services web application

To customize the PKI Services web application, you need to perform the following tasks:

1. Update the template file.
2. (Optional) Modify the JSP files and update the EAR file with the modified JSP files.
3. Deploy the EAR file to a WebSphere Application Server

Updating the template file

You can customize the PKI Services web application by modifying the default copies of the template file, pkitmpl.xml. Any time that you update pkitmpl.xml, you need to create an equivalent copy of pkixgentmpl. You do this using the TemplateTool utility. For more information, see “Using the TemplateTool utility” on page 442.

(Optional) Modifying the JSP files and the EAR file

After you update the template file, you can optionally perform additional customization on the PKI Services web application by modifying the JSP files. You might want to modify the JSP files in the directory mod_inc. You can modify any line that is not marked with a comment saying that it cannot be modified. You also might want to modify JSP files in the directories Customers and PKIServ. You cannot modify JSP files in the directory not_mod_inc. For information about what files are contained in each directory, see “Locating JSP files for customizing web pages” on page 276.

Example: This example shows how you could customize a JSP file. notbefore.jsp is a JSP file in mod_inc. The portion of this file that displays the prompt and the options is shown in Figure 21 on page 258, without customization.

```
<%=
Number of days after today before the certificate becomes current<<%=optional_str %>
%

<SELECT NAME="notbefore">
<OPTION VALUE="0">
<% if (initvalue_str.equalsIgnoreCase("0")) out.print(" SELECTED "); %>
>0
<OPTION VALUE="30">
<% if (initvalue_str.equalsIgnoreCase("30")) out.print(" SELECTED "); %>
>30
</SELECT>
```

Figure 21. A portion of the JSP file notbefore.jsp, without customization
You could customize this code to reword the prompt and add an option of 7 days, as shown in Figure 22 on page 259.

```html
: 
Number of days after today before the certificate is valid<%optional_str %>

<select name="notbefore">
  <option value="0"
    <% if (initvalue_str.equalsIgnoreCase("0")) out.print(" SELECTED "); %> >0
  <option value="7"
    <% if (initvalue_str.equalsIgnoreCase("7")) out.print(" SELECTED "); %> >7
  <option value="30"
    <% if (initvalue_str.equalsIgnoreCase("30")) out.print(" SELECTED "); %> >30
</select>

Figure 22. A portion of the JSP file notbefore.jsp, with customization
```

An enterprise archive (EAR) file is a specialized Java archive (JAR) file, used to deploy Java EE applications to Java EE application servers. PKI Services ships a default EAR file in the directory /usr/lpp/pkiserv/pkijsp. If you make changes to the JSP files for the PKI Services web application, you need to update the EAR file to include your changes.

**Steps for updating the EAR file using Traditional WebSphere Application Server**

Perform the following steps to update the EAR file

**Before you begin**

You must have the jar command in your path. If you do not, define the JAVA_HOME variable (you can find its value on the WebSphere administration console) and add the $JAVA_HOME/bin directory to your path. For example:

```
export JAVA_HOME=/WebSphere/V6R1/AppServer/java
export PATH=$JAVA_HOME/bin:$PATH
```

**Procedure**

1. (Optional) Set up a directory to use just for updating the EAR file and make this your working directory. For example:

   ```
   cd $HOME
   mkdir pkiear
   cd pkiear
   ________________________________
   ```

2. Copy the EAR file that you are using to the working directory. The default version that is shipped with PKI Services is in the file PKIServ.ear in the directory /usr/lpp/pkiserv/pkijsp. For example:

   ```
   cp /usr/lpp/pkiserv/pkijsp/PKIServ.ear .
   ________________________________
   ```

3. Expand the EAR file by using the jar command. For example:

   ```
   jar -xvf PKIServ.ear
   ________________________________
   ```
4. Expand the file PKIServ_Web_war:

```bash
jar -xvf PKIServ_Web.war
```

5. Change to the modifiable include directory:

```bash
cd mod_inc
```

6. The JSP files are in ASCII (ISO8859-1 code page). To edit them on z/OS, you must convert them to EBCDIC. Use `iconv` to convert a file to EBCDIC. For example, to convert the file `footer.jsp` to EBCDIC, enter:

```bash
iconv -f iso8859-1 -t ibm-1047 footer.jsp > $HOME/footer.jsp.edit
```

7. Use `oedit` to edit the edit file that you created:

```bash
oedit $HOME/footer.jsp.edit
```

8. Use `iconv` to convert the edited file back to ASCII. For example:

```bash
iconv -t iso8859-1 -f ibm-1047 $HOME/footer.jsp.edit > footer.jsp
```

9. Go back to the directory containing the WAR and EAR files, and update the WAR file with the edited and reconverted JSP file:

```bash
cd ..
jar -uvf PKIServ_Web.war mod_inc/footer.jsp
```

10. Update the EAR file with the updated WAR file:

```bash
jar -uvf PKIServ.ear PKIServ_Web.war
```

11. Make sure the PKIServ.ear file is publicly readable by issuing the `chmod` command.

```bash
chmod 755 PKIServ.ear
```

**Results**

When you are done, you updated the JSP files, and updated the EAR file to include the updated JSP files. You can now deploy your updated EAR file to a WebSphere Application Server.

**Steps for creating multiple applications**

Perform the following steps to create multiple applications.

**Before you begin**

You need to have WebSphere administration skills. You might need to refer to information in the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgcenter/SSEQTP).
**Procedure**

1. Copy over the WAR file to a new WAR file with a different name.
   
   ```bash
   cp PKIServ_Web.war PKIServ2_Web.war
   ```

   Then create a new EAR file with either a different name or in a new location.
   
   ```bash
   jar -cvf PKIServ_subca.ear PKIServ2_Web.war
   ```

2. Update `web.xml` to use the new domain.
3. Install the new EAR file through the console.

**Steps for creating a new EAR alongside your existing EAR**

Perform the following steps to create a new EAR file alongside your existing EAR file.

**Before you begin**

If you wish to keep your existing EAR file but also wish to add a second PKI application, you will need to transfer your customized files into a new sample EAR file.

**Procedure**

1. You will need a copy of the new sample EAR file. From the directory you wish to contain the modified EAR file:
   
   ```bash
   cp /usr/lpp/piserv/pkijsp/PKIServ.ear PKIServ.ear
   ```

2. Expand the new EAR and WAR files.
   
   ```bash
   jar -xvf PKIServ.ear
   jar -xvf PKIServ_Web.war
   ```

   (Optional) If you wish to use a different contextroot name, rename your WAR file to that name at this point:
   
   ```bash
   mv PKIServ_Web.war PKIServMod_Web.war
   ```

3. Replace the contents of the modifiable directory of the new EAR with the contents of your old EARS modifiable directory:
   
   ```bash
   rm <new directory>/mod_inc/*
   cp <old directory>/mod_inc/* <new directory>/mod_inc/*
   ```

4. Re-jar the WAR file. If you are using a new contextroot, `jar` to that WAR file name:
   
   ```bash
   jar -uvf PKIServMod_Web.war mod_inc/*
   ```

5. If you are not changing the contextroot you can use the original EAR file:
   
   ```bash
   jar -uvf PKIServ.ear PKIServ.Web.war
   ```

   Otherwise you must create a new one:
   
   ```bash
   jar -cvf PKIServMod.ear PKIServMod_Web.war
   ```

6. Deploy the new EAR file. Ensure that the isolated class loader box is checked to have multiple applications: **Environment > Shared Libraries > PKIServices > Class Loading**
Results
When you are done, you will have your original customized web pages with the ability to add multiple PKI Applications to your setup.

Deploying the EAR file to a WebSphere Application Server
To use the JSP files for the PKI Services web application, a WebSphere administrator must deploy them to a WebSphere Application Server.

Steps for deploying the EAR file to a Traditional WebSphere Application Server
Perform the following steps to deploy the EAR file to a WebSphere Application Server.

Before you begin
You need to have WebSphere administration skills. You might need to refer to information in the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP).

Procedure
1. Log on to the WebSphere administrative console.

_______________________________________________________

2. Create a new shared library.
   a) In the left pane, click Environment > Shared Libraries.
   b) Click New to add a shared library. The window shown in Figure 23 on page 262 opens.

   c) In the Scope field, select a scope that includes the server where you deploy the PKI Services JSPs (PKIServ_EAR).
   d) In the Name field enter PKIServices.
   e) Optionally enter a description in the Description field; for example, Java and C code to invoke PKI Services on z/OS.

Figure 23. The WebSphere Shared Libraries window

262 z/OS: Cryptographic Services PKI Services Guide and Reference
f) In the **Classpath** field, enter the following two lines:

```
/usr/lpp/pkiserv/lib/pki_xml.jar
/usr/lpp/pkiserv/lib/rpkis.jar
```

g) In the **Native Library Path** field, enter:

```
/usr/lpp/pkiserv/lib64
```

**Note:**

If running WebSphere Application Server in 31-bit mode, enter:

```
/usr/lpp/pkiserv/lib
```

h) Make sure to have the isolated class loader box checked to have multiple applications.

![Figure 24. The WebSphere Shared Libraries window with isolated class loader box checked.](image)

i) Click **OK**. A message is displayed indicating that changes have been made to your local configuration. See Figure 25 on page 264.
Figure 25. Message indicating that changes have been made to your local configuration.

j) Click **Save** to save the changes to the master configuration.

---

3. Deploy the enterprise archive (EAR) file.

   a) In the left pane, click **Applications > Enterprise Applications**.
   
   b) Click **Install**. The window shown in Figure 26 on page 264 opens.

   ![Figure 26. Window for specifying the EAR file](image)

   c) Click **Remote file system**, and click **Browse**.
   
   d) Click the icon for the z/OS system. The root directory is displayed. Continue selecting until you reach:

   ```
   $HOME/pkiear/PKIServ.ear
   ```

   e) Click **OK** and **Next**.
   
   f) If adding a second application, use a unique application name.
g) Continue clicking OK and Next or Finish until you see a message saying that the EAR was installed and the message shown in Figure 25 on page 264 indicating that changes have been made to your local configuration. (If you have more than one application installed into WebSphere Application Server, you might see a window where you must select a server to which you want to map modules before you click Next.)

h) Click Save to save the changes to the master configuration.

4. Associate the PKI Services shared library with the PKI Services application.

a) In the left pane, click Applications > Enterprise Applications. Click PKIServ_EAR. The window shown in Figure 28 on page 266 opens.
b) Click **Shared Library References**. The window shown in Figure 29 on page 266 opens.

c) Select the **PKIServ_Web** check box and click **Reference Shared Library**.

d) Add the PKI Services shared library to the Selected list and click OK.

e) Select the **PKIServ_EAR** check box and click **Reference Shared Library**.

f) Add the PKI Services shared library to the Selected list and click OK.

g) Again you see the message shown in Figure 25 on page 264 indicating that changes have been made to your local configuration. Click **Save** to save the changes to the master configuration.

5. If you are using multiple applications, check that the context root matches the unique WAR file name:
In the left panel, click Applications > Enterprise Applications. Click the name of your application. Click Context Root for Web Modules.

![Figure 30. The WebSphere Enterprise Applications Context Root for Web Modules.](image)

The context root can be updated at this time if necessary.

**Results**

When you are done, you have deployed the PKI Services JSP files to a WebSphere Application Server. You can now begin using the customized PKI Services web application.

**Roadmap for implementing the PKI Services web application using JSPs in Liberty**

**About this task**

To implement the PKI Services web application using JSPs in Liberty, perform the tasks in Table 45 on page 267.

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Associated instructions (see . . . )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td>“Steps for preparing to implement the PKI Services web application using JSPs in Liberty” on page 268</td>
</tr>
<tr>
<td>Give Liberty users authorization to use PKI Services functions</td>
<td>“Giving Liberty users authorization to use PKI Services functions” on page 268</td>
</tr>
</tbody>
</table>
Table 45. Task roadmap for implementing the PKI Services web application using the JSPs in Liberty (continued)

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Associated instructions (see . . .)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customize the web application</td>
<td>“Customizing the PKI Services web application” on page 273</td>
</tr>
<tr>
<td>- Update the template file.</td>
<td>“Updating the template file” on page 258</td>
</tr>
<tr>
<td>- (Optional) Modify the JSP files and update the EAR file with the modified JSP files.</td>
<td>“(Optional) Modifying the JSP files and the EAR file” on page 258</td>
</tr>
</tbody>
</table>

Steps for preparing to implement the PKI Services web application using JSPs in Liberty

About this task

While Traditional WebSphere Application Server uses administrative console to configure authorization, configuration in Liberty is mainly done through the server.xml file. Perform the following steps to prepare to implement the PKI Services web application using JSPs.

Procedure

1. Set the _PKISERV_ENABLE_JSP environment variable to indicate that you are using the JSPs instead of the REXX CGIs. To do this, uncomment the following line in the environment variables file pkiserv.envs:

   ```
   _PKISERV_ENABLE_JSP=TRUE
   ```

   (If the line is not in your copy of the environment variables file, add it.)

2. If you have not previously done so, copy the XML template file and the XML schema file from the directory in which the MVS programmer installed PKI Services to the runtime directory by entering the following commands from the UNIX command line. The default directories are /usr/lpp/pkiserv/ and /etc/pkiserv respectively. The user ID you use for copying files must have superuser authority.

   ```
   cp -p /install-dir/samples/pkitmpl.xml runtime-dir
   cp -p /install-dir/samples/PKIServ.xsd runtime-dir
   ```

Results

Note: You do not copy the file pkixgen.tmp1. PKI Services does not ship a copy of this file in the samples directory. You generate pkixgen.tmp1 from pkitmpl.xml after you customize pkitmpl.xml.

When you are done, you are ready to customize the PKI Services web application.

Giving Liberty users authorization to use PKI Services functions

You need to give each Liberty user that uses the PKI Services web application authorization to use PKI Services functions.

Steps for giving Liberty users authorization to use PKI Services functions

About this task

Perform the following steps to give Liberty users authorization to use PKI Services functions.

Procedure

1. You may either work with the generated server.xml file when you created your liberty server, or use the shipped sample file.
If you are using the shipped sample, copy over server.xml from the samples directory. This file will initially be in EBCDIC format:

```
cp /usr/lpp/pkiserv/samples/server.xml <libertyServerLocation>/server.xml.ebcdic
```

The file needs to be converted into ASCII format before running it. Convert the file into ASCII format under the name server.xml:

```
iconv -t iso8859-1 -f ibm-1047 server.xml.ebcdic > server.xml
```

You must then tag the file so that it is in readable format:

```
ctag -tc ISO8859-1 server.xml
```

**Note:** In order for the proper automatic conversion of the tagged file to occur, your _BPXK_AUTOCVT_ UNIX System Services environmental value must be set to ON.

If you are not using the sample file that is provided, include the following lines in your server.xml:

```
<featureManager>
  <feature>jsp-2.2</feature>
  <feature>localConnector-1.0</feature>
  <feature>ssl-1.0</feature>
  <feature>appSecurity-2.0</feature>
  <feature>servlet-3.0</feature>
  <feature>ejbLite-3.1</feature>
  <feature>zosSecurity-1.0</feature>
</featureManager>

<applicationMonitor updateTrigger="mbean"/>

<safRegistry id="saf"/>

<syncToOSThread appEnabled="true"/>

<safCredentials profilePrefix="BBGZDFLT"/>

<safAuthorization enableDelegation="true"/>

<webAppSecurity ssoRequireSSL='true'/>

<httpSession cookieSecure='true'/>

<library id="global">
  <fileset dir="/usr/lpp/pkiserv/lib" includes="*.jar" scanInterval="5s"/>
  <fileset dir="/usr/lpp/pkiserv/lib64" includes="*.so" scanInterval="5s"/>
</library>
```

2. The web.xml file for PKIServ_Web defines three roles: SAFuser, PKIAdmin and PKISurrogate. You need the SAFuser role only if you want to specify z/OS authentication (either zAuthRunAsSurrogate or zAuthRunAsClient) for certificate request or retrieval authentication. In the sample pkitmpl.xml file, z/OS authentication is used for these certificate templates: 1-Year SAF Browser Certificate, 1-Year SAF Server Certificate, 2-Year PKI Browser Certificate For Authenticating To z/OS, 5-Year SCEP Certificate - Preregistration, 2-Year EST Certificate Preregistration, and 5-Year PKI Intermediate CA Certificate. The PKIAdmin role allows users assigned it to use the PKI Services administration web pages.

If you are using SAF authorization, roles are mapped to EJBRULE resource profiles. In order to be considered as eligible for a role, a user must have read access to the EJBRULE profile or must be connected to a SAF group that has read access. The corresponding SAF resource profile for a given application and role is named {profilePrefix}.{appName}.{roleName} in the EJBRULE SAF class. {profilePrefix} is specified by the profilePrefix attribute in the <safCredentials> configuration element. If you do not specify this element, then the default profilePrefix of BBGZDFLT is used. {appName} is specified by the name attribute in the <enterpriseApplication> configuration element. A unique name attribute value should be specified for each <enterpriseApplication> configuration element. If you do not specify the name attribute, the name will be generated from the base name of the ear file specified in the location.
attribute. PKIServ_root.\{roleName\} is one of either PKIAdmin, SAFuser, or PKISurrogate as appropriate.

To create the SAFuser and PKIAdmin roles using SAF EJBROLE class profiles, enter the following TSO commands. The first RDEFINE command creates the SAFuser role and gives it to all users who are authenticated. The second RDEFINE command creates the PKIAdmin role.

```
SETROPTS CLASSACT(EJBROLE)
RDEFINE EJBROLE BBGZDFLT.PKI.SAFuser UACC(READ)
RDEFINE EJBROLE BBGZDFLT.PKI.PKIAdmin UACC(NONE)
```

Then enter one of the following commands. The first PERMIT command must be entered for each user who should have authorization to use the PKI Services administration web pages.

```
PERMIT BBGZDFLT.PKI.PKIAdmin CLASS(EJBROLE) ID(userid) ACCESS(READ)
```

or

```
PERMIT BBGZDFLT.PKI.PKIAdmin CLASS(EJBROLE) ID(pkigrp) ACCESS(READ)
```

where `pkigrp` is the value of the variable `pkigroup` in the IKYSETUP exec (default value PKIGRP). For a description of the `pkigroup` variable, see Table 19 on page 55.

For SAF delegation for the PKISurrogate role, create a SAF EJBROLE class profile with the surrogate ID specified in the APPLDATA. Change the value `PKISERV` to the user ID you specified for the surrogate user in the IKYSETUP exec, if you specified a different user id. (See see Table 19 on page 55).

```
RDEFINE EJBROLE BBGZDFLT.PKI.PKISurrogate UACC(READ) APPLDATA('PKISERV')
```

Refresh the EJBROLE class after all the profile updates

```
SETROPTS RACLIST(EJBROLE) REFRESH
```

Grant the user ID of the Liberty Server CONTROL access to the BBG.SYNC.BBGZDFLT profile in the FACILITY class. This access allows the server to sync any RunAs identity with the OS identity:

```
RDEFINE FACILITY BBG.SYNC.BBGZDFLT UACC(NONE)
PERMIT BBG.SYNC.BBGZDFLT ID(LIBSVR) ACCESS(CONTROL) CLASS(FACILITY)
SETROPTS RACLIST(FACILITY) REFRESH
```

The preceding class profiles take effect if you have SAF authorization with delegation in server.xml not commented.

```
<safteservice enableDelegation="true" />
```

3. Issue TSO commands to give Liberty users authorization to use PKI Services.

a) Give the userID for the Liberty server READ access to the FACILITY class profile `IRR.RPKISERV.<function>.<ca-domain>`. For unnamed domain issue the command:

```
PERMIT IRR.RPKISERV.* CLASS(FACILITY) ID(LIBSVR) ACCESS(READ)
```

For named domain issue the command:

```
PERMIT IRR.RPKISERV.*.<DomainName> CLASS(FACILITY) ID(LIBSVR) ACCESS(READ)
```

b) Authorize the PKI Services surrogate user to use the `R_PKIServ` functions REQCERT, GENCERT, ADD, VERIFY, REVOKE, RESPOND, SCEPREQ, REQRENEW, GENRENEW, EXPORT, and QRECOVER. Enter the following TSO commands. Change the value `PKISERV` to the user ID you specified for the surrogate user in the IKYSETUP exec, if you specified a different user ID. (See Table 19 on page 55.)

```
RDEFINE FACILITY IRR.DIGTCERT.REQCERT UACC(NONE)
PERMIT IRR.DIGTCERT.REQCERT CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
```

```
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)
```

```
RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)
```
PERMIT IRR.DIGTCERT.ADD CLASS(FACILITY) ID(PKISERV) ACCESS(UPDATE)
RDEFINE FACILITY IRR.DIGTCERT.VERIFY UACC(NONE)
PERMIT IRR.DIGTCERT.VERIFY CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.REVOKE UACC(NONE)
PERMIT IRR.DIGTCERT.REVOKE CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.RESPOND UACC(NONE)
PERMIT IRR.DIGTCERT.RESPOND CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.SCEPREQ UACC(NONE)
PERMIT IRR.DIGTCERT.SCEPREQ CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.REQRENEW UACC(NONE)
PERMIT IRR.DIGTCERT.REQRENEW CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.GENRENEW UACC(NONE)
PERMIT IRR.DIGTCERT.GENRENEW CLASS(FACILITY) ID(PKISERV) ACCESS(READ)
RDEFINE FACILITY IRR.DIGTCERT.EXPORT UACC(NONE)
PERMIT IRR.DIGTCERT.EXPORT CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)
RDEFINE FACILITY IRR.DIGTCERT.QRECOVER UACC(NONE)
PERMIT IRR.DIGTCERT.QRECOVER CLASS(FACILITY) ID(PKISERV) ACCESS(READ)

If you modified pkitmpl.xml and use the zAuthRunAsClient retrieve authentication type:

```xml
<tns:retrieve_authtype>zAuthRunAsClient</tns:retrieve_authtype>
```

you must give any user ID that requests this kind of certificate authorization to the R_PKIServ EXPORT function:

```r acl
PERMIT IRR.DIGTCERT.EXPORT CLASS(FACILITY) ID(userid) ACCESS(CONTROL)
```

d) Refresh the in-storage profiles so that the changes you made to the FACILITY class take effect:

```r acl
SETR RACLIST(FACILITY) REFRESH
```

**Results**

When you are done, you authorized Liberty users to use PKI Services functions.

**Setting up the key ring for Liberty users to access the PKI Services web pages**

**Steps for setting up the key ring**

If you want to use an existing key ring and server certificate for the Liberty server, you may skip the steps within section A.

**Before you begin**

**Procedure**

A) Set up key ring and server certificate

1. Create a RACF key ring for the Liberty server ID (LIBSVR in this example):

```r acl
RACDCERT ADDRING(LibertyKeyring) ID(LIBSVR)
```

2. Connect the PKI CA certificate to this key ring. The CA certificate label ("Local PKI CA") is defined in the IKYSETUP exec.

```r acl
RACDCERT ID(LIBSVR) CONNECT(CERTAUTH LABEL('Local PKI CA') RING(LibertyKeyring))
```
3. Create a server certificate that is signed by the PKI CA certificate with the SUBJECTSDN matching the httpEndPoint host specified in server.xml, and connect this server certificate to the key ring created in Step 1.

```
RACDCERT GENCERT
  ID(LIBSVR) SIGNWITH(CERTAUTH LABEL('Local PKI CA'))
  WITHLABEL('SSL Cert') SUBJECTSDN(CN(<www.YourCompany.com>)
  O(<Your Company>) L(<Your City>)
  SP(<Your Full State or Province Name>)
  C(<Your Country 2 Letter Abbreviation>))

RACDCERT ID(LIBSVR)
  CONNECT(ID(LIBSVR) LABEL('SSL Cert') RING(LibertyKeyring)
  USAGE(PERSONAL) DEFAULT)
```

B) Configure `server.xml`

4. Specify the location of key ring.

   If you create the new key ring:

   ```
   location="safkeyring://libsvr/LibertyKeyring"
   ```

   If you use the existing server certificate and the key ring, for example SSLring owned by WEBSRV:

   ```
   location="safkeyring://websrv/SSLring"
   ```

   **Note:** Specify your keyring location and a password value of password.

   ```
   <keyStore id="defaultKeyStore" location="safkeyring://libsvr/LibertyKeyring"
   type="JCERACFKS" password="password" fileBased="false" readOnly="true"/>
   ```

5. In the trustStoreRef and keyStoreRef fields, enter the name of the keystore that you just defined:

   ```
   <ssl id="ServerAuthSSLConfig"
   trustStoreRef="defaultKeyStore"
   keyStoreRef="defaultKeyStore"
   clientAuthentication="false"/>

   <ssl id="ClientAuthConfig"
   trustStoreRef="defaultKeyStore"
   keyStoreRef="defaultKeyStore"
   clientAuthentication="true"
   sslProtocol="TLS"/>
   ```

6. Specify your host name and ports for server authentication and client authentication.

   **Note:** The httpPort values should match those in your web.xml

   ```
   <httpEndpoint host="pkiserver.mycompany.com"
   httpPort="9080" id="defaultHttpEndpoint">
   <sslOptions sslRef="ServerAuthSSLConfig"/>
   </httpEndpoint>

   <httpEndpoint host="pkiserver.mycompany.com"
   httpsPort="9443" id="secondHttpEndpoint">
   <sslOptions sslRef="ClientAuthConfig"/>
   </httpEndpoint>
   ```

C) Authorize the Liberty server to access the server certificate and its private key in the key ring

7. If you create a new server certificate and a new key ring:

   ```
   SETROPTS CLASSACT(RDATALIB)
   RDEFINE RDATALIB LIBSVR.LibertyKeyring.LST UACC(NONE)
   PERMIT LIBSVR.LibertyKeyring.LST CLASS(RDATALIB) ID(LIBSVR) ACCESS(READ)
   SETROPTS RACLIST(RDATALIB) REFRESH
   ```
If you use the existing server certificate and the key ring, for example SSLring owned by WEBSVR:

```
SETROPTS CLASSACT(RDATALIB)
RDEFINE RDATALIB WEBSVR.SSLring.LST UACC(NONE)
PERMIT WEBSVR.SSLring.LST ID(LIBSVR) ACCESS(UPDATE)
SETROPTS RACLIST(RDATALIB) REFRESH
```

**Results**

When you are done, you set up a Liberty SSL configuration for both server and client authentication. Client authentication is required for users to renew and revoke browser certificate.

**Customizing the PKI Services web application**

To customize the PKI Services web application, you need to perform the following tasks:

1. Update the template file.
2. (Optional) Modify the JSP files and update the EAR file with the modified JSP files.
3. Make sure the name of the EAR file is specified with the full path in the location field in the enterpriseApplication section in server.xml.

**Updating the template file**

You can customize the PKI Services web application by modifying the default copies of the template file, pkitmpl.xml. Any time that you update pkitmpl.xml, you need to create an equivalent copy of pkixgen.tmpl. You do this using the TemplateTool utility. For more information, see “Using the TemplateTool utility” on page 442.

(Optional) **Modifying the JSP files and the EAR file**

After you update the template file, you can optionally perform additional customization on the PKI Services web application by modifying the JSP files. You might want to modify the JSP files in the directory mod_inc. You can modify any line that is not marked with a comment saying that it cannot be modified. You also might want to modify JSP files in the directories Customers and PKIServ. You cannot modify JSP files in the directory not_mod_inc. For information about what files are contained in each directory, see “Locating JSP files for customizing web pages” on page 276.

**Example:** This example shows how you could customize a JSP file. notbefore.jsp is a JSP file in mod_inc. The portion of this file that displays the prompt and the options is shown in Figure 31 on page 273, without customization.

```
<SELECT NAME="notbefore">
  <OPTION VALUE="0" %>
    Number of days after today before the certificate becomes current<<%=optional_str %>
  </OPTION>
  <OPTION VALUE="30" %>
    <% if (initvalue_str.equalsIgnoreCase("30")) out.print(" SELECTED "); %>
    >30
  </OPTION>
</SELECT>

Figure 31. A portion of the JSP file notbefore.jsp, without customization
You could customize this code to reword the prompt and add an option of 7 days, as shown in Figure 32 on page 274.

```html
  ;
  Number of days after today before the certificate is valid<%=optional_str %>
  <SELECT NAME="notbefore">
  <OPTION VALUE="0"
  <% if (initvalue_str.equalsIgnoreCase("0")) out.print(" SELECTED "); %>
  >0
  <OPTION VALUE="7"
  <% if (initvalue_str.equalsIgnoreCase("7")) out.print(" SELECTED "); %>
  >7
  <OPTION VALUE="30"
  <% if (initvalue_str.equalsIgnoreCase("30")) out.print(" SELECTED "); %>
  >30
  </SELECT>
```

Figure 32. A portion of the JSP file notbefore.jsp, with customization

An enterprise archive (EAR) file is a specialized Java archive (JAR) file, used to deploy Java EE applications to Java EE application servers. PKI Services ships a default EAR file in the directory /usr/lpp/pkiserv/pkijsp. If you make changes to the JSP files for the PKI Services web application, you need to update the EAR file to include your changes.

**Steps for updating the EAR file**

Perform the following steps to update the EAR file.

**Before you begin**

**Note:** Steps 1 - 11 are the same as for updating the EAR file for Traditional WebSphere Application Server.

You must have the `jar` command in your path. If you do not, define the JAVA_HOME variable and add the `$JAVA_HOME/bin` directory to your path. (Installation specific values such as JAVA_HOME are defined as Environment Variables available through the WebSphere administration console.) For example:

```
export JAVA_HOME=/WebSphere/AppServer/java
export PATH=$JAVA_HOME/bin:$PATH
```

**Procedure**

1. (Optional) Set up a directory to use just for updating the EAR file and make this your working directory. For example:

   ```
cd $HOME
mkdir pkiear
cd pkiear
```

2. Copy the EAR file that you are using to the working directory. The default version that is shipped with PKI Services is in the file PKIServ.ear in the directory /usr/lpp/pkiserv/pkijsp. For example:

   ```
cp /usr/lpp/pkiserv/pkijsp/PKIServ.ear .
```

3. Expand the EAR file by using the `jar` command. For example:

   ```
jar -xvf PKIServ.ear
```
4. Expand the file PKIServ_Web_war:
```
jar -xvf PKIServ_Web.war
```

5. Change to the modifiable include directory:
```
cd mod_inc
```

6. The JSP files are in ASCII (ISO8859-1 code page). To edit them on z/OS, you must convert them to EBCDIC. Use `iconv` to convert a file to EBCDIC. For example, to convert the file `footer.jsp` to EBCDIC, enter:
```
iconv -f iso8859-1 -t ibm-1047 footer.jsp > $HOME/footer.jsp.edit
```

7. Use `oedit` to edit the edit file that you created:
```
oedit $HOME/footer.jsp.edit
```

8. Use `iconv` to convert the edited file back to ASCII. For example:
```
iconv -t iso8859-1 -f ibm-1047 $HOME/footer.jsp.edit > footer.jsp
```

9. Go back to the directory containing the WAR and EAR files, and update the WAR file with the edited and reconverted JSP file:
```
cd ..
jar -uvf PKIServ_Web.war mod_inc/footer.jsp
```

10. Update the EAR file with the updated WAR file:
```
jar -uvf PKIServ.ear PKIServ_Web.war
```

11. Make sure the `PKIServ.ear` file is publicly readable by issuing the `chmod` command.
```
chmod 755 PKIServ.ear
```

12. Update your server.xml file to point to the location of your modified EAR file.
```
<enterpriseApplication id="PKIServ_Web"
  location="$HOME/pkiear/PKIServ.ear" name="PKIServ_Web">
```

**Results**

When you are done, you updated the JSP files, and updated the EAR file to include the updated JSP files.
Steps for retrofitting release changes into the PKI Services certificate templates and JSPs

If you used an earlier release of PKI Services, you might need to retrofit changes in the pkitmpl.xml certificate templates file. (You would not want to replace the file if you customized it in the previous release.)

For retrofitting release changes into the templates file, review the following information.

You can use a file comparison tool to compare the new PKI Services certificates template file (/usr/lpp/pkiserv/samples/pkitmpl.xml) and your existing PKI Services certificates template file (/etc/pkiserv/pkitmpl.xml).

Perform the following steps to retrofit changes into the pkitmpl.xml certificate templates file so you do not lose any customization that you made in a previous release.

1. Make a backup copy of your current certificate templates file. For example, enter from the UNIX command line:

   ```bash
cp /etc/pkiserv/pkitmpl.xml /etc/pkiserv/pkitmpl.backup
   ``

2. Copy the new sample templates file to the runtime location. (This is the copy that you edit.)

   ```bash
cp /usr/lpp/pkiserv/samples/pkitmpl.xml /etc/pkiserv/pkitmpl.xml
   ``

3. Using a compare program of your choice, compare the two template files:

   ```
   • /etc/pkiserv/pkitmpl.xml
   • /etc/pkiserv/pkitmpl.backup
   ```

4. Edit the runtime copy of the templates file (/etc/pkiserv/pkitmpl.xml). Using the compare output that is generated in Step 3, merge the changes that you made to the original template file into the runtime copy of the templates file.

5. Exit the file to save your changes.

For retrofitting release changes into JSP file, review the following information.

You can use a file comparison tool to compare the new JSP files and your existing PKI Services JSP files. For more information, see “Locating JSP files for customizing web pages” on page 276.

For each JSP file, follow the preceding steps that are indicated for the pkitmpl.xml file.

Locating JSP files for customizing web pages

The JSP files are shipped in PKIServ_web.war in PKIServ.ear and are in the following directories:

- Customers
  JSPs used by end users. Each JSP file in this directory defines all HTML and script for an entire end-user web page. Each file starts with an <HTML> tag and ends with a </HTML> tag. JSP files in this directory can be modified, but contain lines of Java processing that cannot be modified. Lines that cannot be modified are identified with comments. Table 46 on page 277 lists the JSP files in this directory.
- PKIServ
JSPs used by administrators. Each JSP file in this directory defines all HTML and script for an entire administrator web page. Each file starts with an `<HTML>` tag and ends with a `</HTML>` tag. JSP files in this directory can be modified, but contain lines of Java processing that cannot be modified. Lines that cannot be modified are identified with comments. Table 47 on page 278 lists the JSP files in this directory.

- **mod_inc**

  Modifiable include files. Each JSP file in this directory defines HTML and script (JavaScript) that might be used on multiple web pages, such as running headers or footers for a page, or a form field element (including JavaScript to verify the input). (If you are familiar with the text template file, `pkiserv.tmpl`, used with the REXX CGIs, these modifiable include files generally correspond to an INSERT section.) Installations are likely to want to customize the code in these files. Some parts of these files cannot be modified and these parts are identified by comments in the file. Table 48 on page 279 lists the JSP files in this directory. “Customizing the PKI Services web application” on page 258 shows an example of customizing a JSP file in this directory.

- **not_mod_inc**

  Non-modifiable include files. Each JSP file in this directory defines HTML and script that might be used on more than one web page, and should not be modified.

- **domain_specific**

  Contains `selectCAdomain.jsp`, which an installation would modify if it had multiple domains with a single administrator.

- **WEB-INF**

  Contains supporting Java classes, including servlets, that an installation is not expected to modify, and `web.xml`, which an installation needs to modify to add additional applications or domains. (See “Creating application domains when you use JSPs to implement the web application” on page 301.)

---

### Table 46. JSP files in the Customers directory

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkimain.jsp</td>
<td>Starting point for all tasks available to the end user, such as requesting a new certificate, picking up a previously requested certificate, renewing or revoking a previously issued browser certificate, or recovering a certificate whose key was generated by PKI Services</td>
</tr>
<tr>
<td>certrequest.jsp</td>
<td>Web page to request a certificate.</td>
</tr>
<tr>
<td>certretrieve.jsp</td>
<td>Web page to retrieve a certificate.</td>
</tr>
<tr>
<td>genericbad.jsp</td>
<td>Displays error information when processing fails.</td>
</tr>
<tr>
<td>genericok.jsp</td>
<td>Notifies the user of successful processing when no additional information (such as a transaction ID) needs to be returned to the user.</td>
</tr>
<tr>
<td>installcert.jsp</td>
<td>Contains HTML and JavaScript, functions to install an automatically renewed certificate that is copied from an email notification if using the Internet Explorer browser.</td>
</tr>
<tr>
<td>keygenrequestok.jsp</td>
<td>Notifies the user of a successful certificate request with PKI-generated keys, and includes the email address where notification has been sent.</td>
</tr>
<tr>
<td>pkcs10retrieved.jsp</td>
<td>Returns a retrieved PKCS #10 certificate.</td>
</tr>
</tbody>
</table>
### Table 46. JSP files in the Customers directory (continued)

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qrecover.jsp</td>
<td>Implements the web page to recover a certificate.</td>
</tr>
<tr>
<td>recoverbad.jsp</td>
<td>Displays information for an unsuccessful attempt to find certificates for which the private key is to be recovered.</td>
</tr>
<tr>
<td>recoverok.jsp</td>
<td>Displays results of a successful attempt to find certificates for which the private key is to be recovered.</td>
</tr>
<tr>
<td>renew_revoke.jsp</td>
<td>Displays a client-authenticated browser certificate for the user to renew, revoke, or suspend.</td>
</tr>
<tr>
<td>requestok.jsp</td>
<td>Returns results (such as the transaction ID) of a successful certificate request.</td>
</tr>
<tr>
<td>requestbad.jsp</td>
<td>Returns error information for an unsuccessful certificate request.</td>
</tr>
<tr>
<td>retrievebad.jsp</td>
<td>Returns error information for an unsuccessful attempt to retrieve a certificate.</td>
</tr>
</tbody>
</table>

### Table 47. JSP files in the PKIServ directory

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>actcertok.jsp</td>
<td>Returns results of a successful certificate action, such as deleting, revoking, suspending, or resuming a certificate.</td>
</tr>
<tr>
<td>actcertbad.jsp</td>
<td>Returns error information for an unsuccessful certificate action, such as deleting, revoking, suspending, or resuming a certificate.</td>
</tr>
<tr>
<td>actrequestok.jsp</td>
<td>Returns results of a successful action on a certificate request, such as approving, rejecting, or deleting.</td>
</tr>
<tr>
<td>actrequestbad.jsp</td>
<td>Returns error information for an unsuccessful action on a certificate request, such as approving, rejecting, or deleting.</td>
</tr>
<tr>
<td>adminmain.jsp</td>
<td>The main PKI Services administration page, from which the administrator can search certificates or certificate requests, or enter a specific transaction ID or serial number to act upon.</td>
</tr>
<tr>
<td>admhome.jsp</td>
<td>The PKI Services administration home page, which contains links to the end-user home page for each application and to the main PKI Services administration web page (adminmain.jsp)</td>
</tr>
<tr>
<td>approvewithmods.jsp</td>
<td>Displays the form for an administrator to approve a certificate request with modifications.</td>
</tr>
<tr>
<td>certdetailsbad.jsp</td>
<td>Displays error information for a failed attempt to display the details of a certificate.</td>
</tr>
<tr>
<td>certdetailsok.jsp</td>
<td>Displays details of a single certificate.</td>
</tr>
</tbody>
</table>
Table 47. JSP files in the PKIServ directory (continued)

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>genericfailure.jsp</td>
<td>Displays error information when the requested administration processing fails.</td>
</tr>
<tr>
<td>modifybad.jsp</td>
<td>Displays error information when an approve with modifications action fails.</td>
</tr>
<tr>
<td>modifyok.jsp</td>
<td>Displays results of successful approve with modification action.</td>
</tr>
<tr>
<td>querycertok.jsp</td>
<td>Displays search results when administrator queries certificates.</td>
</tr>
<tr>
<td>queryreqok.jsp</td>
<td>Displays search results when administrator queries certificate requests.</td>
</tr>
<tr>
<td>reqdetailsok.jsp</td>
<td>Displays details of a single certificate request.</td>
</tr>
</tbody>
</table>

Table 48. JSP files in the mod.inc directory

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adminbottomnav.jsp</td>
<td>End of page navigation appearing on administrator’s web pages</td>
</tr>
<tr>
<td>adminfooter.jsp</td>
<td>End footer (the last element) on administrator’s web pages</td>
</tr>
<tr>
<td>altdomain.jsp</td>
<td>Form field for altdomain</td>
</tr>
<tr>
<td>altemail.jsp</td>
<td>Form field for altemail</td>
</tr>
<tr>
<td>altipaddr.jsp</td>
<td>Form field for altipaddr</td>
</tr>
<tr>
<td>altother_1_2_3_4_5.jsp</td>
<td>altother form field sample for OID 1.2.3.4.5</td>
</tr>
<tr>
<td>altother_1_2_3_4_6.jsp</td>
<td>altother form field sample for OID 1.2.3.4.6</td>
</tr>
<tr>
<td>altother_1_3_6_1_4_1_311_20_2_3.jsp</td>
<td>altother form field sample for OID 1.3.6.1.4.1.311.20.2.3</td>
</tr>
<tr>
<td>alturi.jsp</td>
<td>Form field for alturi</td>
</tr>
<tr>
<td>autorenew.jsp</td>
<td>Form field for autorenew</td>
</tr>
<tr>
<td>bottomnav.jsp</td>
<td>End of page navigation on end user web pages</td>
</tr>
<tr>
<td>businesscat.jsp</td>
<td>Form field for BusinessCat</td>
</tr>
<tr>
<td>certrow.jsp</td>
<td>Displays a row in a table about certificates, formatted to PKIServ/certdetailsok.jsp</td>
</tr>
<tr>
<td>challengepassphrase.jsp</td>
<td>Displays passphrase form field when user is prompted to match the passphrase previously entered</td>
</tr>
<tr>
<td>clientname.jsp</td>
<td>Form field for clientname</td>
</tr>
<tr>
<td>commonfunctions.jsp</td>
<td>Contains JavaScript functions that are commonly used, such as trim()</td>
</tr>
<tr>
<td>commonname.jsp</td>
<td>Form field for commonname</td>
</tr>
<tr>
<td>File name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>country.jsp</td>
<td>Form field for country</td>
</tr>
<tr>
<td>CustomExt.jsp</td>
<td>The HTML and JavaScript for defining custom certificate extensions.</td>
</tr>
<tr>
<td>date.jsp</td>
<td>Displays validity period form fields as two dates, the date the certificate becomes valid, and the date the certificate expires, used on approve with modification processing</td>
</tr>
<tr>
<td>dnqualifier.jsp</td>
<td>Form field for distinguished name qualifier</td>
</tr>
<tr>
<td>domainname.jsp</td>
<td>Form field for domain name</td>
</tr>
<tr>
<td>emailaddr.jsp</td>
<td>Form field for emailaddr</td>
</tr>
<tr>
<td>extkeyusage.jsp</td>
<td>Form field for extended key usage</td>
</tr>
<tr>
<td>footer.jsp</td>
<td>Footer (last element) on end users pages</td>
</tr>
<tr>
<td>hostidmap.jsp</td>
<td>Form field for host id mapping</td>
</tr>
<tr>
<td>jurcountry.jsp</td>
<td>Form field for JurCountry</td>
</tr>
<tr>
<td>jurlocality.jsp</td>
<td>Form field for JurLocality</td>
</tr>
<tr>
<td>jurstateprov.jsp</td>
<td>Form field for JurStateProv</td>
</tr>
<tr>
<td>keysize.jsp</td>
<td>Form field for keysize</td>
</tr>
<tr>
<td>keyusage.jsp</td>
<td>Form field for key usage</td>
</tr>
<tr>
<td>label.jsp</td>
<td>Form field for label</td>
</tr>
<tr>
<td>locality.jsp</td>
<td>Form field for locality</td>
</tr>
<tr>
<td>mail.jsp</td>
<td>Form field for mail</td>
</tr>
<tr>
<td>notafter.jsp</td>
<td>Form field for the number of days the certificate should be valid (from the time of request)</td>
</tr>
<tr>
<td>notbefore.jsp</td>
<td>Form field for the number of days before the certificate should be valid</td>
</tr>
<tr>
<td>notifyemail.jsp</td>
<td>Form field for notifyemail</td>
</tr>
<tr>
<td>org.jsp</td>
<td>Form field for org</td>
</tr>
<tr>
<td>orgunit.jsp</td>
<td>Form field for orgunit</td>
</tr>
<tr>
<td>passphrase.jsp</td>
<td>Form field for user to enter passphrase</td>
</tr>
<tr>
<td>postalcode.jsp</td>
<td>Form field for postal code</td>
</tr>
<tr>
<td>publickey.jsp</td>
<td>&quot;Public key&quot; form field, text box for entering base64-encoded PKCS #10 certificate request</td>
</tr>
<tr>
<td>publickey_smartcard.jsp</td>
<td>The HTML and JavaScript for the public key form field, when the browser provides the public key after the user selects from a list of available cryptographic providers.</td>
</tr>
<tr>
<td>recoveremail.jsp</td>
<td>recoveremail form field</td>
</tr>
<tr>
<td>File name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>requestor.jsp</td>
<td>Requestor form field (with prompt for name for tracking this request)</td>
</tr>
<tr>
<td>requestor2.jsp</td>
<td>Requestor form field (with prompt for email address of requestor)</td>
</tr>
<tr>
<td>security.jsp</td>
<td>Displays a form field for entering a response to a security question</td>
</tr>
<tr>
<td>security2.jsp</td>
<td>Displays a form field for entering a response to a second security question</td>
</tr>
<tr>
<td>serialnumber.jsp</td>
<td>Form field for entering a certificate’s serial number</td>
</tr>
<tr>
<td>signwith.jsp</td>
<td>Form field for selecting the signer of the requested certificate</td>
</tr>
<tr>
<td>stateprov.jsp</td>
<td>Form field for stateprov</td>
</tr>
<tr>
<td>street.jsp</td>
<td>Form field for street</td>
</tr>
<tr>
<td>title.jsp</td>
<td>Form field for title</td>
</tr>
<tr>
<td>transactionid.jsp</td>
<td>Form field for entering a certificate request’s transaction ID</td>
</tr>
<tr>
<td>uid.jsp</td>
<td>Form field for uid</td>
</tr>
<tr>
<td>unstructaddr.jsp</td>
<td>Form field for unstructaddr</td>
</tr>
<tr>
<td>unstructname.jsp</td>
<td>Form field for unstructname</td>
</tr>
<tr>
<td>userid.jsp</td>
<td>Form field for userid</td>
</tr>
</tbody>
</table>
Chapter 14. Advanced customization

This topic describes the advanced customization procedures available for PKI Services. All are optional.

• Chapter 14, “Advanced customization,” on page 283 explains:
  – “Scaling for high volume installations” on page 283
  – “Using certificate policies” on page 284
  – “Updating the signature algorithm” on page 287
  – “Customizing distribution point CRLs” on page 290
  – “Creating a distribution point ARL” on page 295
  – “Enabling support for large CRLs” on page 297
  – “Using the OCSP responder” on page 298
  – “Adding an application domain” on page 298
  – “Adding a new CA domain” on page 302
  – “Customizing email notifications sent to users” on page 318
  – “Setting up automatic renewal of certificates” on page 323
  – “Setting up PKI Services to generate keys for certificate requests” on page 325
  – “Adding custom extensions to certificates” on page 328
• Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333
• Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341

Scaling for high volume installations

Some PKI Services installations manage many certificates and certificate requests. The following guidelines can help you scale your system to maintain high performance in a high volume environment.

Guidelines:

1. Use distribution point CRLs if you average more than 500 revoked non-expired certificates at any given time. For more information, see “Customizing distribution point CRLs” on page 290.

2. If you anticipate having many certificate requests pending approval at any given time, implement a PKI exit to automate the approval process. (For more information, see Chapter 17, “Customizing with installation exit routines,” on page 349.) This need arises from the human limitation rather than a technical one because it becomes nearly impossible to manually approve the requests when the volume grows too high.

3. To prevent name collisions in the LDAP directory, ensure that the subject distinguished names are unique. This can either be done by implementing a PKI exit to supply a unique name, or by enforcing the use of the MAIL= distinguished name attribute where you require the email address to be unique.

4. Queries against the request or ICL database can time out if the database contains many records. The performance of the query can be vastly improved by supplying the requester’s name as additional search criteria if the saved requester data is meaningful to your organization and it is recallable. In this case, a PKI exit can be used to supply a meaningful value, such as a Lotus® Notes® short name or customer account number.

5. Keep the size of the request and ICL databases small by quickly removing records that are no longer needed. This can be done by setting low values for the following fields in the ObjectStore section of the PKI Services configuration file (pkiserv.conf):
  • RemoveCompletedReqs
  • RemoveInactiveReqs
Using certificate policies

Certificates can contain a CertificatePolicies extension. This extension contains policy information, such as how your CA operates and the intended purpose of the issued certificates. (For more information about this extension, see RFC 5280 (tools.ietf.org/html/rfc5280).)

The CertificatePolicies extension contains one or more PolicyInformation sequences. (Typical usage has just one of these.) The PolicyInformation sequence has the following format:

- Your Policy OID as registered with the appropriate standards organization (ISO or ITU)
- Zero or more PolicyQualifiers sequences, each having the following information:
  - Either a Certificate Practices Statement (CPS) URI
  - Or a UserNotice sequence, which consists of one or both of the following text strings:
    - A notice that is intended to be viewed by customers using the certificate such as copyright or other legal information
    - Your organization's legal name with one or more notice numbers defined elsewhere, perhaps in your CPS.

By default, PKI Services does not include this extension in the certificates it creates. However, you can define your own CertificatePolicies extension by modifying fields in the CertPolicy section of the pkiserv.conf configuration file. You can also specify the PolicyRequired value to indicate whether a CertificatePolicies extension should be created for all certificate templates on a global basis or whether one is individually created based on the specifications of each certificate template.

**PolicyRequired=T**

Indicates that the CertificatePolicies extension is added to all certificates, and includes all PolicyName values specified in the pkiserv.conf file. Policies that are specified in the CertPolicies input parameter or listed in the CONSTANT section of the template used to generate the certificate are ignored.

See “Steps for creating the CertificatePolicies extension on a global basis” on page 284.

**PolicyRequired=F (default)**

Indicates that the CertificatePolicies extension is added to certificates only when a certificate policy is specified in the CertPolicies input parameter or in the template when a certificate is requested. If you are implementing the web application using REXX CGI execs, the specification is done in the CONSTANT section of pkiserv.tmpl. If you are using JavaServer pages (JSPs), the specification is done with the CertPolicies tag in pkitmpl.xml.

See “Steps for creating the CertificatePolicies extension on a template basis” on page 286.

**Note:** PolicyCritical is ignored unless PolicyRequired=T. When PolicyRequired=F, setting $\%\%Critical=CertPolicies%%$ in the CONSTANT section of the template marks the extension critical.

**Restriction:** When policies are specified within an individual template, the policy data is saved with the request at the time the request is submitted or modified. Therefore, if PKI Services is stopped and restarted to make changes in the policy data before the certificate is issued, the changes are not reflected in the issued certificate. However, the PolicyRequired=F setting is checked at the time the certificate is issued. Therefore, if PKI Services is stopped and restarted to make changes to the PolicyRequired setting before the certificate is issued, the new setting is used to determine which policy information is used (the global policy data or the data saved with the request.)

**Steps for creating the CertificatePolicies extension on a global basis**

Perform the following steps to create your own CertificatePolicies extension on a global basis:

1. Edit the pkiserv.conf configuration file and find the CertPolicy section.
2. Change the value of PolicyRequired to T (True) as in the following line:

```
PolicyRequired=T
```

3. If you want to have the extension marked critical (this is not suggested), set the PolicyCritical equal to T (True) as in the following line:

```
PolicyCritical=T
```

4. Go to the `OIDs` section of the `pkiserv.conf` configuration file. By default (as shown in the following example), the name is `MyPolicy=1.2.3.4` and value is `1.2.3.4`. The value of `MyPolicy` should be an installation-specific (registered) Object ID identifying your organization's certificate. Replace the value of `MyPolicy` in the following line with your Object ID.

Example:

```
[OIDs]
MyPolicy=1.2.3.4
```

Optionally, change the parameter name `MyPolicy` to your own installation-specific name. If you change the parameter name in this step, make a note of it. You need it for the next step. You can repeat the `MyPolicy` parameter using unique names and values if you need to define multiple policies.

Example:

```
MyPolicy=1.2.3.4
MyOtherPolicy=2.3.4.5
```

5. If you changed the parameter name `MyPolicy` in the previous step, go back to the `CertPolicy` section and update the `PolicyName1` line to change the `MyPolicy` parameter to the policy name you specified in the `OIDs` section:

```
[CertPolicy]
PolicyName1=MyPolicy
```

6. If you want to add qualifiers, perform the following steps:

a. Uncomment the following lines by removing the "#" characters and update the `Policy1Org` and `Policy1Notice1` fields:

```
#Policy1Org=MyOrganization
#Policy1Notice1=3
#Policy1Notice2=17
```

   **Policy1Org**
   
   Your organization's name, for example, International Business Machines, Inc.

   **Policy1Notice1 through Policy1Notice1en**
   
   Your notice numbers. (You might need more than one `Policy1Notice1en` line, depending on how many notice numbers you have. Repeat the line as needed, by incrementing the suffix number on the keyword, for example `Policy1Notice1`, `Policy1Notice2`, and so forth.)

b. Change the value of the `UserNoticeText1` line shown in the following sample. The `statement` should be your notice text string, for example, Certificate for IBM internal use only. It cannot
be longer than 200 characters, and must not contain embedded control characters (such as tab, carriage return, and line feed).

UserNoticeText1=statement

**Note:** Starting in z/OS V2R1, PKI Services encodes the UserNoticeText1 data as a UTF8String. In earlier releases it was encoded as a VisibleString, which is not allowed by RFC 5280 (tools.ietf.org/html/rfc5280).

c. Change the value of the CPS1 line shown in the following sample. The value should be your CPS URI, for example, http://www.ibm.com/cps.html.

CPS1=http://www.mycompany.com/cps.html

If you do not want to add qualifiers, delete or comment out (by inserting a # character at the start of the line) the preceding lines.

7. If you need multiple qualifiers, repeat the following fields as needed, incrementing the suffix numbers, for example:

<table>
<thead>
<tr>
<th>PolicyName2=MyOtherPolicy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy2Org=International Business Machines, Inc.</td>
</tr>
<tr>
<td>Policy2Notice1=5</td>
</tr>
<tr>
<td>Policy2Notice2=9</td>
</tr>
<tr>
<td>UserNoticeText2=Certificate is intended for testing only</td>
</tr>
<tr>
<td>CPS2=<a href="http://www.ibm.com/cps2.html">http://www.ibm.com/cps2.html</a></td>
</tr>
</tbody>
</table>

Steps for creating the CertificatePolicies extension on a template basis

Perform the following steps to create your own CertificatePolicies extension on an individual template basis:

1. Edit the pkiserv.conf configuration file and find the CertPolicy section.

2. Change the value of PolicyRequired to F (False) as in the following line:

   | PolicyRequired=F |

3. Follow steps “4” on page 285 through “7” on page 286 in “Steps for creating the CertificatePolicies extension on a global basis” on page 284 to create the individual policies you need.

4. Update the certificate template to specify the CertificatePolicies extensions that are to be created for it.

   - **If you are implementing the web application using REXX CGI execs:** Edit pkiserv.tmpl and customize the CONSTANT subsection under the certificate template for which you need CertificatePolicies extensions.

   For example, if you have specified values for PolicyName1, PolicyName3, and PolicyName6 in pkiserv.conf, then you can specify the certificate policies in pkiserv.tmpl in the following ways:

   | %%CertPolicies=3%% |
   | or |
If you want to make the CertPolicies extension critical, specify the following in the CONSTANT section:

```plaintext
%Critical=CertPolicies%
```

- **If you are implementing the web application using JavaServer pages (JSPs):** Edit `pkitmpl.xml` and customize the section for the certificate template for which you need CertificatePolicies extensions.

  For example, if you have specified values for PolicyName1, PolicyName3, and Place-name in `pkiserv.conf`, then you can specify the certificate policies in `pkitmpl.xml` in the following ways:

```xml
<tns:CertPolicies>3</tns:CertPolicies>
or
<tns:CertPolicies>3 6</tns:CertPolicies>
or
<tns:CertPolicies>1 3 6</tns:CertPolicies>
```

If you want to make the CertPolicies extension critical, specify the following tag in the certificate template section:

```xml
<tns:Critical>CertPolicies</tns:Critical>
```

**Rule:** The policy numbers in the template file must exist in the `pkiserv.conf` file. For each template, you can choose a different subset of these numbers.

5. If you made any changes to the PKI Services configuration, stop and restart PKI Services to activate the changes.

---

### Updating the signature algorithm

The signature algorithm that PKI Services uses to sign certificates must be based on the key type of the CA certificate. If it is not, PKI Services is unable to start. By default, IKYSETUP creates the CA certificate with an RSA key pair. The default value of the signature algorithm in the `pkiserv.conf` file is `sha-256WithRSAEncryption`. You can change the signature algorithm by changing the `SigAlg1` value in the `CertPolicy` section of the `pkiserv.conf` configuration file. Set `SigAlg1` to one of the algorithm identifiers shown in Table 49 on page 287 for the key type of the CA certificate.

<table>
<thead>
<tr>
<th>CA certificate key type</th>
<th>Algorithm nickname</th>
<th>Algorithm OID</th>
<th>Applicable FIPS mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td><code>sha-1WithRSAEncryption</code></td>
<td><code>1.2.840.113549.1.1.5</code></td>
<td>0 and 1</td>
</tr>
<tr>
<td></td>
<td><code>sha-224WithRSAEncryption</code></td>
<td><code>1.2.840.113549.1.1.14</code></td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td><code>sha-256WithRSAEncryption</code></td>
<td><code>1.2.840.113549.1.1.11</code></td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td><code>sha-384WithRSAEncryption</code></td>
<td><code>1.2.840.113549.1.1.12</code></td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td><code>sha-512WithRSAEncryption</code></td>
<td><code>1.2.840.113549.1.1.13</code></td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td>DSA</td>
<td><code>id-dsa-with-sha1</code></td>
<td><code>1.2.840.10040.4.3</code></td>
<td>0 and 1</td>
</tr>
</tbody>
</table>
Table 49. Supported signature algorithms for each CA certificate key type (continued)

<table>
<thead>
<tr>
<th>CA certificate key type</th>
<th>Algorithm nickname</th>
<th>Algorithm OID</th>
<th>Applicable FIPS mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>id-dsa-with-sha224</td>
<td>2.16.840.1.101.3.4.3.1</td>
<td>0, 1, 2, and 3</td>
<td></td>
</tr>
<tr>
<td>id-dsa-with-sha256</td>
<td>2.16.840.1.101.3.4.3.2</td>
<td>0, 1, 2, and 3</td>
<td></td>
</tr>
<tr>
<td>ECC</td>
<td>ecdsa-with-sha1</td>
<td>1.2.840.10045.4.1</td>
<td>0 and 1</td>
</tr>
<tr>
<td></td>
<td>ecdsa-with-sha224</td>
<td>1.2.840.10045.4.3.1</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>ecdsa-with-sha256</td>
<td>1.2.840.10045.4.3.2</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>ecdsa-with-sha384</td>
<td>1.2.840.10045.4.3.3</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>ecdsa-with-sha512</td>
<td>1.2.840.10045.4.3.4</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td>RSASSA-PSS</td>
<td>sha-256Hash</td>
<td>2.16.840.1.101.3.4.2.1</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>sha-384Hash</td>
<td>2.16.840.1.101.3.4.2</td>
<td>0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>sha-512Hash</td>
<td>2.16.840.1.101.3.4.2.3</td>
<td>0, 1, 2, and 3</td>
</tr>
</tbody>
</table>

**Tips:** Consider these points when choosing the signature algorithm:

- sha-256WithRSAEncryption is more secure than sha-1WithRSAEncryption, but some browsers cannot install certificates that use sha-256WithRSAEncryption.
- The National Institute of Standards and Technology (NIST) recommends that SHA1 no longer be used.

**Steps for changing the signature algorithm**

**Before you begin**
Change the signing algorithm before you create any certificate requests. If changing the signing algorithm after some certificates requests have been created, you must wait until all requests are approved and the certificates created, or else you must add a SigAlg2=old-signing-algorithm line to the CertPolicy section. If you take this second option, SigAlg1 becomes the signature algorithm for new requests.

**Procedure**
Perform the following steps to change the signature algorithm:

1. Edit the pkiserv.conf configuration file and find the OIDs section.

2. Ensure that the OID for the signature algorithm that you want to use is listed. (If you are using a version of pkiserv.conf from a previous release, OIDs added in later releases are missing if you have not added them.) If the OID is missing, add it by adding a line with the following format:

   \[
   \text{algorithm.nickname} = \text{algorithm.OID}
   \]

   where the values of algorithm.nickname and the corresponding algorithm.OID are from Table 49 on page 287. For example, if you want to use SHA512,

   \[
   \text{sha-512WithRSAEncryption} = 1.2.840.113549.1.1.13
   \]
3. Find the **CertPolicy** section. If you want to use a signature algorithm other than SHA256, change `sha-256WithRSAEncryption` in the following line to the value for the signature algorithm that you want to use. The supported values for each CA certificate key type are shown in Table 49 on page 287.

```
SigAlg1=sha-256WithRSAEncryption
```

**Note:** If your configuration file is from a release before z/OS V1R12 and contains the default value, the line for the signature algorithm is:

```
SigAlg1=sha-1WithRSAEncryption
```

---

**Certificate revocation status**

PKI Services provides the following for certificate revocation status checking:

- Certificate revocation lists.

  Forms of revocation lists supported are:

  - The global certificate revocation list (global CRL) which represents all of the non-CA certificates that are created by an instance of PKI Services.
  
  - The global authority revocation list (global ARL) which represents all of the subordinate CA certificates that are created by an instance of PKI Services.
  
  - The distribution point certificate revocation lists (DP CRLs) which represent a subset of the non-CA certificates that are created by an instance of PKI Services based on the serial number of the issued certificate.
  
  - The distribution point authority revocation list (DP ARL) which represents all the subordinate CA certificates that are created by an instance of PKI Services.


---

**How distribution point CRLs/ARLs work**

PKI Services always creates a *global* CRL regardless of whether you choose to use DP CRLs. The global CRL contains revocation information for certificates that have no CRLDistributionPoints extension (in other words, certificates defined with `CRLDistSize=0`). When a certificate contains a CRLDistributionPoints extension, PKI Services publishes its revocation status to the appropriate DP CRL, not in the global CRL.

The following topics help you understand more about how DP CRLs work. This information is useful if you write applications that process CRLs.

**How DP CRLs are published**

DP CRLs are published to LDAP at leaf nodes directly following the CA's entry. For example, if the CA's name is:

```
OU=My Company Certificate Authority,O=My Company,C=US
```

Then, the DP CRLs would be published to:

```
CN=DP-name,OU=My Company Certificate Authority,O=My Company,C=US
```

**How DP CRLs are partitioned**

The partitioning of the overall CRL into partial CRLs is based on certificate serial number and the value of `CRLDistSize` in `pkiserv.conf`. For example, if `CRLDistSize` is 100 and `CRLDistName` is ABC, then certificates with serial numbers 1–100 appear on DP ABC1; 101–200 on DP ABC2, and so on. PKI
Services dynamically creates DP CRLs as needed as a part of certificate issuance. Existing DP CRLs are refreshed along with the global CRL during CRL interval processing.

As certificates expire, they are no longer eligible for revocation and do not appear on any CRL. Therefore, over time, each distribution point becomes inactive. PKI Services automatically retires DP CRLs that become inactive by no longer publishing their CRLs. However, retired DP CRLs previously published to LDAP remain in LDAP. PKI Services makes no attempt to delete these.

Even when using distribution point CRLs, the single non-DP CRL (global CRL) is still created. Revoked certificates containing the CRLDistributionPoints extension appears only on the appropriate DP CRL, not the global CRL.

What about CA certificates?

PKI Services can be used to create other subordinate certificate authority certificates. Since revocation activity against these CA certificates is normally low, PKI Services, by default, does not partition authority revocation lists (ARLs). You can choose to create a distribution point ARL in a single partition for checking the revocation status of CA certificates. (See “Creating a distribution point ARL” on page 295.) When you choose to create a DP ARL, your CA certificates contain a CRLDistributionPoints extension.

When you do not choose to create a DP ARL (ARLDist=F), applications wanting to check the revocation status of a CA certificate must check the global ARL. In addition, when ARLDist=F, CA certificates do not contain a CRLDistributionPoints extension, although they are treated as if they had the extension when determining the partitioning of the global CRL. For instance, with ARLDist=F and CRLDistSize=10, if you issue 10 CA certificates plus one non-CA certificate, the non-CA certificate information would be published to the second distribution point CRL. (The first DP CRL would remain empty.)

Customizing distribution point CRLs

If your PKI Services installation is very active, many certificates can be in the revoked state at any one time. Therefore, the certificate revocation list (CRL) can become quite large, causing considerable network traffic and overhead to an application wanting to process it. Publishing partial CRLs to multiple distribution point (DP) CRLs is a way of keeping your CRLs small.

Guideline: Consider using distribution point CRLs if you anticipate averaging more than 500 revoked non-expired certificates at any given time.

You begin using distribution point CRLs when you accept the defaults settings contained in PKI Services configuration file (pkiserv.conf). You can customize those settings by specifying the number of certificates per DP CRL and by specifying the name of the DP CRL using the following two parameters in the CertPolicy section of the pkiserv.conf:

- **CRLDistSize**
  Specifies the maximum number of certificates to be managed by a single DP. This represents the number of entries in each DP CRL if all active certificates are revoked at once.

- **CRLDistName**
  Specifies the file name, or the constant portion of the leaf-node RDN, for the CRL distribution point.

You can choose to further customize your DP CRL processing to build the URI format name for the distribution point in the CRLDistributionPoints extension of each certificate. This allows your certificate validation programs to dynamically retrieve a CRL without being preconfigured with LDAP bind information. However, because bind credentials cannot be added to DP CRLs with URI format names, anonymous access is used to retrieve the CRL.

The URI format name is built in addition to the LDAP distinguished name of the DP CRL that is always added when CRLDistSize is greater than zero. You can add the URI format name by customizing the following two parameters in the CertPolicy section of the pkiserv.conf:

- **CRLDistURI**
  Specifies the name for the DP CRL in the form of a URI that adds the protocol type and the server domain name.
**CRLDistDirPath**

Specifies the full path for the file system directory where PKI Services saves each DP CRL.

You can also choose to have PKI Services create a CRLDistributionPoints extension for each CA certificate in addition to non-CA certificates. You choose this by customizing the ARLDist parameter in the `CertPolicy` section of the `pkiserv.conf`. This creates a distribution-point authority-revocation list (DP ARL) for your CA certificates. See “Creating a distribution point ARL” on page 295 for details.

**Specifying the URI format**

When you choose to use distribution points for CRL and ARL processing, PKI Services updates the CRLDistributionPoints extension with the distinguished name for the LDAP entry where the distribution point is posted. You can choose to add another name to the extension in the URI format which contains the protocol type and the server domain name in addition to the distinguished name. With the URI format, the location of the distribution point is self-contained in the CRLDistributionPoints extension.

The URI format contains the following information:

- The protocol type (LDAP or HTTP).
- The server domain name.
- If the protocol is LDAP:
  - The distinguished name of the distribution point.
  - For non-CA certificates, the attribute string \(?certificateRevocationList\).
  - For CA certificates, the attribute string \(?authorityRevocationList\).
- If the protocol is HTTP, the virtual or real path name, ending with the file name - formed from the common name portion of the distinguished name of the distribution point with the .crl extension - where the distribution point CRL is stored.

**Examples:**

```plaintext
ldap://ldap.bankxyz.com:389/CN=CRLlist1,OU=Bank XYZ Authority,O=Bank XYZ,C=US?certificateRevocationList
http://www.bankxyz.com/PKIServ/cacerts/CRLlist1.crl
```

**Note:** This is an example of an HTTP protocol URI using a virtual path name. When using virtual path names in an HTTP URI, a Pass statement is required in the HTTP configuration file to map the virtual path name to a real path name. See “Determining CRLDistDirPath” on page 292 for additional information.

**Restriction:** Special characters, such as spaces, quotation marks, and square brackets are not considered safe to use in URLs and should be encoded using the appropriate escape sequence. For details, see RFC 1738 (tools.ietf.org/html/rfc1738).

**Determining CRLDistURIIn**

If you are using DP CRLs (you specified a CRLDistSize value greater than 1 in the `CertPolicy` section of `pkiserv.conf`), you can choose to further customize your DP CRL processing to build the URI format name for the DP CRL in the CRLDistributionPoints extension of each certificate. The URI format name is built in addition to the LDAP distinguished name of the DP CRL, as described in “Specifying the URI format” on page 291.

This is an optional parameter. If you do not specify a CRLDistURIIn value, the URI format name is not created. You can specify multiple entries for the CRLDistURIIn parameter, using the parameters CRLDistURI1, CRLDistURI2, and so forth. This value is ignored if you did not specify CRLDistSize with a value greater than zero. The URI format is not created if you specify CRLDistURIIn with an n value of 0.

There are different ways to specify the value of CRLDistURIIn for different protocols. **Valid values** include one of the following strings:

- A string that begins with the characters `http://` or `ldap://`
A string that consists of LdapServer\textsubscript{n}, where \( n \) is greater than zero.

**Restriction:** PKI Services provides syntax checking based only on valid values for the CRLDistURI\textsubscript{n} value. You must ensure that the URIs you choose can be accessed.

### Specifying an HTTP URI

For HTTP, specify the complete URL but do not specify the name of a file where the CRL DP is stored. The value for CRLDistURI\textsubscript{n} can be specified with or without a trailing slash.

**Example:**

```
CRLDistURI1=http://www.bankxyz.com/PKIServ/cacerts/
```

**Note:** This is an example of an HTTP protocol URI using a virtual path name. When using virtual path names in an HTTP URI, an AliasMatch HTTP directive is required in the vhost80.conf (host file for son-SSL requests) configuration file to map the virtual path name to a real path name. See “Determining CRLDistDirPath” on page 292 for more information.

### Specifying an LDAP URI

For LDAP, there are two ways to indicate the CRLDistURI\textsubscript{n} value. Choose either of the following two methods:

1. Specify the protocol and the domain name (and the port, if needed). The value for CRLDistURI\textsubscript{n} can be specified with or without a trailing slash.
   
   **Example:**
   
   ```
   CRLDistURI1=ldap://ldap.bankxyz.com:389/
   ```

2. Specify the keyword LdapServer\textsubscript{n} to have PKI Services build the CRLDistURI\textsubscript{n} value for you based on a server identified by the Server\textsubscript{n} or BindProfile\textsubscript{n} directives in the LDAP section of pkiserv.conf.

   **Example:**
   
   ```
   CRLDistURI3=LdapServer1
   ```

   This example assumes that the first server specified in the LDAP section was similarly defined as one of the following examples:

   **Examples:**
   
   ```
   Server1=ldap.bankxyz.com:389
   ```
   
   **or**
   
   ```
   BindProfile1=LOCALPKI.BINDINFO.LDAP1
   ```

**Rules for using the LdapServer\textsubscript{n} keyword:**

1. You must have specified a value greater than zero for NumServers in the LDAP section of pkiserv.conf.
2. Each server represented by the \( n \) value in the LdapServer\textsubscript{n} keyword must be identified in one of the following ways:
   
   - The corresponding LDAP server must be identified by a Server\textsubscript{n} or BindProfile\textsubscript{n} value in the LDAP section of pkiserv.conf,
   
   - The corresponding LDAP server must be identified in the default FACILITY class profile IRR.PROXY.DEFAULTS and must follow the same identification requirements for PKI Services LDAP processing. See “Using encrypted passwords for LDAP servers” on page 501.

### Determining CRLDistDirPath

If the protocol for the URI you specified with CRLDistURI\textsubscript{n} is HTTP protocol, you need to also determine your value for the CRLDistDirPath parameter. The CRLDistDirPath parameter specifies the full path
of the var directory where PKI Services saves each DP CRL. The value can be specified with or without
the trailing slash. The default value is /var/pkiserv/. If you are customizing this value for a CA Domain,
you should specify a directory name that contains the CA Domain name, for example /var/pkiserv/
employees/. In a case such as this, it is also necessary to add an additional Pass statement to the HTTP
configuration file that maps the virtual path name in the URI to the real path specified by this
CRLDistDirPath statement.

Statements in the pkiserv.conf file:

| CRLDistURI1 = http://www.bankxyz.com/Employees/cacerts/ |
| CRLDistDirPath = /var/pkiserv/employees/ |

Matching AliasMatch HTTP directive in the vhost80.conf (host file for non-SSL request) configuration
file.

Uncomment the AliasMatch HTTP directive in the vhost80.conf (host file for non-SSL request)
configuration file.

## Steps for customizing distribution point CRLs

**Before you begin**

Be aware of the following restrictions:

- If running PKI Services in a sysplex, all instances of PKI Services must specify the same values for the
  parameters CRLDistURI (for all values of n), CRLDistDirPath, CRLDistSize, and CRLDistName.
- Once a value for CRLDistName has been set, it must not be changed or removed from the configuration
  file.
- Once a nonzero value has been set for CRLDistSize, it must not be changed back to zero or removed
  from the configuration file. Adjusting the value is acceptable.

**Procedure**

Perform the following steps to customize distribution point CRLs:

1. Determine your value for the CRLDistSize parameter based on the following algorithm. The default
   value specified in pkiserv.conf is 500. Your value should be based on your wanted average
   number of CRL entries per distribution point and your estimated revoked-certificate percentage as
   expressed by the following formula:

   \[ \text{CRLDistSize} = \frac{E}{P} \]

   where:

   - \( E \)
     is the wanted average number of CRL entries per distribution point.
   - \( P \)
     is the estimated revoked-certificate percentage.

   **Example:** If you estimate that 10% of the non-expired certificates are in the revoked state at any
time and you want the CRLs to average about 100 entries each, then:

   \[ \text{CRLDistSize} = \frac{100}{0.10} = 1000 \]

   The CRLDistSize in bytes can be roughly estimated to be \( 500 \times (25 \times \text{number of CRL entries}) \). Using
the previous example, the average CRL size in bytes would be \( 500 \times (25 \times 100) = 3000 \) bytes.

   **Note:** The longer the CRL, the longer it takes to process it.
Restriction: When CRLs are posted to LDAP, a single CRL cannot exceed approximately 32 K bytes in length, unless you have enabled support for large CRLs. For more information, see “Enabling support for large CRLs” on page 297. Therefore, if a CRL is posted to LDAP and you have not enabled support for large CRLs, you must limit the length of the CRL.

Rules:

a. The value of CRLDistSize is a numeric value from 0 - 2147483647.

b. A nonzero value indicates that distribution point (DP) CRLs are created.

c. A value of zero (the default) indicates that DP CRL processing is not performed.

Guideline: If you anticipate a low revocation rate for active certificates, use a value of 0. Your installation might not need to use distribution point CRLs and the global CRL might be sufficient.

2. If necessary, update the value of CRLDistSize in the CertPolicy section of pkiserv.conf to the customized value you determined in Step “1” on page 293.

If you selected the 0 value for CRLDistSize, complete this step and then continue with Step “12” on page 295.

3. Determine your value for the CRLDistName parameter. The default value is CRL. The common name portion of the distinguished name of each DP CRL is formed by appending the DP number to this value. The CA's name is also appended. (See “How DP CRLs are published” on page 289.)

Example:

CN=CRL3,OU=My Company Certificate Authority,O=My Company,C=US

Restrictions:

a. The value of CRLDistName must contain only alphanumeric characters.

b. The length of the entire DP distinguished name should not exceed 255 bytes. (DP distinguished names that are longer appear truncated in the PKIDPUBR audit record.)

4. If necessary, update the value of CRLDistName in the CertPolicy section of pkiserv.conf to your customized value.

5. Optionally, determine your value for the CRLDistURIin parameter. Specifying this value allows PKI Services to build a URI-formatted name for the DP CRL in each CRLDistributionPoints extension, if you also specified a CRLDistSize value greater than 1 in Step “2” on page 294. The URI format name is built in addition to the LDAP distinguished name of the DP CRL in each CRLDistributionPoints extension. If you do not specify a CRLDistURI value, the URI format name is not created. See “Specifying the URI format” on page 291.

You can specify multiple entries for the CRLDistURIin parameter, using the parameters CRLDistURI1, CRLDistURI2, and so forth.

6. If necessary, update the value of CRLDistURIin in the CertPolicy section of pkiserv.conf to your customized value or values.
7. If all the protocol definitions for the URIs you specified with CRLDistURI in Step “5” on page 294 are the LDAP protocol, decide whether you want to enable support for large CRLs. If you choose to enable large CRLs, follow the instructions in “Enabling support for large CRLs” on page 297. Then skip to Step “10” on page 295.

8. If a protocol definition for the URI you specified with CRLDistURI in Step “5” on page 294 is HTTP protocol, determine your value for the CRLDistDirPath parameter.

The CRLDistDirPath parameter specifies the full path of the var directory where PKI Services saves each DP CRL. The default value is /var/pkiserv/. The value can be specified with or without the trailing slash. See “Determining CRLDistDirPath” on page 292.

9. If necessary, update the value of CRLDistDirPath in the CertPolicy section of pkiserv.conf to your customized value.

10. Optionally, determine your value for the ARLDist parameter. Specifying this parameter creates a distribution point ARL so you can check revocation status for CA certificates without accessing the global ARL. See “Creating a distribution point ARL” on page 295.

11. If necessary, update the value of ARLDist in the CertPolicy section of pkiserv.conf to your customized value.

12. If you made any updates to pkiserv.conf, stop and restart PKI Services to make your changes effective.

When you have finished: If you selected a CRLDistSize value greater than zero, you have set up distribution point CRLs. Now, created certificates contain the CRLDistributionPoints extension indicating the location of the DP CRL that is checked for revocation information. If you specified a URI-formatted name with CRLDistURI, now your CRLDistributionPoints extensions also contains a URI name for each DP CRL, containing the protocol type and server domain name. If you enabled the ARLDist option, you have set up a distribution point ARL for CA certificates.

Creating a distribution point ARL

You can choose to create a distribution point (DP) authority revocation list (ARL) to support revocation status checking for certificate authority (CA) certificates. You choose DP ARL processing by customizing the ARLDist parameter in the CertPolicy section of the pkiserv.conf. If you do not customize this parameter, PKI Services does not partition the ARL and, therefore, applications must check the global ARL to check the revocation status of a CA certificate.

ARLDist=F (default)
No distribution point ARL is created.

ARLDist=T
When distribution point CRLs are also enabled (when CRLDistSize is greater than zero), you can specify T (True) to create a distribution point ARL.

When DP ARL processing is enabled, PKI Services provides the following support:

• Create a single distribution point (DP) for all CA certificates
Advanced customization

• Build a CRLDistributionPoints extension containing both the distinguished name and the URI format for the DP. Use the same values specified (CRLDistSize, CRLDistName, CRLDistURIn, CRLDistDirPath) in the pkiserv.conf file for the DP CRL processing.

DP ARL processing for CA certificates is similar to the DP CRL processing for non-CA certificates with the following differences:

• There is only one DP ARL. Its name is formed by the value that is specified in the CRLDistName parameter in the CertPolicy section of the pkiserv.conf, appended with 0 (zero). By appending a zero, the name of the DP ARL never conflicts with the name of a DP CRL. For example, if CRLDistName=CRL, then the DP ARL is named CRL0, and the DP CRLs are named CRL1, CRL2, and so forth.

• The DP ARL is a mirror copy of the global ARL. In other words, each revoked CA certificate appears in both the DP ARL and the global ARL. By contrast, a revoked non-CA certificate is listed in the DP CRL but not in the global CRL when DP CRL processing is enabled.

• The attribute string that is appended to the URI format for the LDAP protocol is ?authorityRevocationList. Otherwise, the CRLDistributionPoints extension of a CA certificate appears similar to that of a non-CA certificate. See Figure 33 on page 297 for a sample CRLDistributionPoints extension for a CA certificate. This sample contains several different name formats. Notice the URI format at the end of the sample.
Enabling support for large CRLs

When LDAP posting of certificate revocation lists (CRLs) is enabled, by default PKI services temporarily stores CRLs in its object store for posting to LDAP. However, PKI Services imposes a limit on the size of records in the object store of approximately 32 KB, which limits the size of the CRLs stored there to approximately 32 KB. As certificates are revoked or suspended within the scope of a CRL, the size of the CRL increases, and can exceed the limit. If a CRL exceeds the 32 KB limit, PKI Services cannot post it to the LDAP directory.

To avoid this problem, you can configure PKI Services to store CRLs for posting to LDAP in the z/OS UNIX file system instead of in the object store. The distribution point CRLs and the distribution point ARLs are stored by using the same file name format that is used when an http format CRLDistURIn is specified. However, when large CRL support is enabled, the global CRLs and ARLs are also stored in the z/OS UNIX file system by using file names that are formed by using the CRLDistName value followed by _MCRL.crl or _MARL.crl. For example, if using CRLDistName=CRL, the global CRL file name is CRL_MCRL.crl.

When you do this, there is no limit for the size of CRLs.
Steps for enabling support for large CRLs

Perform the following steps to enable support for CRLs larger than the limit of approximately 32KB.

Before you begin
You need to be familiar with the z/OS UNIX file systems.

Procedure

1. Configure a z/OS file system to hold CRLs. If you run multiple instances of PKI Services in a Parallel Sysplex (one per image), ensure that the file system is shared with each PKI Services instance in the sysplex. For information about managing the z/OS UNIX file system, see z/OS UNIX System Services Planning.

2. Set the value of the LargeCRLPostPath parameter in the CertPolicy section of the PKI Services configuration file, pkiserv.conf, to the full path of the var directory where PKI Services is to save each CRL for posting to LDAP. The default value is /var/pkiserv/. You can specify the value with or without the trailing slash. The value of LargeCRLPostPath can be the same as the value of CRLDistDirPath.

   Guideline: If you are customizing this value for a CA domain, specify a directory name that contains the CA domain name, for example /var/pkiserv/employees/, where employees is the domain name.

3. Set the value of the EnableLargeCRLPosting parameter in the CertPolicy section of the PKI Services configuration file, pkiserv.conf, to T.

4. Restart PKI Services. Your changes to the pkiserv.conf file do not take effect until you do this. For information about starting PKI Services see Chapter 10, “Starting and stopping PKI Services,” on page 129.

Results
When you are done, you have enabled support for large CRLs, and CRLs are no longer limited to approximately 32KB in size.

Using the OCSP responder

As an alternative, or in addition to publishing revocation information with CRLs, you can choose to enable an Online Certificate Status Protocol (OCSP) responder. An OCSP responder is enabled when OCSPType is set to basic in the CertPolicy section of the PKI Services configuration file. See Table 21 on page 74, and the certificate contains the necessary OCSP responder information in the AuthInfoAccess extension. (Also, see “TEMPLATE sections” on page 151.)

To use an OCSP responder, you must add /usr/lpp/pkiserv/lib to the LIBPATH environment variable for the HTTP Server. This setting is shown by adding it to the vhost80.conf (host file for non-SSL requests) configuration file by using the SetEnv HTTP directive.

Adding an application domain

This topic describes adding a new application domain. If you want to add a new certificate authority (CA) domain, see “Adding a new CA domain” on page 302.
By default, all CGIs or JSPs (depending on the method you are using to implement the PKI Services web application) reside under a common URL. Based on this, all users, including PKI administrators, have the same PKI Services home page, web content and supported certificate templates. In other words, by default, there is a single application domain: PKISERV.

The sample PKI Services template files (pkiserv.tmpl and pkitmpl.xml) contain two application sections: PKISERV and CUSTOMERS. Using these two application sections, your users can be easily divided between two subsets - customers and administrators.

You might want to separate your administration users and your end users. You might also need to further subset your end user population by adding different application domains for different groups of end users. Both of these objectives can be accomplished by using multiple applications. The PKI administrators and the different subsets of end users can be directed to different application domains at different URLs.

Creating application domains when you use REXX CGIs to implement the web application

To create multiple application domains, execute the subtasks in Table 50 on page 299. Both are tasks for the web server programmer.

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Associated procedures (See …)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update the PKI Services template file</td>
<td>“Steps for creating multiple application sections in the PKI Services template file” on page 299</td>
</tr>
<tr>
<td>Update the web server configuration files</td>
<td>“Steps for adding application domains to the web server configuration files” on page 300</td>
</tr>
</tbody>
</table>

Steps for creating multiple application sections in the PKI Services template file

Perform the following steps to create multiple application sections to the PKI Services template file:

1. Edit the pkiserv.tmpl file and find the CUSTOMERS application section.

2. Replicate the CUSTOMERS section and specify a unique name for the new application section.

   <APPLICATION NAME=appl-section-name>

   **Rule:** The application section name must be one word, all uppercase characters.

3. Determine which certificate types are required by this user subset. Based on these requirements, select the certificate templates that belong in the new application set by adding or removing template names from this new section as needed.

4. Customize the content of the web pages for this application by modifying the <CONTENT>…</CONTENT> subsection. (See “TEMPLATE sections” on page 151 for a description of each subsection.)

5. Similarly, customize the original CUSTOMERS application by re-executing Steps “3” on page 299 and “4” on page 299, this time editing the content of the CUSTOMERS web pages.

6. Repeat Steps “1” on page 299–“4” on page 299 for each application section you need to add.

7. Optionally, rename the original CUSTOMERS application to a new section name, if you want.

   <APPLICATION NAME=section-name>
Rule: The application section name must be one word, all uppercase characters.

Steps for adding application domains to the web server configuration files

Before you begin

- This procedure requires web server programming skills and requires editing the vhost.conf configuration file.
- The home page URL for the new or renamed domains would be as follows:

```
http://<webserver-fully-qualified-domain-name>/<new-appl-domain-name>/ssl-cgi/camain.rexx
```

where `new-appl-domain-name` corresponds to the new section name added in the template file in “Steps for creating multiple application sections in the PKI Services template file” on page 299. However, in the web server files, the new name is case-sensitive but does not need to be in uppercase only.

- Make note of the case you select for each character of the new `new-appl-domain-name` name. This case-sensitive value becomes part of the URL for your home page. You must use it consistently in each set of HTTP Server directives as indicated in the vhost.conf configuration files:

  - vhost80 - Virtual host file for non-SSL requests.
  - vhost443 - Virtual host file for SSL requests with server authentication.
  - vhost1443 - Virtual host file for SSL requests with client authentication.

- The administration home page URL does not change. (There is one common administration application that handles all application domains.)
- If your PKI installation has changed the name of the Customers domain, you must change all occurrences of Customers to its new value in both files. (The new value is not case-sensitive.)
- If your installation has added a new application domain, use the following procedure.

Procedure

Perform the following steps to add application domains or rename the Customers application domain in web server virtual host configuration files for each new application section added to pkiserv.tmpl:

- Modify each of the following HTTP Server directives in the virtual host configuration files:

  vhost80.conf (host file for non-SSL requests):

  ```
  RewriteRule ^/(PKIServ|Customers|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
  RewriteRule ^/(PKIServ|Customers|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]
  ScriptAliasMatch /(PKIServ|Customers|Employees)/public-cgi/(.*) <application-root>/PKIServ/public-cgi/$2
  ```

  vhost443.conf (host file for SSL request with server authentication):

  ```
  RewriteRule ^/(PKIServ|Customers|Employees)/public-cgi/(.*) http://<server-domain-name>/$1/public-cgi/$2 [R,NE,L]
  RewriteRule ^/(PKIServ|Customers|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE,L]
  ScriptAliasMatch ^/(PKIServ|Customers|Employees)/(clientauth-cgi|clientauth-cgi-bin)/(.*) <application-root>/PKIServ/clientauth-cgi-bin/$3
  ```

  vhost1443.conf (host file for SSL request with client authentication):

  ```
  RewriteRule ^/(PKIServ|Customers|Employees)/public-cgi/(.*) http://<server-domain-name>/$1/public-cgi/$2 [R,NE,L]
  RewriteRule ^/(PKIServ|Customers|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE,L]
  ScriptAliasMatch ^/(PKIServ|Customers|Employees)/(clientauth-cgi|clientauth-cgi-bin)/(.*) <application-root>/PKIServ/clientauth-cgi-bin/auth/pkicmp
  ```
In contrast to the application section name, the domain name value is case-sensitive and does not need to be uppercase. However, you must use it consistently in each of the HTTP Server directives in the virtual host configuration files. This value becomes part of the URL for your home page.

When you are done, you have defined a new PKI Services application domain at:

```
Example

http://<webserver-fully-qualified-domain-name>/employees/ssl-cgi/camain.rexx
```

### Creating application domains when you use JSPs to implement the web application

An application, or application domain, is a grouping of certificate request templates that are typically targeted at a subset of end users. The Customers application is the default end user application. But the web.xml file that ships as part of PKIServ.ear also defines mappings for a second application called Application2, making it easy to set up a second application domain.

To set up Application2, edit pkitmpl.xml and use the `<tns:application>` tag to define which certificate request templates should be part of Application2. For example:

```
<tns:application>
  <tns:applname>Application2</tns:applname>
  <tns:appltemplate>1-Year PKI SSL Browser Certificate</tns:appltemplate>
  <tns:appltemplate>5-Year PKI SSL Server Certificate</tns:appltemplate>
  <tns:appltemplate>5-Year PKI Intermediate CA Certificate</tns:appltemplate>
  <tns:appltemplate>2-Year PKI Authenticode - Code Signing Certificate</tns:appltemplate>
  <tns:appltemplate>n-Year PKI Certificate for Extensions Demonstration</tns:appltemplate>
  <tns:appltemplate>1-Year SAF Browser Certificate</tns:appltemplate>
</tns:application>
```

While you access the Customers home page at the URL:

```
http://hostname.com:9080/PKIServ_Web/Customers/pkimain.jsp
```

you would access the Application2 home page at:

```
http://hostname.com:9080/PKIServ_Web/Application2/pkimain.jsp
```

To change the name of Application2, or to add another application, you need to edit the web.xml file in PKIServ.ear.

**Steps for creating application domains other than Application2**

Perform the following steps to create different application domains when you use JSPs to implement the web application.

**Before you begin**

You must have the `jar` command in your path. If you do not, define the JAVA_HOME variable (you can find its value on the WebSphere administration console) and add the `$JAVA_HOME/bin` directory to your path. For example:

```
export JAVA_HOME=/WebSphere/V6R1/AppServer/java
export PATH=$JAVA_HOME/bin:$PATH
```

**Procedure**

1. Follow steps “1” on page 259 to “4” on page 260.

```
_______________________________________________________
```

Advanced customization 301
2. Edit the web.xml file. You can use the following command, or use your preferred editor:

   oedit WEB-INF/web.xml

3. Copy the lines that begin with the comment:

   <!-- Start: For new application: Application2 -->

and end with the comment:

   <!-- End: For new application: Application2 -->

4. Change all occurrences of "Application2" in the copied lines to the name of the application you want to create. Save the updated file.

5. Update the WAR file with the edited template file.

   jar -uvf PKIServ_Web.war WEB-INF/web.xml

6. Update the EAR file with the updated WAR file:

   jar -uvf PKIServ.ear PKIServ_Web.war

7. Make sure the PKIServ.ear file is publicly readable by issuing the chmod command.

   chmod 755 PKIServ.ear

Results

When you are done, you created another application domain. You can now deploy the updated files following the directions in “Deploying the EAR file to a WebSphere Application Server” on page 262. When you edit the file pkitmpl.xml and add your new application, if its name is "NewApplication" your new application is available at:

   http://hostname.com:9080/PKIServ_Web/NewApplication/pkimain.jsp

Adding a new CA domain

When you want to operate more than one certificate authority (CA) on a single z/OS image, you must create a separate CA domain for each CA. Each CA domain uses its own daemon and operates as its own instance of PKI Services. This topic describes how to add a new CA domain. (If you want to add a new application domain, see “Adding an application domain” on page 298.)

When you add CA domains, you can create a PKI infrastructure that contains subsets of end user populations (application domains), each supported by its own unique PKI Services application (PKI Services daemon and URL) and optionally by its own dedicated set of PKI administrators. If you already use multiple application domains, the key advantage of adding multiple CA domains is that you can build a certificate hierarchy of CAs and optionally provide certificate services to multiple organizations.

When you add a new CA domain, your users still have a unique URL and set of certificate templates to choose from, but they also have the services of their own CA including the CA's certificate, signing key, object store, and issued certificate list (ICL), and LDAP repository. Enabling multiple CAs is a natural
extension for multiple application domains. Each CA domain can represent one instance of a CA, backed
by a unique instance of the PKI Services daemon (and all its associated components), yet requiring no
more than a single HTTP / WebSphere Application Server / Liberty Server.

Figure 34 on page 303 contains an illustration showing two CA domains, one for employees and one for
customers. In the illustration, a single shared administrator supports both CA domains. (You can decide to
share a common administrator across multiple CA domains or have separate administrators who are each
dedicated to only one CA domain.)

Figure 34. Illustration of two CA domains, one for employees and one for customers, administered by a single
shared administrator who administers both domains

Task overview

This topic includes a task roadmap that you can use to add a new CA domain. The roadmap includes
several subtasks, which are listed in Table 51 on page 304. It is intended to direct you to add a new CA
domain after you have completed all required tasks in Part 2, “Configuring
your system for PKI Services,”
on page 37. Before you begin this task, you have already implemented and tested the default setup for
PKI Services and ensured that it operates properly as a single CA domain.

For each CA you add, you create a dedicated copy of the object store and issued certificate list (ICL), CA
certificate, key ring, and LDAP namespace. You also create a dedicated copy of the PKI Services
configuration file (pkiserv.conf), templates file (pkiserv.tmpl or pkitmpl.xml), and environment
variables file (pkiserv.envvars), each in its own directory. You update the following CA-specific
information in these files:

• pkiserv.conf - contains the CA-specific key ring name, VSAM data set names or Db2 subsystem and
  package name for the object store and ICL, and optionally CRLDistDirPath.
• **pkiserv.envars** - contains a variable `_PKISERV_CA_DOMAIN` to specify CA domain and the variable `_PKISERV_CONFIG_PATH` sets the directory for each CA domain.

• The template file that you are using:
  - **pkiserv.tmpl** - contains the name of the end-user application section (default is CUSTOMER) that you rename to a CA-specific name, such as `<APPLICATION NAME=EMPLOYEE>`. It also contains the name of the administrative application section (default is PKISERV) that you can rename to a CA-specific name, such as `<APPLICATION NAME=ADMEMPLOYEES>`.
  - **pkitmpl.xml** - defines the applications and certificate request templates that you use for this CA domain.

If you are implementing the web application using REXX CGI execs, see “Subtask 2: Steps for reconfiguring your initial CA domain to allow it to coexist with other CA domains” on page 307 and “Subtask 6: Steps for updating the web server configuration” on page 314 for more information about adding application domains.

If you are implementing the web application using JavaServer pages (JSPs), you need to edit the `web.xml` file with the PKIServ.EAR. It helps to understand the URLs used for multiple CA domains and multiple application domains. The JSP code parses the URL to determine the CA domain and application name. The first directory after the root context of PKIServ_Web is the CA domain name if there is one and the second directory is either the application name or PKIServ (for the PKI Services administration web pages). When the JSPs are run without a named CA domain, the first directory after the root context of PKIServ_Web is the application name or PKIServ (for the PKI Services administration pages).

---

### Task roadmap for adding CA domains

**Before you begin**

- Complete all required tasks in Part 2, “Configuring your system for PKI Services,” on page 37. This task roadmap is intended to direct you to add a new CA domain after you have already implemented and tested the default setup for PKI Services and ensured that it operates properly as a single CA domain.

- Review Table 51 on page 304 to see the subtasks that are involved and the skills that are required for each subtask. (The team members that are listed are based on role definitions that are established in “Identifying skill requirements” on page 14.)

**Procedure**

To create a new CA domain, complete the subtasks in Table 51 on page 304. Subtask 1 guides you through planning. Subtask 2 is a one-time setup that you do when you add your first additional CA domain. Subtasks 3 - 8 are each done once for every CA domain you add. (See Part 2, “Configuring your system for PKI Services,” on page 37 for additional details about these subtasks.)

After you complete Subtasks 1 and 2 (planning and reconfiguring), perform Subtasks 3 - 8 for your first new CA domain and ensure that it operates properly before adding your second CA domain.

<table>
<thead>
<tr>
<th>Table 51. Task roadmap for adding a new CA domain</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Subtask</strong></td>
</tr>
<tr>
<td>1 Plan additional CA domains.</td>
</tr>
<tr>
<td>2 Reconfigure your initial CA domain to allow it to coexist with other CA domains. (This is a one-time setup.)</td>
</tr>
</tbody>
</table>
Table 51. Task roadmap for adding a new CA domain (continued)

<table>
<thead>
<tr>
<th>Subtask</th>
<th>Team member</th>
<th>Associated procedure (See...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Run IKYSETUP.</td>
<td>MVS programmer</td>
<td>“Subtask 3: Steps for running the IKYSETUP exec” on page 309.</td>
</tr>
<tr>
<td>4 Configure the UNIX environment.</td>
<td>UNIX programmer</td>
<td>“Subtask 4: Steps for configuring the UNIX environment” on page 311.</td>
</tr>
<tr>
<td>5 Update the PKI Services template file or JSP files.</td>
<td>Web server programmer</td>
<td>“Subtask 5: Steps for updating the PKI Services template file or JSP files” on page 312.</td>
</tr>
<tr>
<td>7 Set up the object store and ICL.</td>
<td>MVS programmer or Db2 programmer, depending on how you implement the object store and ICL</td>
<td>“Subtask 7: Creating the object store and ICL” on page 316.</td>
</tr>
<tr>
<td>8 Start PKI Services.</td>
<td>MVS programmer</td>
<td>“Subtask 8: Steps for starting PKI Services” on page 317.</td>
</tr>
</tbody>
</table>

Recording your progress adding CA domains

As you complete each subtask for adding a new CA domain, use Table 52 on page 305 to mark your progress. The tasks correspond to the subtasks listed in the roadmap in Table 51 on page 304.

Table 52. Multiple CA domains: Worksheet #1 for recording progress adding new CA domains

<table>
<thead>
<tr>
<th>Subtask</th>
<th>First CA domain</th>
<th>Second CA domain</th>
<th>Third CA domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Plan additional CA domains.</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Reconfigure initial domain. (once only)</td>
<td>☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Run IKYSETUP.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4 Configure the UNIX environment.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5 Update the PKI Services template file. (Perform this task only if you implement the web application using REXX CGI execs.)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6 Update the web server configuration.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7 Set up the object store and ICL.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8 Start PKI Services.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Guideline: Perform Subtasks 1 - 8 for your first new CA domain and ensure that it operates properly before adding your second CA domain.
Subtask 1: Steps for planning additional CA domains

Perform the following steps to plan additional CA domains.

1. Determine how many instances of PKI Services (CA domains) you operate in addition to the initial domain you configured when you originally customized PKI Services.

   For each CA domain, you need to pick a nickname to use as the CA domain name. The CA domain name is used to qualify the resources used by that CA domain. For example, the CA domain named Employees uses the following resources:

   Examples:
   - Web page URLs (in mixed case)
     - If you implement the web application using REXX CGI execs:
       ```
       http://webserver-domain-name/Employee/ssl-cgi/camain.rexx
       ```
     - If you implement the web application using JSPs:
       ```
       http://webserver-domain-name/PKIServ_Web/Employee/ApplicationName/pkimain.jsp
       ```
   
   Note that the CA domain name is independent of the application domain name.

   - Data set qualifiers (in uppercase) - VSAM ICL data set
     ```
     PKISRVD.EMPLOYEE.VSAM.ICL
     ```
   - Path names (in lowercase)
     ```
     /etc/pkiserv/employees/pkiserv.conf
     ```

   If you are implementing the object store and ICL using Db2, you need a unique Db2 package name for each CA domain. Use the CA domain name for the package name. You should also use a unique name for the Db2 plan.

   2. Decide how you want to administer multiple CA domains. Will you share a common set of administrators across all your CA domains or will you have a dedicated set of administrators for each CA domain?

      If you use a dedicated set for each CA domain, you need to pick a second nickname for each CA domain, for its administrative domain.

   3. Determine your CA domain names. Unless you renamed the default domain names when you originally customized PKI Services, the initial name for the application domain is Customers and its administrative domain name is PKIServ. Your new CA domain names (nicknames) must differ from these values.

   Rules for domain names:
   - Domain names are 1 - 8 characters.
     - For REXX CGI execs, domain names can exceed 8 characters if the first 8 characters are unique from your other domain names.
     - For JavaServer pages (JSPs) domain names cannot exceed 8 characters.
   - The characters in the domain name are limited to the following character set: alphanumeric characters (a - z, A - Z, 0 - 9) and the hyphen (-).
   - The first character must not be a number or hyphen.

   4. Record information about your CA domains in Table 53 on page 307 and Table 54 on page 307.
Row 1 in each table is already filled in with the defaults for an initial CA domain (Customers). Row 2 in each table is an example of a new CA domain managed by the same (shared) group of administrators. Row 3 in each table is an example of the same CA domain from Row 2 managed by a dedicated group of administrators.

The rows in each table that are already filled in use the default values for the following variables when PKI Services was installed. (Your MVS programmer might have chosen different directories.)

**Installation variable**

<table>
<thead>
<tr>
<th>Default directory name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>install-dir</strong></td>
</tr>
<tr>
<td>/usr/lpp/pkiserv</td>
</tr>
<tr>
<td><strong>runtime-dir</strong></td>
</tr>
<tr>
<td>/etc/pkiserv</td>
</tr>
</tbody>
</table>

a. Fill in the values for new CA domains, administrative domains, and directories in Table 53 on page 307. You can add your information in the following blank lines or you can modify or cross out the sample rows.

<table>
<thead>
<tr>
<th>CA domain name (runtime directory)</th>
<th>Truncated CA domain name</th>
<th>Administrative domain name (runtime directory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Customers (/etc/pkiserv)</td>
<td>CUSTOMER</td>
<td>PKIServ (/etc/pkiserv)</td>
</tr>
<tr>
<td>2 Employees (/etc/pkiserv/employees)</td>
<td>EMPLOYEE</td>
<td>PKIServ (/etc/pkiserv)</td>
</tr>
<tr>
<td>3 Employees (/etc/pkiserv/employees)</td>
<td>EMPLOYEE</td>
<td>AdmEmployees (/etc/pkiserv/employees)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Fill in your RACF user IDs, groups, and VSAM data set qualifiers or Db2 package names in Table 54 on page 307. You can add your information in the following blank lines or you can modify or cross out the sample rows.

<table>
<thead>
<tr>
<th>Daemon user ID (UID)</th>
<th>Surrogate user ID (UID)</th>
<th>PKI administration group name (GID)</th>
<th>VSAM data set qualifiers or Db2 package name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PKISRVD (554)</td>
<td>PKISERV (555)</td>
<td>PKIGRP (655)</td>
<td>PKISRVD.VSAM</td>
</tr>
<tr>
<td>2 PKISRVD (554)</td>
<td>PKISERV (555)</td>
<td>PKIGRP (655)</td>
<td>PKISRVD.EMPLOYEE.VSAM</td>
</tr>
<tr>
<td>3 PKIDEMP (556)</td>
<td>PKISEMP (557)</td>
<td>PKIGEMP (657)</td>
<td>PKISRVD.EMPLOYEE.VSAM</td>
</tr>
<tr>
<td>4 PKIDEMP (556)</td>
<td>PKISEMP (557)</td>
<td>PKIGEMP (657)</td>
<td>MasterCA</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtask 2: Steps for reconfiguring your initial CA domain to allow it to coexist with other CA domains

Perform the following steps to reconfigure your initial CA domain to allow it to coexist with other CA domains. (This is a one-time setup that suffices no matter how many CA domains you add.)
1. If PKI Services is running, stop it by issuing the following MVS console command:

   `P PKISERVD`

2. Update the PKI Services environment variables in the `pkiserv.envars` file as follows.
   a. (Optional) If your initial CA domain does not use its own `pkiserv.envars` file, copy the default `pkiserv.envars` file from the PKI Services install directory by issuing the following command from the UNIX command line:

   `cp -p /usr/lpp/pkiserv/samples/pkiserv.envars /etc/pkiserv`

   b. Edit the new copy of `pkiserv.envars` file by entering the following command:

   `oedit /etc/pkiserv/pkiserv.envars`

   c. Add a PKI Services environment variable identifying your initial CA domain name (see Table 53 on page 307) in uppercase characters.

   **Example:**

   `_PKISERV_CA_DOMAIN=CUSTOMERS`

3. Update the HTTP server's environment variables and configuration directives as follows.
   a. Update the HTTP server's environment variables. This setting is shown by adding it to the `vhost80.conf` (host file for non-SSL requests) by using the `SetEnv` HTTP directive. Similar changes must be made to the `vhost443` (host file for SSL requests with server authentication) and `vhost1443` (host file for SSL requests with client authentication) configuration files.

   1) Edit the `vhost80.conf` file by entering the following command:

      `oedit /etc/websrv1/conf/vhost80.conf`

   2) Add an environment variable identifying the runtime directory of your initial CA domain. (Check Table 53 on page 307.)

      **Example:**

      `SetEnv _PKISERV_CONFIG_PATH_CUSTOMERS "/etc/pkiserv"`

   3) (Optional) If you intend to have a dedicated set of administrators for each CA domain, add an environment variable that specifies the runtime directory for the administrative domain. (Check Table 53 on page 307.)

      **Example:**

      `SetEnv _PKISERV_CONFIG_PATH_PKISERV "/etc/pkiserv"`

4. Update the RACF access controls for the `R_PKIServ` SAF callable service as follows. (Any change to environment variables in Step “3” on page 308 requires a corresponding change to RACF access control.)

   a. Determine the PKI Services surrogate user ID (default is PKISERV) and the PKI Services administrators group (default is PKIGRP). To do this, refer to the log file created when the IKYSETUP REXX exec was originally run for your initial CA domain.

   b. Execute the following RACF commands from the TSO command line. Replace the highlighted values with your own, if different:
Examples:

RDELETE FACILITY IRR.RPKISERV.**
RDEFINE FACILITY IRR.RPKISERV.*.CUSTOMER
PERMIT IRR.RPKISERV.*.CUSTOMER CLASS(FACILITY) ID(PKISERV) ACCESS(CONTROL)
RDELETE FACILITY IRR.RPKISERV.PKIADMIN
RDEFINE FACILITY IRR.RPKISERV.PKIADMIN.CUSTOMER
PERMIT IRR.RPKISERV.PKIADMIN.CUSTOMER CLASS(FACILITY) ID(PKIGRP) ACCESS(UPDATE)
PERMIT IRR.RPKISERV.PKIADMIN.CUSTOMER CLASS(FACILITY) ID(PKISERV) ACCESS(NONE)
SETROPTS RACLIST(FACILITY) REFRESH

Restriction: If the name of your initial CA domain is longer than 8 characters, you must truncate it to exactly 8 characters when you define the resource name in the FACILITY class profiles. (In this example, the name CUSTOMERS was truncated to CUSTOMER in the second RDEFINE FACILITY command.)

5. (Optional) You have reconfigured your initial CA domain to allow it to coexist with other CA domains. If you want, you can test the reconfiguration now. To test it, follow these steps:

a. Restart PKI Services using the following MVS console command. Replace the highlighted values with your own, if different.

Guideline: To simplify your environment, start this instance of PKI Services using a JOBNAME that matches the truncated name of the CA domain. (See your truncated value in Table 53 on page 307.) If you use the truncated values as job names, it is easier to distinguish multiple jobs that run PKI Services after you add other CA domains.

Example:

S PKISERVD, JOBNAME=CUSTOMER, DIR='/etc/pkiserv/

b. Restart the HTTP servers to enable your environment variable changes.

F IMWEBSRV, APPL=-restart

c. Test that your PKI Services application is functioning properly. Go to your web pages by entering the following URL from your browser:

http://webserver-fully-qualified-domain-name/PKIServ/ssl-cgi/camain.rexx

The webserver-fully-qualified-domain-name is the common name (CN) portion of the web server’s distinguished name; see Table 11 on page 41.

You should be able to go through your web pages to request, retrieve, and revoke a certificate of type "PKI browser certificate for authenticating to z/OS". Ensure you can do this before adding an additional CA domain.

When you are done: You have successfully reconfigured your initial CA domain to allow it to coexist with other CA domains. You can now perform each of the remaining subtasks once for each new CA domain.

Continue to the next subtask. Guideline: Complete Subtasks 3 - 8 for your first new CA domain and ensure that it operates properly before adding another CA domain.

Subtask 3: Steps for running the IKYSETUP exec

Before you begin
This procedure requires you to be familiar with the information in Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39. There are more details about the following steps there.
Advanced customization

Procedure
Perform the following steps to customize a unique execution of the IKYSETUP REXX exec for this new CA
domain.
1. Locate the IKYSETUP exec that you originally customized for your initial CA domain and copy it to a
data set member that you can edit.
_______________________________________________________________
2. Edit the new copy of IKYSETUP and set the ca_domain variable to the name of this new CA domain.
Type the domain name preserving the case of each character as you want it to appear in web page
URLs.
_______________________________________________________________
3. If you intend to have a dedicated set of administrators for each CA domain, customize the following
variables with your values for this CA domain.
Variable name

Use your value from …

daemon_uid

Table 11 on page 41

pki_gid

Table 11 on page 41

pkigroup_mem

Table 11 on page 41

surrog_uid

Table 11 on page 41

daemon

Table 19 on page 55

surrog

Table 19 on page 55

pkigroup

Table 53 on page 307 (Use the truncated name of the
administrative domain.)

_______________________________________________________________
4. (Optional) If you are creating multiple CAs as part of a certificate hierarchy where a previous CA
domain is to be superior (as issuer or signer) of this CA domain, set signing_ca_label to match the
label of the certificate in RACF that issues the certificate for this CA domain.
Otherwise, skip to Step “5” on page 310 and leave signing_ca_label="" (the default).
_______________________________________________________________
5. Update any other values, such as ca_dn and ra_dn, that you choose to differ from your initial settings
or the defaults.
You need not change any values in this step unless you choose to set these values to something
particular for your installation. (This is because when you specify a ca_domain value, the IKYSETUP
exec automatically qualifies any value that PKI Services requires to be unique by adding the CA
domain name.)
_______________________________________________________________
6. Execute IKYSETUP by entering the following TSO command:
EX 'data-set-name(new-member-name)' 'RUN(NO)'

_______________________________________________________________
7. Review the log data set to ensure that the commands created by IKYSETUP match your expectations.
(For more information about these commands, see “Actions IKYSETUP performs by issuing RACF
commands” on page 619.) Edit again as needed and rerun.
_______________________________________________________________

310 z/OS: Cryptographic Services PKI Services Guide and Reference


8. When you are satisfied with the commands and information in the log data set, rerun the IKYSETUP exec by entering the following TSO command:

```plaintext
EX 'data-set-name(new-member-name)' 'RUN(YES)'
```

9. Check your IKYSETUP log and record the name of the SAF key ring (your ca_ring value).

Name of the SAF key ring:

When you are done: You have customized and run the IKYSETUP exec for this CA domain. Record your progress in Table 52 on page 305.

Continue to the next subtask. Guideline: Complete all subtasks for this new CA domain and ensure that it operates properly before adding another CA domain.

**Subtask 4: Steps for configuring the UNIX environment**

**Before you begin**
This procedure requires you to be familiar with the information in Chapter 5, “Configuring the UNIX runtime environment,” on page 67. There are more details about the following steps there.

**Procedure**
Perform the following steps to configure the UNIX environment for this new CA domain.

1. Set up a var directory for this CA domain. Perform the steps in “Steps for setting up the var directory” on page 95.

2. Locate the pkiserv.conf, pkiserv.envars, and pkiserv.tmpl files you originally used to create your initial CA domain. Copy them into the appropriate runtime directory for your new CA domain. (Check Table 53 on page 307.) For a new CA domain called Employees, run the following commands from the UNIX command line. (You might have to make the directory first.)

**Examples:**

```plaintext
mkdir /etc/pkiserv/employees
chown pkisrvd /etc/pkiserv/employees
cp -p /etc/pkiserv/* /etc/pkiserv/employees
```

3. Edit the new pkiserv.conf file by entering the following command:

**Example:**

```plaintext
oedit /etc/pkiserv/employees/pkiserv.conf
```

4. Change the following sections of pkiserv.conf as described for this CA domain. (Find detailed information for each variable in Table 21 on page 74.)

**ObjectStore**
If you are implementing the object store and ICL using VSAM, qualify each VSAM data set name with the CA domain name. **Example: ObjectDSN='pkisrvd.employee.vsam.ost'**

If you are implementing the object store and ICL using Db2, set the Db2 package name to the CA domain name. **Example: DBPackage=employee**

(See “Subtask 7: Creating the object store and ICL” on page 316.)
CertPolicy
If CRLDistDirPath is not null, modify it to reference the correct subdirectory. (You might have to create this directory.) **Example:** CRLDistDirPath=/var/pkiserv/employees. See “Determining CRLDistDirPath” on page 292 for more information.

General
Update each path name to the correct subdirectory. **Example:** ReadyMessageForm=/etc/pkiserv/employees/readymsg.form

SAF
Update the key ring name to match the ca_ring value you recorded. **Example:** PKISRVD/Caring.Employees

LDAP
Do not update the LDAP section unless you need to change the LDAP directory. If you need to change it, see “Steps for tailoring the LDAP section of the configuration file” on page 108.

Make sure that the LDAP directory is configured with a suffix for this CA domain. (See the explanation for the Suffix variable in Table 22 on page 97.)

5. (Optional) Change other values in any section of pkiserv.conf as you want for this CA domain.

6. Edit the new pkiserv.envars file by entering the following command:

**Example:**
```
oedit /etc/pkiserv/employees/pkiserv.envars
```

7. Define the _PKISERV_CA_DOMAIN environment variable for this CA domain name. (For details, see “The pkiserv.envars environment variables file” on page 617.)

**Example:**
```
_PKISERV_CA_DOMAIN=EMPLOYEE
```

When you are done: You have updated the pkiserv.conf and pkiserv.envars files for this CA domain. Record your progress in Table 52 on page 305.

Continue to the next subtask. **Guideline:** Complete all subtasks for this new CA domain and ensure that it operates properly before adding another CA domain.

Subtask 5: Steps for updating the PKI Services template file or JSP files
Update the PKI Services template file if you implement the web application using REXX CGI execs. Update the JSP files if you implement the web application using JSPs.

Before you begin
This procedure requires you to be familiar with the information in Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 if you use the HTTP Server; or information in Chapter 13, “Implementing the web application using JavaServer pages,” on page 237 if you use the Traditional WebSphere Application Server or Liberty Server.

Procedure to customize the PKI Services template file
Perform the following steps to customize the PKI Services template file (pkiserv.tmpl) for this new CA domain.
1. Edit the new `pkiserv.tmpl` file (you copied it in Step “2” on page 311 of “Subtask 4: Steps for configuring the UNIX environment” on page 311) by entering the following command from the UNIX command line:

   **Example:**
   
   ```
   oedit /etc/pkiserv/employees/pkiserv.tmpl
   ```

2. Locate all occurrences of the CA domain named Customers (in mixed case, uppercase, or lowercase) and change them to the name of this new CA domain, being careful to preserve the case.

   **Example:** If the new CA domain is Employees (in mixed case), change the default values to the name of your new CA domain.

<table>
<thead>
<tr>
<th>Default values for the Customers CA domain</th>
<th>New values for the Employees CA domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION=&quot;/Customers/...&quot; (in mixed case)</td>
<td>ACTION=&quot;/Employees/...&quot; (also in mixed case)</td>
</tr>
<tr>
<td>&lt;APPLICATION NAME=CUSTOMERS&gt; (in uppercase)</td>
<td>&lt;APPLICATION NAME=EMPLOYEES&gt; (also in uppercase)</td>
</tr>
</tbody>
</table>

3. If you intend to have the same set of administrators for all your CA domains, **skip** this step and proceed to Step “4” on page 313.

   If you intend to have a dedicated set of administrators for each CA domain, change the name of the PKISERV application section to the corresponding name of the administrative domain in Table 53 on page 307. This value must be specified in uppercase characters only.

   **Example:** If the new administrative domain is named AdmEmployees, change the default value (PKISERV) to the name of your new administrative CA domain.

<table>
<thead>
<tr>
<th>Default value for the PKISERV administrative CA domain</th>
<th>New value for the new AdmEmployees administrative CA domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;APPLICATION NAME=PKISERV&gt; (in uppercase)</td>
<td>&lt;APPLICATION NAME=ADMEmployees&gt; (also in uppercase)</td>
</tr>
</tbody>
</table>

4. If you intend to have the same set of administrators for all your CA domains, edit the main templates file (`/etc/pkiserv/pkiserv.tmpl`) as follows:

   Do not update the PKISERV application section in this domain-specific `pkiserv.tmpl` file; it is not used. The PKISERV application section in the templates file for your initial CA domain is used instead.

   a. Replicate the following lines in the **APPLICATION** section of the PKISERV application:

   ```
   <h3>Go the Customers' home page </h3>
   <FORM name=admform METHOD=GET ACTION="/Customers/ssl-cgi/camain.rexx">
   <p>
   <INPUT TYPE="submit" VALUE="Customers' Home Page">
   </FORM>
   ```
b. Change all occurrences of the string Customers in the replicated lines to the name of this CA domain, being careful to preserve case.

   **Example:** Change ACTION="/Customers/ssl-cgi/camain.rexx"> to ACTION="/Employees/ssl-cgi/camain.rexx">.

c. Uncomment the %SelectCADomain% directive in the ADMINSCOPE subsection of the APPLICATION section for the PKISERV application by removing the leading # character. (The %SelectCADomain% directive enables multiple CA administration.)

d. Update the SelectCADomain insert to include an OPTION entry for this CA domain. If this CA domain is used more often than any other, mark the entry SELECTED and remove SELECTED from any other entry.

   **Example:**

   ```xml
   <INSERT NAME=SelectCADomain>
   <p> <LABEL for="selectcadomfield">Select the CA domain to work with </LABEL>
   <SELECT NAME="domain" id="selectcadomfield">
   # rename and replicate the following line for every CA domain and
   # determine which one should be SELECTED by default, if any
   <OPTION VALUE="Employees" SELECTED>Employees
   <OPTION VALUE="Customers">Customers
   </SELECT>
   </INSERT>
   ```

---

**Procedure to customize the JavaServer page files**

You must have a new PKI Services EAR file containing the customized JSP files for the new CA domain. You can follow the steps for Traditional WebSphere Application Server or for Liberty in Chapter 13, “Implementing the web application using JavaServer pages,” on page 237.

When you are done:

You have customized the PKI Services template file (pkiserv.tmpl) or JavaServer page files for this CA domain. Record your progress in Table 52 on page 305.

Continue to the next subtask. **Guideline:** Complete all subtasks for this new CA domain and ensure that it operates properly before adding another CA domain.

**Subtask 6: Steps for updating the web server configuration**

If you are implementing the web application using REXX CGI execs, perform the steps in “Updating the web server configuration if you use REXX CGI execs” on page 314.

If you are implementing the web application using JavaServer pages (JSPs), perform the steps in “Updating the web server configuration if you use JavaServer pages (JSPs)” on page 316.

**Updating the web server configuration if you use REXX CGI execs**

**Before you begin**

This procedure requires you to be familiar with the information in the following topics, where you find additional details:

- “Steps for adding application domains to the web server configuration files” on page 300
- Chapter 7, “Updating IBM HTTP Server - Powered by Apache configuration and starting the server,” on page 101.

**Procedure**

Perform the following steps to customize the IBM HTTP Server configuration files for this new CA domain.

1. Add this new CA domain (check Table 53 on page 307 for domain name and directory) following the instructions in “Steps for adding application domains to the web server configuration files” on page
300. If you have a CRLDistDirPath configured in your pkiserv.conf file for HTTP protocol URI format CRL distribution points, uncomment the AliasMatch HTTP server directive statement in the vhost80.conf (host file for non-SSL requests) configuration file to map the virtual path name in the URI to the CRLDistDirPath value.

```bash
#AliasMatch /Employees/cacerts/(.*) /var/pkiserv/employees/$1
```

2. (Optional) If you intend to have a dedicated set of administrators for each CA domain, repeat Step “1” on page 314 for the administrative domain. (Check Table 53 on page 307 for domain name and directory.) Otherwise, skip to Step “3” on page 315.

3. Update the environment variables for the HTTP Server. The following changes must be made to the vhost80.conf (host file for non-SSL requests), vhost443.conf (host file for SSL requests with server authentication), and vhost1443.conf (host file for SSL requests with client authentication) configuration files. The setting is shown by using the SetEnv HTTP directive in the vhost80.conf file. Edit the vhost80.conf file by entering the following command from the UNIX command line:

```bash
 oedit /etc/websrv1/conf/vhost80.conf
```

Uncomment the SetEnv HTTP directive statement to add the environment variable identifying the runtime directory of this CA domain. (Check Table 53 on page 307.)

```bash
#SetEnv _PKISERV_CONFIG_PATH_EMPLOYEES "/etc/pkiserv/employees"
```

4. (Optional) If you intend to have a dedicated set of administrators for each CA domain, add the environment variable identifying the pkiserv.tmpl directory of this administrative CA domain. Uncomment SetEnv HTTP directive statement.

```bash
#SetEnv _PKISERV_CONFIG_PATH_ADMEMPLOYEES "/etc/pkiserv/employees"
```

5. Update the HTTP server virtual host configuration files to support the new CA Domain. Uncomment the following statements in each of the virtual host configuration files.

vhost80.conf

```bash
• #RewriteRule ^/(AdmEmployees|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
• #RewriteRule ^/(AdmEmployees|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]
• #ScriptAliasMatch /(AdmEmployees|Employees)/public-cgi/(.*) <application-root>/PKIServ/public-cgi/$2
• #AliasMatch /Employees/cacerts/(.*) /var/pkiserv/$1
```

vhost443.conf

```bash
• #RewriteRule ^/(AdmEmployees|Employees)/public-cgi/(.*) http://<server-domain-name>/$1/public-cgi/$2 [R,NE,L]
• #RewriteRule ^/(AdmEmployees|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
• #RewriteRule ^/(AdmEmployees|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]
• #ScriptAliasMatch ^/(AdmEmployees|Employees)/(public-cgi|ssl-cgi-bin)/(.*)
"<application-root>/PKIServ/$2/$3"
• #<LocationMatch "^/(AdmEmployees|Employees)/ssl-cgi-bin/(auth|surrogateauth)?/cagetcert.rexx">
  # Charsetoptions TranslateAllMimeTypes
  #</LocationMatch>
```

vhost1443.conf

```bash
• #RewriteRule ^/(AdmEmployees|Employees)/public-cgi/(.*) http://<server-domain-name>/$1/public-cgi/$2 [R,NE,L]
• #RewriteRule ^/(AdmEmployees|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
• #RewriteRule ^/(AdmEmployees|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]
• #ScriptAliasMatch ^/(AdmEmployees|Employees)/(clientauth-cgi|clientauth-cgi-bin)/(.*)
"<application-root>/PKIServ/clientauth-cgi-bin/$3"
• #<LocationMatch "^/(AdmEmployees|Employees)/clientauth-cgi-bin/auth/pkicmp">
  #CharsetOptions NoTranslateRequestBodies
  #</LocationMatch>
```

When you are done: You have customized the IBM HTTP Server configuration files for this CA domain. Record your progress in Table 52 on page 305.

Continue to the next subtask. Complete all subtasks for this new CA domain and ensure that it operates properly before adding another CA domain.
Updating the web server configuration if you use JavaServer pages (JSPs)

To add a new CA domain when you implement the web application using JavaServer pages (JSPs), you need to edit the web.xml file to define additional environment variables and URL mappings to the WebSphere application, PKIServ_EAR. The shipped web.xml file contains the definitions to use either an unnamed domain or a domain named "Master". Use the definition of the CA domain Master as a model for defining additional CA domains. This section in the web.xml file is delimited by the two comments:

```xml
<!-- Start: For new domain: Master -->


<!-- End: For named domain Master with application Customers: Master/Customer -->
```

If you use the Traditional WebSphere Application Server, you must deploy the new EAR file that you created in “Subtask 5: Steps for updating the PKI Services template file or JSP files” on page 312 using the WebSphere administrative console. If you use the Liberty Server, you must create a new enterpriseApplication pointing to the new EAR file in the same server.xml file, or configure it in a separate server.xml file if you want to run the new CA domain in a separate server.

**Subtask 7: Creating the object store and ICL**

**Before you begin**

This procedure requires you to be familiar with the information in Chapter 9, “Creating the object store and ICL,” on page 115. There are more details about the following steps there.

You can implement the object store and ICL using either VSAM data sets or Db2 tables.

**Procedure**

If you are implementing the object store and ICL using VSAM data sets, perform the following steps to allocate the needed VSAM files for this new CA domain.

1. Locate the IKYCVSV1 JCL job that you originally customized for your initial CA domain and copy it to a data set that you can edit.

2. Change all occurrences of PKISRVD.VSAM to include the corresponding VSAM data set qualifier from Table 54 on page 307. For example, if this new CA domain is Employees, then the VSAM data sets might be qualified as follows:

   **Example:**

   ```xml
   PKISRVD.EMPLOYEE.VSAM.data-set-suffix
   ```

3. Submit the JCL job when your changes are complete.

   **When you are done:** You have allocated the needed VSAM files for this CA domain. Record your progress in Table 52 on page 305.

If you are implementing the object store and ICL using Db2 tables, perform the following steps to create the needed Db2 tables, package, and plan.

1. Locate the IKYCDBV1 sample that you originally customized for your initial CA domain and copy it to a data set that you can edit.

2. Change all occurrences of MASTERCA to the package name from Table 54 on page 307. For example, if this new CA domain is Employees, and you are using the domain name for the package name, the table created for the object store would be named EMPLOYEE.OST.
3. When your changes are complete, run the modified sample using SPUFI.

4. Locate the IKYSBIND sample job that you originally customized for your initial CA domain and copy it to a data set that you can edit.

5. Change all occurrences of MASTERCA to the package name from Table 54 on page 307.

6. Submit the JCL job when your changes are complete.

When you are done: You have created the needed Db2 tables, package, and plan for this CA domain. Record your progress in Table 52 on page 305.

Continue to the next subtask. Guideline: Complete all subtasks for this new CA domain and ensure that it operates properly before adding another CA domain.

Subtask 8: Steps for starting PKI Services

Before you begin
This procedure requires you to be familiar with the information in Chapter 10, “Starting and stopping PKI Services,” on page 129. There are more details about the following steps there.

Procedure
Perform the following steps to start a separate instance of PKI Services for this new CA domain.

1. Start the PKI Services daemon for this CA domain by entering the MVS console START command qualified with the appropriate runtime directory. (Check Table 53 on page 307.)

Example:

```
S PKISERVD, JOBNAME=EMPLOYEE, DIR='/etc/pkiserv/employees'
```

Guideline: To simplify your environment, give this instance of PKI Services a JOBNAME that matches or relates to this CA domain name. When you add additional CA domains, it is easier to distinguish multiple jobs running PKI Services.

2. Restart the HTTP servers to enable the environment variables you changed for this CA domain. Optionally, you can wait to do this until after you have started all the new domain-specific daemons.

```
S WEBSRV1,ACTION='stop'
Then
S WEBSRV1
```

3. Test that your new domain-specific PKI Services daemon is functioning properly. Go to your web pages by entering the following URL from your browser:

```
http://<webserver-fully-qualified-domain-name>/<new-admin-domain-name>/ssl-cgi/camain.rexx
```

The `webserver-fully-qualified-domain-name` is the common name (CN) portion of the web server's distinguished name; see Table 11 on page 41.
You should be able to go through your web pages to request, retrieve, and revoke an applicable certificate for this CA domain, possibly "PKI browser certificate for authenticating to z/OS". Ensure you can do this before adding new CA domains.

---

**When you are done:** You have customized the IBM HTTP Server configuration files for this CA domain. Record your progress in Table 52 on page 305.

Once your new CA domain works properly, proceed to add another CA domain, if needed. **Guideline:** Perform Subtasks 3 - 8 for each new CA domain and ensure that the new CA domain operates properly before proceeding to add another.

### Customizing email notifications sent to users

You can optionally notify a user by sending an email message when:

- A certificate request is rejected
- A certificate is ready for retrieval
- A certificate is about to expire (unless it is already renewed or revoked).
- A certificate is automatically renewed.
- Requests are pending for the user's approval, when the user is the PKI administrator.

In addition, when a user requests that PKI Services recover one or more certificates for which PKI Services created the keys, PKI Services sends that user an email message listing the possible certificates to be recovered.

On the days that are specified by the MaintRunDays parameter in the pkiserv.conf file, the PKI Services daily maintenance task checks the issued certificate list (ICL) for expiring certificates. (The ExpireWarningTime parameter (see the CertPolicy section in Table 21 on page 74) determines at what point before the certificate expires that it is considered to be an expiring certificate.) When PKI Services finds an expiring certificate, it takes one of the following actions:

- If automatic renewal of certificates is in effect, PKI Services renews the certificate and sends it to the client.
- If automatic renewal of certificates is not in effect, PKI Services sends an expiration warning message to the client (unless the certificate is already revoked). Regardless of whether sending the expiration warning message is successful, PKI Services makes only one attempt to send a notification message. If the email address is incorrect or the user renews the certificate and retrieves it before the expiration message is sent, no expiration messages are sent.

You can set the AdminNotifyNewn keyword in the CertPolicy section of the configuration file to specify one or more email addresses of PKI administrators to be notified immediately whenever there is a request pending for approval. The notification is sent only once, when the request is created. You can also set the AdminNotifyRemindern keyword to specify one or more email addresses of PKI administrators to be reminded once a day of any requests pending for approval. An administrator receives a daily reminder of a pending request until the request is processed. To receive both the immediate notifications and the daily reminders, an administrator's email must be specified on both the AdminNotifyNew and AdminNotifyRemind keywords.

If you are not sending email notifications, see Step “6.b” on page 221 for directions.

If you are sending email notifications, you need to do the following things:

- Have copies of the forms in the runtime directory. (For information about copying the message forms to the runtime directory, see Step “3” on page 70).
- Customize the forms. (For details, see “Steps for customizing email notification forms” on page 322.)
- For notifications that a request is rejected, that a certificate is ready for retrieval, that a certificate is about to expire, and that a certificate is renewed automatically, include the NotifyEmail field on certificate requests. This field is already included in the pkiserv.tmpl certificate template file. If you
are not sending email notifications, you need to delete the NotifyEmail lines in the pkiserv.tmpl file; for details, see Step “6.b” on page 221.

For more information about the NotifyEmail field, see Table 32 on page 139. For information about fields on request forms, see Table 66 on page 379.

The following examples (of notices you can send to users) are in the sample directory:

---

**Figure 35. Sample of readymsg.form**

From:dime-o-cert PKI  
Subject:Certificate Ready For Pick Up  
Attention - Please do not reply to this message as it was automatically sent by a service machine.  
Dear %requestor%,  
Thank you for choosing dime-o-cert PKI. The certificate you requested for subject %dn% is now ready for pickup. Please visit:  
(verify the following link if using the REXX CGI Web Application)  
https://www.dimeocert.com/Customers/ssl-cgi-bin/camain.rexx  
(verify the following link if using the JSP WebSphere Application)  
https://www.dimeocert.com:9943/PKIServ_Web/Customers/certretrieve.jsp?%quicklink%  
to retrieve your certificate.  
If that link does not work, try to go to  
(verify the following link if using the REXX CGI Web Application)  
http://www.dimeocert.com/Customers/ssl-cgi/camain.rexx  
(verify the following link if using the JSP WebSphere Application)  
http://www.dimeocert.com:9080/PKIServ_Web/Customers/pkimain.jsp  
And enter the transaction ID listed below:  
%transactionid%.  
You will need to input your passphrase that you entered when you submitted the request.

---

**Figure 36. Sample of rejectmsg.form**

From:dime-o-cert PKI  
Subject:Certificate Request Rejected  
Attention - Please do not reply to this message as it was automatically sent by a service machine.  
Dear %requestor%,  
Thank you for choosing dime-o-cert PKI. We are sorry to inform you that your certificate request for subject %dn% has been rejected with the following explanation [if any]:  
%rejectreason%.  
Please contact the PKI Services administrator at 1-800-xxx-xxxx. You will need the transaction ID listed below:  
%transactionid%

---

**Figure 37. Sample of expiringmsg.form**

From:dime-o-cert PKI  
Subject:Certificate Expiration  
Attention - Please do not reply to this message as it was automatically sent by a service machine.  
Dear %requestor%,  
Thank you for choosing dime-o-cert PKI. The certificate you requested for subject %dn% expires at %notafter% local time. If you wish to renew your certificate, please visit:  
(verify the following link if using the REXX CGI Web Application)  
https://www.dimeocert.com/Customers/ssl-cgi-bin/camain.rexx  
(verify the following link if using the JSP WebSphere Application)  
https://www.dimeocert.com:9443/PKIServ_Web/Customers/pkimain.jsp  
If this is a browser certificate, you must use the same workstation and browser that you used when you requested the original certificate. If this is a server certificate, you will have to submit a #10 certificate request.
From:dime-o-cert PKI
Subject:Certificate Renewed
Attention - Please do not reply to this message as it was automatically sent by a service machine.
Dear %requestor%,
Your certificate with subject name %dn% has been automatically renewed.
Here is your new certificate in Base64 encoded format: %printcert%
If your original certificate is installed in Internet Explorer, click on this link to install the above new certificate:
(edit the following link if using the REXX CGI Web Application)
https://www.dimeocert.com/Customers/ssl-cgi-bin/installcert.rexx
(edit the following link if using the JSP WebSphere Application)
https://www.dimeocert.com:9443/PKIServ_Web/Customer/installcert.jsp

Figure 38. Sample of renewcertmsg.form

Note: Port number 9443 should match your secure port address (_PKISERV_SECURED_PORT) in the web.xml file.

From:dime-o-cert PKI
Subject:Request(s) pending for approval
Dear %cadomain% administrator,
The following request(s) is/are waiting for your approval: %pendreqlist%

Figure 39. Sample of pendingmsg.form

From:dime-o-cert PKI
Subject:Certificate Requests are modified, reapproval is needed
Dear %cadomain% administrator,
The following requests, waiting for your approval, are modified by the specified administrators. Previous approvals are invalidated.
Request Requestor Approvals Modified by
Required %modreqlist%

Figure 40. Sample of pendingmsg2.form

From:dime-o-cert PKI
Subject:Certificate Recovery
Attention - Please do not reply to this message as it was automatically sent by a service machine.
Dear %requestor%,
Here is a list of certificate(s) that satisfy your searching criteria for recovery: %recoverylist% Please choose the certificate you want and visit the corresponding link to retrieve it (you can identify the certificate by the serial number from the part of the link between ‘?’ and ‘&’). (edit the following link if using the REXX CGI Web Application)
https://www.dimeocert.com/Customers/ssl-cgi-bin/caretrieve.rexx?%recoverylink%
(edit the following link if using the JSP WebSphere Application)
https://www.dimeocert.com:9080/PKIServ_Web/Customer/certrecover.jsp?%recoverylink%
You will need to input your pass phrase that you entered when you submitted the request.

Figure 41. Sample of recoverymsg.form

Notes:
1. PKI Services automatically provides the To: value in the forms. You can include From: or Subject: or both at the beginning of the file.

2. You must have a blank line between the Subject and the body of the form.

The following table summarizes the variables that you can use in the forms when you customize them. At run time, PKI Services replaces these with their actual values.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%%cadomain%%</td>
<td>The CA domain that this message comes from. It is truncated if longer than 8 characters. (This variable is valid only in the pending requests form, pendingmsg.form. It is ignored in the other forms.)</td>
</tr>
<tr>
<td>%%dn%%</td>
<td>The subject's distinguished name. (This variable is valid in all the forms except the pending requests form, pendingmsg.form.)</td>
</tr>
<tr>
<td>%%printcert%%</td>
<td>A renewed certificate in Base64-encoded format. (This variable is valid only in the renewed certificate form, renewcertmsg.form. It is ignored in the other forms.)</td>
</tr>
<tr>
<td>%%modreqlist%%</td>
<td>A list of pending approval requests (or a single request) that are modified by an administrator. (This variable is valid only in the pending modified message form, pendingmsg2.form. It is ignored in the other forms.)</td>
</tr>
<tr>
<td>%%notafter%%</td>
<td>The certificate expiration date and time in local time in the format YYYY/MM/DD HH:MM:SS. (This variable is valid only in the expiring.form. It is ignored in the other forms.)</td>
</tr>
<tr>
<td>%%pendreqlist%%</td>
<td>A list of pending approval requests (or a single request). Each request contains the transaction ID followed by the corresponding requestor. Each request should be on a line of its own. (This variable is valid only in the pending message form, pendingmsg.form. It is ignored in the other forms.)</td>
</tr>
<tr>
<td>%%quicklink%%</td>
<td>A link to a certificate that is ready for pickup. It contains the transaction ID, the &quot;&amp;&quot; character, and the string of the template name or alias, with escaped characters. The following string (broken into two lines so that it fits in the column) is an example: TransactionId=1j86b0wokkoQ2SHV%2B%2B%2B%2B%2B%2B%2B%2B%2B&amp;Template=PKI+Browser+Certificate The template name or alias is located from the appldata field of the certificate from the issued certificate list (ICL). The appldata field corresponds to the value of the NICKNAME directive in the template. If PKI Services cannot determine the template name or alias, the %%%quicklink%% variable is an empty string, and a warning level message IKYC056I is logged.</td>
</tr>
<tr>
<td>%%recoverylink%%</td>
<td>Part of the link to a certificate that can be recovered. It contains the serial number, the &quot;&amp;&quot; character, and the KeyId of the recovery certificate. This part of the link is at the end of the line, which is appended to the URL link. The entire line is repeated for each entry in the list of certificates that can be recovered.</td>
</tr>
</tbody>
</table>
Table 55. Descriptions of variables for forms (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%%recoverylist%%</td>
<td>The list of certificates that meet the criteria for recovery; that is, the email address for the certificate matches the email address of the user requesting the recovery of the certificate, the password used for the original certificate request matches the password provided by the user, and PKI Services created the keys for the certificate. The URL for each recovered certificate is on a line by itself.</td>
</tr>
<tr>
<td>%%rejectreason%%</td>
<td>The reason for the rejection of a certificate request. (This variable is valid for the reject form only.)</td>
</tr>
<tr>
<td>%%requestor%%</td>
<td>The requestor of the certificate.</td>
</tr>
<tr>
<td>%%transactionid%%</td>
<td>The transaction ID (CertId) returned. (This variable is valid for the ready and reject forms only. It is ignored in the other forms.)</td>
</tr>
</tbody>
</table>

Table 56 on page 322 summarizes which substitution variables are supported by which forms:

<table>
<thead>
<tr>
<th>Substitution variable</th>
<th>readymsg</th>
<th>rejectmsg</th>
<th>expiringmsg</th>
<th>pendingmsg</th>
<th>pendingmsg2</th>
<th>renewcertmsg</th>
<th>recoverymsg</th>
</tr>
</thead>
<tbody>
<tr>
<td>%%cadomain%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%dn%%</td>
<td>X</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%printcert%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%modreqlist%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%notafter%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%pendreqlist%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%quicklink%%</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%recoverylink%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
</tr>
<tr>
<td>%%recoverylist%%</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
</tr>
<tr>
<td>%%rejectreason%%</td>
<td>(ignored)</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
<tr>
<td>%%requestor%%</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>%%transactionid%%</td>
<td>X</td>
<td>X</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
<td>(ignored)</td>
</tr>
</tbody>
</table>

Steps for customizing email notification forms

Perform the following steps to customize the forms:

1. Make sure the forms you want to use (readymsg.form, rejectmsg.form, expiringmsg.form, renewcertmsg.form, pendingmsg.form, and recoverymsg.form) are present in the runtime directory. (By default, the runtime directory is /etc/pkiserv/. For information about copying files, see Step “3” on page 70.)

2. Update the form. At minimum:
   a. Specify your company (instead of dime-o-cert) in the From: line and in the first line of the main paragraph
   b. If appropriate, update the subject.
c. If you are updating a ready, expiring, or recovery form, change the URL in the main paragraph to customize it for your company. The sample forms have URLs for both REXX CGI exec and JavaServer page (JSP) use. Modify the URL that applies for the method you are using to implement the web application, and remove the URL that does not apply. Remove the comment lines preceding each URL.

For example, if you are modifying the ready form, and you are implementing the web application using JSPs, change:

```
Please visit:
(edit the following link if using the REXX CGI Web Application)
https://www.dimeocert.com/Customers/ssl-cgi-bin/caretrieve.rexx?%%quicklink%%
(edit the following link if using the JSP WebSphere Application)
https://www.dimeocert.com:9080/PKIServ_Web/Customers/certretrieve.jsp?
%quicklink%%
to retrieve your certificate.
```

to

```
Please visit:
https://www.dimeocert.com:9080/PKIServ_Web/Customers/certretrieve.jsp?
%quicklink%%
to retrieve your certificate.
```

and modify the URL for your company.

d. If you are updating a reject form, change the telephone number in the main paragraph to customize it for your company.

Make any other needed changes. (You can use variables in the body of the form, but you cannot include %%transactionid%% in the expiring form or %%notafter%% in the ready or reject form.)

3. Save the file.

---

### Setting up automatic renewal of certificates

You can optionally set up PKI Services to automatically renew certificates when they approach their expiration date, and email the new certificates to their owners. This option is controlled on a template basis.

#### Steps for setting up automatic certificate renewal

Perform the following steps to set up automatic certificate renewal.

**Before you begin**

You need to decide for which certificate templates you want to set up automatic certificate renewal. For a description of the templates provided by PKI Services, see “Supported certificate types” on page 7.

**Procedure**

1. In the CertPolicy section of the pkserv.config configuration file, set the field ExpireWarningTime to specify how soon (in days or weeks) before a certificate expires to renew it and send the renewed certificate to its owner. For example, to automatically renew certificates two weeks before they expire:

   ```
   ExpireWarningTime=2w
   ```

2. Set up the renewed certificate email notification form.
a) Copy the sample renewed certificate notification form, renewcertmsg.form, from the samples directory to the runtime directory. For more information, see “Steps for copying files” on page 69.

b) Customize the renewed certificate notification form with your company’s information. For more information, see “Customizing email notifications sent to users” on page 318.

c) In the General section of the pkiserv.config configuration file, set the field RenewCertForm to indicate the file that contains the renewed certificate notification form. For example:

```
RenewCertForm=/etc/pkiserv/renewcertmsg.form
```

3. If you are implementing the web application using REX CGI execs, in each template for which you want certificates to be automatically renewed, insert the AUTORENEW tag immediately following the NICKNAME tag, if it is not already there, and set it to Y. For example:

```
<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSSL>
<AUTORENEW=Y>
```

If you are implementing the web application using JavaServer pages (JSPs), for each certificate request template for which you want certificates to be automatically renewed, include the tag `<tns:AutoRenew>Y</tns:AutoRenew>`. For example:

```
<tns:certreq_template>
<tns:certname>1-Year SAF Browser Certificate</tns:certname>
<tns:certtype>SAF Browser Certificate</tns:certtype>
<tns:AutoRenew>Y</tns:AutoRenew>
```

4. For each certificate type that you want to be automatically renewed, except the PKI generated key certificate, make NotifyEmail a required field.

To do this if you are implementing the web application using REX CGI execs, in each template for which you want certificates to be automatically renewed (except the PKI generated key certificate), remove the string (optional) following the NotifyEmail tag, if it is specified. For example, change

```
%%NotifyEmail (optional)%%
```

to

```
%%NotifyEmail%%
```

If you are implementing the web application using JavaServer pages (JSPs), for each certificate request template for which you want certificates to be automatically renewed (except the PKI generated key certificate), remove the string `optional="true"` following the NotifyEmail tag, if it is specified. For example, change:

```
<tns:NotifyEmail optional="true" />
```

to

```
<tns:NotifyEmail />
```

**Note:** For a PKI generated key certificate, the requestor name is an email address and overrides the NotifyEmail value if specified.

---

**Results**

When you are done, you have set up automatic certificate renewal.
Setting up synchronous certificate requests

You can optionally set up PKI Services to request certificates synchronously. When the requestor submits a request, and gets back a transaction ID, the certificate has been generated. The requester can pick up the certificate immediately. This option is controlled on a template basis.

If you are implementing the web application using REX CGI execs, in each template for which you want certificates to be requested synchronously, insert the SYNCRHRONOUS=Y tag before the CONTENT tag.

For example:

```xml
#<AUTORENEW=Y>
<SYNCHRONOUS=Y>
<CONTENT>
```

If you are implementing the web application using JavaServer pages (JSPs), for each certificate request template for which you want certificates to be requested synchronously, include the following tags `<tns:Synchronous>Y</tns:Synchronous>` after `<tns:AutoApprove>Y</tns:AutoApprove>`.

For example:

```xml
<tns:certname>2-Year PKI Browser Certificate For Authenticating To z/OS</tns:certname>
<tns:certtype>PKI Browser Certificate</tns:certtype>
<tns:request_authtype>zAuthRunAsSurrogate</tns:request_authtype>
<tns:retrieve_authtype>zAuthRunAsSurrogate</tns:retrieve_authtype>
<tns:AutoApprove>Y</tns:AutoApprove>
<tns:Synchronous>Y</tns:Synchronous>
```

Setting up PKI Services to generate keys for certificate requests

There are two ways to generate the key pair (public key and private key) for a certificate request:

- The requestor can generate the key pair and send the public key to PKI Services with the request. In this case, PKI Services has no knowledge of the private key, and cannot recover it if the requestor loses it.
- The requestor can ask PKI Services to generate the key pair. PKI Services uses the PKCS #11 API provided by ICSF to generate the key pair and store it in the token data set (TKDS). The requestor's email address is used as the requestor name. The certificate and private key are packaged in PKCS #12 format and the requestor is sent a link from email to retrieve the package. In this case PKI Services can recover the certificate package if the requestor needs it.

Before PKI Services can generate key pairs for certificates, you must do some setup. For example, you must set the TokenName keyword in the pkiserv.conf configuration file.

**Requirement:** The key generation capability requires hardware that supports the PKCS #11 CKM_RSA_PKCS_KEY_PAIR_GEN mechanism. For information about which hardware supports this mechanism, see [z/OS Cryptographic Services ICSF Writing PKCS #11 Applications](https://www.ibm.com/support/docview/154727).

PKI Services can generate both secure keys and clear keys. The sensitive key material of a secure key is wrapped under a master key. A clear key is not encrypted. You control whether PKI services generates secure keys or clear keys by setting the SecureKey keyword in the pkiserv.conf configuration file. You can restrict the generation of clear keys by defining a profile protecting the resource CLEARKEY. token_name in the CRYPTOZ class.

**Rules:**

- The SecureKey keyword is ignored if the TokenName keyword is not specified.
- If the SecureKey keyword is set to T, PKI Services generates secure keys. (The CKA_IBM_SECURE attribute is set to TRUE.)
- If the SecureKey keyword is set to F or is not specified, PKI Services generates clear keys if profiles in the CRYPTOZ class that protect the CLEARKEY function allow clear key generation. If CLEARKEY profiles
Advanced customization

do not allow clear key generation, PKI services generates a secure key. For example, the following RACF command prevents clear key generation on the token named PKISRVD.PKITOKEN:

```
RDEF CRYPTOZ CLEARKEY.PKISRVD.PKITOKEN UACC(NONE)
```

## Steps for setting up PKI Services to generate keys for certificate requests

Perform the following steps to set up key generation for certificate requests.

### Before you begin

- You need to know whether the ICSF token data set (TKDS) has already been set up.
- You need to know whether you want PKI Services to generate secure or clear keys.
- You need to know whether you want to restrict the use of clear keys.

### Procedure

1. If the ICSF token data set (TKDS) has not already been set up, ask the ICSF programmer to set it up. (For information about the TKDS, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.) The TKDS must be set up before PKI Services starts, so if necessary stop and restart PKI Services after the TKDS is set up. (For information about stopping and restarting PKI Services, see Chapter 10, “Starting and stopping PKI Services,” on page 129.

2. Edit the SAF section of the PKI Services configuration file, pkiserv.conf, and verify that the TokenName parameter is specified. If it is not, choose a name for the token in the TKDS that PKI Services uses for storing the key pairs that it generates, and set TokenName to the name you choose.

   **Rules:** A token name must follow these rules:
   - Up to 32 characters in length
   - Permitted characters are:
     - Alphanumeric
     - National: "@" (X'5B'), "#" (X'7B'), or "$" (X'7C')
     - Period: "." (X'4B')
   - The first character must be alphabetic or national
   - Lowercase letters can be used, but are folded to uppercase
   - The IBM1047 code page is assumed

3. Edit the SAF section of the PKI Services configuration file, pkiserv.conf and set the SecureKey parameter to T if you want PKI Services to generate secure keys, or to F if you want PKI Services to generate clear keys.

4. If you want to restrict the generation of clear keys, have the security administrator create a profile in the CRYPTOZ class to do so. For example, if you set TokenName to PKISRVD.PKITOKEN, to restrict PKI Services from generating clear keys the security administrator issues the command:

```
RDEF CRYPTOZ CLEARKEY.PKISRVD.PKITOKEN UACC(NONE)
```

5. Edit the General section of the PKI Services configuration file, pkiserv.conf, and verify that the ReadyMessageForm parameter is specified. If it is not:

   - Copy the ready message form from the samples directory to the runtime directory. Follow the instructions in “Steps for copying files” on page 69.
• Update the ReadyMessageForm parameter to specify the full path name or data set name of the ready message form.
• Customize the ready message form. Follow the instructions in “Customizing email notifications sent to users” on page 318.

6. Set up the email form that is sent if a user requests that PKI Services recover a certificate for which PKI Services generated the keys. The form contains a list of certificates that can be recovered. Edit the **General** section of the PKI Services configuration file, pkiserv.conf and verify that the RecoverForm parameter is specified. If it is not:
   • Copy the recovery message form from the samples directory to the runtime directory. Follow the instructions in “Steps for copying files” on page 69.
   • Update the RecoverForm parameter to specify the full path name or data set name of the recovery message form.
   • Customize the recovery message form. Follow the instructions in “Customizing email notifications sent to users” on page 318.

7. If you want expired certificates whose keys were generated by PKI Services to be deleted from the ICL automatically after a certain time period, edit the **ObjectStore** section of the PKI Services configuration file, pkiserv.conf and update the RemoveExpiredCertsAndKeys parameter to specify the time period after which the expired certificates should be deleted.

8. The RACF administrator must give the PKI Services daemon the authorization it needs to use the PKCS #11 APIs. The following RACF commands set up the required authorization in the CRYPTOZ class. (By default the daemon user ID is PKISERVD, but you might be using a different user ID. Check the daemon variable in Table 19 on page 55 if you are not sure what your daemon user ID is.)

```
SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)
RDEFINE CRYPTOZ SO.*.daemon_id.* UACC(NONE)
RDEFINE CRYPTOZ USER.*.daemon_id.* UACC(NONE)
PERMIT SO.*.daemon_id.* CLASS(CRYPTOZ) ID(daemon_id) ACC(UPDATE)
PERMIT USER.*.daemon_id.* CLASS(CRYPTOZ) ID(daemon_id) ACC(CONTROL)
SETROPTS RACLIST(CRYPTOZ) REFRESH
```

**Note:** These commands are included in the IKYSETUP REXX exec. If you have another reason to rerun IKYSETUP, you can update the exec to set up the daemon user ID's authorization in the CRYPTOZ class at the same time. If you do not have another reason to rerun IKYSETUP, the RACF administrator can issue the commands manually.

9. (Optional) Because PKI Services stores certificates for which it generates the keys in the TKDS, it can recover those certificates from the TKDS. To recover a certificate, a user must provide the passphrase that was entered when the certificate was originally requested. If the user has forgotten the passphrase, you can use the PKI Services exit to allow the user to recover the passphrase by responding to security questions. For more information, see “Scenario 4: Allow users to recover a PKI generated key certificate when the passphrase is lost” on page 361. Decide whether you want to implement passphrase recovery, and if so, write exit code to implement the function.

10. (Optional) When PKI Services generates the keys for certificate requests, it returns both the certificate and the private key in PKCS#12 format when retrieved by the requester. By default, the PKCS#12 contains the CA certificate that signed the requested certificate. The contents of the PKCS#12 may be tailored to contain only the issued certificate with private key, the issued certificate with private key, and the CA certificate that signed the issued certificate, or the issued certificate with private key and the complete CA signing chain. Use the PKCS12Content keyword in the pkiserv.conf file to specify the PKCS#12 content. When PKCS12Content is set to either I or E, no further configuration is required. However, when PKCS12Content=C is set, if the PKI CA certificate is not a root CA (self-signed), each of the CA certificates in the signing chain must be connected to the PKI Services key ring with CERTAUTH usage. For example, If the PKI Services CA certificate is signed
by a CERTAUTH certificate with a Label of "Dime-o-Cert Root CA", and the pkiserv.conf file has Keyring=PKISRVD/CAring in the [SAF] section, the following RACF command is issued to connect the root CA certificate to the PKI Services key ring:

```
RACDCERT ID(PKISRVD) CONNECT(CERTAUTH LABEL('Dime-o-Cert Root CA') ring(CAring))
```

**Results**

When you are done, PKI Services can generate key pairs for certificate requests if asked to do so.

---

**Adding custom extensions to certificates**

PKI Services supports the following standard certificate extensions:

- Authority Key Identifier
- Subject Key Identifier
- Key Usage
- Extended Key Usage
- Subject Alternate Name
- BasicConstraints
- CRL Distribution Point
- HostIDMapping
- Authority Information Access
- Certificate Policies

In addition, PKI Services supports custom extensions. You can include any extension in your certificates that is in the form:

```
Extension ::= SEQUENCE { extnID OBJECT IDENTIFIER, critical BOOLEAN DEFAULT FALSE, extnValue OCTET STRING }
```

PKI Services provides a CustomExt INSERT and a CustomExt JSP that you can use to add custom extensions to your certificate templates. The n-year PKI browser certificate template demonstrates the use of custom extensions.

**Restriction:** Do not add a critical extension to a certificate template for which PKI Services generates the keys.

**Steps for adding a custom extension to a certificate template if you are using REXX CGI execs**

**Procedure**

1. Copy the CustomExt INSERT from pkiserv.tmpl.

```
---------------------------------------------------------------
2. Rename the copy of the CustomExt INSERT. The name is the string that is formed by concatenating the following values:
   a) The string "CustomExt".
   b) The OID. You are responsible for ensuring that you use a registered OID, PKI Services does not check this.
   c) The critical flag - C for a critical extension, N for a non-critical extension.
   d) The value type. Supported types are:
```
Steps for adding a custom extension to a certificate template if you are using JSPs

Procedure
1. Copy the CustomExt JSP from the mod.inc directory, and the certificate template file, pkitmpl.xml, by default in the /etc/pkiserv/ directory.

2. Rename the copy of the CustomExt JSP. The name is the string formed by concatenating the following values:
   a) The string "CustomExt".
   b) The OID. You are responsible for ensuring that you use a registered OID, PKI Services does not check this.
   c) The critical flag - C for a critical extension, N for a non-critical extension.
   d) The value type. Supported types are:
      • INT (integer in a printable hexadecimal format)
      • IA5 (IA5 string)
      • PRT (printable string)
      • BMP (BMP string)
      • OCT (Octet string)
      • UTF (UTF 8 string)

3. Customize the certificate template file, pkitmpl.xml to contain any inputs that you want, and customize the JSP file to manipulate and verify the inputs.

4. Use the TemplateTool utility to validate your updated XML template file. When you have completed your updates and successfully validated them, use the TemplateTool utility to create an updated CGI template file, pkixgen.tmp1
5. Update the EAR file with the modified JSP file, and deploy the EAR file to a WebSphere Application Server. For information on how to do this, see “Customizing the PKI Services web application” on page 258.

Results

When you are done, you have added a customized extension to a certificate template using JSPs.

**Forming the CustomExt value for CertPlist for the R_PKIServ callable service**

The INSERT or JSP code that you write for a custom extension must be able to call the R_PKIServ callable service with a properly formed CustomExt value for the CertPlist parameter list. The CustomExt CertPlist entry is a comma-separated 4-part string with a maximum length of 1024 bytes:

1. The first part is the OID of the extension.
2. The second part is the critical flag:
   - C or c indicates critical
   - N or n indicates non-critical
3. The third part is the encode type:
   - INT indicates integer
   - IA5 indicates IA5 string
   - PRT indicates printable string
   - BMP indicates BMP string
   - OCT indicates octet string
   - UTF indicates UTF string
4. The fourth part is the value.

For example, given the following ASN.1 notation for an x.509 extension:

```asn1
Extension ::= SEQUENCE {
  extnID    OBJECT IDENTIFIER,
  critical  BOOLEAN DEFAULT FALSE,
  extnValue OCTET STRING
}
```

and the following definition of an ASN.1 custom extension:

```asn1
SEQUENCE {
  . OBJECT IDENTIFIER '1 2 3 4'
  . OCTET STRING, encapsulates {
    . . INTEGER 240
    . . }
  . }
```

the CustomExt value to produce this would be:

```
1.2.3.4,N,INT,F0
```

**Rules:** The OID value must follow these rules:

- Its length must not exceed 64 characters.
- It must be comprised of decimal digits and the dot (period) character).
- It cannot start or end with a dot (period) character and cannot contain adjacent dots.
- The first integer value must be 0, 1, or 2. If the first integer is 0 or 1, the second integer must not be greater than 39.
• It must contain a minimum of 3 dot-separated segments (for example 1.2.3).
• The value of the first segment must be 0, 1, or 2. If the first integer is 0 or 1, the second integer must
  not be greater than 39.
• The largest integer value for all segments after the second segment is the largest 31-bit integer value: 2 147 483 647.

**Rules:** The critical flag must follow these rules:

• Only mark an extension critical if all applications that use the certificate know and understand the
  extension. Applications that do not know and understand an extension that is marked critical are
  required to deny the use of the certificate.
• Do not mark an extension critical if PKI Services creates the public and private keys for the certificate.

**Rules:** The encoding types and values must follow these rules:

• The INT encoding type indicates that the extension value encapsulated in the extension value's octet
  string is a primitive integer type.
• Because the INTEGER type in the ASN.1 specification is not limited to fit in a 4-byte construct, the value
  specified for INT is a hexadecimal string rather than decimal. If the specified hexadecimal string for an
  INTEGER type contains an odd number of characters, the high-order bit of the first character is
  propagated in the encoded value. For example, if the CustomExt value is 12.3.4,N,INT,800, because there are only 3 characters in 800, and the high order of the first character is on, the encoded
  value is F800 in hexadecimal, or -2048 decimal.
• The PRT encoding type indicates that the extension value encapsulated in the extension value's octet
  string is a primitive printableString type. The characters specified in the CustomExt value must
  conform to the PrintableString character set, which is a subset of the 7-bit ASCII or IA5 character
  set.
• The IA5 encoding type indicates that the extension value encapsulated in the extension value's octet
  string is a primitive IA5String type. The characters specified in the CustomExt value must conform to
  the IA5String character set. Control characters that part of the IA5 character set are not allowed.
• THE UTF encoding type indicates that the extension value encapsulated in the extension value's octet
  string is a primitive UTF8String type. The characters specified in the CustomExt value must conform
  to the Basic Latin and Latin-1 characters except for control characters. To encode a UTF8String
  extension value with characters that fall outside the range supported, you must use the OCT encoding type.
• The BMP encoding type indicates that the extension value encapsulated in the extension value's octet
  string is a primitive BMPString type. The characters specified in the CustomExt value must conform to
  the Basic Latin and Latin-1 characters except for control characters. To encode a BMPString extension
  value with characters that fall outside the range supported, you must use the OCT encoding type.
• The OCT encoding type indicates that the extension value specified in the CustomExt value is the
  extension's octet string value. You must specify an even number of printable hexadecimal characters, and the OctetString value should not include the tag and length bytes for the OctetString.

**Example:** You want to build a custom extension whose extnID is 1.2.3.4, is not marked critical, and has
an extnValue composed of a SEQUENCE containing an INTEGER value of 1024 (decimal) followed by a
UTF-8 string with the value "AB£¬¥YZ". The ASN.1 definition is:

```
SEQUENCE {
  . OBJECT IDENTIFIER '1 2 3 4'
  . OCTET STRING, encapsulates {
    . . SEQUENCE {
      . . . INTEGER 1024
      . . . UTF8String 'AB£¬¥YZ'
      . . . }
    . . }
  . }
}
```

Use the following value for CustomExt:

```
CustomExt=1.2.3.4,N,OCT,3018020204000C0A4142C2A3C2ACC2A5595A
```
For the OCT value:

\[ \text{3010 = SEQUENCE(0x30) of length 0x10} \]
\[ \text{02020400 = INTEGER(0x02) of length 0x02, value 0x0400 = 1024 decimal} \]
\[ \text{0C0A4142C2A3C2ACC2A5595A = UTF8String(0x0C) of length 0x0A,} \]
\[ \text{value = 41(A) 42(B) C2A3(E) C2AC(¬) C2A5(¥) 59(Y) 5A(Z)} \]
Chapter 15. Enabling Simple Certificate Enrollment Protocol (SCEP)

The Simple Certificate Enrollment Protocol (SCEP) allows you to securely issue certificates to large numbers of network devices using an automatic enrollment technique. The network devices, usually IPSEC devices such as Cisco routers, must be SCEP-enabled and preregistered (to your CA domain) before they can successfully request certificates from you. To request a certificate, the preregistered SCEP client sends a message (the certificate request) to your CA using the HTTP protocol. (The message is a PKCS #10 request enveloped in a signed PKCS #7 structure.)

You can configure PKI Services to respond automatically to some (or all) SCEP certificate requests, or to submit some (or all) SCEP certificate requests to the PKI administrator for approval or rejection. When you enable automatic enrollment, certificate requests can be automatically approved and synchronously fulfilled, based on the requestor's knowledge of a predetermined secret, the challenge passphrase.

Overview of SCEP requester enhancement

In releases prior to Version 2 Release 3, Simple Certificate Enrollment Protocol (SCEP), used the alternate index on the requestor field of the SCEP request for searching purposes. The SCEP request contains a transaction ID, which is a hash of its public key. The leftmost 32-bytes of the SCEP ID are used as the requestor field in the certificate request. The client name of the preregistration record is not saved. In Version 2 Release 3, two header fields are added.

• Header field to store the version of the object store and ICL.
• Header field to save the SCEP transaction ID, instead of using the requestor field.

The existing requestor field is used to save the client name. As a result, conversions of the existing object store and ICL must be completed by using the vsamconv utility for VSAM data sets or the db2conv utility for Db2.

Note: If you are setting up a new PKI Services instance in Version 2 Release 3, specify DBVersion=1 in pkiserv.conf.

Steps for converting existing VSAM object store and ICL to the new format

1. Run IKYCVSV1 to create the new VSAM data sets with the additional alternate index for the SCEP transaction ID field.
2. Stop PKI Services.
3. Run the conversion utility vsamconv, using the existing ICL and object store VSAM data sets as the source data sets and the VSAM data sets created in Step “1” on page 333 as the target data sets.
4. Update pkiserv.conf to specify the DBVersion to 1 and to use the object store and ICL data sets created in Step “1” on page 333.
5. Start PKI Services.

Steps for converting existing Db2 object store and ICL to the new format

1. Run IKYCDBV1 to create the new Db2 ObjectStore and ICL tables.
2. Run IKYSBIND by using the version 1 DBRM, IKYPDBR1, to build the new package with the new name.
4. Run the conversion utility db2conv, using the previously existing package as the source package and the newly create package from Step 2 as the target package.
5. Update pkiserv.conf to specify the DBVersion to 1 and change the DBPackage to match the name of the new package that is created in Step 2.


Enabling Simple Certificate Enrollment Protocol (SCEP)

The Simple Certificate Enrollment Protocol (SCEP) allows you to securely issue certificates to large numbers of network devices using an automatic enrollment technique. The network devices, usually IPSEC devices such as Cisco routers, must be SCEP-enabled and preregistered (to your CA domain) before they can successfully request certificates from you. To request a certificate, the preregistered SCEP client sends a message (the certificate request) to your CA using the HTTP protocol. (The message is a PKCS #10 request enveloped in a signed PKCS #7 structure.)

You can configure PKI Services to respond automatically to some (or all) SCEP certificate requests, or to submit some (or all) SCEP certificate requests to the PKI administrator for approval or rejection. When you enable automatic enrollment, certificate requests can be automatically approved and synchronously fulfilled, based on the requestor’s knowledge of a predetermined secret, the challenge passphrase.

Overview of SCEP preregistration

To request certificates using SCEP, a SCEP requestor must be preregistered to PKI Services, your CA. You can preregister SCEP clients in batches using the pkiprereg utility (see “Using the pkiprereg utility” on page 437) or the PKI administrators can preregister individual SCEP clients (one client at a time) using the end-user web pages.

When PKI administrators preregister a SCEP client, they do so by using the end-user web page for requesting a certificate and selecting the SCEP (preregistration) certificate template called 5-Year SCEP Certificate – Preregistration. (See “Steps for preregistering an SCEP or EST client” on page 402.) The PKI administrator fills out the request form by specifying the device or client name of the SCEP client, a passphrase for client authentication, and additional (optional) subject name and alternate name information. You can customize the <CONSTANT> section of the SCEP (preregistration) certificate template to supply the additional optional information.

When a PKI administrator submits the form for a SCEP (preregistration) certificate request, PKI Services creates a preregistration record, not an actual certificate request, in the VSAM ObjectStore data set (request database). The client name is translated to lowercase characters, truncated to 32 characters if longer, and saved as the Transaction ID to support searching of the ObjectStore. (Each preregistration record must have a client name that is unique in the first 32 characters, regardless of uppercase or lowercase.)

The preregistration record contains the template nickname, passphrase, and additional (optional) subject name and alternate name values. Any other information (unrelated to the subject name or alternate name) specified on the request form is ignored.

When you customize the <CONSTANT> section of the SCEP template to supply additional (optional) values for the following variables, those values are not saved in the preregistration record. However, those values are processed when the preregistered client then requests a certificate.

- AuthInfoAcc
- CertPolicies
- Critical
- ExtKeyUsage (not typically used in a SCEP request)
- KeyUsage (not typically used in a SCEP request)
- NotAfter
- NotBefore
Overview of certificate request processing for preregistered SCEP clients

Following preregistration, when the preregistered SCEP client requests a certificate (sends a SCEP request), PKI Services searches for a preregistration record matching the client name. If found, PKI Services compares the values in the request to the challenge password and any subject name or alternate name information specified by the PKI administrator or supplied in the <CONSTANT> template section. (If not found, the SCEP request is automatically rejected.)

Based on the comparison of values in the request with those in the preregistration record, PKI Services considers the request to be in one of the following states:

Authenticated
   When the challenge password matches and all other preregistered values are included in the request

Semiauthenticated
   When the challenge password matches but some other preregistered values are missing from the request

Unauthenticated
   When the challenge password does not match or is missing.

Depending on how you customize the variables in the SCEP (preregistration) certificate template, a certificate request from an Authenticated SCEP client is either automatically approved and fulfilled synchronously or it is queued for administrator approval. Likewise, a certificate request from an Unauthenticated or Semiauthenticated SCEP client is either queued for administrator approval or it is automatically rejected.

Variables used in the <PREREGISTER> section

These are the valid variables that you can customize in the <PREREGISTER> section of the 5-Year SCEP Certificate – Preregistration template. Some variables must be present in your <PREREGISTER> section and they are labeled as required in the following list.

AuthenticatedClient (required)
   Specifies which action PKI Services takes when an authenticated SCEP client submits a certificate request for the first time. Valid values are:

   AutoApprove (default)
      Automatically approves certificate requests from authenticated first-time SCEP clients and automatically creates their certificates.

   AdminApprove
      Submits certificate requests from authenticated first-time SCEP clients to your PKI administrator for verification and approval. The ADMINNUM tag, when present, indicates that multiple approvals are required.

SemiauthenticatedClient (required)
   Specifies which action PKI Services takes when a semiauthenticated SCEP client submits a certificate request for the first time. Valid values are:

   AdminApprove (default)
      Submits certificate requests from semiauthenticated first-time SCEP clients to your PKI administrator for verification and approval. The ADMINNUM tag, when present, indicates that multiple approvals are required.

   Reject
      Automatically rejects certificate requests from semiauthenticated first-time SCEP clients.

UnauthenticatedClient (required)
   Specifies which action PKI Services takes when an unauthenticated SCEP client submits a certificate request for the first time. Valid values are:

   AdminApprove
      Submits certificate requests from unauthenticated first-time SCEP clients to your PKI administrator for verification and approval. The ADMINNUM tag, when present, indicates that multiple approvals are required.
Reject *(default)*
Automatically rejects certificate requests from unauthenticated first-time SCEP clients.

SubsequentRequest *(optional)*
Specifies which action PKI Services takes when a previously approved SCEP client submits an additional certificate request. If not set, PKI Services uses the AuthenticatedClient value. Valid values are:

AutoApprove *(default)*
Automatically approves certificate requests from previously approved SCEP clients and automatically creates their certificates.

AdminApprove
Submits certificate requests from previously approved SCEP clients to your PKI administrator for verification and approval. The ADMINNUM tag, when present, indicates that multiple approvals are required.

Reject
Automatically rejects SCEP requests from previously approved clients.

RenewalRequest *(optional)*
Specifies which action PKI Services takes when a previously approved SCEP client submits a certificate renewal request. If not set, PKI Services uses the AuthenticatedClient value. Valid values are:

AutoApprove *(default)*
Automatically approves certificate renewal requests from previously approved SCEP clients and automatically creates their certificates.

AdminApprove
Submits certificate renewal requests from previously approved SCEP clients to your PKI administrator for verification and approval. The ADMINNUM tag, when present, indicates that multiple approvals are required.

Reject
Automatically rejects certificate renewal requests from previously approved SCEP clients.

Tags used in the `<PREREGISTER>` section
The following tags are allowed in the `<PREREGISTER>` section of a template. Use of these tags is optional unless otherwise specified.

`<ADMINNUM= value>`
This optional tag indicates the number of PKI Services administrators that must approve certificate requests queued for approval before a certificate can be issued. If this tag is present, any variables that are assigned the value of AdminApprove requires the number of approvals that are specified by this tag. This tag has the form `<ADMINNUM= value>`, where value can be a numeric value from 1 to 32. The tag has the following meanings:

- By default, queued requests require approval by one PKI Services administrator. If the ADMINNUM tag is not present, all queued requests require approval by one PKI Services administrator.
- If the ADMINNUM tag does not occur within the PREREGISTER subsection, PKI Services operates as if the tag is not present.
- If the ADMINNUM value is greater than 32, a value of 32 is used.
- If the ADMINNUM value is less than one or is a non-numeric value, a value of 1 is used.

Note: A request created from this template remains Pending Approval state until the required number of individual administrative approvals is made for the request, at which time the request changes to Approved state. If an administrator issues an Approve with Modifications on a request that is in Pending Approval state, any previously made approvals are nullified, and the number of approvals that are made for the request is reset to 1.
Checking certificate fingerprints

There are two instances when the PKI administrator checks certificate fingerprints (the SHA1, MD5, SHA256, and SHA512 hashes) in support of certificate request processing for SCEP clients.

- Preregistered SCEP clients who request certificates from this CA domain must download the correct PKI Services CA certificate to their workstations before they issue their certificate requests. After the download, the client can use the SCEP client software to display the fingerprints of the downloaded CA certificate and then confirm with the PKI administrator of the CA domain that it is the correct CA certificate.

To match CA certificate fingerprints with a SCEP client, the PKI administrator can display the fingerprints of the CA certificate for this domain by issuing the following MODIFY (or F) console command:

```
F PKISERVD,DISPLAY
```

The result of this command is information message IKYP025I. **Sample output:**

<table>
<thead>
<tr>
<th>SY1</th>
<th>IKYP025I PKI SERVICES SETTINGS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA DOMAIN NAME: Customers</td>
<td></td>
</tr>
<tr>
<td>SUBCOMPONENT</td>
<td>MESSAGE LEVEL</td>
</tr>
<tr>
<td>POLICY</td>
<td>WARNING MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>LDAP</td>
<td>ERROR MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>SAF</td>
<td>WARNING MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>DB</td>
<td>INFORMATIONAL MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>CORE</td>
<td>WARNING MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>PKID</td>
<td>VERBOSE DIAGNOSTIC MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>TPOLICY</td>
<td>WARNING MESSAGES AND HIGHER</td>
</tr>
<tr>
<td>MESSAGE LOGGING SETTING: STDOUT_LOGGING</td>
<td></td>
</tr>
<tr>
<td>CONFIGURATION FILE IN USE:</td>
<td>/etc/pkiserv/pkiserv.conf</td>
</tr>
<tr>
<td>TEMPLATE FILE IN USE:</td>
<td>/etc/pkiserv/pkiserv.tmpl</td>
</tr>
<tr>
<td>CA CERTIFICATE FINGERPRINTS:</td>
<td></td>
</tr>
<tr>
<td>FIPS LEVEL:</td>
<td>FIPS 140-2</td>
</tr>
<tr>
<td>STATUS: OPERATIONAL</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** The MD5 fingerprint is only displayed if FIPS mode is off.

- When the PKI administrator receives a certificate request from a preregistered SCEP client, the PKI administrator can confirm the integrity of the certificate request by viewing its fingerprints on the "Single Request" web page. (See Figure 69 on page 412 for a sample.)

To ensure the integrity of the certificate request, the PKI administrator can contact the SCEP requestor to match the fingerprints in the received certificate request with the fingerprints in the original certificate request. (The certificate requestor can use the SCEP client software to view the fingerprints that are saved for the original request.)

**Steps for enabling Simple Certificate Enrollment Protocol (SCEP)**

**Before you begin**

The commands in the steps that follow include several variables that are described in Table 57 on page 337. Determine the values for these variables and record the information in the blank boxes:

| Table 57. Information you need to enable Simple Certificate Enrollment Protocol (SCEP) |
|---------------------------------|---------------------------------|---------------------------------|
| Information needed | Where to find this information | Record your value here |
| ca_label - The label of your CA certificate in RACF. | See Table 11 on page 41. | |
Table 57. Information you need to enable Simple Certificate Enrollment Protocol (SCEP) (continued)

<table>
<thead>
<tr>
<th>Information needed</th>
<th>Where to find this information</th>
<th>Record your value here</th>
</tr>
</thead>
<tbody>
<tr>
<td>ra_label - The label of your RA certificate in RACF.</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td>ca_ring - The PKI Services SAF key ring.</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>ca_expires - The date the PKI Services CA certificate expires.</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>daemon - The user ID for the PKI daemon.</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>ra_backup_dsn - The name of the encrypted data set containing the backup copy of your new RA certificate and private key.</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>ra_dn - The RA's distinguished name.</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
</tbody>
</table>

**Procedure**

Perform the following steps to enable PKI Services to process Simple Certificate Enrollment Protocol (SCEP) requests:

1. (Optional) Create your PKI Services RA certificate by following these steps, if you have not done so already. (This is optionally done by IKYSETUP.) If you already created an RA certificate, skip to Step “2” on page 338.
   a. To create an RA certificate, execute the following RACF command from the TSO command line:

   ```
   RACDCERT ID(daemon) GENCERT SUBJECTSDN(ra_dn) KEYUSAGE(HANDSHAKE)
   SIGNWITH(CERTAUTH LABEL('ca_label')) NOTAFTER(DATE(ca_expires))
   WITHLABEL('ra_label')
   ```

   b. Back up the new PKI Services RA certificate and private key to a password-encrypted data set (ra_backup_dsn). Remember to record and store your encryption password in case you ever need to recover the certificate or private key.

   ```
   RACDCERT ID(daemon) EXPORT(LABEL('ra_label')) DSN(ra_backup_dsn)
   FORMAT(PKCS12DER) PASSW0RD('encryption-pw')
   ```

   c. Add the new RA certificate to the PKI Services key ring.

   ```
   RACDCERT ID(daemon) CONNECT(LABEL('ra_label')) RING(ca_ring)
   ```

2. Edit the PKI Services configuration file (/etc/pkiserv.conf) and set the RALabel directive in the SAF section to specify the label (ra_label) of your PKI Services RA certificate. (The default in IKYSETUP is Local PKI RA. For details, see “(Optional) Steps for updating the configuration file” on page 74.)

   ```
   [SAF]
   KeyRing=PKISRVD/CAring
   # The label of the PKI Services RA certificate
   RALabel=Local PKI RA
   ```

   338 z/OS: Cryptographic Services PKI Services Guide and Reference
3. Edit the PKI Services configuration file (/etc/pkiserv.conf) to change the EnableSCEP directive in the CertPolicy section setting from F(False) to T(True).

```plaintext
[CertPolicy]
# Enable the Simple Certificate Enrollment Protocol, (T)rue or (F)alse
EnableSCEP=T
```

4. Edit the PKI Services template file (/etc/pkiserv.tmpl or pkitmpl.xml) and customize the <PREREGISTER> section of the 5-Year SCEP Certificate – Preregistration template as you want or create a new preregistration template. (Refer to the list in “Variables used in the <PREREGISTER> section” on page 335 for valid variables and values.

(defaults)

```plaintext
AuthenticatedClient=AutoApprove
SemiauthenticatedClient=AdminApprove
UnauthenticatedClient=Reject
SubsequentRequest=AutoApprove
RenewalRequest=AutoApprove
```

5. Edit the <CONTENT> section of your preregistration template to allow the PKI administrator to specify subject distinguished name and alternate name fields that the SCEP client must provide to authenticate. Specify only subject distinguished name and alternate name fields here. All other fields are ignored. (For about customizing the end-user web pages, see Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135.)

(defaults)

```plaintext
%%SerialNumber (Optional)%%
%%UnstructAddr (Optional)%%
```

6. Edit the <CONSTANT> section of your preregistration template to supply any other value you want, such as MAIL or ORG, that must be included for every SCEP preregistration request. Any subject distinguished name and alternate name fields you specify here must match the information (in the subsequent certificate request) sent by the SCEP client to authenticate the certificate request.

```plaintext
%%Org=The Firm%%
```

7. Edit the HTTP Server environment variables file, vhost80.conf file, and update the LIBPATH variable to include /usr/lpp/pkiserv/lib.

8. Stop and restart PKI Services.

When you are done, you have enabled your CA domain to accept SCEP preregistration requests and process certificate requests from preregistered SCEP clients. The URL used by the SCEP clients is http://webserver-domain-name/CA-domain-name/public-cgi/pkiclient.exe.
Chapter 16. Using Enrollment over Secure Transport (EST)

Enrollment over Secure Transport (EST) is the successor to Simple Certificate Enrollment Protocol (SCEP), initially sponsored by Cisco. SCEP has not be standardized. EST is standardized by RFC7030, which profiles certificate enrollment for clients using Certificate Management over CMS (CMC) messages over a secure transport (RFC5272 - updated by RFC6402). This protocol aims to provision certificates in a more robust manner than the traditional SCEP. It also supports ECC certificates. Cisco IOS Software and Cisco IOS XE support EST.

PKI Services supports the following EST functions:

1. cacerts: requests the EST CA certificates (the whole chain of the issuers' certificates) using Simple PKI Request.
2. simpleenroll: requests a certificate with supplied public key using Simple PKI Request.
3. simplereenroll: requests a renew or rekey certificate with supplied public key using Simple PKI Request.

Set up PKI Services as an EST CA

In order to be an EST CA, the CA certificate must meet one of the following requirements (see RFC7030 section 3.6.1 and RFC6125 section 6.4).
- contains the id-kp-cmcRA extended key usage extension, or
- contains Domain or IP in the Subject Alternate Name extension with a value that will match the host name or the IP address in URIs provided by incoming EST requests, or
- contains a Common Name in the Subject Distinguished Name with a value that will match the host name in URIs provided by incoming EST requests, if there is no Domain or IP is present in the Subject Alternate Name extension.

You may use the IKYSETUP script to set up the EST CA certificate.

Steps to enable EST processing on the PKI EST CA instance

1. Create the EST CA certificate, or use an existing CA if it fulfills the EST CA requirements.
2. Edit the PKI Services configuration file, preserverc.conf to specify the values for the following keywords in the Cert Policy section:
   a. EnableEST=T
   b. ESTCAFile=<full pathname containing the EST CA file in DER format>
   c. ESTTemplate=<EST template nickname> as used in pkiserv.tmpl file or pkitmpl.xml
3. If you are using the CGI scripts, update the pkiserv.tmpl file and the HTTP configuration files:
   a. Edit the <CONTENT> section of your EST preregistration template to specify the subject distinguished name and the alternate name fields that the EST client must provide to authenticate itself. See “Preregistering EST client” on page 342.
   b. Edit the HTTP Server vhost443.conf file and vhost1443.conf file to update the ScriptAliasMatch entries that would map to the URI used by the EST client.
   c. Start HTTP Server.
4. If you are using the JSPs, update the pkitmpl.xml file:
a. Edit the initvalue in the tags with formtype InstallationSpecified to specify the subject distinguished name and the alternate name fields that the EST client must provide to authenticate itself. See “Preregistering EST client” on page 342.

b. Run the TemplateTool utility to convert the pkitmpl.xml file to the pkixgen.tmp1 file.

c. Start the Liberty PKI server.

When you are done, you have enabled your CA domain to accept EST requests from the EST clients.

Preregistering EST client

To request certificates using EST for the first time through the simpleenroll function, an EST client must be either preregistered or authenticated itself with a certificate to the EST capable CA. The PKI administrators can preregister EST clients in batches using the pkipreereg utility (See “Using the pkipreereg utility” on page 437) or administrators can preregister individual EST clients (one client at a time) using the end-user web pages.

When the PKI administrator preregisters an EST client using the end-user web page, they can use the EST (preregistration) certificate template called a 2-Year EST Certificate Preregistration. (See “Steps for preregistering an SCEP or EST client” on page 402 for more information.) The PKI administrator fills out the request form by specifying the device or client name of the EST client, a passphrase, and additional (optional) subject name and alternate name information. The information used will match the client's EST request.

If the CGI path is being used, customize the <CONSTANT> section of the EST (preregistration) certificate template in the pkiserv.tmpl file to supply the additional optional information.

If the JSP path is being used, customize the initvalue in the tags with the InstallationSpecified formtype in the pkitmpl.xml file to supply the additional optional information. These fields will be created as entries under the <CONSTANT> section in the converted pkixgen.tmpl file.

When a PKI administrator submits the form for an EST (preregistration) certificate request, PKI Services creates a preregistration record, not an actual certificate request in the ObjectStore (request database). The client name is translated to lowercase characters, truncated to 32 characters if longer, and saved as the requestor name to support searching of the ObjectStore. (Each preregistration record must have a client name that is unique in the first 32 characters, regardless of uppercase or lowercase).

The preregistration record contains the template nickname, passphrase, and additional (optional) subject name and alternate name values. Any other information (unrelated to the subject name or alternate name) specified on the request form is ignored.

The fields in the <CONSTANT> section in the pkiserv.tmpl file or in the converted pkixgen.tmp1 file that supplying additional (optional) values for the following variables are not used in the preregistration record. However, those values are processed when the preregistered client then requests a certificate.

- AuthInfoAcc
- CertPolicies
- Critical
- ExtKeyUsage
- KeyUsage
- NotAfter
- NotBefore

Processing an EST request

EST transfers CMC messages through a TLS-secured HTTP session. The messages used are Simple PKI Request and Simple PKI Response. The Simple PKI Request is a PKCS#10 certificate request message. The Simple PKI Response is in the format of CMS ContentInfo.
The EST message is processed by a CGI program called pkiest. The communication between the EST client and the CGI is over HTTPS only, the cacerts function uses the HTTP GET method, and all other functions require the HTTP POST method.

If the CA is running with a domain name, the domain name can be included in the URI for the CGI program. The domain name specified in the URI is used to locate the directory path of the pkiserv.envars file through the _PKISERV_CONFIG_PATH_<ca_domain> environment variable. If no domain value exists in the URI, then the _PKISERV_CONFIG_PATH_ environment variable is used.

From the pkiserv.envars file, the CA domain value is determined by the _PKISERV_CA_DOMAIN_ environment variable. If the domain name specified in the URI is different than that specified by _PKISERV_CA_DOMAIN_, the latter value will be used.

The following examples of the URIs can be used by an EST client:

1. When the EST client needs to get the EST CA certificates, it uses the URI with the server authentication port.
   
   **Note**: This is usually the first step the EST client needs if it has not already obtained the CA certificate(s) from other means.


2. When the EST client needs to request a certificate from the EST CA, it uses the URI with the server authentication port.

   https://www.YourCompany.com:<server authentication port>/well-known/est/simpleenroll

3. When the EST client needs to renew a certificate from the EST CA, it uses the URI with the client authentication port.

   https://www.YourCompany.com:<server authentication port>/well-known/est/simplerenroll

Once the EST client is preregistered by the PKI administrator, the EST client can request a certificate. When the preregistered EST client requests a certificate (an EST simpleenroll request is sent), PKI Services searches for a preregistration record that matches the client name. If one is found, PKI Services compares the values in the request to challenge the password and any subject name or alternate name information specified by the PKI administrator or supplied in the <CONSTANT> template section.

If a matching preregistration record is found, a regular PKI request will be created and the preregistration record will be deleted. Otherwise, the preregistration record will remain untouched.

The EST client can also renew the certificate that was obtained previously through the simpleenroll process. The function for renew is simplerenroll and no preregistration step is needed. The original certificate is all that is needed to authenticate in the simplerenroll process through the TLS client-authentication protocol.

### Tracing the PKI EST program

The administrator can enable tracing of the PKI Services EST CGI program using the environment variables _PKISERV_EST_TRACE_ to set the trace option and _PKISERV_EST_TRACE_FILE_ to specify the name of the trace file in the vhost443.conf and vhost1443.conf files.
<table>
<thead>
<tr>
<th>HTTP Server environment variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PKISERV_EST_TRACE</td>
<td>Specifies a bit mask enabling EST trace options. The bit mask can be specified as a decimal (nnn), octal (0nnn), or a hexadecimal (0xhh) value. These trace options are available:</td>
</tr>
<tr>
<td>0x00</td>
<td>No trace.</td>
</tr>
<tr>
<td>0x01</td>
<td>EST error messages.</td>
</tr>
<tr>
<td>0x02</td>
<td>EST informational messages.</td>
</tr>
<tr>
<td>0x04</td>
<td>R_PKIServ callable service parameter list traces on entry and exit.</td>
</tr>
<tr>
<td>0x08</td>
<td>Elapse time messages of events within the EST program.</td>
</tr>
<tr>
<td>0x10</td>
<td>EST program function entry and exit trace messages.</td>
</tr>
<tr>
<td>0x20</td>
<td>DER buffer display messages.</td>
</tr>
<tr>
<td>0x40</td>
<td>Displays environment variables that are set at EST program startup.</td>
</tr>
<tr>
<td>Example:</td>
<td>SetEnv _PKISERV_EST_TRACE 0x7f</td>
</tr>
<tr>
<td>_PKISERV_EST_TRACE_FILE</td>
<td>Specifies the name of the trace file. Defaults to /tmp/pkiest.%.trc. The trace file is not used if the _PKISERV_EST_TRACE environment variable is not defined or is set to 0. The current process identifier is included as part of the trace file name when the name contains a percent sign (%). For example, if _PKISERV_EST_TRACE_FILE is set to /tmp/pkiest.%trc and the current process identifier is i123, the trace file name is /tmp/pkiest.123.trc.</td>
</tr>
<tr>
<td>Guideline: Because multiple copies of the EST CGI program can run concurrently for multiple EST clients, the value of _PKISERV_EST_TRACE_FILE should include the percent sign (%) to prevent multiple copies of the EST CGI program from writing to the same file.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>SetEnv _PKISERV_EST_TRACE_FILE /tmp/pkiest.%.trc</td>
</tr>
</tbody>
</table>

**Messages and codes returned from the EST functions**

Failure conditions detected by the pkiest CGI program are returned to the EST client application as an HTTP status code and an internal pkiest error code with a descriptive message explaining the cause of the failure condition. The error code and descriptive message are also recorded to the IBM HTTP Server error_log file. Details of the execution path that led to encountering the failure condition are recorded to
the trace file if tracing has been activated through the appropriate environment variables. See “Tracing the PKI EST program” on page 343 for more information.

<table>
<thead>
<tr>
<th>CGI error code</th>
<th>HTTP status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(06)</td>
<td>500</td>
<td>Request queue serialization timeout occurred.</td>
</tr>
<tr>
<td>(08)</td>
<td>401</td>
<td>Request denied, not authorized.</td>
</tr>
<tr>
<td>(12)</td>
<td>500</td>
<td>An internal error has occurred during RACF processing.</td>
</tr>
<tr>
<td>(20)</td>
<td>500</td>
<td>Function code specified is not defined.</td>
</tr>
<tr>
<td>(28)</td>
<td>503</td>
<td>Certificate generation provider not available for specified CA domain: domain</td>
</tr>
<tr>
<td>(32)</td>
<td>500</td>
<td>Incorrect value specified for CA domain.</td>
</tr>
<tr>
<td>(52)</td>
<td>500</td>
<td>CertPlist has an incorrect value.</td>
</tr>
<tr>
<td>(56)</td>
<td>500</td>
<td>Required field <em>fieldname</em> is missing from the request.</td>
</tr>
<tr>
<td>(60)</td>
<td>500</td>
<td>Certificate generation provider indicated the following error: <em>error</em>.</td>
</tr>
<tr>
<td>(64)</td>
<td>400</td>
<td>Certificate could not be verified by CA domain: domain.</td>
</tr>
<tr>
<td>(72)</td>
<td>500</td>
<td>Certificate could not be reenrolled because of state change in the CA domain: domain.</td>
</tr>
<tr>
<td>(76)</td>
<td>500</td>
<td>Conflicting field names in CertPlist.</td>
</tr>
<tr>
<td>(80)</td>
<td>501</td>
<td>Enrollment over Secure Transport EST) disabled: <em>error</em>.</td>
</tr>
<tr>
<td>(84)</td>
<td>401</td>
<td>No preregistration record found for the EST request or unable to authenticate it: <em>error</em>.</td>
</tr>
<tr>
<td>(99)</td>
<td>500</td>
<td><em>R_PKIServ-function</em> Failed, safrc=safrc, racfrc=racfrc, racfrsn=racfrsn.</td>
</tr>
<tr>
<td>(464453637)</td>
<td>500</td>
<td>VSAM contention caused the request to fail. Retry the request.</td>
</tr>
<tr>
<td>(464453634)</td>
<td>500</td>
<td>VSAM contention caused the request to fail. Retry the request.</td>
</tr>
<tr>
<td>(5001)</td>
<td>500</td>
<td>Failed to create EST response message, status=<em>error code</em>.</td>
</tr>
<tr>
<td>(5002)</td>
<td>500</td>
<td>Base64 encode of output message failed.</td>
</tr>
<tr>
<td>(5003)</td>
<td>403</td>
<td>Error occurred, HTTP access is forbidden.</td>
</tr>
<tr>
<td>(5004)</td>
<td>405</td>
<td>Error occurred, HTTP method was <em>HTTP method name</em> instead of <em>method name</em>.</td>
</tr>
<tr>
<td>(5005)</td>
<td>500</td>
<td><em>envar name</em> envar value length is greater than the maximum length of <em>maximum length</em>.</td>
</tr>
<tr>
<td>(5006)</td>
<td>500</td>
<td>Error occurred attempting to read the HTTP input message.</td>
</tr>
<tr>
<td>(5007)</td>
<td>500</td>
<td>Storage allocation failed <em>element:size</em>.</td>
</tr>
<tr>
<td>(5008)</td>
<td>500</td>
<td>Exported PKCS7 package is empty.</td>
</tr>
<tr>
<td>(5009)</td>
<td>400</td>
<td>Premature end of data.</td>
</tr>
<tr>
<td>(5010)</td>
<td>500</td>
<td>FIPS state setting failed.</td>
</tr>
<tr>
<td>(5011)</td>
<td>400</td>
<td>ASN.1 data discrepancy: <em>description</em>.</td>
</tr>
<tr>
<td>(5012)</td>
<td>500</td>
<td>gsk function <em>function</em> failed, error code = <em>error-code</em>.</td>
</tr>
<tr>
<td>CGI error code</td>
<td>HTTP status</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(5013)</td>
<td>401</td>
<td>CA cert is not an EST CA certificate.</td>
</tr>
<tr>
<td>(5014)</td>
<td>500</td>
<td>Exported ESTCA does not match local ESTCA.</td>
</tr>
<tr>
<td>(5015)</td>
<td>400</td>
<td>No CA domain found.</td>
</tr>
<tr>
<td>(5016)</td>
<td>501</td>
<td>EST is not enabled.</td>
</tr>
<tr>
<td>(5017)</td>
<td>400</td>
<td>Method name not found from URI.</td>
</tr>
<tr>
<td>(5018)</td>
<td>401</td>
<td>Challenge Passphrase not provided.</td>
</tr>
<tr>
<td>(5019)</td>
<td>400</td>
<td>Unsupported data size.</td>
</tr>
<tr>
<td>(5020)</td>
<td>500</td>
<td>Error processing PKI Services with configuration file (configuration-file-name).</td>
</tr>
<tr>
<td>(5021)</td>
<td>501</td>
<td>CA domain domain-name does not have EST support enabled.</td>
</tr>
<tr>
<td>(5022)</td>
<td>500</td>
<td>pkcs7 buffer not supplied on input.</td>
</tr>
<tr>
<td>(5023)</td>
<td>500</td>
<td>Gencert succeeded, but not Transaction ID returned.</td>
</tr>
<tr>
<td>(5024)</td>
<td>400</td>
<td>Method name method-name is not a valid method name or is not supported.</td>
</tr>
<tr>
<td>(5025)</td>
<td>400</td>
<td>Request length is 0.</td>
</tr>
<tr>
<td>(5026)</td>
<td>500</td>
<td>Response length is 0.</td>
</tr>
<tr>
<td>(5027)</td>
<td>500</td>
<td>Failure validating CA certificate</td>
</tr>
<tr>
<td>(5028)</td>
<td>500</td>
<td>Error getting local ESTCA file.</td>
</tr>
<tr>
<td>(5029)</td>
<td>500</td>
<td>Could not verify ESTCA file.</td>
</tr>
<tr>
<td>(5030)</td>
<td>500</td>
<td>Invalid parameter.</td>
</tr>
<tr>
<td>(5031)</td>
<td>400</td>
<td>URI unreadable.</td>
</tr>
<tr>
<td>(5032)</td>
<td>400</td>
<td>.well-known/est/ not detected in path name.</td>
</tr>
<tr>
<td>(5033)</td>
<td>400</td>
<td>.well-known/est/ at end of path name.</td>
</tr>
<tr>
<td>(5034)</td>
<td>500</td>
<td>ESTCA file was not found at file-location or could not be read.</td>
</tr>
<tr>
<td>(5035)</td>
<td>500</td>
<td>Error returning certificate.</td>
</tr>
<tr>
<td>(5036)</td>
<td>400</td>
<td>URI contains extraneous text.</td>
</tr>
<tr>
<td>(5037)</td>
<td>500</td>
<td>Unable to extract fieldname field from summary list.</td>
</tr>
<tr>
<td>(5038)</td>
<td>400</td>
<td>Passphrases in the request do not match: challengePASSWORD, estIdentityLinking.</td>
</tr>
<tr>
<td>(5039)</td>
<td>500</td>
<td>Error extracting attribute.</td>
</tr>
<tr>
<td>(5040)</td>
<td>400</td>
<td>Error occurred, content type was content-type instead of content-type.</td>
</tr>
<tr>
<td>(5041)</td>
<td>500</td>
<td>Failure to convert address to numeric address.</td>
</tr>
<tr>
<td>(5042)</td>
<td>400</td>
<td>PKCS10 CSR validation failure, error error.</td>
</tr>
<tr>
<td>(5043)</td>
<td>400</td>
<td>Failure validating client certificate: System SSL function error errorcode-errordescription.</td>
</tr>
<tr>
<td>(5045)</td>
<td>400</td>
<td>EST request does not identify subject in client certificate.</td>
</tr>
<tr>
<td>CGI error code</td>
<td>HTTP status</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>(5046)</td>
<td>500</td>
<td><em>Environment / template</em> file could not be processed - error error.</td>
</tr>
<tr>
<td>(5047)</td>
<td>400</td>
<td><em>Environment / template</em> file could not be processed - error error.</td>
</tr>
<tr>
<td>(5048)</td>
<td>500</td>
<td>Template <em>template</em> incorrectly formatted.</td>
</tr>
</tbody>
</table>
PKI Services supports the use of installation exit routines in the following ways:

- The PKI Services daemon can call an installation-provided exit routine for automatic renewal processing.
- If you implement the PKI Services web application using REXX CGI execs, the PKI Services web application CGIs can call an installation-provided exit routine for end-user functions except VERIFY.
- If you implement the PKI Services web application using JavaServer pages (JSPs), exit methods are called before and after end-user functions except VERIFY.

PKI Services provides a sample exit routine, `pkiexit.c`, written in the C language. It is intended to demonstrate the power of the exit routine for the daemon and REXX CGI execs, and to provide a guide for you to write your own exit routine. The main routine of the program determines which subroutine to call, based on the `R_PKIServ` function being called and whether this is a pre- or post-processing call.

No sample is provided for the exit methods used with JSPs.

You can implement the exit routines for the PKI Services daemon and the PKI Services web application CGIs in the same program (as shown in the sample, `pkiexit.c`) or in separate programs.

PKI Services provides the following files for the daemon and CGI exit routine. Both files are, by default, in: `/usr/lpp/pkiserv/samples/`.

<table>
<thead>
<tr>
<th>File name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkiexit.c</td>
<td>Code sample for the exit routine (in the C programming language). You probably need to update the exit routine code before using it.</td>
</tr>
<tr>
<td>Makefile.pkiexit</td>
<td>Makefile for <code>pkiexit.c</code>.</td>
</tr>
</tbody>
</table>

Exit routine processing for automatic certificate renewal

The PKI Services daemon supports an installation-provided exit routine for automatic renewal processing. An exit routine can be written to provide additional automatic renewal criteria, and to capture the renewed certificate for further processing. If you choose to implement this exit routine, it must be a UNIX executable program residing in a file system, with appropriate permission assigned. The PKI Services daemon identifies the exit routine as the program specified by the value of the `_PKISERV_EXIT` environment variable in the `pkiserv.envars` file. The value that is specified is limited to a maximum of 256 characters. The exit routine is invoked by the PKI Services daemon using standard UNIX parameters (that is, `argc` and `argv[]`). The exit routine communicates its results back to the PKI Services daemon by way of a return code. The exit routine is called for preprocessing and post-processing before and after automatic certificate renewal processing. Unlike the PKI Services CGI exit routines, messages that are written to either `STDOUT` or `STDERR` do not appear in either the web server or PKI Services daemon logs.

If you want to write messages in the exit program, you need to open a file and write messages to that file. The sample exit routine that is provided in `/usr/lpp/pkiserv/samples/pkiexit.c` illustrates writing messages to a file in both the preprocessing and post-processing exit functions.

**Note:** This exit routine can be implemented in the same program as the exit routines for the PKI Services CGIs (as illustrated in the sample `pkiexit.c` exit program) or can be implemented as a separate program.
The ExitTimeout keyword in the General section of the pkiserv.conf file specifies the maximum time PKI Services waits for the exit routine to return. If ExitTimeout is not specified, PKI Services waits at most 30 seconds for the exit routine to return. If ExitTimeout is specified with a value greater than 1 hour, PKI Services waits 1 hour at the most for the exit routine to return.

**Steps for updating the exit routine code sample**

To update the exit routine code sample, pkiexit.c, perform the following steps:

1. Copy the sample exit routine and makefile to the current directory by entering the following commands:
   ```
cp /usr/lpp/pkiserv/samples/pkiexit.c pkiexit.c
   cp /usr/lpp/pkiserv/samples/Makefile.pkiexit Makefile
   ```

2. Compile and link to produce the executable program, pkiexit, by entering the following command:
   ```
   make
   ```

3. Move the executable program to its execution directory and set the permissions by entering the following commands:
   ```
   mv pkiexit /full-directory-name
   chmod 755 /full-directory-name/pkiexit
   ```

4. Edit the web server environment variables to include _PKISERV_EXIT, and set its value to the full path name of the exit program. You may set the environment variable in each of the virtual host configuration files or in the main httpd.conf file with a SetEnv directive. For example, if the exit program is called pkiexit and is in the /usr/local/bin directory, the SetEnv directive would be entered as follows:
   ```
   SetEnv    _PKISERV_EXIT   /usr/local/bin/pkiexit
   ```

**Using the exit routine for pre- and post-processing**

This exit routine is called for preprocessing and postprocessing by the PKI Services daemon before and after it renews a certificate respectively. Automatic certificate renewal processing is performed by the daily maintenance task. By default this task runs when the PKI Services daemon is started and every day at midnight, but you can customize the days on which it runs and the time at which it runs. (For information about customizing when the maintenance task runs, see “Optionally updating the pkiserv.conf configuration file” on page 72.)

**Table 61. Values of arguments for pre- and post-processing**

<table>
<thead>
<tr>
<th>Time of processing</th>
<th>Argument 1</th>
<th>Argument 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>0</td>
<td>The function number in EBCDIC: 500 automatic renewal processing</td>
</tr>
<tr>
<td>Post-processing</td>
<td>1</td>
<td>The function number in EBCDIC: 500 automatic renewal processing</td>
</tr>
</tbody>
</table>
Automatic renewal - preprocessing

Purpose
Provide additional criteria for automatic renewal of certificates.

Arguments

argument 3
The Base64-encoded original certificate.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the request for automatic renewal processing.</td>
</tr>
<tr>
<td>4</td>
<td>Disallow automatic renewal processing for the current request.</td>
</tr>
<tr>
<td>8</td>
<td>Disallow automatic renewal processing from now on.</td>
</tr>
</tbody>
</table>

Note: Any value other than 0, 4, and 8 is treated as 4.

STDOUT
Non-applicable.

Note: The automatic renewal exit routine cannot write to STDOUT or STDERR like other exit routines. The output must be written to a file.

Automatic renewal - post-processing

Purpose
Capture the renewed certificate for further processing.

Arguments

argument 3
The Base64-encoded renewed certificate.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal return.</td>
</tr>
</tbody>
</table>

Note: The return code is not checked from the post exit processing.

STDOUT
Non-applicable.

Note: The automatic renewal exit routine cannot write to STDOUT or STDERR like other existing exit routines. The output must be written to a file.

Scenario for using the exit routine
This scenario disables the automatic renewal of certificates for contractors, postpones the renewal if the expiration date is more than 30 days away, and logs the subject name and serial number of certificates that are automatically renewed.
For sample code illustrating this scenario, see the sample exit routine `pkiexit.c` shipped with PKI Services.

The preprocessing exit routine for the automatic renewal function (subroutine `preProcessAutoRenewExit`) disables the automatic renewal of certificates for contractors and postpones the renewal if the expiration date is more than 30 days away. Here are the steps:

- Get the current time and format it for output.
- Call subroutines to decode the Base64 certificate data and decode the certificate.
- Get a printable version of the subject name from the certificate.
- Get a printable version of the serial number from the certificate.
- Check the subject name for an organizationalUnitName of "Contractors". If found, log a message indicating that the renewal was disabled, and return with a return code of 8 to disable the automatic renewal.
- Call a subroutine to determine how many days there are until the certificate expires.
- If there are more than 30 days before the certificate expires, log a message indicating that the renewal was postponed, and return with a return code of 4 to postpone the automatic renewal.
- If there are 30 or fewer days before the certificate expires, log a message indicating that renewal of the certificate was allowed, and return with a return code of 0 to continue with the automatic renewal.

The postprocessing exit routine for the automatic renewal function (`postProcessAutoRenewExit`) logs the subject name and serial number of certificates that are automatically renewed. Here are the steps:

- Get the current time and format it for output.
- Call subroutines to decode the Base64 certificate data and decode the certificate.
- Get a printable version of the subject name from the certificate.
- Get a printable version of the serial number in hexadecimal from the certificate.
- Log a message indicating that the certificate was renewed, containing the subject name, serial number, and time.

### Exit routine processing for the PKI Services CGIs

For the end-user functions except VERIFY, the PKI Services web application CGIs support calling an installation-provided exit routine. The exit routine can perform tasks such as:

- Provide additional authorization checking
- Validate and change parameters
- Capture certificates for further processing
- Recover a passphrase that is used in a certificate request

If the exit routine exists, it must be a UNIX executable program residing in the file system, and it must have appropriate permission assigned. To specify the exit routine, the UNIX programmer sets the `_PKISERV_EXIT` environment variable in the web server's environment variables file. The environmental variable may also be added to the web server's configuration file (`httpd.conf`) by using the SetEnv HTTP Directive. On input, it receives standard UNIX parameters (that is, `argc` and `argv[]`). It communicates back to PKISERV through the return code and by writing to STDOUT.

### Steps for updating the exit routine code sample

To update the exit routine code sample, `pkiexit.c`, perform the following steps:

1. Copy the sample exit routine and makefile to the current directory by entering the following commands:

   ```bash
   cp /usr/lpp/pkiserv/samples/pkiexit.c pkiexit.c
   cp /usr/lpp/pkiserv/samples/Makefile.pkiexit Makefile
   ```
2. Compile and link to produce the executable program, `pkiexit`, by entering the following command:

```
make
```

3. Move the executable program to its execution directory and set the permissions by entering the following commands:

```bash
mv pkiexit /full-directory-name
chmod 755 /full-directory-name/pkiexit
```

4. Edit the web server environment variables to include `_PKISERV_EXIT`, and set its value to the full path name of the exit program. You may set the environment variable in each of the virtual host configuration files or in the main `httpd.conf` file with a `SetEnv` directive. For example, if the exit program is called `pkiexit` and is in the `/usr/local/bin` directory, the `SetEnv` directive would be entered as follows:

```
SetEnv    _PKISERV_EXIT   /usr/local/bin/pkiexit
```

**Using the exit routine for pre- and post-processing**

The exit routine is called:

- For preprocessing before calling the R_PKIServ (IRRSPX00) SAF callable service.
- For post-processing after returning from the callable service.

The following table summarizes the values of the first two arguments for pre- and post-processing. (Additional arguments vary, depending on the function to perform.)

<table>
<thead>
<tr>
<th>Time of processing</th>
<th>Argument 1</th>
<th>Argument 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing</td>
<td>0</td>
<td>The function number from the R_PKIServ SAF callable service in EBCDIC: 1 GENCERT 2 EXPORT 9 REQCERT 11 REVOKE 12 GENRENEW 13 REQRENEW 17 QRECOVER</td>
</tr>
</tbody>
</table>
Table 62. Values of arguments for pre- and post-processing (continued)

<table>
<thead>
<tr>
<th>Time of processing</th>
<th>Argument 1</th>
<th>Argument 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-processing</td>
<td>1</td>
<td>The function number from the R_PKIServ SAF callable service in EBCDIC:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Note: The parameters that are input to the CGIs and the values that are resolved by the CGIs (argument 3...argument n for all functions) vary based on how you have customized the templates.

Return codes

The topics that follow contain tables of expected return codes. If calling the exit routine produces an unexpected return code, that is, one that is not listed, PKI Services treats it as a failure. Processing for the request stops and an error message is issued.

The return code is a one-byte value.

GENCERT and GENRENEW - preprocessing

Purpose

Provide additional authorization checking, parameter validation and modification, and a mapping of the passphrase to a set of security answers to use during QRECOVER processing, if the passphrase is forgotten.

Arguments

argument 3...argument n

The parameters as input to the CGI plus values resolved by the CGI in name=value form, for example, "CommonName=Sam Smith".

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the request with possible modifications.</td>
</tr>
<tr>
<td>4</td>
<td>Continue with the request with possible modifications, but change it to require administrator approval.</td>
</tr>
<tr>
<td>8 - 49</td>
<td>Deny the request and return to the caller immediately.</td>
</tr>
</tbody>
</table>
STDOUT

Zero or more additional CertPlist parameters to add to the request in name=value form, one per line. For those fields defined as non-repeating (according to the documentation for the IRRSPX00 callable service, for example, CommonName), specifying the parameters here in effect replaces the CGI input values.

GENCERT and GENEW - post-processing

Purpose
Capture the TransactionId or failing return codes for further processing.

Arguments

argument 3...argument n–3
The final set of parameters as determined by the preprocessing exit in name=value form.

argument n–2
The RACF return code from the callable service.

argument n–1
The RACF reason code from the callable service.

argument n
The TransactionId. This is a string of undetermined value if the request was unsuccessful.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

STDOUT

Optional replacement TransactionId.

REQCERT and REQRENEW - preprocessing

Purpose
Provide additional authorization checking, parameter validation and modification, and a mapping of the passphrase to a set of security answers to use during QRECOVER processing, if the passphrase is forgotten.

Arguments

argument 3...argument n
The parameters as input to the CGI plus values resolved by the CGI in name=value form, for example, "CommonName=Sam Smith".

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the request with possible modifications.</td>
</tr>
<tr>
<td>4</td>
<td>Continue with the request with possible modifications, but change it to not require administrator approval.</td>
</tr>
<tr>
<td>8 - 49</td>
<td>Deny the request and return to the caller immediately.</td>
</tr>
</tbody>
</table>
Zero or more additional CertPlist parameters to add to the request in name=value form, one per line. For those fields defined as non-repeating (according to the documentation for the IRRSPX00 callable service, for example, CommonName), specifying the parameters here in effect replaces the CGI input values.

Purpose
Capture the TransactionId or failing return codes for further processing.

Arguments

argument 3...argument n-3
The final set of parameters as determined by the preprocessing exit routine in name=value form.

argument n-2
The RACF return code from the callable service.

argument n-1
The RACF reason code from the callable service.

argument n
The TransactionId. This is a string of undetermined value if the request was unsuccessful.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Optional replacement TransactionId.

Purpose
Provide additional authorization checking and parameter validation and modification.

Arguments

argument 3...argument n
The parameters as input to the CGI in name=value form, for example, "TransactionId=12345".

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the export.</td>
</tr>
<tr>
<td>8 - 49</td>
<td>Deny the request and return to the caller immediately.</td>
</tr>
</tbody>
</table>

Optional replacement TransactionId and ChallengePassPhrase parameters in name=value form, one per line. If these values are provided, they replace the user-provided values on the call to the SAF callable service. If TransactionId is specified without ChallengePassPhrase, the user-provided
ChallengePassPhrase is used. If ChallengePassPhrase is specified without TransactionId, the user-provided TransactionId is used.

**EXPORT - post-processing**

**Purpose**
Capture the certificate or failing return codes for further processing.

**Arguments**

- **argument 3…argument n–3**
  The parameters as input to the CGI in name=value form, followed by any modified value provided by the preprocessing exit routine, also in name=value form.

- **argument n–2**
  The RACF return code from the callable service.

- **argument n–1**
  The RACF reason code from the callable service.

- **argument n**
  The base64-encoded certificate with header and footer. This is a string of undetermined value if the request was unsuccessful.

**Return codes**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

**STDOUT**

Non-applicable.

**REVOKE - preprocessing**

**Purpose**
Provide additional authorization checking and parameter validation.

**Arguments**

- **argument 3…argument n**
  The parameters as input to the CGI in name=value form, for example, "reason=1".

**Return codes**

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the request.</td>
</tr>
<tr>
<td>8 - 49</td>
<td>Deny the request and return to the caller immediately.</td>
</tr>
</tbody>
</table>

**STDOUT**

Non-applicable.
REVOKE - post-processing

Purpose
Capture the certificate or failing return codes or both for further processing.

Arguments

argument 3...argument n–2
The parameters as input to the CGI in name=value form, for example, "reason=1".

argument n–1
The RACF return code from the callable service.

argument n
The RACF reason code from the callable service.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

STDOUT
Non-applicable.

QRECOVER - preprocessing

Purpose
Provide a mechanism to retrieve a passphrase needed to recover a certificate, in case it was forgotten. The exit routine is called when a user has entered answers to the security questions instead of a passphrase.

Arguments

argument 3...argument n
The parameters as input to the CGI in name=value form, for example, "Security1=Brazil".

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Continue with the query.</td>
</tr>
<tr>
<td>4</td>
<td>Cannot determine the passphrase.</td>
</tr>
<tr>
<td>8 - 49</td>
<td>Deny the request and return to the caller immediately.</td>
</tr>
</tbody>
</table>

STDOUT
Optional replacement of Requestor and add the PassPhrase parameters in name=value form, one per line.
QRECOVER - post-processing

Purpose
Capture the list of the recovery certificates for further processing.

Arguments

argument 3...argument n-3
The input and output set of parameters of the preprocessing exit routine in the name=value form.

argument n-2
The RACF return code from the callable service.

argument n-1
The RACF reason code from the callable service.

argument n
The list of the recovery certificates.

Return codes

<table>
<thead>
<tr>
<th>Return code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

STDOUT
Non-applicable.

Scenarios for using the exit routine

The sample exit routine supplied with PKI Services, pkiexit.c, illustrates the following scenarios. The main routine of the program determines which subroutine to call, based on the R_PKIServ function being called and whether this is a pre- or post-processing call. Individual subroutines in the program handle the scenarios.

Scenario 1: Allow only selected users to request PKI browser certificates for authenticating to z/OS

This scenario is for allowing only selected local z/OS users to request PKI browser certificates for authenticating to z/OS. Additionally, this scenario is for providing a customized TITLE value for the subject's distinguished name based on the user's role in the organization. Permission and the user's role in the organization is indicated by access to the BPX.SERVER resource in the FACILITY class and by the user's level of access to FACILITY class resources called PROJ.MEMBER and PROJ.PARTNER. The access values are as follows:

NONE
No access for either resource. The user is not permitted to request this type of certificate. The certificate request is denied.

READ to PROJ.MEMBER
The user is a team member and is permitted to request the certificate. The TITLE value is set to Team Member. Certificate requests for team members are automatically approved. (No administrator approval is required.)

UPDATE to PROJ.MEMBER
The user is the team's leader and is permitted to request the certificate. The TITLE value is set to Team Leader. A certificate request by the team leader is automatically approved. (No administrator approval is required.)
READ to PROJ.PARTNER
The user is considered to be a general partner of the team, not an active team member. The user is allowed to request certificates, but the requests require administrator approval before being issued. The TITLE value is set to Team Partner.

UPDATE to PROJ.PARTNER
The user is considered to be a trusted partner of the team, not an active team member. The user is allowed to request certificates, and unlike requests of the general partner, the certificate request are automatically approved. The TITLE value is set to Team Trusted Partner.

The preprocessing exit routine call for the GENCERT and REQCERT functions (subroutine preProcessGenReqCertExit) handles the logic described in the preceding. Here are the steps:

- The request values are passed into the exit routine through argv in field-name=field-value pairs, and the subroutine looks for the Template= and UserId= in the input parameters.
- When the exit routine code finds a Template= value containing PKI Browser Certificate For Authenticating To z/OS, the __check_resource_auth_np() system function examines the user ID. This determines the user's access to the preceding profiles.
  - If the user has no authority to either of these resources, return code 8 is set. This causes the request to be denied.
  - Otherwise the user's TITLE is set by writing the TITLE=title-value string to STDOUT.

By default, administrator approval is not required for the PKI browser certificate for authenticating to z/OS.
- When the user has only READ access to PROJ.PARTNER, the function must be changed to require administrator approval. This is done by setting return code 4.
- For all other accesses the function does not need to be changed.

Scenario 2: Maintain a customized certificate repository (database) independent of PKI Services
This scenario is for maintaining a customized certificate repository (database) that is independent of PKI Services. After a successful submission of a certificate request, PKI Services returns the transaction ID. This is saved in a new customer-provided database entry. An alias for this database entry is then returned to the end user as the transaction ID. Later, when the user wants to pick up the certificate, the user-entered alias name is used to retrieve the actual PKI Services transaction ID. The retrieved certificate is saved in the database entry before being returned to the user.

Three different exit routine calls handle the preceding logic.

- Post-processing for the GENCERT or REQCERT functions (subroutine postProcessGenReqCertExit) returns a pretend alias entry name by suffixing the actual transaction ID with either SAF or PKI. This is where the database entry should be created. (Note that the exit routine performs no actual database calls because this would be too customer-specific.)
- Preprocessing for the EXPORT function (subroutine preProcessExportExit) reverts the transaction ID to its original value. This emulates retrieval from the database entry.
- Post-processing for the EXPORT function (subroutine postProcessExportExit) saves the returned certificate to a database entry. This is emulated by writing it to a file.

Scenario 3: Mandate a policy for certificate renewal only within 30 days of expiration
This scenario is for mandating a policy that allows users to renew their certificates only when certificates are within 30 days of expiring. When the condition is met, you can change the expiration date for the renew request so that the new certificate's validity period is extended by the number of days that are specified by the NotAfter parameter. In other words, the new certificate should expire \( n \) days from the current date, where \( n = number \ of \ days \ remaining \ in \ the \ old \ certificate's \ validity \ period + number \ of \ days \ specified \ by \ NotAfter \).

The preprocessing exit routine call for GENRENEW and REQRENEW functions (subroutine preProcessGenReqRenewExit) handles the preceding logic. Here are the steps:
The user's certificate is extracted from the environment variable HTTPS_CLIENT_CERT.

The NotAfter value is extracted from the input parameters (argv), converted to a number, and saved in the variable RequisitePro.

Subroutine determineExpiration is called to extract the expiration date from the user's certificate. This subroutine calls several subroutines to base64 decode the certificate, DER decode the binary certificate, and convert the expiration date to a seconds value.

Upon return from determineExpiration, the variable timeBeforeExp is the number of seconds from now that the certificate expires. This is compared against the number of seconds in 30 days (86400 × 30) to see if it is greater than 30 days.

- If it is greater than 30, the request is rejected by setting return code 8.
- If it is not greater than 30, the new NotAfter value is computed as timeBeforeExp / 86400 + requestPeriod.

This new NotAfter value is set by writing it to STDOUT.

Scenario 4: Allow users to recover a PKI generated key certificate when the passphrase is lost

To recover a certificate for which PKI Services generated the keys, the user must provide the passphrase that was provided when the certificate was requested. This scenario illustrates how PKI Services can recover lost passphrases for PKI generated key certificates. To be able to recover a lost passphrase, the user must provide answers to security questions in addition to the passphrase when the user initially requests the PKI generated key certificate. PKI Services saves the passphrase and the answers to the security questions in a passphrase mapping database. To recover the lost passphrase, the user provides the answers to the security questions through the PKI Services web page. PKI Services searches the passphrase mapping database, and if the security answers match those provided by the user when the certificate was requested, the passphrase is returned to the CGI. The recovered passphrase is then used to retrieve the PKI generated key certificate.

Two exit routine calls are required:

- When the user requests the PKI generated key certificate, the preprocessing exit routine for the GENCERT and REQCERT functions (subroutine preProcessGenReqCertExit) collects the requestor name, the passphrase, and the answers to the security questions from the exit routine's parameter list. The exit routine records the information as an entry in a passphrase mapping database.

- When the user attempts to recover the PKI generated key certificate, the preprocessing exit routine for the QRECOVER function (subroutine preProcessQRecoverExit) collects the requestor name and the answers to the security questions from the exit routine's parameter list. The exit routine then searches the passphrase mapping database for entries that match the requestor name and the security answers provided by the user. If a match is found, the passphrase recorded in that entry is returned to the CGI through STDOUT.

Exit routine processing for JavaServer pages (JSPs)

If you implement the PKI Services web application using JavaServer pages (JSPs), you can use methods in the class com.ibm.pki.web.exits.UserExit to customize the web application. These methods are called before and after each of the following R_PKIServ requests:

- GENCERT
- REQCERT
- EXPORT
- GENRENEW
- REQRENEW
- REVOKE
- QRECOVER
The methods are empty stub methods in which you can add code to audit or modify parameters being passed to PKI Services. This topic describes these methods and related classes.

The R_PKIServ callable service is described in z/OS Security Server RACF Callable Services.

<table>
<thead>
<tr>
<th>Package</th>
<th>Class</th>
</tr>
</thead>
</table>
| com.ibm.pki.web.exits | • UserExit  
  • ExportCert  
  • QRecover  
  • RevokeCert  
  • UserExitException |
| com.ibm.pki.rpkiserv | • CertPlist  
  • PkiCertificate  
  • QrecoverResultsList  
  • RpkiservException |

### Class UserExit

Package: com.ibm.pki.web.exits

```java
public class UserExit  
extends java.lang.Object
```

UserExit defines the following static constant integer values:

```java
UserExit.SUCCESSFUL = 0;  
UserExit.CHANGE_APPROVAL_STATUS = 4;  
UserExit.QRECOVER_PASSPHRASE_NOT_FOUND = 4;  
UserExit.DENY_REQUEST = 8;
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>preGenReqCert</td>
<td>Called before GENCERT or REQCERT requests</td>
</tr>
<tr>
<td>postGenReqCert</td>
<td>Called after GENCERT or REQCERT requests</td>
</tr>
<tr>
<td>preGenReqRenew</td>
<td>Called before GENRENEW or REQRENEW requests</td>
</tr>
<tr>
<td>postGenReqRenew</td>
<td>Called after GENRENEW or REQRENEW requests</td>
</tr>
<tr>
<td>preExport</td>
<td>Called before EXPORT requests</td>
</tr>
<tr>
<td>postExport</td>
<td>Called after EXPORT requests</td>
</tr>
<tr>
<td>preRevoke</td>
<td>Called before REVOKE requests</td>
</tr>
<tr>
<td>postRevoke</td>
<td>Called after REVOKE requests</td>
</tr>
<tr>
<td>preQRecover</td>
<td>Called before QRECOVER requests</td>
</tr>
<tr>
<td>postQRecover</td>
<td>Called after QRECOVER requests</td>
</tr>
</tbody>
</table>
preGenReqCert method

```java
public int preGenReqCert(java.lang.String domain,
                         com.ibm.pki.rpkiserv.CertPlist plist,
                         java.lang.String[] security)
    throws UserExitException
```

**Purpose**
Called before GENCERT or REQCERT requests.

**Parameters**
- **domain**
  - Domain name
- **plist**
  - CertPlist with input parameters for GENCERT or REQCERT processing whose values can be modified by this method
- **security**
  - An array of responses to security questions. These correspond to form fields with names security1, security2, and so forth, in ascending numerical order.

**returns**

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(UserExit.SUCCESSFUL) Continue with the request.</td>
</tr>
<tr>
<td>4</td>
<td>(UserExit.CHANGE_APPROVAL_STATUS) If the certificate request required administrator approval, change it to not require administrator approval (a GENCERT). If the certificate request did not require administrator approval (a GENCERT), change it to require administrator approval (a REQCERT).</td>
</tr>
<tr>
<td>8</td>
<td>(UserExit.DENY_REQUEST) or greater Deny the request.</td>
</tr>
</tbody>
</table>

**throws**

<table>
<thead>
<tr>
<th>Exception</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserExitException</td>
<td>Handled the same as a return value of 8, and exception text is displayed on the resulting web page</td>
</tr>
</tbody>
</table>

postGenReqCert method

```java
public java.lang.String postGenReqCert(java.lang.String domain,
                                       com.ibm.pki.rpkiserv.CertPlist plist,
                                       int RACFrc,
                                       int RACFrsncode,
                                       java.lang.String transactionid)
```

**Purpose**
Called after GENCERT or REQCERT requests

**Parameters**
- **domain**
  - Domain name
plist
CertPlist that was input to R_PKIServ processing, including modifications made by the preGenReqCert method

RACFrc
RACF return code

RACFrscncode
RACF reason code

transactionid
Transaction ID, null if GENCERT processing was unsuccessful

returns
transaction ID

preGenReqRenew method

```java
public int preGenReqRenew(java.lang.String domain,
                          com.ibm.pki.rpkiserv.CertPlist plist,
                          java.lang.String serialnum)
    throws UserExitException
```

Purpose
Called before GENRENEW or REQRENEW requests

Parameters

domain
Domain name

plist
CertPlist with input parameters for renew request, whose values can be modified by this method

Note: Most values for a certificate renewal are taken from the existing certificate and therefore are not in the certPlist. The following values can occur in the certPlist:

- CertPlist.CERTPLIST_NOTIFYEMAIL
- CertPlist.CERTPLIST_PASSPHRASE
- CertPlist.CERTPLIST_NOTAFTER
- CertPlist.CERTPLIST_CERTPOLICIES
- CertPlist.CERTPLIST_AUTHINFOACC
- CertPlist.CERTPLIST_CRITICAL

serialnum
Serial number of certificate being renewed

returns
Value
Meaning

0 (UserExit.SUCCESSFUL)
Continue with the request.

4 (UserExit.CHANGE_APPROVAL_STATUS)
If the renewal request required administrator approval, change it to not require administrator approval (a GENRENEW). If the certificate request did not require administrator approval (a GENRENEW), change it to require administrator approval (a REQRENEW).

8 (UserExit.DENY_REQUEST) or greater
Deny the request.
throws

<table>
<thead>
<tr>
<th>Exception</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserExitException</td>
<td>Handled the same as a return value of 8, and exception text is displayed on the resulting web page</td>
</tr>
</tbody>
</table>

**postGenReqRenew method**

```java
public java.lang.String postGenReqRenew(java.lang.String domain,
                                         com.ibm.pki.rpkiserv.CertPlist plist,
                                         int RACFrc,
                                         int RACFrsncode,
                                         java.lang.String transactionid)
```

**Purpose**

Called after GENRENEW or REQRENEW requests

**Parameters**

- **domain**: Domain name
- **plist**: The CertPlist that was input to the R_PKIser v request, including any modifications that were made by the preGenReqRenew method
- **RACFrc**: RACF return code
- **RACFrsncode**: RACF reason code
- **transactionid**: Transaction ID, null if REQCERT processing was unsuccessful

**returns**

transactionid

**preExport method**

```java
public int preExport(java.lang.String domain,
                     com.ibm.pki.rpkiserv.ExportCert exportobject)
```

**Purpose**

Called before EXPORT requests

**Parameters**

- **domain**: Domain name
- **exportobject**: ExportCert object containing transaction ID and passphrase

**returns**

**Value**

**Meaning**
0 (UserExit.SUCCESSFUL)
Continue with the EXPORT.

8 (UserExit.DENY_REQUEST) or greater
Deny the request.

throws

<table>
<thead>
<tr>
<th>Exception</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserExitException</td>
<td>Handled the same as a return value of 8, and exception text is displayed on the resulting web page</td>
</tr>
</tbody>
</table>

postExport method

```java
public void postExport(java.lang.String domain,
                        com.ibm.pki.rpkiserv.ExportCert exportobject,
                        int RACFrc,
                        int RACFrsncode)
```

Purpose
Called after EXPORT requests

Parameters

domain
Domain name

exportobject
ExportCert object containing transaction ID and passphrase. The ExportCert object contains a base64-encoded certificate with header and footer if the request was successful.

preRevoke method

```java
public int preRevoke(java.lang.String domain,
                     RevokeCert revokeobject)
```

Purpose
Called before REVOKE requests

Parameters

domain
Domain name

revokeobject
RevokeCert object containing reason number and serial number

returns

Value
Meaning

0 (UserExit.SUCCESSFUL)
Continue with the REVOKE request.

8 (UserExit.DENY_REQUEST) or greater
Deny the request, do not revoke.
throws

<table>
<thead>
<tr>
<th>Exception</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserExitException</td>
<td>Handled the same as a return value of 8, and exception text is displayed on the resulting web page</td>
</tr>
</tbody>
</table>

**postRevoke method**

```java
public void postRevoke(java.lang.String domain,
                       RevokeCert revokeobject,
                       int RACFrc,
                       int RACFrsncode)
```

**Purpose**

Called after REVOKE requests

**Parameters**

- **domain**
  Domain name
- **revokeobject**
  RevokeCert object containing reason number and serial number

**preQRecover method**

```java
public int preQRecover(java.lang.String domain,
                        QRecover qrecoverobject)
```

**Purpose**

Called before QRECOVER requests

**Parameters**

- **domain**
  Domain name
- **qrecoverobject**
  QRecover object containing recovery email, passphrase, and security responses

**returns**

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(UserExit.SUCCESSFUL) Continue with the request.</td>
</tr>
<tr>
<td>4</td>
<td>(UserExit.QRECOVER_PASSPHRASE_NOT_FOUND) Cannot determine the passphrase.</td>
</tr>
<tr>
<td>8</td>
<td>(UserExit.DENY_REQUEST) or greater Deny the request.</td>
</tr>
</tbody>
</table>

**postQRecover method**

```java
public int postQRecover(java.lang.String domain,
                         QRecover qrecoverobject,
                         int RACFrc,
                         int RACFrsncode)
```
**Purpose**
Called after QRECOVER requests

**Parameters**

**domain**
Domain name

**qrecoverobject**
QRecover object containing recovery email, passphrase, security responses, and a QrecoverResultsList array containing data for certificates that matched the search criteria

**Class ExportCert**

```java
public class ExportCert extends java.lang.Object

ExportCert contains the parameters passed on an R_PKIServ EXPORT request.

Method summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.ibm.pki.rpkiserv.PkiCertificate getCertificate()</td>
<td></td>
</tr>
<tr>
<td>java.lang.String getPassphrase()</td>
<td></td>
</tr>
<tr>
<td>java.lang.String getTransactionid()</td>
<td></td>
</tr>
<tr>
<td>void setPassphrase(java.lang.String passphrase)</td>
<td></td>
</tr>
<tr>
<td>void setTransactionid(java.lang.String transactionid)</td>
<td></td>
</tr>
</tbody>
</table>
```

**Class QRecover**

Package: com.ibm.pki.web.exits

```java
public class QRecover extends java.lang.Object

QRecover contains the parameters passed on an R_PKIServ QRECOVER request.

Method summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.String getPassphrase()</td>
<td></td>
</tr>
<tr>
<td>com.ibm.pki.rpkiserv.QrecoverResultsList[] getQrecover_results()</td>
<td></td>
</tr>
<tr>
<td>java.lang.String getRequestor()</td>
<td></td>
</tr>
<tr>
<td>java.lang.String[] getSecurity_answers()</td>
<td></td>
</tr>
<tr>
<td>void (java.lang.String passphrase) setPassphrase</td>
<td></td>
</tr>
<tr>
<td>void setRequestor(java.lang.String requestor)</td>
<td></td>
</tr>
<tr>
<td>void setSecurity_answers(java.lang.String[] security_answers)</td>
<td></td>
</tr>
</tbody>
</table>
**Class RevokeCert**

Package: com.ibm.pki.web.exits

```java
public class RevokeCert
    extends java.lang.Object
```

RevokeCert contains the parameters passed on an R_PKIServ REVOKE request.

<table>
<thead>
<tr>
<th>Method summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>int getReason()</td>
</tr>
<tr>
<td>java.lang.String getSerial_number()</td>
</tr>
<tr>
<td>void setReason(int reason)</td>
</tr>
<tr>
<td>void setSerial_number(java.lang.String serial_number)</td>
</tr>
</tbody>
</table>

**Class UserExitException**

Package: com.ibm.pki.web.exits

```java
public class UserExitException
    extends java.lang.Exception
```

An exception thrown from the UserExit class. The PKI Services function that detects this exception treats it the same as a return code greater than or equal to 8, and stops processing. Additionally, any exception text is displayed on the web page that reports the unsuccessful processing.

<table>
<thead>
<tr>
<th>Constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserExitException(java.lang.String message)</td>
</tr>
<tr>
<td>UserExitException(java.lang.Throwable cause)</td>
</tr>
</tbody>
</table>

**Class CertPlist**

Package: com.ibm.pki.rpkiserv

```java
public class CertPlist
    extends java.lang.Object
```

The CertPlist (certificate parameter list) is used to pass certificate information to the R_PKIServ callable service. It defines the following static constant strings, which should be used for the name parameter:

- CERTPLIST_UNSTRUCTNAME
- CERTPLIST_EMAILADDR
- CERTPLIST_MAIL
- CERTPLIST_TITLE
- CERTPLIST_ORGUNIT
- CERTPLIST_ORG
- CERTPLIST_STREET
- CERTPLIST_LOCALITY
- CERTPLIST_STATEPROV
- CERTPLIST_POSTALCODE
- CERTPLIST_COUNTRY
- CERTPLIST_KEYUSAGE
- CERTPLIST_EXTKEYUSAGE
- CERTPLIST_NOTBEFORE
- CERTPLIST_NOTAFTER
- CERTPLIST_ALTIPADDR
- CERTPLIST_ALTIEMAIL
- CERTPLIST_ALTDOMAIN
- CERTPLIST_ALTOTHER
- CERTPLIST_CUSTOMEXT
- CERTPLIST_NOTIFYEMAIL

Customizing with installation exit routines 369
### Method summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>void addValue(String name, String value)</td>
<td>Adds a value to the certPlist.</td>
</tr>
<tr>
<td>void addValue(String name, String[] values)</td>
<td>Adds values to the certPlist.</td>
</tr>
<tr>
<td>java.util.Vector getNames()</td>
<td>Gets the names of all name and value pairs in the certPlist.</td>
</tr>
<tr>
<td>java.util.Vector getValues(String name)</td>
<td>Gets the vector of string values for this name in the certPlist.</td>
</tr>
<tr>
<td>void removeAllValues(String name)</td>
<td>Deletes all of the values associated with a name in the certPlist.</td>
</tr>
<tr>
<td>void removeValue(String name, String value)</td>
<td>Deletes one of the values associated with a name in the certPlist.</td>
</tr>
<tr>
<td>java.lang.String toString()</td>
<td>Returns the string representation of this object.</td>
</tr>
</tbody>
</table>

### Class PkiCertificate

```
public class PkiCertificate
extends java.lang.Object
```

Package: com.ibm.pki.rpkiserv
Contains a certificate generated by PKI Services. The PkiCertificate class defines the following static constant integers to be used in determining the type (format) of certificate exported:

<table>
<thead>
<tr>
<th>Integer</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PkiCertificate.PKIS_CERTIFICATE_TYPE_BASE64</td>
<td>Certificate is BASE64-encoded</td>
</tr>
<tr>
<td>PkiCertificate.PKIS_CERTIFICATE_TYPE_DER</td>
<td>Certificate is DER-encoded</td>
</tr>
<tr>
<td>PkiCertificate.PKIS_CERTIFICATE_TYPE_PKCS12</td>
<td>Certificate is DER-encoded PKCS #12</td>
</tr>
<tr>
<td>PkiCertificate.PKIS_CERTIFICATE_TYPE_PKCS7_CHAIN</td>
<td>Certificate is DER-encoded PKCS #7 chain</td>
</tr>
</tbody>
</table>

**Method summary**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getBase64Encoded()</td>
<td>Certificate in Base64 format. Use this method if the certificate type is PKIS_CERTIFICATE_TYPE_BASE64.</td>
</tr>
<tr>
<td>getDerEncoded()</td>
<td>Certificate in DER format. Use this method if the certificate type is one of the DER types: • PKIS_CERTIFICATE_TYPE_DER • PKIS_CERTIFICATE_TYPE_DER_PKCS7_CHAIN • PKIS_CERTIFICATE_TYPE_DER_PKCS12</td>
</tr>
<tr>
<td>getType()</td>
<td>Returns the certificate type.</td>
</tr>
</tbody>
</table>

**Class QrecoverResultsList**

Package: com.ibm.pki.rpkiserv

```
public class QrecoverResultsList
extends java.lang.Object
```

Contains QRECOVER results from R_Pkiserv.

**Method summary**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getIssuerDn()</td>
<td>Returns the issuer's distinguished name.</td>
</tr>
<tr>
<td>getKeyId()</td>
<td>Returns the key Id.</td>
</tr>
<tr>
<td>getPassPhrase()</td>
<td>Returns the passphrase provided when the certificate request was made.</td>
</tr>
<tr>
<td>getSerialNum()</td>
<td>Returns the serial number.</td>
</tr>
</tbody>
</table>
Method summary

<table>
<thead>
<tr>
<th>Return Type</th>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.String</td>
<td>getSubjectDn()</td>
<td>Returns the subject's distinguished name.</td>
</tr>
<tr>
<td>java.lang.String</td>
<td>getValidityDates()</td>
<td>Returns the validity period in local time.</td>
</tr>
</tbody>
</table>

Class RpkiservException

Package: com.ibm.pki.rpkiserv

```java
public class RpkiservException
extends java.lang.Exception
implements java.io.Serializable
```

Exception thrown by classes in the package com.ibm.pki.rpkiserv.

Constructor summary

<table>
<thead>
<tr>
<th>Constructor Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RpkiservException()</td>
<td>Constructor to create an empty RpkiservException object.</td>
</tr>
<tr>
<td>RpkiservException(java.lang.String exceptionText)</td>
<td>Constructor to create an RpkiservException object with only exception text.</td>
</tr>
</tbody>
</table>
Part 4. Using PKI Services

This part explains how to use the PKI Services web pages and utilities.

- Chapter 18, “Using the end-user web pages,” on page 375 shows the web pages for the end user and explains how to perform tasks such as requesting a certificate, obtaining the certificate, and renewing or revoking a certificate.
- Chapter 19, “Using the administration web pages,” on page 405 shows the administration web pages and explains how to process certificate requests and certificates.
- Chapter 20, “Using PKI Services utilities,” on page 431 explains using the PKI Services utilities.

- `createcrls`
  A UNIX program that initiates the certificate revocation list (CRL) creation task immediately.
- `db2conv`
  A UNIX program that converts the version format of object store and ICL Db2 tables.
- `iclview`
  A UNIX program that displays the entries in the issued certificate list (ICL).
- `pkiprereg`
  A UNIX program that creates Simple Certificate Enrollment Protocol (SCEP) preregistration records.
- `postcerts`
  A UNIX program that creates posting objects for existing certificates. The PKI Services daemon later posts the certificates to an LDAP server.
- `TemplateTool`
  A Java program that validates an XML certificate template file and converts it to a text CGI template file, and converts a text CGI template file to an XML template file.
- `vosview`
  A UNIX program that displays the entries contained in the object store (request database).
- `vsam2db2`
  A UNIX program that converts data from the issued certificate list (ICL) and object store VSAM data sets into Db2 tables.
- `vsamconv`
  A UNIX program that converts the version format of object store and ICL VSAM data sets.

- Chapter 21, “Using the certificate management protocol (CMP) with PKI Services,” on page 453 describes the support for CMP that PKI Services provides.
Chapter 18. Using the end-user web pages

This topic describes how the end user can use the PKI Services web pages.

Notes:

1. The PKI Services web pages in this topic might differ slightly from those on the web. If your installation customized the templates, the web pages in this topic might differ greatly from those you view on the web. Additionally, the pages might contain differences depending on the browser you are using. (This topic assumes you are using Internet Explorer.) If you need to see the exact content, view the pages on the web.

2. If you are using Internet Explorer on a Microsoft Windows system, you might need to set up the Windows system and Internet Explorer to work with PKI Services. For information about how to do this, see Appendix C, “Using the PKI Services web application with Internet Explorer on Windows systems,” on page 693.

By default, the end user can perform the following tasks:

• Install a CA certificate into the browser.
• Request a new certificate.
• Pick up a previously requested certificate.
• Renew or revoke a previously issued browser certificate.
• Recover a certificate and private key, if PKI Services generated the keys for the certificate.
• Install the PKI Services ActiveX program needed to install a renewed certificate using the Internet Explorer browser.

Table 65 on page 375 lists the types of certificates you can request:

<table>
<thead>
<tr>
<th>Type of certificate</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-year PKI SSL browser certificate</td>
<td>End-user client authentication using SSL</td>
</tr>
<tr>
<td>One-year PKI S/MIME browser certificate</td>
<td>Browser-based email encryption</td>
</tr>
<tr>
<td>One-year PKI generated key certificate</td>
<td>Generation of public and private keys by PKI Services</td>
</tr>
<tr>
<td>Two-year PKI browser certificate for authenticating to z/OS</td>
<td>End-user client authorization using SSL when logging on to z/OS</td>
</tr>
<tr>
<td>Two-year PKI Authenticode - code signing server certificate</td>
<td>Software signing</td>
</tr>
<tr>
<td>Two-year PKI Windows logon certificate</td>
<td>End-user client authentication for an Active Directory user logging in to a Windows desktop using a smart card</td>
</tr>
<tr>
<td>Two-year EV SSL server certificate</td>
<td>Extended Validation (EV) server certificate for a private organization</td>
</tr>
<tr>
<td>Five-year PKI SSL server certificate</td>
<td>SSL web server certification</td>
</tr>
<tr>
<td>Five-year PKI IPSEC server (firewall) certificate</td>
<td>Firewall server identification and key exchange</td>
</tr>
<tr>
<td>Five-year PKI intermediate CA server certificate</td>
<td>Subordinate (non-self-signed) certificate authority certification</td>
</tr>
<tr>
<td>Type of certificate</td>
<td>Use</td>
</tr>
<tr>
<td>---------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>Five-year SCEP certificate</td>
<td>Creation of a preregistration record for certificate requestors. (Certificate requestors using Simple Certificate Enrollment Protocol (SCEP) must be preregistered.) Unlike other templates, this template is intended for administration use only.</td>
</tr>
<tr>
<td>Two-year EST certificate</td>
<td>Creation of a preregistration record for certificate requestor. (Certificate requestor using Enroll Over Secure Transport (EST) must be preregistered.) Unlike other templates, this template is intended for administration use only.</td>
</tr>
<tr>
<td>n-year PKI browser certificate for extensions demonstration</td>
<td>Demonstration of all extensions supported by PKI Services</td>
</tr>
<tr>
<td>One-year SAF browser certificate</td>
<td>End-user client authentication where the security product (RACF, not PKI Services) is the certificate provider. Note: The certificate generated by this template cannot be managed by the PKI Services administrator.</td>
</tr>
<tr>
<td>One-year SAF server certificate</td>
<td>Web server SSL certification where the security product (RACF, not PKI Services) is the certificate provider. Note: The certificate generated by this template cannot be managed by the PKI Services administrator.</td>
</tr>
</tbody>
</table>

Special consideration for using SAF templates:

The templates that control processing of the SAF certificates listed in Table 65 on page 375 perform only a subset of the function available natively in RACF through the RACDCERT TSO command or the ISPF panels. They are provided to enable a web interface for requesting certificates from RACF for browsers and off-platform servers. They are not intended to be a complete replacement for RACF certificate function.

Restriction: If you want to generate a certificate for a server running on the local z/OS system (in other words, for a system using the RACF database where the signing certificate resides), do not use the "One-year SAF server certificate" template. Instead, use the RACDCERT TSO command or ISPF panels directly. Using the "One-year SAF server certificate" template might cause the loss of the private key if the authenticating user ID is not the same as the user ID specified when generating the certificate request in RACF.

**Steps for accessing the end-user web pages**

Perform the following preliminary steps to access the PKI Services web pages:

1. Get your organization's URL for accessing the PKI Services web pages. Enter this URL in your browser. This takes you to the end-user "PKI Services Certificate Generation Application" web page, shown in the following figure:
PKI Services Certificate Generation Application

Install the CA certificate to enable SSL sessions for PKI Services

Choose one of the following:

- **Request a new certificate using a model**
  ```
  Select the certificate template to use as a model: 1-Year PKI SSL Browser Certificate
  Request Certificate
  ```

- **Pick up a previously requested certificate**
  ```
  Enter the assigned transaction ID
  Select the certificate return type: PKI Browser Certificate
  Pickup Certificate
  ```

- **Renew or revoke a previously issued browser certificate**
  ```
  Renew or Revoke Certificate
  ```

- **Recover a previously issued certificate whose key was generated by PKI Services**
  ```
  Recover Certificate
  ```

email: webmaster@your.company.com

Figure 42. PKI Services end-user home page for certificate generation

---

2. If this is the first time you have accessed the forms on these web pages, you must install the CA certificate into your browser. Click **Install the CA certificate** and follow the directions.

The following instructions are a sample of the directions to follow for installing the CA certificate on Internet Explorer:

a. After you click **Install the CA certificate**, a window labeled "File download" opens. Make sure that "Open this file from its current location" is selected (rather than "Save this file to disk"). Then click **OK**. Figure 43 on page 378 is an example of the window you might see, depending on the CA certificate you have installed.
b. Click **Install certificate**. (This initiates a series of windows in which you need to click **Next** and finally **Finish**, culminating in a window that says “The import was successful”.)

**Note:** If you are using the Internet Explorer browser, you must explicitly select a store to place the certificate in. For more information, see “Installing the PKI Services CA certificate on a Microsoft Windows system” on page 696.

---

3. If you are using the Internet Explorer browser, now you can install the PKI Services ActiveX program that is used to install renewed certificates. For more information, see “Installing the PKI Services ActiveX program” on page 693. If you do not install it now, when you attempt to install a renewed certificate PKI Services checks whether you have the PKI Services ActiveX program installed. If it is not installed, PKI Services prompts you to install it.

**Note:** **Install the PKI ActiveX Control to renew certificates** appears on the PKI Services home page only if you are using the Internet Explorer browser.

---

You are now ready to perform tasks, such as:

- Requesting a new certificate
- Picking up a previously requested certificate
- Renewing or revoking a previously issued browser certificate
**Summary of fields**

When you request certificates, you provide information for the fields in certificate request forms. The following table describes the fields in the end-user web pages:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Certificate fields</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Certificate fields related to Subject's Distinguished Name</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Notes:</strong></td>
<td></td>
</tr>
<tr>
<td>1. The values for these fields are the relative distinguished names (RDNs) that are saved in the subject's distinguished name (DN) in the certificate.</td>
<td></td>
</tr>
<tr>
<td>2. For a server certificate, a base64-encoded PKCS #10 certificate request is required. If you specify one or more of these fields, the subject's distinguished name supplied in the PKCS #10 certificate request is ignored and only the fields you specify are in effect. For example, suppose that the subject's distinguished name specified in the PKCS #10 certificate request contains three RDNs - common name, organizational unit, and country. If you specify a value for organizational unit, you must also specify values for common name and country, even though you are not changing them. If you do not, these two RDNs have no values.</td>
<td></td>
</tr>
<tr>
<td><strong>Business Category</strong></td>
<td>The business category. This field is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td>This field is intended for use in Extended Validation (EV) certificates.</td>
</tr>
<tr>
<td><strong>Common name</strong></td>
<td>Your name, such as John Smith. (You can use your first and last name, in that order.) This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td>For SSL servers, the common name is the server's fully qualified domain name, for example, <a href="http://www.ibm.com">www.ibm.com</a>.</td>
</tr>
<tr>
<td><strong>Country</strong></td>
<td>The country where your organization is located. This is a 2-character text field.</td>
</tr>
<tr>
<td><strong>Distinguished name qualifier</strong></td>
<td>Specifies information to add to the subject distinguished name of an entry to make it unambiguous.</td>
</tr>
<tr>
<td><strong>Domain component</strong></td>
<td>One component of a domain name associated with the subject distinguished name. For example, the domain name <a href="http://www.ibm.com">www.ibm.com</a> is represented by 3 components: www, ibm, and com.</td>
</tr>
<tr>
<td><strong>Email address</strong></td>
<td>Email address with attribute EMAIL for the distinguished name. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td><strong>Jurisdiction Country</strong></td>
<td>The jurisdiction of incorporation country name. This field is a two-character text field.</td>
</tr>
<tr>
<td></td>
<td>This field is intended for use in Extended Validation (EV) certificates.</td>
</tr>
<tr>
<td><strong>Jurisdiction Location</strong></td>
<td>The jurisdiction of incorporation locality name. This field is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td>This field is intended for use in Extended Validation (EV) certificates.</td>
</tr>
<tr>
<td><strong>Jurisdiction State or Province</strong></td>
<td>The jurisdiction of incorporation state or province name. This field is a text field of up to 64 characters.</td>
</tr>
<tr>
<td></td>
<td>This field is intended for use in Extended Validation (EV) certificates.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Locality</td>
<td>The city or municipality where your organization is located, such as Pittsburgh or Paris. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Mail</td>
<td>Email address with attribute MAIL for the distinguished name. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td><strong>Restriction:</strong></td>
<td>If you specify a value for this parameter and for Notification e-mail address, the two values must be the same.</td>
</tr>
<tr>
<td>Organization</td>
<td>The legally registered name (or trademark name, for example, IBM) of your organization. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Organizational unit</td>
<td>The name of your division or department. (There can be more than one organizational unit field on a request form. For example, one could be for your department and another for your division.) This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Postal code</td>
<td>Your postal code or zip code. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number of the subject device. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>State or Province</td>
<td>The state or province where your organization is located. Your registration policies determine whether you spell out the full name of the state or province or use an abbreviation. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Street</td>
<td>Your street address. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Title</td>
<td>Your job title. This is a text field of up to 64 characters.</td>
</tr>
<tr>
<td>Unstructured address</td>
<td>The unstructured address of the subject device.</td>
</tr>
<tr>
<td>Unstructured name</td>
<td>The unstructured name of the subject device.</td>
</tr>
<tr>
<td>User ID</td>
<td>The system login name associated with the subject distinguished name.</td>
</tr>
<tr>
<td><strong>Certificate fields related to validity period</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Not after (date)</strong></td>
<td>A number of days, added to the current date after which the certificate expires. By default, you can select either one year or two years for the time at which the certificate expires.</td>
</tr>
<tr>
<td><strong>Not before (date)</strong></td>
<td>A number of days, added to the current date (by default, you can select either 0 or 30), before which the certificate is not valid.</td>
</tr>
<tr>
<td><strong>Certificate fields related to extensions</strong></td>
<td></td>
</tr>
<tr>
<td>Alternate domain name</td>
<td>Domain name for alternate name. This is the host name of the machine where a certificate is installed. This is a text field of up to 100 characters.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>Alternate email address</td>
<td>Email address for alternate name, including the @ character and any periods (.). This is a text field of up to 100 characters.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Alternate IP address          | The IP address for the alternate name. This unique IP address specifies the location of each device or workstation on the Internet. PKI Services supports both IP version 4 and IP version 6 addresses. The IP address is a text field of up to 45 characters:  
  • For IP version 4, the IP address is in dotted decimal format; for example, 9.67.97.103.  
  • For IP version 6, the IP address is divided into eight 16-bit hexadecimal blocks separated by colons. Leading zeros in each 16-bit field are optional, and successive fields of zeros can be represented by double colons, but only once; for example 1:2:3:4 is equivalent to 0001:0002:0000:0000:0000:0003:0004.  
  • In a mixed IP version 4 and IP version 6 environment, the IP address can be expressed in the format x:x:x:x:x:d.d.d, where the x values are the hexadecimal values of the six high-order 16-bit pieces of the address, and the d values are the decimal values of the four low-order 8-bit pieces of the address in standard IP version 4 representation; for example, 0:0:0:0:ABCD:1.2.3.4, or the equivalent value ::ABCD:1.2.3.4.  
  **Note:** The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate. |
| Alternate other name          | Additional identifier for the alternate name. See your PKI Services administrator for information about this field.                                                                                                  |
| Alternate uniform resource identifier (URI) | Uniform resource identifier for the alternate name. This is a name or address referring to an Internet resource; a URL is one kind of uniform resource identifier. This is a text field of up to 100 characters.  
  **Note:** The value is one of the list of subject's alternate names that is saved in the subject alternate name extension in the certificate. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended key usage</td>
<td>This indicates the intended purpose of the certificate. Possible values are:</td>
</tr>
<tr>
<td>clientauth</td>
<td>Client side authentication</td>
</tr>
<tr>
<td>codesigning</td>
<td>Code signing</td>
</tr>
<tr>
<td>emailprotection</td>
<td>Email protection</td>
</tr>
<tr>
<td>msssmartcardlogon</td>
<td>Smart card logon for Microsoft Windows users</td>
</tr>
<tr>
<td>ocspsigning</td>
<td>OCSP response signing</td>
</tr>
<tr>
<td>serverauth</td>
<td>Server side authentication</td>
</tr>
<tr>
<td>timestamping</td>
<td>Digital timestamping</td>
</tr>
<tr>
<td>cmcca</td>
<td>CMC Certificate Authority</td>
</tr>
<tr>
<td>cmcra</td>
<td>CMC Registration Authority</td>
</tr>
<tr>
<td>cmcas</td>
<td>CMC Archive Server</td>
</tr>
<tr>
<td>pkinitkdc</td>
<td>PKINIT Kerberos KDC</td>
</tr>
<tr>
<td>pkinitclientauth</td>
<td>PKINIT Kerberos client</td>
</tr>
<tr>
<td>HostIdMapping</td>
<td>This is the user ID for authorization purposes in the format: subject-id@host-name</td>
</tr>
<tr>
<td>Example:</td>
<td><a href="mailto:DSmith@ibm.com">DSmith@ibm.com</a></td>
</tr>
<tr>
<td>This is a text field of up to 100 characters.</td>
<td></td>
</tr>
<tr>
<td>Key usage</td>
<td>The intended purpose of the certificate. Each possible value is shown in Table 67 on page 384 with its intended purpose and possible PKIX bits.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Base64-encoded PKCS #10 certificate request</td>
<td>(This is for server or device enrollment only.) You create a certificate request on behalf of another server (which could be a z/OS server or other type of server) or device for which you are requesting a certificate. You use software specific to that server to generate the PKCS #10 request before going to the PKI Services website. Save the request in a file. Then open the file in a text editor such as Windows Notepad and copy and paste the contents into the text box on the enrollment form. A text area of 70 columns and 12 rows is allocated for this certificate request. Here is an example of the certificate request:</td>
</tr>
<tr>
<td>PKI Services internal use fields</td>
<td></td>
</tr>
<tr>
<td>Challenge passphrase</td>
<td>This is the passphrase you entered when requesting a certificate. You type the same passphrase, exactly as you typed it on the request form. This is a case-sensitive text field of up to 32 characters.</td>
</tr>
<tr>
<td>KeySize</td>
<td>The size of the key pair (public key and private key) that you want PKI Services to generate for you.</td>
</tr>
<tr>
<td>Label</td>
<td>The label assigned to the requested certificate. This is a text field of up to 20 characters. This field applies only to SAF certificates.</td>
</tr>
<tr>
<td>Notification email address</td>
<td>Email address for notification purposes. This is a text field of up to 64 characters. <strong>Note:</strong> If you specify a value for this parameter and for Mail, the two values must be the same.</td>
</tr>
<tr>
<td>Passphrase</td>
<td>You decide this value when requesting a certificate (and must later supply this value when retrieving the certificate). You enter and then reenter this when requesting a certificate. This is a case-sensitive text field of up to 20 characters. (There is no minimum number of characters, and you can use any characters, but alphanumeric characters (A–Z, a–z, and 0–9) are suggested.</td>
</tr>
<tr>
<td>Requestor’s name</td>
<td>Your name (for tracking purposes). This can be in any format, for example, John Smith or John. J. Smith. This is a text field of up to 32 characters. <strong>Note:</strong> For a PKI generated key certificate, the requestor name needs to be in the form of an email address.</td>
</tr>
<tr>
<td>Transaction ID</td>
<td>This is assigned after you request your certificate. When it is displayed, you need to record this number. This is a text field of up to 56 characters.</td>
</tr>
<tr>
<td>Browser-specific fields</td>
<td></td>
</tr>
</tbody>
</table>

For a sample of the enrollment form showing the text box for a PKCS #10 request, see Figure 45 on page 388.
Table 66. Summary of fields in end-user web pages (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptographic service provider</td>
<td>(This is for the Internet Explorer browser only.) The cryptographic service provider to generate your public/private key pair. You select a value from the drop-down list. Larger keys are more secure, but they also increase the time that is needed for connecting to a secure session.</td>
</tr>
<tr>
<td>Key protection</td>
<td>(This is for the Internet Explorer browser only.) This asks if you want to enable private key protection. (The drop-down choices are Yes and No.)</td>
</tr>
<tr>
<td>Key size</td>
<td>(This is for Mozilla-based browsers only.) This is the key size for your public/private key pair. Select a value from the drop-down list. Larger keys are more secure, but they also increase the time needed for connecting to a secure session.</td>
</tr>
</tbody>
</table>

Table 67. KeyUsage values and their intended purpose and possible PKIX bits

<table>
<thead>
<tr>
<th>KeyUsage value</th>
<th>Intended purpose</th>
<th>PKIX bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>certsign</td>
<td>Certificate and CRL signing</td>
<td>KeyCertSign and cRLSign</td>
</tr>
<tr>
<td>crlsign</td>
<td>CRL signing</td>
<td>cRLSign</td>
</tr>
<tr>
<td>dataencrypt, dataencipherment, or dataenciph</td>
<td>Data encryption</td>
<td>dataEncipherment</td>
</tr>
<tr>
<td>digitalsig or digitalsignature</td>
<td>Authentication</td>
<td>digitalSignature</td>
</tr>
<tr>
<td>docsing or nonrepudiation</td>
<td>Document signing</td>
<td>nonRepudiation</td>
</tr>
<tr>
<td>handshake</td>
<td>Protocol handshaking (for example, SSL)</td>
<td>digitalSignature and keyEncipherment</td>
</tr>
<tr>
<td>keyagree or keyagreement</td>
<td>Key agreement</td>
<td>keyAgreement</td>
</tr>
<tr>
<td>keycertsign</td>
<td>Certificate signing</td>
<td>keyCertSign</td>
</tr>
<tr>
<td>keyencrypt, keyencipherment, or keyenciph</td>
<td>Key transport</td>
<td>keyEncipherment</td>
</tr>
</tbody>
</table>

Steps for requesting a new certificate

To request a new certificate, first go to the PKI Services home page. (See Figure 42 on page 377.)

Perform the following steps to request a new certificate:

1. Click the down arrow to the right of the field beside Request a new certificate using a model. This displays a list of certificate templates from which you can select.

**For SCEP and EST preregistration:** Do not follow these steps to request a SCEP or EST (preregistration) certificate template. Instead, go to “Steps for preregistering an SCEP or EST client” on page 402.

The following list shows the certificate templates that PKI Services provides by default. This list might differ from the certificate templates your installation provides because your installation can customize the certificate templates and web pages.

- One-year SAF server certificate
- One-year SAF browser certificate
- One-year PKI SSL browser certificate (See Figure 44 on page 386 to see a sample of this web page.)
• One-year PKI SSL S/MIME browser certificate
• One-year PKI generated key certificate
• Two-year PKI browser certificate for authenticating to z/OS
• Two-year PKI Authenticode - code signing server certificate
• Two-year PKI Windows logon certificate
• Two-year EV SSL server certificate
• Five-year PKI SSL server certificate
• n-year PKI browser certificate for extensions demonstration
• Five-year SCEP certificate - Preregistration
• Two-year EST certificate - Preregistration
• Five-year PKI IPSEC server (firewall) certificate
• Five-year PKI intermediate CA server certificate

2. Click one of the items in the list. The drop-down list then collapses so that only the certificate you selected appears in the field and is highlighted.

3. Click Request certificate. A form where you fill in information is displayed.
   
   **Note:** You might need to click through some additional panels specific to your browser (for example, clicking Next on a Mozilla-based browser or answering Do you want to proceed? on Internet Explorer) before the certificate request form appears.

4. Fill in the necessary information in the certificate request form.

   The form that appears depends on the certificate you are requesting and, in some instances, the fields that appear on the form depend on the browser you are using. **Example:** If you request a one-year SSL browser certificate, the form shown in Figure 44 on page 386 appears.
1-Year SSL Browser Certificate

Choose one of the following:

- Request a New Certificate

  Enter values for the following field(s)

  Your name for tracking this request (optional)

  Email address for distinguished name (optional)

  Common Name

  Email address for notification purposes (optional)

  Pass phrase for securing this request. You will need to supply this value when receiving your certificate

- Pick Up a Previously Issued Certificate

  Retrieve your certificate

  email: webmaster@your-company.com

Figure 44. One-year SSL browser certificate request form

Note: In the case of the one-year SSL browser certificate, fill in your common name. (See Table 66 on page 379 for descriptions of fields.) If you are using a Mozilla-based browser, select a key size from a drop-down list. Alternately, if you are using Internet Explorer, click the drop-down lists to select your cryptographic service provider and to specify whether to use strong private key protection.

5. If you are requesting a server or device certificate, you need to supply a base64-encoded PKCS #10 certificate request. Use software specific to that server to generate the PKCS #10 request before going to the PKI website. Paste the request into the web page as shown in Figure 45 on page 388.

For example, you could use the RACDCERT command to generate the PKCS #10 request. Assume that the server has the distinguished name OU=Inventory,O=XYZZY,C=US and a domain name xyzzy.com. This server runs on z/OS with the user ID INVSERV. First, generate a self-signed certificate for the server and assign the label "Inventory Server" to the certificate. The certificate is associated with the user ID that is associated with the server (INVSERV).

```
RACDCERT ID(INVSERV)
  GENCERT
  SUBJECTSDN(CN('xyzzy.com'))
  OU('Inventory')
  O('XYZZY')
  C('US'))
  WITHLABEL('Inventory Server')
```
Next, generate a PKCS #10 Base64-encoded certificate request based on the certificate you just created, and write the request to a data set.

```
RACDCERT ID(INVSERV)
   GENREQ(LABEL('Inventory Server'))
   DSN('WAIC.INVSERV.GENREQ')
```

Copy the PKCS #10 request from the data set WAIC.INVSERV.GENREQ and paste it into the field **Base64 encoded PKCS#10 certificate request.**
5-Year PKI SSL Server Certificate

Choose one of the following:

- **Request a New Certificate**

  Enter values for the following field(s):
  
  Your name for tracking this request (Optional)
  
  Email address for distinguished name (Optional)
  
  Common Name (Optional)
  
  Organizational Unit (Optional)
  
  Organizational Unit (Optional)
  
  Organization (Optional)
  
  Street address (Optional)
  
  Locality (Optional)
  
  State or Province (Optional)
  
  Zipcode or postal code (Optional)
  
  Country (Optional)
  
  Email address for alternate name (Optional)
  
  Domain name for alternate name (Optional)
  
  Uniform Resource Identifier for alternate name (Optional)
  
  IP address for alternate name in dotted decimal form (Optional)
  
  Email address for notification purposes (Optional)
  
  Pass phrase for securing this request: You will need to supply this value when retrieving your certificate
  
  Reenter your pass phrase to confirm
  
  Base64 encoded PKCS#10 certificate request
  
  [Base64 encoded PKCS#10 certificate request]

- **Pick Up a Previously Issued Certificate**

  [Pick Up a Previously Issued Certificate]

  email: webmaster@your-company.com

*Figure 45. Supplying the PKCS #10 certificate request for a server or device certificate*
For server certificates where a base64-encoded PKCS #10 certificate request is supplied, specify one or more of the fields related to the subject’s distinguished name only if you want to change the distinguished name supplied in the PKCS #10 certificate request. If you change one of these fields, the subject’s distinguished name specified in the PKCS #10 certificate request is ignored and you must respecify the entire distinguished name (all fields). For a list of the fields related to the subject’s distinguished name, see Table 66 on page 379.

6. Fill in the passphrase on the certificate request form (twice). This is a value known only to you. Pick a value that you can easily remember because you need to supply the same passphrase when you pick up your certificate. Do not use a sensitive value such as your ATM pin or login password.

7. Fill in any optional information you want. When you are satisfied with the information you have entered, click Submit certificate request. If the request is successful, the results depend on the type of certificate you requested.

• For all certificate types except one-year PKI generated key certificates, you see a page like the one shown in Figure 46 on page 389, which tells you your transaction ID.

**Request submitted successfully**

Here’s your transaction ID. You will need it to retrieve your certificate. Press ‘Continue’ to retrieve the certificate.

![Transaction ID](https://example.com/transaction_id.jpg)

email: webmaster@your-company.com

**Figure 46. Successful request displays transaction ID**

a. Make a note of the transaction ID. (You can copy and paste the transaction ID to a file so that you have it for future reference, or you can write it in the following box. The reason for keeping a record of the transaction ID is that, depending on how you go to the web page to retrieve your certificate (see Figure 47 on page 390), you might have to fill in the transaction ID on that web page.)

   **Transaction ID:**

b. Click Continue. This displays the following web page:
Retrieve Your 1-Year PKI SSL Browser Certificate

Please bookmark this page

Since your certificate may not have been issued yet, we recommend that you create a bookmark to this location so that when you bookmark, the browser will display your transaction ID. This is the easiest way to check your status.

Enter the assigned transaction ID
1kg5y*CYaqmG2sHV*******

If you specified a pass phrase when submitting the certificate request, type it here, exactly as you typed it on the request form

Retrieve and Install Certificate

Home page

email: webmaster@your-company.com

Figure 47. Web page to retrieve your certificate
c. Bookmark this web page.

Notes:

1) After you submit the request for a certificate, your PKI Services administrator might need to approve the request before you can pick up your certificate. The amount of time that this takes can vary from a few minutes to a few days, depending on your installation. You bookmark this web page so that you can return to it at a later time.

2) If your installation has enabled email notification and you supplied a valid email address when submitting your certificate request, then you receive an email message when your certificate is ready for pick-up or if PKI Services rejects your certificate request.

d. From this web page, you can start the steps to retrieve your certificate (see “Steps for retrieving your certificate from the bookmarked web page” on page 391) or you can return to the PKI Services home page (by clicking Home).

- For a one-year PKI generated key certificate, you see a page like the one shown in Figure 48 on page 390

Request submitted successfully

A link to pick up the certificate was sent to the specified requestor's email address at lewallen@us.ibm.com.

Home Page

email: webmaster@your-company.com

Figure 48. Successful request for a one-year PKI generated key certificate

Unlike other types of certificates, this page does not show you the transaction ID for your certificate. Instead, PKI Services sends an email to the address you specified in the request. The email contains a link to the certificate.

Retrieving your certificate

For most certificate types, you can retrieve your certificate:
From the web page you bookmarked in Step “7.c” on page 390. (This web page contains your transaction ID, so you do not have to enter it.) (See “Steps for retrieving your certificate from the bookmarked web page” on page 391.)

From the PKI Services home page. (See Figure 42 on page 377 and “Steps for retrieving your certificate from the PKI Services home page” on page 392.)

For a one-year PKI generated key certificate, you receive an email to notify you when your certificate is ready for retrieval. The email contains a link to the certificate. (See “Steps for retrieving a PKI generated key certificate” on page 393.)

If your company has enabled email notification for non-SAF certificates and you supplied a valid email address when submitting your certificate request, you receive an email to notify you when your certificate is ready for retrieval (or if your certificate request has been rejected).

**Note:** When a certificate is retrieved, it can be of different formats:

- If the keys are not generated by PKI Services, the returned format can be a single X.509 certificate or a chain of certificates, depending on the authority of the surrogate ID that does the EXPORT.
- If the PKI Services generated the keys for a certificate request, the returned format is a PKCS#12 package. The PKCS#12 package will by default contain the requested certificate, the private key, and the PKI Services CA certificate that is used to sign the requested certificate. However, the contents of the PKCS#12 package can be tailored using the PKCS#12 content configuration value in the pkiserv.conf file.

**Steps for retrieving your certificate from the bookmarked web page**

Perform the following steps to retrieve your certificate from the bookmarked web page:

1. Go to the bookmarked web page. (See Figure 47 on page 390.)

2. If you entered a passphrase when requesting your certificate, enter the passphrase.

3. Click **Retrieve and install certificate**. If you are using a Mozilla-based browser, go to Step “5” on page 392. If you are using Internet Explorer and the retrieval of a certificate is successful, this displays the web page shown in Figure 49 on page 391. (This is for a browser certificate. For a server certificate, Figure 50 on page 392 shows an example of the web page.)

**Internet Explorer certificate install**

Click "Install Certificate" to store your new certificate into your browser.

![Install Certificate]

![Home page]

*Figure 49. Browser certificate installation web page*
Using the end-user web pages

Here's Your Certificate. Cut and Paste it to a File

```plaintext
-----BEGIN CERTIFICATE-----
MIICcCICAaKAwIBAgIDAgEAMC4XDTAlMDkwMTIyMzEwMFoXDTExMDkxMjgyMzYx
MDEwWhsxCzAJBgNVBAYTAlNAQ0ExCzAJBgNVBAMTB0FSTFJFTEhUMSAwDgYDVQCA
BQAwHjETMIIwIzADBgNVHQ4DDDAgGgYDVQQIEwFJTEhUMDAkBggrBgEFBQcwAY
MDQ0MIGfMA0GCSqGSIb3DQEBCwUAAR8EADw8Ti2+8sMv4xJz7YjUo53OZS85O
b8/N5vQ0uXaZvTz6da+5fMzIw+MlzOo6BoXZg6IN6wz8YzjK+9wMVj6zG35
-----END CERTIFICATE-----
```

Figure 50. Server certificate installation web page

4. Click **Install certificate**. If the certificate installs successfully, you get a popup window that says *Your new certificate installed successfully.*

5. Check that your certificate installed correctly:
   - For a Mozilla-based browser, navigate to **Options**, then **Advanced → Certificates → View Certificates → Your Certificates**. Your certificate should appear in the list. Select it and click Verify.
   - For Internet Explorer, click **Tools → Internet Options**, then **Content, Certificates**. Your certificate should appear in the Personal list. Click Advanced to see additional information.

Steps for retrieving your certificate from the PKI Services home page

**Before you begin**
To retrieve your certificate from the PKI Services home page, you must first know your transaction ID. You should have recorded this when your certificate request was successful. (See Figure 46 on page 389.)

**Procedure**
Perform the following steps to retrieve your certificate from the PKI Services home page:

1. Enter your transaction ID and select the certificate type using the drop-down. Then click **Pick up certificate** on the PKI Services home page. (See Figure 42 on page 377.) This displays the web page that Figure 47 on page 390 shows.

2. Enter your passphrase (this is the challenge passphrase) if you specified one when requesting your certificate.

3. Click **Retrieve and install certificate**. If you are using a Mozilla-based browser, go to Step “5” on page 393. If you are using Internet Explorer and the retrieval of the certificate is successful, this displays the web page that Figure 49 on page 391 shows. (This is for a browser certificate. For a server certificate, Figure 50 on page 392 shows an example of the web page.)

4. Click **Install certificate**. If the certificate installs successfully, you get a popup window that says *Your new certificate installed successfully.*
5. Check that your certificate installed correctly:
   - For a Mozilla-based browser, click **Security**, then Certificates → Yours. Your certificate should appear in the list. Select it and click Verify.
   - For Internet Explorer, Click Tools → Internet Options, then Content, Certificates. Your certificate should appear in the Personal list. Click Advanced to see additional information.

---

**Steps for retrieving a PKI generated key certificate**

Perform the following steps to retrieve your PKI generated key certificate.

**Before you begin**

You need to have received an email indicating that your certificate is ready to be picked up.

**Procedure**

1. The email informing you that your certificate is ready to be picked up appears similar to the one shown in Figure 51 on page 393. You have two alternatives:
   - Click the link for your certificate in the email.
   - Copy the transaction ID from the email. Go to the PKI Services home page (see Figure 42 on page 377). Paste the transaction ID into the field labeled "Enter the assigned transaction ID" and click **Pick up certificate**.

   **Attention - Please do not reply to this message as it was automatically sent by a service machine.**

   Dear lewallen@us.ibm.com,

   Thank you for choosing dime-o-cert PKI. The certificate you requested for subject CN=Rocky,OU=Class 1 Internet Certificate CA,O=The Firm is now ready for pickup.


   If that link does not work, try to go to http://alps4027.pok.ibm.com/Customers/ssl-cgi/camain.rexx? And enter the transaction ID listed below: 1kkLpBZvA+q/2SHV+++++++ You will need to input your passphrase that you entered when you submitted the request.

   **Figure 51. Email notification that your PKI generated key certificate is ready for pickup**

2. The web page shown in Figure 52 on page 394 is displayed. Note that the transaction ID is filled in. Enter the passphrase that you entered when you submitted the certificate request, and click **Retrieve Certificate**.
Retrieve Your PKI Key Certificate

[Figure 52. Web page for retrieving a PKI generated key certificate]

3. A window opens asking whether you want to open or save the PKCS #12 package containing the certificate and private key. This window is shown in Figure 53 on page 394.

[Figure 53. Window asking whether to open or save the PKCS #12 package]

Click Open to invoke the Certificate Import Wizard to copy the certificate to a certificate store. Click Save to save the PKCS #12 package in a file.

Results
When you are done, you have retrieved your PKI generated key certificate and private key.

Steps for renewing a certificate

Note: For a PKI generated key certificate, if you have changed your email address since you originally requested the certificate, and the administrator has changed your email in the requester field in the certificate, you cannot renew the certificate.

Perform the following steps to renew a certificate:

1. On the PKI Services home page (see Figure 42 on page 377), click Renew or revoke certificate. This displays a popup window with a list of certificates, such as the following figure shows:
2. The popup window might list more than one certificate. The certificates are listed by nickname in the order they are installed in the browser. Therefore, you might not be able to identify the PKI Services certificate you want to renew. Highlight the entry you think is the correct one and click **OK**. If the certificate you selected is one that PKI Services issued and it is not expired or revoked, Figure 55 on page 396 shows an example of the web page you might see, depending on the certificate you are renewing:
Renew or Revoke a Browser Certificate

Here is the certificate you selected:

| Requestor: | Gumby          | Created: | 2007/04/04 |
| Status:     | Active         | Modified: | 2007/04/04 |
| Template:   | 1-Year PKI SSL Browser Certificate |
| Serial #:   | 5              |

| Subject: | MAIL=ymc@us.ibm.com,CN=Gumby,OU=Class 1 Internet Certificate CA,O=The Firm |
| Issuer:  | OU=Master CA,O=IBM,C=US |
| Validity: | 2007/04/04 00:00:00 - 2008/04/02 23:59:59 |
| Usage:    | handshake(digitalSignature, keyEncipherment) |
| Extended Usage: | clientauth |

If this is the correct certificate, choose one of the following:

(Otherwise you need to restart your browser to pick another certificate)

- Renew the above certificate

  Email address for notification purposes (optional)

  Pass phrase for securing this request. You will need to supply this value when retrieving your certificate

  Reenter your pass phrase to confirm

  Renew

- Revoke the above certificate

  Revoke | No Reason

- Suspend the above certificate

  Suspend

email: webmaster@your-company.com

Figure 55. Renew or revoke a certificate web page

Notes:
a. If this is not the PKI Services certificate you want to renew, you need to close your browser (because the browser caches information) before again clicking **Renew or revoke certificate** as in Step “1” on page 394.

b. If the certificate has the MAIL attribute in the subject’s distinguished name, the value of NotifyEmail must match it.

3. Under the Renew the above certificate section, enter your passphrase in the two fields requesting it.

4. Click **Renew**.

5. If you are using Internet Explorer, and you do not have the appropriate PKI Services ActiveX program installed, PKI Services prompts you to install the ActiveX program. Follow the directions in the prompt. For more information, see “Installing the PKI Services ActiveX program” on page 693.

6. If the renewal request is successful, this displays a web page that says Request submitted successfully and displays the transaction ID. Click **Continue** on this web page.

7. This takes you the web page from which you retrieve your certificate. (See Figure 47 on page 390 for an example of this web page and “Steps for retrieving your certificate from the bookmarked web page” on page 391 for the directions to follow.)

---

**Steps for revoking or suspending a certificate**

Revoking or suspending a certificate means that you cannot continue to use the certificate. You might want to permanently **revoke** your certificate if you suspect your private key has been compromised. You might want to **suspend** (temporarily revoke) your certificate if you want to discontinue using it for a period of time (known as the suspension **grace period**).

If you suspend your certificate, the PKI administrator can **resume** (reactivate) the certificate, or permanently revoke it, if the certificate has not yet expired and the grace period has not elapsed. If the grace period has elapsed, the certificate is permanently revoked the next time the certificate revocation lists (CRLs) are issued.

Perform the following steps to revoke or suspend a certificate:

1. On the PKI Services home page (see Figure 42 on page 377), click **Renew or revoke certificate**. This displays a popup window with a list of certificates, as in Figure 54 on page 395.

2. The popup window might list more than one certificate. The certificates are listed by nickname in the order they are installed in the browser. You might not be able to identify the PKI Services certificate you want to revoke or suspend. Highlight the entry that you think is the correct one and click **OK**. If the certificate you selected is one that PKI Services issued and it is not expired or revoked, this displays the "Renew or revoke a browser certificate" web page. (See “Steps for renewing a certificate” on page 394.)

   **Note:** If this is not the PKI Services certificate you want to revoke or suspend, you need to close your browser before again clicking **Renew or revoke certificate** as in Step “1” on page 397.

3. Make sure the certificate you want is the one described at the beginning of the web page. Click **Revoke** or **Suspend**. Note that when you revoke a certificate, you can click the drop-down list (of reasons) to select a reason, if you want.
4. This displays a web page that says Request submitted successfully. You can click **Home page** to return to the PKI Services home page.

**When you are done:** You can no longer use the certificate. If you suspended the certificate, contact your PKI administrator when you want to have it resumed.

### Recovering a certificate whose keys were generated by PKI Services

If you request a PKI generated key certificate, PKI Services generates the public and private keys for the certificate and stores the certificate and keys in the ICSF token database (TKDS). If you lose the original certificate, PKI Services can recover the stored certificate and private key and return them to you in a PKCS #12 package.

### Steps for recovering a certificate whose keys were generated by PKI Services

**Before you begin**
You need to know the email address you used when you requested the certificate. You also should know the passphrase that you entered on the certificate request. However, if you have forgotten the passphrase, and your company has implemented security questions, and you answered the security questions when you requested the certificate, you can provide those answers instead of the passphrase.

**About this task**
Perform the following steps to recover a certificate whose keys were generated by PKI Services.

**Procedure**
1. On the PKI Services home page (see Figure 42 on page 377), click **Recover Certificate**.
   A window similar to the one shown in Figure 56 on page 398 opens.

#### Recover previously issued certificate

**Enter the email address when the original certificate was requested**

**Enter the same pass phrase as on the request form**

[Click here if you forget the pass phrase]

[Recover Certificate]

[Home Page]

email: webmaster@your-company.com

*Figure 56. web page to recover a certificate*
2. On the "Recover previously issued certificate" window, take one of the following actions:

a) If you remember the passphrase you used when you requested the certificate that you want to recover, enter the passphrase and the email address you used when you requested the certificate and click Recover Certificate.

b) If you have forgotten the passphrase you used, click Click here if you forget the pass phrase. A web page similar to the one shown in Figure 57 on page 399 is displayed. Enter the email address you used when you requested the certificate and the answers to the security questions, and click Recover Certificate.

**Recover your certificate**

Security questions - answer the following with the same answers you provided in the original request if you forget the pass phrase.

Enter the email address when the original certificate was requested

What's the intended use of this certificate?

What's the name of your elementary school?

Recover Certificate

Home Page

email: webmaster@your-company.com

*Figure 57. web page requesting answers to security questions when you have forgotten the passphrase*

3. The web page shown in Figure 58 on page 399 is displayed listing the certificates that you can recover, and an email with links to those certificates is sent to your email address.

**Certificate(s) to be recovered**

The following issued certificates were requested by the specified email address lawallen@us.ibm.com with the specified pass phrase or security answers.

A note has been sent to the above address. Use the supplied link from the note to recover the one you need.

<table>
<thead>
<tr>
<th>Show Pass phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial #: 000000000000008</td>
</tr>
<tr>
<td>Subject: CN=Nancy Lawallen,OU=Class 1 Internet Certificate CA,O=The Firm</td>
</tr>
<tr>
<td>Validity: 2008/10/10 00:00:00 - 2008/10/12 00:00:00</td>
</tr>
</tbody>
</table>

Home Page

*Figure 58. web page listing certificates that can be recovered*

Click Show Pass phrase to find out the pass phrase for the certificate you want to recover, if you have forgotten it. You need it to recover the certificate. The passphrase is displayed as shown in Figure 59 on page 400. Click Hide Pass phrase to hide the passphrase again.
Certificate(s) to be recovered

The following issued certificates were requested by the specified email address lewallen@us.ibm.com with the specified pass phrase or security answers.

A note has been sent to the above address. Use the supplied link from the note to recover the one you need.

Figure 59. web page showing the passphrase for a certificate to be recovered

4. Open the email you were sent. Figure 60 on page 400 shows a sample email that lists one certificate eligible for recovery. Click the link for the certificate that you want to recover.

Attention - Please do not reply to this message as it was automatically sent by a service machine.

Dear lewallen@us.ibm.com,

Here is a list of certificate(s) that satisfy your searching criteria for recovery:
0000000000000008 : CN=Nancy Lewallen,OU=Class 1 Internet Certificate CA,O=The Firm

Please choose the certificate you want and visit the corresponding link to retrieve it (you can identify the certificate by the serial number from the part of the link between '?' and '&')

https://www.dimeocert.com/Customers/ssl-cgi-in/caretrieve.rexx?SerialNo=0000000000000008&KeyID=2FBE1B1AC36F63C712AB6F5B829681549FD2095E

You need to input your pass phrase that you entered when you submitted the request.

Figure 60. Sample email that lists certificates that can be recovered

5. The link takes you to the web page shown in Figure 61 on page 401.
Retrieve your recovered certificate

Key ID [51427A4B0BF97A031C]

Serial number [000000000000000D]

Enter the requestor’s email address

Enter the same pass phrase as on the request form

Retrieve Certificate

Home Page

email: webmaster@your-company.com

Figure 61. web page to retrieve a recovered certificate

Fill in the email address and passphrase you used on the original certificate request, and click Retrieve Certificate.

SECTION 6. A window opens asking whether you want to open or save the PKCS #12 package containing the certificate and private key. This window is shown in Figure 62 on page 401.

Figure 62. Window asking whether to open or save the PKCS #12 package

Click Open to invoke the Certificate Import Wizard to copy the certificate to a certificate store. Click Save to save the PKCS #12 package in a file.

Results

When you are done, you have recovered your PKI generated key certificate.
Steps for preregistering an SCEP or EST client

These steps are performed by the PKI administrator using the end-user web pages. To preregister an SCEP or EST client, first go to the PKI Services home page. (See Figure 42 on page 377.)

Perform the following steps to complete a preregistration request and preregister an SCEP or EST client:

1. Click the down arrow to the right of the field beside Request a new certificate using a model. (This displays a list of certificate templates from which you can select.) Select 5-Year SCEP Certificate - Preregistration from the list. The drop-down list then collapses so that only the preregistration template appears in the field and is highlighted.

2. Click Request certificate. A form where you fill in information is displayed.

3. The preregistration form appears. (See Figure 63 on page 402.) Fill in the necessary information in the preregistration form for this SCEP client. The form that appears depends how this template is customized for your CA domain.

4. Fill in the passphrase on the certificate request form (twice). This SCEP or EST client must match this passphrase to successfully request a certificate. Do not use a sensitive value such as your ATM pin or login password.

5. Fill in any optional information as needed. This SCEP or EST client must match all subject and alternate name information you enter to successfully request a certificate. When you are satisfied with the information you have entered, click Submit certificate request.
If your preregistration request is successful, you see a page like the one shown in Figure 64 on page 403, which tells you your temporary transaction ID.

**Preregistration successful**

Here’s the temporary transaction ID so you may locate the preregistration record: 1j5NqaAnB1q+VhwdWBrt3kI=

[Examine Preregistration Record]

Press 'Preregister' to preregister another client using the same template.

[Preregister]

---

6. (Optional) Click **Examine Preregistration Record**.

---

7. (Optional) Click **Preregister** to preregister another client using the same template.

---

**When you are done:** You have successfully preregistered a SCEP or EST client. Return to the PKI Services home page (by clicking **Home Page**) or return to the administration home page (by clicking **Administration Home Page**).
Chapter 19. Using the administration web pages

This topic presents background information about certificate requests and certificates and explains how the administrator can use the administration web pages to perform the following tasks:

• Process a certificate request
  – Approve a request without making changes
  – Approve a request with changes
  – Reject a request
  – Delete a request
• Process a preregistration record
  – Delete a certificate request from a preregistered client
    (For information about preregistering clients, see “Steps for preregistering an SCEP or EST client” on page 402.)
• Process a certificate
  – Revoke a certificate
  – Suspend a certificate
  – Resume a certificate
  – Delete a certificate
• Perform searches for certificate requests, certificates, and preregistration records

Note: The PKI Services web pages in this topic might differ slightly from those on the web. If you need to see the exact content, view the pages on the web. Additionally, the pages might contain differences depending on the browser you are using. This topic assumes that you are using Internet Explorer.

Steps for accessing the administration home page

Perform the following preliminary steps to access the administration home page:

1. Get your organization’s URL for accessing the PKI Services web pages. Enter this URL in your browser. This takes you to the PKI Services administration start page.

   The administration start page contains a button for the administration home page (see the default "PKI Services Administration" home page in Figure 68 on page 411) and a button for each end-user home page (see the default "PKI Administrators Start Page" in Figure 65 on page 406).
PKI Administrators Start Page

Install the CA certificate to enable SSL sessions for PKI Services

Choose one of the following:

Manage existing certificates and certificate requests

Go to the Customers' home page

---

2. If this is the first time you have accessed these web pages, you must install the CA certificate into your browser. Click the Install the CA certificate link and follow the directions.

The following is a sample of the directions to follow for installing the CA certificate on Internet Explorer:

a. After you click the Install the CA certificate link, a popup window called "File download" appears. Make sure that the "Open this file from its current location" radio button is selected (rather than "Save this file to disk"). Then click OK. The following is an example of the popup window you might see, depending on the CA certificate you have installed:
b. Click **Install certificate**. (This initiates a series of pop-ups in which you need to click **Next** and finally **Finish**, culminating in a popup window that says "The import was successful").

**Note:** You must explicitly select a store to place the certificate in. For more information, see “Installing the PKI Services CA certificate on a Microsoft Windows system” on page 696.

---

3. Click **Go to administration page**.

---

4. You are prompted to authenticate, as shown in the following figure. Provide the necessary information:
Figure 67. Entering your user ID and password

a. Fill in your z/OS user ID and password.
b. If you want to eliminate having to reenter your user ID and password each time you access the administration pages, check the check box.
c. Click OK.

This calls up the “PKI Services Administration” web page. (See Figure 68 on page 411.)

Notes:
• Your web server programmer might provide you with an alternate URL for accessing the administration home page. You might also have to authenticate using a certificate instead of a user ID and password.
• Your browser caches the authentication information that you provide. Therefore, if you need to change this information, you first must close all instances of your browser. Then open the browser and, when the panel shown in Figure 67 on page 408 appears, enter the correct information.

Fields in the administration web pages

When you process certificates requests and certificates, you provide information for various fields in the web pages. The following table describes the fields in the administration web pages:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent activity</td>
<td>This specifies a time range for searches. Possible values include:</td>
</tr>
<tr>
<td></td>
<td>• Not selected</td>
</tr>
<tr>
<td></td>
<td>• Within the past day</td>
</tr>
<tr>
<td></td>
<td>• Within the past week</td>
</tr>
<tr>
<td></td>
<td>• Within the past month</td>
</tr>
<tr>
<td></td>
<td>• Within the past six months</td>
</tr>
<tr>
<td>Requestor name</td>
<td>The name of the person requesting the certificate, as it appears in the common name field of the certificate request form.</td>
</tr>
<tr>
<td>Serial number</td>
<td>PKI Services assigns this number to a certificate when you approve it.</td>
</tr>
</tbody>
</table>
Table 68. Summary of fields in the administration pages (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction ID</td>
<td>PKI Services assigns this number to a request when a user requests it. This is a text field of up to 56 characters.</td>
</tr>
</tbody>
</table>

**Processing certificate requests**

Before you can use the web page to process certificate requests, you need to understand the statuses of certificate requests and the actions you can perform on these certificate requests.

**Status of certificate requests**

Requests for certificates are kept in a request database while they are active. This is from the moment they are created until an event occurs that causes them to be deleted. The following table summarizes possible statuses. During the time period when a certificate request is active, it can have only one of the following statuses at a time:

Table 69. Statuses of certificate requests

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pending Approval</td>
<td>The request requires administrative approval. No action has been taken on the request yet.</td>
</tr>
<tr>
<td></td>
<td>If the template that is used to create the certificate request specified an <code>&lt;ADMINNUM&gt;</code> value greater than 1, the request status might remain in Pending Approval state if the required number of individual administrator approvals have yet to be made for this request. If an Approve with Modifications is issued on a request that requires multiple approvals, all prior approvals are nullified and the current approval count for the request is set to 1.</td>
</tr>
<tr>
<td>Approved</td>
<td>The administrator explicitly approved the request or it was submitted as an auto-approved certificate request. The actual certificate might or might not have been created.</td>
</tr>
<tr>
<td>Completed</td>
<td>The certificate has been issued and the requestor has retrieved it. This is a final state.</td>
</tr>
<tr>
<td>Preregistered</td>
<td>The certificate request is from a preregistered Simple Certificate Enrollment Protocol (SCEP) or an Enrollment over Secure Protocol (EST) client.</td>
</tr>
<tr>
<td>Rejected</td>
<td>The administrator rejected the request, and the requestor has not been informed of this action (because the user has not tried to retrieve the certificate).</td>
</tr>
<tr>
<td>Rejected, User notified</td>
<td>The administrator rejected the request and the requestor has been informed of this action when attempting to retrieve the certificate. This is a final state.</td>
</tr>
</tbody>
</table>

A request is deleted from the request database when the administrator explicitly deletes it or when the request expires. This expiration time period is configurable and varies depending on whether the request was finalized or not.

**Actions on certificate requests**

The following table summarizes actions on certificate requests and the required status for each of these actions:
Table 70. Summary of actions to perform on requests and required status

<table>
<thead>
<tr>
<th>Action</th>
<th>Meaning</th>
<th>Required status of request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve</td>
<td>Approve the request in its current form. If this is the last required approval, queue a request to generate a certificate.</td>
<td>Pending Approval</td>
</tr>
<tr>
<td>Approve with modifications</td>
<td>Nullify any previous approvals for this request, alter the request as specified, and approve the request. If this request requires multiple approvals, the approval count is reset to 1, and the request remains in Pending Approval state.</td>
<td>Pending Approval</td>
</tr>
<tr>
<td>Reject</td>
<td>Reject the request and not allow for any future modifications of the request.</td>
<td>Pending Approval</td>
</tr>
<tr>
<td>Delete</td>
<td>Permanently remove the request.</td>
<td>All statuses (Pending Approval, Approved, Completed, Preregistered, Rejected, or Rejected, Notified)</td>
</tr>
</tbody>
</table>

Using the PKI Services administration home page

Figure 68 on page 411 shows the "PKI Services Administration" home page.
PKI Services Administration

Choose one of the following:

- **Work with a single certificate request**

  Enter the Transaction ID:

  ![Process Request button]

- **Work with a single issued certificate**

  Enter the Serial Number:

  ![Process Certificate button]

- **Specify search criteria for certificates and certificate requests**

<table>
<thead>
<tr>
<th>Certificate Requests</th>
<th>Issued Certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>◯ Show all requests</td>
<td>◯ Show all issued certificates</td>
</tr>
<tr>
<td>◯ Show requests pending approval</td>
<td>◯ Show revoked certificates</td>
</tr>
<tr>
<td>◯ Show approved requests</td>
<td>◯ Show suspended certificates</td>
</tr>
<tr>
<td>◯ Show completed requests</td>
<td>◯ Show expired certificates</td>
</tr>
<tr>
<td>◯ Show rejected requests</td>
<td>◯ Show active certificates (not expired, not revoked, not suspended)</td>
</tr>
<tr>
<td>◯ Show rejections in which the client has been notified</td>
<td>◯ Show disabled certificates (suspended or revoked, not expired)</td>
</tr>
<tr>
<td>◯ Show preregistered requests</td>
<td>◯ Show active, automatic renewal enabled certificates</td>
</tr>
<tr>
<td></td>
<td>◯ Show active, automatic renewal disabled certificates</td>
</tr>
<tr>
<td></td>
<td>◯ Show active, not renewable certificates</td>
</tr>
</tbody>
</table>

  **Additional search criteria (Optional)**

  Requestor's name

  ![Not Selected dropdown]

  Show recent activity only

  ![Not Selected dropdown]

  Show certificates that will expire

  ![Not Selected dropdown]

  (Only applicable to active certificates when recent activity is not selected)

  ![Find Certificates or Certificate Requests button]

  **Figure 68. PKI Services administration home page**

  This web page allows you to:

  - Process a single certificate request (by specifying its transaction ID)
  - Process a single certificate (by specifying its serial number)
  - Search for groups of certificate requests or certificates by status and additional search criteria so that you can process them
  - Search for certificates based on when they expire.

  You can process a single certificate request or a single preregistered (certificate) request if you know its transaction ID. Otherwise, you can perform a search to display all certificate requests of a particular status.

  **Steps for processing a single request**

  To process a single request, perform the following steps:

  1. On the PKI Services administration home page (see Figure 68 on page 411), enter the transaction ID in the field provided for it, and click **Process request**. This displays the "Single Request" web page shown in Figure 69 on page 412.
2. Make sure that the request is the correct one by reviewing the information in the top part of the web page.

**Guideline:** If this is a preregistered certificate request, examine the fingerprints (the SHA1, SHA256, SHA512, and MD5 hashes) and contact the certificate requester to confirm that the fingerprints in this received request match the fingerprints in the original request. These actions ensure the integrity of the request. (The requester can use the SCEP client software to display the fingerprints saved for the original request.)
Note: If PKI Services is running in FIPS mode (the value specified by _PKISERV_FIPS_LEVEL is not 0), the MD5 algorithm cannot be used to create the fingerprints. The MD5 entry shows 15 colons like this example, ":::::::::::::".

3. Optionally insert a comment.

4. Click one of the choices on the "Single Request" web page to process the request.
   - Approve the request as is
   - Approve the request with modifications
   - Reject request
   - Delete request

The choices on the "Single Request" web page appear based on the status of the request. For example:
   - If the status of a request is Pending Approval, only the first three choices in the preceding list appear.
   - If the administrator has already processed the request or if the request is Preregistered, only Delete request appears.

a. When you click Approve the request as is and processing is successful, the result is a web page that says "Processing is successful", such as the one shown in Figure 70 on page 413. (Otherwise, the web page says "Processing is not successful".)

**Processing successful**

Request with transaction ID 1jLs8xMOaQKIVn4dWBdE3c+ is successfully approved.

You may continue to approve/reject/delete more request(s) by clicking the button below:

- Process More Request(s)
- Administration Home Page
- Home Page

email: webmaster@your-company.com

Figure 70. Processing successful web page

From these web pages, you can then click Process more request(s) to return to the PKI Services administration home page (Figure 68 on page 411).

b. When you click Approve the request with modifications, this displays a "Modify and Approve Request" web page similar to the one shown in Figure 72 on page 415.

If the subject’s distinguished name contained in the current request is not in the proper format for RACF processing, you see the note (Figure 71 on page 413) on the "Modify and Approve Request" web page.

Note - the existing subject's name is not in a format that can be re-created by PKI Services. Therefore, specifying any subject's name field below causes the existing name to be deleted and completely replaced.

Figure 71. Restriction note on the modify and approve request web page
Restriction: If you receive the note that is shown in Figure 71 on page 413, you cannot change any field of the subject’s distinguished name (the common name, organizational unit, or organization field) without causing PKI Services to delete the entire subject’s distinguished name and replace it with your changed values. (This is because the subject’s distinguished name is not in the proper format for RACF processing.)
Modify and Approve Request

<table>
<thead>
<tr>
<th>Requestor</th>
<th>Request Information</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qamby</td>
<td>Trn:1k:Hp0V+YU2ShY++</td>
<td>Created: 2007/04/02</td>
</tr>
<tr>
<td></td>
<td>Template:1-Year PKI SSL Browser Certificate</td>
<td>Modified: 2007/04/02</td>
</tr>
<tr>
<td></td>
<td>Subject:CN=Qamby,OU=Class 1 Internet Certificate, O=The Firm</td>
<td></td>
</tr>
</tbody>
</table>

You may modify the following fields by providing new values. To remove a field simply blank it out or de-select it.

- **Subject Distinguished Name:**

  - Common Name (optional): Qamby
  - Organizational Unit (optional): Class 1 Internet Certificate CA
  - Organization (optional): The Firm

- **Extensions:**

  - Certificate and CRL signer (keyCertSign, cRLSign)
  - Document signing (nonRepudiation)
  - Data encryption (dataEncipherment)
  - Authentication (digitalSignature)
  - Key Transport (keyEncryption)
  - Key agreement (keyAgreement)
  - Certificate signing (keyCertSign)
  - CRL signing (cRLSign)

  Indicate the extended key usage for the certificate (optional)

  - Server side authentication (serverAuth)
  - Client side authentication (clientAuth)
  - Code signing (codeSigning)
  - Email protection (emailProtection)
  - Digital time stamping (timeStamping)
  - OCSP response signing (OCSPSigning)
  - Microsoft Smart Card Logon (msSmartCardLogon)

  HostIdMappings Extension value(s) in subject-id@host-name form (optional)

  HostIdMappings Extension value(s) in subject-id@host-name form (optional)

  HostIdMappings Extension value(s) in subject-id@host-name form (optional)

  HostIdMappings Extension value(s) in subject-id@host-name form (optional)

- **Validity Period:**

  Date certificate becomes valid | Date certificate expires (at end of day)
  
  | 2007 | 4 | 2 | 2008 | 3 | 31 |

  Automatic Renewal: [Not set]

  Action Comment (Optional)

  Approve with specified modifications

  Reset Modified Fields

Figure 72. Modifying the request web page

On the "Modify and Approve Request" web page, you can change the following fields.
Steps for processing requests by performing searches

The administrator can use the web page to search for certificate requests of various statuses. The following table summarizes the searches that are listed on the web page and the certificate requests that are displayed as a result:

<table>
<thead>
<tr>
<th>Table 71. Searches to display certificate requests</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Search criteria</strong></td>
</tr>
<tr>
<td>Show all requests</td>
</tr>
<tr>
<td>Show requests pending approval</td>
</tr>
<tr>
<td>Show approved requests</td>
</tr>
<tr>
<td>Show completed requests</td>
</tr>
<tr>
<td>Show preregistered requests</td>
</tr>
<tr>
<td>Show all rejected requests</td>
</tr>
</tbody>
</table>
Table 71. Searches to display certificate requests (continued)

<table>
<thead>
<tr>
<th>Search criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show rejections in which the client has been notified</td>
<td>Displays certificate requests whose status is Rejected, User Notified.</td>
</tr>
</tbody>
</table>

To process requests by performing a search for requests of a particular status, perform the following steps:

1. On the PKI Services administration home page (see Figure 68 on page 411), select one of the searches by clicking the appropriate choice under Certificate Requests. (Table 71 on page 416 describes these searches.) You can optionally fill in additional search criteria (Requestor's name and Show recent activity only).

   **Guideline:** Queries against the request database might time out if the database contains a large number of records. The performance of the query can be vastly improved by supplying Requestor's name as additional search criteria if the saved requestor data is meaningful to your organization and it is recallable. In this case, a PKI exit can be used to supply a meaningful value, such as a Lotus Notes short name or customer account number.

2. Click **Find certificates or certificate requests**. The following window opens:
Figure 73. Processing requests after searching

**Note:** The table at the beginning of the web page shows the certificate requests that match your search criteria. (If multiple certificate requests match the search criteria, up to ten appear on a web page, and a button at the bottom of the web page allows you to view the next set.)

---

3. You can use this web page:
   - To process a single certificate request
   - To perform the same action on all of the certificate requests that are listed
   - To process selected requests.

To process a single certificate request:

a. Click on its transaction ID in the table at the beginning of the web page. This transfers you to the **Single Request** web page; see Figure 69 on page 412.

b. From the **Single Request** web page, you can perform the steps in the preceding section, starting with Step “2” on page 412.

To perform the same action on all the certificate requests that are listed:
a. Optionally enter a comment.
b. Click one of the actions under in the comment field to perform that action on all listed requests:

**Approve**
Approves without modification all requests that are pending approval.

**Reject**
 Rejects all requests that are pending approval.

**Delete**
Deletes all requests.

**Note:** The Approve and Reject actions appear only if certificate requests are pending approval. Otherwise, only the Delete action appears.

To process selected certificate requests:

a. Clear the check box beside the Select column header. (When the check box beside Select is selected, all the individual check boxes in the body of the table are selected. This means all these certificate requests are selected. Clearing the box in the header clears all the boxes in the body of the table.)

b. Select the check boxes of all the certificate requests for which you want to perform a particular action.

c. Optionally enter a comment.

d. Click one of the actions under the comment field to perform that action on all listed requests. The actions include:

**Approve**
Approves without modification all requests that are pending approval.

**Reject**
Rejects all requests that are pending approval.

**Delete**
Deletes all requests.

**Note:** The Approve and Reject actions appear only if certificate requests are pending approval. Otherwise, only the Delete action appears.

**Tip:** If you select Show all requests (see Figure 68 on page 411) and click Approve on this web page, only the certificate requests whose status is Pending Approval are approved.

Instead of processing one or more certificate requests, you can click Respecify your search criteria web page to return to the PKI Services administration home page (see Figure 68 on page 411) or Home page to return to the PKI Services home page (see Figure 42 on page 377).

4. After you click an action, you see one of the following web pages;

- **Processing successful** (see Figure 74 on page 420)
- **Processing was not successful** (see Figure 75 on page 420)
- **Processing partially successful** (see Figure 76 on page 421)

If Processing was not successful, you can click on the transaction ID to display the Single Request web page; see Figure 69 on page 412. Processing can be unsuccessful because requests do not have the status required for the action you selected; see Table 70 on page 410.

If you get Processing partially successful, you can click on the transaction ID to display the Single Request web page; see Figure 69 on page 412. This message can occur when your organization has more than one administrator and involves the following sequence:

a. One administrator performs a search.
b. Another administrator performs a search before the first administrator has approved requests displayed in the search results.

c. One of the administrators approves only some of the requests.

d. The other administrator tries to approve requests including at least one the preceding administrator has already approved and one that the preceding administrator has not already approved.

**Processing successful**

Requests with specified transaction IDs are successfully approved.

You may continue to approve/reject/delete more request(s) by clicking the button below:

![Process More Request(s)](image)

![Administration Home Page](image)

email: webmaster@your-company.com

*Figure 74. Request processing was successful web page*

**Processing was not successful**

Problem(s) encountered when attempting to approve the following request(s). Click on link(s) for more information. Note that if the request has been deleted, you will not be able to view additional information.

<table>
<thead>
<tr>
<th>Request Transaction ID</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k3R0mG0123fJ23NV++---</td>
<td>Record not found</td>
</tr>
<tr>
<td>1k3R0o1239010192917---</td>
<td>Record not found</td>
</tr>
<tr>
<td>1k3Rh0ePFN2228288+++</td>
<td>The object type or state was not appropriate for this operation</td>
</tr>
<tr>
<td>1k3RonCe98722894+-----</td>
<td>The object type or state was not appropriate for this operation</td>
</tr>
<tr>
<td>1k3R0c18628894+------</td>
<td>The object type or state was not appropriate for this operation</td>
</tr>
</tbody>
</table>

You may continue to approve/reject/delete more request(s) by clicking the button below:

![Process More Request(s)](image)

email: webmaster@your-company.com

*Figure 75. Request processing was not successful web page*
Processing was partially successful

Problem(s) encountered when attempting to approve the following request(s). Click on link(s) for more information.

Note that if the request has been deleted, you will not be able to view additional information.

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kg5g98s74</td>
<td>Not authorized to approve requests created under this template</td>
</tr>
<tr>
<td>1kgd9g9t57</td>
<td>Request already approved</td>
</tr>
</tbody>
</table>

You may continue to process more request(s) by clicking the button below:

- Click [Process more request(s)]
- Click [Administration home page]
- Click [Home page]

Figure 76. Request processing was partially successful web page

5. After approving requests as appropriate, you can:

- Click [Process more request(s)] to return to Figure 73 on page 418.
- Click [Administration home page] to return to Figure 68 on page 411.
- Click [Home page] to return to Figure 42 on page 377.

Processing certificates

Before you can use the web page to process certificates, you need to understand the statuses of certificates and actions you can perform on certificates.

Status of certificates

Certificates that have been created from requests are maintained permanently in an issued certificate database. Another name for this is the issued certificate list (ICL). Issued certificates are also published in an LDAP directory.

A certificate can have only one of the following states (statuses) at a time:

Table 72. Status of certificates

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>The certificate has not yet expired, has not been revoked, and is not currently suspended.</td>
</tr>
<tr>
<td>Active, AutoRenew</td>
<td>The certificate is eligible for automatic renewal and this capability is enabled.</td>
</tr>
<tr>
<td>Active, AutoRenewDisable</td>
<td>The certificate is eligible for automatic renewal but this capability is disabled.</td>
</tr>
<tr>
<td>Active, NotRenewable</td>
<td>The certificate cannot be renewed.</td>
</tr>
</tbody>
</table>
Table 72. Status of certificates (continued)

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expired</td>
<td>The certificate's validity period expired while it was active.</td>
</tr>
<tr>
<td>Revoked</td>
<td>The certificate has not expired but it has been revoked. Such certificates are published on the next certificate revocation list (CRL).</td>
</tr>
<tr>
<td>Revoked, Expired</td>
<td>The certificate was either revoked or suspended, and time has elapsed so that it is now also expired. Such certificates are not published on the next CRL.</td>
</tr>
<tr>
<td>Suspended</td>
<td>The certificate has not expired but it is currently suspended. Such certificates are published on the next certificate revocation list (CRL).</td>
</tr>
</tbody>
</table>

The administrator must approve a request for the certificate to have a status (as enumerated in the preceding list) or for the administrator to delete the certificate from the ICL. (An administrator can delete a certificate from the ICL, but this would not be a normal situation.) Alternately, the administrator can reject a request or delete the request from the request database (RDB). If the administrator does not approve the request, it is never listed in the ICL.

Actions for certificates

The following table summarizes actions on certificates and the required status to perform these actions:

Table 73. Summary of actions to perform and required status to do so

<table>
<thead>
<tr>
<th>Action</th>
<th>Required status of certificate</th>
<th>Who performs action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renew</td>
<td>Active</td>
<td>End user</td>
</tr>
<tr>
<td>Resume</td>
<td>Suspended</td>
<td>Administrator</td>
</tr>
<tr>
<td>Revoke</td>
<td>Active or Suspended</td>
<td>End user or administrator</td>
</tr>
<tr>
<td>Suspend</td>
<td>Active</td>
<td>End user or administrator</td>
</tr>
<tr>
<td>Delete</td>
<td>All statuses (Active, Expired, Suspended, Revoked, or Revoked, Expired)</td>
<td>Administrator</td>
</tr>
<tr>
<td>Enable automatic renewal</td>
<td>Active or Active, AutoRenewDisabled</td>
<td>Administrator</td>
</tr>
<tr>
<td>Disable automatic renewal</td>
<td>Active or Active, AutoRenew</td>
<td>Administrator</td>
</tr>
<tr>
<td>Change requester email</td>
<td>All statuses</td>
<td>Administrator</td>
</tr>
</tbody>
</table>

**Note:** This action applies only to certificates for which PKI Services generated the key pair.

Steps for processing a single certificate

To process a single certificate, perform the following steps:

1. On the PKI Services administration home page (see Figure 68 on page 411), enter the serial number of the certificate you want to process in the field provided for it. Figure 77 on page 423 shows an example of the web page that is displayed:
Single Issued Certificate

<table>
<thead>
<tr>
<th>Requestor:</th>
<th>s@s</th>
<th>Created:</th>
<th>2012/09/27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>Revoked</td>
<td>Modified:</td>
<td>2013/06/07</td>
</tr>
<tr>
<td>Template:</td>
<td>1-Year PKI Generated Key Certificate</td>
<td>PassPhrase:</td>
<td>s</td>
</tr>
<tr>
<td>Serial #:</td>
<td>4D4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous Action Comment:</td>
<td>Suspension grace period lapsed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archived KeyId:</td>
<td>8F71C0080D368D31B5F7230750EF1D88F5938A6C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject:</th>
<th>CN=end to end test,OU=Class 1 Internet Certificate CA,O=The Firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer:</td>
<td>OU=DCEIMGUN CA,O=IBM,C=US</td>
</tr>
<tr>
<td>Validity:</td>
<td>2012/09/27 00:00:00 - 2013/09/26 23:59:59</td>
</tr>
<tr>
<td>Usage:</td>
<td>digitalSignature</td>
</tr>
<tr>
<td>Extended Usage:</td>
<td>not specified</td>
</tr>
<tr>
<td>Key type and key size:</td>
<td>BPECC-160</td>
</tr>
<tr>
<td>Signature algorithm:</td>
<td>sha-1WithRSAEncryption</td>
</tr>
</tbody>
</table>

**Action to take:**

- Change Requestor email
- Delete Certificate

email: webmaster@your-company.com

---

Figure 77. Processing a certificate from the single certificate web page

2. Make sure the certificate is the correct one by reviewing the information in the upper part of the web page.

3. If you are going to process a certificate from this web page, you can optionally insert a comment.

4. Click one of the following actions to process the certificate:

   - **Disable automatic renewal**
     - Disables automatic renewal for the certificate
   - **Enable automatic renewal**
     - Enables automatic renewal for the certificate
   - **Revoke certificate**
     - Revokes the certificate.
Suspend certificate
Suspends the certificate.

Resume certificate
Resumes the certificate.

Delete certificate
Deletes the certificate. (This is for cleanup purposes.)

Change Requestor email
Changes the requestor’s email to the value that you supply in the field next to the button. Use this function when the email address of the requestor of a PKI generated key certificate has changed. If you change the requestor’s email, the certificate cannot be renewed.

Note:

a. The Suspend and Revoke buttons appear only if the status of the certificate is Active.
b. The Resume button appears only if the status of the certificate is Suspended.
c. The Enable Automatic Renewal button appears only if the status of the certificate is Active, AutoRenewDisabled.
d. The Disable Automatic Renewal button appears only if the status of the certificate is Active, AutoRenew.
e. The Change Requestor email button appears only for a PKI generated key certificate.

Steps for processing certificates by performing searches

The administrator can use the web page to search for certificates of various statuses. The following table summarizes the searches listed on the web page and the certificates that are displayed as a result:

<table>
<thead>
<tr>
<th>Searches</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show all issued certificates.</td>
<td>Displays all certificates (can be any status).</td>
</tr>
<tr>
<td>Show revoked certificates.</td>
<td>Displays certificates whose status is Revoked or Revoked, Expired.</td>
</tr>
<tr>
<td>Show suspended certificates.</td>
<td>Displays certificates whose status is Suspended.</td>
</tr>
<tr>
<td>Show expired certificates.</td>
<td>Displays certificates whose status is Expired or Revoked, Expired.</td>
</tr>
<tr>
<td>Show active certificates (not expired, not revoked, not suspended).</td>
<td>Displays certificates whose status is Active.</td>
</tr>
<tr>
<td>Show disabled certificates (suspended or revoked, not expired).</td>
<td>Displays certificate requests whose status is Suspended or Revoked.</td>
</tr>
<tr>
<td>Show certificates with automatic renewal enabled.</td>
<td>Displays certificates whose status is Active, AutoRenew.</td>
</tr>
<tr>
<td>Show certificates with automatic renewal disabled.</td>
<td>Displays certificates whose status is Active, AutoRenewDisabled.</td>
</tr>
<tr>
<td>Show certificates that cannot be renewed.</td>
<td>Displays certificates whose status is Active, NotRenewable.</td>
</tr>
</tbody>
</table>

To process certificates by performing a search for certificates of a particular status, perform the following steps:

1. On the PKI Services administration home page (see Figure 68 on page 411), select one of the searches by clicking the appropriate choice under Issued Certificates. (The preceding table describes these
searches.) You can optionally fill in additional search criteria (Requestor's name and Show recent activity only).

2. Click Find certificates or certificate requests. This displays the following web page.

**Issued Certificates**

The following issued certificates matched the search criteria specified:

<table>
<thead>
<tr>
<th>All</th>
<th>Requestor</th>
<th>Certificate Information</th>
<th>Status</th>
<th>Dates</th>
</tr>
</thead>
</table>
| ✓   | Jim Renew   | Serial #: 19092  
Template: 1-Year PKI SSL Browser Certificate  
Subject: CN=Jim Renew, OU=Class 1 Internet Certificate CA, O=The Firm | Active | Created: 2003/07/17  
Modified: 2003/07/22 |
| ✓   | W.M. Fortey | Serial #: 19093  
Template: 1-Year PKI SSL Browser Certificate  
Subject: MAIL=forteywn@somecompany.com, CN=W.M. Fortey, OU=Class 1 Internet Certificate CA, O=The Firm | Active | Created: 2003/07/21  
Modified: 2003/07/22 |
| ✓   | W.M. Fortey Jr. | Serial #: 19094  
Template: 1-Year PKI SSL Browser Certificate  
Subject: MAIL=forteywnjr@somecompany.com, CN=W.M. Fortey Jr., OU=Class 1 Internet Certificate CA, O=The Firm | Active | Created: 2003/07/21  
Modified: 2003/07/22 |
| ✓   | Doolie Dorbie | Serial #: 19095  
Template: 1-Year PKI SSL Browser Certificate  
Subject: MAIL=dorbie@somecompany.com, CN=Doolie Dorbie, OU=Class 1 Internet Certificate CA, O=The Firm | Active | Created: 2003/07/21  
Modified: 2003/07/22 |

Choose one of the following:

- **Click on a serial number to see more information or to revoke or delete certificates individually**
- **Select and take action against multiple requests at once**

**Action Comment** (Optional)

![Revoke][ ]  
No Reason - Revolve all selected active or suspended certificates

![Suspend][ ] - Suspend all selected active certificates

![Delete][ ] - Delete all selected certificates

---

**Note:** The table at the beginning of the web page shows the certificates that match your search criteria. (If multiple certificates match the search criteria, up to ten appear on a web page, and a button at the bottom of the web page allows you to view the next set.)
3. You can use this web page:
   - To process a single certificate
   - To perform the same action on all of the certificates that are listed
   - To process selected certificate

To process a single certificate:
   a. Click on its serial number in the table at the beginning of the web page. This transfers you to the single certificate web page; see Figure 77 on page 423.
   b. From the single certificate web page, you can perform the steps in “Steps for processing a single certificate” on page 422, starting with Step “2” on page 423.

To perform the same action on all the certificates that are listed:
   a. Optionally enter a comment.
   b. Click one of the actions under the comment field to perform that action on all listed certificates:
      - **Revoke**
        Revokes all selected active certificates.
      - **Suspend**
        Suspends all selected active certificates.
      - **Resume**
        Resumes all selected suspended certificates.
      - **Delete**
        Deletes all selected certificates.

   **Notes:**
   1) **Suspend** and **Revoke** appear only when your search matches at least one certificate whose status is **Active**.
   2) **Resume** appears only when your search matches at least one certificate whose status is **Suspended**.
   3) **Enable Automatic Renewal**, **Disable Automatic Renewal**, and **Change Requestor email** are not shown on this page. They only appear on the page showing the individual certificate.

To process selected certificates:
   a. Clear the check box beside the **Select** column header. (When the check box beside **Select** is selected, all the individual check boxes in the body of the table are selected. This means all these certificates are selected. Clearing the box in the header clears all the boxes in the body of the table.)
   b. Select the check boxes of all the certificates for which you want to perform a particular action.
   c. Optionally enter a comment.
   d. Click one of the actions under the comment field to perform that action on all listed requests. The actions include:
      - **Revoke**
        Revokes all selected active certificates.
      - **Suspend**
        Suspends all selected active certificates.
      - **Resume**
        Resumes all selected suspended certificates.
      - **Delete**
        Deletes all selected certificates.

   **Notes:**
1) The **Suspend** and **Revoke** actions appear only when your search matches at least one certificate whose status is **Active**.

2) The **Resume** action appears only when your search matches at least one certificate whose status is **Suspended**.

Instead of processing one or more certificates, you can click **Respecify your search criteria Web page** to return to the PKI Services administration home page (see Figure 68 on page 411) or **Home page** to return to the PKI Services home page (see Figure 42 on page 377.)

---

4. After you click an action, the next web page tells you:

- "Processing was successful" (see Figure 79 on page 427)
- "Processing was not successful" (see Figure 80 on page 428)
- "Processing was partially successful" (see Figure 81 on page 428)

  If "Processing was not successful", you can click on a serial number to display the Single Certificate web page; see Figure 77 on page 423. Processing can be unsuccessful because certificates do not have the status required for the action you selected; see Table 73 on page 422.

  If you get "Processing partially successful", you can click on the serial number to display the Single Certificate web page; see Figure 77 on page 423. The "Processing partially successful" message can occur when your organization has more than one administrator and involves the following sequence:

  a. One administrator performs a search.
  b. Another administrator performs a search before the first administrator has revoked or deleted certificates displayed in the search results.
  c. One of the administrators revokes or deletes some of the certificates.
  d. The other administrator tries to revoke or delete certificates including at least one the preceding administrator has already revoked or deleted and at least one the preceding administrator has not already revoked or deleted.

**Processing successful**

Certificates with specified serial numbers are successfully revoked.

**You may continue to revoke/delete more certificate(s) by clicking the button below:**

![Process More Certificate(s)](image1)

![Administration Home Page](image2)

![Home Page](image3)

*email: webmaster@your-company.com*

*Figure 79. Processing of certificate was successful web page*
Processing was not successful

Problem(s) encountered when attempting to suspend the following certificate(s). Click on link(s) for more information. Note that if the certificate has been deleted, you will not be able to view additional information.

<table>
<thead>
<tr>
<th>Certificate Serial Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Not authorized to suspend certificates created under this template</td>
</tr>
<tr>
<td>2</td>
<td>Not authorized to suspend certificates created under this template</td>
</tr>
<tr>
<td>3</td>
<td>Certificate already revoked or suspended</td>
</tr>
</tbody>
</table>

You may continue to process more certificate(s) by clicking the button below:

Process More Certificate(s)

Figure 80. Processing of certificate was not successful web page

Processing was partially successful

Problem(s) encountered when attempting to suspend the following certificate(s). Click on link(s) for more information. Note that if the certificate has been deleted, you will not be able to view additional information.

<table>
<thead>
<tr>
<th>Certificate Serial Number</th>
<th>Error Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>The certificate has already been revoked</td>
</tr>
<tr>
<td>14</td>
<td>Record not found</td>
</tr>
<tr>
<td>15</td>
<td>The certificate has already been revoked</td>
</tr>
<tr>
<td>16</td>
<td>The certificate has already been revoked</td>
</tr>
<tr>
<td>17</td>
<td>Record not found</td>
</tr>
<tr>
<td>18</td>
<td>Record not found</td>
</tr>
</tbody>
</table>

You may continue to revoke/delete/suspend/resume more certificate(s) by clicking the button below:

Process More Certificate(s)

Figure 81. Processing of certificate was partially successful web page

You can click Home page to return you to the PKI Services home page. (See Figure 42 on page 377.)

Relationship between certificate requests and matching certificates

PKI Services maintains two databases:

- The request database (RDB), also called the object store
- The issued certificate list (ICL)

RDB records are temporary in nature. They exist only to track active requests. PKI Services automatically removes these records when they are complete or go inactive. ICL records are permanent. Requests for
certificates (both new and renewal) are stored in the RDB. Once approved, a matching certificate is created from the request and stored in the ICL. (Note, the creation of the certificate might not be instantaneous.) At this point, the two database records, though related, exist independently of each other.

- After a request is approved, there is no way for you to un-approve a request. If you mistakenly approve a request that you meant to reject, you should immediately delete the RDB entry. This prevents the user from retrieving the certificate. You should then search the issued certificates to see if the certificate has been issued. If it has, you should revoke it in case the user has already picked it up.

- Revoking a certificate (an ICL action) has no effect on its matching RDB entry. If you revoke a certificate, you should also delete its matching RDB entry if it exists. This prevents the user from retrieving the certificate, if the user has not already done so.

- You can delete RDB entries any time after they have been completed to save space in the database if you want.

- Under normal circumstances, ICL entries should not be deleted. If you delete an ICL entry, you are no longer able to revoke or renew the certificate.

- You can delete entries in any state in either database to clean up error conditions.
Using the administration web pages
Chapter 20. Using PKI Services utilities

This topic describes the following utility programs, which are shipped with PKI Services. These programs are installed in the /install-dir/pkiserv/bin directory.

**createcrls**
A UNIX program that initiates the certificate revocation list (CRL) creation task immediately.

**db2conv**
A UNIX program that converts the version format of object store and ICL Db2 tables.

**iclview**
A UNIX program that displays the entries in the issued certificate list (ICL).

**pkiprereg**
A UNIX program that creates Simple Certificate Enrollment Protocol (SCEP), Enrollment over Secure Transport (EST), or preregistration records.

**postcerts**
A UNIX program that creates posting objects for existing certificates. The PKI Services daemon later posts the certificates to an LDAP server.

**TemplateTool**
A Java program that validates an XML certificate template file and converts it to a text CGI template file, and converts a text CGI template file to an XML template file.

**vosview**
A UNIX program that displays the entries contained in the object store (request database).

**vsam2db2**
A UNIX program that converts data from the issued certificate list (ICL) and object store VSAM data sets into Db2 tables.

**vsamconv**
A UNIX program that converts the version format of object store and ICL VSAM data sets.

### Using the createcrls utility

**Purpose**
The createcrls program initiates the task that creates certificate revocation lists (CRLs). Later, depending on how PKI Services is configured, the PKI Services daemon either posts the CRLs to an LDAP server (for LDAP) or saves them in the HFS (for the URI format). (The PostInterval parameter in the LDAP section of the configuration file determines when the posting to LDAP occurs.) You can use this program to create a CRL immediately, instead of waiting for PKI Services to do it automatically based on the TimeBetweenCRLs parameter in the configuration file.

**Path setup**
Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run createcrls. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) Once you have updated these variables, you can run createcrls from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>
The default directory for `install-dir` is `/usr/lpp`.

**Format**

```
createcrls [-D CA-Domain-name]
```

**Parameters**

- **-D CA-Domain-name**
  Specifies the 1-8 character name of the CA domain for which CRLs are to be created. The name can be entered using uppercase or lowercase letters. This option is required only if PKI Services is running with multiple CA domains.

**Examples**

To create a CRL for the domain `mydomain` and post the CRL to LDAP, enter the command:

```
createcrls -D mydomain
```

To create a CRL and post it to LDAP if you are not running PKI Services with multiple CA domains, enter the command:

```
createcrls
```

**Using the db2conv utility**

**Purpose**

The `db2conv` utility is used to convert Db2 object store and ICL from version 0 format to version 1 format, or from version 1 format to version 0 format. Version 1 format is introduced in z/OS Version 2 Release 3. Run `db2conv` when PKI Services is not running.

**Path setup**

Update your `PATH`, `LIBPATH`, and `NLSPATH` environment variables with the appropriate `pkiserv` directory before you run `db2conv`. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, `pkiserv.envars`.) After you update these variables, you can run `db2conv` from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td><code>/install-dir/pkiserv/bin</code></td>
</tr>
<tr>
<td>LIBPATH</td>
<td><code>/install-dir/pkiserv/lib</code></td>
</tr>
<tr>
<td>NLSPATH</td>
<td><code>/install-dir/pkiserv/lib/nls/msg/%L/%N</code></td>
</tr>
</tbody>
</table>

The default directory for `install-dir` is `/usr/lpp`.

**Format**

```
db2conv [-h] -s pkg=source-db2-package-name,ver=version
         -t pkg=target-db2-package-name
         -a
         -b db2-subsystem-name
```
Parameters

-h
Displays the help message.

-s pkg=source-db2-package-name,ver=version
Specifies the source Db2 information with the package name and version in the following format:

pkg=package-name,ver=version

version

0
Specifies tables without the SCEP transaction ID column and version column.

1
Specifies tables with the SCEP transaction ID column and version column.

-t pkg=target-db2-package-name
Specifies the target Db2 information in the following format:

pkg=package-name

-a
If specified, all records from the source object store (OST) and issued certificate list (ICL) are converted to form records in the target object store and issued certificate list. If not specified:

• For the object store, all objects except the completed certificate request objects are converted.
• For the ICL, all certificate objects except the expired certificates for which the user provided the public key, are converted.

Note: If numerous completed certificate requests and the expired certificates that are created with user-supplied keys exist, it can take longer to run the utility with the -a option.

-b db2-subsystem-name
Specifies the Db2 subsystem name.

Examples

This sample script performs operations on the tables in the DSN9 Db2 subsystem by using two packages. The source package is MasterCA and the target package is MasterV1. It converts the records from the version 0 object store and ICL tables, to the version 1 tables. All of the records in the Db2 tables are converted, including those for completed requests and expired certificates.

```bash
db2conv -b DSN9 -s pkg=MasterCa,ver=0 -t pkg=MasterV1 -a
```

Output

As the db2conv utility runs, it reports its progress. For every 1000 records that are converted from VSAM data sets to Db2 tables, the utility reports the total number of records converted.

If an error occurs, db2conv displays a count of processed records and a count of converted records.

If the source package and the version do not match, an error is issued.

Using the iclview utility

Purpose

The iclview program displays the entries contained in an issued certificate list (ICL). Depending on how you have configured PKI Services, the ICL can be in a VSAM data set or in a Db2 table. Each ICL record consists of a fixed header followed by a variable-length section containing the BER-encoded certificate.
For each entry iclview displays the header information and optionally calls a user-provided program to process the BER-encoded certificate.

Path setup

Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run iclview. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) Once you have updated these variables, you can run iclview from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for install-dir is /usr/lpp.

Format

iclview {-d vsam-dataset-name [-r] | -b db2-subsystem-name -k db2-package-name
       | -v ICL-version
       | -c [-p path]}
       [-D CA-domain-name] [-s decode-command-string]

Parameters

You can display usage information about the iclview command format and parameters when you issue the iclview utility command with no parameters.

-d vsam-dataset-name
   Specifies the MVS data set name of the VSAM issued certificate list (ICL).
   If you specify -d, do not specify -b, -k or -c. If you do, the utility issues an error message and the command fails.
   
   Note: If the data set name has no quotes, the program uses the invoker of the command as the first qualifier. If you specify the fully-qualified data set name, use quotes, and make sure to include the escape character, which is a backslash (\), before the quotation marks enclosing the data set name. For example, see \'pkisrvd.vsam.ost\' in “Examples” on page 446.

-r
   Indicates to open in VSAM record-level sharing (RLS) mode the VSAM data set specified with the -d option.
   -r is ignored and the utility issues a warning message if -b and -k are specified, or if -c is specified.

-b db2-subsystem-name
   Specifies the name of the Db2 subsystem or group attachment where the ICL is located.
   If you specify -b and you do not specify -k, or you specify -d or -c, the utility issues an error message and the command fails.

-k db2-package-name
   Specifies the Db2 package name of the ICL.
   If you specify -k and do not specify -b, or you specify -d or -c, the utility issues an error message and the command fails.

-v ICL-version
   Specifies the ICL version that corresponds to the db2-package-name specified by the -k option. It will be ignored if -k is not specified. The acceptable value is 0 or 1.
   If you specify -k and do not specify -v, the version defaults to 0.
-c
Indicates to retrieve the location of the ICL from the pkiserv.conf configuration file. Either the VSAM data set name is retrieved, or the Db2 subsystem name and package name are retrieved, depending which you are using. For VSAM, the SharedPlex value determines whether the VSAM data set is opened in record-level sharing (RLS) mode. (For Db2, the SharedPlex value has no effect on this utility.)
If you specify -c, and you also specify -d, -b, or -k, the utility issues an error message and the command fails.

**Note:** When you also specify the -D option, you must use the -p option to specify the CA domain configuration directory if it is not /etc/pkiserv.

-p *path*
Specifies the directory where the pkiserv.conf configuration file resides. If not specified, the directory defaults to /etc/pkiserv. This option is only valid when specified with the -c option. If specified with the -b, -k, or -d options, the utility issues a warning message, and the -p option is ignored.

-D *CA-domain-name*
Specifies the CA domain name where this utility command is directed.

**Notes:**
1. The -D option is required only if PKI Services is running in multiple-CA mode.
2. The CA-domain-name value can be entered using uppercase or lowercase letters.
3. When you also specify the -c option, you must use the -p option to specify the CA domain configuration directory if not /etc/pkiserv.

-s *decode-command-string*
Specifies an optional command to call for decoding the ASN.1-encoded data. The command must be able to read and decode binary (BER) data from STDIN.

**Examples**
To view the records in the ICL in the VSAM data set 'PKISRVD.VSAM.ICL', passing the certificate to a utility called dumpasn1, use the following command:

```
iclview -d \'pkisrvd.vsam.icl\' -s 'dumpasn1 -'
```

To view the records in the ICL for the CA domain MasterCA using the information from the pkiserv.conf file located in the directory /etc/pkiserv/MasterCA, use the following command:

```
iclview -c -p /etc/pkiserv/MasterCA -D MasterCA
```

To view the records in the ICL in the Db2 subsystem DSN9 with a package name of MasterCA, passing the certificate to a utility called dumpasn1 and directing the output to the file icl.out, use the following command:

```
iclview -b DSN9 -k MASTERCA -s 'dumpasn1 -' >icl.out
```

**Note:** A dumpasn1 utility is not shipped with PKI Services.
Output

The fixed header data that is displayed for each record is similar to the following sample:

```
Cert 8: John Q. Public@someWebProvider.com
  ISSUED (Issued certificate)
  Issued at 2017-12-19 17:27:41
  Last changed 2017-12-19 17:42:30
  Subject: CN=John Smith,OU=Class 1 Internet Certificate CA,O=The Firm
  Issuer: OU=PKI Services CA,O=IBM,C=US
  Requester: John Smith
  ApplData: SYSCEPP
  Serial Number: 15
  Email flag: Off
  AutoRenew flag: Enabled
  Additional flags Set: NotRenewable
  KeyID: 12FD68977EE1F987DC9CA1440B62CCCD1CD0A9BB
  Validity: 2017/07/19 00:00:00 – 2022/07/18 23:59:59
  Revocation information location: Distribution Point 151
  SCEP TID: EE7216D9E9B8B0EB74C3897D57E79662E750EB6496A7B4A92A2789F03EE1C41F
```

The first line of the output specifies the certificate's sequential position within the ICL, relative to the other certificates, and the requestor's name.

The second line specifies the certificate state, which is one of the following states, and a comment (if any):

- **ISSUED**
- **REVOKED, not posted**
- **REVOKED, awaiting CRL post**
- **REVOKED, on posted CRL**

**Issued at**

Indicates when the certificate was issued.

**Last changed**

Indicates when the administrator last changed the certificate.

**Subject**

Indicates the name of the person who owns the certificate.

**Issuer**

Indicates the name of the certificate authority that issued the certificate.

**Requester**

Indicates the requester's name.

**ApplData**

Indicates the 8-character string identifying to the application the short name or nickname of the certificate template. (PKI Services provides sample certificate templates but it is RACF, or an equivalent security product, rather than PKI Services, that handles the SAF templates.) Table 36 on page 152 shows the nicknames for each certificate template. (These nicknames are supplied in the pkiserv.tmpl certificate templates file as defaults but your installation might have changed them or added others during customization. See “TEMPLATE sections” on page 151 for more information.)

**Serial Number**

Indicates the serial number of the certificate as a hexadecimal number.

**Email flag**

Indicates whether to send an expiration warning message. The possible values are On or Off.

**AutoRenew flag**

Indicates whether a certificate is AutoRenew enabled, disabled, or not set up for automatic renewal.

**Revoked at**

Indicates the date and time the certificate was revoked or suspended. This line is only displayed if the certificate is revoked.

**Revocation Reason**

The following are potential reasons for the revocation of the certificate:
• No reason.
• User key was compromised.
• Original use no longer valid.
• CA key was compromised.
• User changed affiliation.
• Certificate was superseded.
• Temporarily suspended.

Additional flags Set
The NotRenewable flag indicates that the certificate cannot be renewed. This state occurs when the keys for the certificate were generated by PKI Services, the certificate has a Mail RDN, and the user's email address has changed since the certificate was created.

KeyID
The SHA1 hash of the public key in EBCDIC format, 40 bytes in length. The value of the KeyID is displayed if the key was generated by PKI Services, otherwise, a value is not displayed.

Validity
The validity period of the certificate.

Revocation information location
The location of the revocation information of the end entity certificate. This location can be different than the location specified in the CRLDistributionPoint extension in the certificate if the CRLDistName value was changed after the certificate was created. This line is displayed only if there is revocation information and it can be retrieved successfully. The information can be a distribution point number, or "Master CRL".

Note: CA certificates that are issued by the PKI Services CA are always placed in the master authority revocation list (ARL) and the ARL distribution point if configured. Therefore, the revocation information location is not displayed for issued CA certificates.

SCEP TID
The SCEP transaction ID data. This line is only displayed if it is a certificate that is originated from a SCEP request.

Using the pkiprereg utility

Purpose
The pkiprereg program creates Simple Certificate Enrollment Protocol (SCEP) and Enrollment over Secure Transport (EST) preregistration records in batch.

Path setup
Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run pkiprereg. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) Once you have updated these variables, you can run pkiprereg from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for install-dir is /usr/lpp.
pkiprereg

Format

```
pkiprereg [-m mode [-t tmpl-file] -s SCEP-file [-o out-file] [-d domain]
          | [-h | -?]]
```

Parameters

You can display usage information about the pkiprereg command format and parameters when you execute the pkiprereg utility command with the -h or -? option or when you enter an incorrect parameter.

- **-m mode**
  Indicates one of the following modes of operation for this pkiprereg utility execution.

<table>
<thead>
<tr>
<th>Mode name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>verify</td>
<td>Checks the data file for format errors but does not load the records into PKI Services.</td>
</tr>
<tr>
<td>generate</td>
<td>Generates a random 8-character passphrase whenever it finds a passphrase placeholder (the * character) in the file. It does not load the records into PKI Services.</td>
</tr>
<tr>
<td>load</td>
<td>Calls PKI Services to load the preregistration records.</td>
</tr>
<tr>
<td>remove</td>
<td>Calls PKI Services to remove the preregistration records.</td>
</tr>
</tbody>
</table>

You can specify the mode value as the mode name or any number of initial characters of the mode name. **Example:** You can specify `verify` mode using any of the following options:

- `-m verify`
- `-m ve`
- `-m v`

- **-t tmpl-file**
  When used in `verify` or `load` mode, specifies the path name of the PKI Services certificate templates file (`pkiserv.tmpl` if you are implementing the web application using REXX CGI scripts, or `pkixgen.tmpl` if you are implementing the web application using JavaServer pages), which is used as input. When used in other modes, the -t option is ignored.

- **-s SCEP-file**
  Specifies the path name of the file containing the preregistration data that is input for all modes.

- **-o out-file**
  When used in `generate` mode, specifies the path name of the output file for the preregistration data. When used in other modes, the -o option is ignored.

- **-d domain**
  When used in `load` or `remove` mode, specifies the PKI Services CA domain name where this utility command is directed.

**Notes:**

1. When used in other modes, the -d option is ignored.
2. The -d option is required only if PKI Services is running in multiple-CA mode.
3. The domain value can be entered using uppercase or lowercase letters.

- **-h or -?**
  Displays the syntax of the pkiprereg command.

Input

The input for the pkiprereg utility is a data file (`SCEP-file`) containing preregistration records. The rules regarding format of the preregistration records are as follows:

**Rules:**
• Each preregistration record consists of multiple consecutive name=value pairs, terminated by a blank line or an end-of-file indicator.
• Each line consists of single field name and its value, separated by a = character, forming one name=value pair per line.
• Each name=value pair (except the Template name=value pair) represents data that the client must supply at enrollment time for authentication purposes.
• In pkiprereg verify and load modes, the Template and ClientName name=value pairs are required. All other name=value pairs are optional.
• In pkiprereg remove mode, only the ClientName name=value pair is required.
• Any line beginning with a # character is considered a comment.
• All characters before the = character, except any leading and trailing white space, are considered the name.
• All characters after the = character, except any leading and trailing white space, are considered the value.
• The field name supplied as a name is case-sensitive and must match one of the field names listed in Table 75 on page 439.
• Line length is limited to 300 characters. After 300 characters, any additional characters are truncated.

The following field names are supported in the preregistration record.

<table>
<thead>
<tr>
<th>Field name</th>
<th>Maximum length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template</td>
<td>8 characters</td>
<td>The nickname of the preregistration template to be used.</td>
</tr>
<tr>
<td>ClientName</td>
<td>64 characters</td>
<td>The name of the person or device being preregistered. The first 32 characters are case-insensitive and must be unique for each user preregistered in PKI Services.</td>
</tr>
<tr>
<td>PassPhrase</td>
<td>32 characters</td>
<td>The password to be communicated to the requestor. The * value can be used as a placeholder when running in generate mode.</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>64 characters</td>
<td>Serial number of the subject device.</td>
</tr>
<tr>
<td>UnstructAddr</td>
<td>64 characters</td>
<td>Unstructured address of the subject device.</td>
</tr>
<tr>
<td>EmailAddr</td>
<td>64 characters</td>
<td>Email address for the EMAIL= attribute for subject distinguished name.</td>
</tr>
<tr>
<td>Mail</td>
<td>64 characters</td>
<td>Email address for the MAIL= attribute for subject distinguished name.</td>
</tr>
<tr>
<td>DNQualifier</td>
<td>64 characters</td>
<td>Specifies information to add to the subject's distinguished name to make it unambiguous.</td>
</tr>
<tr>
<td>Uid</td>
<td>64 characters</td>
<td>The system login name associated with the subject.</td>
</tr>
<tr>
<td>Title</td>
<td>64 characters</td>
<td>Title for subject distinguished name.</td>
</tr>
<tr>
<td>DomainName</td>
<td>64 characters</td>
<td>One component of a domain name. For example, domain name <a href="http://www.ibm.com">www.ibm.com</a> is represented by 3 components: www, ibm, and com.</td>
</tr>
<tr>
<td>OrgUnit</td>
<td>64 characters</td>
<td>Organizational unit for subject distinguished name.</td>
</tr>
<tr>
<td>Org</td>
<td>64 characters</td>
<td>Organization for subject distinguished name.</td>
</tr>
<tr>
<td>Street</td>
<td>64 characters</td>
<td>Street for subject distinguished name.</td>
</tr>
<tr>
<td>Locality</td>
<td>64 characters</td>
<td>Locality for subject distinguished name.</td>
</tr>
</tbody>
</table>
Table 75. List of valid field names for use in the preregistration record as input to the pkiprereg utility (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Maximum length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StateProv</td>
<td>64 characters</td>
<td>State or province for subject distinguished name.</td>
</tr>
<tr>
<td>PostalCode</td>
<td>64 characters</td>
<td>Postal code for subject distinguished name.</td>
</tr>
<tr>
<td>Country</td>
<td>2 characters</td>
<td>Country abbreviation for subject distinguished name.</td>
</tr>
</tbody>
</table>
| AltIPAddr    | 45 characters  | The IP address for the subject alternate name extension. PKI Services supports IP version 4 and IP version 6 addresses.  
- For IP version 4, the IP address is in dotted decimal format; for example, 9.67.97.103.  
- For IP version 6, the IP address is divided into eight 16-bit hexadecimal blocks separated by colons. Leading zeros in each 16-bit field are optional, and successive fields of zeros can be represented by double colons, but only once; for example 1:2::3:4 is equivalent to 0001:0002:0000:0000:0000:0000:0003:0004.  
- In a mixed IP version 4 and IP version 6 environment, the IP address can be expressed in the format \textit{x:x:x:x:x:d.d.d.d}, where the \textit{x} values are the hexadecimal values of the six high-order 16-bit pieces of the address, and the \textit{d} values are the decimal values of the four low-order 8-bit pieces of the address in standard IP version 4 representation; for example, 0:0:0:0:0:ABCD:1.2.3.4, or the equivalent value ::ABCD:1.2.3.4. |
| AltURI       | 255 characters | URI for subject alternate name extension.                                  |
| AltEmail     | 100 characters | Email address for subject alternate name extension.                        |
| AltDomain    | 100 characters | Domain name for subject alternate name extension.                          |
| AltOther     | 255 characters | Other Name for subject alternate name extension.                           |

The following field names are supported as input to the pkiprereg utility, but they are not intended for use with SCEP certificates.

Table 76. List of valid field names for use in the preregistration record as input to the pkiprereg utility but not intended for use with SCEP certificates

<table>
<thead>
<tr>
<th>Field name</th>
<th>Maximum length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BusinessCat</td>
<td>64 characters</td>
<td>Business category for subject distinguished name.</td>
</tr>
<tr>
<td>JurCountry</td>
<td>2 bytes</td>
<td>Jurisdiction country for subject distinguished name.</td>
</tr>
<tr>
<td>JurStateProv</td>
<td>64 characters</td>
<td>Jurisdiction state/province for subject distinguished name.</td>
</tr>
<tr>
<td>JurLocality</td>
<td>64 characters</td>
<td>Jurisdiction locality for subject distinguished name.</td>
</tr>
</tbody>
</table>

For information about the format required for these values, see the R_PKIServ (IRRSPX00) section of \textit{z/OS Security Server RACF Callable Services}.  

440 \textit{z/OS: Cryptographic Services PKI Services Guide and Reference}
Examples
The following example shows two preregistration records in the /etc/scep.txt file.

```
Template=5YSCEPP
ClientName=www.ibm.com
PassPhrase=gumby
Org=IBM
Template=5YSCEPP
ClientName=scep.company.com
PassPhrase=*
```

The following command examples produce the actions listed:

Example 1:
```
pkipregr -m v -t /etc/pkiserv/pkiserv.tmpl -s /etc/scep.txt
```
Action: Verifies the /etc/scep.txt file, indicating that one PassPhrase has an incorrect value, the placeholder (*).

Example 2:
```
pkipregr -m g -s /etc/scep.txt -o /etc/scepfinal.txt
```
Action: Generates a passphrase for the placeholder and saves the records in the /etc/scepfinal.txt output file.

Example 3:
```
pkipregr -m l -t /etc/pkiserv/pkiserv.tmpl -s /etc/scepfinal.txt
```
Action: Loads the preregistration records into PKI Services. If the template identified by the nickname 5YSCEPP contains any subject or alternate name information in the <CONSTANT> section, that information overrides any matching information specified in the /etc/scepfinal.txt file.

Using the postcerts utility

Purpose
The postcerts program creates LDAP posting objects for certificates, which the PKI Services daemon later posts to an LDAP directory. (The PostInterval parameter in the LDAP section of the configuration file determines when the posting occurs.) You can use this utility if you have created certificates that PKI Services did not automatically post to an LDAP directory; for example if you created certificates before you configured PKI Services to automatically post them.

Path setup
Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run postcerts. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) After you have updated these variables, you can run postcerts from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for install-dir is /usr/lpp.
**Format**

```
postcerts --s serial-numbers [-D CA-domain-name] [-c comment]
```

**Parameters**

**--s serial-numbers**
The serial numbers of the certificates to be posted. This parameter contains one or more serial number specifiers, which are separated by commas, where a serial number specifier can be:
- A single serial number
- Two serial numbers that are separated by a dash, indicating a range of serial numbers

**-D CA-domain-name**
The 1-8 character name of the CA domain for which certificates are to be posted. The name can be entered using uppercase or lowercase letters. This option is required only if PKI Services is running with multiple CA domains.

**-c comment**
A comment to be stored in the issued certificate list (ICL).

**Examples**

To post a single certificate with serial number X'17':
```
postcerts --s 17
```

To post multiple certificates with a comment:
```
postcerts --s 17,18,8A --c 'Posting Certificates for Coop'
```

To post certificates whose serial numbers are in the range X'20' to X'3B':
```
postcerts --s 20-3B
```

To post certificates whose serial numbers are in the ranges X'20' to X'3B' and to also post a single certificate with serial number X'17':
```
postcerts --s 20-3B,17
```

---

**Using the TemplateTool utility**

**Purpose**
The TemplateTool utility works with certificate template files. It performs functions that you need if you implement the web application using JavaServer pages (JSPs). There are three certificate template files that are used by PKI Services:
- A text CGI template file, `pkiserv.tmpl`, used to implement the web application using REXX CGI execs.
- An XML template file, `pkitmpl.xml`, used to implement the web application using JavaServer pages (JSPs).
- A text CGI template file, `pkixgen.tmpl`, generated from the XML template file, and used by the PKI Services daemon if you implement the web application using JSPs. Any time that you update `pkitmpl.xml`, you must use TemplateTool to create an equivalent copy of `pkixgen.tmpl`. If you do not do this, the daemon writes the following message to the daemon log file when it determines that `pkixgen.tmpl` is not current:

```
IKYC068I The templates file used may not be current
```
The TemplateTool utility performs the following functions:

• validateXML
  The validateXML function validates an XML template file against the XML schema file. It can optionally convert the XML template file to a text CGI template file. Use this function after you make changes to your XML schema file, pkiserv.tmpl, to validate the changes and create a CGI template file, pkixgen.tmpl, for use by the PKI Services daemon.

• convertCGI
  The convertCGI function converts a text CGI template file to an XML template file. This function can assist PKI Services administrators in converting the web application from the REXX CGI execs to the JSPs. The conversion process might not convert all tags, so you should always verify the contents of the resulting XML template file.

• help
  The help function prints the format of the utility.

Requirement: You must have Java V5.0 or later installed to run the TemplateTool utility.

Path setup
Update your PATH and CLASSPATH environment variables with the appropriate directories before you run TemplateTool. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) When you have updated these variables, you can run TemplateTool from the shell script or from Java.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td></td>
<td>The directory containing the java command.</td>
</tr>
<tr>
<td>CLASSPATH</td>
<td>/install-dir/pkiserv/lib/pki_xml.jar</td>
</tr>
</tbody>
</table>

The default directory for install-dir is /usr/lpp.

Format

```
TemplateTool -help |
   -validateXML [-XMLTemplate XML_template_file]
                  [-CGITemplate CGI_template_file] |
   -convertCGI    [-CGITemplate CGI_template_file]
                  [-XMLTemplate XML_template_file]
```

To run the utility from Java:

```
java com.ibm.pki.template.TemplateTool function parameters
```

To run the utility from the shell script:

```
TemplateTool function parameters
```

Parameters

-XMLTemplate XML_template_file
  An XML template file. Specify the name of the XML template file if it is in the current directory, or the full path name.

  For the validateXML function, this parameter is required. The specified XML template file is validated against the XML schema file PKIServ.xsd, which must be in the same directory.
For the convertCGI function, this parameter is required. The CGI template file specified as input is converted to an XML template file using the XML schema file PKIServ.xsd, and output to the file specified by -XMLTemplate.

-**CGITemplate CGI_template_file**

A CGI template file. Specify the name of the CGI template file if it is in the current directory, or the full path name.

For the validateXML function, this parameter is optional. If specified, the XML template file specified as input is converted into CGI format and output to the file specified by -CGITemplate. If the CGI template file is to be used by the PKI Services daemon, it must be named pkixgen.tmpl.

For the convertCGI function, this parameter is required. The CGI template file specified is converted to an XML template file using the XML schema file PKIServ.xsd, which must be in the same directory, and output to the file specified by -XMLTemplate.

**Examples**

**Example 1:**

```bash
TemplateTool -validateXML -XMLTemplate pkitmpl.xml -CGITemplate pkixgen.tmpl
```

**Action:** Invokes TemplateTool from the shell script. Validates that the XML template file pkitmpl.xml is valid, and generates a text CGI template file from it named pkixgen.tmpl, for use by the PKI Services daemon.

**Example 2:**

```bash
java com.ibm.pki.template.TemplateTool -convertCGI -CGITemplate pkiserv.tmpl
-XMLtemplate pkitmpl.xml
```

**Action:** Invokes TemplateTool from Java. Converts the text CGI template file named pkiserv.tmpl to an XML template file named pkitmpl.xml.

**Using the vosview utility**

**Purpose**

The vosview program displays the data in the PKI Services object store (the request database). Depending on how you have configured PKI Services, the object store can be in a VSAM data set or in a Db2 table. Each request record consists of a fixed header, followed by a variable-length section. For each entry vosview displays the header information and optionally calls a user-provided program to process the BER-encoded request.

**Path setup**

Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run vosview. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) Once you have updated these variables, you can run vosview from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for install-dir is /usr/lpp.
Format

```
vosview [-d vsam-dataset-name | -r] | -b db2-subsystem-name -k db2-package-name
    | -v ObjectStore-version
    | -c [-p path]
    [-D CA-domain-name] [-s decode-command-string]
```

Parameters

You can display usage information about the vosview command format and parameters when you issue the vosview utility command with no parameters.

**-d vsam-dataset-name**

Specifies the MVS data set name of the VSAM object store.

If you specify -d, do not specify -b, -k or -c. If you do, the utility issues an error message and the command fails.

**Note:** If the data set name has no quotes, the program uses the invoker of the command as the first qualifier. If you specify the fully qualified data set name, use quotes, and make sure to include the escape character, which is a backslash (\), before the quotation marks enclosing the data set name. For example, see \'pkisrvd.vsam.ost\' in “Examples” on page 446.

**-r**

Indicates to open in record-level sharing (RLS) mode the VSAM data set specified with the -d option. -r is ignored and the utility issues a warning message if -b and -k are specified, or if -c is specified.

**-b db2-subsystem-name**

Specifies the name of the Db2 subsystem or group attachment where the object store is located.

If you specify -b and you do not specify -k, or you specify -d or -c, the utility issues an error message and the command fails.

**-k db2-package-name**

Specifies the Db2 package name of the object store.

If you specify -k and do not specify -b, or you specify -d or -c, the utility issues an error message and the command fails.

**-v ObjectStore-version**

Specifies the object store version that corresponds to the db2-package-name specified by the -k option. It is ignored if -k is not specified. The acceptable value is 0 or 1.

If you specify -k and do not specify -v, the version defaults to 0.

**-c**

Indicates to retrieve the location of the object store from the pkiserv.conf configuration file. Either the VSAM data set name is retrieved, or the Db2 subsystem name and package name are retrieved, depending which you are using. For VSAM, the SharedPlex value determines whether the VSAM data set is opened in record-level sharing (RLS) mode. (For Db2, the SharedPlex value has no effect on this utility.)

If you specify -c, and you also specify -d, -b, or -k, the utility issues an error message and the command fails.

**Note:** When you also specify the -D option, you must use the -p option to specify the CA domain configuration directory if it is not /etc/pkiserv.

**-p path**

Specifies the directory where the pkiserv.conf configuration file resides. If not specified, the directory defaults to /etc/pkiserv. This option is only valid when specified with the -c option. If specified with the -b, -k, or -d options, the utility issues a warning message, and the -p option is ignored.

**-D CA-domain-name**

Specifies the CA domain name where this utility command is directed.
Notes:
1. The -D option is required only if PKI Services is running in multiple-CA mode.
2. The CA-domain-name value can be entered using uppercase or lowercase letters.
3. When you also specify the -c option, you must use the -p option to specify the CA domain configuration directory if not /etc/pkiserv.

-s decode-command-string
Specifies an optional command to call for decoding the ASN.1-encoded data. (The command must be able to read and decode binary (BER) data from STDIN.)

Examples
To view the records in the VSAM object store data set 'PKISRVD.VSAM.OST', passing the request data to a utility called dumpasn1, use the following command:

```
vosview -d \'pkisrvd.vsam.ost\' -s 'dumpasn1 -'
```

To view the records in the object store for the CA domain MasterCA using the information from the pkiserv.conf file located in the directory /etc/pkiserv/MasterCA, use the following command:

```
vosview -c -p /etc/pkiserv/MasterCA -D MasterCA
```

To view the records in the object store in the Db2 subsystem DSN9 with a package name of MasterCA, passing the request data to a utility called dumpasn1, and redirecting the output to the file vos.out, use the following command:

```
vosview -b DSN9 -k MASTERCA -s 'dumpasn1 -' >vos.out
```

Note: A dumpasn1 utility is not shipped with PKI Services.

Output
Records with an object key value of 100 or higher display common information stored for each record. Records with an object key value less than 100 are special records maintained by the PKI Services daemon and the information displayed is specific to the record.

Sample record 1

<table>
<thead>
<tr>
<th>Object key</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last used key</td>
<td>110</td>
</tr>
<tr>
<td>CRL serial number</td>
<td>2</td>
</tr>
<tr>
<td>ARL serial number</td>
<td>2</td>
</tr>
<tr>
<td>High DP</td>
<td>2</td>
</tr>
<tr>
<td>Low DP</td>
<td>1</td>
</tr>
<tr>
<td>Creation time is:</td>
<td>2017/03/09 14:46:49</td>
</tr>
<tr>
<td>Last modified time is:</td>
<td>2017/03/09 14:46:49</td>
</tr>
</tbody>
</table>

Last used key
The primary index for the last record in the data set.

CRL serial number
The number to be used for the next CRL.

ARL serial number
The number to be used for the next ARL.

High DP
The number of the highest distribution point CRL issued by PKI Services.

Low DP
The number of the lowest currently active distribution point CRL.
Sample record 2

Object key = 2
The next CRL event is scheduled for 2017/03/09 at 14:50:53
Creation time is: 2017/03/09 14:37:17
Last modified time is: 2017/03/09 14:45:53

Sample record 3

Object key = 3
The CRL Distribution Point name in effect is: CN=CRL%u,OU=Master CA,O=IBM,C=US
(Note: A CRL DP number is substituted for the %u in the CRL DP name above)
Creation time is: 2017/03/09 14:37:17
Last modified time is: 2017/03/09 14:37:17

Sample certificate request record

Object key = 108
name = "fips0_selfenroll 1024sha256"
tid = 11g0EfEhCyC+2SHV+++++++ appldata = SYSCSEPP
comment = AuthenticatedClient= AutoApprove data len = 1659
flags = 2022010 - Type = Cert  State = CA CertSigned  Complete
Creation time is: 2017/03/09 14:46:03
Last modified time is: 2017/03/09 14:46:03
SCEP tid = EE7216D9E9B8B0EB74C3897D57E79662E756E06496A7B4A92A2789FD3EE1C41FA8AEB

Object key
The index into the VSAM data set name.

name
The requestor's name.

tid
The transaction ID data.

appldata
Indicates the 8-character string identifying to the application the short name or nickname of the certificate template. (PKI Services provides sample certificate templates but it is RACF, or an equivalent security product, rather than PKI Services, that handles the SAF templates.) Table 36 on page 152 shows the nicknames for each certificate template. (These nicknames are supplied in the pkiserv.tmpl certificate templates file as defaults but your installation might have changed them or added others during customization. See “TEMPLATE sections” on page 151 for more information.)

comment
A comment the administrator supplied the last time that the request was updated.

data len
The length of the variable data portion (that is, the BER-encoded request).

flags
Represent the current state of the request:

Type
Cert
Certificate request (new or renewal).

CRL
Certificate revocation list (CRL).

Rev
Revocation request.

Post
Certificate waiting to be posted to LDAP.

State
The prefix (RA or CA) and one of the following values:
**CertPreregistered**
Certificate preregistration record.

**CertReqActive**
Certificate request in some state of being completed.

**CertSigned**
Certificate request where the certificate has been created.

**CertReqRejected**
Certificate request that has been rejected.

**RevReqActive**
Revocation request in some state of being completed.

**CRLWaitingForRA**
CRL to be posted to LDAP.

**CertPostPending**
Certificate to be posted to LDAP.

**CaInfoPostPending**
PKI Services' CA certificate to be posted to LDAP.

**State Flag**
Optional. If present, is one of the following values:

**Complete**
Request is complete. For approved requests, the end user has retrieved the certificate.

**Error**
The certificate could not be posted to LDAP.

**NeedsConfirm**
Approved or rejected. End user has yet to be notified of the outcome.

**AutoRenewEnabled**
The certificate returned automatic renewal and this capability is enabled.

**AutoRenewCapable**
The certificate returned active certificates capable for auto renewal but disabled.

**Synchronous**
Request is an in-progress synchronous certificate request.

**SCEP tid**
The SCEP transaction ID data. This line is only displayed if it is a certificate originated from a SCEP request.

---

**Using the vsam2db2 utility**

**Purpose**
The vsam2db2 program copies data from the issued certificate list (ICL) and object store VSAM data sets into Db2 tables. Use this utility if you have been using VSAM data sets for the ICL and object store and want to use Db2 tables instead. Run vsam2db2 when PKI Services is not running. You must create the Db2 tables before you run vsam2db2. Ensure that the VSAM version corresponds to the Db2 package. For more information, see “Converting the object store and ICL from VSAM to Db2” on page 125.

**Path setup**
Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run vsam2db2. (Note that you are updating the environment variables for the user running the utility, not updating values in the PKI Services environment variables file, pkiserv.envvars.) When you have updated these variables, you can run vsam2db2 from the UNIX command line.
<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for `install-dir` is `/usr/lpp`.

**Format**

```
vsam2db2 -o ostvsam-dataset-name -i iclvsam-dataset-name [-r]
        -b db2-subsystem-name -k db2-package-name
        [-D CA-domain-name] [-a]
```

**Parameters**

- `-o ostvsam-dataset-name`
  Specifies the MVS data set name of the VSAM object store.

- `-i iclvsam-dataset-name`
  Specifies the MVS data set name of the VSAM issued certificate list (ICL).

- `-r`
  Specifies that the VSAM data set is to be opened in record-level sharing (RLS) mode.

- `-b db2-subsystem-name`
  Specifies the Db2 subsystem name or the group attachment name of the object store and issued certificate list (ICL)

- `-k db2-package-name`
  Specifies the Db2 package name of the object store and issued certificate list (ICL)

- `-D CA-domain-name`
  Specifies the CA domain name

- `-a`
  If specified, all records in the object store and issued certificate list (ICL) are copied from the VSAM data sets to the Db2 tables. If not specified:
  - For the object store, all objects except completed certificate request objects are copied.
  - For the ICL, all certificate objects except expired certificates for which the user provided the public key are copied.

**Note:** It takes longer to run the utility with the `-a` option if you did not remove the completed certificate requests and the expired certificates for which the user provided the public key from the VSAM data sets.

If the version of the source object store and ICL do not match that of the target Db2 package, the error message `IKYU021I` is issued.

**Examples**

In this sample script, the object store for the domain MasterCA is in the VSAM file `pkisrvd.vsam.ost`, and the ICL is in the VSAM file `pkisrvd.vsam.icl`. They are to be copied to Db2 tables in the Db2 subsystem DSN9 and the Db2 package MasterCA. The VSAM data sets are to be opened in RLS mode. All records in the VSAM data sets are to be copied, including those for completed requests and expired certificates.

```
vsam2db2 -o '\pkisrvd.vsam.ost\' \
        -i '\pkisrvd.vsam.icl\' \
        -b DSN9 \
        -k MasterCA \
        -r \
```

Using PKI Services utilities 449
As the vsam2db2 utility runs, it reports its progress. For every 2000 records that are copied from VSAM data sets to Db2 tables, the utility reports the total number of records copied.

If an error occurs, vsam2db2 displays a count of processed records and a count of copied records. (If -a is specified, these counts should be the same.)

### Using the vsamconv utility

#### Purpose

The vsamconv utility is used to convert the VSAM object store and ICL from version 0 format to version 1 format, or from version 1 format to version 0 format. Version 1 format is introduced in z/OS Version 2 Release 3. Run vsamconv when PKI Services is not running.

#### Path setup

Update your PATH, LIBPATH, and NLSPATH environment variables with the appropriate pkiserv directory before you run vsamconv. (Note that you are updating the environment variables for the user that is running the utility, not updating values in the PKI Services environment variables file, pkiserv.envars.) After you update these variables, you can run vsamconv from the UNIX command line.

<table>
<thead>
<tr>
<th>Variable name</th>
<th>You must add ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH</td>
<td>/install-dir/pkiserv/bin</td>
</tr>
<tr>
<td>LIBPATH</td>
<td>/install-dir/pkiserv/lib</td>
</tr>
<tr>
<td>NLSPATH</td>
<td>/install-dir/pkiserv/lib/nls/msg/%L/%N</td>
</tr>
</tbody>
</table>

The default directory for `install-dir` is `/usr/lpp`.

#### Format

```
vsamconv [-h] -s source-ostvsam-dataset-name,source-iclvsam-dataset-name [-r]
          -t target-ostvsam-dataset-name,target-iclvsam-dataset-name [-a]
```

#### Parameters

- **-h**
  Displays the help message.

- **-s source-ostvsam-dataset-name,source-iclvsam-dataset-name**
  Specifies the source VSAM object store and ICL data set.

- **-r**
  Specifies that the VSAM data set is to be opened in record-level sharing (RLS) mode. (Optional)

- **-t target-ostvsam-dataset-name,target-iclvsam-dataset-name**
  Specifies the target VSAM object store and ICL data set.

- **-a**
  If specified, all records from the source object store and issued certificate list are converted to the target object store (OST) and issued certificate list (ICL). If not specified:
  - For the object store, all objects except the completed certificate request objects are converted.
• For the ICL, all certificate objects except the expired certificates for which the user provided the public key, are converted.

**Note:** If there are numerous completed certificate requests and the expired certificates that are created with user-supplied keys, it can take longer to run the utility with the -a option.

**Examples**

This sample script converts the version of the record, depending on the source version specified. A record is either converted from version 0 to version 1 format, or from version 1 format to version 0 format. The names of the data sets are as follows:

- **pkisrvd.vsam.ost**
  Specifies the source object store VSAM data set.

- **pkisrvd.vsam.icl**
  Specifies the source ICL VSAM data set.

- **pkisrvd.vsam.newost**
  Specifies the target object store VSAM data set.

- **pkisrvd.vsam.newicl**
  Specifies the target ICL VSAM data set.

All of the records in the VSAM data sets are converted, including those for completed requests and expired certificates.

```
vsamconv -s ost='pkisrvd.vsam.ost', icl='pkisrvd.vsam.icl'
-t ost='pkisrvd.vsam.newost', icl='pkisrvd.vsam.newicl'
```

**Output**

As the vsamconv utility runs, it reports its progress. For every 1000 records that are converted, the utility reports the total number of records converted.

If an error occurs, vsamconv displays a count of processed records and a count of converted records.

If the source and target version are the same, an error is issued.
Chapter 21. Using the certificate management protocol (CMP) with PKI Services

Certificate management protocol (CMP) is an internet protocol used to manage X.509 digital certificates within a PKI. It is described in RFC 4210 (tools.ietf.org/html/rfc4210) and uses the certificate request message format (CRMF) described in RFC 4211 (tools.ietf.org/html/rfc4211). A certificate request message object is used within the protocol to convey a request for a certificate to a certificate authority. CMP messages are ASN.1-encoded. PKI Services allows a CMP client to communicate with it to request, revoke, suspend and resume certificates.

**Restrictions:** The following restrictions apply to the PKI Services support for CMP:

1. PKI Services supports only a subset of the CMP messages, and only some fields in those messages. See “Support for CMP messages” on page 454 for a description of the support.
2. PKI Services supports only the HTTP protocol for CMP messages.

PKI Services implements CMP through a CGI program. The tcp-message is sent to the PKI CMP CGI program by HTTPS POST, as specified in Internet X.509 Public Key Infrastructure -- Transport Protocols for CMP. The entire POST body is the message and the mime-type for both requester and responder (client and server) is application/pkixcmp.

**Note:** The application/pkixcmp mime-type requires that the entire tcp-message be Base64-encoded.

When a CMP client sends a request to the HTTP Server, it must send the request directly to the HTTP Server (and port number) that handles the client authentication requests. The request cannot be handled by a redirect statement. The shipped sample vhost1443.conf is for client authentication. The following two entries are specifically set up needed for the CMP client:

```bash
ScriptAliasMatch ^/(PKIServ|Customers)/(clientauth-cgi|clientauth-cgi-bin)/(.* "<application-root>/PKIServ/clientauth-cgi-bin/$3"
<LocationMatch "^/(PKIServ|Customers)/clientauth-cgi-bin/auth/pkicmp"
CharsetOptions NoTranslateRequestBodies
</LocationMatch>
```

Table 77 on page 453 shows the format of version 10 tcp-messages (the only existing version):

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>32 bits</td>
<td>The length of the rest of the tcp-message (the length of the CMP message + 3)</td>
</tr>
<tr>
<td>Version</td>
<td>8 bits</td>
<td>10</td>
</tr>
<tr>
<td>Flags</td>
<td>8 bits</td>
<td>The least significant bit indicates a closed connection. The other bits are unused.</td>
</tr>
</tbody>
</table>
Table 77. Format of tcp-messages (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Length</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message type</td>
<td>8 bits</td>
<td>Supported types are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• pk1Req, value X’00’, indicating a synchronous request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• pk1Rep, value X’05’, indicating a synchronous response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• errorMsgRep, value X’06’, indicating an error</td>
</tr>
<tr>
<td>Value</td>
<td>Variable, based on the length of the CMP message</td>
<td>The ASN.1 encoded CMP message</td>
</tr>
</tbody>
</table>

The communication between the CMP client and the CGI program is over HTTPS only. Client authentication is required. The client (the CMP requester) needs to have a certificate installed in RACF under the client’s ID. This certificate is used by the requester to authenticate itself, and its owner ID is used to access the PKI Services functions.

**Support for CMP messages**

PKI Services supports the following request message types from the client:

- Certificate request message (type cr)
- Revocation request message (type rr)
- PKCS #10 certificate request message (type p10cr)

and responds with one of the following response messages:

- Certificate response message (type cp)
- Revocation response message (type rp)
- Error message (type error)

Each message supported by PKI Services contains the following parts:

- The header, containing information common to many messages
- The body, containing information specific to the message
- Optionally, certificates that might be useful to the recipient

Table 78 on page 454 identifies the fields in the PKIMessage structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) that PKI Services supports.

Table 78. Supported fields in the PKIMessage structure

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>header</td>
<td>See Table 79 on page 455.</td>
</tr>
<tr>
<td>body</td>
<td>See Table 80 on page 455.</td>
</tr>
</tbody>
</table>
Table 78. Supported fields in the PKIMessage structure (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>extraCerts</td>
<td>This field can be used by the client on a certificate request message (cr) when PKI Services is generating the public and private key for the requested certificate. This field can contain a list of x.509 certificates to be used as recipients of the private key to be returned by PKI Services. If this field is present, the _PKISERV_CMP_HONOR_CLIENT_CERTS environment variable determines whether extra certificates are allowed, and how many are allowed. If allowed, and if PKI Services generates the public and private key pair for the request, each certificate has a recipientInfo structure added to the returned encrypted private key (PKCS #7 EnvelopedData structure). For information about the _PKISERV_CMP_HONOR_CLIENT_CERTS environment variable, see Table 89 on page 472.</td>
</tr>
</tbody>
</table>

Table 79 on page 455 identifies the fields in the PKIHeader structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) that PKI Services supports.

Table 79. Supported fields in the PKIHeader structure

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvno</td>
<td></td>
</tr>
<tr>
<td>sender</td>
<td></td>
</tr>
<tr>
<td>recipient</td>
<td>If this GeneralName field is in the form of a directoryName in a cr, p10cr, or rr message, it can be used to determine the PKI Services CA domain to which the request is directed. For information about how PKI Services determines the CA domain, see “Determining the CA domain to which a request is routed” on page 460.</td>
</tr>
<tr>
<td>transactionID</td>
<td></td>
</tr>
<tr>
<td>generalInfo</td>
<td>The only InfoTypeAndValue recognized by PKI Services is ImplicitConfirm, which is required for cr and p10cr messages. This field is ignored if present on an rr request message.</td>
</tr>
</tbody>
</table>

Table 80 on page 455 identifies the values in the PKIBody structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) that PKI Services supports. These are the CMP message types.

Table 80. Supported values in the PKIBody structure. These are the CMP message types that PKI Services supports.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cr</td>
<td>Certificate request</td>
<td>See Table 81 on page 456.</td>
</tr>
<tr>
<td>cp</td>
<td>Certificate response</td>
<td>See Table 83 on page 458.</td>
</tr>
<tr>
<td>p10cr</td>
<td>PKCS #10 certificate request</td>
<td>See Table 82 on page 457.</td>
</tr>
</tbody>
</table>
Table 80. Supported values in the PKIBody structure. These are the CMP message types that PKI Services supports. (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>rr</td>
<td>Revocation request</td>
<td>See Table 84 on page 459.</td>
</tr>
<tr>
<td>rp</td>
<td>Revocation response</td>
<td>See Table 85 on page 459.</td>
</tr>
<tr>
<td>error</td>
<td>Error message</td>
<td>See Table 86 on page 460.</td>
</tr>
</tbody>
</table>

Support for the CMP certificate request message (type cr)

Table 81 on page 456 identifies the fields that PKI Services supports in the data structure defined in RFC 4211 for the CMP certificate request message (type cr).

Table 81. Supported fields in the CMP certificate request message (type cr)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the CertReqMsg structure:</td>
<td>PKI Services supports a single CertReqMsg in the CertReqMessages field, and rejects a cr message with more than one CertReqMsg.</td>
</tr>
<tr>
<td>certReq</td>
<td></td>
</tr>
<tr>
<td>popo</td>
<td></td>
</tr>
<tr>
<td>In the ProofOfPossession structure:</td>
<td></td>
</tr>
<tr>
<td>signature</td>
<td>signature is the only supported choice. It should only be present if the CMP client has supplied publicKey in the CertTemplate structure. The POPOSigningKey structure must not contain a poposkInput field.</td>
</tr>
<tr>
<td>In the CertRequest structure:</td>
<td></td>
</tr>
<tr>
<td>certReqId</td>
<td></td>
</tr>
<tr>
<td>certTemplate</td>
<td></td>
</tr>
<tr>
<td>In the CertTemplate structure:</td>
<td></td>
</tr>
<tr>
<td>version</td>
<td></td>
</tr>
<tr>
<td>serialNumber</td>
<td></td>
</tr>
<tr>
<td>signingAlg</td>
<td></td>
</tr>
</tbody>
</table>
Table 81. Supported fields in the CMP certificate request message (type cr) (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>issuer</td>
<td>If supplied, this field is used with the _PKISERV_CMP_DOMAIN_ISSUERn environment variables to determine to which PKI Services CA domain to route the request. For information about the _PKISERV_CMP_DOMAIN_ISSUERn environment variables, see Table 87 on page 466. For information about how PKI Services determines the CA domain, see “Determining the CA domain to which a request is routed” on page 460.</td>
</tr>
<tr>
<td>validity</td>
<td>If supplied, the _PKISERV_CMP_HONOR_CLIENT_DATES environment variable must set to 1; otherwise the cr message is rejected. For information about the _PKISERV_CMP_HONOR_CLIENT_DATES environment variable, see Table 88 on page 467.</td>
</tr>
<tr>
<td>subject</td>
<td>If omitted, the cr message is rejected.</td>
</tr>
<tr>
<td>publicKey</td>
<td>Optional; if omitted PKI Services generates the public and private keys for the certificate request using environment variables to determine the key type and size.</td>
</tr>
<tr>
<td>extensions</td>
<td>If the _PKI_CMP_HONOR_CLIENT_EXTS environment variable is not set to 1 and extensions is specified, the message is rejected. If the environment variable is set to 1, extensions is honored if present, but is not required.</td>
</tr>
</tbody>
</table>

Support for the CMP PKCS #10 certificate request message (type p10cr)

Table 82 on page 457 identifies the fields that PKI Services supports in the data structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) for the CMP PKCS #10 certificate request message (type p10cr)).

Table 82. Supported fields in the CMP PKCS #10 certificate request message (type p10cr)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the CertificationRequest structure:</td>
<td>When this message type is received by PKI Services, the recipient field is used with the _PKISERV_CMP_DOMAIN_ISSUERn environment variables to determine to which PKI Services CA domain to route the request, provided the recipient is encoded as a directoryName. For information about the _PKISERV_CMP_DOMAIN_ISSUERn environment variables, see Table 87 on page 466.</td>
</tr>
<tr>
<td>certificationRequestInfo</td>
<td></td>
</tr>
<tr>
<td>signatureAlgorithm</td>
<td></td>
</tr>
<tr>
<td>signature</td>
<td></td>
</tr>
</tbody>
</table>
Table 82. Supported fields in the CMP PKCS #10 certificate request message (type p10cr) (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the CertificationRequestInfo structure:</td>
<td></td>
</tr>
<tr>
<td>version</td>
<td></td>
</tr>
<tr>
<td>subject</td>
<td></td>
</tr>
<tr>
<td>subjectPKInfo</td>
<td></td>
</tr>
<tr>
<td>attributes</td>
<td>If the _PKI_CMP_HONOR_CLIENT_EXTS environment variable is not set to 1 and the extensionReq attribute is specified, the message is rejected. If the environment variable is set to 1, the reqExtensions attribute is honored if present, but is not required.</td>
</tr>
</tbody>
</table>

Support for the CMP certificate response message (type cp)

Table 83 on page 458 identifies the fields that PKI Services supports in the data structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) for the CMP certificate response message (type cp). The cp message is returned to the CMP client for a successful cr or p10cr request.

Table 83. Support for fields in the CMP certificate response message (type cp)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the CertRepMessage structure:</td>
<td></td>
</tr>
<tr>
<td>privateKey</td>
<td>privateKey is only returned in response to a cr message that does not specify publicKey.</td>
</tr>
<tr>
<td>caPubs</td>
<td>PKI Services does not use this element.</td>
</tr>
<tr>
<td>response</td>
<td>PKI Services returns only one CertResponse for a certificate request.</td>
</tr>
<tr>
<td>In the CertResponse structure:</td>
<td></td>
</tr>
<tr>
<td>certReqId</td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
</tr>
<tr>
<td>certifiedKeyPair</td>
<td></td>
</tr>
<tr>
<td>rspInfo</td>
<td>PKI Services does not use this element.</td>
</tr>
<tr>
<td>In the CertifiedKeyPair structure:</td>
<td></td>
</tr>
<tr>
<td>certOrEncCert</td>
<td></td>
</tr>
</tbody>
</table>
Table 83. Support for fields in the CMP certificate response message (type cp) (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>privateKey</td>
<td>PKI Services sets the object ID for intendedAlg to the PKCS #7 OID, which is 1.2.840.113549.1.7. EncValue is a bit string encapsulation of a PKCS #7 EnvelopedData structure whose encrypted content is the DER-encoded private key for the issued certificate.</td>
</tr>
</tbody>
</table>

Support for the CMP revocation request message (type rr)

Table 84 on page 459 identifies the fields that PKI Services supports in the data structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) for the CMP revocation request message (type rr).

Table 84. Supported fields in the CMP revocation request message (type rr)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the RevDetails structure:</td>
<td>PKI Services supports a single RevDetails in the RevReqContent message, and rejects an rr message with more than one RevDetails sequence.</td>
</tr>
<tr>
<td>certDetails</td>
<td>PKI Services requires that certDetails contains the serial number of the certificate to be revoked, suspended, or resumed.</td>
</tr>
<tr>
<td>crlEntryDetails</td>
<td>PKI Services recognizes only the cRLReason extension and ignores all other non-critical extensions in crlEntryDetails. If an extension other than the cRLReason extension is present and marked critical, PKI Services rejects the rr message.</td>
</tr>
</tbody>
</table>

Support for the CMP revocation response message (type rp)

Table 85 on page 459 identifies the fields that PKI Services supports in the data structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) for the CMP revocation response message (type rp). PKI Services returns the rp message to the CMP client for a successful rr request.

If PKI Services receives a type rp message from a CMP client, it returns an errorMessage response.

Table 85. Supported fields in the CMP revocation response message (type rp)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the RevRepContent structure:</td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
</tr>
</tbody>
</table>
Table 85. Supported fields in the CMP revocation response message (type rp) (continued)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>revCerts</td>
<td>PKI Services returns revCerts in the rp message when the corresponding rr message contains an issuer in certDetails or specifies a recipient in the form of a directoryName.</td>
</tr>
</tbody>
</table>

In the PKIStatusInfo structure:

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td></td>
</tr>
<tr>
<td>statusString</td>
<td></td>
</tr>
<tr>
<td>failInfo</td>
<td></td>
</tr>
</tbody>
</table>

Support for the CMP error message (type error)

Table 86 on page 460 identifies the fields that PKI Services supports in the data structure defined in RFC 4210 (tools.ietf.org/html/rfc4210) for the CMP revocation request message (type error). The error codes and details that can be returned are described in "Messages and codes returned from the CMP functions" on page 474.

If PKI Services receives a type error message from a CMP client, it returns an errorMessage response.

Table 86. Supported fields in the CMP error message (type error)

<table>
<thead>
<tr>
<th>Field name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the ErrorMsgContent structure:</td>
<td></td>
</tr>
<tr>
<td>pKIStatusInfo</td>
<td>This field is present in all type error messages that PKI Services returns. For the error codes and corresponding details that can be returned, see &quot;Messages and codes returned from the CMP functions&quot; on page 474.</td>
</tr>
<tr>
<td>errorCode</td>
<td></td>
</tr>
<tr>
<td>errorDetails</td>
<td></td>
</tr>
</tbody>
</table>

Determining the CA domain to which a request is routed

To determine the CA domain to which it routes a request, the CMP CGI program first tries to determine the issuer distinguished name:

- If the message type is cr (certificate request), the issuer field of the CertTemplate structure is used as the issuer distinguished name if it is present. If it is not, the recipient field in the message header is used as the issuer distinguished name if it is in the form of a Directory Name (distinguished name). If the recipient field is not in the form of a Directory Name, an issuer distinguished name is not used to determine the CA domain name; instead, the URL to which the CMP request was sent is used to determine the CA domain.

- If the message type is p10cr (PKCS #10 certificate request message), the recipient field in the message header is used as the issuer distinguished name if it is in the form of a Directory Name (distinguished name). If the recipient field is not in the form of a Directory Name, an issuer distinguished
If the message type is cr (revoke request), the issuer and serial number fields of the CertDetails field are used as the issuer distinguished name and certificate serial number to be revoked or suspended. If the serial number is not present, the request is rejected. If the issuer field is not present, the recipient field in the message header is used as the issuer distinguished name if it is in the form of a Directory Name (distinguished name). If the recipient field is not in the form of a Directory Name, an issuer distinguished name is not used to determine the CA domain name; instead, the URL to which the CMP request was sent is used to determine the CA domain.

If the CMP CGI program was able to determine the issuer distinguished name, and the request is a certificate request (type c1 or p10c1), the CMP CGI program does the following processing to determine to which CA domain it routes the request:

1. The CMP CGI program compares the issuer distinguished name that is extracted from the request in string format to the values defined in the _PKISERV_CMP_DOMAIN_ISSUERi environment variables (where i is 1 through the number of CA domains). The comparison is made by comparing the relative distinguished names in order of specification (first from most specific to least specific, then least specific to most specific). For example, if the issuer distinguished name in a request message is OU=STG,O=IBM,C=US, it would match a _PKISERV_CMP_DOMAIN_ISSUER3 environment variable whose value was set to either of the following values:
   - OU=STG,O=IBM,C=US (most specific first)
   - c=us,o=ibm,ou=stg (least specific first)

   The comparison is made without regard to the character case (case-insensitive). Some differences in spacing are allowed. For example, "O=IBM" matches "O = IBM", but not "O=I B M"

   If a match is found for the issuer distinguished name, the CMP CGI continues to step "2" on page 461. If no match is found, it uses the URL to which the CMP request was sent to determine the CA domain.

2. The number (i) of the matching _PKISERV_CMP_DOMAIN_ISSUERi environment variable is used to read the domain name environment variable _PKISERV_CMP_DOMAIN_NAMEi_n. The _PKISERV_CMP_DOMAIN_NAMEi_n with the highest value of n is used because it represents the current domain name for the CA for accepting new certificate requests. (When the value of n is greater than 1, at least one CA rollover occurred.) For example, if the issuer distinguished name in a c1 message matched the value in _PKISERV_CMP_DOMAIN_ISSUER3, and one CA rollover occurred for that CA, the CA domain name is retrieved from the _PKISERV_CMP_DOMAIN_NAME3_2 environment variable. If the _PKISERV_CMP_DOMAIN_NAMEi_n environment variable cannot be read, the CMP request is rejected.

If the CMP CGI program was able to determine the issuer distinguished name, and the request is a revoke request (type cr), and a serial number was present in the request, the CMP CGI program does the following processing to determine to which CA domain it routes the request:

1. The CMP CGI program compares the issuer distinguished name that is extracted from the request in string format to the values defined in the _PKISERV_CMP_DOMAIN_ISSUERi environment variables (where i is 1 through the number of CA domains). The comparison is made in the same manner as described in step “1” on page 461 for c1 and p10c1 requests. If a match is found for the issuer distinguished name, the CMP CGI continues to step “2” on page 461. If no match is found, it uses the URL to which the CMP request was sent to determine the CA domain.

2. The number (i) of the matching _PKISERV_CMP_DOMAIN_ISSUERi environment variable is then used to read the serial number domain name environment variables _PKISERV_CMP_DOMAIN_FSTSNIi_n. Each _PKISERV_CMP_DOMAIN_FSTSNIi_n environment variable is read, starting with an n value of 1, and compared to the serial number retrieved from the cr request.
   - If there are no _PKISERV_CMP_DOMAIN_FSTSNIi_n environment variables that are defined, the domain name is read from the _PKISERV_CMP_DOMAIN_NAMEi_1 environment variable.
   - If the serial number is greater than the environment variable value and less than the next environment variable value (or is the last environment variable), the domain name is read from the corresponding _PKISERV_CMP_DOMAIN_NAMEi_n environment variable.

Using the certificate management protocol (CMP) with PKI Services 461
Example: An \texttt{rr} request is made by a CMP client specifying an issuer distinguished name of OU=STG, O=IBM, C=US, and the following sample is an excerpt from the defined environment variables:

- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_ISSUER3 OU=STG, O=IBM, C=US}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_NAME3\_1 STG\_CA}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_NAME3\_2 STG\_CA2}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_NAME3\_3 STG\_CA3}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_FSTSN3\_1 3}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_FSTSN3\_2 12500}
- \texttt{SetEnv \_PKISERV\_CMP\_DOMAIN\_FSTSN3\_3 25000}

If the serial number that is specified in the \texttt{rr} request is 20000 decimal, the revocation request is routed to the STG\_CA2 domain because STG\_CA2's first serial number is less than 20000, and the first serial number that is issued by STG\_CA3 is greater than 20000.

How PKI Services interprets distinguished names (DNs) on CMP requests

The subject distinguished name is encoded in a CMP certificate request from the CMP client. The order in which the relative distinguished names (RDNs) are placed in the subject field by the client is the order in which the RDNs appear in the issued certificate. PKI Services interprets the order to be least significant RDN first and most significant RDN last. This becomes important when PKI Services posts the issued certificate to an LDAP server, because the LDAP server defines a root suffix that it allows objects and attributes to be stored under. If the LDAP server has a defined root suffix of "C=US", and PKI Services attempts to post a certificate with a subject name "CN=Gumby,O=IBM,C=US", the request succeeds because the string format of the subject name has the C=US as the rightmost RDN, and that is the defined LDAP root suffix. If however, the CMP client encoded the subject name in the reverse order, the subject name string that PKI uses to post the certificate would be "C=US,O=IBM,CN=Gumby". This post request fails because the interpreted root suffix of CN=Gumby would not exist in LDAP. Guideline: When encoding a subject distinguished name in a certificate request, clients should place the least significant RDN first and the most significant RDN last.

Example: This example shows the encoded form of CN=Gumby, O=IBM, C=US:

```plaintext
SEQUENCE {
  . SET {
    . . SEQUENCE {
      . . . OBJECT IDENTIFIER countryName (2 5 4 6)
      . . . PrintableString 'US'
    . . }  
    . . SET {
      . . SEQUENCE {
        . . . OBJECT IDENTIFIER organizationName (2 5 4 10)
        . . . PrintableString 'IBM'
      . . }  
    . . }
    . . SET {
      . . SEQUENCE {
        . . . OBJECT IDENTIFIER commonName (2 5 4 3)
        . . . PrintableString 'Gumby'
      . . }
    . }
  . }
}
```

When the PKI Services CMP CGI program receives a CMP request from a CMP client, it attempts to determine the target CA domain to route the request to using the supplied issuer DN or the recipient (if it is in the form of a DN). The CMP CGI program interprets the encoded DN values to be the least significant RDN first and most significant RDN last. The program builds a string representation of the issuer or recipient DN from left to right starting with the last RDN in the sequence and ending with the first RDN. The CMP CGI program then compares the string that it built to the values of the \texttt{\_PKISERV\_CMP\_DOMAIN\_ISSUER\_x} environment variables. During the comparison of the strings, the program tries the comparison in both ways, both right to left and left to right, so if the distinguished name in the request is OU=Master CA,O=IBM,C=US it matches a \texttt{\_PKISERV\_CMP\_DOMAIN\_ISSUER\_x} value of either OU=Master CA,O=IBM,C=US, or C=US,O=IBM,OU=Master CA.
Setting up a client to make CMP requests to PKI Services

Before a client (the CMP requester) can make requests to PKI Services through CMP, the client must have a certificate installed in the RACF database under the client's RACF user ID. The certificate is used by the requester to authenticate the client, and the client's user ID is used to access the PKI Services functions. It must be signed by a CA certificate that is connected to the HTTP Server's key ring.

There are several ways to set up the client certificate. For example, you can have it generated elsewhere (not by PKI Services) and add it to the RACF database using the RACDCERT ADD command. Alternatively, you can generate the certificate yourself and add it to the RACF database using RACDCERT commands. The following instructions illustrate the latter approach.

Steps for setting up a certificate for a CMP requester

Perform the following steps to set up a certificate in the RACF database for a CMP requester.

Before you begin

You need to have RACF SPECIAL authorization, or authorization to the RACDCERT commands shown. For more information, see z/OS Security Server RACF Command Language Reference.

Procedure

1. Generate a certificate for the CMP requester in the RACF database, signed by a certificate that is in the HTTP Server's key ring.
   
   Example:
   
   ```
   RACDCERT ID(User123) GENCERT
   SUBJECT(CN('Messager') OU('OrgUnitA') O('OrgA') C('AU'))
   WITHLABEL('client') SIGNWITH(CERTAUTH LABEL('Local PKI CA'))
   ```

   2. Export the certificate and its private key to a data set.
      
      Example:
      
      ```
      RACDCERT ID(User123) EXPORT(LABEL('client'))
      DSN('User123.private.eecert') FORMAT(PKCS12B64)
      PASSWORD('secret')
      ```

      Tip: You could use FORMAT(PKCS12DER) if you do not plan to use copy and paste operations to transport the certificate and private key to the client system.

   3. Transport the certificate to the system where the CMP client will run. You can do this using FTP, or perhaps by copy and paste operations, depending on the CMP client software.

Results

When you are done, the client can make CMP requests to PKI Services.

Setting up PKI Services to process CMP requests

Before PKI Services can process CMP requests, you must do the following tasks:

1. Enable the CMP support by setting the EnableCMP configuration parameter.

2. If you want PKI Services to create private keys for CMP clients, you must set up ICSF and set up PKI Services to encrypt the private keys.
Enabling the CMP support

The PKI Services configuration file, pkiserv.conf, contains a parameter in the CertPolicy section that enables the CMP support. By default this parameter, EnableCMP, is set to false. If the parameter is set to false or omitted from the configuration file, PKI Services rejects all CMP requests.

To enable the CMP support, find the following lines in the configuration file:

```plaintext
# Enable the Certificate Management Protocol (CMP)
# T = True, CMP is enabled
# F = False, CMP is disabled (default if not specified)
#
# EnableCMP=F
```

Change EnableCMP=F to EnableCMP=T, and restart PKI Services.

Setting up PKI Services to create private keys for CMP clients

PKI Services can create private keys for CMP clients and return a private key with a certificate. It uses the PKCS #11 API provided by ICSF to create private keys. Note, however, that PKI Services does not archive the private keys in the ICSF token data set (TKDS), as it does for private keys that it creates for certificate requests it receives from the end-user web application. To allow PKI Services to create private keys, you must ensure that the ICSF programmer has installed and configured ICSF, and has set up the TKDS. For more information, see “Installing and configuring ICSF” on page 33.

**Note:** You do not need to perform any of the other tasks that are described in “Steps for setting up PKI Services to generate keys for certificate requests” on page 326, such as setting the TokenName parameter in the configuration file, to allow the PKI Services CMP CGI program to generate private keys for CMP clients. Those tasks apply only to private key generation done by the PKI Services daemon, for certificates requested from the PKI Services web application.

Determining the source of certificates used to encrypt the returned private key

If a CMP client requests a certificate for which PKI Services creates the keys, PKI Services must encrypt the private key before returning it with the certificate to the recipient. There are three ways that the encryption of the private key can be done, and the method that is used is determined in the following order:

1. If the client provides an extraCerts field in the PKIMessage structure and the number of certificates in the extraCerts field does not exceed the value of the _PKISERV_CMP_HONOR_CLIENT_CERTS_domain environment variable, the CMP CGI program encrypts the private key in a manner in which it can be decrypted by each of the certificates in the extraCerts field.
2. If the extraCerts field is not specified in the request message, and the _PKISERV_CMP_KEYRING_domain environment variable is set, the private key is encrypted in a manner in which it can be decrypted by each of the certificates in the specified key ring.
3. If the extraCerts field is not specified in the request message, and no key ring is defined, the private key is encrypted with the public key of the certificate used to establish the secure client authentication session to the CMP CGI program.

Steps for setting up PKI Services to encrypt returned private keys with certificates in a key ring

For PKI Services to encrypt private keys using certificates in a key ring, you must set up a key ring containing a digital certificate for each recipient.

Before you begin

- You need to have RACF SPECIAL authorization, or sufficient authority to the following resources in the FACILITY class:
  - IRR.DIGTCERT.ADDRING
  - IRR.DIGTCERT.ADD
  - IRR.DIGTCERT.CONNECT
• You must have a certificate for each certificate recipient, in a data set.

**Note:** This example assumes that you are using certificates that were created somewhere else. Alternatively, you could create the certificates using the RACF command `RACDCERT GENCERT`. If you take this approach, you need authorization to the resource `IRR.DIGTCERT.GENCERT` in the FACILITY class.

**Procedure**

1. Set the HTTP Server environment variable `_PKISERV_CMP_KEYRING_`:

   ```
   _PKISERV_CMP_KEYRING_domain RACF_userID/ring_name
   ```

   *RACF_userID* can be any RACF user ID; for example, the PKI Services daemon user ID, or the CMP requester user ID. *ring_name* is a name that you choose, and use when you create the key ring.

2. Create a RACF key ring, specifying the RACF user ID and the ring name that you specified in step “1” on page 465.

   ```
   RACDCERT ID(RACF_userID) ADDRING(ring_name)
   ```

3. Add certificates for each recipient to the RACF database, using the RACF user ID that you specified in step “1” on page 465.

   ```
   RACDCERT ID(RACF_userID) ADD(dataset_1) WITHLABEL('label_1') TRUST
   RACDCERT ID(RACF_userID) ADD(dataset_2) WITHLABEL('label_2') TRUST:
   RACDCERT ID(RACF_userID) ADD(dataset_n) WITHLABEL('label_n') TRUST
   ```

   *dataset_n* is the name of the data set containing the certificate for recipient *n*. *label_n* is the label to be associated with the certificate for recipient *n*.

4. Add the digital certificates to the key ring that you created in step “2” on page 465.

   ```
   RACDCERT ID(RACF_userID) CONNECT(LABEL('label_1') RING(ring_name))
   RACDCERT ID(RACF_userID) CONNECT(LABEL('label_2') RING(ring_name))
   ⋮
   RACDCERT ID(RACF_userID) CONNECT(LABEL('label_n') RING(ring_name))
   ```

   *label_n* is the label you associated with the certificate for recipient *n* in step “3” on page 465.

5. Authorize the PKI Services CMP CGI program to access the key ring. This program runs with the RACF user ID that the client-supplied certificate maps to, so you must give that RACF user ID access to the key ring. You can use one of two methods:

   - **(Preferred)** Define a profile in the RDATALIB class for the key ring and give each CMP client user ID READ access:

     ```
     RDEFINE RDATALIB ring_owner.ring_name.LST UACC(NONE)
     PERMIT ring_owner.ring_name.LST CLASS(RDATALIB) ID(client_user_id) ACCESS(READ)
     SETROPTS RACLIST(RDATALIB) REFRESH
     ```

     *ring_owner* is the RACF user ID you that specified in step “2” on page 465, and *ring_name* is the ring name that you specified.

   - **(Alternative)** Define a profile in the FACILITY class for `IRR.DIGTCERT.LISTRING`. Give the ring owner READ access and the client user IDs UPDATE access:

     ```
     RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
     PERMIT IRR.DIGTCERT.LISTRING ID(ring_owner) ACCESS(READ)
     PERMIT IRR.DIGTCERT.LISTRING ID(client_user_id) ACCESS(UPDATE)
     ```
6. If either the DIGTCERT or DIGTRING class is RAclist-ed, refresh the RAclist-ed classes to activate your changes.

    SETROPTS RACLIST(DIGTCERT, DIGTRING) REFRESH

Results

When you are done, you have set up PKI Services to encrypt returned private keys with certificates in a RACF key ring.

Setting up the HTTP Server for CMP

You can pass information about CMP requests through HTTP Server environment variables.

- For IBM HTTP Server - Powered by Apache, the environment variables are specified using the `SetEnv` directive in the virtual host file for SSL requests with client authentication, which by default is `vhost1443.conf`.

For information about IBM HTTP Server - Powered by Apache environment variables, see the WebSphere Application Server Knowledge Center (www.ibm.com/support/knowledgecenter/SSEQTP). The variables that you can set are described in Table 87 on page 466, Table 88 on page 467, and Table 89 on page 472.

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PKISERV_CMP_DOMAIN_ISSUERx</td>
<td>CA's subject distinguished name with comma-separated RDNs</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> SetEnv _PKISERV_CMP_DOMAIN_ISSUER1 &quot;CN=Issuer CA,OU=Lab,O=IBM,C=AU&quot;</td>
</tr>
<tr>
<td>_PKISERV_CMP_DOMAIN_NAMEx_y</td>
<td>Issuer's PKI CA domain name. The domain name variable is limited to 8 characters beginning with an alphabetic character or an underscore &quot;_&quot; and no embedded spaces. For an unnamed domain, this variable must be set to <code>&lt;NONE&gt;</code>. A rollover of an unnamed domain requires the new domain to be named.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> If there are, or have been, 3 domains of certificates for the same issuer, there would be 3 entries in the environment variables file: SetEnv _PKISERV_CMP_DOMAIN_NAME1_1 CardCA1 SetEnv _PKISERV_CMP_DOMAIN_NAME1_2 CardCA2 SetEnv _PKISERV_CMP_DOMAIN_NAME1_3 CardCA3</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> The domain is unnamed. SetEnv _PKISERV_CMP_DOMAIN_NAME1_1 &lt;NONE&gt;</td>
</tr>
<tr>
<td>_PKISERV_CMP_DOMAIN_FSTSNx_y</td>
<td>Starting serial number, in decimal, for the first certificate that is issued by _PKISERV_CMP_DOMAIN_NAMEx_y.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> SetEnv _PKISERV_CMP_DOMAIN_FSTSN1_2 1001</td>
</tr>
</tbody>
</table>

**Notes:**

1. x represents any of the available certificate issuers from 1 to the maximum number of issuers. If there are 2 issuers of certificates, there would be 2 entries in the configuration file. The values of x are consecutive integers starting with 1.
2. \( y \) represents any of the available CA domains that issue or have issued certificates on behalf of _PKISERV_CMP_DOMAIN_ISSUERx_. The values of \( y \) are consecutive integers starting with 1.

3. Environment variable values must be enclosed in quotations if they include white space.

4. Any comma in a relative distinguished name (RDN) value must be escaped by placing a backslash immediately before the comma in the _PKISERV_CMP_DOMAIN_ISSUERx_ variable. For example, if your Organization RDN value is "Widgets, Inc.", the RDN must be specified as "O=Widgets\\, Inc.". The commas that separate the RDNs must not be escaped.

**Example:**

\[
\text{CN=Issuer CA,OU=Lab,O=Widgets, Inc.,C=AU}
\]

---

Table 88. HTTP Server environment variables used to control the content of the certificate within a CA

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PKISERV_CMP_KEYTYPE_domain</td>
<td>Specifies the key type or encryption algorithm to be used to generate the key pair. PKI Services supports RSA, NISTECC and BPECC.</td>
</tr>
<tr>
<td><strong>Examples:</strong></td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYTYPE_CardCA1 RSA</td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYTYPE_BPECC</td>
<td></td>
</tr>
<tr>
<td>_PKISERV_CMP_KEYSIZE_domain</td>
<td>A three- or four-digit number that specifies the length of the key.</td>
</tr>
<tr>
<td><strong>Examples:</strong></td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYSIZE_CardCA1 2048</td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYSIZE 512</td>
<td></td>
</tr>
<tr>
<td>Environment variable name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| _PKISERV_CMP_SECUREKEY_domain | Specifies whether to generate secure keys in the TKDS. The value 1 specifies that secure keys are to be generated. The value 0 specifies that clear keys are to be generated. If this variable is not set, the profile protecting the CLEARKEY resource in the CRYPTOZ class determines whether the key generated is a secure key or a clear key. If the profile allows clear key generation, the generated key is a clear key. If the profile restricts clear key generation, the generated key is a secure key. For example, the following command creates a profile that prevents the generation of clear keys from any of the CMP clients:  

   ```zsh
   RDEF CRYPTOZ CLEARKEY.SYSTOK-SESSION-ONLY
   UACC(NONE)
   ```  

In this case, AES256 is used to envelop the private key.                                                                                                                                                                                                                                                                 |
| _PKISERV_CMP_SECUREKEY_KEYENCALG_domain | Specifies the algorithm to envelop the private key. Valid values are AES256, AES128, and TDES. If not set, it defaults to AES256. This variable is ignored if _PKISERV_CMP_SECUREKEY_domain is not set.                                                                                                                                                                                                                             |
| _PKISERV_CMP_HONOR_CLIENT_DATES_domain | Specifies whether to honor client-specified certificate validity dates. Valid values are 0 and 1. The value 1 specifies that PKI Services uses start and end dates that are specified in the validity field of the certificate request. If validity dates are not specified, PKI Services uses the values in the environment variables _PKISERV_CMP_NOTBEFORE_domain and _PKISERV_CMP_NOTAFTER_domain. If either the start date or the end date is specified and the other is not specified, PKI Services uses the value set by the corresponding environment variable for the unspecified value. The value 0, or the absence of this variable, indicates that PKI Services is to use the values in the environment variables _PKISERV_CMP_NOTBEFORE_domain and _PKISERV_CMP_NOTAFTER_domain. If the client specifies either a start or end date in the validity field of a CRL message when the value of this variable is 0 or absent, PKI Services rejects the request.  

**Examples:**  

   ```zsh
   SetEnv _PKISERV_CMP_HONOR_CLIENT_DATES_CardCA1 1
   SetEnv _PKISERV_CMP_HONOR_CLIENT_DATES 0
   ``` |
Table 88. HTTP Server environment variables used to control the content of the certificate within a CA (continued)

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_PKISERV_CMP_NOTBEFORE_domain</code></td>
<td>Specifies the number of days from day of issue to when the certificate becomes valid. Valid values are 0 - 30 days. The default is 0, specifying that the certificate is valid from the start of the current day.</td>
</tr>
</tbody>
</table>
| Examples:                                    | SetEnv `_PKISERV_CMP_NOTBEFORE_CardCA1` 7  
SetEnv `_PKISERV_CMP_NOTBEFORE` 5                                                                                                                   |
| `_PKISERV_CMP_NOTAFTER_domain`               | Specifies the number of days from today’s date to when the certificate expires. Valid values are 1 - 9999. The default is 365. The value 1 specifies that the certificate is valid until the end of the current day.                                                                                   |
| Examples:                                    | SetEnv `_PKISERV_CMP_NOTAFTER_CardCA1` 1825  
SetEnv `_PKISERV_CMP_NOTAFTER` 1580                                                                                                                      |
| `_PKISERV_CMP_HONOR_CLIENT_EXTS_domain`      | Specifies whether to honor the client-specified extensions Subject Alternate Name, Keyusage and Extended keyusage. Valid values are 0 and 1.                                                                                                                                                    |
| Examples:                                    | SetEnv `_PKISERV_CMP_HONOR_CLIENT_EXTS_CardCA1` 1  
SetEnv `_PKISERV_CMP_HONOR_CLIENT_EXTS` 0                                                                                                                |
Table 88. HTTP Server environment variables used to control the content of the certificate within a CA (continued)

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PKISERV_CMP_KEYUSAGE_domain</td>
<td>Blank-separated character strings defining the key usage to be added to requested certificates. Valid values are: handshake, dataencrypt, certsign, docsing, digitalsignature, digitalsign, nonrepudiation, keyencipherment, keyenciph, keyencrypt, dataencipherment, dataenciph, keyagreement, keyagree, keycertsign, crlsign, cmcaa, cmcra, cmcas, pkinitkdc, and pkinitclientauth. The values are not case-sensitive. No default value. Examples:</td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYUSAGE_CardCA1 &quot;digitalsig keyencrypt&quot;</td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_KEYUSAGE_handshake</td>
<td></td>
</tr>
<tr>
<td>_PKISERV_CMP_EXTKEYUSAGE_domain</td>
<td>Blank-separated character strings defining the extended key usage to be added to requested certificates. Valid values are: serverauth, clientauth, codesigning, emailprotection, timestamping, ocspsigning, mssmartcardlogon, cmcaa, cmcra, cmcas, pkinitkdc, and pkinitclientauth. The values are not case-sensitive. No default value. Examples:</td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_EXTKEYUSAGE_CardCA1 clientauth</td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_EXTKEYUSAGE_serverauth</td>
<td></td>
</tr>
<tr>
<td>_PKISERV_CMP_AUTHINFOACC_domain</td>
<td>Deprecated. Use _PKISERV_CMP_AUTHINFOACCn_domain instead. Ignored if you specify _PKISERV_CMP_AUTHINFOACCn_domain. A comma-separated two-part string specifying information that is used to create the AuthorityInfoAccess extension. The two-part string identifies the accessMethod and accessLocation. The accessMethod is either OCSP or IdentrusOCSP (case-insensitive). The accessLocation is a URI in the form URI=access-url or URL=access-url. The access-url must be an HTTP protocol. No default value. Examples:</td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_AUTHINFOACC_CardCA1 OCSP, URI=<a href="Http://www.widgets.com/CardCA1/public-cgi/caocsp">Http://www.widgets.com/CardCA1/public-cgi/caocsp</a></td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_AUTHINFOACC_CardCA1 OCSP, URL=<a href="Http://www.widgets.com/CardCA1/public-cgi/caocsp">Http://www.widgets.com/CardCA1/public-cgi/caocsp</a></td>
<td></td>
</tr>
<tr>
<td>SetEnv _PKISERV_CMP_AUTHINFOACC OCSP, URL=<a href="Http://www.widgets.com/PKIServ/public-cgi/caocsp">Http://www.widgets.com/PKIServ/public-cgi/caocsp</a></td>
<td></td>
</tr>
<tr>
<td>Environment variable name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| `_PKISERV_CMP_AUTHINFOACCn_domain`     | Specifies one or more AuthorityInfoAccess extensions in the form of a comma-separated two-part string. The two-part string identifies the accessMethod and accessLocation. The accessMethod is either OCSP or IdentrusOCSP (case-insensitive). The accessLocation is a URI in the form URI=access-url or URL=access-url. The access-url must be an HTTP protocol. No default value. There can be multiple entries, where n is 1 for the first AuthorityInfoAccess extension and increases sequentially for additional entries. Examples:  
  
  ```
  SetEnv _PKISERV_CMP_AUTHINFOACC1_CardCA1 OCSP, URL=http://www.widgets.com/CardCA1/public-cgi/caocsp
  SetEnv _PKISERV_CMP_AUTHINFOACC2_CardCA1 OCSP, URI=http://www.widgets.com/PKIServ/public-cgi/caocsp
  ``` |
| `_PKISERV_CMP_CERTPOLICIES_domain`    | Specifies the certificate policies that are to be included in the issued certificates. The value is a set of numbers, which are separated by blanks, each representing one of the PolicyName values specified in the CertPolicy section of the PKI Services configuration file. Valid values are 1 - 99. No default value. Examples:  
  
  ```
  SetEnv _PKISERV_CMP_CERTPOLICIES_CardCA1 "1 2 3"
  SetEnv _PKISERV_CMP_CERTPOLICIES "1 4"
  ``` |
| `_PKISERV_CMP_CUSTOMEXTn_domain`      | Specifies one or more custom extensions in the form of a comma-separated four-part string as indicated in the CustomExt field in the GENCERT CertPlist. There can be multiple entries, where n is 1 for the first custom extension and increases sequentially for additional entries. Example:  
  
  ```
  SetEnv _PKISERV_CMP_CUSTOMEXT1_CardCA1 1.3.6.1.4.1.311.20.2, N,BMP,myDomainController
  ```

**Notes:**

1. `domain` represents the domain name that is contained in the variable `_PKISERV_CMP_DOMAIN_NAMEx_y`. For an unnamed domain, omit `domain`.  
2. Environment variable values must be enclosed in quotations if they include white space.
<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
</table>
| _PKISERV_CMP_HONOR_CLIENT_CERTS_domain            | Specifies the maximum number of extra input recipient certificates that can be supplied in the input message, by using the extraCerts construct in the PKIMessage structure. Valid values are 0 - 5. If omitted or set to a value of 0, certificate requests that contain extraCerts are rejected.  
  **Example:**  
  ```bash
  SetEnv _PKISERV_CMP_HONOR_CLIENT_CERTS_CardCA1 3
  ```  
  For more information, see “Determining the source of certificates used to encrypt the returned private key” on page 464. |
| _PKISERV_CMP_KEYRING_domain                       | Specifies the RACF user ID and the name of the key ring that is associated with that user ID that contains the certificates that are to be used to encrypt the private key for certificate request messages.  
  **Example:**  
  ```bash
  SetEnv _PKISERV_CMP_KEYRING_CardCA1 CMPCLNT/CardKeyRing
  ```  
  For more information, see “Determining the source of certificates used to encrypt the returned private key” on page 464. |
### Table 90. HTTP Server environment variables used to control tracing

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>_PKISERV_CMP_TRACE</strong></td>
<td>Specifies a bit mask enabling CMP trace options. No trace option is enabled if the bit mask is 0 and all trace options are enabled if the bit mask is 0xff. The bit mask can be specified as a decimal (nnn), octal (0nnnn) or hexadecimal (0xhh) value. These trace options are available:</td>
</tr>
<tr>
<td><strong>0x01</strong></td>
<td>CMP error messages</td>
</tr>
<tr>
<td><strong>0x02</strong></td>
<td>CMP informational messages</td>
</tr>
<tr>
<td><strong>0x04</strong></td>
<td>R_PKIServ callable service parameter list traces on entry and exit</td>
</tr>
<tr>
<td><strong>0x08</strong></td>
<td>Elapse time messages of events within the CMP program</td>
</tr>
<tr>
<td><strong>0x10</strong></td>
<td>CMP program function entry and exit trace messages</td>
</tr>
<tr>
<td><strong>0x20</strong></td>
<td>DER buffer display messages</td>
</tr>
<tr>
<td><strong>0x40</strong></td>
<td>Displays environment variables that are set at CMP program startup</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>SetEnv _PKISERV_CMP_TRACE 0xff</td>
</tr>
<tr>
<td><strong>_PKISERV_CMP_TRACE_FILE</strong></td>
<td>Specifies the name of the trace file. Defaults to /tmp/pkicmp.%.trc. The trace file is not used if the _PKISERV_CMP_TRACE environment variable is not defined or is set to 0. The current process identifier is included as part of the trace file name when the name contains a percent sign (%). For example, if _PKISERV_CMP_TRACE_FILE is set to /tmp/pkicmp.%.trc and the current process identifier is 247, the trace file name is /tmp/pkicmp.247.trc. <strong>Guideline:</strong> Because multiple copies of the CMP CGI program can run concurrently for multiple CMP clients, the value of _PKISERV_CMP_TRACE_FILE should include the percent sign (%) to prevent multiple copies of the CMP CGI program from writing to the same file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>SetEnv _PKISERV_CMP_TRACE_FILE /tmp/pkicmp.%.trc</td>
</tr>
</tbody>
</table>
Table 91. HTTP Server environment variable used to control the FIPS level

<table>
<thead>
<tr>
<th>Environment variable name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_PKISERV_CMP_FIPS_LEVEL</td>
<td>Specify the FIPS level the CMP program runs.</td>
</tr>
<tr>
<td>0</td>
<td>non FIPS mode (default)</td>
</tr>
<tr>
<td>1</td>
<td>FIPS 140-2</td>
</tr>
<tr>
<td>2</td>
<td>SP800-131-A with exception</td>
</tr>
<tr>
<td>3</td>
<td>SP800-131-A without exception</td>
</tr>
</tbody>
</table>

The value applies to all the domains. Make sure that the specified value agrees with the key size that is specified in the _PKISERV_CMP_KEYSIZE_ domain keyword. The value of 0 or, the absence of this variable, indicates that CMP is not running in FIPS mode.

Example:
SetEnv _PKISERV_CMP_FIPS_LEVEL_ 1

Tracing the PKI CMP CGI program

You can enable tracing of the PKI Services CMP CGI program using the environment variable _PKISERV_CMP_TRACE_ to set the trace options, and the environment variable _PKISERV_CMP_TRACE_FILE_ to specify the name of the trace file. A single trace file is created for each invocation of the CMP CGI program. For information about these environment variables, see Table 90 on page 473.

Messages and codes returned from the CMP functions

Most messages are returned to the caller as a CMP error response. In addition, all messages are echoed to the CGI program error log in the format:

date time pkicmp-&gt; function: (error code) message text

For example:

Wed Oct 28 09:34:12 2009 pkicmp-&gt;processNotDays: (577) NotBefore date supplied is invalid(date is before today).

Table 92. CMP error codes

<table>
<thead>
<tr>
<th>Error code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>Request queue serialization timeout occurred.</td>
</tr>
<tr>
<td>08</td>
<td>Request denied, not authorized.</td>
</tr>
<tr>
<td>12</td>
<td>An internal error has occurred during RACF processing.</td>
</tr>
<tr>
<td>20</td>
<td>Function code specified is not defined.</td>
</tr>
<tr>
<td>28</td>
<td>Certificate generation provider not available for specified CA domain</td>
</tr>
<tr>
<td>32</td>
<td>Incorrect value specified for CA domain.</td>
</tr>
<tr>
<td>40</td>
<td>Incorrect Reason Specified.</td>
</tr>
<tr>
<td>Error code</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>52</td>
<td>Parameter has an incorrect value.</td>
</tr>
<tr>
<td>56</td>
<td>Required field is missing from request.</td>
</tr>
<tr>
<td>60</td>
<td>Certificate generation provider error.</td>
</tr>
<tr>
<td>64</td>
<td>SerialNum has an incorrect length.</td>
</tr>
<tr>
<td>72</td>
<td>The status of the certificate has been changed by another process.</td>
</tr>
<tr>
<td>76</td>
<td>Conflicting fields names in CertPlist.</td>
</tr>
<tr>
<td>99</td>
<td>General error for other RACF callable service IRRSPX00 errors.</td>
</tr>
<tr>
<td>510</td>
<td>(510) Base64 decode of input message failed, error=error-code</td>
</tr>
<tr>
<td>511</td>
<td>(511) Base64 encode of output message failed, error=0xhex-error code</td>
</tr>
<tr>
<td>512</td>
<td>(512) Storage allocation failed (client certificate storage:error-code)</td>
</tr>
<tr>
<td>513</td>
<td>(513) Error occurred, HTTP access is forbidden.</td>
</tr>
<tr>
<td>514</td>
<td>(514) Error occurred, HTTP method was HTTP method name instead of POST.</td>
</tr>
<tr>
<td>515</td>
<td>(515) Failed to create CMP response message.</td>
</tr>
<tr>
<td>516</td>
<td>(516) Unsupported TCP Message protocol version.</td>
</tr>
<tr>
<td>517</td>
<td>(517) Unsupported TCP Message message type.</td>
</tr>
<tr>
<td>518</td>
<td>(518) Error occurred attempting to read the HTTP input message.</td>
</tr>
<tr>
<td>519</td>
<td>(519) Unsupported CMP message type: CMP message type specified</td>
</tr>
<tr>
<td>520</td>
<td>(520) Key size (envar name envar) of envar value is not a multiple of {2</td>
</tr>
<tr>
<td>521</td>
<td>(521) Key size (envar name envar) of envar value is not valid for {RSA</td>
</tr>
<tr>
<td>522</td>
<td>(522) Storage allocation failed element:size</td>
</tr>
<tr>
<td>523</td>
<td>(523) HonorClientDates (envar name envar) value of envar value is not numeric.</td>
</tr>
<tr>
<td>524</td>
<td>(524) HonorClientDates (envar name envar) value of envar value is not valid, expected 0 or 1.</td>
</tr>
<tr>
<td>525</td>
<td>(525) notBefore (envar name envar) value of envar value is not numeric.</td>
</tr>
<tr>
<td>526</td>
<td>(526) notAfter (envar name envar) value of envar value is not numeric.</td>
</tr>
<tr>
<td>527</td>
<td>(527) HonorClientCerts (envar name envar) value of envar value is not numeric.</td>
</tr>
<tr>
<td>528</td>
<td>(528) HonorClientCerts (envar name envar) value of envar value invalid, should be 0-5.</td>
</tr>
<tr>
<td>529</td>
<td>(529) HonorClientExts (envar name envar) value of envar value is not numeric.</td>
</tr>
<tr>
<td>530</td>
<td>(530) HonorClientExts (envar name envar) value of envar value invalid, should be 0 or 1.</td>
</tr>
<tr>
<td>531</td>
<td>(531) CMP Envar envar name value is not valid, expected {valid values}</td>
</tr>
<tr>
<td>533</td>
<td>(533) CMP Envar envar name missing in config file.</td>
</tr>
<tr>
<td>534</td>
<td>(534) CMP Envar envar name value of envar value is not numeric.</td>
</tr>
</tbody>
</table>
Table 92. CMP error codes (continued)

<table>
<thead>
<tr>
<th>Error code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>535</td>
<td>(535) CMP Envar <code>envar1 name</code> with value of <code>envar1 value</code> &lt;= <code>envar2 name</code> with value of <code>envar2 value</code>.</td>
</tr>
<tr>
<td>536</td>
<td>(536) Key size (<code>envar name</code> <code>envar</code>) not specified, defaulting to <code>default key size value</code>.</td>
</tr>
<tr>
<td>537</td>
<td>(537) Key size (<code>envar name</code> <code>envar</code>) of <code>Key size value specified</code> is not numeric.</td>
</tr>
<tr>
<td>538</td>
<td>(538) KeyType (<code>envar name</code> <code>envar</code>) of <code>KeyType value specified</code> is not valid.</td>
</tr>
<tr>
<td>539</td>
<td>(539) <code>envar name</code> <code>envar</code> value length is greater than the maximum length of <code>maximum length</code>.</td>
</tr>
<tr>
<td>540</td>
<td>(540) Key size (<code>envar name</code> <code>envar</code>) of <code>value</code> is not compliant with FIPS level <code>value specified</code>.</td>
</tr>
<tr>
<td>541</td>
<td>(541) Key type (<code>envar name</code> <code>envar</code>) of <code>value</code> is not compliant with FIPS level <code>value specified</code>.</td>
</tr>
<tr>
<td>543</td>
<td>(543) <code>request.extraCerts[index value].write()</code> failed, status=<code>error code</code></td>
</tr>
<tr>
<td>544</td>
<td>(544) <code>gsk_decode_certificate</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>545</td>
<td>(545) <code>gsk_decode_base64</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>547</td>
<td>(547) <code>gsk_open_keyring()</code> failed: Error 0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>548</td>
<td>(548) <code>gsk_decode_certificate</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>549</td>
<td>(549) <code>gsk_get_record_by_index()</code> failed: Error 0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>550</td>
<td>(550) Specified Keyring <code>Keyring name</code> contains no certificates</td>
</tr>
<tr>
<td>552</td>
<td>(552) Failed to set FIPS state</td>
</tr>
<tr>
<td>553</td>
<td>(553) <code>gsk_decode_import_certificate</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>554</td>
<td>(554) <code>gsk_encode_private_key</code>, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>555</td>
<td>(555) <code>gsk_make_enveloped_data_msg_extended</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>556</td>
<td>(556) <code>gsk_encode_export_certificate</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>557</td>
<td>(557) <code>gsk_construct_private_key_rsa</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>558</td>
<td>(558) <code>gsk_construct_public_key[ECC]</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>559</td>
<td>(559) <code>gsk_modify_pkcs11_key_label</code> failed, error code=0x<code>System SSL error code</code> - System SSL brief error description</td>
</tr>
<tr>
<td>560</td>
<td>(560) <code>gsk_make_enveloped_private_key_msg</code> error failed, error code=0x<code>System SSL error code</code> -System SSL brief error description</td>
</tr>
<tr>
<td>Error code</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>562</td>
<td>(562) Triple Des Algorithm not available, using Single Des.</td>
</tr>
<tr>
<td>563</td>
<td>(563) Gencert succeeded, But no Transaction ID returned.</td>
</tr>
<tr>
<td>573</td>
<td>(573) Could not decode CMP message.</td>
</tr>
<tr>
<td>576</td>
<td>(576) Missing ImplicitConfirm in PKIHeader.</td>
</tr>
<tr>
<td>577</td>
<td>(577) {NotBefore</td>
</tr>
<tr>
<td>581</td>
<td>(581) Validity supplied when not configured to honor client dates.</td>
</tr>
<tr>
<td>582</td>
<td>(582) No CA domain found for issuer Issuer Distinguished name.</td>
</tr>
<tr>
<td>584</td>
<td>(584) Number of extraCerts &gt; HonorClientCerts (envar name envar) value of envar value.</td>
</tr>
<tr>
<td>587</td>
<td>(587) Critical crl extension oid=Extension OID value is not supported.</td>
</tr>
<tr>
<td>588</td>
<td>(588) crlReason extension value is not valid; decode error error-code.</td>
</tr>
<tr>
<td>589</td>
<td>(589) Serial number required in certTemplate.</td>
</tr>
<tr>
<td>590</td>
<td>(590) {Revoke/Suspend</td>
</tr>
<tr>
<td>600</td>
<td>(600) Error encountered while encoding response body(failing element[:error code])</td>
</tr>
<tr>
<td>601</td>
<td>(601) Error encountered while encoding response header(failing element[:error code])</td>
</tr>
<tr>
<td>602</td>
<td>(602) {Attributes</td>
</tr>
<tr>
<td>603</td>
<td>(603) Base64 encode of CertificationRequest failed, error=error-code.</td>
</tr>
<tr>
<td>604</td>
<td>(604) CertReqMsg with publicKey has missing or unsupported ProofOfPossesion</td>
</tr>
<tr>
<td>606</td>
<td>(606) Error encountered while encoding CertReqMsg(failing element[:error code]).</td>
</tr>
<tr>
<td>607</td>
<td>(607) Error obtaining the current time of day(failing step:error code).</td>
</tr>
<tr>
<td>608</td>
<td>(608) Error retrieving information from the CMP request (failing element[:error code])</td>
</tr>
<tr>
<td>609</td>
<td>(609) {cr</td>
</tr>
<tr>
<td>610</td>
<td>(610) Subject name absent from CertTemplate for a cr message</td>
</tr>
<tr>
<td>611</td>
<td>(611) Unsupported CMP message version (version specified not equal 2)</td>
</tr>
<tr>
<td>612</td>
<td>(612) Error initializing PKI Services configuration file (configuration-file-name)</td>
</tr>
<tr>
<td>613</td>
<td>(613) CA domain domain-name does not have CMP support enabled</td>
</tr>
<tr>
<td>614</td>
<td>(614) Error retrieving CMP environment variables</td>
</tr>
<tr>
<td>620</td>
<td>(620) Key type {[null]</td>
</tr>
<tr>
<td>621</td>
<td>(621) Cannot initialize ICSF PKCS#11 interfaces (C_Initailize return code Oxhex-return-code)</td>
</tr>
<tr>
<td>Error code</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>622</td>
<td>(622) Error encountered while destroying a {Publik</td>
</tr>
<tr>
<td>623</td>
<td>(623) Internal PKCS#11 API failure (<em>PKCS #11 API</em>) return code 0x<em>hex-return-code</em></td>
</tr>
<tr>
<td>624</td>
<td>(624) {RSA</td>
</tr>
<tr>
<td>464453637</td>
<td>VSAM contention caused the request to fail. Retry the request.</td>
</tr>
<tr>
<td>464453634</td>
<td>VSAM contention caused the request to fail. Retry the request.</td>
</tr>
</tbody>
</table>
Part 5. Administering security for PKI Services

This part explains how to administer security for PKI Services.

- Chapter 22, “RACF administration for PKI Services,” on page 481 describes how to use RACF to administer security for PKI Services.

The following tasks are covered:
- “Authorizing users for the PKI Services administration group” on page 481
- “Authorizing users for inquiry access” on page 481
- “Administering HostIdMappings extensions” on page 482
- “Locating your PKI Services certificates and key ring” on page 484
- “Establishing PKI Services as an intermediate CA” on page 486
- “Renewing your PKI Services CA and RA certificates” on page 488
- “Recovering a CA certificate profile” on page 490
- “Retiring and replacing the PKI Services CA private key” on page 491
- “R_PKIServ (IRRSPX00 and IRRSPX64) callable service” on page 495
- “Using encrypted passwords for LDAP servers” on page 501.
Chapter 22. RACF administration for PKI Services

This topic describes the tasks that the RACF administrator performs after PKI Services has been set up and customized.

The following tasks are covered:

- “Authorizing users for the PKI Services administration group” on page 481
- “Authorizing users for inquiry access” on page 481
- “Administering HostIdMappings extensions” on page 482
- “Locating your PKI Services certificates and key ring” on page 484
- “Establishing PKI Services as an intermediate CA” on page 486
- “Renewing your PKI Services CA and RA certificates” on page 488
- “Recovering a CA certificate profile” on page 490
- “Retiring and replacing the PKI Services CA private key” on page 491
- “R_PKIServ (IRRSPX00 and IRRSPX64) callable service” on page 495
- “Using encrypted passwords for LDAP servers” on page 501.

For more information about the RACF commands shown in this topic, see z/OS Security Server RACF Command Language Reference.

Authorizing users for the PKI Services administration group

You need to know how to add and delete members from the PKI Services administration group (by default, PKIGRP).

You might have set up multiple administration groups if you are using the PKISERV class to grant authorization on a granular level. For more information, see “Using the PKISERV class to control access to administrative functions” on page 499 and “Deciding the value of AdminGranularControl” on page 48.

Connecting members to the group

The PKI Services administration group is a RACF group containing the list of user IDs that are authorized to use PKI Services administration functions. To connect a member to the group, issue the following command, replacing `pkigroup_mem` with the member's user ID and `pkigroup` with the name of the PKI Services administration group (PKIGRP by default). (See Table 19 on page 55 for more information.)

```Command
CONNECT pkigroup_mem GROUP(pkigroup)
```

**Note:** You need to enter this command for each user ID in turn.

Deleting members from groups

To remove a user from a group, issue the following command, replacing `pkigroup_mem` with the user ID of the member you want to delete and `pkigroup` with the name of the PKI Services administration group (PKIGRP by default).

```Command
REMOVE pkigroup_mem GROUP(pkigroup)
```

Authorizing users for inquiry access

You can add groups of users who do not need the full administrative authority of users in the PKIGRP group. You can use the following procedure to authorize a new group for inquiry abilities, such as a help
Steps for authorizing users for inquiry access

Before you begin

If you implemented the object store and ICL using VSAM data sets, you need to know the high-level VSAM data set qualifier that is used for the IKYSETUP variable vsamhlq value, in case your installation did not use the PKISRVD default. (See Table 19 on page 55.)

Procedure

Perform the following steps to add and administer a group that needs authority to query PKI Services information.

1. Add the new group.

   ADDGROUP HELPDESK OMVS(GID(197312))

2. Connect each member to the new group. Repeat for each user ID you need to connect.

   CONNECT OPER17 GROUP(HELPDESK)

3. Authorize the new group for READ access to the resources of PKI Services. Replace your installation's value for the data set's high-level qualifier if your installation did not use the PKISRVD default.

   PERMIT 'PKISRVD.**' ID(HELPDESK) ACCESS(READ)
   PERMIT IRR.RPKISERV.PKIADMIN CLASS(FACILITY)
   ID(HELPDESK) ACCESS(READ)
   SETROPTS GENERIC(DATASET) REFRESH
   SETROPTS RACLIST(FACILITY) REFRESH

   The SETROPTS commands activate the profiles that authorize READ access.

4. If necessary, you can remove a user from the group. The following example removes the user that you connected in Step “2” on page 482.

   REMOVE OPER17 GROUP(HELPDESK)

5. If necessary, you can delete the group. The following example deletes the group that you created in Step “1” on page 482.

   DELGROUP (HELPDESK)

Administering HostIdMappings extensions

You can add a HostIdMappings extension to certificates you create for certain users, allowing you to specify the user IDs that each user is able to use for login to particular servers (or hosts). Controlling an identity that is used for login purposes is an important security objective. Therefore, you must exercise administrative control in the following areas by authorizing:

- PKI Services as a highly trusted certificate authority whose certificates are honored when they contain HostIdMappings extensions
- Particular servers to accept logins from clients whose certificates contain HostIdMappings extensions
Steps for administering HostIdMappings extensions

Perform the following steps to allow the web server to accept logins from clients who have been issued PKI Services certificates with HostIdMappings extensions:

1. Determine if PKI Services is defined as a highly trusted certificate authority on your system by listing its certificate authority definition by using the RACDCERT CERTAUTH LIST command.

   **Example:**
   ```
   RACDCERT CERTAUTH LIST(LABEL('Local PKI CA'))
   ```
   Check the Status information near the beginning of the output listing for the HIGHTRUST attribute.

   ______________________________________________________________

2. If not already defined, add the HIGHTRUST attribute to the certificate authority definition for PKI Services.

   **Example:**
   ```
   RACDCERT CERTAUTH ALTER(LABEL('Local PKI CA')) HIGHTRUST
   ```

   ______________________________________________________________

3. Define a resource in the SERVAUTH class for each server (host) name you want your web server to honor when accepting logins for certificates containing HostIdMappings extensions. The resource name follows the format: IRR.HOST.hostname. The hostname is the value of the HostIdMappings extension entry pertaining to the z/OS host system you are administering (without the subject ID portion). This is usually a domain name, such as plpsc.pok.ibm.com. The following example shows defining a resource.

   **Example:**
   ```
   RDEFINE SERVAUTH IRR.HOST.PLPSC.POK.IBM.COM UACC(NONE)
   ```

   ______________________________________________________________

4. Permit your web server to access this resource with READ authority. Be sure that the web server is defined as a RACF user.

   **Example:**
   ```
   PERMIT IRR.HOST.PLPSC.POK.IBM.COM CLASS(SERVAUTH) ID(WEBSRV) ACCESS(READ)
   ```

   ______________________________________________________________

5. Activate the SERVAUTH class, if not already active.

   **Example:**
   ```
   SETROPTS CLASSACT(SERVAUTH)
   ```
   If already active, refresh the SERVAUTH class.

   **Example:**
   ```
   SETROPTS CLASSACT(SERVAUTH) REFRESH
   ```

   ______________________________________________________________

**Note:** On a z/OS system, a HostIdMappings extension is not honored if the target user ID was created after the start of the validity period for the certificate containing the HostIdMappings extension. Therefore, if you are creating user IDs specifically for certificates with HostIdMappings extensions, make sure that you create the user IDs before the certificate requests are submitted. Alternately, when approving the certificate, you can modify the date that the certificate becomes valid so that it is not earlier than the date the user ID was created. For renewed certificates, all of the original information is replicated in the new certificate, including the date that the certificate becomes valid and any HostIdMappings.
you want to change a HostIdMappings extension when approving the renewed certificate, you must also modify the date that the certificate becomes valid so that it is not earlier than the date the user ID was created.

See z/OS Security Server RACF Command Language Reference for details about syntax and authorization that is required for using the RACDCERT command.

Locating your PKI Services certificates and key ring

The IKYSETUP exec sets up the RACF environment for PKI Services. After the setup is complete, you might need to go back and locate the PKI Services CA certificate, key ring, or the optional RA certificate, possibly to diagnose error conditions. You can do this by using various RACF TSO commands.

Before you begin

You need to determine the following setup information:

<table>
<thead>
<tr>
<th>Information needed</th>
<th>Where to find this information</th>
<th>Record your value here</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca_label - The label of your CA certificate in RACF</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td>ra_label - The label of your RA certificate in RACF</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td>ca_ring - The PKI Services SAF key ring</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>daemon - The user ID for the PKI Services daemon</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>log_dsn - The data set name of the IKYSETUP log</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>cacert_dsn - The data set name of your CA certificate as exported from RACF</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
</tbody>
</table>

Steps for locating the PKI Services certificates and key ring

Perform the following steps to locate the PKI Services CA certificate, key ring, and the optional RA certificate:

1. Locate the CA certificate using one of the following two methods (Step "1.a" on page 484 or Step "1.b" on page 485) and examine its information.
   a. Locate the CA certificate using the name of its export data set. (Get the export data set name from cacert_dsn in Table 93 on page 484.) Display its information by executing the following RACF command from a TSO command prompt:

   ```
   RACDCERT CHECKCERT(cacert_dsn)
   ```

   Sample output:

   ```
   Digital certificate information for CERTAUTH:
   Label: Local PKI CA
   Certificate ID: ZQiJmZmDhZmjgdOwq4GTQfSyUDDwUBA
   Status: HIGHTRUST
   Start Date: 2001/06/04 23:00:00
   End Date: 2020/01/01 22:59:59
   Serial Number: >00<
   Issuer's Name:
   ```
b. Alternately, locate the CA certificate using its certificate label. (Get the label name from `ca_label` in Table 93 on page 484.) Display its information by entering the following RACF command from a TSO command prompt.

```
RACDCERT CERTAUTH LIST(LABEL('ca_label'))
```

The RACDCERT CERTAUTH LIST command produces the same output as the RACDCERT CHECKCERT (shown in Step “1.a” on page 484) with the addition of information about any ring associations. For example:

**Sample output:**

```
Ring Associations:
  Ring Owner: PKISRVD
  Ring: >CAring<
```

c. Examine the CA certificate information. If you are diagnosing errors, note the following:

- The first line must indicate that this is a CERTAUTH certificate.
- Label must match your `ca_label` value (as in the preceding table).
- If `Serial Number` is not equal to 00, this indicates that the certificate has been renewed or was issued by another certificate authority.
- If `Issuer's Name` differs from `Subject's Name`, this indicates that the certificate was issued by another certificate authority.
- `Subject's Name` must match the original value recorded for the PKI Services SUBJECTSDN in the IKYSETUP log.
- `Private Key` must show YES.
- `Key Type` indicates whether the key is an RSA, DSA, NISTECC, or BPECC key.
- If `Ring Associations` are listed, ensure that an association is displayed for the daemon user ID as ring owner and your `ca_ring` value (from Table 93 on page 484) as ring name.

2. Locate the CA key ring and examine its information.

a. Get the ring name from `ca_ring` in Table 93 on page 484 and display its information by executing the following RACF command from a TSO command prompt:

```
RACDCERT ID(daemon) LISTRING(ca_ring)
```

**Sample output:**

```
Digital ring information for user PKISRVD:

  Ring: >CAring<
  Certificate Label Name  Cert Owner  USAGE  DEFAULT
  -----------------------  --------  -------  -------
  Local PKI CA            CERTAUTH  PERSONAL  YES
  Local PKI RA            PKISRVD  PERSONAL  NO
```

b. Examine the key ring information. If you are diagnosing errors, note the following:

- The entry for the PKI Services CA certificate must have USAGE PERSONAL and DEFAULT YES.
- If you use an optional RA certificate, you see the second line. If present, the entry for the PKI Services RA certificate must have USAGE PERSONAL and DEFAULT NO.
3. If you use an optional RA certificate, locate it and examine its information.

   a. Locate the RA certificate using its certificate label. (Get the RA's certificate label from `ra_label` in Table 93 on page 484 or from the RACDCERT LISTRING output shown in Step “2.a” on page 485.) Display the RA certificate information by executing the following RACF command from a TSO command prompt:

   ```
   RACDCERT ID(certificate-owner) LIST(LABEL('certificate-label-name'))
   ```

   Sample output:

   ```
   Digital certificate information for PKISRVD:
   Label: Local PKI RA
   Certificate ID: 2QiJmZmDhZmjd0Wg4GTQy5SyUDDwUBA
   Status: TRUST
   Start Date: 2001/06/04 23:00:00
   End Date:   2020/01/01 22:59:59
   Serial Number: >01<
   Issuer's Name:
   >OU=Human Resources Certificate Authority.O=IBM.C=US<
   Subject's Name:
   >CN=Registration Authority.OU=Human Resources Certificate Authority.O=IBM.C=US<
   Key Usage: HANDSHAKE
   Key Type: RSA
   Key Size: 1024
   Private Key: Yes
   ```

   b. Examine the RA certificate information. If you are diagnosing errors, note the following:

   - The user ID of the certificate owner (indicated in the first line) must match the user ID of the PKI Services daemon.
   - Issuer's Name must match the Subject's Name of the CA certificate.
   - Private Key must show YES.
   - Key Type indicates the key is an RSA key.

---

### Establishing PKI Services as an intermediate CA

The default setup for PKI Services establishes the PKI Services certificate authority as a root CA, also known as a self-signed CA. Because there is no established trust hierarchy leading to a self-signed certificate, it is impossible to verify that a self-signed certificate is genuine. Accordingly, any person or application that wants to process certificates issued by a root authority must explicitly trust the authenticity of the self-signed CA certificate.

Alternately, you can establish the PKI Services certificate authority as an intermediate (subordinate) certificate authority. An intermediate certificate authority is one whose certificate is signed by another higher certificate authority. This higher certificate authority can be a root CA or another intermediate CA. If the root CA certificate has previously been trusted, you can verify any lower intermediate CA certificate using the higher certificate.

In the following steps, you are replacing the self-signed CA certificate created by IKYSETUP with one signed by another authority.

### Steps for changing PKI Services from a self-signed CA to an intermediate CA

#### Before you begin

1. This procedure assumes that the PKI Services CA certificate is issued by a root, or self-signed, CA.
2. The commands in the steps that follow include several variables. The following table describes these variables. Determine the values for these variables and record the information in the blank boxes:

<table>
<thead>
<tr>
<th>Information needed</th>
<th>Where to find this information</th>
<th>Record your value here</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cacert_dsn</code> - The data set name of the new PKI Services CA certificate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ca_label</code> - The label of your CA certificate in RACF</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td><code>export_dsn</code> - The data set name of the root CA certificate as exported from RACF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>temp_dsn</code> - The name of the temporary data set to contain your new certificate request and returned certificate.</td>
<td>You decide this based on local data set naming conventions.</td>
<td></td>
</tr>
</tbody>
</table>

**Procedure**

Perform the following steps to change PKI Services from a self-signed certificate authority to an intermediate certificate authority:

1. Determine what certificate authority is acting as a higher authority for PKI Services. (This could be a public certificate authority, such as VeriSign, or a local, internal certificate authority, even another instance of PKI Services.)

   ... (Step not fully visible) ...

2. Create a new certificate request from your existing self-signed CA certificate by entering the following RACF command from a TSO command prompt:

   ```
   RACDCERT CERTAUTH GENREQ('ca_label') DSN(temp_dsn)
   ```

   ... (Step not fully visible) ...

3. Send the certificate request to the higher certificate authority, following the procedures that the higher authority requires.

   ... (Step not fully visible) ...

4. If the root CA is not one that is already known by RACF, then add the root CA to RACF as a certificate authority. To do this:

   a. Receive the root CA certificate and place it into the certificate data set (`temp_dsn`).

   **Note:** The procedure for doing this can vary greatly depending on how the higher certificate authority delivered the certificate:

   - If the certificate is delivered as base64 encoded text, the easiest way to deposit the certificate into the data set is to edit the certificate data set:
     1) Delete all existing lines in `temp_dsn`.
     2) Copy the base64 encoded text.
     3) Paste the copied text into the ISPF edit window.
     4) Save.
   - If the certificate is delivered as binary data (also called DER encoded), the easiest way to deposit the certificate into the data set is to use binary FTP.
b. Add the new root CA certificate into the RACF database by entering the following RACF command from a TSO command prompt:

```
RACDCERT CERTAUTH ADD(temp_dsn) WITHLABEL('label-for-root-CA')
```

5. Add the new PKI Services CA to RACF as a certificate authority:

a. Receive the PKI Services CA certificate and place it into the certificate data set (cacert_dsn). This step is similar to step “4” on page 487, except that it uses cacert_dsn as the data set name instead of temp_dsn, because you want to keep the PKI Services CA certificate permanently in the data set cacert_dsn.

b. Add the new PKI Services CA certificate back into the RACF database by entering the following RACF command from a TSO command prompt:

```
RACDCERT CERTAUTH ADD(cacert_dsn)
```

**Guideline:** Do not specify a label on this command.

6. Export the root CA certificate in DER format to the export data set by entering the following RACF command from a TSO command prompt:

```
RACDCERT CERTAUTH EXPORT(LABEL('label-for-root-CA')) DSN(export_dsn) FORMAT(CERTDER)
```

7. Make your new root CA certificate available to your clients, because it becomes the web server's root CA certificate too. To do this, set up the var directory by performing Step “2” on page 95 through Step “4” on page 96 in “Steps for setting up the var directory” on page 95.

**Note:** Make sure that the root CA certificate, not your intermediate CA certificate, is stored in /var/pkiserv/cacert.der.

---

### Renewing your PKI Services CA and RA certificates

Eventually, your PKI Services CA and RA certificates expires. To avoid complications that are related to an expired CA or RA certificate, renew those certificates before they expire. (You receive an MVS console message IKYP026E as the expiration date approaches.)

This topic contains these procedures:

- “Steps for renewing your PKI Services CA certificate” on page 488
- “Steps for renewing your PKI Services RA certificate” on page 490

### Steps for renewing your PKI Services CA certificate

**Before you begin**

The commands in the steps that follow include several variables. The following table describes these variables. Determine the values for these variables and record the information in the blank boxes:
Table 95. Information you need for renewing your PKI Services certificate authority certificate

<table>
<thead>
<tr>
<th>Information needed</th>
<th>Where to find this information</th>
<th>Record your value here</th>
</tr>
</thead>
<tbody>
<tr>
<td>cacert_dsn - The data set name of your renewed CA certificate as exported from RACF. (This data set is needed for recovery.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ca_label - The label of your CA certificate in RACF</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td>temp_dsn - The temporary data set to contain your new certificate request and returned certificate.</td>
<td>You decide this based on local data set naming conventions.</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

Perform the following steps to renew your PKI Services CA certificate:

1. Create a new certificate request from your current CA certificate by entering the following RACF command from a TSO command prompt:

   ```
   RACDCERT CERTAUTH GENREQ(LABEL('ca_label')) DSN(temp_dsn)
   ```

2. If your PKI Services certificate authority is a root CA (that is, it has a self-signed certificate, which is the default), generate the self-signed renewal certificate by entering the following RACF command from a TSO command prompt. The `ca_expires` variable indicates the new expiration date.

   ```
   RACDCERT CERTAUTH GENCERT(temp_dsn) NOTAFTER(DATE(ca_expires)) SIGNWITH(CERTAUTH LABEL('ca_label'))
   ```

3. Alternately, if your PKI Services certificate authority is an intermediate certificate authority, perform the following steps:

   a. Send the certificate request to the higher (external) CA, following the procedures that the higher authority requires. If your CA retains the original certificate signing requests (CSR), you might not need to create and store a new request based on the expiring certificate. You might be able to request a renewal using the original CSR.

   b. After the certificate has been issued, receive the certificate back into the certificate data set (temp_dsn).

   **Note:** The procedure for doing this can vary greatly depending on how the higher certificate authority delivers the new certificate:

      • If the certificate is delivered as base64 encoded text, the easiest way to deposit the certificate into the data set is to edit the certificate data set:

        1) Delete all existing lines in temp_dsn.
        2) Copy the base64 encoded text.
        3) Paste the copied text into the ISPF edit window.
        4) Save.

      • If the certificate is delivered as binary data (also called DER encoded), the easiest way to deposit the certificate into the data set is to use binary FTP.

   c. Add the renewed certificate back into the RACF database by entering the following RACF command from a TSO command prompt:

      ```
      RACDCERT CERTAUTH ADD(temp_dsn)
      ```

      Do not specify a label on this command.
4. Export the certificate in DER format to the CA certificate data set by entering the following RACF command from a TSO command prompt:

   \texttt{RACDCERT CERTAUTH EXPORT(LABEL('ca\_label')) DSN(cacert\_dsn) FORMAT(CERTDER)}

Save this data set for recovery if needed later.

5. If your PKI Services certificate authority is a root CA, and it is also the web server’s root certificate, the renewed root needs to be accessible to the clients. To make your new certificate available to your clients, set up the `/var/pkiserv` directory by performing Step “2” on page 95 through Step “4” on page 96 in “Steps for setting up the var directory” on page 95.

6. Stop and restart PKI Services.

\textbf{Steps for renewing your PKI Services RA certificate}

\textbf{Before you begin}

The commands in the steps that follow include several variables. The following table describes these variables. Determine the values for these variables and record the information in the blank boxes:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{Information needed} & \textbf{Where to find this information} & \textbf{Record your value here} \\
\hline
\texttt{ca\_label} - The label of your CA certificate in RACF & See Table 11 on page 41. & \\
\hline
\texttt{daemon} - The user ID of the PKI Services daemon. & See Table 19 on page 55. & \\
\hline
\texttt{racert\_dsn} - The name of the data set to contain your new certificate request. & You decide this based on local data set naming conventions. & \\
\hline
\texttt{ra\_label} - The label of your RA certificate in RACF. & See Table 11 on page 41. & \\
\hline
\end{tabular}
\end{table}

\textbf{Procedure}

Perform the following steps to renew your PKI Services RA certificate:

1. Create a new certificate request from your existing RA certificate by entering the following RACF command from a TSO command prompt:

   \texttt{RACDCERT ID(daemon) GENREQ(LABEL('ra\_label')) DSN(racert\_dsn)}

2. Create the renewed PKI Services certified RA certificate by entering the following RACF command from a TSO command prompt. The \texttt{ra\_expires} variable indicates the new expiration date.

   \texttt{RACDCERT ID(daemon) GENCERT(racert\_dsn) NOTAFTER(DATE(ra\_expires)) SIGNWITH(CERTAUTH LABEL('ca\_label'))}

3. Stop and restart PKI Services.

\textbf{Recovering a CA certificate profile}

Unless you change the IKYSETUP REXX exec to disable the function, IKYSETUP automatically backs up the PKI Services CA certificate and private key to a data set that has PKCS #12 format, if the certificate and private key were created by software. (If the certificate was created by hardware, for example by RACDCERT with the PKDS or TKDS keyword, it is not backed up.) If the CA certificate profile in the RACF database is accidentally deleted, you can recover it by adding the certificate and private key back to the RACF database from the backup PKCS #12 data set.
Steps for recovering a CA certificate profile

Before you begin

The commands in the steps that follow include several variables. Table 97 on page 491 describes these variables. Determine the values for these variables and record the information in the blank boxes:

<table>
<thead>
<tr>
<th>Information needed</th>
<th>Where to find this information</th>
<th>Record your value here</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup_dsn - The name of the data set containing the backup copy of your original CA certificate and its private key</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>cacert_dsn - The data set name of your CA certificate as exported from RACF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ca_label - The label of your CA certificate in RACF</td>
<td>See Table 11 on page 41.</td>
<td></td>
</tr>
<tr>
<td>ca_ring - The PKI Services SAF key ring</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>daemon - The user ID for the PKI Services daemon</td>
<td>See Table 19 on page 55.</td>
<td></td>
</tr>
<tr>
<td>your-passphrase - The passphrase you used when backing up the private key</td>
<td>You specified this when running IKYSETUP.</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

Perform the following steps to recover a CA certificate profile:

1. Issue the following TSO commands:

   Notes:

   a. If your CA certificate has been renewed, the second ADD command recovers the most current version using the saved CA certificate. If your certificate has not been renewed, you can omit the second ADD command. For information about renewing your CA certificate, see “Renewing your PKI Services CA and RA certificates” on page 488.

   ```
   RACDCERT CERTAUTH ADD('backup_dsn') PASSWORD('your-passphrase') WITHLABEL('ca_label') ICSF
   RACDCERT CERTAUTH ADD('cacert_dsn')
   RACDCERT ID('daemon') CONNECT(CERTAUTH LABEL('ca_label') RING('ca_ring') USAGE(PERSONAL) DEFAULT)
   ```

Retiring and replacing the PKI Services CA private key

For certificates that are associated with private keys, such as the PKI Services CA certificate, you should periodically retire the private keys and replace them with new ones. Do this to prevent private keys from being overused. (The more a key is used, the more susceptible it is to being broken and recovered by an unintended party.) This process is commonly called certificate rekeying or key rollover.
You may also need to perform certificate rekeying when you want to run PKI Services in FIPS mode, or when you want to reconfigure PKI Services to run in a higher FIPS mode. See “Steps to retire and replace the PKI Services non-FIPS compliant CA private key for the PKI templates” on page 493.

To rekey and rollover the PKI Services private key, use the REKEY and ROLLOVER operands of the RACF RACDCERT command. The REKEY operand makes a self-signed copy of the original certificate with a new public-private key pair. The ROLLOVER operand finalizes the rekey operation by replacing the use of the original certificate with the new certificate in every key ring to which the original certificate is connected. It also destroys the original private key and copies over information about its serial number base so the new certificate can be used to sign new certificates.

A retired CA certificate cannot be used to sign new certificates. However, until it expires, it can be used to verify previously signed certificates. If you have an RA certificate for SCEP processing that was not replaced when the CA certificate that signed it was retired, you need to reconnect the CA certificate to the CA key ring.

Steps to retire and replace the PKI Services CA private key for the PKI templates

The commands that are used in this procedure are examples that are based on the following scenario:

Assumptions:

- The certificate that you are rekeying is a CERTAUTH certificate with label 'Local PKI CA'. It was issued by a commercial CA and is being used by PKI Services for the PKI templates as a certificate authority (CA) certificate, making the PKI Services CA a subordinate CA.
- The ICSF CCA cryptographic coprocessor be used to generate the new key-pair and store in the Public Key Data Set (PKDS)
- The new private key is 2048-bits RSA key (RACF default size).

Perform the following procedure to rekey and replace the private key.

1. Initiate the rekeying by executing the following RACF command:

```
RACDCERT CERTAUTH REKEY(LABEL('Local PKI CA')) WITHLABEL('Local PKI CA-2') RSA(PKDS(*))
```

2. Create a request for a commercial CA to sign the new public key and reissue the certificate. To create a certificate request for the new key and store it in MVS data set 'SYSADM.CERT.REQ', issue the following command:

```
RACDCERT CERTAUTH GENREQ(LABEL('Local PKI CA-2')) DSN('SYSADM.CERT.REQ')
```

Restriction: The certificate request data that is contained in the data set must be sent to, and received from, the commercial CA using the process defined by the CA. Those steps are not included.

3. Receive the newly signed and reissued certificate back from the commercial CA into MVS data set 'SYSADM.CERT.B64'.

4. Add the newly signed certificate into RACF and replace the self-signed rekeyed one by executing the following command:

```
RACDCERT CERTAUTH ADD('SYSADM.CERT.B64')
```

5. You are now ready to retire the original certificate and must stop all use of the original private key. Stop the PKI Services daemon.
Note: At this point, the original certificate and its private key label exist in RACF with label 'Local PKI CA'. The new certificate and its private key label exist in a separate entry in RACF with label 'Local PKI CA-2'. You can proceed to rollover the key.

6. Finalize the rollover by entering the following command:

   RACDCERT CERTAUTH ROLLOVER(LABEL('Local PKI CA')) NEWLABEL('Local PKI CA-2')

7. If an RA certificate is in use that was signed by the retired CA certificate, connect the retired CA certificate to the key ring.

   RACDCERT ID(daemon) CONNECT(CERTAUTH LABEL('Local PKI CA') RING(ringname) USAGE(CERTAUTH))

8. Restart the PKI Services daemon.

When you are done: You have retired and replaced the old PKI Services CA certificate. All the information for the original certificate is updated to reflect the new certificate, including the key ring connections. You can now use the new certificate and its private key. You can continue to use the old certificate for verification purposes until it expires. However, you cannot use the old certificate to sign new certificates. Additionally, do not connect the old certificate to any key rings as the default certificate.

Steps to retire and replace the PKI Services non-FIPS compliant CA private key for the PKI templates

The commands that are used in this procedure are examples that are based on the following scenario:

Assumptions:

- The certificate that you are rekeying is a CERTAUTH certificate with label 'Local PKI CA'. It was a self-signed certificate with 2048-bit RSA key stored in PKDS.
- You want the new key size to be 4096.
- You want the new certificate to expire in 2037-12-31.
- You want the new key pair be generated using the ICSF PKCS#11 cryptographic coprocessor and you already set up the token with the name PKISRVD.PKITOKEN.

Perform the following procedure to rekey and replace the private key.

1. Initiate the rekeying by executing the following RACF command:

   RACDCERT CERTAUTH REKEY(LABEL('Local PKI CA')) WITHLABEL('Local PKI CA-2') RSA(TOKEN(PKISRVD.PKITOKEN)) SIZE(4096) NOTAFTER (DATE(2037-12-31))

   **Note:** At this point, the original certificate and its private key label exist in RACF with label 'Local PKI CA'. The new certificate and its private key label exist in a separate entry in RACF with label 'Local PKI CA-2'. You can proceed to rollover the key.

2. Stop the PKI Services daemon.

3. Perform rollover by entering the following command:

   RACDCERT CERTAUTH ROLLOVER(LABEL('Local PKI CA')) NEWLABEL('Local PKI CA-2')

4. Restart the PKI Services daemon.
Steps to retire and replace the PKI Services CA private key for the SAF templates:

**Scenario 1**

The commands that are used in this procedure are examples that are based on the following scenario:

**Assumptions:**
- The certificate that you are rekeying is a CERTAUTH certificate with label 'taca'.
- It was issued by a local CA certificate that is labeled 'Local RACF CA' that was generated by RACF and is being used by PKI Services for the SAF templates as a certificate authority (CA) certificate.

**Perform the following procedure to rekey and replace the private key.**

1. Initiate the rekeying by executing the following RACF command:
   ```bash
   RACDCERT CERTAUTH REKEY(LABEL('taca')) WITHLABEL('taca-2')
   ```

2. Generate a certificate request that is based on the new self-signed certificate and store it in MVS data set 'SYSADM.CERT.REQ' by executing the following command:
   ```bash
   RACDCERT CERTAUTH GENREQ(LABEL('taca-2')) DSN('SYSADM.CERT.REQ')
   ```

3. Issue the following command to sign the new certificate, specifying the planned expiration date in the format expected by RACDCERT, for example, YYYY-MM-DD::
   ```bash
   RACDCERT CERTAUTH GENCERT('SYSADM.CERT.REQ') NOTAFTER(DATE(<date the cert will expire>)) SIGNWITH(CERTAUTH LABEL('Local RACF CA'))
   ```

   At this point, the original certificate and its private key exist in RACF with the label 'taca'. The new certificate and its private key exist in a separate entry in RACF with the label 'taca-2'. You can proceed to rollover the key.

4. Finalize the rollover by entering the following command:
   ```bash
   RACDCERT CERTAUTH ROLLOVER(LABEL('taca')) NEWLABEL('taca-2')
   ```

5. Change the certificate label that is used in the SIGNWITH field in the SAF templates to the new label name.

**When you are done:** You have retired and replaced the old certificate. All the information for the original certificate is updated to reflect the new certificate, including the key ring connections. You can now use the new certificate and its private key. You can continue to use the old certificate for signature verification purposes until it expires. However, you cannot use the old certificate to sign new certificates. Additionally, do not connect the old certificate to any key rings as the default certificate.

**Steps to retire and replace the PKI Services CA private key for the SAF templates:**

**Scenario 2**

The commands that are used in this procedure are examples that are based on the following scenario:

**Assumptions:**
- The certificate that you are rekeying is a CERTAUTH certificate with label 'taca'.
- It was a self-signed certificate in RACF and is being used by PKI Services for the SAF templates as a certificate authority (CA) certificate.

**Perform the following procedure to rekey and replace the private key.**
1. Initiate the rekeying by executing the following RACF command:

```
RACDCERT CERTAUTH REKEY(LABEL('taca'))
    WITHLABEL('taca-2')
```

At this point, the original certificate and its private key exist in RACF with the label 'taca'. The new certificate and its private key exist in a separate entry in RACF with the label 'taca-2'. You can proceed to rollover the key.

2. Finalize the rollover by entering the following command:

```
RACDCERT CERTAUTH ROLLOVER(LABEL('taca')) NEWLABEL('taca-2')
```

3. Change the certificate label that is used in the SIGNWITH field in the SAF templates to the new label name.

When you are done: You have retired and replaced the old certificate. All the information for the original certificate is updated to reflect the new certificate, including the key ring connections. You can now use the new certificate and its private key. You can continue to use the old certificate for signature verification purposes until it expires. However, you cannot use the old certificate to sign new certificates. Additionally, do not connect the old certificate to any key rings as the default certificate.

**R_PKIServ (IRRSPX00 and IRRSPX64) callable service**

Authorized applications, such as servers, that invoke the R_PKIServ callable service (IRRSPX00 for 31 bit and IRRSPX64 for 64 bit) can request the generation, retrieval, and administration of PKIX-compliant X.509 Version 3 certificates and certificate requests. Applications can request end-user functions or administrative functions related to these requests. You authorize these applications by administering RACF resources in the FACILITY class, which is based on whether the application requests end-user functions or administrative functions.

You can authorize access to administrative functions on a more granular level using resources in the RACF PKISERV class. The PKISERV class profiles are checked in addition to the FACILITY class profiles.

See z/OS Security Server RACF Callable Services for the details of invoking IRRSPX00.

**Authorizing end-user functions**

The end-user functions are:

**EXPORT**
- Retrieves (exports) a previously requested certificate, or retrieves (exports) the PKI Services registration authority (RA) certificate or the certificate authority (CA) certificate.

**GENCERT**
- Generates an auto-approved certificate.

**GENRENEW**
- Generates an auto-approved renewal certificate. (The request submitted is automatically approved.)

**QRECOVER**
- Lists certificates whose key pairs were generated by PKI Services under a requestor’s email address and passphrase.

**REQCERT**
- Requests a certificate that an administrator must approve before it is created.

**REQRENEW**
- Requests certificate renewal. The administrator needs to approve the request before the certificate is renewed.
RESPOND
Invokes the PKI OCSP responder.

REVOKE
Revokes a certificate that was previously issued.

SCEPREQ
Generates a certificate request using Simple Certificate Enrollment Protocol (SCEP).

VERIFY
Confirms that a given user certificate was issued by this certificate authority and, if so, returns the certificate fields.

For end-user functions, FACILITY class resources protect this interface. Access authority is based on the user ID for the application (the user ID from the ACEE associated with the address space). To determine the user ID for the application, the current TCB is checked for an ACEE. If one is found, the authority of that user is checked. If there is no ACEE associated with the current TCB, the ACEE associated with the address space is used to locate the user ID.

The form for the FACILITY class resources is:

IRR.RPKISERV.function[.ca_domain]

function
Specifies one of the end-user function names in the preceding list.

da_domain
Optionally specifies the PKI Services certificate authority (CA) domain name. Use this when your installation has established multiple PKI Services CAs and the ca_domain parameter is provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit.

Restriction: If the name of your initial CA domain is longer than 8 characters, you must truncate it to exactly 8 characters when you define the resource name in the FACILITY class.

Example: For the GENCERT function, when the ca_domain is named Customers and the CA_domain parameter is provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit, then the FACILITY class resource controlling the function is IRR.RPKISERV.GENCERT.CUSTOMER. (The name Customers was truncated to CUSTOMER. See the restriction for the ca_domain parameter.) When the CA_domain parameter is not provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit, the FACILITY class resource is IRR.RPKISERV.GENCERT.

The access authorities you can assign for these FACILITY class resources have the following effects:

NONE
Access is denied.

READ
Access is permitted based on subsequent access checks against the caller's user ID.

UPDATE
Access is permitted based on subsequent access checks against the application's user ID.

CONTROL (or user ID has RACF SPECIAL)
Access is permitted, and no subsequent access checks are made.

Example: If you defined the FACILITY class profile IRR.RPKISERV.GENCERT.CUSTOMER to control access to the GENCERT function on the CA domain named Customers, you can prevent the user ID MYAPP from using the GENCERT function on that CA domain by issuing the command:

PERMIT IRR.RPKISERV.GENCERT.CUSTOMER CLASS(FACILITY) ID(MYAPP) ACCESS(NONE)

For SAF GENCERT and EXPORT requests where the application has READ and UPDATE access, subsequent access checks are performed against the IRR.DIGTCERT.function FACILITY resources. These are identical to the checks the RACDCERT TSO command makes. See z/OS Security Server RACF Command Language Reference for more information.
For PKI Services EXPORT, GENCERT, GENRENEW, QRECOVER, REQCERT, REQRENEW, RESPOND, 
REVOKE, SCEPREQ, and VERIFY requests in which the application has READ and UPDATE access, 
subsequent access checks are performed against the IRR.DIGTCERT.function FACILITY resources.
The following table summarizes the access requirements for the user ID whose access is checked.

Table 98. Summary of access authorities required for PKI Services requests

<table>
<thead>
<tr>
<th>Request</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPORT</td>
<td>• IRR.DIGTCERT.EXPORT</td>
</tr>
<tr>
<td></td>
<td>– READ access if PassPhrase is specified or if CertID is specified as PKICACERT.</td>
</tr>
<tr>
<td></td>
<td>– UPDATE access if the PassPhrase parameter is not specified with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit.</td>
</tr>
<tr>
<td></td>
<td>– CONTROL access if you want to export a PKCS #7 certificate.</td>
</tr>
<tr>
<td>GENRENEW</td>
<td>• IRR.DIGTCERT.GENCERT — CONTROL access</td>
</tr>
<tr>
<td></td>
<td>• IRR.DIGTCERT.ADD</td>
</tr>
<tr>
<td></td>
<td>– UPDATE access if any hostIdMappings information is specified in the certificate request parameter list or the UserId field in the certificate request parameter list indicates the certificate is being requested for another user other than the caller</td>
</tr>
<tr>
<td></td>
<td>– READ access otherwise</td>
</tr>
<tr>
<td>QRECOVER</td>
<td>• IRR.DIGTCERT.QRECOVER — READ access</td>
</tr>
<tr>
<td>REQCERT</td>
<td>• IRR.DIGTCERT.REQCERT — READ access</td>
</tr>
<tr>
<td>REQRENEW</td>
<td>• IRR.DIGTCERT.REQRENEW — READ access</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> It is assumed that the calling application has already verified the input certificate using the VERIFY function.</td>
</tr>
<tr>
<td>RESPOND</td>
<td>• IRR.DIGTCERT.RESPOND — READ access</td>
</tr>
<tr>
<td>REVOKE</td>
<td>• IRR.DIGTCERT.REVOKE — READ access</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> It is assumed that the calling application has already verified the target certificate using the VERIFY function.</td>
</tr>
<tr>
<td>SCEPREQ</td>
<td>• IRR.DIGTCERT.SCEPREQ — READ access</td>
</tr>
<tr>
<td>VERIFY</td>
<td>• IRR.DIGTCERT.VERIFY — READ access</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> It is assumed that the calling application has already verified that the end user possesses the private key that correlates to the input certificate.</td>
</tr>
</tbody>
</table>

**Authorizing administrative functions**

The administrative functions are:
CERTDETAILS
Get detailed information about one PKI Services issued certificate.

MODIFYCERTS
Change PKI Services issued certificates.

MODIFYREQS
Change PKI Services certificate requests.

QUERYCERTS
Query PKI Services issued certificates.

QUERYREQS
Query PKI Services about certificate requests.

PREREJECT
Preregister clients who use Simple Certificate Enrollment Protocol (SCEP) or Enrollment over Secure Transport Protocol (EST).

REQDETAILS
Get detailed information about one PKI Services certificate request.

To control access to these functions:

• Use resources in the RACF FACILITY class. This class allows you to control access based on the CA domain.

• Use resources in the RACF PKISERV class. This class allows you to control access on a more granular level than the FACILITY class, which is based on the CA domain, the administrative function, and the template.

Using the FACILITY class to control access to administrative functions

For the all administrative functions, the following single FACILITY class resource protects this interface.

IRR.RPKISERV.PKIADMIN[.ca_domain]

ca_domain
 Optionally specifies the PKI Services certificate authority (CA) domain name. Use this when your installation has established multiple PKI Services CAs and the CA_domain parameter is provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit.

Restriction: If the name of your initial CA domain is longer than 8 characters, you must truncate it to exactly 8 characters when you define the resource name in the FACILITY class.

• If the caller is RACF SPECIAL, no further access is necessary.

• Otherwise, the caller needs:
  – READ access to perform read operations (QUERYREQS, QUERYCERTS, REQDETAILS, and CERTDETAILS)
  – UPDATE access for the action operations (PREREJECT, MODIFYREQS, and MODIFYCERTS).

Example: For administrative functions, when the ca_domain is named Customers and the CA_domain parameter is provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit, the FACILITY class resource controlling this interface is IRR.RPKISERV.PKIADMIN.CUSTOMER. (The name Customers was truncated to CUSTOMER. See the restriction for the ca_domain value.) When the CA_domain parameter is not provided with IRRSPX00 for 31 bit and IRRSPX64 for 64 bit, IRR.RPKISERV.PKIADMIN is the name of the FACILITY class resource.

To determine the appropriate access level of the caller, the current TCB is checked for an ACEE. If one is found, the authority of that user is checked. If there is no ACEE associated with the current TCB, the ACEE associated with the address space is used to locate the user ID.

Attention: UPDATE access to the IRR.RPKISERV.PKIADMIN[.ca_domain] resource also controls who can act as PKI Services administrators. PKI Services administrators play a very powerful role
in your organization. The decisions they make when managing certificates and certificate requests determine who accesses your computer systems and what privileges they have when doing so.

**Guideline:** Give UPDATE authority to only highly trusted individuals, but avoid allowing these same individuals to have direct access to the end-user functions of the R_PKIServ callable service described in “Authorizing end-user functions” on page 495. This helps to maintain a secure separation of duties.

**Using the PKISERV class to control access to administrative functions**

You can use profiles in the PKISERV class to control access to R_PKIServ administrative functions on a more granular level than you can with profiles in the FACILITY class. If the AdminGranularControl switch in the pkiserv.conf configuration file is set to T, profiles in the PKISERV class are checked in addition to profiles in the FACILITY class to determine authorization to these functions. If no profile is found protecting a function, authorization to the function fails.

To use the PKISERV class, you need to take the following steps:

1. Activate generic profile checking for the class:
   
   SETROPTS GENERIC(PKISERV)

2. Define profiles for the PKISERV class resources and authorize users to use the resources:

   RDEFINE PKISERV profile_name UACC(NONE)
   PERMIT profile_name CLASS(PKISERV) ID(user_ID or group) ACCESS(access_level)

3. Activate and RACLIST the class:

   SETROPTS CLASSACT(PKISERV) RACLIST(PKISERV)

Any time that you update the profiles in the class, refresh the in-storage profiles:

SETROPTS RACLIST(PKISERV) REFRESH

For the query functions (QUERYREQS, QUERYCERTS, REQDETAILS, and CERTDETAILS), the resources in the PKISERV class are of the form:

`ca_domain.action.template_nickname`

where

**ca_domain**

- Specifies the PKI Services certificate authority (CA) domain name.

  **Rules:**
  - The domain name is at most 8 characters long.
  - The domain name can contain only alphanumeric characters and the national characters @, #, and $.
  - If there is no domain name, the qualifier must be NOCADOMAIN.

**action**

- Specifies the function. It has one of the following values:
  - QUERYREQS
  - QUERYCERTS
  - QUERYREQDETAILS
  - QUERYCERTDETAILS

  **Rules:**
• For the REQDETAILS function, if the administrator has READ access to the QUERYREQDETAILS profile, the password value is replaced by blanks before it is returned. If the administrator has UPDATE access, the password value is returned.
• For the CERTDETAILS function, if the administrator has READ access to the QUERYCERTDETAILS profile, the password value is replaced by blanks before it is returned. If the administrator has UPDATE access, the password value is returned.
• For all other functions, READ access is sufficient.

**template.nickname**
Specifies the nickname of the certificate template.

Rules:
• The template nickname is at most 8 characters long.
• The template nickname can contain only alphanumeric characters and the national characters @, #, and $.
• If there is no template nickname, the qualifier must be NONICKNAME.

Example: An administrator has either READ or UPDATE access to the FACILITY class profile IRR.RPKISERV.PKIADMIN.MYDOMAIN and also has READ access to the PKISERV class profiles MYDOMAIN.QUERYREQS.1YBSSL and MYDOMAIN.QUERYCERTS.1YBSSL. That administrator can perform QUERYREQS and QUERYCERTS functions on the requests and certificates created with the template "1-Year PKI SSL Browser Certificate" in the domain MYDOMAIN. If that same administrator does not have READ or UPDATE access to the PKISERV class profile MYDOMAIN.QUERYREQS.5YSSSL, that administrator would not be able to perform QUERYREQS functions on requests created with the template "5-Year PKI SSL Server Certificate" in the same domain.

For the update functions (MODIFYREQS, MODIFYCERTS, and PREREGISTER), the resources in the PKISERV class are of the form:

```
ca_domain.action.template.nickname
```

where

**ca_domain**
Specifies the PKI Services certificate authority (CA) domain name.

Rules:
• The domain name is at most 8 characters long.
• The domain name can contain only alphanumeric characters and the national characters @, #, and $.
• If there is no domain name, the qualifier must be NOCADOMAIN.

**action**
Specifies the function. It has one of the following values:

• PREGISTER
• APPROVE (for MODIFYREQS)
• APPROVEWITHMODS (for MODIFYREQS)
• REJECT (for MODIFYREQS)
• DELETEREQS (for MODIFYREQS)
• REVOKE (for MODIFYCERTS)
• DELETECERTS (for MODIFYCERTS)
• RESUME (for MODIFYCERTS)
• AUTORENEWENABLE (for MODIFYCERTS)
• AUTORENEWDISABLE (for MODIFYCERTS)
• CHANGEMAIL (for MODIFYCERTS)
• CREATECRL (for MODIFYCERTS)
• POSTCERT (for MODIFYCERTS)

**template_nickname**
Specifies the nickname of the certificate template.

**Rules:**
- The template nickname is at most 8 characters long.
- The template nickname can contain only alphanumeric characters and the national characters @, #, and $.
- The template is irrelevant for CREATECRL and POSTCERT and the template nickname is not included in the resource name for these actions.
- You must specify a template nickname for the PREREGISTER action.
- For all actions other than CREATECRL, POSTCERT, and PREREGISTER, If there is no template nickname, the qualifier must be NONICKNAME.

**Examples:**
- READ access to the profile MYDOMAIN.APPROVE.1YBSSL allows the administrator to approve requests under the template "1-Year PKI SSL Browser Certificate" in the domain MYDOMAIN.
- READ access to the profile MYDOMAIN.APPROVEWITHMODS.1YBSSL allows the administrator to modify the content of requests and then approve them under the "1-Year PKI SSL Browser Certificate" template in the domain MYDOMAIN.
- READ access to the profile MYDOMAIN.REVOKE.1YBSSL allows the administrator to revoke or suspend certificates under the "1-Year PKI SSL Browser Certificate" template in the domain MYDOMAIN.
- READ access to the profile MYDOMAIN.PREREGISTER.5YSCEPP allows the administrator to preregister requests under the "5-Year SCEP Certificate - Preregistration" template in the domain MYDOMAIN.

---

**Using encrypted passwords for LDAP servers**

PKI Services uses an LDAP directory to store certificates. LDAP requires authenticating (binding) to the directory. You can do this by using a distinguished name and passwords. Passwords for binding (to multiple LDAP directories) can be encrypted or in clear text. The UNIX programmer or LDAP programmer or both determine whether to use encrypted LDAP bind passwords. You store information about passwords in the PKI Services configuration file, pkiserv.conf.

If you do not need the bind password for the LDAP server to be encrypted, you specify the values for Server1, AuthName1, and AuthPwd1 in the pkiserv.conf configuration file. If you want the bind password for the LDAP server to be encrypted, you can use either one of the following profiles:

- A profile named IRR.PROXY.DEFAULTS in the FACILITY class (This profile stores default binding information. It is the profile where PKI Services looks when there is no binding information.)
- A profile (you select the name) in the LDAPBIND class. (You can name this profile whatever you want if it matches the BindProfile1 value that is specified in the pkiserv.conf configuration file. (See Step “3” on page 112.)

Before creating either of the preceding profiles, the RACF administrator defines the LDAP.BINDPW.KEY profile in the KEYSMSTR class. This profile contains a SSIGNON segment, which holds either the masked or encrypted value for the key that encrypts passwords stored in the RACF database. Then the RACF administrator creates either of the preceding profiles with a PROXY segment that stores the binding information (the server name, bind distinguished name, and password).

**Steps for using encrypted passwords**

Perform the following steps to use encrypted LDAP bind passwords:
1. Define a RACF KEYSMSTR class profile by entering the following command, replacing the highlighted value with your own key:

**Example:**

```
RDEFINE KEYSMSTR LDAP.BINDPW.KEY SSIGNON(KEYENCRYPTED(0023528875DECFAC))
```

In this example:
- LDAP BIND passwords are masked by using a key that is saved in the KEYSMSTR class, LDAP.BINDPW.KEY.
- The key is **0023528875DECFAC**. (Replace this with your own key.)
- KEYENCRYPTED is specified (rather than KEYMASKED) because ICSF is active.

2. Activate the KEYSMSTR class by entering the following command:

```
SETROPTS CLASSACT(KEYSMSTR)
```

3. If you intend to use the LDAPBIND class, for each LDAP directory, create a RACF LDAPBIND class profile by entering the following command:

```
RDEFINE LDAPBIND MY.LDAP.SERVER1 PROXY(LDAPHOST(ldap://some.ldap.host:389) BINDDN('CN=JOE USER,OU=POUGHKEEPSIE,O=IBM,C=US') BINDPW('MYPASS1'))
```

Replace the highlighted parameters as follows:
- Optionally, replace **MY.LDAP.SERVER1** with the profile name you want to use.
- Replace **ldap://some.ldap.host:389** with your LDAP server URL. You can specify the URL with or without the preceding string "ldap:" or "ldaps:".
- Replace **CN=JOE USER,OU=POUGHKEEPSIE,O=IBM,C=US** with the bind DN.
- Replace **MYPASS1** with the bind password.

**Note:** All bind DN qualifiers and the bind password are case-sensitive.

4. If you intend to use IRR.PROXY.DEFAULTS instead of the LDAPBIND class for encrypted LDAP bind passwords, issue the following command to create the profile:

```
RDEFINE FACILITY IRR.PROXY.DEFAULTS PROXY(LDAPHOST(ldap://some.ldap.host:389) BINDDN('CN=JOE USER,OU=POUGHKEEPSIE,O=IBM,C=US') BINDPW('MYPASS1'))
```

Replace the highlighted parameters as follows:
- Replace **ldap://some.ldap.host:389** with your LDAP server URL. You can specify the URL with or without the preceding string "ldap:" or "ldaps:".
- Replace **CN=JOE USER,OU=POUGHKEEPSIE,O=IBM,C=US** with the bind DN.
- Replace **MYPASS1** with the bind password.

**Note:** All bind DN qualifiers and the bind password are case-sensitive.

5. Optionally, check your work by listing the segment with the RLIST command. If you are using the LDAPBIND class, issue the following command:

```
RLIST LDAPBIND MY.LDAP.SERVER1 PROXY NORACF
```

Replace **MY.LDAP.SERVER1** with the profile name you used.
Results: This command displays information like the following:

<table>
<thead>
<tr>
<th>CLASS</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAPBIND</td>
<td>MY.LDAP.SERVER1</td>
</tr>
</tbody>
</table>

PROXY INFORMATION
LDAPHOST= LDAP://SOME.LDAP.HOST:389
BINDDN= CN=LDAP ADMINISTRATOR,OU=POUGHKEEPSIE,O=IBM,C=US
BINDPW= YES

If you are using the IRR.PROXY.DEFAULTS profile of the FACILITY class, issue the following command:

RLIST FACILITY IRR.PROXY.DEFAULTS PROXY NORACF

Results: This command displays information like the following:

<table>
<thead>
<tr>
<th>CLASS</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
<td>IRR.PROXY.DEFAULTS</td>
</tr>
</tbody>
</table>

PROXY INFORMATION
LDAPHOST= LDAP://SOME.LDAP.HOST:389
BINDDN= CN=LDAP ADMINISTRATOR,OU=POUGHKEEPSIE,O=IBM,C=US
BINDPW= YES

---------------------------------------------------------------------------------------------------------------------------------
Part 6. Using the certificate validation service

This part explains how to implement the PKI Services Trust Policy (PKITP) plug-in for OCSF.

- Chapter 23, “PKI Services Trust Policy (PKITP),” on page 507 describes the certificate validation service. It gives an overview of the OCSF plug-in PKITP, describes certificate policies and extensions, and explains additional configuration needed for PKITP and using the Trust Policy API, CSSM_TP_PassThrough.
Chapter 23. PKI Services Trust Policy (PKITP)

This topic:
• Provides an overview of PKITP, the PKI Services Trust Policy plug-in for OCSF
• Describes:
  – Certificate policies
  – Revoke status checking
  – Certificate extensions
  – CRL extensions and CRL entry extensions
• Explains how to perform additional OCEP configuration needed for PKITP.
• Describes CSSM_TP_PassThrough (the Trust Policy API).

Overview of PKITP

The PKI Services Trust Policy (PKITP) is an OCSF plug-in to perform certificate validation against a SAF key ring that contains a trusted CA or site certificate (called an anchor certificate) or a virtual key ring of either CERTAUTH or SITE certificates. For information about creating a SAF key ring using the RACDCERT ADDRING command, see z/OS Security Server RACF Command Language Reference. For information about using a virtual key ring with the R_datalib callable service, see z/OS Security Server RACF Callable Services.

PKITP supports the following two functions through the implementation of CSSM_TP_PassThrough:

• CertGroupVerify
• FreeEvidence

Server applications running on z/OS can use this function to verify certificates that other network entities (for example, users and other servers) present. PKI Services or other certificate authorities might have issued these certificates.

The server application must attach to and open the key ring using the OCEP DL plug-in. (For more information about OCEP and the use of SAF key rings, see z/OS Integrated Security Services Open Cryptographic Enhanced Plug-ins Application Programming.) The server application must also bind to any needed LDAP directories by attaching to and opening these directories using the OCSF LDAPDL plug-in. These LDAP directories can be internal corporate directories, directories of extranet business partners, directories of public certificate authorities, or combinations of these.

The following figure illustrates this diversity. The uppercase letter boxes are certificate authorities, and the lowercase letter boxes are end-entity certificates.
Figure 82. Examples of organizations, certificates, and chains

Organization A represents the local (corporate) certificate hierarchy. It contains one self-signed root certificate A. Perhaps RACF or the Tivoli PKI created this. B, C, and D are intermediate CAs. They could be separate instances of PKI Services. Certificates issued within this hierarchy are stored in an LDAP directory accessible to corporate server applications.

Organization E represents a public or business partner’s certificate hierarchy with an LDAP directory that allows anonymous access. Organization G represents some other certificate hierarchy, in which either the directory does not exist or it is not accessible. The key ring contains three anchor certificates. Certificates A and E are trusted CAs, and there is a business need to trust end-entity certificate y, even though it cannot be verified.

If each of these CAs has posted current CRLs to either their default LDAP locations or to distribution point CRLs in LDAP and all certificate chains to be verified are genuine, the PKITP CertGroupVerify function can validate the following input chains:

- Single certificates x, u, v, or w (PKITP can extract the missing links from the directories.)
- Chains u-B, v-C, w-D, u-B-A, v-C-A, w-D-A, x-F, or x-F-E (These chains have no missing links.)
- Any chain beginning with certificate y (As Figure 82 on page 508 shows, y is in the key ring as a SITE. Site certificates are trusted regardless.)
Note that, as with the OCEP Trust Policy, non-self-signed (intermediate) CA certificates can be connected to the key ring to shorten the validation path. Doing so has the following consequences:

- Certificate revocation list (CRL) checking is not performed for the anchor certificate in the chain, even if this happens to be an intermediate CA certificate. If the intermediate CA certificate is revoked, PKITP does not detect it.
- A chain containing the parent chain of the intermediate CA cannot be verified.

**Guideline:** When an intermediate CA certificate is connected to the key ring, the certificates that make up its parent chain should be connected also. This ensures that all chains originating from the intermediate CA or higher can be verified.

**Certificate policies**

PKITP supports CA and server application-defined certificate policies. CAs can and, in most cases, do establish their own policies for issuing certificates. These policies are declared within issued certificates through the CertificatePolicies extension. When this extension exists and is not marked critical, the extension is for informational purposes only - for example, specifying the URL for locating the CA's certificate practice statement (CPS). When this extension exists and is marked critical, the policies identified in the extension restrict the use of the certificate. These restrictions apply to subordinate CA certificates and to end-entity certificates. (For information about how PKI Services support the CertificatePolicies extension, see “Using certificate policies” on page 284.)

Similarly, a server application can be a general application that wants to verify certificates for no specific policy or can be an application that was written for a specific purpose and wants to verify certificates that are issued for that purpose (policy).

If the server application specifies an explicit set of policies, then at least one of these policies must be present in each certificate of the certification path (chain). Additionally, PKITP extracts the certificate policies marked critical from each certificate in the chain to determine the intersection - that is, only policies that are listed in every critically marked CertificatePolicies extension are retained. The server application must indicate that it supports at least one of these polices. If any of these tests are unsuccessful, certificate validation fails.

**Checking certificate status with PKITP**

PKITP checks the revocation status of a certificate by retrieving certificate revocation lists (CRLs) or, when specified in the certificate, by invoking an online validation service that uses the online certificate status protocol (OCSP).

PKITP certificate revocation checking is performed when useCRLS is set higher than 0. It follows the sequence of validation stages shown in Table 99 on page 509.

**Table 99. Sequence of validation stages for PKITP certificate revocation checking**

<table>
<thead>
<tr>
<th>Validation stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCSP responder</td>
<td>The trust policy invokes the OCSP responder specified in the AuthInfoAccess extension.</td>
</tr>
<tr>
<td></td>
<td>If none is specified or if the trust policy fails to receive certificate status from the OCSP responder, it proceeds to the next stage.</td>
</tr>
<tr>
<td>DP CRL, using the URI format</td>
<td>The trust policy searches for the DP CRL using the directories, if any, listed in URI format in the CRLDistributionPoints extension in the order they appear.</td>
</tr>
<tr>
<td></td>
<td>If the DP CRL is found, it is used to determine if the certificate is revoked. If the trust policy fails to find the DP CRL using the URI formats, it proceeds to the next stage.</td>
</tr>
</tbody>
</table>
Table 99. Sequence of validation stages for PKITP certificate revocation checking (continued)

<table>
<thead>
<tr>
<th>Validation stage</th>
<th>Description</th>
</tr>
</thead>
</table>
| DP CRL, using the distinguished-name format | The trust policy searches for the DP CRL in the LDAP directories attached through the distinguished name specified, if any, in the CRLDistributionPoints extension.  
If the trust policy fails to find the DP CRL using the distinguished name and the extension is not marked critical, it proceeds to the next stage.  
If the trust policy fails to find the DP CRL and the extension is marked critical, the validation fails and error code 8029 (CRL not found) is returned.  
If DP CRL processing is not to be performed (useCRLS is set to 0) and the target certificate contains a CRLDistributionPoints extension marked critical, validation fails and error code 8029 is returned. No attempt is made to locate the DP CRL. |
| Global revocation list | The trust policy uses the global CRL to find revocation status information for the certificate. |

Certificate extensions

PKITP supports the following certificate extensions:

- **AuthorityInformationAccess**  
  Checked for form only.

- **AuthorityKeyIdentifier**  
  Checked for form only.

- **BasicConstraints**  
  For CA certificate, CA flag must be on. Also checked for certification path length.

- **CertificatePolicies**  
  See “Certificate policies” on page 509.

- **CRLDistributionPoints**  
  See “Checking certificate status with PKITP” on page 509.

- **HostIdMappings**  
  Checked for form only.

- **IssuerAltName**  
  Checked for form only. Must be marked critical if the issuer DN is empty.

- **KeyUsage**  
  For CA certificates, the key CertSign flag must be on.

- **SubjectAltName**  
  Checked for form only. Must be marked critical if the subject DN is empty.

- **SubjectKeyIdentifier**  
  Checked for form only.

All other extensions are ignored if they are not marked critical. Unsupported critical extensions prevent certificate validation.

CRL extensions and CRL entry extensions

PKITP supports the following CRL and CRL entry extensions, which are checked for form only:

- **CRL extensions:**
  - AuthorityKeyIdentifier
• CRLNumber
• IssuerAltName
• IssuingDistributionPoint

**CRL entry extensions:**
• CertificateIssuer
• CRLReason
• HoldInstructionCode
• InvalidityDate

All other extensions are ignored if they are not marked critical. Unsupported critical extensions prevent certificate validation.

---

**Files for PKITP**

The following table lists files for PKITP:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Source location (default)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Makefile.pkitpsamp</td>
<td>Makefile for pkitpsamp.c.</td>
<td>/usr/lpp/pkiserv/samples/</td>
</tr>
<tr>
<td>install_pkitp</td>
<td>Program that registers the PKI Services Trust Policy plug-in with OCSF.</td>
<td>/usr/lpp/pkiserv/bin</td>
</tr>
<tr>
<td>pkitp_ivp</td>
<td>This program verifies that the plug-in installed successfully.</td>
<td>/usr/lpp/pkiserv/bin</td>
</tr>
<tr>
<td>pkitp.h</td>
<td>Contains #define definitions for applications calling the PKI Services OCSF Trust Policy.</td>
<td>/usr/lpp/pkiserv/include/</td>
</tr>
<tr>
<td>pkitp.so</td>
<td>This is the OCSF Trust Policy plug-in for PKI Services.</td>
<td>/usr/lpp/pkiserv/lib</td>
</tr>
<tr>
<td>pkitpsamp.c</td>
<td>Sample application program (in the C language) to call the PKI Trust Policy plug-in.</td>
<td>/usr/lpp/pkiserv/samples/</td>
</tr>
</tbody>
</table>

---

**Configuring and getting started with PKITP**

If you have not already installed and configured OCSF and OCEP, you need to do so now. Follow the instructions in “Tasks to perform before configuring PKITP” on page 35, and then perform the following post-installation instructions.

The PKITP must be registered with OCSF before being used.

**Steps for configuring PKITP**

**Before you begin**

If you have not already done so, run the OCSF and OCEP install and verification scripts.

**Procedure**

Perform the following steps to install and configure PKITP:
1. Run the PKITP post installation script by entering the following command:

```
/usr/lpp/pkiserv/bin/install_pkitp
```

The program prompts you for certain information. Assuming PKI Services has been installed in its default location, answer the prompts as follows:

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>addin directory?</td>
<td>/usr/lpp/pkiserv/lib</td>
</tr>
<tr>
<td>addin filename?</td>
<td>pkitp.so</td>
</tr>
<tr>
<td>action? [install</td>
<td>install</td>
</tr>
</tbody>
</table>

You know you are done and that the installation was successful when you see the following:

```
Installing IBMPKITP_
Addin successfully installed.
```

2. Update your C/C++ environment variable `_CEE_RUNOPTS` to include `XPLINK(ON)` if it does not already include it. For example, execute the following command from a UNIX shell.

```
export _CEE_RUNOPTS=$_CEE_RUNOPTS' XPLINK(ON)'
```

3. To verify that the installation was successful, run the verification program (`/usr/lpp/pkiserv/bin/pkitp_ivp`).

You know you are done and that the verification program ran successfully when you see the following:

```
Starting pkitp IVP
Initializing CSSM
CSSM Initialized
Attaching pkitp
Attach successful, Detaching pkitp
Detach of pkitp successful
Completed pkitp IVP
```

[Programming Interface Information] Trust Policy API

PKITP supports only one API, CSSM_TP_PassThrough. The globally unique identifier (GUID) for this plug-in is: `{01EBC8AC-CC6F-450c-83B4-F0BE0FBE78F9}`. (Before an application can use a module, an installation application must register the module's name, location, and description with OCSF. The name given to a module includes both a logical name and a GUID. The logical name is a string the module developer chooses to describe the module. The GUID is a structure used to differentiate between service provider modules in the OCSF registry.)

[End Programming Interface Information]

CSSM_TP_PassThrough

**Purpose**

This function lets applications call TP module-specific operations that have been exported. For PKITP, the module-specific operations support certificate chain validation, based on the CA and SITE certificates that are contained within a key ring.

**Format**

```
void * CSSMAPI CSSM_TP_PassThrough
(CSSM_TP_HANDLE TPHandle,
 CSSM_CL_HANDLE CLHandle,
```
Parameters

TPHandle
Handle to this Trust Policy module (PKITP).

CLHandle
Not used. PKITP ignores this.

DLHandle
Not used. PKITP ignores this.

DBHandle
Not used. PKITP ignores this.

CCHandle
Not used. PKITP ignores this.

PassThroughId
Used to indicate the pass-through service requested. Two services are provided:

• Service 1 CertGroupVerify (TP_VERIFY_PASSTHROUGH)
• Service 2 FreeEvidence (TP_FREE_EVIDENCE_PASSTHROUGH)

InputParams
Pointer to the API-caller-provided input parameter structure. The same structure is used for both
pass-through functions. It is declared in pkitp.h as follows:

typedef struct tp_verify_extra {
    /* similar parameters as TP_CertGroupVerify */
    CSSM_CL_HANDLE CLHandle;
    CSSM_DL_DB_LIST_PTR DBList;
    unsigned int reserved; //@L1C
    CSSM_TP_STOP_ON VerificationAbortOn;
    CSSM_CERTGROUP_PTR CertToBeVerified;

    /* extra parameters: input */
    TP_INITIALPOLICY_PTR InitialPolicy;
    time_t CurrentTime;
    time_t ValidationTime;

    /* extra parameters: output */
    CSSM_BOOL result;
    uint32 DLStatusCode; // Status code from DL failures
    uint32 DLindex; // Index (from 0) into DBList
    TP_EVIDENCE_PTR Evidence;
} TP_VERIFY_EXTRA, *TP_VERIFY_EXTRA_PTR;

The DB list
This DBList contains one or more handles to open DB stores. The last entry in this list must be a handle to
an OCEPDL DB (a real or virtual SAF key ring). The key ring is used to declare the list of trusted CA and
SITE certificates. Like the OCEP Trust Policy, certificate chains to verify must originate from one of these
trusted CAs (anchors) or the end-entity certificate must be one of the SITE certificates. Also like the OCEP
Trust Policy, if the security product (SAF) marks any certificate in the candidate chain NOTRUST, the
certificate chain fails validation.

The other entries in the list are used for LDAPDL DB stores. PKITP runs through these to locate CRLs and
intermediate CA certificates. For each item PKITP requests, the LDAPDLs are queried in the order in which
they appear in the list. The search stops the first time an LDAPDL returns an item or when the OCEPDL is reached. No query is made to the OCEPDL to locate CRLs or intermediate CA certificates.

The initial policy
The following optional, caller-provided and initialized structure defines InitialPolicy. PKITP uses the default values if the structure is not provided:

typedef struct tp_initialpolicy {
    /* initial-policy-set */
    uint32 NumberofPolicyIdentifiers; // number of application specific policy OIDs (defaults to 0)
    CSSM_OID_PTR PolicyIdentifiers;   // Address of array of policy OIDs or 0
    uint32 useCRLs;                   // 0 - no CRL processing
                                           // 1 - Check CRLs only if current CRLs found
                                           // 2 - Strong CRL checking (default)
    /* initial-explicit-policy indicator */
    CSSM_BOOL initialExplicitPolicy; // If true, indicates PKITP should consider policy set critical
                                           // defaults to false
    /* initial-policy-mapping-inhibit indicator */
    CSSM_BOOL initialPolicyMappingInhibit; // not used, ignored
} TP_INITIALPOLICY, *TP_INITIALPOLICY_PTR;

The evidence
The following optional, caller-provided structure defines the evidence. This structure is used to return information relative to the validation decision PKITP makes. The caller must free the data areas returned. (The FreeEvidence pass-through function is provided for this.)

typedef struct tp_evidence {
    /* valid certification path if validation succeeds */
    CSSM_CERTGROUP_PTR CompleteCertGroup;
    /* relevant CRL if validation fails */
    CSSM_DATA_PTR CRL;
    /* relevant certificate if validation fails */
    CSSM_DATA_PTR Cert;
    /* authority-constrained-policy */
    CSSM_BOOL authAnyPolicy;
    uint32 NumberofAuthCertPolicyIdentifiers;
    CSSM_OID_PTR AuthCertPolicyIdentifiers;
    /* list of policy mappings that occurred */
    uint32 NumberOfMappedPolicies;
    TP_CSSM_OID_PAIR_PTR mappedPolicies;
} TP_EVIDENCE, *TP_EVIDENCE_PTR;

Error codes
Table 101 on page 514 lists the error codes that are unique to PKI Services OCSF Trust Policy (PKITP).

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>Error description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8002</td>
<td>Certificate policies violation.</td>
</tr>
</tbody>
</table>
Table 101. PKI Services OCSF Trust Policy (PKITP) error codes (continued)

<table>
<thead>
<tr>
<th>Decimal value</th>
<th>Error description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8003</td>
<td>Incorrect certificate distinguished name chaining.</td>
</tr>
<tr>
<td>8004</td>
<td>Certificate encoding error. Subject name missing.</td>
</tr>
<tr>
<td>8006</td>
<td>Incorrect certificate BasicConstraints extension - cA flag off in signing certificate.</td>
</tr>
<tr>
<td>8008</td>
<td>Incorrect certificate KeyUsage extension - keyCertSign flag off in signing certificate.</td>
</tr>
<tr>
<td>8010</td>
<td>Unsupported AltName form in certificate.</td>
</tr>
<tr>
<td>8013</td>
<td>Certificate or CRL encoding error. Signature algorithm mismatch.</td>
</tr>
<tr>
<td>8014</td>
<td>Certificate encoding error. Incorrect version.</td>
</tr>
<tr>
<td>8015</td>
<td>CRL encoding error. Incorrect version.</td>
</tr>
<tr>
<td>8016</td>
<td>Unsupported critical extension in certificate.</td>
</tr>
<tr>
<td>8017</td>
<td>Unsupported critical extension in CRL.</td>
</tr>
<tr>
<td>8018</td>
<td>Unsupported critical entry extension in CRL.</td>
</tr>
<tr>
<td>8019</td>
<td>Certificate encoding error. Duplicate extension.</td>
</tr>
<tr>
<td>8020</td>
<td>CRL encoding error. Duplicate extension.</td>
</tr>
<tr>
<td>8021</td>
<td>Certificate signature failed verification.</td>
</tr>
<tr>
<td>8022</td>
<td>CRL signature failed verification.</td>
</tr>
<tr>
<td>8023</td>
<td>Incorrect date range in certificate or CRL. NotAfter earlier than NotBefore.</td>
</tr>
<tr>
<td>8024</td>
<td>Certificate's date range is in the future.</td>
</tr>
<tr>
<td>8025</td>
<td>Certificate has expired.</td>
</tr>
<tr>
<td>8026</td>
<td>CRL's date range is in the future.</td>
</tr>
<tr>
<td>8027</td>
<td>CRL has expired.</td>
</tr>
<tr>
<td>8028</td>
<td>DBList incorrect, no LDAPDL DBs or non-LDAPDL specified.</td>
</tr>
<tr>
<td>8029</td>
<td>CRL not found.</td>
</tr>
<tr>
<td>8030</td>
<td>Certificate is revoked.</td>
</tr>
<tr>
<td>8031</td>
<td>Unable to build certificate chain.</td>
</tr>
<tr>
<td>8033</td>
<td>Certificate not trusted.</td>
</tr>
<tr>
<td>8034</td>
<td>Incorrect CRLDistributionPoints extension in certificate.</td>
</tr>
<tr>
<td>8501</td>
<td>Unexpected status code returned from accessing LDAPDL.</td>
</tr>
<tr>
<td>8502</td>
<td>Unexpected status code returned from accessing OCEPDL.</td>
</tr>
<tr>
<td>8503</td>
<td>DBList incorrect, no OCEPDL DB or DB empty.</td>
</tr>
</tbody>
</table>

Building the sample application to invoke the certificate validation service

To perform certificate validation, your server application calls the CSSM_TP_PassThrough API (see “CSSM_TP_PassThrough” on page 512), passing it the certificate chain to verify. The API returns a Boolean value indicating success or failure, along with additional information about the certificate chain. The pkitpsamp.c code sample that follows at “Code sample of the PKITP program (pkitpsamp.c)” on page 517 is provided as an aid for developing your own server application. By default, you can find this file in the /usr/lpp/pkiserv/samples directory.
Steps for building the sample application

Perform the following steps to build the sample application:

1. Copy the pkitpsamp.c program and Makefile.pkitpsamp to the current directory by entering the following commands:

   cp /usr/lpp/pkiserv/samples/pkitpsamp.c pkitpsamp.c
   cp /usr/lpp/pkiserv/samples/Makefile.pkitpsamp Makefile

2. Before compiling pkitpsamp.c, you need to edit some data (for example, information about how you want the Trust Policy to operate and where your LDAP is located). In the pkitpsamp.c code (see "Code sample of the PKITP program (pkitpsamp.c)" on page 517), find the section that begins with a block comment that says // Start of application specific options. Update the code as necessary up to the block comment that says // End of application specific options:

   a. If the number of LDAP servers is not 1, change NUM_LDAPS.
   b. Update ldap_info by specifying your LDAP server and port (myldap.mycompany.com:389 in the sample program). If you have more than one LDAP server, you need to provide this information for each LDAP server.
   c. Replace the "@USERID@/KEYRINGNAME@" default value for the char ringname[ ] variable in the code sample. Specify either the name of the real SAF key ring containing your trusted CA or site certificates, or the name of the virtual key ring that points to all your trusted CA or site certificates.
      - If using a real SAF key ring, specify the owning user ID and ring name of the real SAF key ring.
        Example: patelusr/ring01
      - If using a virtual key ring, replace the default value with either *AUTH*/* or *SITE*/* to point to all your trusted CA or site certificates, respectively. (The name of a virtual key ring is always an asterisk.)
   d. If necessary, change the value of useCRLS:
      0  This means using no CRL processing. (You must specify 0 if you have no LDAP servers.)
      1  This means querying LDAP for CRLs and processing those found. This is the value in the sample.
      2  This means using strong CRL checking. (With strong CRL checking, a valid CRL must be found for each CA certificate in the chain.)
   e. If necessary, change NUM_POLICIES, the policies that the application calling PKITP uses. In the sample, this is 2. For each policy, specify the DER-encoded policy information.
   f. If necessary, change INITIALExplicitPolicy from the default of FALSE to TRUE if you want PKITP to require all certificates in the chain to have at least one policy data in the preceding list.

3. Compile and link to produce the executable, pkitpsamp, by entering the following command:

   make

4. Export LIBPATH to include /usr/lpp/pkiserv/lib.

   Example:

   export LIBPATH=$LIBPATH:/usr/lpp/pkiserv/lib

5. Enable program control by setting the extended attribute for pkitpsamp.
Example:

```
  extattr +p pkitpsamp
```

Restriction: To execute the `extattr` command with the `+p` option, you must have at least READ access to the BPX.FILEATTR.PROGCTL resource in FACILITY class.

6. Update your C/C++ environment variable `_CEE_RUNOPTS` to include `XPLINK(ON)` if it does not already include it. For example, execute the following command from a UNIX shell.

Example:

```
  export _CEE_RUNOPTS=$_CEE_RUNOPTS' XPLINK(ON)'
```

7. Run the `pkitpsamp.c` in your own directory by entering the following command:

```
pkitpsamp
```

Code sample of the PKITP program (pkitpsamp.c)

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see the `/usr/lpp/pkiserv/samples` directory.
/* Define the SAF keyring containing trusted CA and/or site certificates. Format is "USERID/keyname". Replace @USERID@ with the userid of the keyring owner and @KEYRINGNAME@ with the name of the keyring. (e.g IBMUSER/CAring) Note that the userid and the keyring names are case sensitive so the userid is all uppercase and the keyring name is mixed case in this example. */

#define USECRLS 1
/* Define how the useCRLs option should be set. */
/* Set to 0 if no CRL processing is to be performed */
/* Set to 1, if LDAP is to be queried for CRLs and process the CRLs found. */
/* Set to 2, for strong CRL checking (With strong CRL checking, a valid CRL must be found for each CA certificate in the chain.) */

#define NUM_POLICIES 2
static unsigned char my_policy1[5] =
    {0x06,0x03,0x2a,0x03,0x04};       // DER encoded 2.3.4
static unsigned char my_policy2[7] =
    {0x06,0x05,0x2a,0x03,0x03,0x02,0x01}; // DER 2.3.3.2.1

static struct CSSM_DATA policydata[NUM_POLICIES] =
    {{sizeof(my_policy1),(unsigned char *)my_policy1},
    {sizeof(my_policy2),(unsigned char *)my_policy2}};
/* Define the policies that the application calling PKITP uses. These become important if a certificate in the certificate chain has a critically marked policy extension. At least one policy that is listed in such an extension. At least one policy that is listed in such a critically marked policy extension, must appear in the list defined here or PKITP will return certificate policy error. */

#define INITIALExplicitPolicy FALSE
/* Set to true if you want PKITP to require that all certificates in chain to have at least one policy listed by the policydata defined above. */

/**********************************************************************************
#pragma runopts("XPLINK(ON)")
/include <stdlib.h>
/include <stdio.h>
/include <string.h>
/include <cssm.h>
/include <ibmocepdl.h>
/include <cssmapi.h>
/include <cssmtype.h>
/include <pkitp.h>
/include <ldapdl.h>

struct ldap_info
{
    char * ldapserver;
    char * ldapauthuser;
    char * ldapauthpass;
};

// storage function definitions needed to talk to CSSM

 ifndef __cplusplus
 extern "C"
 #endif
 void * OurMalloc(size_t size, void * allocRef)
 { return malloc(size); }

 ifndef __cplusplus
 extern "C"
 #endif
 void OurFree(void* memPtr, void * allocRef)
 { free(memPtr); }

 ifndef __cplusplus
 extern "C"
 #endif
 void * OurRealloc(void * memPtr, size_t size, void * allocRef)
 { return realloc(memPtr, size); }

 ifndef __cplusplus
 extern "C"
 #endif
 void * OurCalloc(size_t num, size_t size, CSSM_TP _PassThrough)
void* allocRef() {
    return calloc(num, size);
}

static CSSM_API_MEMORY_FUNCS memoryFuncs; // used to pass function addresses to CSSM

// internal function declarations

int connectTP(char * ringname, int number_ldap, CSSM_DL_DB_LIST *, CSSM_TP_HANDLE *);  //@D1C
void disconnectTP(CSSM_DL_DB_LIST *, CSSM_TP_HANDLE);
int buildCertGroup(CSSM_CERTGROUP *, char * [], uint32);
void verifyCertGroup(CSSM_CERTGROUP certgroup, CSSM_DL_DB_LIST * datasources_ptr, CSSM_TP_HANDLE tphandle);
void reportCertGroupVerify(TP_VERIFY_EXTRA extraVerifyInfo);
void printEvidence(TP_EVIDENCE_PTR evidence_ptr);
void freeCertGroup(CSSM_CERTGROUP * certGroupPtr);

// Start of application specific options

// The defines and declarations that follow should be altered to fit the // particular application calling PKITP.

// Define the number of LDAP servers that PKITP should query for certificates, // CRLs and ARLs. This can be 0, if entire certificate chain will be passed as // input to PKITP AND caller requests to NOT process CRLs/ARLs (see useCRLs // option below).  // // IF NUM_LDAPS > 0, then ldapserver array should define the LDAP server:port, // user and password for each LDAP server, as this example shows.  // // Define how the useCRLs option should be set.  // // Set to 0 if no CRL processing to be done  // Set to 1, if we are to query LDAP for CRLs and process those found  // Set to 2, for strong CRL checking -- must find CRLs in LDAP.

#define NUM_LDAPS 1
#if NUM_LDAPS != 0  //@D1A
struct ldap_info ldapserver[NUM_LDAPS] = {
    "LDAPSERVERNAME:PORTNUMBER",  // LDAP server:port
    "LDAPUSER",                   // user
    "LDAPUSERPASSWORD"};          // password
#endif  //@D1A

// Define how the useCRLs option should be set.  // Set to 0 if no CRL processing to be done  // Set to 1, if we are to query LDAP for CRLs and process those found  // Set to 2, for strong CRL checking -- must find CRLs in LDAP.

#define USECRLS 1

// Define the policies that the application calling PKITP uses.  // These become important if a certificate in the certificate chain has a // critically marked policy extension. At least one policy // that is listed in such a critically marked policy extension, must appear // in the list defined here or PKITP will return certificate policy error.

#define NUM_POLICIES 2
#if NUM_POLICIES != 0  //@D1A
static unsigned char my_policy1[5] = {0x06,0x03,0x2a,0x03,0x04};  // DER encoded 2.3.4
static unsigned char my_policy2[7] = {0x06,0x05,0x2a,0x03,0x03,0x02,0x01};  // DER 2.3.3.2.1
CSSM_DATA policydata[NUM_POLICIES] = {{sizeof(my_policy1),(unsigned char *)my_policy1},
    {sizeof(my_policy2),(unsigned char *)my_policy2}};
#endif  //@D1A

#define INITIALExplicitPolicy FALSE  // Set to true if you want PKITP to require that all // certificates in chain have at least one policy
int main(int argc, char* argv[]) {
    CSSM_DL_DB_LIST datasources;
    CSSM_TP_HANDLE tphandle = 0;
    CSSM_CERTGROUP certGroup;
    int repeating = 1;
    char buffer[1024];
    int num_certs = 0;
    char * cert_files[25];
    char * next_file;
    char * input;
    int rc;
    rc = connectTP(keyring, NUM_LDAPS, &datasources, &tphandle); //D1C
    if (rc == 0) {
        do {
            num_certs = 0;
            printf("Enter filename(s) of certificate(s). (List EE first). ");
            printf("Blank line to quit.\n");
            if ((input = gets(buffer)) != NULL) // get input line
            {
                next_file = strtok(input, " ");
                while ((next_file != NULL) && (num_certs < 25)) // tokenize it
                {
                    cert_files[num_certs] = next_file;
                    num_certs++;
                    next_file = strtok(NULL, " ");
                }
            }
        } while (num_certs > 0);
        disconnectTP(&datasources, tphandle);
    }
    int connectTP(char * ringname, int number_ldap,
                  CSSM_DL_DB_LIST * datasources_ptr,
                  CSSM_TP_HANDLE * tphandle_ptr) //D1C
    {
        uint32 status = 0;
        int z;
        CSSM_VERSION cssm_version = {CSSM_MAJOR, CSSM_MINOR};
    }
}

// listed by our policydata defined above

// End of application specific options

// main

int main(int argc, char* argv[]) {

CSSM_DB_ACCESS_TYPE access = { CSSM_TRUE, 
CSSM_FALSE, 
CSSM_FALSE, 
CSSM_FALSE};

CSSM_VERSION DL_version;
CSSM_DL_HANDLE LDAP_dlhandle;
CSSM_MODULEINFO* moduleInfoPtr;
void* voidptr;
CSSM_DB_ACCESS_TYPE accessRequest = { CSSM_TRUE, // ReadAccess
CSSM_TRUE, // WriteAccess
CSSM_FALSE, // PrivilegedMode
CSSM_FALSE }; // Asynchronous

memoryFuncs.malloc_func = OurMalloc;
memoryFuncs.free_func = OurFree;
memoryFuncs.realloc_func = OurRealloc;
memoryFuncscalloc_func = OurCalloc;
memoryFuncs.AllocRef = NULL;
DL_version.Major = IBMCPDL_MAJOR_VERSION;
DL_version.Minor = IBMCPDL_MINOR_VERSION;

datasources_ptr->NumHandles = number_ldap + 1;
voidptr = malloc(sizeof(CSSM_DL_DBHANDLE)*(number_ldap +1)); // get storage for DLlist
if (voidptr == NULL) { // @D3A
    printf("connectTP unable to obtain memory: line %d\n",__LINE__); // @D3A
    return -1;
} // @D3A
memset(voidptr,0,sizeof(CSSM_DL_DBHANDLE)*(number_ldap +1)); // zero it

if (CSSM_Init(&cssm_version, &memoryFuncs, NULL) != CSSM_OK)
{
    printf("Failed CSSM_Init: %d, line %d\n",CSSM_GetError()->error,__LINE__);
    return -1;
}

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// attach to LDAP and open each LDAP DB
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

if (num_LDAPS != 0) // @D1A
if (number_ldap > 0) // if we have any LDAP sources
{
    moduleInfoPtr = CSSM_GetModuleInfo((CSSM_GUID*)&LDAPDL_GUID,
        CSSM_SERVICE_DL,
        CSSM_ALL_SUBSERVICES,
        CSSM_INFO_LEVEL_ALL_ATTR);

    if (!moduleInfoPtr)
    {
        printf("Failed CSSM_GetModuleInfo: %d, line %d\n",CSSM_GetError()->error,__LINE__);
        return -1;
    }

    LDAP_dlhandle = CSSM_ModuleAttach((CSSM_GUID*)&LDAPDL_GUID,
        &moduleInfoPtr->Version,
        &memoryFuncs,
        0,
        0,
        0,
        NULL,
        NULL);

    if (!LDAP_dlhandle)
    {
        printf("Failed CSSM_ModuleAttach: %d, line %d\n",CSSM_GetError()->error,__LINE__);
        return -1;
    }

    // connect to multiple database instances

    // fill in LDAP DL authentication information:
    // necessary only if user is supplying a name and password
    // -------------------------------------------------------------
    for (z = 0; z < number_ldap; z++) // for each LDAP source
    {
        LDAP_BIND_PARMS bindParms;
        CSSM_USER_AUTHENTICATION userAuthentication = {0,0};
        CSSM_DATA userCredential = {0,0};
        CSSM_USER_AUTHENTICATION_PTR userAuthenticationPtr = 0;

        datasources_ptr->DLDBHandle[z].DLHandle = LDAP_dlhandle;
        if (ldapserver[z].ldapauthuser && ldapserver[z].ldapauthpass) // @D1C
        {
            bindParms.DN = ldapserver[z].ldapauthuser & ldapserver[z].ldapauthpass; // @D1C

            bindParms.SASL = 0;
            bindParms.credential.Data = (uint8 *)ldapserver[z].ldapauthpass; // @D1C
            bindParms.credential.Length = strlen(ldapserver[z].ldapauthpass)+1; // @D1C
            userCredential.Length = sizeof(LDAP_BIND_PARMS);
        }
    }
}
userCredential.Data = (unsigned char*)&bindParms;
userAuthentication.Credential = &userCredential;
userAuthenticationPtr = &userAuthentication;
}

// Open LDAP DL Database
//
//datasources_ptr->DLDBHandle[z].DBHandle = CSSM_DL_DbOpen(LDAP_dlhandle, ldapserver[z].ldapserver, //@D1C
&accessRequest,
userAuthenticationPtr, (void *)0);
if (!datasources_ptr->DLDBHandle[z].DBHandle)
{
    printf("Failed CSSM_DL_DbOpen %d, line %d\n", CSSM_GetError()->error,__LINE__);
    return -1;
}
// end of for each each LDAP source
if (CSSM_FreeModuleInfo(moduleInfoPtr) == CSSM_FAIL)
{
    printf("Failed CSSM_FreeModuleInfo, line %d, error %d\n", __LINE__, CSSM_GetError()->error);
    // This is not a catastrophic error, we'll continue
}
// end if we have any LDAP sources
#endif  //@D1A

/////////////////////////////////////////////////////////////////////
// Attach to OCEP DL (to access RACF keyring)
/////////////////////////////////////////////////////////////////////

if (!datasources_ptr->DLDBHandle[number_ldap].DLHandle)
{
    printf("Failed CSSM_ModuleAttach: %d, line %d\n", CSSM_GetError()->error,__LINE__);
    return -1;
}
datasources_ptr->DLDBHandle[number_ldap].DBHandle =
    CSSM_DL_DbOpen(datasources_ptr->DLDBHandle[number_ldap].DLHandle, ringname, &access,
    NULL,
    NULL);
if (!datasources_ptr->DLDBHandle[number_ldap].DBHandle)
{
    printf("Failed CSSM_DL_DbOpen %d, line %d\n", CSSM_GetError()->error,__LINE__);
    return -1;
}

/////////////////////////////////////////////////////////////////////
// Attach to PKITP
/////////////////////////////////////////////////////////////////////
moduleInfoPtr = CSSM_GetModuleInfo((CSSM_GUID*)&PKITP_GUID,
CSSM_SERVICE_TP,
CSSM_ALL_SUBSERVICES,
CSSM_INFO_LEVEL_ALL_ATTR);
if (!moduleInfoPtr)
{
    printf("Failed CSSM_GetModuleInfo: %d, line %d\n", CSSM_GetError()->error,__LINE__);
    return -1;
}
*(tphandle_ptr) = CSSM_ModuleAttach((CSSM_GUID*)&PKITP_GUID,
    moduleInfoPtr->Version,
    memoryFuncs,
    0,
    0,
    0,
    NULL,
    NULL);
if (!(*tphandle_ptr))
{
    printf("Failed CSSM_ModuleAttach: %d, line %d\n", CSSM_GetError()->error,__LINE__);
    return -1;
}
if (CSSM_FreeModuleInfo(moduleInfoPtr) == CSSM_FAIL)
printf("Failed CSSM_FreeModuleInfo, line %d, error %d\n", __LINE__, CSSM_GetError()->error); // This is not a catastrophic error, we'll continue
return 0;
}
//------------------------------------------------------------
// disconnectTP
// Purpose: to close any open databases and detach any CSSM modules
// that connectTP attached
// Input: The CSSM_DL_DB_LIST structure, CSSM_TP_HANDLE,
// that were initialized by connectTP.
// Output: None
//------------------------------------------------------------
void disconnectTP(CSSM_DL_DB_LIST * datasources_ptr, CSSM_TP_HANDLE tphandle)
{
  int x;
  int status;

  // Sever ties to LDAP
  // For each LDAP database opened -- call CSSM_DL_DbClose

  #if NUM_LDAPS != 0   //@D1A
  for (x = 0; x < datasources_ptr->NumHandles - 1; x++)
  {
    // we close each ldap database separately
    if (datasources_ptr->DLDBHandle[x].DBHandle)        // if we opened database
    {
      status = CSSM_DL_DbClose(datasources_ptr->DLDBHandle[x]);
      if (status != 0)
      {
        printf("Failed CSSM_DL_DbClose %d, line %d\n", CSSM_GetError()->error,__LINE__);
        // we continue trying to close other stuff
      }
    }
  }
  #endif  //@D1A

  // Now detach the LDAP module
  if (datasources_ptr->DLDBHandle[0].DLHandle)
  {
    if ((status = CSSM_ModuleDetach(datasources_ptr->DLDBHandle[0].DLHandle)) != 0)
    {
      printf("Failed CSSM_ModuleDetach: %d, line %d\n", CSSM_GetError()->error,__LINE__);
      // we continue trying to close other stuff
    }
    datasources_ptr->DLDBHandle[0].DLHandle = 0;   // clear handle
  }

  // Say goodbye to OCSP
  status = CSSM_DL_DbClose(datasources_ptr->DLDBHandle[datasources_ptr->NumHandles - 1]);
  if (status != 0)
  {
    printf("Failed CSSM_DL_DbClose %d, line %d\n", CSSM_GetError()->error,__LINE__);
    // we continue trying to close other stuff
  }

  if (datasources_ptr->DLDBHandle[datasources_ptr->NumHandles - 1].DLHandle)
  {
    if ((status = CSSM_ModuleDetach(datasources_ptr->DLDBHandle[datasources_ptr->NumHandles - 1].DLHandle)) != 0)
    {
      printf("Failed CSSM_ModuleDetach: %d, line %d\n", CSSM_GetError()->error,__LINE__);
      // we continue trying to close other stuff
    }
    datasources_ptr->DLDBHandle[datasources_ptr->NumHandles - 1].DLHandle = 0;
  }

  // Farewell PKITP
  if (tphandle)
  {
    if ((status = CSSM_ModuleDetach(tphandle)) != 0)
    {
      printf("Failed CSSM_ModuleDetach: %d, line %d\n", CSSM_GetError()->error,__LINE__);
      // we continue trying to close other stuff
    }
  }
}
int buildCertGroup(CSSM_CERTGROUP * certGroupPtr,  
    char * certFile[], uint32 certCount)  
{
    FILE      * inFile;  
    CSSM_DATA * certArray = (CSSM_DATA *) calloc(certCount,sizeof(CSSM_DATA));  
    uint32    i, certSize;  
    if (certArray == NULL) // If calloc failed, exit now  
        return(CSSM_FAIL);   // @D3A  
    certGroupPtr->NumCerts = certCount;  
    certGroupPtr->CertList = certArray;  
    for (i=0; i < certCount; i++) {  
        inFile = fopen(certFile[i],"rb");  
        if (!inFile) {  
            printf("File %s could not be opened\n",certFile[i]);  
            if (i > 1) // if we've read any certs before this  
                {  
                certGroupPtr->NumCerts = i - 1;   // indicate how many read  
                freeCertGroup(certGroupPtr);      // free alloc'd storage  
                }  
                return(CSSM_FAIL);   // @D3A  
        }  
        /* Find size of certificate file */  
        fseek(inFile,0L,SEEK_END);  
        certSize = ftell(inFile);  
        rewind(inFile);  
        /* Read in certificate data*/  
        certArray[i].Length = certSize;  
        certArray[i].Data   = (uint8 *)calloc(certSize, sizeof(char));  
        if (certArray[i].Data == NULL) {  
            if (i > 1) // if we've read any certs before this  
                {  
                certGroupPtr->NumCerts = i - 1;   // indicate how many read  
                freeCertGroup(certGroupPtr);      // free alloc'd storage  
                }  
                return(CSSM_FAIL);   // @D3A  
        }  
        // @D3A  
        fread(certArray[i].Data, 1, certSize, inFile);  
        fclose(inFile);  
    }  
    return(CSSM_OK);  
}

void verifyCertGroup(CSSM_CERTGROUP certgroup,  
    CSSM_DL_DB_LIST * datasources_ptr,  
    CSSM_TP_HANDLE tphandle)  
{
    // While there are only 3 parameters on CSSM_TP_PassThrough call to PKITP:  
    // - the CSSM_TP_HANDLE,  
    // - the function code "TP_VERIFY_PASSTHROUGH" and  
    //   a pointer to the TP_VERIFY_EXTRA structure.  
    // TP_VERIFY_EXTRA structure contains many parameters, including the address of  
    //
// TP_INITIALPOLICY structure that can be used to override the default policy settings and the address of TP_VERIFY_EXTRA which PKITP can use to pass back more detailed results.

TP_INITIALPOLICY initialPolicyPreferences;
TP_EVIDENCE pkixEvidence;
TP_VERIFY_EXTRA extraVerifyInfo;

memset(&extraVerifyInfo, 0x00, sizeof(TP_VERIFY_EXTRA));  // @D3A

// The field initialPolicyMappingInhibit in TP_INITIALPOLICY is not used by PKITP, therefore we do not set it.

initialPolicyPreferences.NumberofPolicyIdentifiers = NUM_POLICIES;
#if NUM_POLICIES != 0   //@D1A
    initialPolicyPreferences.PolicyIdentifiers = policydata;
#else                   //@D1A
    initialPolicyPreferences.PolicyIdentifiers = NULL;    //@D1A
#endif                  //@D1A
initialPolicyPreferences.initialExplicitPolicy = INITIALExplicitPolicy;
initialPolicyPreferences.initialPolicyMappingInhibit = CSSM_FALSE;
initialPolicyPreferences.useCRLs = USECRLS;

// Initialize TP_EVIDENCE fields for printEvidence in case call to PKITP, is not successful.
pkixEvidence.CompleteCertGroup = NULL;  /* @D0A */
pkixEvidence.CRL = NULL;          /* @D0A */
pkixEvidence.Cert = NULL;          /* @D0A */

// The following fields in TP_VERIFY_EXTRA are not used by PKITP.
// (not to be confused with fields of same name in TP_INITIALPOLICY structure),
// AnchorCerts and NumberOfAnchorCerts.
// Therefore we do not set these fields below.
extraVerifyInfo.DBList                    = datasources_ptr;
extraVerifyInfo.VerificationAbortOn       = CSSM_TP_STOP_ON_POLICY;
extraVerifyInfo.CertToBeVerified          = &certgroup;
extraVerifyInfo.InitialPolicy             = &initialPolicyPreferences;
extraVerifyInfo.Evidence                  = &pkixEvidence;
extraVerifyInfo.ValidationTime = time(0);

(void*)CSSM_TP_PassThrough(tphandle,
0,
0,
0,
0,
0,
TP_VERIFY_PASSTHROUGH,
(void *)&extraVerifyInfo);
reportCertGroupVerify(extraVerifyInfo);
(void*)CSSM_TP_PassThrough(tphandle,
0,
0,
0,
0,
0,
TP_FREE_EVIDENCE,
(void *)&extraVerifyInfo);
}

void reportCertGroupVerify
(TP_VERIFY_EXTRA extraVerifyInfo)
{
    // report success or failure
    unsigned int reported_err = CSSM_GetError()->error;
    printf("TP_VERIFY_PASSTHROUGH : ");
    if (CSSM_FALSE == extraVerifyInfo.result)
        printf("FAILED.  Error code: \n\nreported_err);  
    else
        printf("PASSED\n\n");

    // report evidence
    printEvidence(extraVerifyInfo.Evidence);
```c
void printEvidence(TP_EVIDENCE_PTR evidence_ptr)
{
    if (evidence_ptr == NULL) return;
    if (evidence_ptr->CompleteCertGroup)
    {
        printf("CompleteCertGroup was returned containing %d certificates at address %x\n", 
            evidence_ptr->CompleteCertGroup->NumCerts, 
            evidence_ptr->CompleteCertGroup->CertList);
    }
    else printf("CompleteCertGroup was NULL.\n");
    if (evidence_ptr->CRL)
    {
        printf("CRL was returned of %d bytes (decimal) at address %x\n", 
            evidence_ptr->CRL->Length, 
            evidence_ptr->CRL->Data);
    }
    else printf("CRL was NULL.\n");
    if (evidence_ptr->Cert)
    {
        printf("Cert (failed certificate) was returned of %d bytes (decimal) at address %x\n", 
            evidence_ptr->Cert->Length, 
            evidence_ptr->Cert->Data);
    }
    else printf("Cert was NULL.\n");
}

/******************************
* name: freeCertGroup - Free certificate data storage  *
******************************/
void freeCertGroup(CSSM_CERTGROUP * certGroupPtr)
{
    CSSM_DATA * certArray = certGroupPtr->CertList;
    uint32 certCount = certGroupPtr->NumCerts;
    for (i=0; i <= certCount-1; i++)
    {
        free(certArray[i].Data);
    }
    free(certArray);
    return;
}
Part 7. Troubleshooting

This part explains using logs for troubleshooting, including the following:

- Chapter 24, “Using information from SYS1.LOGREC,” on page 529 contains information about SYS1.LOGREC, which is used to record unusual runtime events, such as an exception.
- Chapter 25, “Using information from the PKI Services logs,” on page 537 contains information about using the PKI Services logs, which are ongoing, to debug problems and explains how to change logging options and display log options settings.

You can also use the iclview and vosview utilities for troubleshooting. For more information about these utilities, see “Using the iclview utility” on page 433 and “Using the vosview utility” on page 444.
Chapter 24. Using information from SYS1.LOGREC

SYS1.LOGREC keeps records of unusual runtime events, such as exceptions or unexpected return codes from calls to system services. It records hardware errors, selected software errors, and selected system conditions in the LOGREC data set. You can use the LOGREC data set as a starting point for diagnosing a problem. It supplies symptom data about the failure and shows the order in which errors occurred. After you have collected this information, you should report the problem to the IBM support center.

The following table describes the contents of the LOGREC data for PKI Services:

<table>
<thead>
<tr>
<th>CSECT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYP0N</td>
<td>Issued when an ABEND occurs in the one of the CSECTs running on the Monitor Thread.</td>
</tr>
<tr>
<td>IKYP81</td>
<td>Primary symptom string:</td>
</tr>
<tr>
<td>IKYP8A</td>
<td>Component ID (PIDS):</td>
</tr>
<tr>
<td>IKYP8B</td>
<td>5752XXPKI</td>
</tr>
<tr>
<td></td>
<td>Load module:</td>
</tr>
<tr>
<td></td>
<td>IKYPKID#L</td>
</tr>
<tr>
<td></td>
<td>CSECT:</td>
</tr>
<tr>
<td></td>
<td>IKYPON, IKYP81, IKYP8A, or IKYP8B</td>
</tr>
<tr>
<td></td>
<td>Recovery routine:</td>
</tr>
<tr>
<td></td>
<td>ESTEXIT</td>
</tr>
<tr>
<td></td>
<td>Error information:</td>
</tr>
<tr>
<td></td>
<td>Consists of an abend code and reason code:</td>
</tr>
<tr>
<td></td>
<td>Abend code: The character S followed by 4 hexadecimal digits or the character U followed by 4 decimal digits.</td>
</tr>
<tr>
<td></td>
<td>Reason code: 8 hexadecimal digits.</td>
</tr>
<tr>
<td>CSECT</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| IKYP8A | Issued when an exception is caught in the service thread routine IKYP8A01 or in the services thread request routine IKYP8A02.  
Primary symptom string:  
**Component ID (PIDS):**  
5752XXPKI  
**Load module:**  
IKYPKID#L  
**CSECT:**  
IKYP8A  
**Failing routine:**  
IKYP8A01 or IKYP8A02  
**Error information:**  
Consists of either an abend code and a reason code or a facility ID and a message number.  
**Abend code:**  
If present, either the character U followed by 4 decimal digits or the character S followed by 3 hexadecimal digits.  
**Reason code:**  
If present, 8 hexadecimal digits.  
**Facility ID:**  
If present, 3 characters.  
**Message number:**  
If present, 8 hexadecimal digits.  
Secondary symptom string:  
**USER**  
The user ID of the requestor.  
**FUNC**  
A function code of 8 hexadecimal digits. |
| IKYP8B | Issued when an ABEND occurs in the PC routine (or helper routines).  
Primary symptom string:  
**Component ID (PIDS):**  
5752XXPKI  
**Load module:**  
IKYPKID#L  
**CSECT:**  
IKYP8B  
**Recovery routine:**  
ARREXIT  
**Error information:**  
Consists of an abend code and a reason code.  
**Abend code:**  
The character S followed by 4 hexadecimal digits or the character U followed by 4 decimal digits.  
**Reason code:**  
8 hexadecimal digits. |
<table>
<thead>
<tr>
<th>CSECT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYSCHDR</td>
<td>Issued from the dispatcher() function when an exception is caught while creating and posting a CRL to LDAP.</td>
</tr>
</tbody>
</table>

**Primary symptom string:**

- **Component ID (PIDS):**
  - 5752XXPKI
- **Load module:**
  - IKYAPI#L
- **CSECT:**
  - IKYSCHDR
- **Failing routine:**
  - IKYDSPER

**Error information:**

- Consists of *either* an abend code and a reason code *or* a facility ID and a message number.
  - **Abend code:**
    - If present, either the character U followed by 4 decimal digits or the character S followed by 3 hexadecimal digits.
  - **Reason code:**
    - If present, 8 hexadecimal digits.
  - **Facility ID:**
    - If present, 3 characters.
  - **Message number:**
    - If present, 8 hexadecimal digits.

**Secondary symptom string:**

- **THREAD**
  - The string DISPATCHR.
Table 102. LOGREC data for PKI Services (continued)

<table>
<thead>
<tr>
<th>CSECT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYSTART</td>
<td>Issued when an exception occurs during daily_timer() processing (general housekeeping for certificate requests and issued certificates). Primary symptom string:</td>
</tr>
<tr>
<td></td>
<td><strong>Component ID (PIDS):</strong> 5752XXPKI</td>
</tr>
<tr>
<td></td>
<td><strong>Load module:</strong> IKYAPI#L</td>
</tr>
<tr>
<td></td>
<td><strong>CSECT:</strong> IKYSTART</td>
</tr>
<tr>
<td></td>
<td><strong>Failing routine:</strong> IKYDAYTM</td>
</tr>
<tr>
<td></td>
<td><strong>Error information:</strong> Consists of either an abend code and a reason code or a facility ID and a message number.</td>
</tr>
<tr>
<td></td>
<td><strong>Abend code:</strong> If present, either the character U followed by 4 decimal digits or the character S followed by 3 hexadecimal digits.</td>
</tr>
<tr>
<td></td>
<td><strong>Reason code:</strong> If present, 8 hexadecimal digits.</td>
</tr>
<tr>
<td></td>
<td><strong>Facility ID:</strong> If present, 3 characters.</td>
</tr>
<tr>
<td></td>
<td><strong>Message number:</strong> If present, 8 hexadecimal digits.</td>
</tr>
<tr>
<td></td>
<td>Secondary symptom string:</td>
</tr>
<tr>
<td></td>
<td><strong>THREAD</strong> The string DAY_TIMR.</td>
</tr>
</tbody>
</table>
**Table 102. LOGREC data for PKI Services (continued)**

<table>
<thead>
<tr>
<th>CSECT</th>
<th>Description</th>
</tr>
</thead>
</table>
| IKYTIMER | Issued when an exception is caught while processing a timer event in wakeup_rtn().  
Primary symptom string:                                                                                   |
|         | **Component ID (PIDS):** 5752XXPKI  
**Load module:** IKYOSSRV#L  
**CSECT:** IKYTIMER  
**Failing routine:** IKYWAKUP  
**Error information:** Consists of either an abend code and a reason code or a facility ID and a message number. |
|         | **Abend code:** If present, either the character U followed by 4 decimal digits or the character S followed by 3 hexadecimal digits.  
**Reason code:** If present, 8 hexadecimal digits.  
**Facility ID:** If present, 3 characters.  
**Message number:** If present, 8 hexadecimal digits. |
|         | Secondary symptom string: **EVENTFUNC**  
The name of the event routine being processed (postEvt, createEvt, or removeEvt).  
|         |                                                                                                                                                                                                           |

**Sample LOGREC data**

Figure 83 on page 534 and Figure 84 on page 535 show sample LOGREC data for PKI Services.
**SEARCH ARGUMENT ABSTRACT:**

- PIDS/5752XXPKI
- RIDS/IKYPKID#L
- RIDS/IKYP8A
- RIDS/IKYP8A01
- AB/S0C4
- FLDS/RSNCODE
- VALU/H00000000

**SYSTEM ENVIRONMENT:**

- CPU MODEL: 9672
- CPU SERIAL: 048288
- SYSTEM: DCEIMGUI
- BCP: MVS
- RELEASE LEVEL OF SERVICE ROUTINE: HBB7703
- SYSTEM DATA AT ARCHITECTURE LEVEL: 10
- COMPONENT DATA AT ARCHITECTURE LEVEL: 10
- SYSTEM DATA: 00000000 00000000

**COMPONENT INFORMATION:**

- COMPONENT ID: 5752XXPKI
- COMPONENT RELEASE LEVEL: 7706
- SERVICE RELEASE LEVEL: HKY7706
- DESCRIPTION OF FUNCTION: PKI SERVICES DAEMON

**PRIMARY SYMPTOM STRING:**

- PIDS/5752XXPKI
- RIDS/IKYPKID#L
- RIDS/IKYP8A
- RIDS/IKYP8A01
- AB/S0C4
- FLDS/RSNCODE
- VALU/H00000000

**SECONDARY SYMPTOM STRING:**

- FLDS/USER
- VALU/CG422253
- FLDS/FUNC
- VALU/H00000000

Hex DUMP of RECORD:

```
+000 4CB31800 00000000 0001221F 19051602 |<C..............|
+010 FF048288 90720000 |..B00...|
```

Figure 83. Sample LOGREC data (part 1 of 2)
Figure 84. Sample LOGREC data (part 2 of 2)
Using information from SYS1.LOGREC
Chapter 25. Using information from the PKI Services logs

This topic explains viewing SYSOUT information. It describes the _PKISERV_MSG_LEVEL environment variable and lists subcomponents and message levels you can select. It explains how to display and change logging options.

Viewing SYSOUT information

To start PKI Services, you use the PKISERVD sample procedure (see “PKISERVD sample procedure to start PKI Services daemon” on page 682 for a code sample of the JCL). When you start PKI Services, error and informational messages for the PKISERVD job are written to the STDOUT and STDERR file streams. Unless you change the DD statements that specify STDOUT and STDERR in the PKISERVD sample procedure, PKI Services writes these messages to SYSOUT.

To view the SYSOUT information of a job, you use the Spool Display Search Facility (SDSF) or a comparable facility. If you are using SDSF, you can use the question mark line command (by entering a question mark in the prefix area in front of the file name) to separate the job files, including STDOUT and STDERR. Figure 85 on page 538 shows this.
Figure 85. Separating the job files

After using the question mark line command, you can select the file you want to view by entering an S before this file name. Figure 86 on page 539 shows this:
Figure 86. Selecting a file to view

Figure 87 on page 540 shows the messages contained in the file:
Figure 87. Messages contained in the file

Notes:

1. These messages were produced when Verbose tracing was active.
2. The SYSOUT records have a logical record length of 133, so you might have to scroll to the right to see the entire record.

From left to right, each record contains:

- A time stamp
- The thread identifier, in parenthesis
- The subcomponent name (in the example that follows, this is CORE)
- The message itself, which might span multiple lines

Informational, warning, error, and severe level messages begin with a message number. (See Chapter 26, "Messages," on page 547.) Verbose and diagnostic level messages do not have message numbers and are not documented.

The following is an example of an informational message:

Wed Aug 8 15:44:46 2001 (00000001) CORE IKYCO26I Deleting inactive object 37. L

Last changed at 2001/07/10 17:08:39
_PKISERV_MSG_LEVEL subcomponents and message levels

The _PKISERV_MSG_LEVEL environment variable specifies the subcomponent and message level for logging messages.

The following is a list of subcomponents:

<table>
<thead>
<tr>
<th>Subcomponent</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The wildcard character (represents all subcomponents)</td>
</tr>
<tr>
<td>CORE</td>
<td>The core functions of PKI Services that are not specific to the other subcomponents</td>
</tr>
<tr>
<td>DB</td>
<td>Activity related to the object store or issued certificate list repositories</td>
</tr>
<tr>
<td>LDAP</td>
<td>LDAP posting operations</td>
</tr>
<tr>
<td>PKID</td>
<td>The PKI Services daemon address setup and infrastructure</td>
</tr>
<tr>
<td>POLICY</td>
<td>Certificate creation and revocation policy processing</td>
</tr>
<tr>
<td>SAF</td>
<td>SAF key ring, OCEP, and R_dataLib calls</td>
</tr>
<tr>
<td>TPOLICY</td>
<td>Trust policy plug-in processing</td>
</tr>
</tbody>
</table>

The following is a hierarchical list of message levels:

<table>
<thead>
<tr>
<th>Debug level</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>This indicates logging only severe messages.</td>
</tr>
<tr>
<td>E</td>
<td>This indicates logging severe and error messages.</td>
</tr>
<tr>
<td>W</td>
<td>This indicates logging severe, error, and warning messages. This is the default message level for all subcomponents if you do not set the environment variable.</td>
</tr>
<tr>
<td>I</td>
<td>This indicates logging severe, error, warning, and informational messages.</td>
</tr>
<tr>
<td>D</td>
<td>This indicates logging severe, error, warning, informational, and diagnostic messages.</td>
</tr>
<tr>
<td>V</td>
<td>This indicates logging all messages, including verbose diagnostic messages. This is very verbose. <strong>Guideline:</strong> Do not use V level unless IBM support personnel instruct you to do so.</td>
</tr>
</tbody>
</table>

(For information about updating environment variables during configuration, see “Optionally updating PKI Services environment variables” on page 70.)

After PKI Services is up and running, if a problem occurs, the MVS programmer can:

- Change the logging options dynamically - by using the MODIFY (or F) console command
- Display the current settings - by using another MODIFY console command.

### Changing logging options

To change logging options dynamically, execute the following MODIFY (or F) console command:

```
F PKISERVD,LOG sub-component.level[,sub-component.level...]
```
**subcomponent.level**

Sets the message level settings for the subcomponents. Use one of the subcomponents and message levels listed previously.

---

### Displaying log options settings

To display the current logging options, execute the following MODIFY (or **F**) console command:

```
F PKISERVD,DISPLAY
```

The result of this command is information message IKYP025I. **Sample output:**

<table>
<thead>
<tr>
<th>Subcomponent</th>
<th>Message Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Warning messages and higher</td>
</tr>
<tr>
<td>LDAP</td>
<td>Error messages and higher</td>
</tr>
<tr>
<td>SAF</td>
<td>Warning messages and higher</td>
</tr>
<tr>
<td>DB</td>
<td>Informational messages and higher</td>
</tr>
<tr>
<td>Core</td>
<td>Warning messages and higher</td>
</tr>
<tr>
<td>PKI</td>
<td>Verbose diagnostic messages and higher</td>
</tr>
<tr>
<td>TPOLICY</td>
<td>Warning messages and higher</td>
</tr>
</tbody>
</table>

Message logging setting: **STDOUT_LOGGING**

Configuration file in use: `/etc/pkiserv/pkiserv.conf`

Template file in use: `/etc/pkiserv/pkiserv.tmpl`

CA certificate fingerprints:


FIPS level: **FIPS 140-2**

Status: **OPERATIONAL**

**Note:** The MD5 fingerprint is only displayed if FIPS mode is off.

The PKI administrator can use this command to display the fingerprints of the PKI Services CA certificate in support of Simple Certificate Enrollment Protocol (SCEP) certificate requests.
This part provides reference information, including listings of code samples for certain important files.

**Note:** The listings in this part might not be identical to the code samples shipped with the product. For the most current sample, see the appropriate source directory.

- Chapter 26, “Messages,” on page 547 explains PKI Services messages.
- Chapter 27, “File directory structure,” on page 603 describes product and file system directories for PKI Services and files contained in them.
- Chapter 29, “Environment variables,” on page 615 explains the **pkiserv.envars** environment variables file and provides a code sample.
- Chapter 30, “The IKYSETUP REXX exec,” on page 619 explains the contents of the IKYSETUP REXX exec that performs RACF administration and provides a code sample.
- Chapter 31, “Other code samples,” on page 649 provides additional code samples. Table 103 on page 543 summarizes information about these code samples and those in the preceding chapters, summarizing their use, directory location, and the location where the code sample begins.
- Chapter 32, “SMF recording,” on page 685 describes the content of the System Management Facility (SMF) record that is generated by PKI Services.

### Table 103. Summary of information about important files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Source location (default)</th>
<th>For code sample...</th>
</tr>
</thead>
<tbody>
<tr>
<td>httpd.conf, vhost80.conf,</td>
<td>Contains IBM HTTP Server - Powered by Apache directives.</td>
<td>pki-install-dir/samples</td>
<td>See “IBM HTTP Server - Powered by Apache configuration directives” on page 649.</td>
</tr>
<tr>
<td>vhost443.conf, and vhost1443.conf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>IKYCDB2</strong></td>
<td>Sample to create Db2 objects for the object store and issued certificate list (ICL). This JCL is used for version 0 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYCDB2” on page 655.</td>
</tr>
<tr>
<td><strong>IKYCDBV1</strong></td>
<td>Sample to create Db2 objects for the object store and issued certificate list (ICL). This JCL is used for version 1 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYCDBV1” on page 658.</td>
</tr>
<tr>
<td><strong>IKYCVSAM</strong></td>
<td>Sample IDCAMS JCL to create VSAM data sets (regardless of whether you are using a sysplex or non-sysplex). This JCL is used for version 0 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYCVSAM” on page 661.</td>
</tr>
<tr>
<td><strong>IKYCVSV1</strong></td>
<td>Sample IDCAMS JCL to create VSAM data sets (regardless of whether you are using a sysplex or non-sysplex). This JCL is used for version 1 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYCVSV1” on page 665.</td>
</tr>
</tbody>
</table>
### Table 103. Summary of information about important files (continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Source location (default)</th>
<th>For code sample...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYRVSAM</td>
<td>Sample IDCAMS JCL to add VSAM record-level sharing (RLS) support. IKYRVSAM reallocates your VSAM data sets in preparation for sharing in a sysplex. This JCL is used for version 0 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYRVSAM” on page 670.</td>
</tr>
<tr>
<td>IKYRVSV1</td>
<td>Sample IDCAMS JCL to add VSAM record-level sharing (RLS) support. IKYRVSV1 reallocates your VSAM data sets in preparation for sharing in a sysplex. This JCL is used for version 1 object store and ICL.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYRVSV1” on page 673.</td>
</tr>
<tr>
<td>IKYSBIND</td>
<td>Sample job to create the Db2 package and plan for the object store and issued certificate list (ICL).</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYSBIND” on page 678.</td>
</tr>
<tr>
<td>IKYSGRNT</td>
<td>Sample job to grant EXECUTE authority for the Db2 package to the PKI Services daemon user ID.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYSGRNT” on page 679.</td>
</tr>
<tr>
<td>IKYVBKUP</td>
<td>Sample JCL to back up the PKI Services VSAM data sets using the DFSMSdss DUMP utility.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYVBKUP” on page 680.</td>
</tr>
<tr>
<td>IKYVREST</td>
<td>Sample JCL to restore the PKI Services VSAM data sets from a backup taken with the DFSMSdss DUMP utility.</td>
<td>SYS1.SAMPLIB</td>
<td>See “IKYVBKUP” on page 680.</td>
</tr>
<tr>
<td>pkiserv.conf</td>
<td>PKI Services configuration file.</td>
<td>/usr/lpp/pkiserv/samples/ (You copy this file to the runtime directory, /etc/pkiserv.)</td>
<td>See Chapter 28, “The pkiserv.conf configuration file,” on page 607.</td>
</tr>
<tr>
<td>PKISERVD</td>
<td>Sample procedure to start PKI Services daemon.</td>
<td>SYS1.PROCLIB</td>
<td>See “PKISERVD sample procedure to start PKI Services daemon” on page 682.</td>
</tr>
<tr>
<td>pkiserv.envars</td>
<td>PKI Services environment variables file.</td>
<td>/usr/lpp/pkiserv/samples/ (You might need to copy this file to the runtime directory, /etc/pkiserv.)</td>
<td>See “The pkiserv.envars environment variables file” on page 617.</td>
</tr>
<tr>
<td>pkiserv.tmpl</td>
<td>PKI Services certificate template file for REXX CGI execs.</td>
<td>/usr/lpp/pkiserv/samples/ (You copy this file to the runtime directory, /etc/pkiserv.)</td>
<td>Not provided.</td>
</tr>
</tbody>
</table>
Table 103. Summary of information about important files (continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Source location (default)</th>
<th>For code sample...</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkitmpl.xml</td>
<td>PKI Services certificate template file for JavaServer pages.</td>
<td>/usr/lpp/pkiserv/samples/ (You copy this file to the runtime directory, /etc/pkiserv.)</td>
<td>Not provided.</td>
</tr>
<tr>
<td>pkixgen.tmpl</td>
<td>PKI Services certificate template file for the daemon’s use when you implement the web application using JavaServer pages.</td>
<td>You create this file from pkitmpl.xml using the TemplateTool utility.</td>
<td>Not provided.</td>
</tr>
</tbody>
</table>
Chapter 26. Messages

PKI Services message numbers begin with the three-character component prefix (IKY), followed by a fourth character that identifies the subcomponent. The following table lists the characters representing various subcomponents and describes where the messages appear.

Table 104. Meaning of fourth character in message number

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
<th>Component producing messages</th>
<th>Where messages appear</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>CORE</td>
<td>Core subcomponent</td>
<td>PKI Services log</td>
</tr>
<tr>
<td>D</td>
<td>DB</td>
<td>Database accessing subcomponent</td>
<td>PKI Services log</td>
</tr>
<tr>
<td>I</td>
<td>INTERFACE</td>
<td>PKISERV CGIs or JSPs</td>
<td>In the user’s web browser window</td>
</tr>
<tr>
<td>L</td>
<td>LDAP</td>
<td>LDAP bind subcomponent</td>
<td>PKI Services log</td>
</tr>
<tr>
<td>O</td>
<td>POLICY</td>
<td>Certificate creation and revocation policy subcomponent</td>
<td>PKI Services log</td>
</tr>
<tr>
<td>P</td>
<td>PKID</td>
<td>PKI Services daemon address space controller</td>
<td>• PKI Services log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• (For those with destination and routing codes) operators console</td>
</tr>
<tr>
<td>S</td>
<td>SAF</td>
<td>SAF interfacing subcomponent</td>
<td>PKI Services log</td>
</tr>
<tr>
<td>U</td>
<td>UTILITY</td>
<td>Utility programs</td>
<td>UNIX standard error (stderr)</td>
</tr>
</tbody>
</table>

Characters five through seven are numeric. The eighth character is the message type:

Table 105. Meaning of eighth character in message number

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
<th>Action required</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Informational (status message)</td>
<td>No action required</td>
</tr>
<tr>
<td>E</td>
<td>Eventual action</td>
<td>Possible problem that might require eventual action</td>
</tr>
<tr>
<td>A</td>
<td>Action required</td>
<td>Problem that requires immediate attention</td>
</tr>
</tbody>
</table>

For information about setting messages options using environment variables, see “_PKISERV_MSG_LOGGING” on page 616.

IKYC001I  Error nnnn action-being-performed: error-code-description

Explanation
PKI Services is processing a request and has encountered an internal error. The action being performed and the error code encountered are displayed. A description of the error is also displayed, if known.

System action
The request is not processed.

User response
Report the error to the IBM support center.

IKYC002I  Error nnnn returned from CP_NewCertCreate: error-code-description
Messages

Explanation
PKI Services is attempting to create a certificate and has encountered an internal error. The action being performed and the error code encountered are displayed. A description of the error is also displayed, if known.

System action
The certificate is not created.

System programmer response
If this is a problem with posting to LDAP, you should also see messages IKYC007I or IKYC008I or both. If so, follow the instructions for these messages. Otherwise, report the error to the IBM support center.

IKYC005I Error nnnn posting {User | CA} Certificate to LDAP for distinguished-name: error-code-description

Explanation
PKI Services is attempting to post a certificate to the LDAP directory and has encountered an error. The distinguished name for which the post was attempted and the error code encountered are displayed. A description of the error is also displayed, if known. If the error code is an LDAP return code, no error description is displayed.

System action
If the post is unsuccessful for a given certificate, retries the post at the next post interval. If the post continues to be unsuccessful after 3 attempts, the post frequency for the certificate is reduced to no more than once per hour. After 26 unsuccessful attempts, it is further reduced to no more than once per day. After 33 unsuccessful attempts, the post request for the certificate is deleted from the request database.

System programmer response
Determine whether the error occurred on the call to LDAP or within PKI Services, based on the presence of an error code description in the message. If no error code description is displayed in the message, the error occurred on the call to LDAP. If the error code is LDAP_NO_SUCH_OBJECT, the LDAP entry could not be created because the required suffix does not exist. Check the message to determine the entry that could not be created. If the entry should be posted to LDAP, you need to define the suffix in the LDAP server configuration file, and then stop and restart the LDAP server. For all other LDAP errors, follow the instructions in z/OS IBM Tivoli Directory Server Client Programming for z/OS. If an error code description is displayed in the message, the error occurred within PKI Services.

IKYC004I Error nnnn creating and sending CRLs: error-code-description

Explanation
PKI Services is attempting to create the current CRL and has encountered an error. The error code encountered is displayed. A description of the error is also displayed, if known. Note: If the error code is an LDAP return code, no error description is displayed. This would indicate a problem posting the CRL to the LDAP directory.

System action
If the CRL was created and the post to LDAP was unsuccessful, the post request remains in the PKI Services request database to be reattempted later. If posting continues to be unsuccessful for one week, the information is removed from the request database and deleted. For all other errors, PKI Services tries again to create the CRL during the next CRL interval.

System programmer response
If the error code description is Missing LDAP information, then the CreateOUValue directive is missing from the LDAP section of the PKI Services configuration file. Add the directive, then stop and restart PKI Services. See Chapter 8, “Tailoring the PKI Services configuration file for LDAP,” on page 107 for more information.
Report any other PKI Services error to the IBM support center. If message IKYC009I is also displayed, report that information also.

**IKYC007I**

| Error nnnn posting {CRL | ARL} to LDAP: error-code-description |

**Explanation**

PKI Services is attempting to post a CRL or ARL to the LDAP directory and has encountered an error. The error code encountered is displayed. A description of the error is also displayed, if known. Note: If the error code is an LDAP return code, no error description is displayed.

**System action**

The post request remains in the PKI Services request database to be reattempted later. If posting continues to be unsuccessful for one week, the information is removed from the request database and deleted.

**System programmer response**

If the error is LDAP_NO_SUCH_OBJECT, the LDAP entry to contain the CRL or ARL does not yet exist. This is expected if you are starting PKI Services for the first time. For all other LDAP errors, follow the instructions in z/OS IBM Tivoli Directory Server Client Programming for z/OS. Report errors to the IBM support center. If message IKYC009I is also displayed, report that information also.

**IKYC008I**

| Error nnnn creating an entry for {CA Certificate | User Cert | CRL | ARL} to LDAP for distinguished-name: error-code-description |

**Explanation**

PKI Services is attempting to post a certificate, CRL, or ARL to the LDAP directory and has encountered an error. The distinguished name for which the post was attempted and the error code encountered are displayed. A description of the error is also displayed, if known. Note: If the error code is an LDAP return code, no error description is displayed.

**System action**

The post request remains in the PKI Services request database to be reattempted later. If posting continues to be unsuccessful for one week, the information is removed from the request database and deleted.

**System programmer response**

You can also see message IKYC005I or IKYC007I displayed. If so, follow the instructions for the message displayed. Follow related instructions in z/OS IBM Tivoli Directory Server Client Programming for z/OS. Report errors to the IBM support center. If message IKYC009I is also displayed, report that information also.

**IKYC009I**

| LDAP post unsuccessful for object id = nnnn, state = nnnn, status = nnnn: status-code-description |

**Explanation**

This message appears as supplemental information for messages IKYC005I and IKYC008I.

**System action**

If reporting message IKYC005I or IKYC008I to the IBM support center, report this information also.

**IKYC010I**

| Error nnnn returned from action-being-performed: error-code-description |

**Explanation**

PKI Services is processing a request and has encountered an error. The action being performed and the error code encountered are displayed. A description of the error is also displayed, if known.

**System action**

The request is not processed.

**System programmer response**

Check the PKI Services logs for additional information about this error. You can use the _PKISERV_MSG_LEVEL environment variable to increase the messages that PKI Services generates. For more information about the logs and _PKISERV_MSG_LEVEL, see Chapter 25, “Using information from the PKI Services logs,” on page 537.

If the error code description is not self-explanatory, and you cannot find additional information in the logs, report the error to the IBM support center.

**IKYC011I**

| Bad TimeBetweenCRLs value in pkiserv.conf file: incorrect-value |

**Explanation**

PKI Services is reading its configuration file to locate the value that is specified for TimeBetweenCRLs in the CertPolicy section. The value that is specified has an incorrect syntax.
IKYC012I  Bad CRLDuration value in
pkiserv.conf file: incorrect-value

Explanation
PKI Services is reading its configuration file to locate
the value that is specified for CRLDuration in the
CertPolicy section. The value that is specified has an
incorrect syntax.

System action
CRL processing is suspended until the problem is
corrected and PKI Services is restarted.

System programmer response
Correct the value and restart PKI Services. For more
information, see “(Optional) Steps for updating the
configuration file” on page 74.

IKYC013I  Bad CreateInterval value in
pkiserv.conf file

Explanation
PKI Services is reading its configuration file to locate
the value that is specified for CreateInterval in the
CertPolicy section. The value that is specified has an
incorrect syntax.

System action
PKI Services uses the default value of 3 minutes.

System programmer response
Correct the value and restart PKI Services if you want.
For more information, see “(Optional) Steps for tailoring the LDAP
section of the configuration file” on page 108.

IKYC014I  Bad RemoveCompletedReqs or
RemoveInactiveReqs value in
pkiserv.conf file

Explanation
PKI Services is reading its configuration file to locate
the value that is specified for either
RemoveCompletedReqs or RemoveInactiveReqs

IKYC015I  Bad PostInterval value in
pkiserv.conf file

Explanation
PKI Services is reading its configuration file to locate
the value that is specified for PostInterval in the
LDAP section. The value that is specified has an
incorrect syntax.

System action
PKI Services uses the default value of 5 minutes.

System programmer response
Correct the value and restart PKI Services if you want.
For more information, see “Steps for tailoring the LDAP
section of the configuration file” on page 108.

IKYC016I  action-being-performed returned
nnnn in sub-function: error-code-description

Explanation
PKI Services is processing a request and has
encountered an internal error. The action being
performed, the subfunction that returned the error,
and the error code encountered are displayed. A
description of the error is also displayed, if known.

System action
The request is not processed.

System programmer response
Report the error to the IBM support center.

IKYC017I  JNH_inquire_certreq_startdate
(object-id) found neither certificate
request nor response (nnnn): error-code-description

in the ObjectStore section. The value that is specified
has an incorrect syntax.
**Explanation**
PKI Services is processing the start date in a request and has encountered an internal error. The request's ID and the error code encountered are displayed. A description of the error is also displayed, if known.

**System action**
The request is not processed.

**System programmer response**
Report the error to the IBM support center.

**IKYC018I**
{read | get_value} of certificate-or-CRL-extension-name returned nnnn: error-code-description

**Explanation**
PKI Services is processing a CRL or certificate extension field and has encountered an internal error. The field name and the error code encountered are displayed. A description of the error is also displayed, if known.

**System action**
The CRL or certificate is not processed.

**System programmer response**
Report the error to the IBM support center.

**IKYC020I**
Retrieving CA value failed nnnn: error-code-description

**Explanation**
PKI Services is processing a certificate extension field in preparation of posting the certificate to the LDAP directory. The processing has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.

**System action**
The certificate is not posted to the LDAP directory.

**System programmer response**
Report the error to the IBM support center.

**IKYC021I**
CRL claims to have only User and only CA certs

**Explanation**
PKI Services is processing a CRL extension field in preparation of posting the CRL to the LDAP directory. The processing has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.

**System action**
The CRL is not posted to the LDAP directory.

**System programmer response**
Report the error to the IBM support center.

**IKYC022I**
Invalid type for object object-id in JNH_set_revreq_invalidityDate: error-code-description

**Explanation**
PKI Services is processing a revocation request and has encountered an internal error. The revocation request's ID and the error code encountered are displayed. A description of the error is also displayed, if known.

**System action**
The revocation request is not processed.

**System programmer response**
Report the error to the IBM support center.

**IKYC023I**
Request index (index-number) greater than number of revocations (nnnn) in JNH_set_revreq_invalidityDate

**Explanation**
PKI Services is processing a revocation request and has encountered an internal error.

**System action**
The revocation request is not processed.

**System programmer response**
Report the error to the IBM support center.

**IKYC024I**
Failed to schedule event in nnnn seconds, status = nnnn: error-code-description

**Explanation**
PKI Services is attempting to schedule a timed event and has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.
System action
The event is not scheduled.

System programmer response
Report the error to the IBM support center.

IKYC025I  Failed to schedule event status = nnnn: error-code-description

Explanation
PKI Services is attempting to schedule a timed event and has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.

System action
The event is not scheduled.

System programmer response
Report the error to the IBM support center.

IKYC026I  Deleting {inactive | completed} object object-id. Last changed at YYYY/MM/DD HH:MM:SS

Explanation
PKI Services is attempting to purge the request database of inactive and completed requests. A request that has met the criteria for deletion has been found. The request's ID is displayed along with information about when it was last changed. This is an informational message only.

System action
The state of the request is unchanged. PKI Services continues normal processing.

PKI Services administrator response
Use PKI Services administrative functions to query the request to check its state. If the request is still pending approval, determine whether the request should be approved or rejected and take action accordingly. For more information, see “Processing certificate requests” on page 409.

IKYC027I  Removing certificate post request after nnnn unsuccessful attempts

Explanation
PKI Services is attempting to purge the request database of unsuccessful LDAP post requests. A request that has met the criteria for deletion has been found. The number of unsuccessful attempts for this request is displayed. This is an informational message only.

System action
The request is deleted. PKI Services continues normal processing.

IKYC028I  Export for CertId certificate-id unsuccessful. Request is still pending approval or yet to be issued

Explanation
A client has requested a certificate and is attempting to retrieve it. The retrieval was unsuccessful because the certificate is not yet available. The request either has yet to be approved by a PKI Services administrator or has been approved, but has not yet been issued by PKI Services. This is an informational message only.

System action
The state of the request is unchanged. PKI Services continues normal processing.

PKI Services administrator response
Use PKI Services administrative functions to query the request to check its state. If the request is still pending approval, determine whether the request should be approved or rejected and take action accordingly. For more information, see “Processing certificate requests” on page 409.

IKYC029I  Error: certificate request type is invalid for certificate creation

Explanation
PKI Services is processing a certificate request and has encountered an internal error.

System action
The certificate request is not processed.

System programmer response
Report the error to the IBM support center.

IKYC030I  Error nnnn retrieving LDAP attribute-name attribute data from distinguished-name: error-code-description

Explanation
PKI Services is trying to retrieve some attribute data from an entry in the LDAP directory and has encountered an error. The attribute name and distinguished name for which the retrieve was attempted and the error code encountered are displayed. If known, a description of the error is also displayed.

Note: If the error code is an LDAP return code, no error description is displayed.
System action

If the attribute being retrieved is 'MAIL', PKI Services is trying to retrieve the client's email address to send the client a certificate expiration warning message or a renewed certificate. The warning message or the renewed certificate is not sent now but sending is tried later.

System programmer response

Follow related instructions in z/OS IBM Tivoli Directory Server Client Programming for z/OS. Report errors to the IBM support center.

IKYC031I Error nnnn invoking sendmail with email address email-address retrieved from LDAP entry distinguished-name

Explanation

PKI Services tried to call the sendmail utility to notify a client that the certificate is expiring or is renewed. The call was unsuccessful. This message displays the email address and distinguished name from which it was retrieved and the error code encountered.

System action

It can be unclear if the warning message or the renewed certificate has been sent. If the email address appears to be genuine, PKI Services retries sending later.

System programmer response

Diagnose the problem by consulting z/OS Communications Server: IP Diagnosis Guide and related documents. Report non-Communications Server errors to the IBM support center.

IKYC032I Error nnnn invoking sendmail with email address email-address provided by distinguished-name

Explanation

PKI Services is trying to notify a client that the certificate is ready, rejected, or recovered. Notification is accomplished by calling the sendmail utility. The call was unsuccessful. This message displays the email address and the subject's distinguished name from the request. The error code encountered is also displayed.

System action

It is unclear if the message has been sent.

System programmer response

Diagnose the problem by consulting z/OS Communications Server: IP Diagnosis Guide and related documents. Report non-Communications Server errors to the IBM support center.

IKYC034I Error issuing DEQ for resource resource-name, return code was return-code

Explanation

PKI Services background certificate processing encountered an internal error trying to release control of a resource using the DEQ service. The resource

System action
name and return code from the DEQ macro are displayed.

**System action**

PKI Services processing continues. However, further processing of certificate requests can fail until PKI Services is stopped and restarted.

**System programmer response**

Stop and restart PKI Services. If the problem occurs again, report the error to the IBM support center.

**IKYC035I** Bad ExpireWarningTime value in pkiserv.conf file

**Explanation**

PKI Services is reading its configuration file to locate the value that is specified for ExpireWarningTime in the CertPolicy section. The value that is specified has an incorrect syntax.

**System action**

PKI Services processing continues. However, further processing of certificate requests can fail until PKI Services is stopped and restarted.

**System programmer response**

Stop and restart PKI Services. If the problem occurs again, report the error to the IBM support center.

**IKYC036I** Bad MaxSuspendDuration value in pkiserv.conf file

**Explanation**

PKI Services is reading its configuration file to locate the value that is specified for MaxSuspendDuration in the CertPolicy section. The value that is specified has an incorrect syntax.

**System action**

PKI Services continues, but no expiration warning messages are issued.

**System programmer response**

Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

**IKYC037I** Bad RemoveExpiredCerts or RemoveExpiredCertsAndKeys value in pkiserv.conf file

**Explanation**

PKI Services is reading its configuration file to locate the value that is specified for RemoveExpiredCerts or RemoveExpiredCertsAndKeys in the ObjectStore section. The value that is specified has an incorrect syntax.

**System action**

PKI Services stops.

**System programmer response**

Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

**IKYC038I** Deleting expired certificate with serial number certificate-serial-number

**Explanation**

PKI Services is attempting to purge the issued certificate list (ICL) of expired certificates. A certificate that has met the criteria for deletion has been found. The certificate's serial number is displayed. This is an informational message only.

**System action**

The request is deleted. PKI Services continues normal processing.

**IKYC039I** Bad CRLDistName value in pkiserv.conf file

**Explanation**

PKI Services is initializing and is reading its configuration file to locate the value that is specified for CRLDistName in the CertPolicy section. The value that is specified does not contain all alphanumeric characters.

**System action**

PKI Services stops.

**System programmer response**

Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

**IKYC040I** Bad CRLDistURI value in pkiserv.conf file: LdapServern
PKI Services is reading its configuration file to locate the LDAP server that is specified in the LDAP section of the PKI Services configuration file. The value is to be used to create the URI format for the CRLDistributionPoints extension for the LDAP protocol. The Server value that is specified by LdapServer cannot be found or contains incorrect information.

System action
PKI Services continues, but the URI format for that protocol distribution point is not created.

System programmer response
Ensure that the CRLDistURIIn value locates the correct LdapServer or BindProfileIn value in the LDAP section or the default FACILITY class profile, IRR.PROXY.DEFAULTS. For profile values, ensure that the profile exists and contains the correct information. Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC041I Bad CRLDistURIIn value in pkiserv.conf file, exceeds the number of LDAP servers: LdapServern

Explanation
PKI Services is reading its configuration file to create the URI format for the CRLDistributionPoints extension. The value that is specified has incorrect syntax.

System action
PKI Services continues, but the URI format for that protocol distribution point is not created.

System programmer response
Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC043I Error nnnn in creating HFS file name to store distribution point CRL

Explanation
PKI Services is trying to store the distribution point CRL in a file system file. An I/O error occurred during the processing.

System action
PKI Services continues, but the distribution point CRL is not created.

System programmer response
Fix the I/O error and wait for the next distribution point CRL to be created.

IKYC044I Bad OCSPType value in pkiserv.conf file: value

Explanation
PKI Services responder is reading its configuration file to check whether the OCSP responder is enabled when receiving an OCSP request. The expected value is either 'none' or 'basic'. The value that is specified is not one of these.

System action
The responder is not enabled. The client gets a response back with status 'Try later'.

System programmer response
Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC045I Unknown section or keyword in pkiserv.conf file: Section: [section], Keyword keyword

Explanation
PKI Services is reading its configuration file to create the URI format for the CRLDistributionPoints extension.
**Explanation**

PKI Services is reading its configuration file during initialization. One of the following conditions occurred:

- An unknown section name was found.
- An unknown keyword was found.
- A valid keyword was placed in the wrong section.
- A keyword was placed before any sections were defined.

**System action**

The keyword is ignored and PKI Services continues.

**System programmer response**

Correct the section name or the keyword and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

**IKYC046I** Incorrect encoding of SCEP {request | PKCS10}

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request from a SCEP client. The request for a PKI operation contains incorrect ASN.1 encoding.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Correct the SCEP client to produce a correctly encoded request. Report the error to the support center for the provider of your SCEP client.

**IKYC048I** Unsupported algorithm in SCEP {request | PKCS10 | signing certificate}

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request from a SCEP client. The request, the PKCS #10 certificate request enclosed within it, or the signing certificate enclosed within it contains an algorithm identifier or a key size that is not supported by PKI Services at the FIPS level in which PKI Services is operating.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Correct the SCEP client to produce algorithms and key sizes that are supported at the FIPS level that is used by PKI Services. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

**IKYC049I** SCEP signing certificate is {expired | revoked | not known to PKI Services}

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request from a SCEP client. The request for a PKI operation or its enclosed PKCS #10 certificate request is incorrectly signed or was altered.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Correct the SCEP client to produce a correctly signed request. Report the error to the support center for the provider of your SCEP client.

**IKYC047I** Incorrect signature on SCEP {request | PKCS10}

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request from a SCEP client. The request for a PKI operation or its enclosed PKCS #10 certificate request is incorrectly signed or was altered.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Determine whether the SCEP client should request certificates from PKI Services. If so, correct the SCEP client to use a valid signing certificate previously issued by PKI Services. If none exists, reconfigure the SCEP client to remove any existing certificates and start the certificate request from the beginning using a new key-pair and a new self-signed certificate. Report the error to the support center for the provider of your...
SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYC050I</td>
<td>Requested SCEP certificate is {expired</td>
</tr>
</tbody>
</table>

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request from a SCEP client. The request for a PKI operation requests a certificate that was previously issued by PKI Services but is revoked or expired, as indicated by the message displayed. The requested certificate cannot be used by the SCEP client.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Determine whether the SCEP client should request certificates from PKI Services. If so, reconfigure the SCEP client to remove any existing certificate request entries and start the certificate request from the beginning using a new key-pair and a new self-signed certificate. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYC051I</td>
<td>Error 0xnnnn decrypting SCEP request</td>
</tr>
</tbody>
</table>

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client. PKI Services is attempting to recover the encrypted portion of the request using System SSL services but is unable to do so. The error code that is returned by System SSL is displayed in the message.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Look up the 0xnnnn error code in z/OS Cryptographic Services System SSL Programming. Most likely, the SCEP client incorrectly encrypted the request, for example by encrypting it for a different host server. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYC052I</td>
<td>Unsupported SCEP message type: nn</td>
</tr>
</tbody>
</table>

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client. The message type that is displayed in the message is either unrecognized or unsupported by PKI Services. PKI Services supports only message types PKCSReq (19) and GetCertInitial (20).

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Reconfigure the SCEP client to produce message types that are supported by PKI Services. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

<table>
<thead>
<tr>
<th>Message ID</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKYC053I</td>
<td>SCEP key or name mismatch. SCEP transaction ID: SCEP-transaction-ID</td>
</tr>
</tbody>
</table>

**Explanation**

PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client. While processing the displayed SCEP request transaction ID, PKI Services found one of the following inconsistencies:

- The signing certificate is self-signed but the public key within it does not match the key in the enclosed PKCS #10 request.
- The signing certificate’s subject name does not match the subject name in the PKCS #10 request or the subject portion of the IssuerAndSubject field in the SCEP request.
- The signing certificate is not self-signed and not issued by PKI Services.
- The issuer portion of the IssuerAndSubject field in the SCEP request does not identify PKI Services.

**System action**

PKI Services rejects the SCEP request.

**System programmer response**

Correct the SCEP client to remove the inconsistency. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter
IKYC054I Incorrect reuse of SCEP transaction ID by client name: client-name

**Explanation**
PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client that is named in the message. The request contains a SCEP transaction ID that was previously used in a different request. Transaction IDs must uniquely identify a transaction and cannot be reused.

**System action**
PKI Services rejects the SCEP request.

**System programmer response**
Determine whether the SCEP client should request certificates from PKI Services. If so, reconfigure the SCEP client to remove any existing certificate request entries and start the certificate request from the beginning using a new key-pair and a new self-signed certificate. Report the error to the support center for the provider of your SCEP client. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

IKYC055I Bad PREREGISTER section in certificate template, nickname: template-nickname

**Explanation**
PKI Services detects a problem in a template PREREGISTER section in one of the following circumstances:

1. When PKI Services is starting, it finds the PREREGISTER section for the Simple Certificate Enrollment Protocol (SCEP) or Enrollment over Secure Transport (EST) template is incorrectly terminated.

2. When PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request or an EST request for a PKI operation from a SCEP or EST client, the named certificate template that is used to preregister the SCEP client contains one of the following errors that are related to its PREREGISTER section:
   - The PREREGISTER section does not exist.
   - The PREREGISTER section is incorrectly terminated.

   **System action**
   For case “1” on page 558, PKI Services rejects the SCEP or EST request. For case “2” on page 558, the certificate cannot be automatically renewed. For case “3” on page 558, the constructed quick link in the Ready message does not work and the certificate requester needs to use the other link to pick up the certificate, which requires manual input of certificate type and transaction ID.

IKYC056I Template missing from certificate templates file, nickname: template-nickname

**Explanation**
PKI Services cannot find the template nickname in the templates file in one of the following circumstances:

1. PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) or PKI Services is processing an Enrollment over Secure Transport (EST) request for a PKI operation from an EST client, and the named certificate template that is used to preregister the SCEP or EST client no longer exists or the PREREGISTER section is incorrectly terminated.

2. During the automatic renewal process, the named certificate template that is used to generate the original certificate no longer exists.

3. PKI Services is trying to construct a quick link which contains the transaction ID and the certificate template name in the email message (Ready message) to notify a requester that the certificate is ready to be picked up. The certificate template that is identified by the nickname indicated in the message cannot be found. If the indicated nickname is <NONICK>, the <NICKNAME=>directive was missing at the time the request was submitted; otherwise, it had been there at the time of submission but was removed later.

**System action**
For case “1” on page 558, PKI Services rejects the SCEP or EST request. For case “2” on page 558, the certificate cannot be automatically renewed. For case “3” on page 558, the constructed quick link in the Ready message does not work and the certificate requester needs to use the other link to pick up the certificate, which requires manual input of certificate type and transaction ID.
System programmer response
For case “1” on page 558, edit the PKI Services certificate templates file (pkiserv.tmpl) and add the template. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333 or Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341. For case “2” on page 558, restore the nickname in the corresponding template and wait for the next automatic renewal processing. For case “3” on page 558, make sure that the template section has the <NICKNAME=> directive.

IKYC057I SCEP request for client name client-name rejected by {SemiauthenticatedClient | UnauthenticatedClient | SubsequentRequest | RenewalRequest} directive.

Explanation
PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client. The certificate template that is used to preregister the named SCEP client contains a directive in the PREREGISTER section indicating that the request should be rejected. The directive is displayed in the message.

System action
PKI Services rejects the SCEP request. The rejected certificate request is recorded in the request database.

System programmer response
Determine whether the SCEP client should request certificates from PKI Services. If so, reconfigure the SCEP client to remove any existing certificate request entries and start the certificate request from the beginning using a new key-pair and a new self-signed certificate. Create or re-create a PKI Services preregistration record as needed. Also, ensure that the SCEP client is using a subject name that is consistent with the preregistration record. Make corrections to the SCEP client or delete and re-create the preregistration record as needed. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333 or Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341.

IKYC058I No preregistration record found for {SCEP | EST} request, client name: client-name

Explanation
PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request or an Enrollment (polling operation to pick up a previously requested certificate). PKI Services is unable to locate the previous SCEP request.

System action
PKI Services rejects the SCEP request.

System programmer response
Determine whether the SCEP client should request certificates from PKI Services. If so, reconfigure the SCEP client to remove any existing certificate request entries and start the certificate request from the beginning using a new key-pair and a new self-signed certificate. Make corrections to the SCEP client or delete and re-create the preregistration record as needed. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

IKYC059I CONSTANT section of certificate template, nickname: template-nickname contains an incorrect value: field-name=value

Explanation
PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request or an Enrollment (polling operation to pick up a previously requested certificate). PKI Services is unable to locate the previous SCEP request.
**Explanation**
PKI Services is processing a Simple Certificate Enrollment Protocol (SCEP) request for a PKI operation from a SCEP client. The certificate template that is used to preregister the SCEP client is in error. A field found in the `<CONSTANT>` section of the template contains a missing or incorrect value. The nickname of the certificate template and the incorrect value are displayed in the message.

**System action**
PKI Services rejects the SCEP request.

**System programmer response**
Edit the certificate templates file and correct the error. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333.

**IKYC063I** cannot generate a certificate or a request with automatic renewal

**Explanation**
PKI Services is trying to process a GENCERT/REQCERT or GENRENEW/REQRENEW request. The `<AUTORENEW=Y or N>` tag is specified at the correct position in its template, but NotifyEmail has no input.

**System action**
PKI Services does not process the request.

**System programmer response**
Enforce the input of NotifyEmail.

**IKYC064I** Error nnnn Invoking sendmail to notify the administrator with email address email-address of requests awaiting approval

**Explanation**
PKI Services is trying to notify an administrator that one or more certificate requests are waiting for approval, and called the sendmail utility, which failed with the return code indicated in the error message. This error code can indicate an improperly defined email address, a sendmail configuration error, or a network interruption.

**System action**
It is unclear if the message has been sent.

**System programmer response**
Diagnose the problem by consulting z/OS Communications Server: IP Diagnosis Guide and related documents. Report non-Communications Server errors to the IBM support center.

**IKYC065I** The value value that is specified for tag tag in template template-nickname is ignored

**Explanation**
PKI Services is processing a tag and its value in the templates file, and either the tag is not in the expected position or it does not contain an expected value. The message indicates problem tag, its value, and the template nickname.
System action
PKI Services ignores the tag.

System programmer response
None.

IKYC066I cannot find the template for GENRENEW or REQRENEW with nickname: template-nickname

Explanation
PKI Services is processing a GENRENEW or REQRENEW request and cannot find the template with the indicated nickname.

System action
PKI Services renews a certificate with no automatic renewal set up.

System programmer response
None.

IKYC067I An attempt to check whether the templates file has been updated failed

Explanation
PKI Services attempted to determine whether the templates file has been updated since it was last read, but encountered an error.

System action
PKI Services opens and reads the templates file again to ensure that it uses the current values in the file.

System programmer response
None.

IKYC068I The templates file used may not be current

Explanation
If the web application was implemented using REXX CGI execs, PKI Services determined that it needed to read the templates file, but was unable to either open or read the file.

If the web application was implemented using JavaServer Pages (JSPs), the XML template file pkixtmpl.xml has been updated, but the file pkixgen.tmpl has not been regenerated.

System action
PKI Services uses the last updated version of the templates file.

System programmer response
None.

IKYC069I The renewed certificate with transaction ID transaction-id cannot be sent to email address email-address

Explanation
PKI Services attempted to create or retrieve the note with the renewed certificate. An internal error occurred.

System action
None

System programmer response
Record the information from the message and manually send the transaction ID to the email address to tell the user to pick up the renewed certificate.

IKYC070I The exit program {exit-program} was canceled for {pre / post} processing

Explanation
PKI Services is executing the specified exit program. The program did not return within the time limit that is specified by the ExitTimeout keyword in the configuration file for the PKI Services daemon (pkiserv.conf).

System action
PKI Services postpones the automatic renewal processing until the next day.

System programmer response
Check the exit program to see whether there are any problems. If you determine that it needs a longer time to run, adjust the ExitTimeout value in the pkiserv.conf file.

IKYC071I Bad ExitTimeout value in pkiserv.conf file: {value}
PKI Services is reading its configuration file to locate the value that is specified for ExitTimeout in the General section. The value that is specified is incorrect.

System action
PKI Services continues. If the value that is specified is greater than 1 hour, then PKI Services uses 1 hour for the ExitTimeout value when the automatic renewal exit is invoked, otherwise it uses the default value of 30 seconds.

System programmer response
Correct the ExitTimeout value and restart PKI Services. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC072I Unexpected return value from automatic renewal exit program {exit-program}: {unexpected-value}

Explanation
PKI Services invoked the automatic certificate renewal preprocessing exit program specified, which returned an unexpected return value.

System action
PKI Services treats the unexpected return value as if a return value of 4 was returned. The automatic renewal of the certificate is deferred until the next time automatic renewal is performed.

System programmer response
Update the exit program to ensure that it returns only the documented expected values.

IKYC073I A problem was encountered during automatic renewal {pre | post} exit processing in program {exit program}

Explanation
PKI Services has encountered an error during automatic renewal exit processing. For example, it cannot invoke the specified program or it cannot retrieve the status from the exit program.

System action
PKI Services postpones the automatic renewal processing until the next day.

IKYC074I Error nnnn accessing the required {ReadyMessageForm | RecoverForm} form-value

Explanation
PKI Services is attempting to process a request or a certificate that involves a key that is generated by PKI Services. The processing requires the setup of email notification to notify a client of the transaction ID or the key ID so that the client can pick up the certificate through a provided link. The message to be sent is derived by reading the message form from a file or data set specified in the General section of the PKI Services configuration file. Either the file name was not specified correctly, or the file read was unsuccessful. The configuration file keyword in error is displayed. The name of the failing file or data set and the error code encountered are also displayed, if known.

System action
The request is not processed.

System programmer response
Locate the failing ReadyMessageForm or RecoverForm value in the pkiserv.conf file. Make sure that the value specifies the correct file or data set name and that the file or data set exists. If no errors are found, contact your RACF administrator to ensure that the user ID assigned to the PKI Services daemon has permission to open the file or data set for read. After making a correction, restart PKI Services. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC075I Bad MaintRunTime value in pkiserv.conf file: {value}

Explanation
PKI Services is reading its configuration file, pkiserv.conf, to locate the value that is specified for MaintRunTime in the General section. The value that is specified is incorrect.
System action
PKI Services continues processing, using the default value of midnight, 00:00.

System programmer response
Correct the value of MaintRunTime and restart PKI Services. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC076I  Bad MaintRunDays value in pkiserv.conf file: \{value\}

Explaination
PKI Services is reading its configuration file, pkiserv.conf, to locate the value that is specified for MaintRunDays in the General section. The value that is specified is incorrect.

System action
PKI Services continues processing, using the default value of every day of the week, 0123456.

System programmer response
Correct the value of MaintRunDays and restart PKI Services. For more information about the MaintRunDays parameter, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC079I  Incorrect DBType value in pkiserv.conf file: \{value\}

Explaination
PKI Services is reading its configuration file, pkiserv.conf, to locate the value that is specified for DBType in the ObjectStore section. The value that is specified is incorrect. The value of DBType must be VSAM or DB2.

System action
PKI Services stops.

System programmer response
Correct the value of DBType and restart PKI Services. For more information about the DBType parameter, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC080I  Error nnnn in creating UNIX file \{file_name\} to post CRL

Explaination
PKI Services is trying to store a CRL in the z/OS UNIX file system file \{file_name\} for posting. An I/O error occurred during the processing.

System action
PKI Services continues, but the file is not created. The CRL is not posted.
Fix the I/O error and wait for the next CRL to be created.

IKYC081I  Error nnnn in reading UNIX file \{file_name\} to post CRL
Explanation
PKI Services is trying to read a CRL from the file that is named `file_name` in the z/OS UNIX file system. An I/O error occurred during the processing.

System action
PKI Services continues, but does not post the CRL.

System programmer response
Fix the I/O error and wait for the next posting interval. For information about the posting interval, see the description of the `PostInterval` configuration parameter in Table 25 on page 108.

IKYC082I Bad URI CRL posting path and DP name value in pkiserv.conf file.

Explanation
PKI Services is reading its configuration file to locate the values specified for `CRLDistDirPath` and `CRLDistName` to save CRLs in the z/OS UNIX file system. The combination of the values specified is not valid because it results in a path length greater than the maximum length of 240. The path length includes a trailing "/" character on `CRLDistDirPath` if it does not include one.

System action
PKI Services continues, but CRLs are not saved in the file system.

System programmer response
Correct the values of `CRLDistDirPath` and `CRLDistName` in the `pkiserv.conf` file, and ensure that the resulting path length (including a trailing "/" character on `CRLDistDirPath` if it does not include one) is not greater than 240. Then, restart PKI Services.

IKYC083I Bad Large CRL posting path and DP name value in pkiserv.conf file.

Explanation
PKI Services is reading its configuration file to locate the values specified for `LargeCRLPostPath` and `CRLDistName` to save CRLs in the z/OS UNIX file system for LDAP posting. The combination of values specified is not valid because it results in a path length greater than the maximum length of 240. The path length includes a trailing "/" character on `LargeCRLPostPath` if it does not include one.

System action
PKI Services deletes the large CRL posting object from the object store and continues.

System programmer response
None.

IKYC084I Large CRL posting object found while large CRL posting is not enabled.

Explanation
During LDAP posting, PKI Services has found a CRL posting object larger than 32 KB, and `EnableLargeCRLPosting` has not been set to T in the `pkiserv.conf` file to enable posting of large CRLs. (32 KB is an approximate value.)

System action
PKI Services deletes the large CRL posting object from the object store and continues.

System programmer response
None.

IKYC086I Requests for CA certificates are prohibited by path length constraint.

Explanation:
The CA certificate in use has a path length constraint value of zero, which prohibits the creation of subordinate or intermediate CA certificates when the `EnablePathLenConstraint` keyword is set to T in the `pkiserv.conf` file. Because the certificate request includes certificate authority key usage bits (`keyCertSign` or `cRLSign`, or both), it is considered to be a request for a CA certificate.

System action:
The certificate request fails.

System programmer response
If this configuration was intended, restrict the requester from requesting the `keyCertSign` key usage. For example, remove the `keyusage` list from the PKI Services web page. If this configuration was not intended, perform one of the following actions and restart PKI Services:
• Disable path length constraint by removing the EnablePathLenConstraint keyword or setting its value to F.
• Reconfigure PKI Services to use a CA certificate that does not constrain the path length, or that has the path length greater than zero.

IKYC087I  Bad CRLWTONotification value in pkiserv.conf file: value

Explanation:
PKI Services is reading its configuration file, pkiserv.conf, to locate the value that is specified for CRLWTONotification in the CertPolicy section, to determine when to issue a console message when the CRL is available. The expected value is either none or file. The value that is specified is not one of these values.

System action:
No console message is issued to indicate the availability of the CRL.

System programmer response:
Correct the value of CRLWTONotification and restart PKI Services. For more information about the CRLWTONotification keyword, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC088I  CRL notification cannot be enabled

Explanation
The CRLWTONotification variable is specified in the pkiserv.conf file. But neither of the following actions have been taken:
• Setting up CRL distribution points using the HTTP protocol
• Enabling large CRL processing
Therefore, CRL notification cannot be enabled.

System action:
No console message ID issued to indicate the availability of the CRL.

System programmer response:
Specify the HTTP protocol for CRLDistURI1 or specify T for EnableLargeCRLPosting and restart PKI Services. For more information about these keywords, see “(Optional) Steps for updating the configuration file” on page 74. For information about setting up CRL distribution points, see “Customizing distribution point CRLs” on page 290. For information about enabling large CRL processing, see “Enabling support for large CRLs” on page 297.

IKYC089I  Invalid RSA key size value key-size-value that is specified for secure key generation.

Explanation:
The key size value that is specified in the CertPlist for secure key generation is not valid. The RSA key size value for secure key generation must be at least 1024 bits and a multiple of 256.

System action:
The certificate request fails and this message is written to the PKI Services log. The request is removed from the object store.

User response:
Correct the RSA key size and resubmit the request.

IKYC090I  The number of required approvals value that is specified is not valid in certificate template, nickname: template-nickname.

Explanation:
PKI Services is processing a certificate request or a Simple Certificate Enrollment Protocol (SCEP) request. The value for the required number of administrators in the named certificate template that is specified with <ADMINNUM> in the ADMINAPPROVE section or PREREGISTER section in the pkiserv.tmpl file or in the pkixgen.tmpl file is not valid.

System action:
The system takes one of the following actions:
• If the value that is specified for the <ADMINNUM> tag is greater than the maximum allowed value, PKI Services uses the maximum allowed value and continues.
• If the value that is specified for the <ADMINNUM> tag is less than 1, PKI Services uses a value of 1 and continues.
• If the value that is specified for the <ADMINNUM> tag is not numeric, PKI Services uses a value of 1 and continues.

System programmer response:
Correct the number and submit new requests, if you want. However, the requests already created are not affected by the corrected value.

IKYC091I  Incorrect DBWaitTime value in the pkiserv.conf file: value

Explanation:
PKI Services is reading its configuration file, pkiserv.conf, to locate the value that is specified for DBWaitTime in the ObjectStore section. The value that is specified is incorrect.

System action:
The system uses the default waiting time, 0 minutes. It stops immediately without waiting for Db2 to resume.
System programmer response
Correct the value of the DBWaitTime and restart PKI Services if you want to configure PKI Services to wait for Db2 to resume. For more information about the DBWaitTime parameter, see “(Optional) Steps for updating the configuration file” on page 74.

Explanation
The key size for the given key algorithm does not meet the FIPS requirement for the level that is specified in the pkiserv.envars file. This error may be reported for either an existing public/private key used for a new or renewal certificate request, or for a request that requests PKI Services to generate the key pair.

System action
The certificate request fails and this message is written to the PKI Services log. The request is not stored in the object store.

User response
Update the request to use a FIPS-compliant key size, or change the FIPS level to allow the use of weaker keys.

System programmer response
If PKI Services fails to start, change the FIPS level to allow the use of weaker keys or change to a CA certificate that complies with the FIPS level that is specified in the pkiserv.envars file.

User response
Contact the PKI Services administrator for the FIPS-compliant algorithms and resubmit the request.

IKYC093I
Signature algorithm alg is not compliant with the current FIPS level.

Explanation
The PKCS10, SCEP, EST, or OCSP request contains a signature algorithm which is not FIPS-compliant with the level that is specified in the pkiserv.envars file.

System action
The PKCS10, SCEP, EST, or OCSP request fails and this message is written to the PKI Services log.

User response
Contact the PKI Services administrator for the FIPS-compliant algorithms and resubmit the request.

IKYC094I
Hash algorithm algorithm_name is not compliant with the current FIPS level.

System action
If PKI Services fails to start, change the FIPS level to allow the use of weaker keys or change to a CA certificate that complies with the FIPS level that is specified in the pkiserv.envars file.

User response
Contact the PKI Services administrator for the FIPS-compliant key type and resubmit the request.

IKYC095I
Non-compliant key type algorithm specified for the FIPS level requested.

Explanation
This message is issued for one of the following cases:

1. The PKI Services CA certificate has a key type that is not compliant with the FIPS level that is specified in the pkiserv.envars file (example: a Brainpool ECC key).
2. A PKCS10, SCEP, EST, or OCSP request received by PKI Services uses a key type that is not compliant with the FIPS level that is specified in the pkiserv.envars file.

System action
This message is written to the PKI Services log.

User response
Contact the PKI Services administrator for the FIPS-compliant key type and resubmit the request.

IKYC096I
Bad DBVersion in pkiserv.conf file: value

Explanation
The value that is specified for DBVersion in the ObjectStore section of the pkiserv.conf file is incorrect. The value of either 0 or 1 is accepted.
System action
PKI Services stops.

System programmer response
Correct the value of DBVersion and restart PKI Services. For more information about the DBVersion parameter, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC097I  DBVersion value disagrees with ObjectStore and ICL version

Explanation
PKI Services determines that the version does not match the specified DBVersion value in the ObjectStore section in the configuration file, pkiserv.conf.

System action
PKI Services stops.

System programmer response
Correct the value of DBVersion and restart PKI Services. For more information about the DBVersion parameter, see “(Optional) Steps for updating the configuration file” on page 74.

IKYC098I  Unmatched template nickname for EST processing stored in preregistration record: template_nickname, ESTTemplate:value

Explanation
When PKI Services is processing an Enrollment over Secure Transport (EST) request from a preregistered EST client, the named certificate template stored in the preregistration record is different from that specified by the ESTTemplate keyword in the pkiserv.conf file. The ESTTemplate value will be used to locate the template to gather the input fields used for certificate generation.

System action
PKI Services processes the EST request with input fields that correspond to the template specified by ESTTemplate.

System programmer response
Make sure the same template name specified by ESTTemplate is used for preregistration. If you need to change its value, you may wait until all the EST preregistration records have been processed. For more information, see Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341.

IKYC801I  nnnn bytes of unconsumed data transferring extensions to certificate template

Explanation
PKI Services is processing a certificate renewal request and has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.

System action
The certificate renewal request is not processed.

System programmer response
Report the error to the IBM support center.

IKYC802I  Error nnnn {getting certificate-section from old certificate | setting certificate-section in certificate template | removing unnecessary extension from certificate template}: error-code-description

Explanation
PKI Services is processing a certificate renewal request and has encountered an internal error. The error code encountered is displayed. A description of the error is also displayed, if known.

System action
The certificate renewal request is not processed.

System programmer response
Report the error to the IBM support center.

IKYC901I  Error nnnn initializing sub-function-name: error-code-description

Explanation
PKI Services is initializing one of its sub-functions and has encountered an error. The sub-function name and error code encountered are displayed. A description of the error is also displayed, if known.
System action
PKI Services stops.

System programmer response
This message can accompany a message more specific to the sub-function that failed. Check the log for other error messages that are issued before this one, and diagnose accordingly. Restart PKI Services after making corrections. If you are unable to diagnose the error, report the error to the IBM support center.

IKYC904I  ICL version version does not match Object Store version version

Explanation
During PKI Services initialization, the versions of the Object Store (OST) and the Issued Certificate List (ICL) are checked to see if they match. This message is issued when they do not match.

System action
PKI Services stops.

System programmer response
This message can accompany a more specific error message. Check the log for other error messages that are issued before this one and diagnose accordingly. Restart PKI Services after making corrections. If you are unable to diagnose the error, report the error to the IBM support center.

IKYC905I  Error error-code querying version of [ObjectStore | ICL]

Explanation
PKI Services is initializing and is attempting to query the version of the Object Store (OST) or the Issued Certificate List (ICL). The query fails. This error code is displayed.

System action
PKI Services stops.

System programmer response
This message can accompany a more specific error message. Check the log for other error messages that are issued before this one and diagnose accordingly. Restart PKI Services after making corrections. If you are unable to diagnose the error, report the error to the IBM support center.

IKYD001I  Unable to open VSAM data set data-set-name

Explanation
PKI Services is attempting to open the VSAM data set. The attempt fails. This error code is displayed.

System action
PKI Services stops.
**Explanation**
PKI Services is attempting to open one of the VSAM data sets specified in the `ObjectStore` section of the `pkiserv.conf` file or its default data set name. The open has failed. The data set name is displayed.

**System action**
PKI Services stops.

**System programmer response**
Locate the failing DSN value in the `pkiserv.conf` file. Make sure that the value specifies the correct VSAM data set name and that the data set has been created. If the data set name is not specified in the `pkiserv.conf` file, then PKI Services uses the default name for the data set. Make sure that this data set exists or add the appropriate DSN value to the `pkiserv.conf` file to specify the correct data set. If migrating from a previous release of PKI Services, make sure that the additional VSAM alternate index data sets have been created properly.

If no errors are found, contact your RACF administrator to ensure that the user ID assigned to the PKI Services daemon has permission to open the data set for update. Once corrected, restart PKI Services. For information about the values specified in the PKI Services configuration file (`pkiserv.conf`), including their defaults, see "(Optional) Steps for updating the configuration file" on page 74. See also "Steps for creating the VSAM object store and ICL data sets and indexes" on page 118.

**IKYD002I**  
**DB2® RRSAF failure: Command**  
**rrsaf_cmd** failed with return code **0xnnnn**, reason code **0xnnnn**

**Explanation**
A failure condition was detected when PKI Services issued Resource Recovery Services Attachment Facility (RRSAF) commands to the Db2 for z/OS database service. `rrsaf_cmd` is the RRSAF subcommand that detected the condition. This failure prevents PKI Services from using Db2 for z/OS as its storage mechanism.

**System action**
PKI Services stops.

**System programmer response**
Look up the return code and reason code that is given in this message in Db2 for z/OS Codes and perform any problem determination or problem resolution instructions.

---

**IKYD003I**  
**DB2 SQL failure: Instruction**  
**SQL_instruction** failed with **SQLCODE** **sqlcode**, **SQLSTATE** **sqlstate**

**Explanation**
A failure condition was detected when PKI Services issued Structured Query Language (SQL) instructions to the Db2 for z/OS database service. `SQL_instruction` is the SQL instruction that detected the condition.

**System action**
PKI Services stops.

**System programmer response**
Look up the SQLCODE and SQLSTATE values in this message in Db2 for z/OS Codes and perform any problem determination or problem resolution instructions.

**IKYI001I**  
**Request denied by installation exit. RC = nn**

**Explanation**
A user is requesting PKI Services. The PKISev web application called an installation-provided exit program. The exit program has determined that the request should be denied. The return code from the exit program is displayed in the message.

**System action**
The request in not performed.

**User response**
Contact your web administrator.

**Web administrator response**
Determine why the exit program denied the request and correct the program if necessary.

**IKYI002I**  
**SAF Service IRRSPX00 Returned**  
**SAF RC = nn**, **RACF RC = nn**, **RACF RSN = nn** {**diagnostic-information**}

**Explanation**
A user is requesting PKI Services. The PKISev web application called the IRRSPX00 SAF callable service as requested. The service was unsuccessful. The diagnostic information that follows the message describes the problem in greater detail.
The text items listed here comprise all of the possible values for diagnostic-information in this message and in message IKYU002I.

1 Incorrect field name specified in CertPlist: <field-name>.

2 <field-name> has an incorrect value.

3 Required field <field-name> missing from the request.

4 Request denied, not authorized.

5 Certificate generation provider is not available [for CA domain <CA-domain-name>].

6 Certificate generation provider indicated the following error: <provider-specific-error-msg>.

7 Incorrect CertId PassPhrase specified.

8 Request has been rejected by the administrator.

9 Request is still pending approval or yet to be issued.

10 Incorrect certificate specified.

11 The certificate could not be {renewed | revoked} because of a state change.

12 Incorrect {CertId | Serial Number} specified.

13 The status of the {request | certificate} has been changed by another process.

14 {CertIds | SerialNums} has an incorrect length.

15 CertAnchor area missing.

16 CertAnchor area too small.

17 CertPlist has an incorrect length.

18 CertPlist DiagInfo field missing or has an incorrect length.

19 Conflicting field names specified in CertPlist: field-name.
41 The requester’s email address for the certificate could not be modified because the key is not generated by PKI Services.

42 The certificate could not be renewed because the requester’s email address has been changed.

43 The certificate could not be deleted from the token data set (TKDS) although it was deleted from the issued certificate list (ICL).

System action
The request is not performed.

User response
Correct the problem if applicable. If you cannot correct the problem, contact your web administrator.

For problem 9, try to retrieve your certificate again later. The amount of time you need to wait depends on your PKI Services operating procedures and settings. If you continue to get this message, contact your PKI Services administrator.

Web administrator response
Problems 1, 2, and 3 probably indicate an error with the certificate template. Change the certificate template definition in the pkiserv.tmpl file to correct the error.

Problem 4 indicates the user ID assigned to the unit of work calling the IRRSPX00 callable service is not RACF-authorized to perform the request. Determine whether the user should have access. If so, use RACF commands to permit the user ID to the required resources.

Problem 5 indicates the PKI Services daemon process has not been started. If PKI Services is configured for multiple-CA mode, then the CA domain name is displayed as part of the diagnostic information. Start the correct instance of PKI Services; then, retry the request.

For problems 6-13, 22, and 24, or for more information about any of the preceding problems, see earlier chapters in this document and z/OS Security Server RACF Callable Services.

For problems 14-21, 23, and 25-35, report the error to the IBM support center.

For problem 36, PKI Services is configured for multiple-CA mode, but the CA domain name as found in the URL contains characters that cannot be used as a CA domain name. Correct the value in the URL; then, retry the request.

Problems 38, 39 and 40 probably indicate an error with the value that is specified in the ReadyMessageForm or the RecoverForm in the configuration file. Change the value in the pkiserv.conf file to correct the error.

For problem 43, you need to remove the orphaned TKDS objects yourself; for example, by using ICSF panels.

PKI Services administrator response
For problem 9, locate the pending certificate request using the PKI Services administration web pages, and approve or reject the request.

IKYI003I PKI Services CGI error in cgi-program-name: diagnostic-error-information

Explanation
A user is requesting PKI Services. The PKIServ web application CGI program processing the request detected a problem. The name of the CGI program and additional diagnostic information is displayed in the message.

System action
The request in not performed.

User response
Contact your web administrator.

Web administrator response
Locate the CGI program mentioned in the message. (Its default installation location is in a subdirectory under /usr/lpp/pkiserv/PKIServ.) Examine the CGI program’s source code to determine the spot where it is failing and why. In most cases, the problem is caused by an error in the PKI Services template file (usually in /etc/pkiserv/pkiserv.tmpl). Correct the problem and retry the request. For more information, see Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135 and Chapter 12, “Customizing the administration web pages if you use REXX CGI execs,” on page 233.

IKYI004I Installation exit failed. RC = nn

Explanation
A user is requesting PKI Services. The PKIServ web application called an installation-provided exit program. The exit program either terminated abnormally or returned an unsupported return code.
value. The return code from the invocation of the exit program is displayed in the message.

**System action**
The request in not performed.

**User response**
Contact your web administrator.

**Web administrator response**
Determine why the exit program has failed and correct the program as necessary.

### IKYI005I  Invalid return type specified for certificate retrieval

**Explanation**
A user is retrieving a certificate from the PKIServ web application. The result returned does not match the specified certificate type.

**System action**
The certificate is not returned through the web page.

**User response**
Specify the correct return type for certificate retrieval and try again. Make sure that the transaction ID specified corresponds to PKI/SAF Browser Certificate, PKI/SAF Server Certificate, or PKI Key Certificate.

### IKYI006I  PKI Services JSP error in jsp - filename: diagnostic-information

**Explanation**
A user made a request through the PKI Services web application. The PKIServ web application detected a problem. The name of the JSP file and additional diagnostic information is displayed in the message.

**System action**
The request is not processed.

**User response**
Contact your web administrator.

**Web administrator response**
Set up the WebSphere Application Server for client authentication. For instructions, see “Allowing WebSphere users to renew and revoke browser certificates” on page 247.

### IKYK001I  Unexpected PKCS#11 function-name return code 0xnnnn. The request is not processed.

**Explanation**
PKI Services is calling the PKCS #11 function function-name to perform an action on a token. function-name returns an unexpected hexadecimal return code, nnnn.

**System action**
The request is not processed

**System programmer response**
For more information, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

### IKYK002I  PKCS#11 token unavailable for function-name with return code 0xnnnn. The request is not processed.

**Explanation**
PKI Services is calling the PKCS #11 function function-name to perform an action on a token. function-name returns a hexadecimal return code, nnnn. The possible return codes and reasons are:

**X'00e0'**
ICSF is not active or is not configured for PKCS #11 services.
However, the system is not set up to generate secure PKCS #11 keys.

**System action:**
The request fails.

**System programmer response**
Perform one of the following actions:

- Configure ICSF for secure PKCS #11 services.
- Set the SecureKey value to false and have your security administrator grant the PKI daemon the authority to generate clear keys.

For information about setting up secure and clear key generation on the TKDS, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

**IKYL001I**  Error nnnn (importing | converting) LDAP username user’s-distinguished-name: error-code-description

**Explanation**
PKI Services is reading its configuration file to locate one of the values specified for AuthName in the LDAP section. The value that is specified has a syntax error. The incorrect value is displayed. A description of the error is also displayed, if known.

**System action**
PKI Services binds to the LDAP directory anonymously and continues processing. When PKI Services attempts to post certificates and CRLs to this directory, it can fail due to insufficient access. Look for message IKYC007I to determine this is happening. (RC = LDAP_INSUFFICIENT_ACCESS)

**System programmer response**
Locate the incorrect AuthName value in the pkiserv.conf file and correct it. The value must be specified as an LDAP distinguished name, for example, CN=root,O=IBM. Note: The OID qualifiers must be specified in uppercase and there cannot be any spaces surrounding the equal signs or commas separating the attribute value assertions (AVAs). Make corrections as needed, then stop and restart PKI Services. For more information, see “Steps for tailoring the LDAP section of the configuration file” on page 108.

**IKYL002I**  LDAP bind to LDAP-server-domain-name:port failed, status = nnnn: status-code-description

---

**X'00e1'**
The PKI Services daemon has insufficient authority to access the token.

**System action**
PKI Services does not process the request.

**System programmer response**
Ensure that ICSF is properly configured and operational. If the return code is X'00e1', look for the ICH408I message that is issued for insufficient authority to the CRYPTOZ class resource and give the PKI Services daemon the required access. For more information, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

**IKYK003I**  {Certificate | key | PKCS12 package} with KEYID keyid is not deleted from TKDS object {Certificate object | Public key object | Private key object | Data object}.

**Explanation**
During certificate deletion processing, PKI Services is calling a PKCS #11 function to delete a certificate and its related objects from the token data set (TKDS). The deletion is completed in the issued certificate list (ICL) but not in the TKDS.

**System action**
The certificate is deleted from the ICL but the certificate and its related objects are not deleted from the TKDS.

**System programmer response**

**IKYK004I**  PKI Services cannot generate certificates with secure keys.

**Explanation**
PKI Services has determined that secure key generation has been requested in one of these ways:

- The SecureKey field in the SAF section of the configuration file pkiserv.conf is set.
- The system in which PKI Services is running enforces secure key generation through the security product.
**Explanation**

PKI Services is attempting to bind to one of the LDAP servers specified in the LDAP section of the `pkiserv.conf` file. The bind has failed. The failing server name is displayed. A description of the error is also displayed, if known. Note: If the error code is an LDAP return code, no error description is displayed.

**System action**

PKI Services attempts to bind to your other LDAP servers, if any. If PKI Services is unable to bind to any LDAP servers, the LDAP posting of certificates and CRLs is temporarily suspended. PKI Services attempts to bind again during the next posting interval. All post requests remain in the request database to be attempted later, subject to being deleted after one week of unsuccessful attempts.

**System programmer response**

Locate the profile name in the PKI Services configuration file and correct it if needed. If you make corrections, stop and restart PKI Services. If the profile name is already correct, contact your RACF administrator. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

**RACF administrator response**

Display the PROXY segment of the profile using the RLIST TSO command. Check the LDAPHOST for accuracy, and correct it if needed. If non-anonymous access is required, do the same for the BINDDN and BINDPW.

**Note:** The BINDPW value is not displayed. Respecify it to ensure that it is accurate.

To alter the fields, use the RALTER TSO command. If the profile does not exist, create it using the RDEFINE TSO command. For more information, see z/OS Security Server RACF Command Language Reference.

---

**IKYL004I**  
**Bad LDAP Server value server-value in pkiserv.conf file**

**Explanation**

PKI Services LDAP bind processing is trying to retrieve its LDAP bind information in preparation for communicating with the LDAP server. (The Server1, Server2, and so forth keywords in the LDAP section of the PKI Services configuration file specifies the server host name information.) The host name has been specified incorrectly. Its value is displayed.

**System action**

PKI Services attempts to bind to your other LDAP servers, if any. If PKI Services is unable to bind to any LDAP servers, the LDAP posting of certificates and CRLs is temporarily suspended. PKI Services attempts to bind again during the next posting interval. All post requests remain in the request database to be attempted later, subject to being deleted after one week of unsuccessful attempts.

**System programmer response**

Locate the server name in the PKI Services configuration file, and correct it if needed. If you make corrections, stop and restart PKI Services. For more information, see “(Optional) Steps for updating the configuration file” on page 74.
IKYO0001I  Error nnnn (setting | getting) certificate-field (in certificate | from template): error-code-description

Explanation
PKI Services is processing a certificate request field and has encountered an internal error. The field name and the error code encountered are displayed. A description of the error is also displayed, if known.

System action
The request is not processed.

System programmer response
Report the error to the IBM support center.

IKYO0002I  nnnn bytes of unconsumed data transferring certificate-field to certificate

Explanation
PKI Services is processing a certificate request field and has found that the field is larger than it should be. This is an internal error. The field name and the number of extra bytes are displayed.

System action
The certificate request is not processed.

System programmer response
Report the error to the IBM support center.

IKYO0003I  The certificate request failed validity checks. Status is nnnn: status-code-description

Explanation
PKI Services is processing a certificate request field and has encountered an internal error. The field name and the status (error) code encountered are displayed. A description of the error is also displayed, if known.

System action
The certificate request is not processed.

System programmer response
Report the error to the IBM support center.

IKYO0004I  action-being-performed returned nnnn: error-code-description

Explanation
PKI Services is attempting to create the CertificatePolicies extension for a certificate with the specified UserNoticeTextn value in the CertPolicy section of the pkiserv.conf file. The specified value contains one or more control characters.

System action
The request is not processed.

System programmer response
If you want the request to be processed, correct the value of UserNoticeTextn and restart PKI Services. For more information about the UserNoticeTextn keyword, see “Using certificate policies” on page 284.
IKYO007I  Request transaction_ID is not compliant with the current FIPS level.

Explanation
The request with the indicated transaction ID was accepted when PKI Services was running at a lower FIPS level. Since then, the FIPS level has changed to a higher value, and the request does not comply with the requirements of the new FIPS level.

System action
PKI Services does not create a certificate for this request and this message is written to the PKI Services log. The request is not removed and remains in its current state.

System programmer response
Either change the FIPS level to the previous value and restart PKI Services or delete the request and notify the requester to resubmit the request.

IKYP001E  ICSF UNAVAILABLE. CERTIFICATE PROCESSING SUSPENDED

Explanation
PKI Services background certificate processing is attempting to create a digital signature. ICSF manages the private key that is required for digital signing but it is not available for any of the following possible reasons:
- ICSF is inactive or incorrectly configured.
- The user ID of the PKI Services daemon has insufficient authority to use the ICSF private key.
- A system administrator inadvertently deleted the ICSF signing certificate and its private key.

After the ICSF problem has been corrected, PKI Services must be stopped and restarted.

System action
PKI Services background certificate processing is suspended. No certificates or CRLs are issued until the problem is corrected and PKI Services is stopped and restarted. However, certificate request management functions are still available through the R_PKIServ callable service and the PKI Services web pages.

System programmer response
Ensure that ICSF and the PCI cryptographic coprocessor (if applicable) are properly configured and operational. Follow the documentation for any issued message with the CSF prefix.

IKYO007I  Request transaction_ID is not compliant with the current FIPS level.

Explanation
The request with the indicated transaction ID was accepted when PKI Services was running at a lower FIPS level. Since then, the FIPS level has changed to a higher value, and the request does not comply with the requirements of the new FIPS level.

System action
PKI Services does not create a certificate for this request and this message is written to the PKI Services log. The request is not removed and remains in its current state.

System programmer response
Either change the FIPS level to the previous value and restart PKI Services or delete the request and notify the requester to resubmit the request.

IKYP001E  ICSF UNAVAILABLE. CERTIFICATE PROCESSING SUSPENDED

Explanation
PKI Services background certificate processing is attempting to create a digital signature. ICSF manages the private key that is required for digital signing but it is not available for any of the following possible reasons:
- ICSF is inactive or incorrectly configured.
- The user ID of the PKI Services daemon has insufficient authority to use the ICSF private key.
- A system administrator inadvertently deleted the ICSF signing certificate and its private key.

After the ICSF problem has been corrected, PKI Services must be stopped and restarted.

System action
PKI Services background certificate processing is suspended. No certificates or CRLs are issued until the problem is corrected and PKI Services is stopped and restarted. However, certificate request management functions are still available through the R_PKIServ callable service and the PKI Services web pages.

System programmer response
Ensure that ICSF and the PCI cryptographic coprocessor (if applicable) are properly configured and operational. Follow the documentation for any issued message with the CSF prefix.

IKYP002I  PKI SERVICES INITIALIZATION COMPLETE

Explanation
PKI Services has been started and has finished initializing.

System action
PKI Services processing continues.

Routing code
2

Descriptor code
6

IKYP003I  PKI SERVICES SHUTDOWN REQUESTED

Explanation
One of the following occurs:
- An operator command was issued to stop PKI Services.
- PKI Services detects an unrecoverable failure condition.
System action
PKI Services stops.

Routing code
2

Descriptor code
6

IKYP004I  LOG OPTION PROCESSED: log-option

Explanation
A MODIFY operator command was issued to alter the current log setting for PKI Services.

System action
The log setting for PKI Services is changed as requested.

Routing code
2

Descriptor code
5

IKYP005I  INCORRECT LOG OPTION SPECIFIED

Explanation
A MODIFY operator command was issued to alter the current log setting for PKI Services. The log parameter syntax or value is incorrect.

System action
The MODIFY command is not processed. The log setting for PKI Services is unchanged.

Routing code
2

Descriptor code
5

IKYP007E  INSUFFICIENT STORAGE AVAILABLE

Explanation
PKI Services is attempting to allocate storage for processing a MODIFY operator command, but is unsuccessful because of a storage shortage.

System action
The console command is not processed. However, PKI Services can continue processing normally.

Operator response
Report the problem to your system programmer. After the problem is corrected, you can execute the command again.

Routing code
2

Descriptor code
5
DIRECTORY POST UNSUCCESSFUL. LDAP DATA LIBRARY MODULE RC = nnnn

Explanation
PKI Services background certificate processing is attempting to post information (such as a certificate or CRL) to a directory. The post was unsuccessful. The OCSF Data Library Module (LDAPDL) return code is displayed in the message.

System action
The information is not posted now. The post request remains in the PKI Services request database to be reattempted later. If posting continues to be unsuccessful for one week, the information is removed from the request database.

System programmer response
Determine the cause of the failure from the return code that is displayed and take appropriate action. These return codes are documented in z/OS Open Cryptographic Services Facility Application Programming. If the error is LDAPDL_NO_SUCH_OBJECT, the LDAP entry could not be created because the required suffix does not exist. Check the PKI Services log to determine the entry that could not be created, as indicated on messages IKYC005I and IKYC008I. If the entry should be posted to LDAP, you need to define the suffix in the LDAP server configuration file and recycle the LDAP server. For more information, see “Steps for installing and configuring LDAP” on page 31 and z/OS IBM Tivoli Directory Server Administration and Use for z/OS.

If you want PKI Services to bypass LDAP posting for certificates with missing suffixes, set RetryMissingSuffix=F in the PKI Services pkiserv.conf configuration file. Then, stop and restart the PKI Services daemon. For more information, see “Steps for tailoring the LDAP section of the configuration file” on page 108.

THE CONFIGURATION FILE NAME EXCEEDS THE MAXIMUM LENGTH OF nnnn CHARACTERS

Explanation
The PKI Services daemon process is starting. Initialization processing is reading the _PKISERV_CONFIG_PATH environment variable. The value that is specified is too long.

System action
PKI Services stops.

System programmer response
Determine the location of your PKI Services environment variables file, and correct the value that is specified for _PKISERV_CONFIG_PATH. Then, restart PKI Services.
Explaination
The PKI Services daemon process is starting. Initialization processing is attempting to make the PKI Services address space non-swappable. The attempt was unsuccessful. The SYSEVENT TRANSWAP error code is displayed.

System action
PKI Services stops.

System programmer response
Look up the error code for SYSEVENT TRANSWAP in z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO to determine what to do. Then, restart PKI Services.

Routing code
2

Descriptor code
6

IKYP012I SYSTEM FUNCTION function-name DETECTED ERROR - error-string

Explaination
PKI Services processing received an error when calling a system service. The service name and error message are displayed.

System action
PKI Services stops.

System programmer response
See documentation that is related to the service that failed. Make any necessary corrections. Then, restart PKI Services.

Routing code
2

Descriptor code
6

IKYP013I PKI SERVICES DETECTED AN ERROR DURING INITIALIZATION: ERROR nnnn, REASON OXnnnn

Explaination
PKI Services is starting. Initialization processing is attempting to set up the Program Call (PC) interface. The attempt was unsuccessful. The error and reason codes are displayed.

System action
PKI Services stops.

System programmer response
Determine the failing service by examining the error code. The values are as follows:

Note: This message is also issued after various C function calls. In these cases, ERROR is the value of errno, and REASON is the value of __errno2().

1
The PKI Services daemon (IKYPKID) is not APF-authorized.

3
Unable to establish recovery. The reason code displayed is the ESTAEX macro return code.

5
Unable to create a PC linkage table index. The reason code displayed is the LXRES macro return code.

6
Unable to create a PC entry table. The reason code displayed is the ETCRE macro return code.

7
Unable to connect the PC entry table to the linkage table. The reason code displayed is the ETCON macro return code.

8, 10, or 11

8
Unable to create a name token entry. The reason code displayed is the IEANTCR callable service return code.

For error code 1, make the IKYPKID load module in SYS1.LINKLIB APF-authorized. For all other error codes, see the documentation that is associated with the MVS service that failed. Make corrections as necessary. Then, restart PKI Services.

Routing code
2

Descriptor code
6

IKYP014I PKI Services detected an error during termination: Error nnnn, Reason nnnn
PKI Services is stopping. Termination processing is attempting to free resources allocated. The attempt was unsuccessful. The error and reason codes are displayed.

System action
PKI Services termination processing continues.

System programmer response
PKI Services should end normally. If so, no action is needed. However, if you want to diagnose the problem, determine the failing service by examining the error code:

16
Unable to establish recovery. The reason code displayed is the ESTAEX macro return code.

See associated documentation for the MVS service that failed. Make corrections as necessary.

System action
PKI Services processing continues.

System programmer response
If the error code is 8, no action is required. This is an informational message only. For all other error codes, contact your IBM support center.

System action
PKI Services stops.

System programmer response
Look for other PKI Services log messages that are related to this error. For more information, see Chapter 25, “Using information from the PKI Services logs,” on page 537.

Routing code
2

Descriptor code
6

IKYP017I PKI SERVICES IS ALREADY RUNNING

Explanation
An attempt was made to start more than one instance of the PKI Services daemon.

System action
The first instance of PKI Services continues processing. The second instance stops.

Routing code
2

Descriptor code
6

IKYP018I PKI Services initialization failed because the program is not APF-authorized

Explanation
PKI Services is starting. Initialization processing is attempting to initialize the PKI Services runtime environment within the daemon address space. The attempt was unsuccessful because the PKI Services daemon (IKYPKID) is not APF-authorized.

System action
PKI Services stops.

Routing code
2

Descriptor code
6

IKYP019I PKI Services dump created.
Explanation
PKI Services encountered a severe error during processing and has dumped the process (using the CEE3DMP callable service).

System action
PKI Services processing ends.

Operator response
Contact your system programmer.

System programmer response
Examine the dump to determine the error. Contact the IBM support center if needed. After the error has been corrected, restart PKI Services. For more information, see “Steps for starting the PKI Services daemon” on page 129 and “Stopping the PKI Services daemon” on page 131.

IKYP020I PKI SERVICES RESTART REGISTRATION COMPLETE ON system-name

Explanation
PKI Services is starting. Initialization processing has successfully registered PKI Services for automatic restart (ARM).

System action
PKI Services processing continues.

Routing code
2

Descriptor code
6

IKYP022I UNABLE TO REGISTER PKI SERVICES FOR RESTART: ERROR nnnn, REASON 0xnnnn

Explanation
PKI Services is starting. Initialization processing is attempting to register PKI Services for automatic restart (ARM), using the IXCARM macro service. The attempt was unsuccessful. The IXCARM return and reason codes are displayed. Note: The reason code is displayed in hexadecimal.

System action
PKI Services initialization continues without automatic restart capability.

System programmer response
Determine and correct the problem with IXCARM as indicated by the error codes displayed. Then, stop and restart PKI Services if you want automatic restart capability. For more information, see z/OS MVS Programming: Sysplex Services Reference.

Routing code
2

Descriptor code
6

IKYP023I PKI Services failed to format the display message

Explanation
A MODIFY operator command was issued to display the current settings for PKI Services. Formatting of the display information failed.

System action
The settings are not displayed. PKI Services processing continues.

System programmer response
Report the error to the IBM support center.

IKYP024I PKI SERVICES DUMPING FOR ABEND abend-code RC nnnn
PKI Services has incurred an abend. The abend and reason codes are displayed.

**System action**

PKI Services stops.

**System programmer response**

Use IPCS to examine the dump and diagnose the problem. Contact the IBM support center if necessary. Restart PKI Services after the error has been corrected.

**Routing code**

2

**Descriptor code**

6

<table>
<thead>
<tr>
<th>IKYP025I</th>
<th>PKI SERVICES SETTINGS:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Explanation</strong></td>
<td>A MODIFY operator command was issued to display the current settings for PKI Services.</td>
</tr>
</tbody>
</table>

The settings are displayed.

<table>
<thead>
<tr>
<th>IKYP025I PKI SERVICES SETTINGS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA DOMAIN NAME: {CA-domain-name-for-this-PKI-daemon}</td>
</tr>
<tr>
<td>SUBCOMPONENT MESSAGE LEVEL</td>
</tr>
<tr>
<td>LDAP [current-message-level]</td>
</tr>
<tr>
<td>SAF [current-message-level]</td>
</tr>
<tr>
<td>DB [current-message-level]</td>
</tr>
<tr>
<td>CORE [current-message-level]</td>
</tr>
<tr>
<td>PKID [current-message-level]</td>
</tr>
<tr>
<td>POLICY [current-message-level]</td>
</tr>
<tr>
<td>TPOLICY [current-message-level]</td>
</tr>
<tr>
<td>MESSAGE LOGGING SETTING: [STDOUT_LOGGING</td>
</tr>
<tr>
<td>CONFIGURATION FILE IN USE: {full-UNIX-pathname-of-configuration-file-being-used}</td>
</tr>
<tr>
<td>TEMPLATE FILE IN USE: {full-UNIX-pathname-of-template-file-being-used}</td>
</tr>
<tr>
<td>FIPS LEVEL: [fips-level]</td>
</tr>
<tr>
<td>STATUS: {OPERATIONAL</td>
</tr>
</tbody>
</table>

| IKYP026E | PKI SERVICES {CA | RA} CERTIFICATE EXPIRES ON yyyy/mm/dd |
|----------|---------------------------------------------------------|

**Explanation**

The certificate that contains the PKI Services CA or RA public key expires on the date shown.

**System action**

If the certificate has not yet expired, processing continues as normal. After the CA certificate expires, certificates issued by PKI Services can be unusable depending on their usage.

**System programmer response**

You should renew the certificate before it expires. If your security product is RACF, your certificate is contained in a RACF profile established when you first configured PKI Services. Follow RACF documentation on how to renew a certificate. This is done using either

- The CA CERTIFICATE FINGERPRINTS: line that shows the MD5 value is suppressed if the fips-level value is not NONE.

The possible current-message-level values for each subcomponent are:

- SEVERE MESSAGES ONLY
- ERROR MESSAGES AND HIGHER
- WARNING MESSAGES AND HIGHER
- INFORMATIONAL MESSAGES AND HIGHER
- DIAGNOSTIC MESSAGES AND HIGHER
- VERBOSE DIAGNOSTIC MESSAGES AND HIGHER

The possible fips-level values are:

- NONE
- FIPS 140-2
- SP800-131A WITH EXCEPTION
- SP800-131A WITHOUT EXCEPTION

**Restrictions:**

- The CA DOMAIN NAME: line is suppressed if the daemon is running in single CA mode.
- For long CA domain names, the CA-domain-name-for-this-PKI-daemon value is truncated to 50 characters.

For more information, see “Changing logging options” on page 541.
For more information, see “Renewing your PKI Services CA and RA certificates” on page 488 and z/OS Security Server RACF Security Administrator’s Guide.

**Routing code**
2

**Descriptor code**
6

**IKYP027E** ERROR ACCESSING PKI SERVICES CA CERTIFICATE

**Explanation**
The PKI Services CA certificate is stored in the security product's database. PKI Services background certificate processing is attempting to access the certificate using the _R_datalib_ SAF callable service. The attempt failed. Message IKYS015I should also appear in the PKI Services log.

**System action**
PKI Services background certificate processing is suspended. No certificates are issued until the problem is corrected. However, certificate request management functions are still available through the _R_PKIServ_ callable service and the PKI Services web pages.

**System programmer response**
You need to determine why the access failed. Look up the _R_datalib_ return code that is displayed on message IKYS015I in _z/OS Security Server RACF Callable Services_. If your security product is RACF, your certificate is contained in a RACF profile that is established when you first configured PKI Services. That certificate must be connected as the default certificate to the key ring identified by the KeyRing keyword in the PKI Services configuration file. (The default location for this file is _/etc/pkiserv/pkiserv.conf_.) Use the RACF RACDCERT LIST and LISTRING commands to determine whether the correct certificate is connected to the key ring. If you are attempting to rekey the PKI Services CA, you must follow the rollover process that is detailed in Chapter 22, “RACF administration for PKI Services,” on page 481. Make any required changes. Then, restart PKI Services. For more information, see _z/OS Security Server RACF Security Administrator’s Guide_.

**Routing code**
2

**Descriptor code**
6

**IKYP028E** PKI SERVICES DISTINGUISHED NAME OR KEY CHANGE ERROR

**Explanation**
PKI Services is starting. Initialization processing has retrieved the PKI Services signing certificate from the key ring assigned to PKI Services. The certificate is incompatible with certificate processing that has previously transpired. The subject's distinguished name or the public key or both differ from the previous values used. The subject's distinguished name cannot be changed without reconfiguring PKI Services. The public key can be changed, but only if the key rollover process is performed.

**System action**
PKI Services stops.

**System programmer response**
Determine whether PKI Services is processing the correct certificate. If your security product is RACF, your certificate is contained in a RACF profile that is established when you first configured PKI Services. That certificate must be connected as the default certificate to the key ring identified by the KeyRing keyword in the configuration file. (The default location for this file is _/etc/pkiserv/pkiserv.conf_.) Use the RACF RACDCERT LIST and LISTRING commands to determine whether the correct certificate is connected to the key ring. If you are attempting to rekey the PKI Services CA, you must follow the rollover process that is detailed in Chapter 22, “RACF administration for PKI Services,” on page 481. Make any required changes. Then, restart PKI Services. For more information, see _z/OS Security Server RACF Security Administrator’s Guide_.

**Routing code**
2

**Descriptor code**
6

**IKYP029I** PKI Services can only be started from a started procedure
Explanation
An attempt that is made at starting the PKI Services daemon was rejected because it was not made from a started procedure.

System action
The PKI Services daemon halts its initialization and stops after displaying this message to the standard output (STDOUT) of the process.

System programmer response
Use the started procedure that PKI Services supplies in SYS1.PROCLIB(PKISERVD). For more information, see “Steps for starting the PKI Services daemon” on page 129.

IKYP030I CRL APPROACHING MAXIMUM SIZE

Explanation
PKI Services is creating CRLs as part of CRL processing and has encountered at least one CRL that is approaching the maximum size for CRL posting objects in the object store. This can occur when large CRL posting has not been configured.

System action
PKI Services CRL processing continues. If the CRLs are all less than the record size limit of approximately 32 K bytes, CRL processing within PKI Services functions normally. However, CRL processing outside of PKI Services can be adversely affected due to the size of the CRL. If any CRL exceeds the record size limit, PKI Services CRL processing is unsuccessful, and the large CRLs are not published to the LDAP directory. When this happens you also receive message IKYC010I with the error code description, Record too long.

System programmer response
It is imperative that you correct the situation immediately. You can take either of these approaches:

- If you want to continue to use VSAM records or Db2 tables for LDAP posting, and if you are not yet using distribution point CRLs, start using them now. Edit the PKI Services configuration file and add the CRLDistSize directive to the CertPolicy section. If you are already using distribution point CRLs, decrease the value that is specified for the CRLDistSize directive. Make the appropriate changes and save the configuration file.

  Note: These changes do not result in an immediate reduction in the size of the CRL. You continue to see this message until the revoked certificates on the CRL expire and are removed from the CRL.

- Alternatively, you can enable large CRL posting. If you do this, PKI Services stores CRLs in a z/OS UNIX file system instead of in a VSAM data set or Db2 table, and the record size limit of approximately 32 K bytes does not apply. Edit the PKI Services configuration file and add the EnableLargeCRLPosting and LargeCRLPath directives to the CertPolicy section. In addition, you need to configure a z/OS UNIX file system to hold CRLs. For more information, see “Enabling support for large CRLs” on page 297.

Guideline: Enable large CRL posting.

When the configuration file is saved, stop and restart PKI Services. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYP031E [RSA | DSA | ECC] signing key algorithm error

Explanation
PKI Services is reading the CertPolicy section of its configuration file (pkiserv.conf) to find the signing algorithm. One of the following conditions occurred:

- The CA certificate key type does not match, or its key size is incompatible with the signature algorithm that you specified with the SigAlg1 value in the CertPolicy section of the pkiserv.conf configuration file.
- The OID corresponding to the specified algorithm in the OIDs section is incorrect or is not specified at all.

System action
PKI Services stops.

System programmer response
Make sure the SigAlg1 value in the CertPolicy section and its corresponding OID value in the OIDs section are correct and compatible with the CA certificate's key type.

If the CA certificate key type is RSA, specify the SigAlg1 algorithm value as one of the following:

- sha-1WithRSAEncryption (OID value 1.2.840.113549.1.1.5)
- sha-256WithRSAEncryption (OID value 1.2.840.113549.1.1.11)
- sha-384WithRSAEncryption (OID value 1.2.840.113549.1.1.12)
- sha-512WithRSAEncryption (OID value 1.2.840.113549.1.1.13)
• sha-224WithRSAEncryption (OID value 1.2.840.113549.1.1.14)
• md-5WithRSAEncryption (OID value 1.2.840.113549.1.1.4)
• md-2WithRSAEncryption (OID value 1.2.840.113549.1.1.2)
• rsassa-pss, sha-256Hash (OID value pair 1.2.840.113549.1.1.10, 2.16.840.1.101.3.4.2.1)
• rsassa-pss, sha-384Hash (OID value pair 1.2.840.113549.1.1.10, 2.16.840.1.101.3.4.2.2)
• rsassa-pss, sha-512Hash (OID value pair 1.2.840.113549.1.1.10, 2.16.840.1.101.3.4.2.3)

For any rsassa-pss algorithms, the CA key size must be at least 2048 bits.

If the CA certificate key type is DSA, specify the SigAlg1 algorithm value as follows:
• id-dsa-with-sha1 (OID value 1.2.840.10040.4.3)

If the CA certificate key type is ECC, specify the SigAlg1 algorithm value as follows:
• ecdsa-with-sha1 (OID value 1.2.840.10045.4.1)
• ecdsa-with-sha224 (OID value 1.2.840.10045.4.3.1)
• ecdsa-with-sha256 (OID value 1.2.840.10045.4.3.2)
• ecdsa-with-sha384 (OID value 1.2.840.10045.4.3.3)
• ecdsa-with-sha512 (OID value 1.2.840.10045.4.3.4)

Correct the configuration values, and restart PKI Services. For more information, see “Updating the signature algorithm” on page 287.

IKYP032I PKI SERVICES DOES NOT HAVE RA CAPABILITY. SCEP PROCESSING SUSPENDED

Explanation
The PKI Services daemon process is starting. Initialization processing determines that the SCEP interface should be enabled and it reads the contents of the key ring to locate the certificate and key to be used for the SCEP registration authority (RA) function. No RA-capable certificate and key was found.

System action
Initialization continues but PKI Services SCEP processing is suspended.

System programmer response
The RA function of PKI Services requires a certificate and a private key capable of creating general purpose digital signatures and enciphering session keys, with key usage, digitalSignature, and keyEncipherment (Handshaking). Either the PKI Services CA certificate must have this capability (which is atypical) or an additional, dedicated RA certificate for PKI Services must be established. In either case, the certificate must have the proper key usage and must have an RSA private key. If a dedicated RA certificate is used, specify its label using the RALabel directive in the SAF section of the PKI Services configuration file (pkiserv.conf). The RA certificate must be assigned to the user ID of the PKI Services daemon and must be connected to the PKI Services key ring with USAGE PERSONAL and DEFAULT NO. For more information, see Chapter 15, “Enabling Simple Certificate Enrollment Protocol (SCEP),” on page 333. If you make changes to the PKI Services key ring to correct the problem, stop and restart PKI Services.

Routing code
2

Descriptor code
6

IKYP033I Incorrect value that is specified for CA domain name

Explanation
The PKI Services daemon process is starting. Initialization processing has determined that the CA domain name value that is specified in the _PKISERV_CA_DOMAIN environment variable in the pkiserv.envars file contains illegal characters.

System action
PKI Services stops.

System programmer response
The first 8 characters of the CA domain name are limited to the following character set: alphanumeric characters (a-z, A-Z, 0-9) and the hyphen (-). In addition, the first character must not be a number or hyphen. Edit the PKI Services environment variables file pkiserv.envars for the CA instance in error and
IKYP034E  ICSF UNAVAILABLE. SCEP PROCESSING SUSPENDED

Explanation
PKI Services is attempting to decrypt a Simple Certificate Enrollment Protocol (SCEP) request received from a SCEP client or to sign its response. ICSF manages the private key that is required for SCEP decryption and signing but ICSF is unavailable for any of the following possible reasons:

- ICSF is inactive or incorrectly configured.
- The user ID of the PKI Services daemon has insufficient authority to use the ICSF private key.
- A system administrator inadvertently deleted the certificate and its ICSF private key.

System action
PKI Services rejects the SCEP request.

System programmer response
Ensure that ICSF and the PCI cryptographic coprocessor (if applicable) are properly configured and operational. Follow the documentation pertaining to any issued messages having the CSF prefix. If you make changes to ICSF to correct the problem, stop and restart PKI Services.

If ICH408I messages are issued for insufficient authority to CSFKEYS or CSFSERV class resources, then the user ID of the PKI Services daemon has insufficient authority to use the private key. Give the user ID the required access to the specified resource.

To determine whether your key still exists or requires the PCI cryptographic coprocessor, see Chapter 22, “RACF administration for PKI Services,” on page 481.

To determine whether your SCEP configuration requires a CA certificate or a CA/RA combination, see “Installing and configuring ICSF” on page 33.

Routing code
2

Descriptor code
6

IKYP035I  Unsupported character(s) in CA's name

Explanation
PKI Services attempted to create or retrieve the notes with the renewed certificates. An internal error occurred.
**System action**
PKI Services continues with the automatic renewal processing.

**System programmer response**
Check for more details in IKYC069I messages in the PKI Services log file and manually send the transaction IDs to the email addresses to tell the users to pick up the renewed certificates.

**Routing code**
2

**Descriptor code**
6

**IKYP038I**
THE DIRECTORY OR FILE SPECIFIED EXCEEDS THE MAXIMUM LENGTH OF nnn CHARACTERS

**Explanation**
The PKI Services daemon process is starting. Initialization processing has determined that the value that is specified by the _PKISERV_VARDIR variable or the _PKISERV_EXIT variable in the pkiserv.envars file exceeds the limit indicated in the message.

**System action**
PKI Services stops.

**System programmer response**
Correct the name specified by _PKISERV_VARDIR or _PKISERV_EXIT and restart PKI Services.

**Routing code**
2

**Descriptor code**
6

**IKYP039E**
DIRECTORY POST UNSUCCESSFUL. ERROR CODE = nnnn

**Explanation**
PKI Services background certificate processing is attempting to post information (such as a certificate or CRL) to a directory. The post was unsuccessful. The return code from the associated LDAP client API is displayed in the message.

**System action**
The information is not posted now. The post request remains in the PKI Services request database to be reattempted later. If posting continues to be unsuccessful for one week, the information is removed from the request database.

**System programmer response**
Determine the cause of the failure from the return code that is displayed and take appropriate action. The return codes are documented in z/OS IBM Tivoli Directory Server Client Programming for z/OS. If the error is LDAP_NO_SUCH_OBJECT, the LDAP entry could not be created because the required suffix does not exist. Check the PKI Services log to determine the entry that could not be created, as indicated by messages IKYC005I and IKYC008I. If the entry should be posted to LDAP, you need to define the suffix in the LDAP server configuration file and recycle the LDAP server.

For more information, see “Installing and configuring LDAP” on page 31 and z/OS IBM Tivoli Directory Server Administration and Use for z/OS. If you want PKI Services to bypass LDAP posting for certificates with missing suffixes, set RetryMissingSuffix=F in the PKI Services pkiserv.conf configuration file. Then, stop and restart the PKI Services daemon. For more information, see “Steps for tailoring the LDAP section of the configuration file” on page 108.

**Routing code**
2

**Descriptor code**
6

**IKYP040I**
PKI SERVICES DOES NOT HAVE KEY GENERATION CAPABILITY

**Explanation**
The PKI Services daemon process is starting. Initialization processing has found that the TokenName field of the SAF section of the configuration file pkiserv.conf is not specified. Or TokenName field is specified, but an error has occurred in locating or creating the token.

**System action**
Initialization continues but PKI Services does not have key generation capability.
System programmer response

If you want to enable the key generation capability, make sure that the token data set (TKDS) has been set up and the system has the required hardware, and specify the TokenName in the pkiserv.conf file. For information about setting up the TKDS, see z/OS Cryptographic Services ICSF Writing PKCS #11 Applications.

Routing code
2

Descriptor code
6

IKYP041E PKI SERVICES CA CERTIFICATE HAS nnnn SERIAL NUMBERS REMAINING.

Explanation
The PKI Services CA certificate can sign a finite number of certificates before it exceeds the maximum unique serial number usable by PKI Services (X'FFFFFFFE', or 4294967294). PKI Services has detected that the CA certificate soon runs out of unique serial numbers.

System action
PKI Services processing continues.

System programmer response
Add a new CA domain to continue certificate generation capability under a new CA certificate. For more information, see “Adding a new CA domain” on page 302.

Routing code
2

Descriptor code
6

IKYP042E PKI SERVICES HAS NO REMAINING SERIAL NUMBERS FOR CERTIFICATE GENERATION.

Explanation
The PKI Services CA certificate can sign a finite number of certificates before it exceeds the maximum unique serial number usable by PKI Services (X'FFFFFFFE', or 4294967294). PKI Services has detected that the CA certificate has exceeded this maximum serial number.

System action
PKI Services background certificate processing is suspended. No certificates are issued until the problem is corrected. However, certificate request management functions are still available through the R_PKIServ callable service and the PKI Services web pages.

System programmer response
Add a new CA domain to continue certificate generation capability under a new CA certificate. For more information, see “Adding a new CA domain” on page 302.

Routing code
2

Descriptor code
6

IKYP043I PKI Services CA certificate cannot be a Diffie-Hellman certificate.

Explanation
An elliptic curve cryptography (ECC) certificate with only the keyAgreement keyUsage bit set, or with the keyAgreement bit set with either encipherOnly or decipherOnly set, is an ECC Diffie-Hellman certificate. Its intended usage is for key exchange, not for signing. Therefore, a CA certificate cannot be of this type.

System action
PKI Services stops.

System programmer response
Make sure that the key ring specified in the SAF section of the PKI Services configuration file (pkiserv.conf) contains a CA certificate that is not an ECC Diffie-Hellman certificate.

IKYP044I CRL NUMBER crl-serial-number PROCESSING {FOR CA DOMAIN cadomain} COMPLETED SUCCESSFULLY

Explanation:
The certificate revocation list (CRL) processing completed successfully. This message is for notification purposes.

System action:
None.

**System programmer response:**
None.

**Routing code:**
2

**Descriptor code:**
6

---

**IKYP045I**  
CRL NUMBER crl-serial-number  
PROCESSING {FOR CA DOMAIN cadomain} FAILED

**Explanation:**
The certificate revocation list (CRL) processing failed. This message is for notification purposes.

**System action:**
None.

**System programmer response:**
Look at the PKI Services job log to investigate why the CRL process failed.

---

**Routing code:**
2

**Descriptor code:**
6

---

**IKYP046I**  
PERFORMANCE OF ADMINISTRATIVE FUNCTIONS MIGHT BE DEGRADED. SAF RC nn, RACF RC nn, RACF RSN nn

**Explanation:**
During PKI Services initialization, a call to the SAF IRRSIA00 (initACEE) callable service attempted to establish a thread-level or task-level ACEE. The call failed with the specified return and reason codes, displayed in decimal. The call to IRRSIA00 is attempted only when the AdminGranularControl option is set in the pkiserv.conf file. The performance of administrative query and modification functions can be degraded.

**System action:**
Initialization continues with granular administration enabled, but the administrative functions can require more time and system resources to complete than they require with granular administration disabled.

**Programmer response:**
For more information about the indicated return and reason codes for IRRSIA00 (initACEE), see z/OS Security Server RACF Callable Services. Diagnose and correct the problem. Restart PKI Services.

**Routing code:**
9

**Descriptor code:**
6

---

**IKYP047I**  
PKI SERVICES DETECTS DB2 IS UNAVAILABLE

**Explanation:**
The PKI Services daemon has detected that Db2 is not available and is waiting for Db2 to resume operation.

**System action:**
PKI Services cannot perform any of its functions until Db2 is available.

**System programmer response:**
None.

**Routing code:**
2

**Descriptor code:**
6

---

**IKYP048I**  
PKI SERVICES DETECTS DB2 IS AVAILABLE

**Explanation:**
The PKI Services daemon has detected that Db2 is available. The PKI Services daemon has resumed operation.

**System action:**
PKI Services resumes operation.

**System programmer response:**
None.

**Routing code:**
2

**Descriptor code:**
6

---

**IKYP049I**  
PKI SERVICES STOPPING DUE TO DB2 UNAVAILABILITY

**Explanation:**
The Db2 subsystem that is used by PKI Services became unavailable while PKI Services was operational, and the Db2 subsystem did not resume operation within the time specified by the DBWaitTime option in the pkiserv.conf configuration file.

**System action:**
PKI Services stops.
System programmer response
Restart PKI Services after Db2 becomes available. You may increase the time value that is specified for the DBWaitTime option in the pkiserv.conf configuration file if you want to keep PKI Services in the wait state for a longer period in the future.

Routing code: 2
Descriptor code: 6

IKYP050I PKI SERVICES COULD NOT START BECAUSE ICSF IS UNAVAILABLE

Explanation
During PKI Services initialization, attempts to use ICSF PKCS#11 services failed.

System action
PKI Services stops.

System programmer response
Ensure that ICSF is started with PKCS#11 services enabled before starting PKI Services.

Routing code
2
Descriptor code
6

IKYP052I INCORRECT _PKISERV_FIPS_LEVEL VALUE

Explanation
PKI Services is reading its environment variables file, pkiserv.envars, to locate the value that is specified for _PKISERV_FIPS_LEVEL. The value that is specified is incorrect.

The value of _PKISERV_FIPS_LEVEL must be one of the following:

0: non FIPS mode - this is the default
1: FIPS 140-2 (key strength 80 bits)
2: SP800-131A with exception (key strength 112 bits, legacy use of keys can still be 80 bits)
3: SP800-131A without exception (key strength 112 bits and higher, for all keys used for all operations)

System action
PKI Services stops.

System programmer response
Correct the value of _PKISERV_FIPS_LEVEL and restart PKI Services. For more information about the _PKISERV_FIPS_LEVEL parameter, see “(Optional) Steps for updating PKI Services environment variables” on page 72.

Routing code
2
Descriptor code
6

IKYP053I CA CERTIFICATE IS NOT FIPS COMPLIANT

Explanation
During PKI Services initialization, the CA certificate is found not complying with one or more of the following conditions.

- A _PKISERV_FIPS_LEVEL other than 0 was specified and the CA certificate key is stored in ICSF Public Key Data Set (PKDS).
• A _PKISERV_FIPS_LEVEL other than 0 was specified and the CA certificate contains an RSA key smaller than 2048 bits.
• A _PKISERV_FIPS_LEVEL other than 0 was specified and the CA certificate contains a Brainpool ECC key.
• A _PKISERV_FIPS_LEVEL of 1 was specified and the CA certificate contains a NIST ECC key smaller than 192 bits.
• A _PKISERV_FIPS_LEVEL of 2 or 3 was specified and the CA certificate contains a NIST ECC key smaller than 244 bits.
• A _PKISERV_FIPS_LEVEL of 1 was specified and the hash algorithm used on the CA certificate signature is not SHA1 or greater.
• A _PKISERV_FIPS_LEVEL of 2 or 3 was specified and the hash algorithm used on the CA certificate signature is not SHA224 or greater.

System action
PKI Services stops.

System programmer response
Choose a CA certificate that fulfills the requirement according to the FIPS level that is specified by the environment variable _PKISERV_FIPS_LEVEL in the pkiserv.envars file. For more information, see section “Requirements for FIPS” on page 12 in Chapter 2.

Routing code
2

Descriptor code
6

IKYP054I PKI SERVICES IS UNABLE TO SET FIPS MODE

Explanation
During PKI Services initialization, it is calling System SSL services to set the FIPS level that is specified in the pkiserv.envars file. The call failed.

System action
PKI Services stops.

System programmer response
Look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem indicated by the return code. Restart PKI Services once corrections are made.

Routing code
2

Descriptor code
6
IKYP056I  EST CA FILE IS NOT SET UP CORRECTLY

Explanation
During PKI Services initialization, the EnableEST value is set to T in pkiserv.conf, and one of the following problems occurs:

1. ESTCAFile is not set, or
2. the file specified by ESTCAFile can not be opened, or
3. the certificate specified by ESTCAFile does not match the CA certificate

System action
Initialization continues but PKI Services EST service may not be available.

System programmer response
Make sure the certificate specified by ESTCAFile is the CA certificate. For more information, see Chapter 16, “Using Enrollment over Secure Transport (EST),” on page 341.

Routing code
2

Descriptor code
6

IKYS002I  Error nnnn in OCSF-API-name

Explanation
PKI Services is calling an OCSF or OCEP API. The invocation has failed. The API name and error code encountered are displayed.

System action
If the error occurs during PKI Services initialization, PKI Services stops. Otherwise, PKI Services continues processing. However, needed cryptographic services are not available.

System programmer response
If you are using ICSF for your CA's private key operations and the failing service is either CSP_CreateSignatureContext or CSSM_SignData, check that ICSF is functioning and configured properly for PKA operations. For this problem, you also see console message IKYP001E. Follow the instructions for message IKYP001E. For all other errors, look up the error code in either z/OS Open Cryptographic Services Facility Application Programming or z/OS Integrated Security Services Open Cryptographic Enhanced Plug-ins Application Programming. Diagnose the problem indicated by the return code. Restart PKI Services after corrections are made, if needed.

Routing code
2

Descriptor code
6

IKYS003I  Error nnnn in getting {subject name | public key} from certificate: error-code-description

Explanation
PKI Services is retrieving its CA certificate from the SAF key ring. An error occurred while PKI Services was extracting the subject name or public key from the certificate. The error code encountered is displayed. A description of the error is also displayed, if known. This can indicate a problem with the certificate stored in the SAF key ring or it can be an internal error.

System action
PKI Services stops.

System programmer response
Look up the error code in either z/OS Open Cryptographic Services Facility Application Programming or z/OS Integrated Security Services Open Cryptographic Enhanced Plug-ins Application Programming. Diagnose the problem indicated by the return code. Restart PKI Services after corrections are made, if needed.
the IBM support center. For more information, see Chapter 22, “RACF administration for PKI Services,” on page 481 and z/OS Security Server RACF Security Administrator’s Guide.

IKYS004I Error 0xnnnn in opening key ring

**Explanation**
PKI Services is initializing and is calling System SSL services to open the SAF key ring containing the CA certificate. The open failed. The key ring name and System SSL services error code encountered is displayed.

**System action**
PKI Services stops.

**System programmer response**
Look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem indicated by the return code. Restart PKI Services once corrections are made.

IKYS005I Error 0xnnnn in closing key ring

**Explanation**
PKI Services is terminating and is invoking System SSL services to close the SAF key ring containing the CA certificate. The close failed. The System SSL services error code encountered is displayed.

**System action**
PKI Services continues termination.

**System programmer response**
Look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem indicated by the return code. Make corrections as indicated. Restart PKI Services if you want.

IKYS006I Cannot delete the signing context

**Explanation**
PKI Services is attempting to sign a certificate or CRL and is invoking the OCSF API CSSM_DeleteContext. The invocation failed.

**System action**
The certificate or CRL is not created.

IKYS008I Signing key is from unknown crypto service provider

**Explanation**
PKI Services is retrieving its private key from the SAF key ring. The private key type is not known to PKI Services. This can indicate a problem with the certificate and private key stored in the SAF key ring or it can be an internal error.

**System action**
PKI Services stops.

**System programmer response**
Ensure that the certificate and private key stored in the SAF key ring are correct. If no problems are found, report the error to the IBM support center. For more information, see Chapter 22, “RACF administration for PKI Services,” on page 481 and z/OS Security Server RACF Security Administrator’s Guide.

IKYS009I Profile for key ring key-ring-name not found

**Explanation**
PKI Services is reading its configuration file to locate the value that is specified for KeyRing in the SAF section. The key ring specified is incorrect. No such key ring exists.

IKYS007I No KeyRing value is specified under SAF section in pkiserv.conf file

**Explanation**
PKI Services is reading its configuration file to locate the value that is specified for KeyRing in the SAF section. The value is missing or has an incorrect syntax.

**System action**
PKI Services stops.

**System programmer response**
Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.
System action
PKI Services stops.

System programmer response
Correct the value and restart PKI Services if you want. For more information, see “(Optional) Steps for updating the configuration file” on page 74.

IKYS010I Profile for key ring or default certificate or private key not found

Explanation
PKI Services is attempting to retrieve data from the SAF key ring specified by the KeyRing value in the SAF section of the pkiserv.conf file. The key ring specified does not appear to be set up properly. Possible problems are:
- Key ring is empty.
- CA certificate in the key ring not connected as PERSONAL DEFAULT.
- CA certificate in key ring has no private key.
- User ID assigned to the PKI Services daemon has insufficient authority to read the key ring or private key.

System action
PKI Services stops.

System programmer response
Ensure that the SAF key ring and the certificate stored in it are correct. For more information, see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 and z/OS Security Server RACF Security Administrator’s Guide.

IKYS011I Error error-description in pthread_rwlock_rdlock/wrlock

Explanation
PKI Services is retrieving its CA certificate from the SAF key ring. An internal error occurred while PKI Services was invoking the pthread_rwlock_rdlock or pthread_rwlock_wrlock UNIX function. A description of the error is displayed.

System action
PKI Services stops.

System programmer response
Report the error to the IBM support center.

IKYS012I Cannot find the private key associated with the {default | RA} certificate

Explanation
PKI Services is attempting to retrieve data from the SAF key ring specified by the KeyRing value in the SAF section of the pkiserv.conf file. The key ring specified does not appear to be set up properly. The problem is related to either the CA (default) certificate or the RA certificate, as indicated in the message. Possible problems are:
- The certificate is not connected to the ring.
- The certificate is incorrectly connected to the key ring. Both must have USAGE PERSONAL and the CA certificate must be the DEFAULT.
- The certificate has no private key.
- The user ID assigned to the PKI Services daemon has insufficient authority to read the key ring or the private key.

System action
If the problem is with the default certificate, PKI Services stops. If the problem is with the RA certificate, PKI Services continues but the Simple Certificate Enrollment Protocol (SCEP) is disabled.

System programmer response
Ensure that the SAF key ring and the certificate stored in it are correct. For more information, see Chapter 4, “Running IKYSETUP to perform RACF administration,” on page 39 and z/OS Security Server RACF Security Administrator’s Guide.

IKYS013I Cannot find the private key associated with the {default | RA} certificate

Explanation
PKI Services is retrieving its CA certificate from the SAF key ring. An internal error occurred while PKI Services was calling the pthread_rwlock_rdlock or pthread_rwlock_wrlock UNIX function. A description of the error is displayed.

System action
PKI Services stops.

System programmer response
Report the error to the IBM support center.
Explanation
PKI Services is attempting to retrieve data from the SAF key ring specified by the KeyRing value in the SAF section of the pkiserv.conf file. The key ring specified does not appear to be set up properly. The problem is related to either the CA (default) certificate or the RA certificate, as indicated in the message. Possible problems are:

- The certificate is not connected to the ring.
- The certificate is incorrectly connected to the key ring. Both must have USAGE PERSONAL and the CA certificate must be the DEFAULT.
- The user ID assigned to the PKI Services daemon has insufficient authority to read the key ring or the private key.

System action
If the problem is with the default certificate, PKI Services stops. If the problem is with the RA certificate, PKI Services continues but the Simple Certificate Enrollment Protocol (SCEP) is disabled.

System programmer response
Ensure that the SAF key ring and the certificate stored in it are correct. For more information, see “Locating your PKI Services certificates and key ring” on page 484 and z/OS Security Server RACF Security Administrator’s Guide.

IKYS016I Error 0xnnnn getting the {default | RA | CA} key

Explanation
PKI Services is initializing and calling System SSL services to get one of its private keys from the key ring. The obtain failed. The problem is related to one of the following, as indicated in the message:

- default - the CA certificate private key
- RA - the RA certificate private key
- CA - a former CA certificate that was re-keyed and rolled over

System action
If either the default or RA key cannot be obtained, PKI Services stops.
If issued for a former CA certificate, PKI Services continues initialization. However, SCEP processing can be disabled if the RA certificate cannot be signature verified.

System programmer response
Look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem indicated by the return code. Restart PKI Services once corrections are made.

IKYS017I Error 0xnnnn exporting the {default | RA} key

Explanation
PKI Services is initializing and calling System SSL services to export one of its private keys from the key ring. The export failed. The problem is related to either the CA (default) certificate private key or the RA certificate private key, as indicated in the message.

System action
PKI Services stops.

System programmer response
Look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem.
indicated by the return code. Restart PKI Services once corrections are made.

IKYS018I  Error Oxnnnn signing Certificate/CRL

Explanation
PKI Services is attempting to sign a certificate or CRL. The signing failed.

System action
PKI Services continues processing. However, the needed cryptographic services cannot be available.

System programmer response
If you are using ICSF for your CA's private key operations, check that ICSF is functioning and configured properly for PKA operations. For all other errors, look up the error code in z/OS Cryptographic Services System SSL Programming. Diagnose the problem indicated by the return code. Restart PKI Services once corrections are made.

IKYS019I  The CA certificate does not have path length constraint capabilities

Explanation
The EnablePathLenConstraint keyword was specified in the pkiserv.conf configuration file, but the PKI Services CA certificate does not meet the requirements for establishing path length constraint. One or more of the following conditions is true for the CA certificate:

- The key usage extension is present, but the keyCertSign bit is not set.
- The basic constraints extension is absent.
- The basic constraints extension is not set correctly in at least one of the following ways:
  - It is not marked critical.
  - The value of cA is not true.
  - The value of pathLenConstraint is not in the range 0 - 16.

System action:
PKI Services stops.

System programmer response:
Either choose another CA certificate that has the appropriate basic constraints extension, or turn off the EnablePathLenConstraint keyword in pkiserv.conf. For more information about the EnablePathLenConstraint keyword, see “(Optional) Steps for updating the configuration file” on page 74.

IKYS020I  The specified PathLength value \{none | value1\} conflicts with the CA path length constraint value value2.

Explanation:
During PKI Services initialization, the value that is specified for PathLength in the CertPolicy section of the pkiserv.conf file is validated against the path length constraint value in the basic constraints extension of the PKI Services CA certificate. The PathLength value must be positive and smaller than the path length constraint value of the CA certificate. If the PathLength value in the message is none, the CA certificate has a path length constraint value but the PathLength keyword was not specified in the pkiserv.conf file.

System action:
PKI Services stops.

System programmer response:
Specify the value of the PathLength keyword in the pkiserv.conf file, or correct it to a value smaller than the CA value shown in the message (value2), and restart PKI Services. For more information about the PathLength keyword, see “(Optional) Steps for updating the configuration file” on page 74.

IKYS021I  The value that is specified for the PathLength keyword is not allowed.

Explanation:
The value that is specified for the PathLength keyword in the pkiserv.conf file is not valid. The PathLength keyword value must be in the range 0 - 16, and must be less than the pathLenConstraint value in the CA certificate Basic Constraint extension, if present.

System action:
PKI Services stops.

System programmer response:
Correct the value that is specified for the PathLength keyword in the pkiserv.conf file.

IKYS022I  This CA is restricted from creating intermediate CA certificates.

Explanation:
The CA certificate in use has a path length constraint value of zero, which prohibits the creation of subordinate or intermediate CA certificates when the EnablePathLenConstraint keyword is set to T in the pkiserv.conf file.

System action:
None. This message is issued at initialization time to inform you that the CA certificate is restricted from creating CA certificates.
System programmer response

No action is necessary if this configuration is intended. If this configuration is not intended, perform one of the following actions and restart PKI Services:

- Disable path length constraint by removing the EnablePathLenConstraint keyword in the pkiserv.conf file or by setting its value to F.
- Reconfigure PKI Services to use a CA certificate that does not constrain the path length, or that has the path length greater than zero.

IKYU001I Unable to open file file-pathname for {READ | WRITE}

Explaination

A user is running a PKI Services utility program. The program is unable to open the input file specified. The name of the file is displayed in the message.

System action

The program ends.

User response

Check that the specified file path name is correct and that the file exists. Also, check the file's permissions to ensure that the user is allowed to process the file. Make changes as necessary and retry the program.

IKYU002I SAF Service IRRSPX00 Returned
SAF RC = nn RACF RC = nn RACF RSN = nn {diagnostic-information}

Explaination

A user is running a PKI Services utility program. The program encountered an error while calling the R_PKIServ (IRRSPX00) callable service. The diagnostic information is displayed at the end of the message. For meanings of the diagnostic information, see message IKYI002I.

System action

The program ends.

RACF administrator response

Determine whether the user should be permitted to perform the task. Make RACF authorization changes if necessary. For authorization information, see “Authorizing users for the PKI Services administration group” on page 481.

Web administrator response

See the web administrator responses listed for message IKYIO02I.

IKYU003I Unknown field name found in SCEP data file, error-field-name

Explaination

A user is running the pkiprereg PKI Services utility program. The program is reading the SCEP data file and has encountered a field name that it does not recognize. The erroneous field name is displayed.

System action

The program continues. If the user specified the -l option, the client is not preregistered.

User response

Correct the data file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

IKYU004I Required field name {"ClientName" | "Template"} missing from input file at line nnn

Explaination

A user is running the pkiprereg PKI Services utility program. The program is reading the SCEP data file and encountered a preregistration entry that is missing a required field name. The missing field name is also displayed.

System action

The program continues. If the user specified the -l or -r option of the pkiprereg utility, the current record is not processed.

User response

Correct the input file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.
**IKYU005I**   Duplicate ClientName=error-value entry found in SCEP data file at line nnn

**Explanation**
A user is running the pkiprereg PKI Services utility program. The program is reading the SCEP data file and encountered a preregistration entry with a ClientName value that is already in use. The value was either used earlier in the file or is already registered in PKI Services. The ClientName value and the line number where the error was found are displayed.

**System action**
The program continues. If the user specified the -l option of pkiprereg utility, the client is not preregistered.

**User response**
Correct the input file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

---

**IKYU006I**   Preregistration record for ClientName=error-value not found in PKI Services

**Explanation**
A user is running the pkiprereg PKI Services utility program with the -r (remove) option. The program is reading the SCEP data file and encountered a preregistration entry with a ClientName value that does not exist in PKI Services. The erroneous field name is displayed.

**System action**
The program continues. The current record is not processed.

**User response**
Correct the input file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

---

**IKYU007I**   Incorrect field-name=error-value entry found in SCEP data file

**Explanation**
A user is running the pkiprereg PKI Services utility program. The program is reading the SCEP data file and encountered a field name that has an incorrect value. If the error is length-related, the field name and error value are displayed; otherwise, only the field name is displayed.

**System action**
The program continues. If the user specified the -l option of pkiprereg utility, the current entry is not processed.

**User response**
Correct the input file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

---

**IKYU008I**   Template nickname template not found in certificate templates file

**Explanation**
A user is running the pkiprereg PKI Services utility program. The program is reading the SCEP data file and encountered a value pair of template=nickname where the nickname is not found in the certificate templates file.

**System action**
The program continues. If the user specified the -l option of pkiprereg utility, the client is not preregistered.

**User response**
Correct the input file. Remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

---

**IKYU009I**   Out of memory

**Explanation**
A user is running a PKI Services utility program. The program is unable to allocate more memory.

**System action**
The program ends.

**System programmer response**
Increase the amount of REGION available to the user or adjust the Language Environment® runtime memory settings. (For instructions, see z/OS Language Environment Programming Guide.)
User response
Increase the amount of memory available to the program if possible. Otherwise, report the error to your system programmer.

IKYU010I Internal error occurred in function function-name: diagnostic-information

Explanation
A user is running a PKI Services utility program. The program has encountered an internal error. The function in error is displayed. Additional diagnostic information can also be displayed.

System action
The program ends.

User response
Report the error to the IBM support center.

IKYU011I System function function-name detected error -- error-string

Explanation
A user is running a PKI Services utility program. The program received an error calling a system service. The service name and error message are displayed.

System action
The program ends.

User response
See documentation related to the service that failed. Make any necessary corrections. Then, rerun the program.

IKYU012I Unable to open message catalog message-catalog-filename -- error-string

Explanation
A user is running a PKI Services utility program. The program is attempting to open an external message catalog using the default location for the message catalog as set by the NLSPATH environment variable.

System action
The program continues using default messages.

System programmer response
If the user requires an external message catalog, correct the indicated error. There are several reasons that could cause this error, such as file or directory permissions not allowing read access.

For information about updating the NLSPATH environment variable, see z/OS UNIX System Services Programming Tools. If default messages are acceptable, no action is necessary.

IKYU013I Incorrect command syntax. The error-value parameter is {unknown | missing | incorrectly specified} Usage: command-usage

Explanation
A user is running a PKI Services utility program. A command parameter was entered incorrectly. The correct command usage is displayed.

System action
The program ends.

User response
Execute the command with the correct syntax. For more information, see Chapter 20, “Using PKI Services utilities,” on page 431.

IKYU014I pkiprereg complete. nnn preregistration records processed. mnm successful. 000 errors found

Explanation
A user is running the pkiprereg PKI Services utility program. The program completed and is reporting the results. The value of nnn is the total number of preregistration records (entry groups) found in the SCEP data file. The value of mnm is the number of preregistration records that were successfully processed. The value of 000 is the number of errors found. Because multiple errors can occur for each preregistration record, mnm plus 000 can exceed nnn.

System action
The program ends.
User response
If no errors were found, no action is required. If errors were found, correct the errors in the SCEP data file. (You can remove the entries that were successful.) Rerun the program with the corrected SCEP data file. For more information, see Chapter 20, “Using PKI Services utilities,” on page 431.

IKYU015I  Template with nickname template cannot be used for preregistration

Explanation
A user is running the pkiprereg PKI Services utility program. The program is reading the certificates template file and found the certificate template with the specified nickname.

• If you are using CGI web pages and pkiserv.tmpl, the template either has no <PREREGISTER> section or the <PREREGISTER> section is not properly terminated.

• If you are using JSP web pages and PKIServTemplate.xml, the certreq_template tag for this nickname did not include a valid preregrules element.

System action
The program continues. If the -l option was specified, the client is not preregistered.

System programmer response
Correct the certificate template. Edit the SCEP data file to remove any entry that should not be reprocessed and rerun the program if you want. For more information, see “Using the pkiprereg utility” on page 437.

IKYU016I  pkiprereg complete. nnn passwords generated

Explanation
A user is running the pkiprereg PKI Services utility program in generate mode (password generate mode). The program completes and reports the results. nnn is the total number of passwords that are generated.

System action
The program ends.

User response
No action is required.

IKYU017I  program-name terminated abnormally

Explanation
A user is running a PKI Services utility program. The program cannot complete due to a user or system error. The name of the utility program is displayed in the message.

System action
The program ends.

User response
Check for previously issued messages and their associated actions. Make changes as necessary and retry the program.

IKYU018I  Conversion from VSAM to DB2 failed at record record-key in VSAM file vsam-file-name

Explanation
A user is running the PKI Services utility program vsam2db2 to convert the existing object store and ICL VSAM files to Db2 tables. An error occurred when processing the record from the VSAM file indicated in the message. This message should be preceded by one indicating whether the source of the problem is VSAM or Db2.

System action
The vsam2db2 utility program ends.

User response
Fix the error, drop the Db2 tables, and rerun the vsam2db2 utility. For more information, see “Using the vsam2db2 utility” on page 448.

If you cannot fix the error based on the information in the message, report it to the IBM support center.

IKYU019I  Conversion to target storage failed at record record-number in [ ObjectStore | ICL ]

Explanation
The PKI Services utility program vsamconv or db2conv encountered a failure while converting the record indicated in the message. This message is preceded by another message that indicates the source of the problem.

System action
The utility program ends. The target VSAM data sets or Db2 tables may contain records up to the point where the failure occurred.
User response

Check for the preceding failure message and perform the associated actions, then clear the target data sets or Db2 tables and rerun the utility program. For more information, see “Using the vsamconv utility” on page 450 or “Using the db2conv utility” on page 432. If you cannot repair the failure based on the information in the message, report the error to the IBM support center.
Chapter 27. File directory structure

This topic contains information about the location of files in:

- z/OS product libraries
- File system directory /usr/lpp/pkiserv/ and its subdirectories.

Product libraries

SMP/E installs PKI Services into the following product libraries:

- SAMPLIB/ASAMPLIB
  - IKYALLOC
  - IKYCDB2
  - IKYCDBV1
  - IKYCVSAM
  - IKYCVSV1
  - IKYDDDEF
  - IKYISMKD
  - IKYMKDIR
  - IKYRVSAM
  - IKYRVSV1
  - IKYSBIND
  - IKYSETUP
  - IKYSGRNT
  - IKYVBKUP
  - IKYVREST
- PROCLIB/APROCLIB
  - IKYSPROC with alias PKISERVD
- SIEALNKE/AIEALNKE
  - IKYPKID - The PKI Services daemon
  - IKYPRTM - The Resource Termination Manager for the daemon
- CBRDBRM/ACBRDBRM
  - IKYPDBRM
  - IKYPDBR1

File system directory and subdirectories

Unless you change the default, SMP/E installs PKI Services into the file system directory /usr/lpp/pkiserv. Table 106 on page 604 describes the directory structure and contents:
### Table 106. Files contained in subdirectories

<table>
<thead>
<tr>
<th>Subdirectory</th>
<th>Contains...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveX</td>
<td>The unsigned PKI Services ActiveX program installation files and the source files for use when creating signed ActiveX program installation files. For more information, see Appendix C, “Using the PKI Services web application with Internet Explorer on Windows systems,” on page 693. ActiveX contains the following subdirectories:</td>
</tr>
<tr>
<td></td>
<td>• signsrc contains the unsigned ActiveX control files for Microsoft Internet Explorer (files named PKICEncroll.*). It also contains the file PKIActiveX.lic, which is used for all versions of Windows. Use these files to build signed ActiveX program installation files.</td>
</tr>
<tr>
<td></td>
<td>• PKICEncroll contains the unsigned ActiveX control installation files for Microsoft Internet Explorer.</td>
</tr>
<tr>
<td>bin</td>
<td>Utilities:</td>
</tr>
<tr>
<td></td>
<td>• createcrls - Program to create certificate revocation lists (CRLs). (For more information, see “Using the createcrls utility” on page 431.)</td>
</tr>
<tr>
<td></td>
<td>• iclview - Utility for viewing issued certificate list (certificate database). (For more information, see “Using the iclview utility” on page 433.)</td>
</tr>
<tr>
<td></td>
<td>• pkiprereg - Utility for creating preregistration records in batch for Simple Certificate Enrollment Protocol (SCEP) and Enrollment over Secure Transport (EST) clients, see “Using the pkiprereg utility” on page 437.)</td>
</tr>
<tr>
<td></td>
<td>• pkitp_install - Program to register the PKI Services Trust Policy plug-in with OCSF. (For more information, see “Configuring and getting started with PKITP” on page 511.)</td>
</tr>
<tr>
<td></td>
<td>• pkitp_ivp - Program to verify that the PKI Services Trust Policy plug-in installed successfully. (For more information, see “Configuring and getting started with PKITP” on page 511.)</td>
</tr>
<tr>
<td></td>
<td>• postcerts - Program to post issued certificates to an LDAP directory. (For more information, see “Using the postcerts utility” on page 441.)</td>
</tr>
<tr>
<td></td>
<td>• TemplateTool - Utility that works with certificate template files to perform functions you need if you implement the web application using JavaServer pages (JSPs). (For more information, see “Using the TemplateTool utility” on page 442.)</td>
</tr>
<tr>
<td></td>
<td>• vosview - Utility for viewing the object store (request database). (For more information, see “Using the vosview utility” on page 444.)</td>
</tr>
<tr>
<td></td>
<td>• vsam2db2 - Program to copy data from the issued certificate list (ICL) and object store VSAM data sets into Db2 tables. (For more information, see “Using the vsam2db2 utility” on page 448.)</td>
</tr>
<tr>
<td>include</td>
<td>C header files:</td>
</tr>
<tr>
<td></td>
<td>• pkitp.h - C language header file for writing application programs that use the PKI Trust Policy Plug-in. (For more information, see “Files for PKITP” on page 511.)</td>
</tr>
<tr>
<td>Subdirectory</td>
<td>Contains...</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>lib</strong></td>
<td>Libraries and message catalogs:</td>
</tr>
<tr>
<td></td>
<td>• pkitp.so - OCSF Trust Policy plug-in for PKI Services. (For more information, see “Files for PKITP” on page 511.)</td>
</tr>
<tr>
<td></td>
<td>• *.dll - Dynamic link libraries (DLLs) that the PKI Services daemon uses.</td>
</tr>
<tr>
<td></td>
<td>• nls/msg/En_US.IBM-1047/*.cat - The PKI Services message catalogs. (These message catalogs are also symbolically linked in the /usr/lpp/pkiserv/lib/nls/msg/C directory and in the /usr/lib/nls/msg/En_US.IBM-1047 and /usr/lib/nls/msg/C directories.)</td>
</tr>
<tr>
<td></td>
<td>• *.jar - Java archives.</td>
</tr>
<tr>
<td></td>
<td>• librpkisJNI.so - JNI shared object.</td>
</tr>
<tr>
<td><strong>lib64</strong></td>
<td>64 bit library:</td>
</tr>
<tr>
<td></td>
<td>• librpkisJNI64.so - 64-bit JNI shared object.</td>
</tr>
<tr>
<td><strong>pkijsp</strong></td>
<td>The JavaServer page (JSP) enterprise archive (EAR) file. (For information about the EAR file, see “(Optional) Modifying the JSP files and the EAR file” on page 258).</td>
</tr>
<tr>
<td><strong>PKIServ</strong></td>
<td>CGIs that make up the PKIServ web application. (For information about CGIs, see “Relationship between CGIs and the pkiserv.tmpl file” on page 217 and Table 43 on page 233.)</td>
</tr>
<tr>
<td></td>
<td>PKIServ contains the following subdirectories:</td>
</tr>
<tr>
<td></td>
<td>• public-cgi - Public (non-SSL) directory</td>
</tr>
<tr>
<td></td>
<td>• ssi-cgi-bin - SSL-protected</td>
</tr>
<tr>
<td></td>
<td>• auth - SSL with user ID and password protection. Work runs under client's ID.</td>
</tr>
<tr>
<td></td>
<td>• surrogateauth - SSL with user ID and password protection. Work runs under surrogate ID (PKISERV).</td>
</tr>
<tr>
<td></td>
<td>• clientauth-cgi-bin - SSL with client certificate protection. Work runs under surrogate ID (PKISERV).</td>
</tr>
<tr>
<td></td>
<td>• auth - SSL with client certificate protection. Work runs under administrator's ID.</td>
</tr>
<tr>
<td>Subdirectory</td>
<td>Contains...</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>samples</td>
<td>Various sample files, including:</td>
</tr>
<tr>
<td></td>
<td>- expiringmsg.form - The email message sent to a user as notification about a certificate that expires</td>
</tr>
<tr>
<td></td>
<td>- IBM HTTP Server - Powered by Apache configuration files:</td>
</tr>
<tr>
<td></td>
<td>httpd.conf - HTTP Server configuration file</td>
</tr>
<tr>
<td></td>
<td>vhost80 - Virtual host configuration file for non-SSL requests.</td>
</tr>
<tr>
<td></td>
<td>vhost443 - Virtual host configuration file for SSL requests with server authentication.</td>
</tr>
<tr>
<td></td>
<td>vhost1443 - Virtual host configuration file for SSL requests with client authentication.</td>
</tr>
<tr>
<td></td>
<td>- Makefile.pkiexit - The makefile for the PKI Services exit. (For more information, see Chapter 17, “Customizing with installation exit routines,” on page 349.)</td>
</tr>
<tr>
<td></td>
<td>- Makefile.pkitpsamp - The makefile for pkitpsamp.c, which is a sample application to call the PKI Trust Policy plug-in. (For more information, see “Files for PKITP” on page 511.)</td>
</tr>
<tr>
<td></td>
<td>- pendingmsg.form - The email message sent to an administrator listing pending requests.</td>
</tr>
<tr>
<td></td>
<td>- pendingmsg2.form - The email message sent to an administrator listing pending requests that are modified.</td>
</tr>
<tr>
<td></td>
<td>- pkixexit.c - The sample PKI Services exit, which PKI Services provides. (For more information, see Chapter 17, “Customizing with installation exit routines,” on page 349.)</td>
</tr>
<tr>
<td></td>
<td>- pkiserv.envvars - The PKI Services environment variables file. (For more information, see “Optionally updating PKI Services environment variables” on page 70 and “The pkiserv.envvars environment variables” on page 617.)</td>
</tr>
<tr>
<td></td>
<td>- pkiservtmpl - The PKI Services certificate templates file used with the REXX CGI execs. (For more information, see Chapter 11, “Customizing the end-user web application if you use REXX CGI execs,” on page 135.)</td>
</tr>
<tr>
<td></td>
<td>- pkiserv.conf - The PKI Services configuration file. (For more information, see “(Optional) Steps for updating the configuration file” on page 74 and Chapter 28, “The pkiserv.conf configuration file,” on page 607.)</td>
</tr>
<tr>
<td></td>
<td>- PKIServ.xsd - The XML schema for the PKI Services XML template, pkitmpl.xml. (For more information, see Chapter 13, “Implementing the web application using JavaServer pages,” on page 237.)</td>
</tr>
<tr>
<td></td>
<td>- pkitmpl.xml - The PKI Services XML template file used with JavaServer pages (JSPs). (For more information, see Chapter 13, “Implementing the web application using JavaServer pages,” on page 237.)</td>
</tr>
<tr>
<td></td>
<td>- pkitpsamp.c - Sample application to call the PKI Trust Policy plug-in. (For more information, see “Files for PKITP” on page 511 and “Building the sample application to invoke the certificate validation service” on page 515.)</td>
</tr>
<tr>
<td></td>
<td>- readymsg.form - The email message sent to a user as notification a certificate is ready for retrieval</td>
</tr>
<tr>
<td></td>
<td>- recoverymsg.form - The email message sent to a user who has requested that PKI Services recover a certificate for which PKI Services generated the keys</td>
</tr>
<tr>
<td></td>
<td>- rejectmsg.form - The email message sent to a user as notification a request for a certificate has been rejected</td>
</tr>
<tr>
<td></td>
<td>- renewcertmsg.form - The email message sent to a user as notification that PKI Services has automatically renewed an expiring certificate</td>
</tr>
</tbody>
</table>
This topic includes a code sample of the pkiserv.conf configuration file.

The pkiserv.conf file is the configuration file for the PKI Services daemon. By default, you can find this file in the /usr/lpp/pkiserv/samples/ directory. For more information about the sections of the pkiserv.conf configuration file and the parameters, see "(Optional) Steps for updating the configuration file" on page 74 and Table 21 on page 74.

The following listing might not be identical to the code sample shipped with the product. For the most current sample, see the pkiserv.conf file in the source directory /usr/lpp/pkiserv/samples/.

```
# Licensed Materials - Property of IBM
# 5650-ZOS
# Copyright IBM Corp. 2001, 2019
# Status = HKY77C0

[OIDs]
#
# Supported Distinguished Name OIDs
#
C=2.5.4.6
O=2.5.4.10
OU=2.5.4.11
CN=2.5.4.3
L=2.5.4.7
ST=2.5.4.8
TITLE=2.5.4.12
POSTALCODE=2.5.4.17
STREET=2.5.4.9
MAIL=0.9.2342.19200300.100.1.3
EMAIL=1.2.840.113549.1.9.1
SERIALNUMBER=2.5.4.5
UNSTRUCTUREDNAME=1.2.840.113549.1.9.2
UNSTRUCTUREDADDRESS=1.2.840.113549.1.9.8
DNQUALIFIER=2.5.4.6
DC=0.9.2342.19200300.100.1.25
UID=0.9.2342.19200300.100.1.1
BUSINESSCATEGORY=2.5.4.15
JURISDICTIONCOUNTRY=1.3.6.1.4.1.311.60.2.1.3
JURISDICTIONSTATEPROV=1.3.6.1.4.1.311.60.2.1.2
JURISDICTIONLOCALITY=1.3.6.1.4.1.311.60.2.1.1
#
# Signature Algorithm OIDs
#
sha-1WithRSAEncryption=1.2.840.113549.1.1.5
sha-384WithRSAEncryption=1.2.840.113549.1.1.12
sha-224WithRSAEncryption=1.2.840.113549.1.1.14
id-dsa-with-sha1=1.2.840.10040.4.3
id-dsa-with-sha224=2.16.840.1.101.3.4.3.1
id-dsa-with-sha256=2.16.840.1.101.3.4.3.2
ecdsa-with-sha1=1.2.840.10045.4.1
ecdsa-with-sha224=1.2.840.10045.4.3.1
ecdsa-with-sha256=1.2.840.10045.4.3.2
ecdsa-with-sha384=1.2.840.10045.4.3.3
ecdsa-with-sha512=1.2.840.10045.4.3.4
#
# RSASSA-PSS Signature algorithm OID and related hash algorithm OIDs
#
rassa-pss=1.2.840.113549.1.1.10
sha-256Hash=2.16.840.1.101.3.4.2.1
sha-384Hash=2.16.840.1.101.3.4.2.2
sha-512Hash=2.16.840.1.101.3.4.2.3
#
# If your organization will be using CertificatePolicies extensions
# on certificates that are created by this CA, the following
# entry assigns a symbolic name to a registered OID that identifies
# your organization's certificate usage policy. This symbolic name
# is used later in the [CertPolicy] section of this configuration
# file to specify the certificate policy information.
# MyPolicy=1.2.3.4

ObjectStore]
# Database implementation, either VSAM or DB2. Default is VSAM.
# Specify
# DBType=VSAM
```
pkiserv.conf

or

# or
# DBType=DB2
#
# Database version, either 0 or 1. Default is 0.
# Specify
# DBVersion=0
# or
# DBVersion=1

# If DBType is DB2, configure the following additional keywords:
#   DBPackage   DBSubsystem   DBWaitTime
# These keywords will be ignored if DBType is set to VSAM.
#
# If DBType is VSAM, configure the following additional keywords:
#   ObjectDSN   ICLDSN
#   ObjectStatusDSN   ICLStatusDSN
#   ObjectRequestorDSN   ICLRequestorDSN
#   ObjectSCEPTidDSN   ICLSCEPTidDSN
#   ObjectTidDSN
# These keywords will be ignored if DBType is set to DB2.

# Regardless of the setting for DBType, verify the setting of
# the following keywords in this ObjectStore section:
#   SharedPLEX   RemoveCompletedReqs
#   RemoveInactiveReqs   RemoveExpiredCerts
#   RemoveExpiredCertsAndKeys

# Is the database implementation, whether it be VSAM datasets
# or DB2, shared in a sysplex with other instances of PKI
# Services? True (T) or False (F).
# Note: The SharedPLEX keyword below replaces the SharedVSAM
# keyword in PKI Services V1R13. This keyword has the
# same meaning as the SharedVSAM keyword has in prior
# version of PKI Services.
# SharedPLEX=F

# Name of the DB2 Package this instance of PKI will be using in
# the DB2 sub system specified by the DBSubsystem keyword. If
# DBSubsystem is missing or not specified, this keyword will be
# ignored.
# DBPackage=MasterCA

# Name of the DB2 Sub system. If DBPackage is missing or not
# specified, this keyword will be ignored.
# DBSubsystem=DSN9

# How long in days (d), hours (h) or minutes (m) should PKI wait for
# DB2 to be available before it shuts down?
# The default value is 0m which indicates PKI does not wait. It stops
# when DB2 is not available. The maximum wait time is 1 day.
# This keyword will be ignored if DBType is not DB2.
# DBWaitTime=30m

# Data set name of the VSAM request (object store) base CLUSTER
# ObjectDSN='pkisrvd.vsam.ost'

# Data set name of the VSAM object store PATH for the transaction ID
# (TID) alternate index.
# ObjectTidDSN='pkisrvd.vsam.ost.path'

# Data set name of the VSAM object store PATH for the status alternate
# index
# ObjectStatusDSN='pkisrvd.vsam.ost.status'

# Data set name of the VSAM object store PATH for the requestor
# alternate index
# ObjectRequestorDSN='pkisrvd.vsam.ost.requestr'

# Data set name of the VSAM object store PATH for the SCEP Transaction
# ID alternate index
# ObjectSCEPTidDSN='pkisrvd.vsam.ost.sceptid'

# Data set name of the VSAM issued certificate list (ICL) base CLUSTER
# ICLDSN='pkisrvd.vsam.icl'

# Data set name of the VSAM ICL PATH for the status alternate index
# ICLStatusDSN='pkisrvd.vsam.icl.status'

# Data set name of the VSAM ICL PATH for the requestor alternate index
# ICLRequestorDSN='pkisrvd.vsam.icl.requestr'
# Data set name of the VSAM ICL PATH for the SCEP Transaction ID
# alternate index
# #ICLSCEPTidDSN='pkisrvd.vsam.icl.sceptid'
#
# How many days (d) or weeks (w) should completed requests remain in
# the object store before being removed?
# Specify 0d to indicate completed requests should not be removed
# RemoveCompletedReqs=1w
#
# How many days (d) or weeks (w) should inactive requests remain in the
# object store before being removed?
# Specify 0d to indicate inactive requests should not be removed
# RemoveInactiveReqs=4w
#
# How many days (d) or weeks (w) should expired certificates remain in
# the ICL before being removed?
# Specify 0d to indicate expired certificates should not be removed
# RemoveExpiredCerts=26w
#
# How many days (d) or weeks (w) should expired certificates and Keys
# remain in the ICL and TKDS? Specify 0d to indicate expired
# certificates and keys should not be removed
# RemoveExpiredCertsAndKeys=520w
#
#[CertPolicy]
# What signature algorithm should be used to sign certificates that are
# created? The name of the signature algorithm must match one of the
# Signature Algorithm OIDs listed in the [OIDs] section of this
# configuration file.
# If an rsassa-pss algorithm is desired, then a hash algorithm is also
# required. The supported hash algorithm from the OID section (sha-256Hash,
# sha-384Hash, or sha-512Hash) must be specified after the rsassa-pss
# algorithm, separated by a comma. For example:
#     SigAlg1=rsassa-pss,sha-256Hash
# #
# SigAlg1=sha-256WithRSAEncryption
#
# How often should the certificate creation thread scan the database
# for approved certificate requests?
# CreateInterval=3m
#
# How many days or weeks prior to the expiration of a certificate should
# the expiration warning be sent. If not specified, expiration warning
# will not be sent.
# ExpireWarningTime=4w
#
# How often should certificate revocation lists (CRL) be created?
# TimeBetweenCRLs=1d
#
# How long is a certificate revocation list (CRL) valid?
# CRLDuration=2d
#
# Specify the number of certificates that each CRL distribution point
# will represent. The default is 0 which indicates distribution point
# CRLs should not be created.
# CRLDistSize=500
#
# Specify the constant portion of the CRL distribution point relative
# distinguished name. The distribution point number is appended to this
# value to form the common name. The default value is "CRL".
# CRLDistName=CRL
#
# Should an Authority Revocation List(ARL) Distribution Point be
# created? 'F' (default) indicates an ARL DP will not be created.
# 'T' indicates an ARL DP will be created if the CRLDistSize is
# greater than zero.
# ARLDist=F
#
# Full path of the directory where CRL distrubution point files are to
# be stored for http protocol URI CRL distribution points.
# Defaults to "/var/pkiserv/"
# Ignored if no http protocol CRLDistURI are defined
# CRLDistDirPath=/var/pkiserv/
#
# Values for the CRL distribution point extension URI fields for the
# protocols(ldap, http) you choose. This is repeatable. The first one
# always starts with CRLDistURI1, followed by CRLDistURI2, 3, ...
# if necessary. Uncomment and update the desired directive to enable

The pkiserv.conf configuration file 609
pkiserv.conf

# URI CRL distribution point that you need. If more than one URI field
# is needed, remember to increase the field number sequentially by the
# order of one, e.g. CRLDistURI2, CRLDistURI3...

# For ldap protocol, you may specify the LDAP server indicated in the LDAP
# section below, e.g.,
#
#CRLDistURI1=ldapServer1

# or specify a skeleton URL which contains the protocol type, the domain
# name and the port, if needed, e.g.,
#
#CRLDistURI1=ldap://myotherldapserver.mycompany.com:389/

# For http protocol, specify the complete URL minus the file name of the
# distribution point CRL file, e.g.,
#
#CRLDistURI1=http://www.mycompany.com/PKIServ/cacerts/

# Enable large (>32KB) CRL posting support which will store CRLs in
# a local directory prior to being posting to LDAP.
# T - True, CRLs are stored in a local file system directory before
# being posted to LDAP
# F - False, CRLs are stored in Object Store posting object record(s)
# before being posted to LDAP. Warning, a CRL (distribution
# point or master) larger than 32KB will fail to be created
# and not be posted to LDAP. (This is the Default)
#
#EnableLargeCRLPosting=F

# Full path of the local directory where CRLs are saved prior to
# posting to LDAP.
# Defaults to /var/pkiserv/.
# This keyword is ignored if large CRL posting is not enabled.
#
#LargeCRLPostPath=/var/pkiserv/

# Should this CA create CRLs that contain a critical Issuing
# Distribution Point extension?
# T = True, CRLs will be created with a critical Issuing Distribution
# Point extension. (This is the default value if not
# specified.)
# F = False, CRLs will be created with no Issuing Distribution Point
# extension.
#
#CRLIDPExt=T

# What type of OCSP request is desired?
# 'none' - No OCSP responder support (This is the default)
# or
# 'basic' - The OCSP responder is enabled, but will not verify the
# optional request signature.
#
#OCSPType=none

# Enable the Simple Certificate Enrollment Protocol (SCEP)
# T = True, SCEP is enabled
# F = False, SCEP is disabled (default if not specified)
#
#EnableSCEP=F

# Enable the Certificate Management Protocol (CMP)
# T = True, CMP is enabled
# F = False, CMP is disabled (default if not specified)
#
#EnableCMP=F

# Enable the Enrollment over Secure Transport Protocol (EST)
# T = True, EST is enabled
# F = False, EST is disabled (default if not specified)
#
#EnableEST=F

# Specify the full pathname containing the EST CA file in DER format,
# required if EnableEST=T
#
#ESTCAFile=/var/pkiserv/estcacert.der

# Specify the template nickname corresponds to the EST template
# in pkiserv.tmpl or pkitmpl.xml for EST preregistration and
# certificate fulfillment. Maximum length is 8.
# Ignored if the value is greater than 8 characters or if
# EST is not enabled.
#
#ESTTemplate=2YESTP

# Should the CA restrict certificate requests to a validity period
# that does not exceed the CA certificate life time?
# T = True, requests with a validity period that exceeds the CA's
# will fail.
# F = False, requests are not constrained to the CA's validity
# period (this is the default value if not specified)
# CertValidityConstraint=F
# Should certificate path length constraints be enabled/enforced
# by this CA?
# T = True, The CA certificate will be examined at initialization
# to verify it meets path length constraint requirements
# and enables the setting of the pathLenConstraint
# field in the Basic Constraint extension of intermediate
# CA certificates created by this CA.
# F = False, Certificate path length constraints will not be
# enforced in the CA certificate used by this CA, and
# intermediate CA certificates created by this CA will
# not include a pathLenConstraint field in the Basic
# Constraint extension. (this is the default value if
# not specified)
#
# EnablePathLenConstraint=F
# Should the CertificatePolicies extension be
# included in the Basic Constraints extension of intermediate
# CA certificates created by this CA.
# - The EnablePathLenConstraint keyword must be set to T, otherwise
#   the PathLength keyword will be ignored.
# - The valid value range for this keyword is 0 to 16, however the
#   value specified must be less than the pathLenConstraint value
# in the PKI CA certificate if it is present.
#
# PathLength=1
# CertificatePolicies certificate extension information, indicating the
# policy under which the certificate has been issued and the purposes
# for which the certificate may be used. This extension contains a
# sequence of one or more policy information terms, each term comprised
# of an OID and an optional qualifier.

# Should the CA require that the CertificatePolicies extension be
# included on all certificates that are created?
# T = True, the CertificatePolicies extension will be added to all
# certificates, and will include all PolicyName<n> entries
# specified in this file. Any policies that are
# specified in the CertPolicies input parameter or listed
# in the CONSTANT section of the template used to
# generate the certificate are ignored.
# F = False, the CertificatePolicies extension will only be added
# to certificates when a certificate policy is specified
# in the CertPolicies input parameter or in the
# CONSTANT section of the template when a certificate is
# requested. (This is the default value)
#
# PolicyRequired=F
# Should the CertificatePolicies certificate extension be made a
# critical extension?
# T = True, the extension will be marked Critical
# F = False, the extension will not be marked Critical (This is the
# default)
#
# PolicyCritical=F
# List of CertificatePolicies extensions identifiers that may be added
# to certificates created by this CA.
# The policy name is the symbolic name for a certificate policy OID
# and must match the name of a policy that is listed in the [OIDs]
# section of this configuration file.
#
# PolicyName1=MyPolicy

# Should the CertificatePolicies certificate extension include
# any optional qualifiers? Qualifiers may be Certification
# Practice Statement (CPS) Pointer and User Notice. User Notice
# may have two optional fields: Notice Reference and Explicit Text.
# To include these optional qualifiers for certificates created
# using the certificate policy <n>, uncomment the appropriate
# entries below and tailor them to suit your purpose. Note that
# for the CA to conform with current standards, Notice Reference
# should not be used.
#
# CPS<n> = Specifies the URI for the CPS associated with PolicyName<n>.
# Policy<n>Org = Names the organization that has prepared the User
# Notice Reference information associated with PolicyName<n>.
# Policy<n>Notice<m> = Identifies the number of a textual
# statement, prepared by Policy<n>Org, for the User Notice Reference associated
# with PolicyName<n>. More than one
# textual statement may apply.
# UserNoticeText<n> = Specifies the User Notice Explicit Text
# information associated with PolicyName<n>.
# For the CA to conform with current standards, this
textual statement must not exceed 200
# characters.
pkiserv.conf

# Policy1Org=MyOrganization
# Policy1Notice1=3
# Policy1Notice2=17
UserNoticeText1=This is some very lawyerly statement for the relying party to read and make decisions based on.
CPS1=http://www.mycompany.com/cps.html

# Length of certificate suspension grace period in day or weeks (d,w).
# Certificates which remained suspended for longer than this period are automatically revoked.
# The default value is 0d which indicates the grace period is unlimited.
# MaxSuspendDuration=120d

# Specify the email address of an administrator who will receive an email notification when a certificate request state becomes pending approval. Repeat for each administrator to receive pending approval notifications. The first one always starts AdminNotifyNew1, followed by AdminNotifyNew2, 3, ...n, if necessary. The field number increases sequentially by the order of one. Uncomment and update the desired email address to enable the notification.
# AdminNotifyNew1=adminA@abc.com

# Specify the email address of an administrator who will receive an email notification containing a list of requests that are pending approval when the maintenance processing is run. Repeat for each administrator to receive an email reminder. The first one always starts AdminNotifyReminder1, followed by AdminNotifyReminder2, 3, ...n, if necessary. The field number increases sequentially by the order of one. Uncomment and update the desired email address to enable the notification.
# AdminNotifyReminder1=adminA@abc.com

# Enable granular authority control for the administrative functions on different templates. If enabled, appropriate RACF(or equivalent product) protection profiles must be set up accordingly.
# T = True, granular authority control is enabled
# F = False, granular authority control is disabled (default if not specified)
# AdminGranularControl=F

# Should a console message be issued when the CRL processing finishes?
# none - No console message will be issued
# file - A console message will be issued after the CRLs are available in the file system
# This keyword will be ignored unless large CRL posting support is enabled (EnableLargeCRLPosting=T) or at least one http protocol CRL distribution point URI is defined.
# CRLWTONotification=none

# Which certificates should be included in the PKCS#12 package when PKI Services has generated the public/private key pair?
# I = The issuing CA certificate is included with the end-entity and private key. (This is the default behavior if not specified)
# E = Only the end-entity certificate and private key will be included in the PKCS#12 package.
# C = The complete chain up to the Root that is connected to the CA keyring is included with the end-entity certificate and private key in the PKCS#12 package.
# PKCS12Content=I

[General]
InitialThreadCount=10

# Timeout value for the exit program. Default is 30 seconds (30s).
ExitTimeout=30s

# full pathname or data set name containing the 'your certificate is ready to be retrieved' message form. Defaults to no message issued
ReadyMessageForm=/etc/pkiserv/readymsg.form

# full pathname or data set name containing the 'your certificate request has been rejected' message form. Defaults to no message issued
RejectMessageForm=/etc/pkiserv/rejectmsg.form

# full pathname or data set name containing the request(s) pending for approval message form. Defaults to no notification sent.
AdminNotifyForm=/etc/pkiserv/pendingmsg.form

# full pathname or data set name containing the request(s) approved with modifications message form. Defaults to no notification sent.
AdminNotifyModForm=/etc/pkiserv/pendingmsg2.form

# full pathname or data set name containing the renewed certificate
# message form for automatic certificate renewal.
# If absent, automatic certificate renewal is disabled.
#RenewCertForm=/etc/pkiserv/renewcertmsg.form

# full pathname or data set name containing information on
# the list of certificates that match the criteria specified
# to recover key generated certificates.
# If absent, recovery query results will not be sent.
#RecoverForm=/etc/pkiserv/recoverymsg.form

# Time of day to run the PKI maintenance task in 24 hour time format
# (HH:MM). The valid range is 00:00-23:59. The default value is 00:00
# (midnight).
#MaintRunTime=01:00

# Days of the week to run the PKI maintenance task in 0-6 format. The
# value specified is a list of numbers between 0 and 6. 0 represents
# Sunday and 6 represents Saturday. No spaces or any other characters
# are permitted. Order of the digits is not important. Repeat digits
# are not allowed.
# The default value is everyday of the week: 0123456
#MaintRunDays=0123456

# Should the PKI maintenance task run when the PKI daemon is started?
# True (T) or False (F). Default value is True.
#RunMaintAtStart=T

[SAF]
KeyRing=PKISRVD/CAring
#TokenName=PKISRVD.PKIToken

# The Label name for the PKI RA certificate connected to the Key ring
# specified in the KeyRing value above
#RALabel=Local PKI RA

# Should the CA generate secure keys in the Token Data Set (TKDS)
# when it has key generation capability?
# Valid SecureKey values are:
# T - True indicates secure keys are generated in the TKDS
# F - False (or absence of this keyword) indicates clear keys
# will be generated in the TKDS. Note: Installation
# configuration policy may override the ability to create
# clear keys causing clear key requests to create secure
# keys.
# If TokenName is not specified, the SecureKey keyword
# will be ignored.
# SecureKey=T

[LDAP]
NumServers=1
PostInterval=5m
Server1=myldapserver.mycompany.com:389
AuthName1=CN=root
AuthPwd1=root

# Should the CA post certificates and CRLs to the LDAP server with the
# binary attribute?
# T = True, post certificates and CRLs with the binary attribute
# F = False, post certificates and CRLs without the binary attribute
# (this is the default value if not specified)
# Note: If NumServers is greater than one, you need one value for
# each corresponding server, eg. UseBinaryAttr1 is for Server1.
# If the corresponding UseBinaryAttrn is missing, it defaults to F.
# UseBinaryAttr1=F
CreateOUValue= Created by PKI Services
RetryMissingSuffix=T
# Name of the LDAPBIND Class profile containing the bind information
# for LDAP server 1. This key is optional. Used in place of keys
# Server1, AuthName1, and AuthPwd1.
#BindProfile1=LOCALPKI.BINDINFO.LDAP1
Chapter 29. Environment variables

This topic describes the environment variables that PKI Services uses and their possible values. It also includes a code sample of the environment variables file, pkiserv.envvars. (See “The pkiserv.envvars environment variables file” on page 617.) For information about the PKISERVD procedure, which specifies the path name of the environment variables file, see “PKISERVD sample procedure to start PKI Services daemon” on page 682.

Environment variables in the environment variables file

The environment variables contained in pkiserv.envvars and their values are:

_PKISERV_CA_DOMAIN
Specifies the CA domain. The first eight characters must be unique. The first eight characters of the CA domain name are limited to the following character set: alphanumeric characters (a-z, A-Z, 0-9) and the hyphen (-). In addition, the first character must not be a number or hyphen.

Example:

_PKISERV_CA_DOMAIN=WebAppCA

_PKISERV_CONFIG_PATH
Specifies the path name for the directory containing the configuration file, pkiserv.conf, and the certificate template file, pkiserv.tmpl for this CA domain. The default value (if you do not set the environment variable) is /etc/pkiserv.

Guideline: Copy both of these files from the install directory, /usr/lpp/pkiserv/samples, before making any changes.

Note: Because the PKISERV CGIs run in an IBM HTTP Server address space, if the pkiserv.tmpl file is not in its default location of /etc/pkiserv/pkiserv.tmpl, you need to add the _PKISERV_CONFIG_PATH variable to the IBM HTTP Server environment variable file.

• If you are using IBM HTTP Server - Powered by Apache, the environment variables are added to the configuration files using the SetEnv directive.

_PKISERV_EXIT

Specifies the full path name for the installation-provided PKI exit program that the PKI Services daemon invokes to perform autorenew preprocessing or postprocessing. (This exit is a UNIX-executable program or shell script.) If you do not define this variable or if it contains a null value, the PKI autorenew exit processing is disabled.

Note: The _PKISERV_EXIT environment variable is also used by the PKI Services CGI scripts to specify an exit program to be used by the web application. The PKI Services CGI scripts run in an IBM HTTP Server address space, so you must specify the _PKISERV_EXIT environment variable in the IBM HTTP Server environment variables file.

• If you are using IBM HTTP Server, the environment variables are added to the configuration files using the SetEnv Directive.

_PKISERV_FIPS_LEVEL

Specifies the FIPS compliance level to be used by PKI Services. Four compliance levels are permitted.

0
No FIPS compliance is enforced at this level. This is the default if _PKISERV_FIPS_LEVEL is not specified.
**Environment variables**

1. FIPS 140-2 compliance is enforced at this level.
2. SP800-131A with exception is enforced at this level.
3. SP800-131A without exception is enforced at this level.

**Guideline:** Before modifying the value of `_PKISERV_FIPS_LEVEL` environment variable, ensure that all pending certificate requests have been completed. Some existing requests may not comply with the new FIPS level.

**Example:**

```bash
_PKISERV_FIPS_LEVEL=2
```

### `_PKISERV_MSG_LOGGING`

Values include:

- **STDOUT_LOGGING**
  - Indicates writing all messages (verbose, diagnostic, informational, warning, error, and severe) to STDOUT and additionally writing the error and severe messages to STDERR. This is the default if the environment variable is not set.

- **STDERR_LOGGING**
  - Indicates writing verbose, diagnostic, informational, and warning messages to STDOUT and writing error and severe messages to STDERR.

### `_PKISERV_MSG_LEVEL`

Specifies the subcomponent and message level to log. Messages for a particular subcomponent are logged only if the message level is greater than or equal to the specified level for that subcomponent. You can use an asterisk (`*`) to indicate all subcomponents. The subcomponent list consists of a subcomponent name and a message level separated by a period (`.`).

For example, the following sets the message level for all subcomponents to log warning messages or higher. (This is the default setting.)

**Example:**

```bash
_PKISERV_MSG_LEVEL=*.W
```

You can specify multiple subcomponents by separating entries with a comma (`,`). For example, the following indicates that all subcomponents are set to message level `W` (warning) and that the PKID subcomponent is set to message level `D` (diagnostic).

**Example:**

```bash
_PKISERV_MSG_LEVEL=*.W,PKID.D
```

The subcomponents are:

<table>
<thead>
<tr>
<th>Subcomponent</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The wildcard character (represents all subcomponents)</td>
</tr>
<tr>
<td>CORE</td>
<td>The core functions of PKI Services that are not specific to the other subcomponents</td>
</tr>
<tr>
<td>DB</td>
<td>Activity related to the object store or issued certificate list repositories</td>
</tr>
<tr>
<td>LDAP</td>
<td>LDAP posting operations</td>
</tr>
<tr>
<td>PKID</td>
<td>The PKI Services daemon address setup and infrastructure</td>
</tr>
<tr>
<td>POLICY</td>
<td>Certificate creation and revocation policy processing</td>
</tr>
<tr>
<td>Subcomponent</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>SAF</td>
<td>SAF key ring, OCEP, and R_datalib calls</td>
</tr>
<tr>
<td>TPOLICY</td>
<td>Trust policy plug-in processing</td>
</tr>
</tbody>
</table>

The message levels are listed hierarchically:

### Debug level

<table>
<thead>
<tr>
<th>Level</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>This indicates logging only severe messages.</td>
</tr>
<tr>
<td>E</td>
<td>This indicates logging severe and error messages.</td>
</tr>
<tr>
<td>W</td>
<td>This indicates logging severe, error, and warning messages. This is the default message level for all subcomponents if you do not set the environment variable.</td>
</tr>
<tr>
<td>I</td>
<td>This indicates logging severe, error, warning, and informational messages.</td>
</tr>
<tr>
<td>D</td>
<td>This indicates logging severe, error, warning, informational, and diagnostic messages.</td>
</tr>
</tbody>
</table>
| V     | This indicates logging all messages, including verbose diagnostic messages. This is very verbose.  
**Guideline:** Do not use V level unless IBM support personnel instruct you to do so. |

### Environment variables

**_PKISERV_VARDIR_**

Specifies the path name for a directory in which PKI Services will write persistent data. The maximum length of the path name is 256 characters, including the trailing /. The default value (if you do not set the environment variable) is /var/pkiserv.

**_PKISERV_ENABLE_JSP_**

Specifies whether you use the JSP interface and XML templates for PKI Services web pages, or the REXX CGI execs and text templates. Set to TRUE to use the JSP interface. The default (if you do not set the environment variable) is to use the REXX CGI exec interface.

### The pkiserv.envars environment variables file

The following code sample is for the pkiserv.envars environment variables file. (For information about updating the environment variables file, see “Optionally updating PKI Services environment variables” on page 70.) The following listing might not be identical to the code sample shipped with the product. For the most current sample, see the pkiserv.envars file in the source directory /usr/lpp/pkiserv/samples/.

```
# PKI Services sample environment variable file
# Licensed Materials - Property of IBM
# © 5650-zOS
# © Copyright IBM Corp. 2001, 2019
# Status = HKY77C0
#
# Language and Path configurations
#
LANG=En_US.IBM-1047
PATH=/bin
```
LIBPATH=/usr/lpp/pkiserv/lib:/usr/lib
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lpp/pkiserv/lib/nls/msg/%L/%N

# When running as a CA Domain, set the CA Domain name by assigning
# desired value to the _PKISERV_CA_DOMAIN variable.
# Note: The first eight characters must be unique.
#
# example: _PKISERV_CA_DOMAIN=WebAppCA
#
# Configuration File location and Message configuration Options
#
_ PKISERV_CONFIG_PATH=/etc/pkiserv
_ PKISERV_MSG_LOGGING=stdout_logging
_ PKISERV_MSG_LEVEL=*.w

# Set up a directory for PKI Services to write persistent data. The
# maximum length is 256 characters including the trailing /.
# The default is /var/pkiserv/.
#
# example: _PKISERV_VARDIR=/var/pkiserv/
#
# Set up an exit program for autorenew. The maximum length is 256
# characters including the program name.
#
# example: _PKISERV_EXIT=/mydir/renewexit
#
# Enable the JSP Webpages and XML Template.
#
_ PKISERV_ENABLE_JSP=TRUE

# Set FIPS operational level. Possible values:
# 0 FIPS is not active
# 1 FIPS 104-2 is active
# 2 SP800-131A with exception is active
# 3 SP800-131A without exception is active
#
_ PKISERV_FIPS_LEVEL=0
Chapter 30. The IKYSETUP REXX exec

IKYSETUP is a REXX exec that issues RACF commands to perform RACF administration. This topic describes the actions IKYSETUP performs and provides a code sample of IKYSETUP.

Actions IKYSETUP performs by issuing RACF commands

In broad terms, the actions that IKYSETUP performs are as follows:

- Sets up the PKI Services daemon user ID
- Sets up the access control to protect PKI Services
  - Protects end-user functions
  - Protects administrative functions
- Defines one or more CA domains with associated administrative domains
- Creates the CA and RA certificates, their private keys, and key ring
- Creates the IBM HTTP Server certificate, private key, and key ring
- Enables surrogate operation for the IBM HTTP Server
- Allows PKI Services to generate key pairs for certificate requests

Setting up the PKI Services daemon user ID

Create the daemon user ID (by default, PKISRVD) using the RACF ADDUSER TSO command. Give it an OMVS segment because it needs access to z/OS UNIX. If you implement the object store and issued certificate list (ICL) using VSAM data sets, this user ID also needs update access to the VSAM data sets identified in the ObjectStore section of the pkiserv . conf file. If necessary, use the RACF ADDSD and PERMIT TSO commands to give this user ID UPDATE access to the VSAM data sets. If you implement the object store and ICL using Db2 tables, this user ID also needs access to the Resource Recovery Services Access Facility (RRSAF). If necessary, use the RACF RDEFINE and PERMIT commands to define the profile for RRSAF in the DSNR class and give this user ID READ access.

Guideline: Define the daemon user ID with the NOPASSWORD attribute.

To associate this user ID to the PKI Services started procedure, use the following RACF TSO commands:

```
RDEFINE  STARTED PKISERVD.* STDATA(USER(PKISRVD))
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)
SETROPTS RACLIST(STARTED) REFRESH
```

Setting up access control to protect PKI Services

This task can be divided into two steps:

1. Protecting end-user functions
2. Protecting administrative functions.

Protecting end-user functions

You must first determine who your end-users are and how they are using their certificates. In general there are two categories of end-users:

- Internal clients, such as employees who have SAF user IDs on the host system and who might be using their certificates to access resources on the host
- External clients, who have no access to the host system.
When PKI Services is called, the unit of work has some identity (user ID) associated with it. For external customers, a surrogate user ID is necessary.

**Guideline:** Although under certain circumstances it might be beneficial for internal clients to access PKI Services under their own identities, your implementation is simpler if you use surrogate user IDs for internal clients also.

Use the RACF ADDUSER command to create the surrogate user ID (PKISERV). Give it an OMVS segment because it needs access to z/OS UNIX. **Guideline:** Define the surrogate user ID with the PROTECTED and RESTRICTED attributes.

The R_PKIServ SAF callable service is protected by FACILITY class resources of the form IRR.RPKISERV.function.[ca_domain], where function is one of the following and ca_domain specifies an optional CA domain name. (Specify ca_domain when your installation has established multiple PKI Services CAs.)

The R_PKIServ functions are:

**EXPORT**
- Retrieves (exports) a previously requested certificate, or retrieves (exports) the PKI Services registration authority (RA) certificate or the certificate authority (CA) certificate.

**GENCERT**
- Generates an auto-approved certificate.

**GENRENEW**
- Generates an auto-approved renewal certificate. (The request submitted is automatically approved.)

**QRECOVER**
- Lists certificates whose key pairs were generated by PKI Services under a requestor’s email address and passphrase.

**REQCERT**
- Requests a certificate that an administrator must approve before it is created.

**REQRENEW**
- Requests certificate renewal. The administrator needs to approve the request before the certificate is renewed.

**RESPOND**
- Invokes the PKI OCSP responder.

**REVOKE**
- Revokes a certificate that was previously issued.

**SCEPREQ**
- Generates a certificate request using Simple Certificate Enrollment Protocol (SCEP).

**VERIFY**
- Confirms that a given user certificate was issued by this certificate authority and, if so, returns the certificate fields.

Create these resources and give the PKISERV user ID either READ or CONTROL access to them. CONTROL bypasses subsequent resource checks.

Additional FACILITY class resources of the form IRR.DIGTCERT.function protect the actual certificate generation and retrieval functions. If subsequent resource checks are not being bypassed, define these resources and their access.

There are two ways to handle certificate approval:

- An administrator can review certificate requests
- Requests can be auto-approved without administrator action (this should probably be reserved for internal clients only).

If you plan to have an administrator approve certificate requests before issuing certificates, PKISERV needs the following access:
Table 107. Access required if you plan to have an administrator approve certificate requests

<table>
<thead>
<tr>
<th>Resource</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR.DIGTCERT.REQCERT</td>
<td>READ</td>
</tr>
<tr>
<td>IRR.DIGTCERT.REQRENEW</td>
<td>READ</td>
</tr>
</tbody>
</table>

If your clients can request certificates that are auto-approved without action by an administrator, PKISERV needs the following access:

Table 108. Access required if you plan to use auto-approval

<table>
<thead>
<tr>
<th>Resource</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR.DIGTCERT.ADD</td>
<td>UPDATE</td>
</tr>
<tr>
<td>IRR.DIGTCERT.GENCERT</td>
<td>CONTROL</td>
</tr>
<tr>
<td>IRR.DIGTCERT.GENRENEW</td>
<td>READ</td>
</tr>
</tbody>
</table>

Finally, because the web server is switching identities to PKISERV, you must give it surrogate permission. This is done by creating another resource in the SURROGAT class (BPX.SRV.PKISERV) and giving the web server daemon user ID READ access to it.

Protecting administrative functions

PKI Services administrators must have SAF user IDs on the host system. When PKI Services is called for administrative functions, the unit of work is tagged with the identity of the authenticated administrator.

At a minimum, all PKI Services administrators require READ or UPDATE access to the profile IRR.RPKISERV.PKIADMIN[.ca_domain] in the FACILITY class. Table 109 on page 621 shows how the level of access to this profile controls authorization to general administrative functions.

Table 109. FACILITY class access needed for administrative functions

<table>
<thead>
<tr>
<th>Resource</th>
<th>Access</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRR.RPKISERV.PKIADMIN[.ca_domain]</td>
<td>READ</td>
<td>For list and query operations</td>
</tr>
<tr>
<td>IRR.RPKISERV.PKIADMIN[.ca_domain]</td>
<td>UPDATE</td>
<td>To act on certificate requests, preregistration requests, and issued certificates</td>
</tr>
</tbody>
</table>

In addition, you can use profiles in the PKISERV class to restrict PKI Services administrator access to specific operations. For information, see “Using the PKISERV class to control access to administrative functions” on page 499. By default this additional capability is not enabled. The AdminGranularControl keyword in the pkiserv.conf configuration file controls whether it is enabled.

Example: To grant user ID ADMID authority to administer the PKI Services CUSTOMER domain, and to grant that same user the ability to query information about PKI Services certificates issued using the "1-Year PKI SSL Browser Certificate" template, issue the following RACF TSO commands:

```racf
RDEFINE  FACILITY (IRR.RPKISERV.PKIADMIN.CUSTOMER) UACC(NONE)
PERMIT   IRR.RPKISERV.PKIADMIN.CUSTOMER CLASS(FACILITY) ACCESS(UPDATE) ID(ADMID)
RDEFINE  PKISERV CUSTOMER.QUERYCERTS.1YBSSL UACC(NONE)
PERMIT    CUSTOMER.QUERYCERTS.1YBSSL ACCESS(READ) CLASS(PKISERV) ID(ADMID)
SETROPTS RACLIST (FACILITY) REFRESH
SETROPTS RACLST(PKISERV) RACLST(PKISERV)
SETROPTS RACLST (PKISERV) REFRESH
```
Establishing your CA and RA certificates

To create and sign digital certificates for others, you need to establish a CA certificate, and optional RA certificate, and their associated private keys using the RACDCERT command.

Steps for establishing your CA and RA certificates

Perform the following steps to create your CA certificate, RA certificate, and their associated keys, back up the keys, connect them to a key ring and authorize PKI Services to use them.

Before you begin

Determine the CA or RA’s distinguished name and where it will be located (under CERTAUTH for the CA and under the PKI Services daemon user ID for the RA). Typically, CAs and RAs have distinguished names in the following form:

OU=your-CA-or-RA’s-friendly-name.O=your-organization.C=your-two-letter-country-abbreviation

Procedure

1. Create your CA certificate, and optional RA certificate, and their associated private keys using the RACDCERT GENCERT command. If you create an optional RA certificate, it must be signed by the CA certificate.

   a. This example creates a 20-year CERTAUTH certificate with a distinguished name of OU=Human Resources Certificate Authority.O=Your Company, Inc.C=US.

   ```
   RACDCERT CERTAUTH GENCERT SUBJECTSDN(
      OU('Human Resources Certificate Authority')
      O('Your Company, Inc.')  C('US')) WITHLABEL('Local PKI CA') HIGHTRUST
   NOTAFTER(DATE(2026/05/06))
   SIZE(1024) KEYUSAGE(HANDSHAKE)
   SIGNWITH(CERTAUTH LABEL('Local Root CA'))
   ```

   b. This example creates a 20-year RA certificate signed by the CA certificate created in Example “1.a” on page 622.

   ```
   RACDCERT GENCERT ID(PKISERVD) SUBJECTSDN(
      CN('Registration Authority')
      OU('Human Resources Certificate Authority')
      O('Your Company, Inc.')  C('US')) WITHLABEL('Local PKI RA')
   NOTAFTER(DATE(2026/05/06))
   SIZE(1024) KEYUSAGE(HANDSHAKE)
   SIGNWITH(CERTAUTH LABEL('Local PKI CA'))
   ```

2. Back up your CA certificate, RA certificate (if created), and their associated private keys to password-protected data sets using the RACDCERT EXPORT command.

   ```
   RACDCERT CERTAUTH EXPORT(LABEL('Local PKI CA'))
   DSN('PKISRVD.PRIVATE.KEY.P12BIN')
   FORMAT(PKCS12DER) PASSWORD('your-passphrase')
   
   RACDCERT ID(PKISRVD) EXPORT(LABEL('Local PKI RA'))
   DSN('PKISRVD.PRIVATE.RAKEY.P12BIN')
   FORMAT(PKCS12DER) PASSWORD('your-passphrase')
   ```

3. When using ICSF for private key protection in Public Key Data Set (PKDS) and signing, use the RACDCERT ADD command. For this step to be successful, ICSF CCA cryptographic coprocessor must be operational and configured with Public Key Data Set (PKDS). (For additional information about ICSF, see z/OS Cryptographic Services ICSF Administrator’s Guide.)

   ```
   RACDCERT CERTAUTH ADD('PKISRVD.PRIVATE.KEY.P12BIN') PASSWORD('your-passphrase')
   PKDS
   ```

622 z/OS: Cryptographic Services PKI Services Guide and Reference
RACDCERT CERTAUTH ADD('PKISRVD.PRIVATE.RAKEY.P12BIN') PASSWORD('your-passphrase')

4. Create a key ring for the PKI Services daemon and add the CA certificate and RA certificate (if created) to it so that PKI Services can use the certificates. The example creates a key ring that is called CAring for user ID PKISRVD and connects the CA and RA certificates to it.

Important: Make sure that your CA certificate is marked with the TRUST or HIGHTRUST attribute in RACF. (Otherwise, PKI Services cannot use the certificate.) Check this by issuing the RACDCERT LIST command and execute the RACDCERT ALTER command to change it if needed.

RACDCERT ADDRING(CAring) ID(PKISRVD)
RACDCERT ID(PKISRVD) CONNECT(CERTAUTH LABEL('Local PKI CA') RING(CAring) USAGE(PERSONAL) DEFAULT)
RACDCERT ID(PKISRVD) CONNECT(ID(PKISRVD) LABEL('Local PKI RA') RING(CAring) USAGE(PERSONAL))

5. Authorize the PKI Services daemon to use RACF certificates and act as the CA by using the following FACILITY class resource. RACLIST the FACILITY class if it is not already RACLISTed.

SETROPTS RACLIST(FACILITY)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(PKISRVD) ACCESS(CONTROL)
SETROPTS RACLIST(FACILITY) REFRESH

The daemon user ID (PKISRVD) also needs access to the CA certificate through its key ring by using the RDATALIB or FACILITY class resources as shown in the following example.

If the RDATALIB class is used, RACLIST the class if it is not already RACLISTed:

SETROPTS RACLIST(RDATALIB)
RDEFINE RDATALIB PKISRVD.CAring.LST
PERMIT PKISRVD.CAring.LST CLASS(RDATALIB) ID(PKISRVD) ACCESS(CONTROL)
SETROPTS RACLIST(RDATALIB) REFRESH

If the FACILITY class is used:

RDEFINE FACILITY IRR.DIGTCERT.LISTRING
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(PKISRVD) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Configuring the IBM HTTP Server - Powered by Apache for SSL mode

The PKISERV application requires the IBM HTTP Server - Powered by Apache to operate in three modes. The modes are:

- Normal
- SSL without client authentication
- SSL with client authentication.

For SSL, your server needs to obtain a digital certificate. You can:

- Purchase one from an external source
- Create one using RACF

Note: If your server is already operating in SSL mode, you can skip the following section, “Using RACF to obtain a certificate for the web server” on page 623.

Using RACF to obtain a certificate for the web server

The IBM HTTP Server supports using either gskkyman key databases (.kdb files) or RACF (SAF) key rings for the server’s certificate store. You are expected to use SAF key rings if setting up their web server for the first time.
Note: If you have already set up your web server using gskkyman, you can continue to use it.

Use RACDCERT to generate the server certificate signed by the new Certificate Authority.

Example:

RACDCERT GENCERT ID(WEBSRV) SIGNWITH(CERTAUTH LABEL('Local PKI CA'))
WITHLABEL('SSL Cert') SUBJECTSDN(CN('www.YourCompany.com') O('Your Company Inc')
L('Millbrook') SP('New York') C('US'))

The web server needs a key ring containing its new certificate and any trusted CA certificate. The
RACDCERT command with operands ADDRING and CONNECT also sets this up. For example, the
RACDCERT commands to create a key ring that is called SSLring for user ID WEBSRV and to connect the
web server and CA certificates to it are:

Example:

RACDCERT ADDRING(SSLring) ID(websrv)
RACDCERT ID(websrv) CONNECT(CERTAUTH LABEL('Local PKI CA')) RING(SSLring)
USAGE(PERSONAL) DEFAULT
RACDCERT ID(websrv) CONNECT(ID(websrv) LABEL('SSL Cert') RING(SSLring)
USAGE(PERSONAL) DEFAULT)

Export the CA certificate to an MVS data set. Then OPUT it to a file system file so that it can be made
available to your clients.

Example:

RACDCERT EXPORT(LABEL('Local PKI CA'))
CERTAUTH DSN('pkisrvd.webroot.derbin') FORMAT(CERTDER)

Enabling the IBM HTTP Server - Powered by Apache for surrogate operation

Your server must be able to act as a surrogate for clients requesting certificates. To enable this, create:

• Profile BPX.SERVER in the FACILITY class
• Profile BPX.SRV.PKISERV in the SURROGAT class.

Give the IBM HTTP Server - Powered by Apache daemon user ID READ access to both of these profiles.

Allowing PKI Services to generate key pairs for certificate requests

You can choose to allow PKI Services to generate key pairs (public and private key) for certificate
requests. The PKI Services daemon does this using the PKCS #11 API provided by ICSF. Set up profiles in
the CRYPTOZ class to allow the PKI Services daemon to use the PKCS #11 API:

• Activate the CRYPTOZ class.
• Define the profile SO.daemon_id.* in the CRYPTOZ class.
• Give the daemon user ID UPDATE access to the profile
• Define the profile USER.daemon_id.* in the CRYPTOZ class.
• Give the daemon user ID CONTROL access to the profile.

IKYSETUP sample

IKYSETUP contains the commands to perform the RACF administrator tasks of adding groups and user
IDs, setting up access control, creating CA, RA, and SSL certificates, and setting up daemon security. The
following listing might not be identical to the code sample shipped with the product. For the most current
sample, see SYS1.SAMPLIB member IKYSETUP.

/* REXX */
/**************************************************************************/
/* DESCRIPTIVE NAME: PKI Services RACF setup CLIST */
**FUNCTION:**

This CLIST will issue the RACF TSO commands necessary to set up security for PKI Services. It must be run from TSO by a user ID that is RACF SPECIAL.

**USAGE:**

1) Read accompanying PKI Services post installation instructions.
2) Perform necessary prerequisite product installation for the webservice (websphere), LDAP, etc.
3) Make note of any predetermined values such as the LDAP suffix, webserver fully qualified domain name, and the settings contained in the pkiserv.conf file.
4) Copy the CLIST to a data set where you can edit it.
5) Examine the entire CLIST, in particular, the configurable section.
6) Modify the values in the configurable section as needed for your installation.
7) Run the CLIST. Syntax:

`EX 'data-set-name(IKYSETUP)' 'RUN(YES | NO | PROMPT)'`

where: YES - indicates to run CLIST as is
NO - indicates to display the commands only
PROMPT - indicates to prompt the user prior to invoking each command

**DISCLAIMER:**

This CLIST is not intended to cover every possible customer scenario. Modification of the actual commands to be issued may be required.

******************************************************************************

The IKYSETUP REXX exec 625
/* ca_domain value will help qualify the other variables thus */
/* reducing the amount of work the RACF administrator needs */
/* to perform. Otherwise, set to NULL. */
/* */
/*************************************************************************************************
ca_domain = "" /* @L4A*/
if LENGTH(ca_domain) > 8 then /* @L4A*/
  ca_domain_trunc = LEFT(ca_domain,8) /* @L4A*/
else /* @L4A*/
  ca_domain_trunc = ca_domain /* @L4A*/

OrgUnit = STRIP(ca_domain "Human Resources Certificate Authority") /* @L4A*/
ca_dn= "OU('"||OrgUnit||"')," /* @L4C*/
  "O('Your Company')," /* @L4C*/
  "C('Your Country 2 Letter Abbreviation')"
ca_label = STRIP(ca_domain "Local PKI CA") /* Label for CA certificate with the CA Domain name prepended @L4A*/
ra_label = STRIP(ca_domain "Local PKI RA") /*Label for RA Certificate @01C*/
if (ra_label = "") then /* If no RA Label ... @L4A*/
  ra_dn="" /*@L4A*/
else /*@L4A*/
  ra_dn= /*@L4A*/
    "CN('Registration Authority')",
  ca_dn

Reviewer: */
/* ra_label: */
/* A "must change" variable - default: "Local PKI RA" */
/* ra_dn: */
/* A "must change" variable. If you don't wish to have PKI Services operate with a separate RA certificate, set */
/* ra_dn="" */
/*************************************************************************************************
ra_label = STRIP(ca_domain "Local PKI RA") /*Label for RA Certificate @01C*/
if (ra_label = "") then /* If no RA Label */
  ra_dn="" /*@L4A*/
else /*@L4A*/
  ra_dn= /*@L4A*/
    "CN('Registration Authority')",
  ca_dn

Reviewer: */
/* This exec will create the certificate, private key, and keyring needed for your webserver. (Required for SSL.) */
/* You should set up the Domain name in the Subject Alternative Name(SAN) extension of your webserver certificate to match */
/* its fully qualified domain name. Otherwise you must set up */
/* the Common Name(CN) in the Subject Distinguished Name(SDN) to match. */
/* e.g., ALTNAME(DOMAIN('www.YourCompany.com')) or */
/* CN=www.YourCompany.com,O=Your Company,C=US */
/* You must specify the webserver's domain name with the */
/* web_host variable if: */
/* - the webserver certificate is to be created in this exec, */
/* or */
/* - set up a CA certificate for Enrollment over Secure Transport(EST) processing (see for details in Part 3) */
/* web_host is used to set up web_altdomain (Domain in SAN) or */
/* web_cn (Common Name in SDN) or both in creating the webserver certificate. It is also used to create the EST CA */
/* certificate. */
/* If needed, web_ip can be used to set up web_altip (IP in SAN) */
/* instead of web_host. */
/* web_ip is used to set up web_altip (Domain in SAN) or */
/* web_cn (Common Name in SDN) or both in creating the webserver certificate. It is also used to create the EST CA */
/* certificate. */
/* If you already have your webserver configured for SSL, set */
/* web_dn="". */
/*************************************************************************************************
web_host = "" /*web_host = www.YourCompany.com */
web_ip = "" /*web_ip = 9.56.214.7 */
web_altdomain ="
if web_host ^= "" then
    web_altdomain="DOMAIN("web_host")"

web_altip ="
if web_ip ^= "" then
    web_altip="IP("web_ip")"

web_cn ="
if web_host ^= "" then
    web_cn="CN("web_host")"
else if web_ip <> "" then
    web_cn="CN("web_ip")"

web_dn=
    web_cn,
    "O('Your Company')",
    "L('Your City')",
    "SP('Your Full State or Province Name')",
    "C('Your Country 2 Letter Abbreviation')"

/*****************************************************************
/* If you want the CA to support Enrollment Over Secure           */
/* Transport (EST) features, the Domain value in the Subject      */
/* Alternative Name extension of the CA certificate must match    */
/* the host name in the URI that will be presented to the EST     */
/* CGI.                                                           */
/* Set ca_host value below to construct the ALTNAME DOMAIN       */
/* extension for the CA certificate.                             */
/*                                                           */
/* If needed, set ca_ip value below to construct the ALTNAME IP   */
/* extension for the CA certificate.                             */
/*                                                           */
/* For example, if EST clients will be contacting the following *
/* URI for the cacerts function to obtain the CA certificate     */
/* chain from your CA:                                           */
/*                                                           */
/*                                                           */
/* The value that you should specify for "ca_host" is:            */
/*                                                           */
/* ca_host = "www.YourCompany.com"                              */
/*                                                           */
/* The value of ca_host (or ca_ip) should be the same as the      */
/* Domain (or IP) value in the Subject Alternative Name          */
/* extension of the webservice certificate, if it is present;    */
/* otherwise ca_host (or ca_ip) needs to match the webserver's   */
/* Common Name in the Subject Distinguished Name, although this  */
/* is not recommended.                                          */
/*                                                           */
/*****************************************************************
ca_altdomain ="
ca_altip ="
if web_host ="" & web_ip ="" then do
    call logsay "Unable to setup EST CA SAN extension without ",
        "web_host and web_ip value"
end
else do
    if web_host ^= "" then do
        ca_host = web_host
        ca_altdomain = "DOMAIN("ca_host")"
    end
    if web_ip ^= "" then do
        ca_ip = web_ip
        ca_altip = "IP("ca_ip")"
    end
end

/*****************************************************************
/* The sample web server protection directives supplied by PKI   */
/* will create an SSLring for the web server's SAF key ring.      */
/* If you change the value below, you will need to modify the key */
/* directive in the samples/vhost1443.conf and                   */
/* samples/vhost2443.conf files when configuring the web server.  */
/* AtLCG                                                */
/* If you already have your webserver configured for SSL and      */
/* are using a SAF key ring (vs a gskkyman keyfile), then set     */
/* web_ring equal to your webserver's SAF key ring name. If you   */
/* are using a gskkyman keyfile, then set web_ring="". Note,      */
/* you will have to manually add the PKI CA's certificate to      */
The IKYSETUP REXX exec 627
/* the webserver's keyfile/keyring and make the webserver's       */
/* root CA available in an HFS file for download.              */
/* SAF keyring for web server                                  */

web_ring = "SSLring"                          /* SAF keyring for web server */
******************************************************************

/* You must provide UID and GID values for the user IDs and      */
/* groups being created below                                   */
******************************************************************

daemon="PKISRVD"                  /* user ID for PKI daemon */
daemon_uid="554"                  /* uid for PKI daemon     */
surrog="PKISERV"                  /* user ID for the surrogate */
surrog_uid="555"                  /* uid for the surrogate id */

******************************************************************
/* pkigroup members are authorized to administer PKI Services   */
/* certificates and certificate requests. If you know the user */
/* IDs that should be connected to this group, update the      */
/* users later.                                                */
/*                                                              */
/* If you do not wish to have this exec create this group,     */
/* set the group name to ""                                     */
/*                                                              */
******************************************************************
pkigroup="PKIGRP"                   /* PKI Services Admin group name */
pki_gid="655"                       /* PKI Services Admin group id */
pkigroup_mem.0=0       /* Number of pkigroup members to connect */
pkigroup_mem.1=""
/*     C. Keys must meet the minimum size requirement for the     */
/*     intended FIPS level. The FIPS level to be used by         */
/*     PKI Services is specified by the environment            */
/*     variable _PKISERV_FIPS_LEVEL:                           */
/*     ---------------------------------------------------------*/
/*     | _PKISERV_FIPS_LEVEL value | 1 | 2 | 3 |     */
/*     -------------------------+--------+--------+--------      */
/*     RSA                     | 1024   | 2048   | 2048   */
/*     -------------------------+--------+--------+--------      */
/*     DSA                     | 1024   | 2048   | 2048   */
/*     -------------------------+--------+--------+--------      */
/*     NIST ECC                | 192    | 224    | 224    */
/*     -------------------------+--------+--------+--------      */
/* Select the type desired by setting key_type to one of the   */
/* above options.                                              */
/*                                                              */
/* If you set key_type=2, 6, 7, 8, 9 or 10 above, you will     */
/* need to restrict access to the CA's private key. Unless you */
/* indicate otherwise, this exec will activate the CSFKEYS     */
/* classes create a profile in the CSFKEYS class to protect the */
/* CA's private key, and permit the PKI Services daemon to use */
/* it.                                                          */
/*                                                              */
/* If you are already using ICSF, then you may have profiles in */
/* the CSFSERV class protecting ICSF services. If you are not  */
/* already using ICSF in previous releases of PKI Services, you */
/* need to set up CSFOWH profile in this release and allow the  */
/* PKI Services daemon to have READ access. If you set         */
/* key_type=2, 4, 5, 6, 7, 8, 9 or 10 above, the PKI            */
/* Services daemon would need access to the following profiles: */
/* CSFDSV, CSFDSG, CSFPKI, CSFENC, CSFDEC                      */
/* Also, the PKI Services surrogate ID would need access       */
/* to the following profiles that cover the services used     */
/* during the SSL/TLS handshake processing depending on       */
/* the cipher and certificates being utilized:                */
/* CSFENC, CSFDEC, CSFPK, CSFPK, CSFDSG, CSFDSV,              */
/* CSFI, CSFDEC, CSFDSG, CSFDEC                                */
/* You may already have a RACF group for authorized ICSF users. */
/* If you specify the group name for csfusers_grp, the daemon  */
/* surrogate IDs will be connected to the group, and the       */
/* group permitted to the profiles. Otherwise the two IDs will */
/* be directly permitted to the profiles.                     */
/*                                                              */
/* Set the following variables as needed:                       */
/*                                                              */
/* csfkeys_profile - Profile to be created in the CSFKEYS class */
/* Set the value to '' if you don't want the profile           */
/* csfser profiles - Profile to be created in the CSFSERV class */
/* e.g., 'CSF*'                                               */
/* csfusers_grp - Group name for authorized ICSF users         */
/* e.g., 'ICSFUGRP'                                           */
/* **************************************************************/
if (key_type=2 | key_type=4 |,
    key_type=5 | key_type=6 | key_type=7 |,
    key_type=8 | key_type=9 | key_type=10 |,
    @LHC *
    key_gen=1)
    then csfser_profiles='CSF*'
else csfser_profiles='CSFOWH'
    @02C *
    csfusers_grp=''
Note, back up is not performed if the CA certificate was not created by this exec or if you specified key_type 2, 6, 7, 8, 9 or 10 above.

key_backup=1

z/OS UNIX may be set up to operate with a higher level of security than traditional UNIX. While we recommend this, it is difficult to set up. You may want to defer this until later.

If you don't want to set up UNIX security now, leave unix_sec=0.

If you already have UNIX level security established and wish to continue it, set unix_sec=1.

If you don't have UNIX level security established and wish to establish it now, set unix_sec=2. Note additional manual configuration probably will be required. This can be done by adding, removing, updating members of the two stem variables below. The pgmcntl_dsn stem contains the data set names of load libraries that need program control. The bpx_userid stem contains the user IDs of your server daemons. (These need access to BPX.SERVER and BPX.DAEMON in the FACILITY class.) Again, you can defer this until later by leaving unix_sec=0.

unix_sec=0

pgmcntl_dsn.0=8 /* Number of program controlled data sets below */
pgmcntl_dsn.1="CEE.SCEERUN"
pgmcntl_dsn.2="CBC.SCLBDLL"
pgmcntl_dsn.3="SYS1.SIEALNKE" /* Common LINKLIST PDSE dataset */
pgmcntl_dsn.4="SYS1.CSSLIB" /* @L2C*/
pgmcntl_dsn.5="TCPIP.SEZALOAD" /* @L2C*/
pgmcntl_dsn.6="SYS1.SIEALNKE" /* @L2C*/
pgmcntl_dsn.7="CSF.SCSFMOD0" /* @L2C*/
pgmcntl_dsn.8="CSF.SCSFMOD1" /* @L2C*/
bpx_userid.0=1 /* Number of additional bpx server ids below */
bpx_userid.1="OMVSKERN"

unix_sec=0

pgmcntl_dsn.0=8 /* Number of program controlled data sets below */
pgmcntl_dsn.1="CEE.SCEERUN"
pgmcntl_dsn.2="CBC.SCLBDLL"
pgmcntl_dsn.3="SYS1.SIEALNKE" /* Common LINKLIST PDSE dataset */
pgmcntl_dsn.4="SYS1.CSSLIB" /* @L2C*/
pgmcntl_dsn.5="TCPIP.SEZALOAD" /* @L2C*/
pgmcntl_dsn.6="SYS1.SIEALNKE" /* @L2C*/
pgmcntl_dsn.7="CSF.SCSFMOD0" /* @L2C*/
pgmcntl_dsn.8="CSF.SCSFMOD1" /* @L2C*/
bpx_userid.0=1 /* Number of additional bpx server ids below */
bpx_userid.1="OMVSKERN"

unix_sec=0

db2_repos = 0 /* @LCA */

db2_repos = 0 /* @LCA */
AdminGranularControl = 0
/* DAC */

if (AdminGranularControl = 1, /*
 /* provide the template nick names you want to act on and
 /* Change the value of template1,2,3 below and add more if
 /* needed.
 /* Change the value of pkigroup1,2 below and add more if
 /* needed.

template.0 = 12
/template.1 = "1YBSSL"
/template.2 = "1YBSM"
/template.3 = "2YBWL"
/template.4 = "2YBZOS"
/template.5 = "5YSSSL"
/template.6 = "5YSIPS"
/template.7 = "5YSCAP"
/template.8 = "2YIACS"
/template.9 = "SAMPBL"
/template.10 = "5YSCEPP"
/template.11 = "1YKRC"
/template.12 = "2YEYSSL"

pkigroup1="PKIGRP1" /* PKI Services Admin group name @LDA */
/pki_gid1="656" /* PKI Services Admin group id @LDA */
pkigroup1_mem.0=0 /* Number of pkigroup members to connect @LDA */
pkigroup1_mem.1="" /* @LDA */
/actions1.0=13 /* DAC */
/actions1.1="QUERYREQS" /* @LDA */
/actions1.2="QUERYCERTS" /* @LDA */
/actions1.3="APPROVE" /* @LDA */
/actions1.4="APPROVEWITHMODS" /* @LDA */
/actions1.5="REJECT" /* @LDA */
/actions1.6="DELETEREQS" /* @LDA */
/actions1.7="REVOKE" /* @LDA */
/actions1.8="DELETECERTS" /* @LDA */
/actions1.9="RESUME" /* @LDA */
/actions1.10="AUTORENEWENABLE" /* @LDA */
/actions1.11="AUTORENEWDISABLE" /* @LDA */
/actions1.12="CHANGEMAIL" /* @LDA */
/actions1.13="PREREREGISTER" /* @LDA */
pkigroup2="PKIGRP2" /* PKI Services Admin group name @LDA */
pki_gid2="657" /* PKI Services Admin group id @LDA */
pkigroup2_mem.0=0 /* Number of pkigroup members to connect @LDA */
pkigroup2_mem.1="" /* @LDA */
/actions2.0=2 /* @LDA */
/actions2.1="QUERYREQDETAILS" /* @LDA */
/actions2.2="QUERYCERTDETAILS" /* @LDA */

/* Part 3 - Things you can change */

/* Label of the CA certificate that is the superior (signer) of */
/* the PKI Services CA, if self sign leave blank */
signing_ca_label = ""
/* @L4A */

if (ca_domain = "") then /* If no CA Domain... @L4A*
    log_dsn="IKYSETUP.LOG" /* Under your ID */
else /* Else use CA Domain @L4A*/
    log_dsn=ca_domain_trunc||".IKYSETUP.LOG" /* CA Domain qualified @L4A*/
/* */
Note IKYCVSV1, the sample JCL to create VSAM datasets and pkiserv.conf expect the object store and ICL datasets to have PKISRVD as their high level qualifier. Changing either "daemon" or "vsamhlq" will require making the same change to IKYCVSV1 and pkiserv.conf.

vsamhlq=daemon

The following variables are used to create the certificates for the Certificate Authority (CA) and the web server. If the default settings are used, these certificates will expire as follows:

- The CA certificate will expire 20 years from the date when this exec is run.
- The web server SSL certificate will expire 5 years from the date when this exec is run.

You may tailor the expiration dates to suit your own need in one of two ways, which are described below. If you decide to tailor the expiration dates for these certificates, make sure that the web server SSL certificate's expiration date does not exceed the expiration date of the CA certificate; failure to ensure this will result in the web server SSL certificate being added as NOTRUST in the RACF database.

Method 1: You can change the number of years used to set the CA certificate and web server SSL certificate. If you choose this method, leave the code segment labeled "Method 2" below commented out of the exec, alter the values for the "ca_exyears" and "web_exyears" to set the number of years for the CA certificate and the web server SSL certificate, respectively. Ensure that the value for "ca_exyears" equals or exceeds the value for "web_exyears".

Method 2: You can hardcode the expiration date to be used for the CA certificate and the web server SSL certificate. If you choose this method, comment out the code segment labelled "Method 1" below, uncomment the code segment labelled "Method 2" below, and alter the values for the "ca_expires" and "web_expires" to set the expiration dates for the CA certificate and the web server SSL certificate, respectively. Ensure that the expiration date given in "ca_expires" is later than the date specified in "web_expires".

Method 1: Set the CA certificate and web server certificate expiration dates to a number of years in the future. If using Method 2 to set the expiration dates, comment out the code in this section.

ca_exyears = 20
web_exyears = 5
if (datatype(ca_exyears,'N')^=1) then do
  say "The CA certificate expiration years value", ca_exyears "is not valid." return 8
end
if (datatype(web_exyears,'N')^=1) then do
  say "The webserver SSL certificate expiration years value", web_exyears "is not valid." return 8
end

today = date('S')
exday = ca_exyears * 10000 + today
ca_expires = substr(exday,1,4)"/"||,
  substr(exday,5,2)"/"||,
  substr(exday,7,2)
exday = web_exyears * 10000 + today
web_expires = substr(exday,1,4)"/"||,
  substr(exday,5,2)"/"||,
  substr(exday,7,2)
/* End of Method 1.

Method 2: Set the CA certificate and web server
certificate expiration dates to a specific future
date. If using Method 1 to set the expiration
dates, leave this code segment commented out of
the exec. If using this method, remove the
comment characters from the following two
instructions, change the dates to the desires
values if necessary, and comment out all
instructions in Method 1. @D9A
/*
* ca_expires = "2030/01/01" */
*/ @D9A
* web_expires = "2015/01/01" */
*/ @D9A
*/ End of Method 2. @D9A

web_label = "SSL Cert" /* Label for web server cert */

/****************************************************************
/* PKI Services Key ring name */
/****************************************************************
if (ca_domain = "") then /* If no CA Domain... @L4A*/
ca_ring="CAring" /* keyring name for PKI Svrs */
else /* Else use CA Domain @L4A*/
ca_ring="CAring."||ca_domain /* CA Domain qualified @L4A*/

/****************************************************************
/* PKI Services PKCS11 Token Name */
/****************************************************************
if (ca_domain = "") then /* If no CA Domain... @LEA*/
caStore=daemon||".CATOKEN" /* token name for PKI Svrs */
else /* Else use CA Domain @DBC*/
caStore=daemon||".CATOKEN." || ca_domain /* CA Domain qualified @DBC*/

/*/ You can select the size (in bits) of your CA's private key. */
/*/ Acceptable values depend upon the value that is used for */
/*/ "key_type" and other system conditions. Refer to the */
/*/ instructions given Part 2 "Questions you must answer", */
/*/ Question 3 "What key type to use for the CA certificate?" */
/*/ for advice on selecting the appropriate size. @LHC*/
ca_keysize="2048"

/****************************************************************
/* Data set to contain the backup copy of the CA certificate */
/* and private key. (pass phrase encrypted PKCS#12 format) */
/****************************************************************
if (ca_domain = "") then /* If no CA Domain... @L4A*/
backup_dsn = "'"||daemon||".KEY.BACKUP.P12BIN'" /* @L5C*/
else /* Else use CA Domain @L4A*/
backup_dsn = "'"||daemon||".KEY.BACKUP.P12BIN" /* @L5C*/
/* CA Domain qualify backup dsn @L4A*/

/****************************************************************
/* Data set to contain the exported copy of the CA certificate */
/* (DER encoded). This is to assist the backup process. */
/****************************************************************
if (ca_domain = "") then /* If no CA Domain... @L4A*/
cacert_dsn = "'"||daemon||".CACERT.DERBIN" */
cacert_dsn = "'"||daemon||".CACERT.DERBIN" /* @L5C*/
/* CA Domain qualify export dsn @L4A*/

/****************************************************************
/* Data set to contain the exported copy of the webserver's */
/* root certificate (DER encoded). This is to be OPUT to an */
/* HFS file later to enable easy downloading by clients. */
/****************************************************************
if (ca_domain = "") then /* If no CA Domain... @L9A*/
export_dsn = "'"||daemon||".WEBROOT.DERBIN" */
else /* Else use CA Domain @L9A*/
export_dsn = "'"||daemon||".WEBROOT.DERBIN" /* @L9A*/
/* CA Domain qualify export dsn @L9A*/

/****************************************************************
/* Data set to contain the backup copy of the RA certificate */
/* and private key. (pass phrase encrypted PKCS#12 format) */

if (ca_domain = "") then /* If no CA Domain... */
    ra_backup_dsn = "'"||daemon||"-RAKEY.BACKUP.P12BIN' /* @L5C*/
else /* Else use CA Domain */
    ra_backup_dsn = "'"||daemon||".|"||ca_domain_trunc||,
                    "-RAKEY.BACKUP.P12BIN'" /* @L5C*/
    /* CA Domain qualify RA backup dsn @01A*/

/* This EXEC expects the web server to be set up. If this is */
/* not the case, please refer to: */
/* z/OS HTTP Server Planning, Installing and Using. */
/* If the user ID assigned to the IBM HTTP Server Daemon is not */
/* WEBSRV, please update the assignment below. */

webserver="WEBSRV"

/* End of configurable section */

parse upper arg "RUN(" runopt ")"

if runopt = '' then
    runopt="NO"
if runopt ^= "YES" & runopt ^= "PROMPT" & runopt ^= "NO" then do
    say 'syntax ex 'data-set-name(IKYSETUP)' 'run(yes | no | prompt)'"
    return 8
end
if runopt ^= "YES" & runopt ^= "PROMPT" then
    runopt="NO"
say 'IKYSETUP EXEC invoked ...'
return_code='0'
max_return_code='0'
logdata.0=0

if log_dsn ^= "" then do
    say 'Allocating log data set' log_dsn "..."
    x = OUTTRAP(.MSGS.)
    "FREE FI(IKYLOGDD)"
    "FREE DA("||log_dsn||")"
    "DELETE" log_dsn
    x = OUTTRAP('OFF')
    "ALLOCATE DA("||log_dsn||") FILE(IKYLOGDD) RECFM(V B)",
    " LRECL(256) DSORG(PS) BLKSIZE(2560) SP(1,1) TRACKS "
    al_rc= rc
    IF al_rc ^= 0 THEN
        do
            say 'Allocation of log data set failed.'
            return 8
        end
    end
call logsay "RUN("runopt") requested on" DATE() 'at' TIME() '...'
if runopt="NO" then
    call logsay "Running in test mode. Commands are not being invoked"

# Verify the requested key size, based upon the selected key type.
# - When key_type=0 (RSA software generated key) or key_type=2 (RSA PCICC generated key), the acceptable range is 512 to 4096.
# - When key_type=3 (DSA software generated key), the acceptable value range is 512 to 2048. @02C*
# - When key_type=4 (NIST ECC software generated key), @LBC*
#     or key_type=6 (NIST ECC key in PKDS), the acceptable set of values are 192, 224, 256, 384, and 521. *@
# - When key_type=5 (Brainpool ECC software generated key), *
#     or key_type=7 (Brainpool ECC in PKDS), *
#     or key_type=10 (Brainpool ECC in TKDS), @LEA*
#     the acceptable set of values are 160, 192, 224, 256, 320, *
#     384, and 512. *@
# - When key_type=8 (RSA in TKDS), the acceptable range is *
#     1024 to 4096. @LEA*
# If invalid key type or size is chosen, we will issue message */
# and end execution. Because this module is unable to determine */
/* the FIPS level of PKI Services, the key type and size are not tested for their FIPS compliance. */

if (key_type ^= 0 & key_type ^= 2 & key_type ^= 3 &,
    key_type ^= 4 & key_type ^= 5 & key_type ^= 6 &,
    key_type ^= 7 & key_type ^= 8 & key_type ^= 9 &,
    key_type ^= 10)
    then do
        call logsay "Unsupported key type" key_type
        return 8
    end

select
    when key_type = 0 then do
        if ca_keysize < 512 then do
            call logsay "Key size cannot be less than 512",
            "for key type" key_type
            return 8
        end
        else do
            if ca_keysize > 4096 then do
                call logsay "Key size cannot be greater than",
                "4096 for key type" key_type
                return 8
            end
        end
    end

    when key_type = 2 then do
        if ca_keysize < 512 then do
            call logsay "Key size cannot be less than 512",
            "for key type" key_type
            return 8
        end
        else do
            if ca_keysize > 4096 then do
                call logsay "Key size cannot be greater than",
                "4096 for key type" key_type
                return 8
            end
        end
    end

    when key_type = 3 then do
        if ca_keysize < 512 then do
            call logsay "Key size cannot be less than 512",
            "for key type" key_type
            return 8
        end
        else do
            if ca_keysize > 2048 then do
                call logsay "Key size cannot be greater than",
                "2048 for key type" key_type
                return 8
            end
        end
    end

    when key_type = 4 |
        key_type = 6 |
        key_type = 8 |
        key_type = 9 then do
            if ca_keysize ^= 192 & ca_keysize ^= 224 &,
                ca_keysize ^= 256 & ca_keysize ^= 384 &,
                ca_keysize ^= 521 then do
                call logsay "Key size must be: 192, 224, 256, 384,",
                "or 521 for key type" key_type
                return 8
            end
        end

    when key_type = 5 |
        key_type = 7 |
        key_type = 9 then do
            if ca_keysize ^= 160 & ca_keysize ^= 192 &,
                ca_keysize ^= 224 & ca_keysize ^= 256 &,
                ca_keysize ^= 320 & ca_keysize ^= 384 &,
                ca_keysize ^= 512 then do
                call logsay "Key size must be: 160, 192, 224, 256,",
                "or 320, 384, 512 for key type" key_type
                return 8
            end
        end

    when key_type = 6 |
        key_type = 8 |
        key_type = 10 then do
            if ca_keysize ^= 192 & ca_keysize ^= 224 &,
                ca_keysize ^= 256 & ca_keysize ^= 384 &,
                ca_keysize ^= 512 then do
                call logsay "Key size must be: 192, 224, 256,",
                "or 320, 384, 512 for key type" key_type
                return 8
            end
        end

    when key_type = 7 |
        key_type = 9 then do
            if ca_keysize ^= 160 & ca_keysize ^= 192 &,
                ca_keysize ^= 224 & ca_keysize ^= 256 &,
                ca_keysize ^= 320 & ca_keysize ^= 384 &,
                ca_keysize ^= 512 then do
                call logsay "Key size must be: 160, 192, 224, 256,",
                "or 320, 384, 512 for key type" key_type
                return 8
            end
        end

    when key_type = 8 |
        key_type = 10 then do
            if ca_keysize ^= 192 & ca_keysize ^= 224 &,
                ca_keysize ^= 256 & ca_keysize ^= 384 &,
                ca_keysize ^= 512 then do
                call logsay "Key size must be: 192, 224, 256,",
                "or 320, 384, 512 for key type" key_type
                return 8
            end
        end

    when key_type = 9 then do
        if ca_keysize ^= 160 & ca_keysize ^= 192 &,
            ca_keysize ^= 224 & ca_keysize ^= 256 &,
            ca_keysize ^= 320 & ca_keysize ^= 384 &,
            ca_keysize ^= 512 then do
            call logsay "Key size must be: 160, 192, 224, 256,",
            "or 320, 384, 512 for key type" key_type
            return 8
        end

    when key_type = 10 then do
        if ca_keysize ^= 192 & ca_keysize ^= 224 &,
            ca_keysize ^= 256 & ca_keysize ^= 384 &,
            ca_keysize ^= 512 then do
            call logsay "Key size must be: 192, 224, 256,",
            "or 320, 384, 512 for key type" key_type
            return 8
        end

    end

    else do
        call logsay "Unsupported key type" key_type
        return 8
    end

end
*/
"320, 384, or 512 for key type",
key_type
/*@LAA*/
return 8
/*@LAA*/
end
/*@LAA*/
end
/*@LAA*/
when key_type = 8 then do
/*@LEA*/
if ca_keysize < 1024
then do
/*@LEA*/
call logsay "Key size cannot be less than 1024",
"for key type" key_type
/*@LEA*/
return 8
/*@LEA*/
end
/*@LEA*/
else do
/*@LEA*/
if ca_keysize > 4096
then do
/*@LEA*/
call logsay "Key size cannot be greater than",
"4096 for key type" key_type
/*@LEA*/
return 8
/*@LEA*/
end
/*@LEA*/
otherwise do
/*@LAA*/
call logsay "Key type must be: 0 through 10."
/*@LEC*/
return 8
/*@LAA*/
end
/*@LEA*/
/*@LAA*/
end
/*@LAA*/
/*******
/* Create the daemon and surrogate user IDs using RACF ADDUSER TSO*/
/* command. Give them an OMVS segment since they will need access */
/* to UNIX System Services.                                         */
/*******
call logsay2 "Creating users and groups ..."
call tsoserv "ADDUSER " daemon "name('PKI Srvs Daemon')",
"nopassword",
"omvs(uid("daemon_uid"))",
"assize(256000000)",
"threads(512)"
if restrict_surrog=1 then   /*@D1C*/
resattr="restricted"
else
resattr=""
call tsoserv "ADDUSER " surrog "nopassword",
resattr,
"omvs(uid("surrog_uid"))",
"name('PKI Srvs Surrogate')"
/*******
/* Set up PKI Services administration group.                      */
/* If AdminGranularControl = 1, add additional administration     */
/* groups for granular control as specified for Question 7.       */
/*******
if pkigroup ^= "" then do
/*@LCM*/
call tsoserv "ADDSUR " pkigroup "OMVS(GID("pki_gid"))"
/*@LCM*/
do i = 1 to pkigroup_mem.0
/*@LCM*/
call tsoserv "CONNECT" pkigroup_mem.i "GROUP("pkigroup")"
/*@LCM*/
end
/*@LCM*/
if AdminGranularControl=1 then do
/* @LDA */
if pkigroup1 ^= "" then do
/* @LDA */
call tsoserv "ADDSUR " pkigroup1, "OMVS(GID("pki_gid1"))"
/* @LDA */
do i = 1 to pkigroup1_mem.0
/* @LDA */
call tsoserv "CONNECT" pkigroup1_mem.i, "GROUP("pkigroup1")"
/* @LDA */
end
/* @LDA */
end
/* @LDA */
if pkigroup2 ^= "" then do
/* @LDA */
call tsoserv "ADDSUR " pkigroup2, "OMVS(GID("pki_gid2"))"
/* @LDA */
do i = 1 to pkigroup2_mem.0
/* @LDA */
call tsoserv "CONNECT" pkigroup2_mem.i, "GROUP("pkigroup2")"
/* @LDA */
end
/* @LDA */
end
/* @LDA */
/* Set up the permission needed for the DB2 tables or the VSAM */
/* data sets. */

/**************************************************************/
/* The DB2 for z/OS Resource Recovery Services access facility */
/* (RRSAF) is protected by the RRSAF DSNR class resource that */
/* is specific to the DB2 subsystem. The following command */
/* gives READ access to the PKI Services daemon, which allows */
/* the daemon the capability of interacting with the DB2 */
/* subsystem through this access facility. */
if db2_repos=1 then do /* @LCA*/
call logsay2 "Granting DB2 RRSAF access to the PKI", /* @LC*/
"Services daemon." /* @LC*/
call tsoserv "RDEFINE DSNR "db2_subsys".RRSAF", /* @LCA*/
"UACC(NONE)" /* @LCA*/
call tsoserv "PERMIT "db2_subsys".RRSAF", /* @LCA*/
"CLASS(DSNR) ACCESS(READ)", /* @LCA*/
"ID("daemon")" /* @LCA*/
call tsoserv "SETROPTS CLASSACT(DSNR)" /* @LCA*/
end /* @LCA*/

/**************************************************************/
/* The VSAM data sets created for PKI Services are protected. */
/* Grant access to these data sets for the PKI Services daemon */
/* and the administrator. */
else do /* @LCA*/
call tsoserv "SETROPTS EGN GENERIC(DATASET)"
call tsoserv "ADDSD '"vsamhlq".**' UACC(NONE)"
call tsoserv "PERMIT '"vsamhlq".**' ID("daemon")",
"ACCESS(ALTER)" /* @D4A*/
if (vsamhlq ^= daemon) then do /* @D4A*/
call tsoserv "ADDSD '"daemon".**' UACC(NONE)"
call tsoserv "PERMIT '"daemon".**' ID("daemon")",
"ACCESS(ALTER)" /* @D4A*/
end /* @D4A*/

/**************************************************************/
/* Give the administrators access to the VSAM data sets */
/* identified in the [ObjectStore] section of */
/* the pkiserv.conf file. */
***************************************************************/
call logsay2 "Allowing administrators to access", /* @LCC*/
"PKI VSAM databases ..." /* @LCC*/
call tsoserv "PERMIT '"vsamhlq".**' ID("pkigroup")",
"ACCESS(CONTROL)"
end /* @LCC*/
call tsoserv "SETROPTS GENERIC(DATASET) REFRESH" /* @LCA*/
end /* @LCA*/

/**************************************************************/
/* If the key_type is 8 or 9 or 10 a PKCS #11 token must be created */
/* first before using it to create a CA certificate with Secure Key */
/* in the TKDS. */
/**************************************************************/
if (key_type=8 | key_type=9 | key_type=10) then do /* @LEA*/
call logsay2 "Creating a PKCS #11 token... " /* @LEA*/
call tsoserv "RACDCERT ADDTOKEN("caStore")" /* @LEA*/
end /* @LEA*/

/**************************************************************/
/* In order to create and sign digital certificates for others */
/* you need to define or import in RACF a Certificate Authority */
/* certificate and associated private key. */
/* This is done using the RACF RACDCERT GENCERT command. */
/**************************************************************/
if ca_dn ^= "" then do /* @LEA*/
call logsay2 "Creating the CA certificate ..."
if signing_ca_label = "" then /* @LEA*/
certcmd = "RACDCERT GENCERT CERTAUTH SUBJECTSDN("ca_dn")",
"WITHLABEL("ca_label")" NOTAFTER(DATE("ca_expires")),
"SIZE("ca_keysize")"
else /* @LEA*/
certcmd = "RACDCERT GENCERT CERTAUTH SUBJECTSDN("ca_dn")",
"WITHLABEL("ca_label")",
"SIGNWITH(CERTAUTH LABEL("signing_ca_label"))",
"NOTAFTER(DATE("ca_expires"))",
"SIZE("ca_keysize")" /* @LEA*/
end /* @LEA*/

/**************************************************************/
/* The DB2 for z/OS Resource Recovery Services access facility */
/* (RRSAF) is protected by the RRSAF DSNR class resource that */
/* is specific to the DB2 subsystem. The following command */
/* gives READ access to the PKI Services daemon, which allows */
/* the daemon the capability of interacting with the DB2 */
/* subsystem through this access facility. */
if db2_repos=1 then do /* @LC*/
call logsay2 "Granting DB2 RRSAF access to the PKI", /* @LC*/
"Services daemon." /* @LC*/
call tsoserv "RDEFINE DSNR "db2_subsys".RRSAF", /* @LC*/
"UACC(NONE)" /* @LC*/
call tsoserv "PERMIT "db2_subsys".RRSAF", /* @LC*/
"CLASS(DSNR) ACCESS(READ)", /* @LC*/
"ID("daemon")" /* @LC*/
call tsoserv "SETROPTS CLASSACT(DSNR)" /* @LC*/
end /* @LC*/
if key_type=2 then certcmd = certcmd || " PCICC" /*@LHC*/
else if key_type=3 then certcmd = certcmd || " DSA" /*@LHD*/
else if key_type=4 then certcmd = certcmd || " NISTECC"
else if key_type=5 then certcmd = certcmd || " BPECC"
else if key_type=6 then certcmd = certcmd || " NISTECC(PKDS)"
else if key_type=7 then certcmd = certcmd || " BPECC(PKDS)"
else if key_type=8 then certcmd = certcmd || " RSA(TOKEN("caStore"))"
else if key_type=9 then certcmd = certcmd || " NISTECC(TOKEN("caStore"))"
else if key_type=10 then certcmd = certcmd || " BPECC(TOKEN("caStore"))"
/* Add Subject Altname extension for EST CA cert */
ca_altname = ""
if (ca_altdomain ^= "") then
  ca_altname = ca_altname||, ca_altdomain
if (ca_altip ^= "") then
  ca_altname = ca_altname||, ca_ip
if ca_altname ^= "" then
  certcmd = certcmd || "ALTNAME("ca_altname")"
call tsoserv certcmd
if key_type^=2 & key_type^=6 & key_type^=7 & key_type^=8, & key_type^=9 & key_type^=10 & key_backup=1 /* @LEC*/
then do /* @DBC*/
  /******************************************************************/
  /* Export certificate and key to PKCS#12 dataset */
  /******************************************************************/
say "Enter a passphrase to protect the key. You will need"
say " this value later if you need to restore the key."
say "Attention, the value will be displayed in the screen:"
parse pull pp
call logsay2 "Backing up the CA certificate ..."
certcmd = "RACDCERT CERTAUTH EXPORT(LABEL("ca_label"))",
  " DSN("backup_dsn") FORMAT(PKCS12DER)",
  " PASSWORD("pp")"
call tsoserv certcmd
end /*5@LHD*/
end /* ca_dn ^= "" */
UTURE/* Mark the CA certificate as HIGHTRUST so HostIdMappings */
UTURE/* are honored */
UTUREcall logsay2 "Marking CA certificate as HIGHTRUST ..."
certcmd = "RACDCERT CERTAUTH ALTER(LABEL("ca_label")) HIGHTRUST"
call tsoserv certcmd
UTURERODUCTION/* The CA certificate must be saved to a data set to assist the */
UTURERODUCTION/* backup process. */
UTURERODUCTIONcall logsay2 "Saving the CA certificate to a data set ..." /* @L9C*/
certcmd = "RACDCERT CERTAUTH EXPORT(LABEL("ca_label"))",
  " DSN("cacert_dsn") FORMAT(CERTDER)" /* @L9C*/
call tsoserv certcmd
if (ra_label ^= "") then do /* @L4A*/
  /******************************************************************/
  /* Creating RA Certificate */
  /******************************************************************/
call logsay2 "Creating the RA certificate ..." /* @L4A*/
certcmd = "RACDCERT ID("daemon") GENCERT SUBJECTSDN("ra_dn")",
        " KEYUSAGE(HANDSHAKE) SIGNWITH(CERTAUTH LABEL("ca_label"))",
        " NOTAFTER(DATE("ca_expires")) WITHLABEL("ra_label")" /* @L4A*/
call tsoserv certcmd /* @L4A*/
/*********************************************************************************
// Backing up RA Certificate
*******************************************************************************/
call logsay2 "Backing up RA certificate ...
/* @L4A*/
certcmd = "RACDCERT ID("daemon") EXPORT(LABEL("ra_label"))",
        " DSN("ra_backup_dsn") FORMAT(PKCS12DER),
        " PASSWORD("pp")" /* @L4A*/
call tsoserv certcmd /* @L4A*/
end /* @L4A*/

/*******************************************************************************
/* The CA/RA certificate must be placed in a key ring so that PKI Services can */
/* access it. */
*******************************************************************************
call logsay2 "Creating the PKI Services keyring ...
call tsoserv "RACDCERT ADDRING("ca_ring") ID("daemon")",
        " LABEL("ca_label")",
        " RING("ca_ring") USAGE(PERSONAL) DEFAULT ) 
if (ra_label ^= "") then /* @L4A*/
call tsoserv "RACDCERT ID("daemon") CONNECT(CERTAUTH",
        " LABEL("ca_label")",
        " RING("ca_ring") USAGE(PERSONAL))" /* @D2C*/
*******************************************************************************
/* Create the certificate for the webserver signed by your new CA */
*******************************************************************************
if web_dn ^= "" then do
call logsay2 "Creating the Webserver SSL certificate and keyring ...
certcmd = "RACDCERT GENCERT ID("webserver") SIGNWITH(CERTAUTH",
        " LABEL("ca_label")"),
        " WITHLABEL("web_label") SUBJECTSDN("web_dn")",
        " NOTAFTER(DATE("web_expires"))"
/* Add Subject Altname extension for web server cert */
web_altname = ""
if (web_altdomain ^= "") then
    web_altname = web_altname||,
    web_altdomain
if (web_altip ^= "") then
    web_altip = web_altname||,
    web_altip
if web_altname ^= "" then
certcmd =certcmd || "ALTNAME("web_altname")"
call tsoserv certcmd
*******************************************************************************
/* Add the webserver’s certificate to the webserver’s RACF (SAF)*/
*******************************************************************************
call tsoserv "RACDCERT ADDRING("web_ring") ID("webserver")",
        " LABEL("web_label")") RING("web_ring") USAGE(PERSONAL) DEFAULT)"
end /* web_dn ^= "" */
*******************************************************************************
/* Add the PKI CA certificate to the webserver’s RACF (SAF) */
*******************************************************************************
if web_ring ^= "" then
call tsoserv "RACDCERT ID("webserver") CONNECT(CERTAUTH",
        " LABEL("ca_label")") RING("web_ring")"
*******************************************************************************
/* The webserver’s root CA certificate must be saved to a data set so that it */
/* may be OPUT to an HFS file for download */
*******************************************************************************
/* If webserver certificate is generated in this exec and */
/* is issued by the self-signed PKI CA, ie. the self-signed */
/* PKI CA is the webserver’s root CA, export it for OPUT */
*******************************************************************************
if web_dn ^= "" & signing_ca_label ^= "" then do
    call logsay2 "Saving the webserver’s root CA certificate to a ",
    /*L9A*/
certcmd = "RACDCERT CERTAUTH EXPORT(LABEL('ca_label'))
" DSN("export_dsn") FORMAT(CERTDER)"
end

else
/* Need to manually export the webserver's root CA certificate */
call logsay2 "You need to manually export the webserver's root CA certificate."

if unix_sec = 0 then do
// Not setting up z/OS UNIX higher security. However, the daemon does need access to one server service. So, if the daemon user ID is not uid 0, then it must be given read access to the FACILITY class profile BPX.SERVER */
if strip(daemon_uid,L,'0') ^= "" then do /* if daemon not uid 0 */
call logsay2 "Giving" daemon "access to BPX.SERVER ..."
call tsoserv "RDEFINE FACILITY BPX.SERVER"
call tsoserv "PERMIT BPX.SERVER CLASS(FACILITY)
" ID("daemon") ACCESS(READ)"
end
end
else do
call logsay2 "Setting up or modifying z/OS UNIX security ...
if unix_sec = 2 then do
// Security than traditional UNIX, by defining BPX.SERVER and BPX.DAEMON classes. */
call tsoserv "RDEFINE FACILITY BPX.SERVER"
call tsoserv "RDEFINE FACILITY BPX.DAEMON"
do i = 1 to bpx_userid.0
call tsoserv "PERMIT BPX.SERVER CLASS(FACILITY)
" ID("bpx_userid.i") ACCESS(READ)"
call tsoserv "PERMIT BPX.DAEMON CLASS(FACILITY)
" ID("bpx_userid.i") ACCESS(READ)"
end
end

if unix_sec = 2 then do
// To use the higher level of security, you need to establish access to the PKI Services daemon and user ID to access protected UNIX daemon services. */
call tsoserv "PERMIT BPX.SERVER CLASS(FACILITY) ID("daemon")
" ACCESS(READ)"
call tsoserv "PERMIT BPX.DAEMON CLASS(FACILITY) ID("daemon")
" ACCESS(READ)"
call tsoserv "PERMIT BPX.SERVER CLASS(FACILITY) ID("webserver")
" ACCESS(UPDATE)"
call tsoserv "PERMIT BPX.DAEMON CLASS(FACILITY) ID("webserver")
" ACCESS(READ)"
end
end

if unix_sec ^= 0 then do
// To the higher level of security, you need to establish access to the PKI Services daemon */
call tsoserv "RDEFINE PROGRAM * UACC(NONE)"
do i = 1 to pgmcntl_dsn.0
call tsoserv "RALTER PROGRAM * ADDMEM("pgmcntl_dsn.i"//NOPADCHK)
" UACC(READ)"
end
call tsoserv "SETROPTS WHEN(PROGRAM)"
end
call tsoserv "PERMIT + CLASS(PROGRAM)
" ID("surrog")
" ACCESS(READ)"
call tsoserv "SETROPTS WHEN(PROGRAM) REFRESH"
end /* unix_sec ^= 0 */

// Access to the keyring can be controlled either by the profiles in the FACILITY class or by the profile in the RDATALIB class. The set up indicated below uses the FACILITY class. If you want specific keyring control on the PKI Services keyring and the Web Server keyring, you may use the RDATALIB class. For example, for the keyring, you may use the RDATALIB class.
IKYSETUP
/* daemon's keyring: set up PKISRVD to have CONTROL access on
*/
/* PKISRVD.CAring.LST. For the web server's keyring: set up WEBSRV to */
/* have READ access on WEBSRV.SSLring.LST.
@DBA*/
/**********************************************************************/
/* Allow the daemon to be a certificate authority and give access to */
/* its keyring
@DBC*/
/**********************************************************************/
call logsay2 "Allowing the PKI Services daemon to act as a CA ..."
call tsoserv "RDEFINE FACILITY IRR.DIGTCERT.GENCERT"
call tsoserv "RDEFINE FACILITY IRR.DIGTCERT.LISTRING"
/* 1@DBD */
call tsoserv "PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY)",
" ID("daemon") ACCESS(CONTROL)"
call tsoserv "PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY)",
" ID("daemon") ACCESS(READ)"
/* 2@DBD */
/*****************************************************************/
/* If the webserver cert and keyring were created in this exec, */
/* Allow the webserver to access its keyring
*/
/*****************************************************************/
if web_dn ^= "" then do
/* @D4A*/
call logsay2 "Allowing the Webserver to access its keyring ..."
call tsoserv "PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY)",
" ID("webserver") ACCESS(READ)"
/* 2@DBD */
end /* web_dn ^= "" */
/* @D4A*/
/*****************************************************************/
/* Permit the webserver daemon User ID to switch identity to the */
/* surrogate Id
*/
/*****************************************************************/
call logsay2 "Allowing the Webserver to switch identity to "surrog" ..."
call tsoserv "SETROPTS CLASSACT(SURROGAT)"
call tsoserv "RDEFINE SURROGAT BPX.SRV."surrog
call tsoserv "PERMIT BPX.SRV."surrog" CLASS(SURROGAT)",
" ID("webserver") ACCESS(READ)"
call tsoserv "SETROPTS RACLIST(SURROGAT) REFRESH"
/* @D8D*/
/***************************************************/
/* Allow the daemon to use ICSF
*/
/***************************************************/
if csfkeys_profile ^= '' | csfserv_profile ^= '' then do
/* @D8M*/
call logsay2 "Allowing the PKI Services daemon to use ICSF ..."
call tsoserv "SETROPTS GENERIC(CSFKEYS CSFSERV)"
call tsoserv "SETROPTS GENERIC(CSFKEYS CSFSERV) REFRESH"
/* @D8D*/
if csfusers_grp ^= '' then do
/* @D8M*/
call tsoserv "CONNECT" daemon "GROUP(" csfusers_grp ")"
/* @D8M*/
call tsoserv "CONNECT" surrog "GROUP(" csfusers_grp ")"
/* @D8M*/
end
/* @D8M*/
if csfkeys_profile ^= '' then do
/*
call tsoserv "RDEFINE CSFKEYS" csfkeys_profile "UACC(NONE)"
if csfusers_grp ^= '' then
/*
call tsoserv "PERMIT" csfkeys_profile "CLASS(CSFKEYS)", /*
" ID("csfusers_grp") ACCESS(READ)"
/*
else
/*
call tsoserv "PERMIT" csfkeys_profile "CLASS(CSFKEYS)",
" ID("daemon") ACCESS(READ)"
call tsoserv "SETROPTS CLASSACT(CSFKEYS) RACLIST(CSFKEYS)"
call tsoserv "SETROPTS RACLIST(CSFKEYS) REFRESH"
end
if csfserv_profile = 'CSF*' then do
/*
call tsoserv "RDEFINE CSFSERV" csfserv_profile "UACC(NONE)"
if csfusers_grp ^= '' then do
/*
call tsoserv "PERMIT" csfserv_profile "CLASS(CSFSERV)", /*
" ID("csfusers_grp") ACCESS(READ)"
/*
end
/*
else do
/*
call tsoserv "PERMIT" csfserv_profile "CLASS(CSFSERV)",
" ID("daemon") ACCESS(READ)"
call tsoserv "PERMIT" csfserv_profile "CLASS(CSFSERV)",
" ID("surrog") ACCESS(READ)"
end
/*
call tsoserv "SETROPTS CLASSACT(CSFSERV) RACLIST(CSFSERV)"
call tsoserv "SETROPTS RACLIST(CSFSERV) REFRESH"
end
else do /* for bring up ICSF, no key generation
call tsoserv "RDEFINE CSFSERV" csfserv_profile,

642 z/OS: Cryptographic Services PKI Services Guide and Reference

@02C*/
@D8A*/
@D8A*/
@D8A*/
@D8A*/

@02C*/
@D8A*/
@D8A*/
@D8A*/
@D8A*/
@D8A*/

@D8A*/

@02A*/


"UACC(NONE)"
/* @02A*/
call tsoserv "PERMIT" csfserv_profile "CLASS(CSFSERV)",
  " ID("daemon") ACCESS(READ)"
/* @02A*/
call tsoserv "SETROPTS CLASSACT(CSFSERV)",
  "RACLIST(CSFSERV)"
/* @02A*/
call tsoserv "SETROPTS RACLIST(CSFSERV) REFRESH" /* @02A*/
end /* @02A*/
end /* @02A*/

if (key_gen=1) then do
  /* @L9A*/
  /****************************************************************************
  /*******************************
  /       Allow the daemon to generate key pairs
  /*******************************
  /****************************************************************************
  call logsay2 "Allowing the PKI Services daemon to",
  "generate key pairs ..."
  /* @L9A*/
  if cryptoz_profile_so ^= '' & cryptoz_profile_user ^= ''
  then do
    /* @L9A*/
    call tsoserv "SETROPTS CLASSACT(CRYPTOZ)"
    /* @L9A*/
call tsoserv "SETROPTS GENERIC(CRYPTOZ)"
    /* @L9A*/
call tsoserv "SETROPTS RACLIST(CRYPTOZ)"
    /* @L9A*/
call tsoserv "RDEFINE CRYPTOZ",
    cryptoz_profile_so "UACC(NONE)"
    /* @L9A*/
call tsoserv "RDEFINE CRYPTOZ",
    cryptoz_profile_user "UACC(NONE)"
    /* @L9A*/
call tsoserv "PERMIT" cryptoz_profile_so "CLASS(CRYPTOZ)",
    " ID("daemon") ACCESS(UPDATE)"
    /* @D4C*/
call tsoserv "PERMIT" cryptoz_profile_user "CLASS(CRYPTOZ)",
    " ID("daemon") ACCESS(CONTROL)"
    /* @D4C*/
call tsoserv "SETROPTS RACLIST(CRYPTOZ) REFRESH" /* @L9A*/
call tsoserv "SETROPTS GENERIC(CRYPTOZ) REFRESH" /* @L9A*/
end /* @L9A*/
end /* @L9A*/

if cryptoz_grp ^= '' then do
  /* @L9A*/
call tsoserv "CONNECT" daemon "GROUP(" cryptoz_grp ")"
  /* @L9A*/
end /* @L9A*/
end /* @L9A*/

****************************************************************************
/* daemon no longer needs access to OCSF */
*******************************************************************************/

*******************************************************************************/
/* Tie the daemon user ID to PKI Services started procedure */
*******************************************************************************/
call tsoserv "RDEFINE STARTED PKISERVD.* STDATA(USER("daemon"))"
call tsoserv "SETROPTS CLASSACT(STARTED) RACLIST(STARTED)"
call tsoserv "SETROPTS RACLIST(STARTED) REFRESH"

*******************************************************************************/
/* Give the surrogate user ID authority to request certificate functions */
*******************************************************************************/
call logsay2 "Allowing "surrog" to request certificate functions ..."
call tsoserv "SET FACILITY"
/* */
/* When a CA Domain is not specified, use the default value for */
/* the end user functions generic profile name. When a CA Domain */
/* is specified, append a dot/period(".") followed by the CA */
/* Domain value to the default value. */
/* */
if (ca_domain = "") then
  /* @L4A*/
  profname = "IRR.RPKISERV.**"
else /* @L4A*/
  profname = "IRR.RPKISERV.*."||ca_domain_trunc /* @L4A*/
call tsoserv "RDEFINE FACILITY "||profname /* @L4C*/
call tsoserv "PERMIT "||profname||" CLASS(FACILITY)",
  " ID("surrog") ACCESS(CONTROL)"
/* @L4C*/

*******************************************************************************/
/* The administrative functions of PKI Services are protected */
/* by the IRR.RPKISERV.PKIADMIN FACILITY class resource and */
/* optionally by the <domain>.<action>.<template> PKISERV class */
/* resources. */
/* */
/* The following commands give UPDATE access on the resource in */
/* the facility class and READ access on the resources in the */
/* PKISERV class to the PKI services group to allow them to act */
/* on certificate requests and issued certificates. */
*******************************************************************************/
call logsay2 "Creating the profile to protect PKI Admin functions ..."
/* When a CA Domain is not specified, use the default value for
* the administrative function profile name. When a CA Domain
* is specified, append a dot/period(".") followed by the CA
* Domain value to the default value.
*/
if (ca_domain = "") then
  profname = "IRR.RPKISERV.PKIADMIN"
else
  profname = "IRR.RPKISERV.PKIADMIN."||ca_domain_trunc

call tsoserv "RDEFINE FACILITY "||profname
call tsoserv "PERMIT "||profname||" CLASS(FACILITY)",
  ID("pkigroup") ACCESS(UPDATE)
call tsoserv "PERMIT "||profname||" CLASS(FACILITY)",
  ID("surrog") ACCESS(NONE)
call tsoserv "SETROPTS RACLIST(FACILITY) REFRESH"

if AdminGranularControl = 1 then do
  call tsoserv "PERMIT "||profname||" CLASS(FACILITY)",
    ID("pkigroup1") ACCESS(UPDATE)
  call tsoserv "PERMIT "||profname||" CLASS(FACILITY)",
    ID("pkigroup2") ACCESS(UPDATE)
call tsoserv "SETROPTS RACLIST(FACILITY) REFRESH"
call logsay2 "Creating the profiles to granular control",
  " individual PKI Admin function......" 
cadomain = ca_domain
if(cadomain ==") then
  cadomain = "NOCADOMAIN"
do r = 1 to template.0
  /* Granular Access to pkigroup1
  do p = 1 to actions1.0
    call granaccess cadomain template.r pkigroup1 actions1.p
  end
  call logsay " "
call tsoserv "SETROPTS CLASSACT(PKISERV)"
call tsoserv "SETROPTS RACLIST(PKISERV)"
call tsoserv "RDEFINE PKISERV "|| cadomain || ",
  |"POSTCERT"| " UACC(NONE)"
call tsoserv "PERMIT "|| cadomain || ", "|"POSTCERT"
  |" CLASS(PKISERV) ID("pkigroup1") ACCESS(READ)"
call tsoserv "RDEFINE PKISERV "|| cadomain || ",
  |"CREATECRL"| " UACC(NONE)"
call tsoserv "PERMIT "|| cadomain || ", "|"CREATECRL"
  |" CLASS(PKISERV) ID("pkigroup1") ACCESS(READ)" call tsoserv "SETROPTS RACLIST(PKISERV) REFRESH" end

/* Done. Now write to the log */
call logsay " "
call logsay "-------------------------------------------------
Information needed for PKI Services UNIX set up:"
call logsay "---------------------------------------------"
call logsay " "
call logsay "The daemon user ID is:"
call logsay " " daemon

call logsay "The VSAM high level qualifier is:"
call logsay " " vsamhlq

"This is needed for the [ObjectStore] section in pkiserv.conf"
call logsay " "
call logsay "The PKI Services' DER encoded certificate is in data set:"
call logsay " " cacert_dsn >/dev/null

call logsay "This may be OPUT to /var/pkiserv/cacert.der with ",
"the BINARY option"
call logsay " 
if export_dsn ^= "" then do >/dev/null
  call logsay "The webserver's DER encoded root 
  certificate is in data set:"
call logsay " " export_dsn >/dev/null
  call logsay "This may be OPUT to /var/pkiserv/cacert.der with ",
  "the BINARY option, and distribute it to requestors."
call logsay " 
end else do /
  call logsay "You need to find the webserver's root CA ",
  "certificate and export it manually."
  call logsay " "
end

call logsay "The fully qualified PKI Services' SAF keyring is:"
call logsay " " daemon"/ca_ring

call logsay "This is needed for the [SAF] section in pkiserv.conf"
if ra_label ^= "" then do >/dev/null
  call logsay " " ra_label
  call logsay "This is needed for the [SAF] section in pkiserv.conf"
end

if ca_dn ^= "" then do
  call logsay "The PKI Services CA DN is:"
call norm_dn ca_dn

call logsay "The suffix must match the LDAP suffix in slapd.conf"
else
  call logsay "CA certificate not created by this exec"
call logsay " 
if ra_dn ^= "" then do
  call logsay "The PKI Services RA DN is:"
call norm_dn ra_dn

call logsay "The suffix must match the LDAP suffix in slapd.conf"
else
  call logsay "RA certificate not created by this exec"
call logsay " 
  "The recommended location for the pkiserv.conf and pkiserv.tmpl is:"
if ca_domain = "" then
  call logsay " /etc/pkiserv"
else do
  call logsay " /etc/pkiserv/"ca_domain
end

call logsay " 
  "Set the following environment variables in pkiserv.envvars:"
if ca_domain = "" then
  call logsay " _PKISERV_CONFIG_PATH=/etc/pkiserv"
else do
  call logsay " _PKISERV_CA_DOMAIN="ca_domain"
call logsay " _PKISERV_CONFIG_PATH=/etc/pkiserv/"ca_domain"
end

call logsay " 
  "Set the following environment variable in your virtual host files:"
if ca_domain = "" then /*@L4A*/
call logsay " _PKISERV_CONFIG_PATH=/etc/pkiserv" /*@L4A*/
else /*2@L4A*/
call logsay " _PKISERV_CONFIG_PATH="#TRANSLATE(ca_domain),
"=/etc/pkiserv/"ca_domain" /*@L4A*/
call logsay "" /*@L4A*/
if web_dn ^= "" then do
call logsay "The webserver's SAF keyring is:"
call logsay "web_ring"
call logsay, "This is needed for the KeyFile directive in virtual host files"
call logsay ""
call logsay "The Webserver's DN is:"
call norm_dn web_dn
call logsay "dn"
call logsay "The left most RDN must be the webserver's fully", 
"qualified domain name"
end
else
call logsay, "Webserver certificate and keyring not created. You must add the CA",
"certificate as a 'trusted root' manually"
call logsay ""
if log_dsn ^= "" then do
x = OUTTRAP(MSGS.)
'EXECIO' logdata.0 'DISKW IKYLOGDD (FINIS STEM LOGDATA.'
'FREE FI(IKYLOGDD)'
x=OUTTRAP('OFF')
say "Commands complete. Results written to log data set" log_dsn
end
/*******************************************************************************/
/* Exit */
/*******************************************************************************/
say 'The IKYSETUP EXEC has completed.'
Exit max_return_code

/*****************************************************************************/
/* tsoserv - echo rc and commands and track highest rc */
/*****************************************************************************/
tsoserv:
Parse arg cmd
return_code = 0
skipit= 0
if runopt = "NO" | runopt = "PROMPT" then
call logsay cmd
if runopt = "PROMPT" then do
say "Run command (y/n) ?"
parsed pull ans
if substr(ans,1,1) ^= 'Y' & substr(ans,1,1) ^= 'y' then
skipit= 1
end
if skipit = 0 then
if runopt = "YES" | runopt = "PROMPT" then do
msg_status= MSG('ON')
x=OUTTRAP('rac_ret.')
Address TSO cmd
return_code=rc
y=OUTTRAP('OFF')
call logsay 'Return code' return_code 'from->' cmd
If return_code=0 then do
Do j=1 to rac_ret.0
call logsay rac_ret.j
end
end
max_return_code= max(max_return_code,return_code)
return return_code

/*****************************************************************************/
/* logsay - echo messages to the terminal and logdata stem */
/*****************************************************************************/
logsay:
Parse arg cmd
parse var cmd leftpart " PASSWORD('" pw ") " rightpart
if pw ^= "" then
cmd= leftpart "PASSWORD('******')" rightpart
say cmd

cmdlen = length(cmd) /*@L5A*/
Do Ln = 1 to length(cmd) by 252 /*@L5A*/
k = logdata.0 + 1
logdata.k = substr(cmd, Ln, min(252, cmdlen))  /* @L5C */
logdata.0 = k
cmdlen = cmdlen - min(252, cmdlen)  /* @L5A */
end  /* @L5A */

return 0

/***************************************************************************/
/* logsay2 - echo a blank line before echoing the command */
/***************************************************************************/
logsay2:
  Parse arg cmd2
  call logsay
  call logsay cmd2

return 0

/***************************************************************************/
/* norm_dn - transform the RACF dn keywords to an LDAP dn */
/***************************************************************************/
norm_dn:
  parse arg in_dn
  parse var in_dn q.1 "('' v.1 '')",
    q.2 "('' v.2 '')",
    q.3 "('' v.3 '')",
    q.4 "('' v.4 '')",
    q.5 "('' v.5 '')",
    q.6 "('' v.6 '')",
    q.7 "('' v.7 '')" rest
  dns. = ""
  do i = 1 to 7
    q = strip(q.i)
    upper q
    if q = "" then
      leave
    if q = "CN" then
      dns.1 = "CN=" || v.i
    else if q = "T" then
      dns.2 = "T=" || v.i
    else if q = "OU" then
      dns.3 = "OU=" || v.i
    else if q = "O" then
      dns.4 = "O=" || v.i
    else if q = "L" then
      dns.5 = "L=" || v.i
    else if q = "ST" then
      dns.6 = "ST=" || v.i
    else
      dns.7 = "C=" || v.i
  end
  dn = ""
  do i = 1 to 7
    if dns.i ^= "" then
      if dn = "" then
        dn = dns.i
      else
        dn = dn || "," || dns.i
  end
  return 0

/***************************************************************************/
/* granaccess - Create profiles and grant access for Granular Control */
/***************************************************************************/
granaccess:
  parse arg cadomain template pkigroup action  /* @LDA */
  call tsoserv "RDEFINE PKISERV "|| cadomain || ".",
    || action || "." || template "UACC(NONE)"  /* @DAC */
  call tsoserv "PERMIT "|| cadomain || "." || action,
    || "." || template || " CLASS(PKISERV) ID("pkigroup")",
    "ACCESS(READ)"
    /* @DAC */
  return 0  /* @LDA */
Chapter 31. Other code samples

This topic provides code samples for the following files:

- `httpd.conf`, `vhost80.conf`, `vhost443.conf`, and `vhost1443.conf`, which contain IBM HTTP Server directives. (See “IBM HTTP Server - Powered by Apache configuration directives” on page 649.)
- `IKYCDB2`, which is a sample to build Db2 objects for the PKI Services object store and issued certificate list (ICL). This JCL is used for version 0 object store and ICL. (See “IKYCDB2” on page 655.)
- `IKYCDBV1`, which is a sample to build Db2 objects for the PKI Services object store and issued certificate list (ICL). This JCL is used for version 1 object store and ICL. (See “IKYCDBV1” on page 658.)
- `IKYCVSAM`, which is sample IDCAMS JCL to create VSAM data sets (regardless of whether you are using a sysplex or non-sysplex). This JCL is used for version 0 object store and ICL. (See “IKYCVSAM” on page 661.)
- `IKYCVSV1`, which is sample IDCAMS JCL to create VSAM data sets (regardless of whether you are using a sysplex or non-sysplex). This JCL is used for version 1 object store and ICL. (See “IKYCVSV1” on page 665.)
- `IKYRVSAM`, which is sample IDCAMS JCL to add VSAM record-level sharing (RLS) support. IKYRVSAM reallocates your VSAM data sets in preparation for sharing in a sysplex. This JCL is used for version 0 object store and ICL. (See “IKYRVSAM” on page 670.)
- `IKYRVSV1`, which is sample IDCAMS JCL to add VSAM record-level sharing (RLS) support. IKYRVSAM reallocates your VSAM data sets in preparation for sharing in a sysplex. This JCL is used for version 1 object store and ICL. (See “IKYRVSV1” on page 673.)
- `IKYLSBIND`, which is a sample job to build the Db2 package and plan for the PKI Services object store and issued certificate list (ICL). (See “IKYLSBIND” on page 678.)
- `IKYSGRNT`, which is a sample job to grant execute privilege on the Db2 package for PKI Services to the PKI Services daemon user ID. (See “IKYSGRNT” on page 679.)
- `IKYVVKUP`, which is sample JCL to back up the PKI Services VSAM data sets using the DFSMSdss DUMP utility. (See “IKYVVKUP” on page 680.)
- `IKYVREST`, which is sample JCL to restore the PKI Services VSAM data sets from a backup taken with the DFSMSdss DUMP utility. (See “IKYVREST” on page 681.)
- `PKISERVD`, which is a sample procedure to start PKI Services daemon. (See “PKISERVD sample procedure to start PKI Services daemon” on page 682.)

Note: Other important programs are contained in other chapters:

- `pkiserv.envvars` (the PKI Services environment variables file). See “The pkiserv.envvars environment variables file” on page 617.

IBM HTTP Server - Powered by Apache configuration directives

The sample configuration directives for IBM HTTP Server - Powered by Apache are located in the source directory `/usr/lpp/pkiserv/samples/`. The following listings might not be identical to the code samples shipped with the product.

`httpd.conf`
httpd.conf is the main configuration file for IBM HTTP Server - Powered by Apache.

---

# Licensed Materials - Property of IBM
# 5650-ZOS
# Copyright IBM Corp. 2019
# Status = HKY77C0
# #
# Update the ihs-install-dir/conf/httpd.conf file with the following # directives that might not be present in your httpd.conf file and that # might be unique to the PKI Services CGI scripts and programs.

# Provides a rule-based rewriting engine to rewrite one URL to another # URL
LoadModule rewrite_module modules/mod_rewrite.so
LoadModule authnz_saf_module modules/mod_authnz_saf.so
LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

# AddType allows you to add to or override the MIME configuration # file mime.types for specific file types.
# AddType directive is added to the httpd.conf file # after the TypesConfig Directive
AddType application/x-x509-user-cert .cer
AddType application/x-x509-ca-cert .der
AddType application/octet-stream .msi
AddType application/pkix-crl .crl

# Include other configuration files
# vhost80 - Virtual Host file for non SSL requests
# vhost443 - Virtual Host file for SSL requests with server authentication
# vhost1443 - Virtual Host file for SSL requests with client authentication
Include conf/vhost80.conf
Include conf/vhost443.conf
Include conf/vhost1443.conf

---

# Licensed Materials - Property of IBM
# 5650-ZOS
# Copyright IBM Corp. 2015, 2019
# Status = HKY77C0
# #
# This Virtual Host file for non SSL requests contains only the # directives that may be unique to PKI Services. Copy the directives # needed to the ihs-install-dir/conf/vhost80.conf file if it exists or # use this file as the base to create one and add the other basic # directives.

<VirtualHost *:80>
CharsetOptions NoTranslateRequestBodies
AllowEncodedSlashes On
SetEnv LIBPATH "<application-root>/lib:{$LIBPATH}"
SetEnv _PKISERV_CONFIG_PATH="/etc/pkiserv"

# Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization
# Section - Adding a new CA domain.
# SetEnv _PKISERV_CONFIG_PATH_EMPLOYEES="/etc/pkiserv/employees"
# SetEnv _PKISERV_CONFIG_PATH_ADMEMPLOYEES="/etc/pkiserv/employees"

RewriteEngine On
RewriteRule ^/(PKIServ|Customers)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
RewriteRule ^/(PKIServ|Customers)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]

# Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization
# Section - Adding a new CA domain.
# RewriteRule ^/(AdmEmployees|Employees)/ssl-cgi/(.*) https://<server-domain-name>/$1/ssl-cgi-bin/$2 [R,NE]
# RewriteRule ^/(AdmEmployees|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443/$1/clientauth-cgi-bin/$2 [R,NE]

AliasMatch /PKIServ/cacerts/(.*) /var/pkiserv/$1

# Uncomment this line if adding a new CA domain as described in Chapter 14 - Advance Customization
# Section - Customizing distribution point CRLs
# AliasMatch /Employees/cacerts/(.*) /var/pkiserv/employees/$1

# The User will not be prompted for user id and # password and will use the Surrogate User ID
# PKISERV to access files in this directory
<Directory /var/pkiserv>
  Require all granted
  SAFRunAs PKISERV
</Directory>

# Modified the following directives to remove support for PKIXEnroll
AliasMatch /PKIServ/PKIXEnroll/(.*) <application-root>/ActiveX/PKIXEnroll/$1
<Directory <application-root>/ActiveX/PKIXEnroll>
  Require all granted
  SAFRunAs PKISERV
</Directory>

ScriptAliasMatch ^/(PKIServ|Customers)/public-cgi/(.*) <application-root>/PKIServ/public-cgi/$2

# Uncomment this line if adding a new CA Domain as described in Chapter 14 - Advance Customization
# Section - Adding a new CA Domain.
#ScriptAliasMatch ^/(AdmEmployees|Employees)/public-cgi/(.*) <application-root>/PKIServ/public-cgi/$2

# The user will not be prompted for user id and password and will use the Surrogate User ID
# PKISERV to access files in this directory
<Directory <application-root>/PKIServ/public-cgi>
  Options +Includes
  Require all granted
  SAFRunAs PKISERV
</Directory>
</VirtualHost>

vhost443.conf

vhost443.conf is the configuration for server authentication in SSL processing.

```bash
# Licensed Materials - Property of IBM
# 5650-Z05
# Copyright IBM Corp. 2015, 2019
# Status = HKY77C0
#
# This Virtual Host file for SSL requests with server authentication contains only the directives that may be unique to PKI Services. Copy the directives needed to the ihs-install-dir/conf/vhost443.conf file if it exists or use this file as the base to create one and add the other basic directives.
Listen 443
<VirtualHost *:443>
  SetEnv LIBPATH "<application-root>/lib:${LIBPATH}"
  SetEnv _PKISERV_CONFIG_PATH                "/etc/pkiserv"
  #Environment variables for tracing EST
  #SetEnv _PKISERV_EST_TRACE
  #SetEnv _PKISERV_EST_TRACE_FILE
  /tmp/pkiest.%t.trc
  # Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization,
  # Section - Adding a new CA Domain.
  #SetEnv _PKISERV_CONFIG_PATH_EMPLOYEES        "/etc/pkiserv/employees"
  #SetEnv _PKISERV_CONFIG_PATH_ADMEMPLOYEES     "/etc/pkiserv/employees"

  Keyfile /saf SSLring
  SSLEnable None
  SSLClientAuth None
  RewriteEngine On
  RewriteRule ^/(PKIServ|Customers)/public-cgi/(.*) http://<server-domain-name>/$1
  /ssl-cgi-bin/$2 [R,NE,L] https://<server-domain-name>
  /ssl-cgi-bin$2 [R,NE,L]
  RewriteRule ^/(PKIServ|Customers)/clientauth-cgi/(.*) https://<server-domain-name>:1443
  /clientauth-cgi-bin$2 [R,NE,L]

  # Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization
  # Section - Adding a new CA Domain.
  #RewriteRule ^/(AdmEmployees|Employees)/public-cgi/(.*) http://<server-domain-name>
  /ssl-cgi-bin$2 [R,NE,L] https://<server-domain-name>
  /ssl-cgi-bin$2 [R,NE,L]
  RewriteRule ^/(AdmEmployees|Employees)/clientauth-cgi/(.*) https://<server-domain-name>:1443
  /clientauth-cgi-bin$2 [R,NE,L]
  ScriptAliasMatch ^/(PKIServ|Customers)/(public-cgi|ssl-cgi-bin)/(.*)"<application-root>/PKIServ/$2/$3"
  ScriptAliasMatch ^/.well-known/est(x*) "<application-root>/PKIServ/ssl-cgi-bin/pkiest"
</VirtualHost>
```
vhost1443.conf

**vhost1443.conf** is the configuration file for client authentication in SSL processing.
# Status = HKY77C0
#
# This virtual host file for SSL requests with client authentication
# contains only the directives that may be unique to PKI Services. Copy
# the directives needed to the ihs-install-dir/conf/vhost1443.conf file
# if it exists or use this file as the base to create one and add the
# other basic directives.

Listen 1443
<VirtualHost *:1443>
  SetEnv            LIBPATH                              "<application-root>/lib:${LIBPATH}"
  SetEnv            _PKISERV_CONFIG_PATH                 "/etc/pkiserv"
  # Environment variables for tracing CMP and EST
  #SetEnv          _PKISERV_CMP_TRACE                     0xff
  #SetEnv          _PKISERV_CMP_TRACE_FILE
  #/tmp/pkicmp.%.trc
  #SetEnv          _PKISERV_EST_TRACE                     0xff
  #SetEnv          _PKISERV_EST_TRACE_FILE
  /tmp/pkiiest.%.trc
  # Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization
  # Section - Adding a new CA domain.
  #SetEnv          _PKISERV_CONFIG_PATH_EMPLOYEES        "/etc/pkiserv/employees"
  #SetEnv          _PKISERV_CONFIG_PATH_ADMEMPLOYEES     "/etc/pkiserv/employees"
  Keyfile           /saf SSLring
  SSLEnable
  SSLClientAuth     Required
  RewriteEngine     on
  RewriteRule       ^/(PKIServ|Customers)/public-cgi/(.*)  http://<server-domain-name>
  /$1/public-cgi/$2 [R,NE,L]
  RewriteRule       ^/(PKIServ|Customers)/ssl-cgi/(.*)     https://<server-domain-name>
  /$1/ssl-cgi-bin/$2 [R,NE,L]
  # Uncomment this section if adding a new CA Domain as described in Chapter 14 - Advance Customization
  # Section - Adding a new CA domain.
  #RewriteRule       ^/(AdmEmployees|Employees)/public-cgi/(.*)  http://<server-domain-name>
  /$1/public-cgi/$2 [R,NE,L]
  #RewriteRule       ^/(AdmEmployees|Employees)/ssl-cgi/(.*)     https://<server-domain-name>
  /$1/ssl-cgi-bin/$2 [R,NE,L]
  ScriptAliasMatch  ^/(PKIServ|Customers)/(clientauth-cgi|clientauth-cgi-bin)/(.*)
  "<application-root>/PKIServ/clientauth-cgi-bin/$3"
  ScriptAliasMatch ^/.well-known/est/(.*)   "<application-root>/PKIServ
  /clientauth-cgi-bin/pkiest"
  # Uncomment this line if adding a new CA Domain as described in Chapter 14 - Advance Customization
  # Section - Adding a new CA domain.
  #ScriptAliasMatch  ^/(AdmEmployees|Employees)/(clientauth-cgi|clientauth-cgi-bin)/(.*)
  "<application-root>/PKIServ/clientauth-cgi-bin/$3"
  # Uncomment this line if adding a new CA domain for EST.
  #ScriptAliasMatch ^/.well-known/est/(.*)   "application-root>/PKIServ
  /clientauth-cgi-bin/pkiest"
  # Modified the following directives to remove support for PKIXEnroll
  AliasMatch   /PKIServ/PKIXEnroll/(.*)         <application-root>/ActiveX/PKIXEnroll/$1
  # The User will not be prompted to enter a RACF User ID
  # and password but will use the Surrogate User ID
  # PKISERV to access files in this directory
  <Directory <application-root>/ActiveX/PKIXEnroll>
    AuthName          PublicUser
    Require           all granted
    SAFRunAs          PKISERV
  </Directory>
  # The User will be prompted for a client certificate
  # for SSL authentication.
  <Directory <application-root>/PKIServ/clientauth-cgi-bin>
    AuthName          RenewRevokeUser
    AuthType          Basic
    AuthBasicProvider saf
    Require           all granted
    SAFRunAs          PKISERV
  </Directory>
  # The User will not be prompted to enter a RACF User ID
  # and password but will use the Surrogate User ID
  # PKISERV to access files in this directory
  <Directory <application-root>/PKIServ/clientauth-cgi-bin/auth>
    AuthName          AuthenticatedAdmin
    AuthType          Basic
    AuthBasicProvider saf
    Require           valid-user
    SAFRunAs          %CERTIF_REQ%
  </Directory>
  <LocationMatch    "/PKIServ|Customers]/clientauth-cgi-bin/auth/pkicmp">
    CharsetOptions  NoTranslateRequestBodies
  </LocationMatch>
  # Uncomment this line if adding a new CA Domain as described in Chapter 14 - Advance Customization
  # Section - Adding a new CA domain.
WebSphere Liberty

server.xml

server.xml is the main server configuration file for Liberty.

```xml
<server description="new server">
   <featureManager>
      <feature>jsp-2.2</feature>
      <feature>localConnector-1.0</feature>
      <feature>ssl-1.0</feature>
      <feature>appSecurity-2.0</feature>
      <feature>ejbLite-3.1</feature>
      <feature>zosSecurity-1.0</feature>
   </featureManager>

   <httpEndpoint host="pkiserver.mycompany.com" httpPort="9080" httpsPort="9440" id="defaultHttpEndpoint">
      <sslOptions sslRef="ServerAuthSSLConfig" />
   </httpEndpoint>

   <applicationMonitor updateTrigger="mbean" />

   <ssl id="ServerAuthSSLConfig"
      trustStoreRef="defaultKeyStore"
      keyStoreRef="defaultKeyStore"
      clientAuthentication="false" />

   <ssl id="ClientAuthConfig"
      keyStoreRef="defaultKeyStore"
      trustStoreRef="defaultKeyStore"
      clientAuthentication="true"
      sslProtocol="TLS" />

   <keyStore id="defaultKeyStore"
      location="safkeyring://libsvr/LibertyKeyring"
      type="JCEKACFKS" password="password" fileBased="false"
      readOnly="true" />

   <safRegistry id="saf" />

   <!-- Uncomment the following line if you wish to use saf authorization with delegation -->
   <!-- <safAuthorization enableDelegation="true" /> -->

   <syncToOSThread appEnabled="true" />

   <library id="global" />
```
IKYCDB2

IKYCDB2 is a sample to create Db2 objects for the object store and issued certificate list (ICL). IKYCDB2 is a member of SYS1.SAMPLIB.

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYCDB2.

--- Sample: IKYCDB2
---
--- Licensed Materials - Property of IBM
--- 5650-ZOS
--- Copyright IBM Corp. 2011, 2013
--- Status = HKY7790
---
--- This sample may be used to create the DB2 database using SPUFI that
--- PKI Services utilizes to store certificate requests and issued
--- certificates.
---
--- Before using this sample, you may need to make the following
--- modifications:
---
--- 1) Change all the occurrences of 'SYSDEFLT' to the storage group you
--- want to contain the PKI Services DB2 tablespaces if SYSDEFLT
--- is not suitable for your installation.
---
--- 2) Change all the occurrences of 'MASTERCA' to the package name.
The package name should match the first eight characters of
the CA domain name.

3) Change all the occurrences of 'IKYPKIDB' to the database name of
your choosing. If you are running multiple PKI CA domains, each
domain must have a unique database name.

You will also need certain DB2 privileges to use this sample.
These privileges are indicated in the comments preceding each
set of SQL instructions.

If you have already run this sample before, uncomment these
statements to drop existing indexes, tables, and tablespaces.
In order to DROP these objects, the user must have at least one
of the following privileges:
- Ownership of the indices, tables and tablespaces
- DBADM authority on the IKYPKIDB database
- SYSADM or SYSCTRL authority

**********************************************************************

DROP INDEX MASTERCA.TIDAIX;
DROP INDEX MASTERCA.OREQAIX;
DROP INDEX MASTERCA.OSTATAIX;
DROP TABLE MASTERCA.OST;

DROP INDEX MASTERCA.IREQAIX;
DROP INDEX MASTERCA.ISTATAIX;
DROP TABLE MASTERCA.ICL;

DROP TABLESPACE IKYPKIDB.OSTSPACE;
DROP TABLESPACE IKYPKIDB.ICLSPACE;

**********************************************************************

If you have already run this sample before, uncomment these
statements to drop existing database. In order to DROP the
database, the user must have at least one of the following
privileges:
- DROP privilege on the IKYPKIDB database
- DBADM or DBCTRL authority on the IKYPKIDB database
- SYSADM or SYSCTRL authority

**********************************************************************

DROP DATABASE IKYPKIDB;

COMMIT;

**********************************************************************

The following statement creates the PKI Services DB2 database.
To create the database, the user must have at least one of
the following privileges:
- CREATEDBA privilege
- CREATEDBC privilege
- SYSADM or SYSCTRL authority

**********************************************************************

CREATE DATABASE IKYPKIDB STOGROUP SYSDEFLT;

**********************************************************************

The following statements create the tablespaces used for the
PKI Services ObjectStore and ICL tables. To create these
tablespaces, the user must have at least one of the following
privileges:
- CREATETSA privilege on the IKYPKIDB database
- DBADM, DBCTRL, or DBMAINT authority for the
  IKYPKIDB database
- SYSADM or SYSCTRL authority

**********************************************************************

CREATE TABLESPACE OSTSPACE IN IKYPKIDB
  LOCKSIZE ROW
  SEGSIZE 4
  PCTFREE 0
  BUFFERPOOL BP32K
  USING STOGROUP SYSDEFLT
  PRIQTY 144400

CREATE TABLESPACE ICLSPACE IN IKYPKIDB

LOCKSIZE ROW
SEG SIZE 4
PCTFREE 0
BUFFERP OOL BP32K
USING STOGROUP SYSDEFLT
PRIQTY 14400
;
-*******************************************************************************
-- The following statement creates the ObjectStore table.
-- To create the table, the user must have at least one of the
-- following privileges:
-- - CREATETAB privilege on the IKYPKIDB database
-- - DBADM, DBCTRL, or DBMAINT authority for the
--   IKYPKIDB database
-- - SYSADM or SYSCTRL authority
--
-- The table name MUST be <package name>.OST
--*******************************************************************************
CREATE TABLE MASTERCA.OST(  
  RECORD_KEY                    BINARY(4)         NOT NULL,
  RECORD_STATE                  BINARY(4)         NOT NULL,
  REQDATA_LEN                   INTEGER           NOT NULL,
  REQUESTOR_NAME                VARCHAR(32)               ,
  TRANS_ID                      CHAR(24)          NOT NULL,
  COMMENT                       VARCHAR(64)               ,
  ISSUED_TIME                   TIMESTAMP         NOT NULL,
  LAST_CHANGE_TIME              TIMESTAMP         NOT NULL,
  TEMPLATE_NICKNAME             VARCHAR(8)                ,
  SERIAL_NUM                    BINARY(4)                 ,
  REQDATA                       VARBINARY(32512)  NOT NULL,
  PRIMARY KEY (RECORD_KEY)
)  
IN IKYPKIDB.OSTSPACE
;
-*******************************************************************************
-- The following statement creates the indices for the
-- ObjectStore table. To create these indices, the user must
-- have at least one of the following privileges:
-- - INDEX privilege on the ObjectStore table
-- - Ownership of the ObjectStore table
-- - DBADM authority for the IKYPKIDB database
-- - SYSADM or SYSCTRL authority
--*******************************************************************************
-- The following statement creates the ICL table. To create the
-- table, the user must have at least one of the following
-- privileges:
-- - CREATETAB privilege on the IKYPKIDB database
-- - DBADM, DBCTRL, or DBMAINT authority for the
--   IKYPKIDB database
-- - SYSADM or SYSCTRL authority
--
-- The table name MUST be <package name>.ICL
--*******************************************************************************
CREATE TABLE MASTERCA.ICL(  
  SERIAL_NUM                    BINARY(4)         NOT NULL,
  CERT_STATE                    BINARY(4)         NOT NULL,
  CERT_LEN                      INTEGER           NOT NULL,
  REQUESTOR_NAME                VARCHAR(32)       NOT NULL,
  REVOKE_DATE                   TIMESTAMP                 ,
  INVALID_DATE                  TIMESTAMP                 ,
  REVOKE_REASON                 INTEGER                   ,
  COMMENT                       VARCHAR(64)               ,
  ISSUED_TIME                   TIMESTAMP         NOT NULL,
  LAST_CHANGE_TIME              TIMESTAMP         NOT NULL,
  TEMPLATE_NICKNAME             VARCHAR(8)                ,
  OBFUS_PW                      VARBINARY(33)             ,
  PROCESS_FLAGS                 BINARY(4)                 ,
  KEYID                         BINARY(20)                ,
  CRLDP_NUM                     INTEGER                   ,
  EXPIRE_EPOCH_DAYS             INTEGER           NOT NULL,
  EXPIRE_DATE                   TIMESTAMP         NOT NULL,
  KU_DIGTSIG                    BINARY(1)                 ,
  KU_NONRPU                     BINARY(1)                 ,
  KU_KEYENC                     BINARY(1)                 ,
  KU_DATAENC                    BINARY(1)                 ,
  KU_KEYAGR                     BINARY(1)                 ,
IKYCDDBV1

IKYCDDBV1 is a sample to create Db2 objects for the object store and issued certificate list (ICL). IKYCDDBV1 is a member of SYS1.SAMPLIB.

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYCDDBV1.

---
-- This sample may be used to create the DB2 database using SPUFI that
-- PKI Services utilizes to store certificate requests and issued
-- certificates.
-- The DB2 database created by this sample supports improved tracking
-- of SCEP requests and certificates issued for those requests that is
-- available in PKI Services V2R3 (HKY77B8) and later releases. For the
-- sample that creates the original DB2 database format utilized by PKI
-- Services V2R2 (HKY77A0) and earlier releases, please see the IKYCDDB2
-- sample.
--
-- Before using this sample, you may need to make the following
-- modifications:
-- 1) Change all the occurrences of 'SYSDEFLT' to the storage group you
--    want to contain the PKI Services DB2 tablespaces if SYSDEFLT
--    is not suitable for your installation.
-- 2) Change all the occurrences of 'MASTERC1' to the package name.
In choosing this name, it is recommended to use the first seven characters of the associated CA domain name, followed by a character that will uniquely identify this package name with the DBRM assigned to this package. This sample assumes that 'MASTERC1' is the associated CA Domain name, and the last character '1' is used to associate this package with the IKYPDBR1 DBRM. The resulting name used here must match the value used in the IKYSBIND job.

3) Change all the occurrences of 'IKYPKID1' to the database name of your choosing. If you are running multiple PKI CA domains, each domain must have a unique database name. If you have existing databases for these domains from a prior version of PKI Services, you must choose a different name.

You will also need certain DB2 privileges to use this sample. These privileges are indicated in the comments preceding each set of SQL instructions.

**********************************************************************

If you have already run this sample before, uncomment these statements to drop existing indexes, tables, and tablespaces. In order to DROP these objects, the user must have at least one of the following privileges:

- Ownership of the indices, tables and tablespaces
- DBADM authority on the IKYPKID1 database
- SYSADM or SYSCTRL authority

**********************************************************************

DROP INDEX MASTERC1.TIDAIX;
DROP INDEX MASTERC1.OREQAIX;
DROP INDEX MASTERC1.OSCEPAIX;
DROP INDEX MASTERC1.OSTATAIX;
DROP TABLE MASTERC1.OSTV1;

DROP INDEX MASTERC1.IREQAIX;
DROP INDEX MASTERC1.ISCEPAIX;
DROP INDEX MASTERC1.ISTATAIX;
DROP TABLE MASTERC1.ICLV1;

DROP TABLESPACE IKYPKID1.OSTSPACE;
DROP TABLESPACE IKYPKID1.ICLSPACE;

**********************************************************************

If you have already run this sample before, uncomment these statements to drop existing database. In order to DROP the database, the user must have at least one of the following privileges:

- DROP privilege on the IKYPKID1 database
- DBADM or DBCTRL authority on the IKYPKID1 database
- SYSADM or SYSCTRL authority

**********************************************************************

DROP DATABASE IKYPKID1;

COMMIT;

**********************************************************************

The following statement creates the PKI Services DB2 database. To create the database, the user must have at least one of the following privileges:

- CREATEDBA privilege
- CREATEDBC privilege
- SYSADM or SYSCTRL authority

**********************************************************************

CREATE DATABASE IKYPKID1 STOGROUP SYSDEFLT;

**********************************************************************

The following statements create the tablespaces used for the PKI Services ObjectStore and ICL tables. To create these tablespaces, the user must have at least one of the following privileges:

- CREATE TSA privilege on the IKYPKID1 database
- DBADM, DBCTRL, or DBMAINT authority for the
CREATE TABLESPACE OSTSPACE IN IKYPKID1
LOCKSIZE ROW
SEGSIZE 4
PCTFREE 0
BUFFERPOOL BP32K
USING STOGROUP SYSDEFLT
PRIQTY 144400;

CREATE TABLESPACE ICLSPACE IN IKYPKID1
LOCKSIZE ROW
SEGSIZE 4
PCTFREE 0
BUFFERPOOL BP32K
USING STOGROUP SYSDEFLT
PRIQTY 144400;

-- The following statement creates the ObjectStore table.
-- To create the table, the user must have at least one of the
-- following privileges:
-- - CREATETAB privilege on the IKYPKID1 database
-- - DBADM, DBCTRL, or DBMAINT authority for the
--   IKYPKID1 database
-- - SYSADM or SYSCTRL authority
--
-- The table name MUST be <package name>.OSTV1
--
CREATE TABLE MASTERC1.OSTV1(
    RECORD_KEY                    BINARY(4)         NOT NULL,
    RECORD_STATE                  BINARY(4)         NOT NULL,
    REQDATA_LEN                   INTEGER           NOT NULL,
    REQUESTOR_NAME                VARCHAR(32)               ,
    TRANS_ID                      CHAR(24)          NOT NULL,
    COMMENT                       VARCHAR(64)               ,
    ISSUED_TIME                   TIMESTAMP         NOT NULL,
    LAST_CHANGE_TIME              TIMESTAMP         NOT NULL,
    TEMPLATE_NICKNAME             VARCHAR(8)                ,
    SERIAL_NUM                    BINARY(4)                 ,
    SCEP_TRANSID                  VARCHAR(128)      NOT NULL,
    DB_VERSION                    BINARY(1)         NOT NULL,
    REQDATA                       VARBINARY(32380)  NOT NULL,
    PRIMARY KEY (RECORD_KEY)
) IN IKYPKID1.OSTSPACE
;

-- The following statement creates the indices for the
-- ObjectStore table. To create these indices, the user must
-- have at least one of the following privileges:
-- - INDEX privilege on the ObjectStore table
-- - Ownership of the ObjectStore table
-- - DBADM authority for the IKYPKID1 database
-- - SYSADM or SYSCTRL authority
--
CREATE UNIQUE INDEX MASTERC1.RKEYIX
ON MASTERC1.OSTV1 (RECORD_KEY);
CREATE INDEX MASTERC1.TIDAIX
ON MASTERC1.OSTV1 (TRANS_ID);
CREATE INDEX MASTERC1.OSCEPAIX
ON MASTERC1.OSTV1 (SCEP_TRANSID);
CREATE INDEX MASTERC1.OREQAIX
ON MASTERC1.OSTV1 (REQUESTOR_NAME);
CREATE INDEX MASTERC1.OSTATAIX
ON MASTERC1.OSTV1 (RECORD_STATE ,
  REQDATA_LEN ,
  REQUESTOR_NAME);

-- The following statement creates the ICL table. To create the
-- table, the user must have at least one of the following
-- privileges:
-- - CREATETAB privilege on the IKYPKID1 database
-- - DBADM, DBCTRL, or DBMAINT authority for the
--   IKYPKID1 database
--
-- - SYSADM or SYSCTRL authority
--
-- The table name MUST be <package name>.ICLV1
--
--****************************************************************************
CREATE TABLE MASTERC1.ICLV1(
  SERIAL_NUM                    BINARY(4)         NOT NULL,
  CERT_STATE                    BINARY(4)         NOT NULL,
  CERT_LEN                      INTEGER           NOT NULL,
  REQUESTOR_NAME                VARCHAR(32)       NOT NULL,
  REVOKE_DATE                   TIMESTAMP                 ,
  INVALID_DATE                  TIMESTAMP                 ,
  REVOKE_REASON                 INTEGER                   ,
  COMMENT                       VARCHAR(64)               ,
  ISSUE_DATE                    TIMESTAMP         NOT NULL,
  LAST_CHANGE_TIME              TIMESTAMP         NOT NULL,
  TEMPLATE_NICKNAME             VARCHAR(8)                ,
  OBFUS_PW                      VARBINARY(33)            ,
  PROCESS_FLAGS                 BINARY(4)                 ,
  KEVID                         BINARY(20)                ,
  CRLDP_NUM                     INTEGER                   ,
  EXPIRE_EPOCH_DAYS             INTEGER           NOT NULL,
  EXPIRE_DATE                   TIMESTAMP         NOT NULL,
  KUDIGTSIG                    BINARY(1)                 ,
  KU_NONRPU                     BINARY(1)                 ,
  KUKEYENC                     BINARY(1)                 ,
  KU_DATAENC                   BINARY(1)                 ,
  KuKEYAGR                     BINARY(1)                 ,
  KUCRTSGN                     BINARY(1)                 ,
  KU_CRLSN                     BINARY(1)                 ,
  KU_ENCONLY                   BINARY(1)                 ,
  KU_DECONLY                   BINARY(1)                 ,
  EKU_SEVAUTH                   BINARY(1)                 ,
  EKU_CLI_AUTH                  BINARY(1)                 ,
  EKU_CODESIGN                  BINARY(1)                 ,
  EKU_EMLPROT                   BINARY(1)                 ,
  EKU_TMESTMP                   BINARY(1)                 ,
  EKU_OCSPSGN                   BINARY(1)                 ,
  EKU_MSSCLNON                  BINARY(1)                 ,
  PREV_SERIAL_NUM               BINARY(4)                 ,
  SUBJ_DN                       VARCHAR(1024)     NOT NULL,
  SCEP_TRANSID                  VARCHAR(128)      NOT NULL,
  DB_VERSION                    BINARY(1)         NOT NULL,
  X509CERT                      VARBINARY(10240)  NOT NULL,
  PRIMARY KEY (SERIAL_NUM)
) IN IKYPKID1.ICLSPACE
;
--****************************************************************************
-- The following statement creates the indices for the ICL table. To create these indices, the user must have at
-- least one of the following privileges:
--     - INDEX privilege on the ICL table
--     - Ownership of the ICL table
--     - DBADM authority for the IKYPKID1 database
--     - SYSADM or SYSCTRL authority
--
--****************************************************************************
CREATE UNIQUE INDEX MASTERC1.SERIX
  ON MASTERC1.ICLV1 (SERIAL_NUM);
CREATE INDEX MASTERC1.ISCEPAIX
  ON MASTERC1.ICLV1 (SCEP_TRANSID);
CREATE INDEX MASTERC1.ISREQAIX
  ON MASTERC1.ICLV1 (REQUESTOR_NAME);
CREATE INDEX MASTERC1.ISTATAIX
  ON MASTERC1.ICLV1 (CERT_STATE ,
  CERT_LEN REQUESTOR_NAME);
COMMIT;

IKYCVSAM contains sample IDCAMS JCL to create VSAM data sets. IKYCVSAM is installed as a member of SYS1.SAMPLIB.
Use IKYCVSAM if you are creating VSAM data sets for the first time, regardless of whether you intend to use Parallel Sysplex support. However, if you intend to use Parallel Sysplex support, execute the IKYRVSAM job after this job to add VSAM record-level sharing (RLS) support. (See “IKYRVSAM” on page 670.)

**Note:** The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYCVSAM.

```plaintext
//IKYCVSAM JOB <job card parameters>
//*********************************************************************
//*  SAMP:      IKYCVSAM                                              *
//*                                                                   *
//*    Licensed Materials - Property of IBM                           *
//*    5694-A01                                                       *
//*    Copyright IBM Corp. 2001, 2011                                 *
//*    Status = HKY7780                                              *
//*                                                                   *
//*********************************************************************
//*                                                                   *
// This sample JCL may be used to create the VSAM data sets         *
// PKI Services utilizes to store certificate requests and         *
// issued certificates.                                             *
//                                                                   *
//*********************************************************************
//*                                                                   *
// Caution: This is neither a JCL procedure nor a complete job.     *
// Before using this job step, you will have to make the following  *
// modifications:                                                   *
//                                                                   *
// 1) Change the job card to meet your system requirements.         *
//                                                                   *
// 2) If you wish to change the data set qualifiers from the        *
//    default value change all occurrences of "PKISRVD.VSAM" to a    *
//    preferred value. If you choose to modify this value, be sure   *
//    to also modify the sample configuration file                   *
//    appropriately(/etc/pkiserv/pkiserv.conf). If you are using     *
//    multiple CA Domains, IBM recommends using the first eight     *
//    characters of the CA Domain as one of the data set            *
//    qualifiers.                                                   *
//                                                                   *
// 3) If you are using VSAM record level sharing (RLS), perform     *
//    the following steps:                                          *
//    a) Replace the VOL(vvvvvv) statements in the DEFKSDS step     *
//       with STORCLASS(class-name) where class-name is the name of  *
//       the storage class defined for VSAM RLS.                     *
//    b) Remove the VOL(vvvvvv) statements from the DEFALTDX step.  *
//    c) Remove all the SPANNED and CISIZE statements.              *
//    If not using VSAM RLS, change all occurrences of vvvvvv to     *
//    the VOLSER value appropriate for the system this job is to be  *
//    run on. Do not remove the SPANNED and CISIZE statements.      *
//                                                                   *
// 4) If you wish to change the default userid to own the VSAM       *
//    data set, change the OWNER(PKISRVD) operand to the userid you  *
//    want to own the data sets. If you choose to modify this value,  *
//    ensure you have modified the sample setup REXX exec (IKYSETUP)  *
//    to account for this change.                                   *
//                                                                   *
// 5) If you wish to change either the primary or secondary record  *
//    allocation sizes for either the OST or ICL datasets from the   *
//    default value, update the RECORDS(50 50) operands on the       *
//    DEFINE CLUSTER or DEFINE ALTERNATE INDEX commands.             *
//    **Note, do not change any of the numeric values other than    *
//    CYL or TRK                                                      *
```
/* Delete existing clusters, paths, alt indexes */

//DELCLUST EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
DELETE -
PKISRVD.VSAM.OST -
CLUSTER -
PURGE -
ERASE
DELETE -
PKISRVD.VSAM.ICL -
CLUSTER -
PURGE -
ERASE
IF MAXCC LT 9 THEN SET MAXCC = 0

/* Define KSDS */

//DEFKSDS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
DEFINE CLUSTER -
(NAME(PKISRVD.VSAM.OST) -
  VOL(vvvvvv) -
  RECSZ(1024 32756) -
  INDEXED -
  NOREUSE -
  KEYS(4 0) -
  SHR(2) -
  CYL(3,1) -
  LOG(NONE) -
  OWNER(PKISRVD) ) -
DATA -
  (NAME(PKISRVD.VSAM.OST.DA) -
  CISZ(4096) -
  SPANNED) -
INDEX -
  (NAME(PKISRVD.VSAM.OST.IX))
DEFINE CLUSTER -
(NAME(PKISRVD.VSAM.ICL) -
  VOL(vvvvvv) -
  RECSZ(1024 32756) -
  INDEXED -
  NOREUSE -
  KEYS(4 0) -
  SHR(2) -
  CYL(3,1) -
  LOG(NONE) -
  OWNER(PKISRVD) ) -
DATA -
  (NAME(PKISRVD.VSAM.ICL.DA) -
  CISZ(4096) -
  SPANNED) -
INDEX -
  (NAME(PKISRVD.VSAM.ICL.IX))

/* Repro record of all binary zeros into KSDS */

//MKZEROS EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*  
//SYSOUT DD *
//SYSUT1 DD *
//SYSUT2 DD DSN=&&GENTMP,UNIT=SYSDA,DISP=(,PASS),
  DCB=(RECFM=FB,LRECL=80,BLKSIZE=640),SPACE=(TRK,(1,1))
//SYSIN DD *
GENERATE MAXFLDS=4,MAXLITS=80
RECORD FIELD=(20,'0000000000000000000000000000000000000000000000000',''),
           FIELD=(20,'0000000000000000000000000000000000000000000000000',21),
           FIELD=(20,'0000000000000000000000000000000000000000000000000',41),
           FIELD=(20,'0000000000000000000000000000000000000000000000000',61)
/*
  //REPROKSD EXEC PGM=IDCAMS
  //SYSPRINT DD  SYSOUT=* 
  //SYSDATA DD  DSN=*.MKZEROS.SYSUT2,DISP=(OLD,DELETE)
  //SYSIN DD *
    REPRO INFILE(SYSDATA) -
      OUTDATASET(PKISRVD.VSAM.OST)
    REPRO INFILE(SYSDATA) -
      OUTDATASET(PKISRVD.VSAM.ICL)
  */
  /*--------------------------*/
  /* Define ALTERNATE INDEX and PATH  */
  /*--------------------------*/
  //DEFALTDX EXEC PGM=IDCAMS
  //SYSPRINT DD  SYSOUT=* 
  //SYSIN DD *
    DEFINE ALTERNATEINDEX -
      (NAME(PKISRVD.VSAM.OST.AIX) -
        RELATE(PKISRVD.VSAM.OST) -
        VOL(vvvvvv) -
        TRK(5,1) -
        KEYS(24 44) ) -
        DATA -
          (NAME(PKISRVD.VSAM.OST.AIX.DA)) -
          INDEX -
            (NAME(PKISRVD.VSAM.OST.AIX.IX))
      DEFINE PATH -
        (NAME(PKISRVD.VSAM.OST.OST.PATH) -
          PATHENTRY(PKISRVD.VSAM.OST.AIX))
    DEFINE ALTERNATEINDEX -
      (NAME(PKISRVD.VSAM.OST.STATAIX) -
        RELATE(PKISRVD.VSAM.OST) -
        VOL(vvvvvv) -
        TRK(5,1) -
        KEYS(40 4) ) -
        DATA -
          (NAME(PKISRVD.VSAM.OST.STATAIX.DA)) -
          INDEX -
            (NAME(PKISRVD.VSAM.OST.STATAIX.IX))
      DEFINE PATH -
        (NAME(PKISRVD.VSAM.OST.STATUS) -
          PATHENTRY(PKISRVD.VSAM.OST.STATAIX))
    DEFINE ALTERNATEINDEX -
      (NAME(PKISRVD.VSAM.ICL.STATAIX) -
        RELATE(PKISRVD.VSAM.ICL) -
        VOL(vvvvvv) -
        TRK(5,1) -
        KEYS(40 4) ) -
        DATA -
          (NAME(PKISRVD.VSAM.ICL.STATAIX.DA)) -
          INDEX -
            (NAME(PKISRVD.VSAM.ICL.STATAIX.IX))
      DEFINE PATH -
        (NAME(PKISRVD.VSAM.ICL.STATUS) -
          PATHENTRY(PKISRVD.VSAM.ICL.STATAIX))
    DEFINE ALTERNATEINDEX -
      (NAME(PKISRVD.VSAM.OST.REQAIX) -
        RELATE(PKISRVD.VSAM.OST) -
        VOL(vvvvvv) -
        TRK(5,1) -
        KEYS(32 12) ) -
        DATA -
          (NAME(PKISRVD.VSAM.OST.REQAIX.DA)) -
          INDEX -
            (NAME(PKISRVD.VSAM.OST.REQAIX.IX))
      DEFINE PATH -
        (NAME(PKISRVD.VSAM.OST.REQUESTR) -

Other code samples
IKYCVSV1

IKYCVSV1 contains sample IDCAMS JCL to create VSAM data sets. IKYCVSV1 is installed as a member of SYS1.SAMPLIB.

Use IKYCVSV1 if you are creating VSAM data sets for the first time, regardless of whether you intend to use Parallel Sysplex support. However, if you intend to use Parallel Sysplex support, execute the IKYRVS1 job after this job to add VSAM record-level sharing (RLS) support. (See “IKYRVS1” on page 673.)

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYCVSV1.
This sample JCL may be used to create the VSAM data sets PKI Services utilizes to store certificate requests and issued certificates.

The VSAM data sets created by this sample support improved tracking of SCEP requests and certificates issued for those requests that is available in PKI Services V2R3 (HKY77B0) and later releases. For the sample that creates the original VSAM data set format utilized by PKI Services V2R2 (HKY77A0) and earlier releases, please see the IKYCVSAM sample.

Caution: This is neither a JCL procedure nor a complete job. Before using this job step, you will have to make the following modifications:

1) Change the job card to meet your system requirements.

2) If you wish to change the data set qualifiers from the default value change all occurrences of "PKISRVD.VSAM" to a preferred value. If you choose to modify this value, be sure to also modify the sample configuration file appropriately(/etc/pkiserv/pkiserv.conf). If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.

3) If you are using VSAM record level sharing (RLS), perform the following steps:

   a) Replace the VOL(vvvvvv) statements in the DEFKSDS step with STORCLAS(class-name) where class-name is the name of the storage class defined for VSAM RLS.

   b) Remove the VOL(vvvvvv) statements from the DEFINALTDX step.

   c) Remove all the SPANNED and CISIZE statements.

   If not using VSAM RLS, change all occurrences of vvvvvv to the VOLSER value appropriate for the system this job is to be run on. Do not remove the SPANNED and CISIZE statements.

4) If you wish to change the default userid to own the VSAM data set, change the OWNER(PKISRVD) operand to the userid you want to own the data sets. If you choose to modify this value ensure you have modified the sample setup REXX exec (IKYSETUP) to account for this change.

5) If you wish to change either the primary or secondary record allocation sizes for either the OST or ICL datasets from the default value, update the RECORDS(50 50) operands on the DEFINE CLUSTER or DEFINE ALTERNATE INDEX commands.

**Note, do not change any of the numeric values other than CYL or TRK

Delete existing clusters, paths, alt indexes

DELETE -
PKISRVD.VSAM.OST -
CLUSTER -

DELCLUST EXEC PGM=IDCAMS
SYSPRINT DD SYSOUT=*
PURGE -
ERASE
DELETE -
PKISRVD.VSAM.ICL -
CLUSTER -
PURGE -
ERASE
IF MAXCC LT 9 THEN SET MAXCC = 0
/*
** Define KSDS
**-------------------------------------------------------------------*
//DEFKSDS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
DEFINE CLUSTER -
(NAME(PKISRVD.VSAM.OST) -
VOL(vvvvvv) -
RECSZ(1024 32756) -
INDEXED -
NOREUSE -
KEYS(4 0) -
SHR(2) -
CYL(3,1) -
LOG(NONE) -
OWNER(PKISRVD) ) -
DATA -
(NAME(PKISRVD.VSAM.OST.DA) -
CISZ(4096) -
SPANNED) -
INDEX -
(NAME(PKISRVD.VSAM.OST.IX))
DEFINE CLUSTER -
(NAME(PKISRVD.VSAM.ICL) -
VOL(vvvvvv) -
RECSZ(1024 32756) -
INDEXED -
NOREUSE -
KEYS(4 0) -
SHR(2) -
CYL(3,1) -
LOG(NONE) -
OWNER(PKISRVD) ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.DA) -
CISZ(4096) -
SPANNED) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.IX))
/*
** Repro record of all binary zeros into KSDS
**-------------------------------------------------------------------*
//MKZEROS EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=* 
//SYSUT1 DD *
//SYSUT2 DD DSN=&&GENTMP,UNIT=SYSDA,DISP=(,PASS),
// DCB=(RECFM=FB,LRECL=512,BKSIZE=0),SPACE=(TRK,(1,1))
//SYSDN DD *
GENERATE MAXFLDS=22,MXLITS=512
RECORD FIELD=(20,X'00000000000000000000000000000000',,1),
FIELD=(20,X'00000000000000000000000000000000',,21),
FIELD=(20,X'00000000000000000000000000000000',,41),
FIELD=(20,X'00000000000000000000000000000000',,61),
FIELD=(20,X'00000000000000000000000000000000',,81),
FIELD=(20,X'00000000000000000000000000000000',,101),
FIELD=(20,X'00000000000000000000000000000000',,121),
FIELD=(20,X'00000000000000000000000000000000',,161),
FIELD=(20,X'00000000000000000000000000000000',,181),
FIELD=(20,X'00000000000000000000000000000000',,201),
REPROKSD EXEC PGM=IDCAMS
SYSPRINT DD SYSOUT=*
SYSDATA DD DSN=*.MKZEROS.SYSUT2,DISP=(OLD,DELETE)
SYSSIN DD *
REPRO INFILE(SYSDATA) -
OUTDATASET(PKISRVD.VSAM.OST)
REPRO INFILE(SYSDATA) -
OUTDATASET(PKISRVD.VSAM.ICL)

/*
** Define ALTERNATE INDEX and PATH
**-------------------------------------------------------------------*/
/*-------------------------------------------------------------------*/
DEFALTDX EXEC PGM=IDCAMS
SYSSPRINT DD SYSOUT=*
SYSSIN DD *
DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.OST.AIX) -
RELATE(PKISRVD.VSAM.OST) -
VOL(vvvvvv) -
TRK(5,1) -
KEYS(24 44) ) -
DATA -
(NAME(PKISRVD.VSAM.OST.AIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.AIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.PATH) -
PATHENTRY(PKISRVD.VSAM.OST.AIX))

DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.OST.STATAIX) -
RELATE(PKISRVD.VSAM.OST) -
VOL(vvvvvv) -
TRK(5,1) -
KEYS(40 4) ) -
DATA -
(NAME(PKISRVD.VSAM.OST.STATAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.STATAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.STATUS) -
PATHENTRY(PKISRVD.VSAM.OST.STATAIX))

DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.ICL.STATAIX) -
RELATE(PKISRVD.VSAM.ICL) -
VOL(vvvvvv) -
TRK(5,1) -
KEYS(40 4) ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.STATAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.STATAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.ICL.STATUS) -
PATHENTRY(PKISRVD.VSAM.ICL.STATAIX))

DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.OST.REQAIX) -
RELATE(PKISRVD.VSAM.OST) -
VOL(vvvvvv) -
TRK(5,1) -
KEYS(32 12) -
DATA -
(NAME(PKISRVD.VSAM.OST.REQAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.REQAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.REQUESTR) -
PATHENTRY(PKISRVD.VSAM.OST.REQAIX))
DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.ICL.REQAIX) -
RELATE(PKISRVD.VSAM.ICL)-
VOL(vvvvvv) -
TRK(5,1) -
KEYS(32 12) ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.REQAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.REQAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.ICL.REQUESTR) -
PATHENTRY(PKISRVD.VSAM.ICL.REQAIX))
DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.OST.SCEPAIX) -
RELATE(PKISRVD.VSAM.OST)-
VOL(vvvvvv) -
TRK(5,1) -
KEYS(128 241 ) -
DATA -
(NAME(PKISRVD.VSAM.OST.SCEPAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.SCEPAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.SCEPTID) -
PATHENTRY(PKISRVD.VSAM.OST.SCEPAIX))
DEFINE ALTERNATEINDEX -
(NAME(PKISRVD.VSAM.ICL.SCEPQAIX) -
RELATE(PKISRVD.VSAM.ICL)-
VOL(vvvvvv) -
TRK(5,1) -
KEYS(128 241 ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.SCEPAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.SCEPAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.ICL.SCEPTID) -
PATHENTRY(PKISRVD.VSAM.ICL.SCEPAIX))

/****
    //** BUILD ALTERNATE INDEX
    //*-------------------------------------------------------------*
    //**-------------------------------------------------------------*
    //BLDINDEX EXEC PGM=IDCAMS
    //SYSPRINT DD SYSOUT=*  
    //SYSIN DD *
    BLDINDEX INDATASET(PKISRVD.VSAM.OST) -
       OUTDATASET(PKISRVD.VSAM.OST.AIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.OST) -
       OUTDATASET(PKISRVD.VSAM.OST.STATAIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.ICL) -
       OUTDATASET(PKISRVD.VSAM.ICL.STATAIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.OST) -
       OUTDATASET(PKISRVD.VSAM.OST.REQAIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.ICL) -
       OUTDATASET(PKISRVD.VSAM.ICL.REQAIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.OST) -
       OUTDATASET(PKISRVD.VSAM.OST.SCEPAIX)
    BLDINDEX INDATASET(PKISRVD.VSAM.ICL) -
       OUTDATASET(PKISRVD.VSAM.ICL.SCEPAIX)
    /****
    //** Print out the cluster
    //*-------------------------------------------------------------*

Other code samples 669
IKYRVSAM

IKYRVSAM contains sample IDCAMS JCL to migrate the PKI Services VSAM data sets to support VSAM record-level sharing (RLS) when you intend to use Parallel Sysplex support. IKYRVSAM is installed as a member of SYS1.SAMPLIB.

Execute this job after executing the IKYCVSAM job. This job renames the VSAM data sets created by IKYCVSAM and copies their contents to newly allocated RLS data sets.

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYRVSAM.

Other code samples

670 z/OS: Cryptographic Services PKI Services Guide and Reference
steps except the RENAMES step. If you modify these names, be sure to also modify your configuration file appropriately (/etc/pkiserv/pkiserv.conf). If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.

5) This job renames the source data sets to begin with high level qualifiers "PKISRVD.OLDVSAM". If you wish to change these names, you will need to do so in the RENAMES and REPROCL steps. If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.

6) If you wish to change either the primary or secondary space allocation sizes for either the OST or ICL datasets from the default value, update the CYL or TRK operands on the DEFINE CLUSTER or DEFINE ALTERNATE INDEX commands.

**Note, do not change any of the numeric values other than CYL or TRK

/* Rename source clusters, alternate indexes and PATH */

RENAME EXEC PGM=IDCAMS
SYSPRINT DD SYSOUT=*  
SYSPRINT DD *  
ALTER PKISRVD.VSAM.OST NEWNAME(PKISRVD.OLDVSAM.OST)
ALTER PKISRVD.VSAM.OST.* NEWNAME(PKISRVD.OLDVSAM.OST.*)
ALTER PKISRVD.VSAM.ICL NEWNAME(PKISRVD.OLDVSAM.ICL)
ALTER PKISRVD.VSAM.ICL.* NEWNAME(PKISRVD.OLDVSAM.ICL.*)
ALTER PKISRVD.VSAM.OST.AIX.IX NEWNAME(PKISRVD.OLDVSAM.OST.AIX.IX)
IF LASTCC EQ 8 THEN DO
  SET MAXCC EQ 0
  ALTER PKISRVD.VSAM.AIX.IX NEWNAME(PKISRVD.OLDVSAM.OST.AIX.IX)
END
ALTER PKISRVD.VSAM.OST.AIX.DA NEWNAME(PKISRVD.OLDVSAM.OST.AIX.DA)
IF LASTCC EQ 8 THEN DO
  SET MAXCC EQ 0
  ALTER PKISRVD.VSAM.AIX.DA NEWNAME(PKISRVD.OLDVSAM.OST.AIX.DA)
END
ALTER PKISRVD.VSAM.OST.STATAIX.* NEWNAME(PKISRVD.OLDVSAM.OST.STATAIX.*)
ALTER PKISRVD.VSAM.OST.REQAIX.* NEWNAME(PKISRVD.OLDVSAM.OST.REQAIX.*)
ALTER PKISRVD.VSAM.ICL.STATAIX.* NEWNAME(PKISRVD.OLDVSAM.ICL.STATAIX.*)
ALTER PKISRVD.VSAM.ICL.REQAIX.* NEWNAME(PKISRVD.OLDVSAM.ICL.REQAIX.*)
NEWNAME(PKISRVD.OLDVSAM.ICL.REQAIX.*)

/*-------------------------------------------------------------*/
/* Define destination Clusters                                */
/*-------------------------------------------------------------*/
/DEFKSDS EXEC PGM=IDCAMS,COND=(8,LE)
//SYSPRINT DD SYSOUT=*  
//SYSIN DD * 
DEFINE CLUSTER -
  (NAME(PKISRVD.VSAM.OST) -
  STORCLAS(class-name) -
  RECSZ(1024 32756) -
  INDEXED -
  NOREUSE -
  KEYS(4 0) -
  SHR(2) -
  CYL(3,1) -
  LOG(NONE) -
  OWNER(PKISRVD) ) -
DATA -
  (NAME(PKISRVD.VSAM.OST.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.OST.IX))

DEFINE CLUSTER -
  (NAME(PKISRVD.VSAM.ICL) -
  STORCLAS(class-name) -
  RECSZ(1024 32756) -
  INDEXED -
  NOREUSE -
  KEYS(4 0) -
  SHR(2) -
  CYL(3,1) -
  LOG(NONE) -
  OWNER(PKISRVD) ) -
DATA -
  (NAME(PKISRVD.VSAM.ICL.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.ICL.IX))

/-------------------------------------------------------------*/
/* Repro source cluster to destination cluster                 */
/-------------------------------------------------------------*/
//REPROCL EXEC PGM=IDCAMS,COND=(8,LE)
//SYSPRINT DD SYSOUT=*  
//SYSIN DD * 
REPRO INDATASET(PKISRVD.OLDVSAM.OST) -
OUTDATASET(PKISRVD.VSAM.OST)
REPRO INDATASET(PKISRVD.OLDVSAM.ICL) -
OUTDATASET(PKISRVD.VSAM.ICL)

/-------------------------------------------------------------*/
/* Define ALTERNATE INDEX AND PATH                             */
/-------------------------------------------------------------*/
//DEFALTIDX EXEC PGM=IDCAMS,COND=(8,LE)
//SYSPRINT DD SYSOUT=*  
//SYSIN DD * 
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.OST.AIX) -
  RELATE(PKISRVD.VSAM.OST) -
  TRK(5,1) -
  KEYS(24 44) ) -
DATA -
  (NAME(PKISRVD.VSAM.OST.AIX.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.OST.AIX.IX))
DEFINE PATH -
  (NAME(PKISRVD.VSAM.OST.PATH) -
  PATHENTRY(PKISRVD.VSAM.OST.AIX))
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.OST.STATAIX) -
  RELATE(PKISRVD.VSAM.OST)-
IKYRVSV1

IKYRVSV1 contains sample IDCAMS JCL to migrate the PKI Services VSAM data sets to support VSAM record-level sharing (RLS) when you intend to use Parallel Sysplex support. IKYRVSV1 is installed as a member of SYS1.SAMPLIB.
Execute this job after executing the IKYCVSV1 job. This job renames the VSAM data sets created by IKYCVSV1 and copies their contents to newly allocated RLS data sets. (See “IKYCVSV1” on page 665.)

**Note:** The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYRVSV1.

```ditstext
//IKYRVSV1 JOB <job card parameters>
//*********************************************************************
//* SAMP: IKYRVSV1
//* Licensed Materials - Property of IBM
//* 5650-ZOS
//* Copyright IBM Corp. 2017
//* Status = HKY77B0
//* //*********************************************************************
//* This sample JCL may be used to reallocate the VSAM data sets in a storage class acceptable to VSAM record level sharing (RLS).
//* This is a prerequisite to using PKI Services SYSPLEX support.
//* The VSAM data sets reallocated by this sample support improved tracking of SCEP requests and certificates issued for those requests that is available in PKI Services V2R3 (HKY77B0) and later releases. For the sample that reallocates the original VSAM data set format utilized by PKI Services V2R2 (HKY77A0) and earlier releases, please see the IKYRVSAM sample.
//* //*********************************************************************
//* Caution: This is neither a JCL procedure nor a complete job. Before using this job step, you will have to make the following modifications:
//* 1) Change the job card to meet your system requirements.
//* 2) Change the STORCLAS statements to provide the name of the storage class defined for use with VSAM RLS.
//* 3) This job assumes you are using the default VSAM data set names (all have high level qualifiers "PKISRVD.VSAM"). If you have changed these data set names, you will need to modify the source data set names in the ALTER statements of the RENAMEDS step. If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.
//* 4) This job creates destination data sets with the same default names as the source data sets. (The source data sets are renamed.) If you wish to use different destination data set names, you will need to modify the data set names in all steps except the RENAMES step. If you modify these names, be sure to also modify your configuration file appropriately (/etc/pkiserv/pkiserv.conf). If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.
//* 5) This job renames the source data sets to begin with high level qualifiers "PKISRVD.OLDVDSAM". If you wish to change these names, you will need to do so in the RENAMES and REPROCL steps. If you are using multiple CA Domains, IBM recommends using the first eight characters of the CA Domain as one of the data set qualifiers.
//* 6) If you wish to change either the primary or secondary space allocation sizes for either the OST or ICL datasets from the default value, update the CYL or TRK operands on the DEFINE CLUSTER or DEFINE ALTERNATE INDEX commands.
//**Note, do not change any of the numeric values other than
```
//** CYL or TRK
//**---------------------------------------------------------------
//** Rename source clusters, alternate indexes and PATH
//**---------------------------------------------------------------
//RENAMEDS EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSSIN DD *
ALTER -
   PKISRVD.VSAM.OST -
   NEWNAME(PKISRVD.OLDVSAM.OST)
ALTER -
   PKISRVD.VSAM.OST.* -
   NEWNAME(PKISRVD.OLDVSAM.OST.*)
ALTER -
   PKISRVD.VSAM.ICL -
   NEWNAME(PKISRVD.OLDVSAM.ICL)
ALTER -
   PKISRVD.VSAM.ICL.* -
   NEWNAME(PKISRVD.OLDVSAM.ICL.*)
ALTER -
   PKISRVD.VSAM.OST.AIX.IX -
   NEWNAME(PKISRVD.OLDVSAM.OST.AIX.IX)
IF LASTCC EQ 8 THEN -
   DO
      SET MAXCC EQ 0
      ALTER -
         PKISRVD.VSAM.AIX.IX -
         NEWNAME(PKISRVD.OLDVSAM.OST.AIX.IX)
   END
ALTER -
   PKISRVD.VSAM.OST.AIX.DA -
   NEWNAME(PKISRVD.OLDVSAM.OST.AIX.DA)
IF LASTCC EQ 8 THEN -
   DO
      SET MAXCC EQ 0
      ALTER -
         PKISRVD.VSAM.AIX.DA -
         NEWNAME(PKISRVD.OLDVSAM.OST.AIX.DA)
   END
ALTER -
   PKISRVD.VSAM.OST.STATAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.OST.STATAIX.*)
ALTER -
   PKISRVD.VSAM.OST.REQAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.OST.REQAIX.*)
ALTER -
   PKISRVD.VSAM.OST.SCEPAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.OST.SCEPAIX.*)
ALTER -
   PKISRVD.VSAM.ICL.STATAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.ICL.STATAIX.*)
ALTER -
   PKISRVD.VSAM.ICL.REQAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.ICL.REQAIX.*)
ALTER -
   PKISRVD.VSAM.ICL.SCEPAIX.* -
   NEWNAME(PKISRVD.OLDVSAM.ICL.SCEPAIX.*)
/*
//** Define destination Clusters
//**-------------------------------------------------------------------
//DEFKSDS EXEC PGM=IDCAMS,COND=(8,LE)
//SYSPRINT DD SYSOUT=*  
//SYSSIN DD *
DEFINE CLUSTER -
   (NAME(PKISRVD.VSAM.OST) -
   STORCLAS(class-name) -
   RECSZ(1024 32756) -
   INDEXED -
   NOREUSE -
   KEYS(4 0) -
   SHR(2) -
DEFINE CLUSTER
(NAME(PKISRVD.VSAM.ICL) -
STORCLAS(class-name) -
RECSZ(1024 32756) -
INDEXED -
NOREUSE -
KEYS(4 0) -
SHR(2) -
LOG(NONE) -
CYL(3,1) -
OWNER(PKISRVD) ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.IX))
/
REPRO CL EXEC PGM=IDCAMS,COND=(8,LE)
SYSPRINT DD SYSOUT=* 
//SYSIN DD *
REPRO INDATASET(PKISRVD.OLDVSAM.OST) -
OUTDATASET(PKISRVD.VSAM.OST)
REPRO INDATASET(PKISRVD.OLDVSAM.ICL) -
OUTDATASET(PKISRVD.VSAM.ICL)
/
DEFALTDX EXEC PGM=IDCAMS,COND=(8,LE)
SYSPRINT DD SYSOUT=* 
//SYSIN DD *
DEFINE ALTERNATEINDEX
(NAME(PKISRVD.VSAM.OST.AIX) -
RELATE(PKISRVD.VSAM.OST) -
TRK(5,1) -
KEYS(24 44) ) -
DATA -
(NAME(PKISRVD.VSAM.OST.AIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.AIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.PATH) -
PATHENTRY(PKISRVD.VSAM.OST.AIX))
DEFINE ALTERNATEINDEX
(NAME(PKISRVD.VSAM.OST.STATAIX) -
RELATE(PKISRVD.VSAM.OST) -
TRK(5,1) -
KEYS(40 4) ) -
DATA -
(NAME(PKISRVD.VSAM.OST.STATAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.OST.STATAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.OST.STATUS) -
PATHENTRY(PKISRVD.VSAM.OST.STATAIX))
DEFINE ALTERNATEINDEX
(NAME(PKISRVD.VSAM.ICL.STATAIX) -
RELATE(PKISRVD.VSAM.ICL) -
TRK(5,1) -
KEYS(40 4) ) -
DATA -
(NAME(PKISRVD.VSAM.ICL.STATAIX.DA)) -
INDEX -
(NAME(PKISRVD.VSAM.ICL.STATAIX.IX))
DEFINE PATH -
(NAME(PKISRVD.VSAM.ICL.STATUS) -
PATHENTRY(PKISRVD.VSAM.ICL.STATAIX))
INDEX -
  (NAME(PKISRVD.VSAM.ICL.STATAIX.IX))
DEFINE PATH -
  (NAME(PKISRVD.VSAM.ICL.STATUS) - PATHENTRY(PKISRVD.VSAM.ICL.STATAIX))
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.OST.REQAIX) - RELATE(PKISRVD.VSAM.OST) - TRK(5,1) - KEYS(32 12) ) -
  DATA -
    (NAME(PKISRVD.VSAM.OST.REQAIX.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.OST.REQAIX.IX))
DEFINE PATH -
  (NAME(PKISRVD.VSAM.OST.REQUESTR) - PATHENTRY(PKISRVD.VSAM.OST.REQAIX))
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.ICL.REQAIX) - RELATE(PKISRVD.VSAM.ICL) - TRK(5,1) - KEYS(32 12) ) -
  DATA -
    (NAME(PKISRVD.VSAM.ICL.REQAIX.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.ICL.REQAIX.IX))
DEFINE PATH -
  (NAME(PKISRVD.VSAM.OST.SCEPAIX) - PATHENTRY(PKISRVD.VSAM.OST.SCEPAIX))
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.ICL.SCEPAIX) - RELATE(PKISRVD.VSAM.ICL) - TRK(5,1) - KEYS(128 241) ) -
  DATA -
    (NAME(PKISRVD.VSAM.ICL.SCEPAIX.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.ICL.SCEPAIX.IX))
DEFINE PATH -
  (NAME(PKISRVD.VSAM.OST.SCEPTID) - PATHENTRY(PKISRVD.VSAM.OST.SCEPAIX))
DEFINE ALTERNATEINDEX -
  (NAME(PKISRVD.VSAM.ICL.SCEPAIX) - RELATE(PKISRVD.VSAM.ICL) - TRK(5,1) - KEYS(128 241) ) -
  DATA -
    (NAME(PKISRVD.VSAM.ICL.SCEPAIX.DA)) -
INDEX -
  (NAME(PKISRVD.VSAM.ICL.SCEPAIX.IX))

/*-------------------------------------------------------------------*
//** BUILD ALTERNATE INDEX                                           *
//-------------------------------------------------------------------*/
//BLDINDEX EXEC PGM=IDCAMS,COND=(8,LE)
//SYSPRINT DD SYSSOUT=*
//SYSIN DD *
BLDINDEX INDATASET(PKISRVD.VSAM.OST) - OUTDATASET(PKISRVD.VSAM.OST.AIX)
BLDINDEX INDATASET(PKISRVD.VSAM.OST) - OUTDATASET(PKISRVD.VSAM.OST.STATAIX)
BLDINDEX INDATASET(PKISRVD.VSAM.OST) - OUTDATASET(PKISRVD.VSAM.ICL.STATAIX)
BLDINDEX INDATASET(PKISRVD.VSAM.OST) - OUTDATASET(PKISRVD.VSAM.OST.REQAIX)
IKYSBIND

IKYSBIND is a sample job to create the Db2 package and plan for the object store and issued certificate list (ICL). IKYSBIND is a member of SYS1.SAMPLIB.

The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYSBIND.

Note: In Version 2 Release 3, there are two DBRMs. One is created with tables following formatting prior to Version 2 Release 3. The other one is following the new format that is introduced in Version 2 Release 3. Ensure that you use the corresponding DBRM to create the corresponding package. IKYPDBRM is the version 0 DBRM, and IKYPDBR1 is the version 1 DBRM.

```bash
//IKYSBIND JOB <job parameters>
//*********************************************************************
//* SAMPLE: IKYSBIND
/**
/* Licensed Materials - Property of IBM
/* 5650-ZOS
/* Copyright IBM Corp. 2011, 2017
/* Status = HKY77B0
/**
//*********************************************************************
//*
//* This sample job may be used to build a DB2 package for
//* PKI Services.
/**
//*********************************************************************
//*
//* This job may need to be modified before it is executed.
/**
//*
//* Before running this job, you need to decide which of the Database
//* Request Modules (DBRMs) provided by PKI Services are to be used
//* for this installation. PKI Services provides two DBRMs:
//*
//*     IKYPDBRM    Designed to access DB2 database tables created by
//*                 PKI Services Version 2 Release 2 (HKY77A0) and
//*                 earlier. These databases do not use an unique
//*                 table column to track SCEP Transaction IDs per
//*                 certificate or certificate request. PKI Services
//*                 installations with existing database tables that
//*                 do not expect to handle many SCEP requests can
//*                 continue to use this DBRM for PKI Services
//*                 Version 2 Release 3 and later.
//*                 IKYPDBRM cannot be used to access DB2 databases
//*                 tables created by default for PKI Services
//*                 Version 2 Release 3 (HKY77B0) or later.
//*                 Existing installations of PKI Services need
//*                 IKYPDBRM to allow PKI Services Version 2 Release
//*                 3 to access this information.
//*     IKYPDBR1    Designed to access DB2 database tables created by
//*                 default for PKI Services Version 2 Release 3
//*                 (HKY77B0) or later. These databases are designed
//*                 for improved tracking of SCEP certificates and
//*                 requests, and implement unique columns to track
//*                 SCEP Transaction IDs. New installations of PKI
//*                 Services are recommended to use this DBRM. PKI
//*                 Services installations with existing database
//*                 tables that expect to handle SCEP requests should
//*                 consider converting their existing database tables
//*                 the the Version 2 Release 3 format with the
//*                 "db2conv" utility and making use of this DBRM.
//*                 IKYPDBR1 cannot be used to access DB2 databases
//*                 tables created by the IKYCDB2 sample for PKI
//*                 Services Version 2 Release 2 (HKY77A0) or earlier.
//*                 New installations of PKI Services are recommended
```
/*
**  to use IKYPDBR1.
**
**  Existing installations of PKI Services that wish
**  to exploit the improved SCEP request and
**  certificate tracking offered in PKI Services
**  Version 2 Release 3 and later releases need
**  IKYPDBR1 to access the revised database format.
**
**  Once you decide what DBRMs are needed for your installation, you
**  will need to package the DBRMs using a variant of the BIND
**  PACKAGE instruction given in this sample.  If you are using both
**  IKYPDBRM and IKYPDBR1, you are recommended to package each DBRM
**  in a separate package.  Existing installations that already have
**  an existing DB2 package/collection for the previous version of
**  IKYPDBRM must package the new IKYPDBRM in the same DB2
**  package/collection.  It is recommended that IKYPDBR1 be packaged
**  in a different DB2 package/collection.
**
**  Before running this job, you may need to make the following
**  modifications:
**
**  1) Change all the occurrences of 'MASTERC1' to the package name.
**     In choosing this name, it is recommended to use the first
**     seven characters of the associated CA domain name, followed
**     by a character that will uniquely identify this package name
**     with the DBRM assigned to this package.  This sample assumes
**     that 'MASTERCA' is the associated CA Domain name, and the
**     last character '1' is used to associate this package with the
**     IKYPDBR1 DBRM.  The resulting name used here must match the
**     value used when creating the DB2 database, tablespaces,
**     tables, and indices.
**
**  2) Change 'DSN9' to the DB2 subsystem name which PKI Services
**     will be running under.
**
**  3) Change 'PKISRVD' to the ID you would like to be the owner of
**     the package.
**
**  To issue the following BIND instruction, the user must have at
**  least one of the following DB2 privileges:
**  - BIND privilege WITH GRANT OPTION on the PACKAGE
**    specified in the following BIND instruction
**  - Ownership of the PACKAGE specified in the following
**    BIND instruction
**  - SYSADM authority
**
**  **********************************************************************************
**  EXECTSO  EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
** DBRMLIB  DD DSN=SYS1.CBRDBRM,DISP=SHR
** SYSTSPRT DD SYSOUT=*
** SYSPRINT DD SYSOUT=*
** SYSUDUMP DD SYSOUT=*
** SYSTSIN  DD *
** DSN SYSTEM(DSN9)
**  BIND PACKAGE(MASTERC1)   -
**          MEMBER(IKYPDBR1) -
**          QUALIFIER(MASTERC1) -
**          VALIDATE(BIND) -
**          ENABLE(RRSAF) -
**          ENCODING(1047) -
**          ACTION(REPLACE) -
**          CURRENTDATA(NO) -
**          DBPROTOCOL(ORDA) -
**          RELEASE(COMMIT) -
**          OWNER(PKISRVD)
**  END
**  **********************************************************************************
*********************************************************************************
** Note: The following listing might not be identical to the code sample shipped with the product. For the
** most current sample, see SYS1.SAMPLIB member IKYSGRNT.
*********************************************************************************
---*******************************************************************************
---** SAMPLE: IKYSGRNT
---*******************************************************************************
---** Licensed Materials - Property of IBM
---** 5650-ZOS
--- ** Copyright IBM Corp. 2013, 2017
--- Status = HKY77B0
---
--- This sample may be used to grant execute privilege through SPUFI
--- on the DB2 package for PKI Services to the PKI Services daemon
--- user ID.
---
--- The DB2 package/collection used by this sample assumes that this
--- instance of PKI Services is being configured to use the database
--- format designed for improved tracking of SCEP requests and the
--- certificates issued for those requests that is available in PKI
--- Services Version 2 Release 3 (HKY77B0) and later releases. This
--- sample assumes that the DB2 package/collection was created using
--- the IKYSBIND sample.
---
--- Before using this sample, you may need to make the following
--- modifications:
---
--- 1) Change 'MASTERC1' to the package name that was used in the
---    IKYSBIND sample JCL file. In choosing this name, it is
---    recommended to use the first seven characters of the
---    associated CA domain name, followed by a character that will
---    uniquely identify this package name with the DBRM assigned
---    to this package. This sample assumes that 'MASTERCA' is the
---    associated CA Domain name, and the last character '1' is
---    used to create this package with the IKYPDBR1 package.
---    The resulting name used here must match the value used when
---    creating the DB2 database, tablespaces, tables, and indices
---    in the IKYCDBV1 or IKYCDDB2 sample files.
---
--- 2) Change 'PKISRVD' to match the value for the PKI Services daemon
---    user ID name. The value to use should match the value used for
---    the variable 'daemon' in the IKYSETUP sample file.
---    You will also need certain DB2 privileges to use this sample. To
---    use this sample, you will need at least one of the following DB2
---    privileges:
---    - EXECUTE privilege WITH GRANT OPTION on the
---      package named in the GRANT instruction below
---    - Ownership of the package named in the GRANT
---      instruction below
---    - SYSADM authority
---
--- GRANT EXECUTE ON PACKAGE MASTERC1.* TO PKISRVD;
---
--- COMMIT;

IKYVBKUP

IKYVBKUP contains sample JCL to back up the PKI Services VSAM data sets using the DFSMSdss DUMP utility. IKYVBKUP is installed as a member of SYS1.SAMPLIB.

Note: The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYVBKUP.

//IKYVBKUP JOB <job card parameters>
//******************************************************************************
// SAMP:     IKYVBKUP
//******************************************************************************
// Licensed Materials - Property of IBM
// 5694-A01
// Copyright IBM Corp. 2009
// Status = HKY7760
//******************************************************************************
// This sample JCL may be used to backup the VSAM data sets
// PKI Services utilizes to store certificate requests and
// issued certificates. To ensure data integrity, the PKI Services
// address space must be stopped before a backup is attempted.
//******************************************************************************
IKYVREST

IKYVREST contains sample JCL to restore the PKI Services VSAM data sets from a backup taken with the DFSMSdss DUMP utility. IKYVREST is installed as a member of SYS1.SAMPLIB.

**Note:** The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.SAMPLIB member IKYVREST.

```plaintext
//SAMP: IKYVREST

/*********************/
/*  This sample JCL may be used to restore the PKI Services VSAM data sets from a backup taken with the DFSMSdss DUMP utility. The PKI Services address space must be stopped before running this restore job. */
//*********************/
```
PKISERVD sample procedure to start PKI Services daemon

PKISERVD is the sample procedure to start PKI Services daemon. The PKI Services daemon runs as a started task. The procedure for this can be found in 'SYS1.PROCLIB' member PKISERVD. (PKISERVD is an alias for IKYSPROC.)

PKISERVD contains the TZ (time zone) environment variable, which is the environment variable most likely to change. You need to specify any other environment variables that PKI Services needs in an environment variables file, by default pkiserv.envvars. PKISERVD contains FN (file name) and DIR (directory) parameters to specify the path name of the environment variables file. You can make any needed changes in PKISERVD, such as updating this path name.

**Guideline:** By default, the path name for the pkiserv.envvars environment variables file is /usr/lpp/pkiserv/samples/pkiserv.envvars. If you need to make changes in the environment variables file, you need to copy it from the samples directory to another directory. Specify your environment variables using an environment variables file under the /etc directory, for example /etc/pkiserv/pkiserv.envvars.

The following listing might not be identical to the code sample shipped with the product. For the most current sample, see SYS1.PROCLIB member PKISERVD.
TZ='EST5EDT',
FN='pkiserv.envvars',
DIR='/usr/lpp/pkiserv/samples',
STDO='1>DD:STDOUT',
STDE='2>DD:STDERR'

//GO EXEC PGM=IKYPKID,REGION=&REGSIZE,TIME=1440,
// PARM=('ENVAR("CEE_ENVFILE=&DIR/&FN","TZ=&TZ") / &STDO &STDE')
//STDOUT DD SYSOUT=&OUTCLASS
//STDERR DD SYSOUT=&OUTCLASS
//SYSOUT DD SYSOUT=&OUTCLASS
//CEEDUMP DD SYSOUT=&OUTCLASS
Chapter 32. SMF recording

PKI Services produces one SMF record type - type 80. The first 18 bytes of type 80 records represent the standard SMF header without subtypes.

For more information:
1. See z/OS MVS System Management Facilities (SMF) for information about how to use SMF.
2. See z/OS Security Server RACF Macros and Interfaces and z/OS Security Server RACF Auditor’s Guide for information about using the RACF SMF data unload utility (IRRADU00) to prepare reports with the RACF report writer.

PKI Services event code

Table 110 on page 685 describes the SMF80EVT (event code) and SMF80EVQ (event code qualifier) fields for the PKI Services event code. It also lists the SMF80DTP and SMF80DA2 values for the relocate type sections.

<table>
<thead>
<tr>
<th>Event Dec(Hex)</th>
<th>Command</th>
<th>Code qualifier Dec(Hex)</th>
<th>Description</th>
<th>Relocate type sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>79(4F)</td>
<td>CRL publication</td>
<td>0(0)</td>
<td>Successful publication of revocation information</td>
<td>318, 319, 366, 379, 380, 381, 382, 383, 384, 385, 387</td>
</tr>
<tr>
<td>85(55)</td>
<td>SUCCRNEW</td>
<td>0(0)</td>
<td>Successful AutoRenew</td>
<td>318, 319, 341, 342, 346, 358, 363, 373, 391, 408</td>
</tr>
</tbody>
</table>

Relocate section variable data

Table 110 on page 685 describes the variable data elements of the extended-length relocate section.

<table>
<thead>
<tr>
<th>Data type (SMF80TP2) Dec(Hex)</th>
<th>Data length (SMF80DL2)</th>
<th>Format</th>
<th>Audited by event code</th>
<th>Description (SMF80DA2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>318(13E)</td>
<td>1-255</td>
<td>EBCDIC</td>
<td>66, 67, 69, 72, 74, 79</td>
<td>Certificate or CRL serial number</td>
</tr>
<tr>
<td>319(13F)</td>
<td>1-255</td>
<td>EBCDIC</td>
<td>66, 67, 69, 72, 74, 79</td>
<td>Certificate or CRL issuer's distinguished name</td>
</tr>
<tr>
<td>366(16E)</td>
<td>4</td>
<td>Binary</td>
<td>74</td>
<td>Certificate revocation reason</td>
</tr>
<tr>
<td>379(17B)</td>
<td>1-255</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL issuing distribution point DN</td>
</tr>
<tr>
<td>380(17C)</td>
<td>10</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's date of issue</td>
</tr>
<tr>
<td>381(17D)</td>
<td>8</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's time of issue</td>
</tr>
<tr>
<td>382(17E)</td>
<td>10</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's expiration date</td>
</tr>
<tr>
<td>383(17F)</td>
<td>8</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's expiration time</td>
</tr>
<tr>
<td>384(180)</td>
<td>10</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's date of publish</td>
</tr>
<tr>
<td>385(181)</td>
<td>8</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's time of publish</td>
</tr>
<tr>
<td>387(183)</td>
<td>1-1024</td>
<td>EBCDIC</td>
<td>79</td>
<td>CRL's issuing distribution point URI</td>
</tr>
</tbody>
</table>
Table 111. SMF data elements of the extended-length relocate section for PKI Services (continued)

<table>
<thead>
<tr>
<th>Data type (SMF80TP2) Dec(Hex)</th>
<th>Data length (SMF80DL2)</th>
<th>Format</th>
<th>Audited by event code</th>
<th>Description (SMF80DA2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>408(198)</td>
<td>256</td>
<td>EBCDIC</td>
<td>85</td>
<td>AutoRenew Exit path name</td>
</tr>
</tbody>
</table>
Appendix A. LDAP directory server requirements

PKI Services typically requires access to an LDAP directory server to store issued certificates and certificate revocation lists. The z/OS LDAP server provided by IBM Tivoli Directory Server for z/OS is preferred but not required. You can use a non-z/OS LDAP server if it can support the objectclasses and attributes PKI Services uses. These are listed in the following table:

Table 112. LDAP objectclasses and attributes that PKI Services sets

<table>
<thead>
<tr>
<th>End-entity or branch node?</th>
<th>Visible RDN attribute</th>
<th>Objectclasses used</th>
<th>Additional attributes set (other than visible RDN attribute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a branch node</td>
<td>C=</td>
<td>country</td>
<td>—</td>
</tr>
<tr>
<td>Creating a branch node</td>
<td>L=</td>
<td>locality</td>
<td>—</td>
</tr>
<tr>
<td>Creating a branch node</td>
<td>O=</td>
<td>organization</td>
<td>—</td>
</tr>
<tr>
<td>Creating a branch node</td>
<td>OU=</td>
<td>organizationalUnit</td>
<td>—</td>
</tr>
<tr>
<td>Creating a branch node</td>
<td>DC=</td>
<td>domain</td>
<td>none</td>
</tr>
<tr>
<td>Creating a branch node</td>
<td>Any supported value other than the preceding</td>
<td>organizationalUnit, and extensibleObject</td>
<td>ou (the ou value from CreateOUValue in the LDAP section of pkiserv.conf file)</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>unstructuredName or unstructAddress</td>
<td>account, pkiUser, cEPDevice, and extensibleObject</td>
<td>userCertificate, and uid (hardcoded to NoUid)</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>serialNumber</td>
<td>account, pkiUser, pKCS10Device, and extensibleObject</td>
<td>userCertificate, and uid (hardcoded to NoUid)</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>DC</td>
<td>domain pkiUser, , and extensibleObject</td>
<td>userCertificate</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>dnQualifier</td>
<td>account, pkiUser, uniquelyQualifiedObject, and extensibleObject</td>
<td>userCertificate, and uid (hardcoded to NoUid)</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>UID</td>
<td>account, pkiUser, and extensibleObject</td>
<td>userCertificate</td>
</tr>
<tr>
<td>Creating a user end-entity</td>
<td>Any supported value other than unstructuredName, unstructAddress, serialNumber, DC, dnQualifier and UID</td>
<td>account, pkiUser, and extensibleObject</td>
<td>userCertificate, and uid (hardcoded to NoUid)</td>
</tr>
<tr>
<td>Creating a CA end-entity</td>
<td>O=</td>
<td>organization, and pkiCA</td>
<td>cACertificate, certificaterevocationlist, and authorityrevocationlist</td>
</tr>
<tr>
<td>Creating a CA end-entity</td>
<td>OU=</td>
<td>organizationalUnit, and pkiCA</td>
<td>cACertificate, certificaterevocationlist, and authorityrevocationlist</td>
</tr>
<tr>
<td>Creating a CA end-entity</td>
<td>DC</td>
<td>domain, pkiCA and extensibleObject</td>
<td>cACertificate, certificaterevocationlist, and authorityrevocationlist</td>
</tr>
</tbody>
</table>
The R_PKIServ SAF callable service supports specifying the subject's DN through named fields in the CertPlist. The CGIs invoke the R_PKIServ SAF callable service. For more information, see z/OS Security Server RACF Callable Services. PKI Services supports the subject's DN fields, plus some additional ones: postal code, street, and mail. They are mapped to LDAP attributes as Table 113 on page 688 indicates.
Table 113. Relationship of named fields to LDAP attributes and object identifiers (continued)

<table>
<thead>
<tr>
<th>Named field</th>
<th>Visible RDN attribute</th>
<th>OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>PostalCode</td>
<td>POSTALCODE</td>
<td>2.5.4.17</td>
</tr>
<tr>
<td>Street</td>
<td>STREET</td>
<td>2.5.4.9</td>
</tr>
<tr>
<td>Email¹</td>
<td>MAIL</td>
<td>0.9.2342.19200300.100.1.3</td>
</tr>
<tr>
<td>Mail</td>
<td>MAIL²</td>
<td>0.9.2342.19200300.100.1.3</td>
</tr>
<tr>
<td>EmailAddr</td>
<td>EMAIL</td>
<td>1.2.840.113549.1.9.1</td>
</tr>
<tr>
<td>UnstructName</td>
<td>UNSTRUCTUREDNAME</td>
<td>1.2.840.113549.1.9.2</td>
</tr>
<tr>
<td>UnstructAddr</td>
<td>UNSTRUCTUREDADDRESS</td>
<td>1.2.840.113549.1.9.8</td>
</tr>
<tr>
<td>SerialNumber</td>
<td>SERIALNUMBER</td>
<td>2.5.4.5</td>
</tr>
<tr>
<td>DNQualifier</td>
<td>DNQUALIFIER</td>
<td>2.5.4.46</td>
</tr>
<tr>
<td>DomainName</td>
<td>DC</td>
<td>0.9.2342.19200300.100.1.25</td>
</tr>
<tr>
<td>Uid</td>
<td>UID</td>
<td>0.9.2342.19200300.100.1.1</td>
</tr>
<tr>
<td>BusinessCat</td>
<td>BUSINESSCATEGORY</td>
<td>2.5.4.15</td>
</tr>
<tr>
<td>JurLocality</td>
<td>JURISDICTIONLOCALITY</td>
<td>1.3.6.1.4.1.311.60.2.1.1</td>
</tr>
<tr>
<td>JurStateProv</td>
<td>JURISDICTIONSTATEPROV</td>
<td>1.3.6.1.4.1.311.60.2.1.2</td>
</tr>
<tr>
<td>JurCountry</td>
<td>JURISTDICTIONCOUNTRY</td>
<td>1.3.6.1.4.1.311.60.2.1.3</td>
</tr>
</tbody>
</table>

¹ The use of the field name Email is deprecated; use Mail instead. ² When a certificate is created and posted to LDAP, the NotifyEmail value, if specified, is posted as the MAIL attribute. (This replaces any MAIL attribute for the directory entry and for certificate renewals replaces the original NotifyEmail value).
LDAP directory server requirements
Appendix B. Using a gskkyman key database for your certificate store

This topic lists the steps the RACF programmer performs to use a gskkyman key database.

Steps for using a gskkyman key database for your certificate store

Perform the following steps to use a gskkyman key database for your server’s certificate store:

**Note:** If the IBM HTTP Server is installed and configured for SSL using gskkyman, you need to perform only steps “9” on page 691, “10” on page 692, “11” on page 692, and “15” on page 692.

1. From the UNIX shell, `cd` to `/etc` and enter `/usr/lpp/gskssl/bin/gskkyman`.

2. Choose option 1 to create a key database. Type in a name or let it default to `key.kdb` and enter a password you want to use. When asked “Work with the database now?”, enter 1 for yes.

3. Choose option 3 to create new key pair and certificate request. Answer the prompts for file name, label, key size (1024 is suggested), and subject name fields.
   **Note:** Common Name should be your server’s symbolic IP address (for example, `www.YourCompany.com`).

4. Exit gskkyman when you are done.

5. From TSO, use the OGET command to put the certificate request in an MVS data set.
   **Example:**
   ```
   OGET '/etc/certreq.arm' certreq.arm
   ```

6. Use the RACDCERT command to read the request and generate the server certificate.
   **Example:**
   ```
   RACDCERT GENCERT(certreq.arm) ID(WEBSRV) SIGNWITH(CERTAUTH
   LABEL('Local PKI CA')) WITHLABEL('SSL Cert')
   ```

7. Export both the new server certificate and the CA certificate to MVS data sets, and OPUT these to file system files.
   **Example:**
   ```
   RACDCERT EXPORT(LABEL('SSL Cert')) ID(WEBSRV) DSN(cert.arm)
   FORMAT(CERTB64)
   OPUT cacert.der '/var/pkiserv/cacert.der' BINARY
   ```

8. You can optionally delete both certificate TSO data sets (but not the file system files).

9. In the UNIX shell, `cd` to `/etc` and invoke `/usr/lpp/gskssl/bin/gskkyman`. 
10. Choose option 2 to open the key database (created earlier). Reply to the name and password prompts.

11. Choose option 6 to store a CA certificate and specify the '/var/pkiserv/cacert.der' file.

12. When asked to "Exit gskkyman?", enter 0 for No.

13. Choose option 4 to receive a certificate issued for your request and specify the '/etc/cert.arm' file. Again enter 0 when asked to "Exit gskkyman?".


15. Exit gskkyman.

16. You can optionally remove the /etc/cert.arm file.
Appendix C. Using the PKI Services web application with Internet Explorer on Windows systems

To use the PKI Services end-user web application through the Internet Explorer browser on a Microsoft Windows system, a user must first set up the Windows system and Internet Explorer to work with PKI Services. This topic describes the tasks that a user needs to perform.

**Note:** Users do not need to perform these tasks for browsers other than Internet Explorer.

To avoid loss of function, PKI Services provides ActiveX programs that can be used to provide the function that PKI Services requires to renew a certificate. The PKI Services administrator must decide whether to provide signed or unsigned versions of the ActiveX programs, and in which directory the ActiveX programs are stored on the PKI Services server. These administrator tasks are described in “Administrator tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application” on page 698.

The script that is used in the template and JavaServer page (JSP) to renew and install a certificate from Internet Explorer calls the PKI Services ActiveX program for the required functions.

### User tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application

<table>
<thead>
<tr>
<th>Table 114. Tasks to perform to set up a Windows system and the Internet Explorer browser to work with PKI Services</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Task</strong></td>
</tr>
<tr>
<td>Install the PKI Services ActiveX program for your version of Microsoft Windows.</td>
</tr>
<tr>
<td>Configure Internet Explorer to trust PKI Services. (All Windows systems.)</td>
</tr>
<tr>
<td>Install the z/OS PKI Services certificate authority (CA) certificate on the Microsoft Windows system.</td>
</tr>
</tbody>
</table>

### Installing the PKI Services ActiveX program

There are two ways to install the PKI Services ActiveX program for your version of Windows:

- From the PKI Services home page (see “Steps for installing the PKI Services ActiveX program from the PKI Services home page” on page 693).
- From the certificate renewal page when you renew a certificate (see “Steps for installing the PKI Services ActiveX program when you renew a certificate” on page 695). If you do not have the PKI Services ActiveX program for your version of Microsoft Windows installed, PKI Services prompts you to install it.

### Steps for installing the PKI Services ActiveX program from the PKI Services home page

Perform the following steps to install the PKI Services ActiveX program for your version of Windows from the PKI Services home page.

**Before you begin**

You must run as the system administrator on the Microsoft Windows system on which you are installing the PKI Services ActiveX program, and you must be using the Internet Explorer browser.
Procedure

1. On the PKI Services home page (Figure 42 on page 377), click Install the PKI ActiveX Control to renew certificates

2. A file download window opens.

![Figure 88. File download window](image)

Click Run.

3. A security warning window opens. If the ActiveX program is signed, the name of the signer appears in the Publisher field. Figure 89 on page 694 shows the security warning window for an unsigned ActiveX program. (The PKI Services administrator decides whether or not to sign the ActiveX program.)

![Figure 89. Security warning window](image)

Click Run.

4. The setup wizard for the PKI ActiveX control opens.

![Figure 90. ActiveX control setup wizard](image)
Click **Next**, and continue clicking **Next** on the windows that follow until you reach **Finish**. Click **Finish** to complete the installation.

---

**Results**

When you are done, you have installed the PKI Services ActiveX program on a Microsoft Windows system. Continue to the next task, “Configuring Internet Explorer to trust PKI Services on a Windows system” on page 696.

**Steps for installing the PKI Services ActiveX program when you renew a certificate**

Perform the following steps to install the PKI Services ActiveX program for your version of Windows from the certificate renewal page.

**Before you begin**

You must run as the system administrator on the Microsoft Windows system on which you are installing the PKI Services ActiveX program.

**Procedure**

1. On the certificate renewal page (Figure 55 on page 396), click **Renew**.

---

2. If PKI Services determines that the PKI Services ActiveX program is not installed:

   a) A message window opens.

   ![Message window](image)

   *Figure 91. Message window*

   Click **OK** to install the ActiveX program.

   b) Continue with the steps for installing the ActiveX control from the PKI Services home page, beginning with step “2” on page 694.

3. Refresh the certificate renewal web page to load the ActiveX control on the browser.

---

**Results**

When you are done, you have installed the PKI Services ActiveX program on a Microsoft Windows system from the certificate renewal web page, and loaded it on the Internet Explorer browser. PKI Services continues with the renewal of your certificate, using the ActiveX program that you just installed.
Configuring Internet Explorer to trust PKI Services on a Windows system

To request or administer certificates using the PKI Services end-user web application through Internet Explorer, you must add the PKI Services system to the list of trusted sites recognized by Internet Explorer.

Steps for configuring Internet Explorer to trust PKI Services

Perform the following steps to configure Internet Explorer to trust PKI Services.

Procedure

1. From the Microsoft Windows system, start the Internet Explorer browser.

2. Click Tools->Internet Options to see the "Internet Options" panel, and select the "Security" tab.

3. Select the "Trusted sites" icon in the window labeled "Select a zone to view or change security settings". The "Trusted sites" icon is usually represented as a green check mark.

4. If necessary, click "Custom Level..." to change the settings for the zone. Set "Security level" to Medium and ensure that "Enable protected mode (requires restarting Internet Explorer)" is not selected.

5. Click Sites to see the "Trusted Sites" panel.

6. In the area labeled "Add this website to the zone:" enter the URL for the PKI Services system. Use https as the protocol, not http. For example, if the URL for the PKI Services system is alps4049.pok.ibm.com, enter https://alps4049.pok.ibm.com. Click Add to add this site to the list of trusted sites.

7. Leave the box labeled "Require server verification (https:) for all sites in this zone" checked. Click Close to close the "Trusted Sites" panel and return to the "Security" tab of the "Internet Options" panel.

8. Click Apply on the "Internet Options" panel to confirm the configuration changes. Then click OK to close the "Internet Options" panel.

9. Shut down the Internet Explorer browser to allow the modifications to take effect.

Results

When you are done, you have configured Internet Explorer to trust PKI Services. Continue to the next task, "Installing the PKI Services CA certificate on a Microsoft Windows system" on page 696.

Installing the PKI Services CA certificate on a Microsoft Windows system

Any system using Microsoft Windows to request or administer certificates using the PKI Services end-user web application through Internet Explorer must install the z/OS PKI Services certificate authority (CA) certificate to enable SSL-protected sessions. Although the Internet Explorer browser can import the z/OS PKI Services CA certificate, the browser does not correctly install the certificate in the proper location by default.
Steps for installing the PKI Services CA certificate on a Microsoft Windows system
Perform the following steps to install the z/OS PKI Services CA certificate in the correct location using
Internet Explorer.

Before you begin
You need to know what version of Windows is running on your system.

Procedure

1. On the Microsoft Windows system, start the Internet Explorer browser. In the address field, enter the
URL for the PKI Services home page.

2. Click the link labeled "Install the CA Certificate to enable SSL sessions for PKI Services". Internet
Explorer presents a "File Download - Security Warning" pop-up panel, asking whether to open or save
the file, and indicating that the file is from the PKI Services system. For example, if the PKI Services
system is alps4049.pok.ibm.com, the following information should be displayed in this pop-up panel:

   Type: Security Certificate, number bytes
   From: alps4049.pok.ibm.com

   Click Open.

3. Internet Explorer might display a pop-up panel to warn that a website wants to open web content
using the browser. If it does, click Allow.

4. Internet Explorer presents a "Certificate" pop-up panel indicating that this CA Root certificate is not
trusted, and to enable the trust, the certificate must be installed in the Trusted Root Certification
Authorities store. Click Install Certificate.

5. Internet Explorer presents a "Certificate Import Wizard" welcome panel. Click Next >.

6. Internet Explorer displays the certificate store selections.
   a) You must select Place all certificates in the following store and continue to step
      "7" on page 697.

7. Internet Explorer presents a "Select Certificate Store" pop-up panel, allowing you to select the proper
certificate store. Select the "Trusted Root Certification Authorities" item in the scrolled selection
window, and click OK. Then click Next >.

8. Internet Explorer displays the "Completing the Certificate Import Wizard" panel. In the area labeled
   "You have specified the following settings:" the following information should be displayed:

<table>
<thead>
<tr>
<th>Certificate Store Selected By User</th>
<th>Trusted Root Certification Authorities Certificate</th>
</tr>
</thead>
</table>

   Click Finish.

9. Internet Explorer presents a "Security Warning" pop-up panel, indicating that a certificate is about to
be installed, and asking you to verify that this is the intended action to take. Click Yes. Internet
Explorer presents a confirmation pop-up, indicating that the certificate was successfully imported.
Results
When you are done, you have successfully installed the PKI Services CA certificate, and your Windows system and Internet Explorer browser are ready to use the PKI Services web application.

Administrator tasks for setting up a Windows system and Internet Explorer to work with the PKI Services web application

PKI Services provides an ActiveX program to provide function that PKI Services requires to install a renewed certificate. The program is:

- PKICEnroll

The ActiveX program requires the Microsoft C Runtime Library and the Microsoft Active Template Library. PKI Services provides a Microsoft installer program for the ActiveX program that is packaged with the ActiveX program and the required Microsoft libraries. You can use the program in one of two ways:

- If you choose not to sign the ActiveX program, you can use the installer program as it is shipped.
- For greater security, you can sign the ActiveX program, but if you do this you must repackage the installer program. PKI Services provides the related registry files, type library files, and the license file that you need to sign and repackage the program. After signing and re packaging the program, you must put the .exe and .msi files in a directory on the PKI Services server that is accessible to PKI Services users so that they can install the ActiveX program.

Guideline: For maximum security, sign the ActiveX program with a certificate issued by your PKI Services CA. The ability of ActiveX program to modify your system makes them a security risk. Signing your ActiveX program helps to ensure that users are running unchanged versions free of viruses.

Signing the PKI Services ActiveX programs

To sign a PKI Services ActiveX program, you must sign the unsigned version that PKI Services provides, rebuild the install program for it, and sign the rebuilt install program. To make the signed programs available to PKI Services users, you must put the signed files in directories that are accessible to PKI Services users, and update the HTTP Server configuration files to specify those directories.

Steps for signing the PKI Services ActiveX programs

Perform the following steps to sign the ActiveX program that PKI Services provides and make it available to PKI Services users.

Before you begin

- You need to have a tool such as Microsoft Visual Studio that builds an installer program.
- You need a code signing certificate with an Extended Key Usage of Code Signing and its private key. If you do not have one, you can request one from PKI Services using the 2-year Authenticode template. Follow the instructions for requesting a server certificate in “Steps for requesting a new certificate” on page 384. Then export the certificate and its private key to a PKCS #12 file and download it to the Windows platform. In step “2.a” on page 698, Microsoft Sign Tool uses the certificate to sign PKICEnroll.dll.

Procedure

1. Create directories on the PKI Services server for the .exe and .msi program that you build in step “2.a” on page 698.

2. Sign the ActiveX program. Perform the following step for PKICEnroll.dll.
   a) Use the Microsoft Sign Tool (msdn.microsoft.com/en-us/library/aa387764(VS.85).aspx) (signtool.exe) to sign the ActiveX program (PKICEnroll.dll) with the code signing certificate.
   b) Build the installer programs. You need to use a tool such as Microsoft Visual Studio.
Use PKICEnrollDeploy as the project name. The outputs for the installer program are:

- setup.exe
- PKICEnrollDeploy.msi

For detailed instructions, see “Steps for building the installer programs using Microsoft Visual Studio” on page 699.

c) Use Microsoft Sign Tool and the code signing certificate that you used in step “2.a” on page 698 to sign the installer programs.

---

3. Upload the signed installer programs to the directories you created on the PKI Services server in step “1” on page 698.

Note: Be sure that you upload the programs in binary so that the files are not altered during the transfer.

---

4. Update the HTTP configuration files.

a) Update httpd.conf. Change the following statements to specify the directories you created in step “1” on page 698.

```
Pass /PKIServ/PKICEnroll/*   /usr/lpp/pkiserv/ActiveX/PKICEnroll/*
```

b) Update httpd2.conf. Change the following statements to specify the directories you created in step “1” on page 698.

```
Pass /PKIServ/PKICEnroll/*   /usr/lpp/pkiserv/ActiveX/PKICEnroll/*
```

---

Results

When you are done, you have signed the ActiveX program provided by PKI Services, and made it available to PKI Services users.

Steps for building the installer programs using Microsoft Visual Studio

Before you begin

You need to have a tool such as Microsoft Visual Studio that builds an installer program.

About this task

These instructions describe how to use Microsoft Visual Studio Software Application Version 2010 to create a setup and deployment Visual Studio project. The project creates a directory to save the project setup files along with the output files.

Perform the following steps to build the installer programs for a PKI Services ActiveX program.

Procedure

1. Download the following files from the directory /usr/lpp/pkiserv/ActiveX/signsrc on the z/OS system to a working directory on your workstation:

   - PKICEnroll.dll
   - PKICEnroll.tlb
   - PKICEnroll.reg
   - PKIAcAdX.lic

Note: Ensure that the files are transferred in binary format so that they are not modified in transit.
2. Open Microsoft Visual Studio Software Application Version 2010 from the Windows Start menu, and create a new setup and deployment project.
   a) Click **File > New Project**.
   b) In the New Project panel, under **Other Project Types** select **Setup and Deployment**.
   c) In the "Visual Studio installed templates" pane (on the right) click **Setup Project**.
   d) In the **Name** field, enter the name of the project, for example PKICEnrollDeploy.
   e) In the **Location** field, enter the directory where you want the project created, or click **Browse** to select a directory.
   f) Select **Create directory for solution**.
   g) Click **OK**.
      A new project directory is created in a separate file directory in the path that is given in the **Location** field.

3. Add the required ActiveX Dynamic link library, the ActiveX Type library file, and the ActiveX license file (PKIActiveX.lic) to the current project to create the installer program.
   a) Click **View > Solution Explorer**.
   b) Right click the name of the project that you just created, (for example, PKICEnrollDeploy).
   c) Click **Add > File**.
   d) On the AddFiles window, navigate to the directory where the files were stored on the workstation in step “1” on page 699.
      For PKICEnroll select these files:
      • PKICEnroll.dll
      • PKICEnroll.tlb
      • PKIActiveX.lic
      Click **Open**. The files you selected are listed under the project on Solution Explorer. The DLL file has a dependency on Microsoft .NET Framework. Microsoft Visual Studio automatically lists the dependency under the project.

4. Add the Microsoft C Runtime Library and Microsoft Active Template Library merge modules to be packaged in the installer program.
   a) On the Solution Explorer pane, right click the project name (for example, PKICEnrollDeploy).
   b) Click **Add > Merge Module**. A window opens listing all the merge modules that were installed when Microsoft Visual Studio was installed.
   c) Click **Microsoft_VC100_CRT_x86.msm** and **Microsoft_VC100_ATL_x86.msm** and click **Open** to add these files to the project.

5. Modify the project properties.
   a) From the Solution Explorer pane, click the project name (for example, PKICEnrollDeploy).
   b) On the toolbar click **View > Other Windows > Property Window**. A list of properties with default values is displayed.
   c) For the Author property, enter IBM.
   d) For the InstallAllUsers property, enter True.
   e) For the Manufacturer property, enter IBM.
   f) For the ProductName property, enter PKICEnroll.
   g) For the RemovePreviousVersions property, enter True.
6. Determine the default location where the ActiveX program is going to be installed.
   a) Click View > Solution Explorer.
   b) Right click the project (for example, PKICEnrollDeploy).
   c) Click View > File System. A file system pane opens on the right side.
   d) In the File System pane, right click Application Folder.
   e) Click Properties Window.
   f) Note the value listed in the Default Location field. This is the location where the ActiveX program is going to be installed. The default value is \[ProgramFilesFolder]\[Manufacturer]\[ProductName]. The value of ProgramFilesFolder has been set by Microsoft Visual Studio to the Program Files folder for the operating system: C:\Program Files for a 32-bit Windows system and C:\Program Files(x86) for a 64-bit operating system. You set the value of Manufacturer to IBM and the value of ProductName to PKICEnroll when you set the project properties in step “5” on page 700. Do not modify any of these values. The ActiveX DLL looks for the license file (PKIActive.lic) in this directory. If it cannot find it there, the ActiveX program is not instantiated on the browser and certificate renewal processing might not work properly.

7. The User Interface command provides the interface for the user during installation. It allows the user installing the ActiveX program to select a directory for installation. Disable the folder selection step, so that the location listed in step “6.f” on page 701 is used.
   a) Click View > Solution Explorer.
   b) Right click the project (for example, PKICEnrollDeploy).
   c) Click View > User Interface. A User Interface pane opens on the right side.
   d) Under Install, click Installation Folder and click Delete.
   e) Under Install, under End right click Finished and click Properties. Modify the UpdateText property to include instructions to be displayed to the user after the installation of the ActiveX program: Please refresh the PKI Certificate Renewal web page to use the newly installed PKI ActiveX Control.
   f) Under Administrative Install, click Installation Folder and click Delete.
   g) Under Administrative Install, under End right click Finished and click Properties.

8. The setup and deployment project (for example, PKICEnrollDeploy) can create registry entries for the ActiveX program. Once the ActiveX program is installed on the target machine the ActiveX program is registered and the browsers accessing this ActiveX program instantiates looking at the windows registry. The registry entries are created using the Registry setup interface.
   a) Click View > Solution Explorer.
   b) Right click the project (for example, PKICEnrollDeploy).
   c) Click View > Registry. A Registry pane opens on the right side.
   d) Right click Registry on Target machine .
   e) Click Import. The Import Registry File window opens.
   f) Click PKICEnroll.reg and click Open.

9. Set the ActiveX dynamic link library (PKICEnroll.dll) to be registered during installation.
   a) Click View > Solution Explorer.
   b) Right click PKICEnroll.dll.
   c) Click Properties.
   d) Set the Register field to vsdiaCOM.
10. Set the ActiveX type library (PKICEnroll.tlb) to be registered during install.
   a) Click **View > Solution Explorer**.
   b) Right click PKICEnroll.tlb.
   c) Click **Properties**.
   d) Set the **Register** field to **vsdrfCOM**.

11. Build the setup and deployment project.
   a) Click **View > Solution Explorer**.
   b) Right-click the project name from the Solution Explorer (for example, PKICEnrollDeploy).
   c) Select Properties. The **Property Pages** window opens.
   d) Select Release in the Configuration list.
   e) On the right pane of the window that opens, click **Prerequisites**.
   f) Select the **Create setup program to install prerequisite components** check box.
   g) In the list of prerequisites, select the **.NET Framework 4.0 Client Profile (x86 and x64)** check box if it is not already selected.
   h) Select the **Visual C++ 2010 Runtime Libraries (x86)** check box.
   i) Click **OK**. The **Prerequisites** window closes.
   j) Click **OK**. The **Property Pages** window closes.
   k) Right-click the project (for example, PKICEnrollDeploy) and select **Build**.

If the build is successful, the application creates an output directory under the root project directory that is under the main solution directory. If PKICEnrollDeploy is the project name:

- C:\PKICEnrollDeploy is the solution name.
- C:\PKICEnrollDeploy\PKICEnrollDeploy is the root project directory.
- C:\PKICEnrollDeploy\PKICEnrollDeploy\Release is the output directory.
- There are two output files: PKICEnrollDeploy.msi and setup.exe.

---

**Results**

When you are done, you have built the installer program for a PKI Services ActiveX program. Continue with step “2.c” on page 699 to sign the installer program.
Appendix D. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the Contact z/OS web page (www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision use software products successfully. The accessibility features in z/OS can help users do the following tasks:

- Run assistive technology such as screen readers and screen magnifier software.
- Operate specific or equivalent features by using the keyboard.
- Customize display attributes such as color, contrast, and font size.

Consult assistive technologies

Assistive technology products such as screen readers function with the user interfaces found in z/OS. Consult the product information for the specific assistive technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface

You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes the default settings for the PF keys.

- z/OS TSO/E Primer
- z/OS TSO/E User’s Guide
- z/OS ISPF User’s Guide Vol I

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line because they are considered a single compound syntax element.
Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

- **? indicates an optional syntax element**
  The question mark (?) symbol indicates an optional syntax element. A dotted decimal number followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

- **! indicates a default syntax element**
  The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

- *** indicates an optional syntax element that is repeatable**
  The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3*, 3 HOST, 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal number followed by the + symbol indicates that the syntax element must be included one or more times. That is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.
This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

**Rights**

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

**IBM Online Privacy Statement**

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

**Policy for unsupported hardware**

Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.
Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/software/support/systemsz/lifecycle)
- For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information

This document primarily documents information that is NOT intended to be used as Programming Interfaces of PKI Services.

This document also documents intended Programming Interfaces that allow the customer to write programs to obtain the services of PKI Services. This information is identified where it occurs, either by an introductory statement to a topic or section or by the following marking:

[Programming Interface Information] [End Programming Interface Information]

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).
Index

Special Characters

_CEE_RUNOPTS, updating 512
_PKISERV_CA_DOMAIN environment variable 615
_PKISERV_CONFIG_PATH environment variable 615
_PKISERV_ENABLE_JSP
description 617
_PKISERV_EXIT
description 615
_PKISERV_FIPS_LEVEL
description 615
_PKISERV_MSG_LEVEL
description 616
message levels 541
subcomponents 541
_PKISERV_MSG_LOGGING
STDERR_LOGGING 616
STDOUT_LOGGING 616
_AdditionalHeadIE 138
_ChallengePassphrase 138
_ChallengePassphrase2 138
_ObjectHeaderIE 138
_preregok 139
_RecoverEmail 138
_RecoverEmail2 138
_renewkeysetIE 139
_renewkeysetNS 139
_renewrevokebad 139
_renewrevokeok 139
_requestbad 138
_requestok 138
_return12cert 139
[ ] for substitution variables 136
/etc/pkiserv
/usr/lpp/pkiserv
description 11
subdirectories 603
/var/pkiserv
description 11
% in named fields 137
%-%-renewrevokebad%% 148
%-%-renewrevokeok%% 148
%-%-requestok%% 157
%-%-AltOther_1_2_3_4_5%% 229
%-%-AltOther_1_2_3_4_6%% 229
%-%-cadomain%% variable 321
%-%-dn%% variable 321
%-%-modreqlist%% variable 321
%-%-notafter%% variable 321
%-%-pendreqlist%% variable 321
%-%-printcert%% variable 321
%-%-quicklink%% variable 321
%-%-recoverylink%% variable 321
%-%-recoverylist%% variable 322
%-%-rejectreason%% variable 322
%-%-requestor%% variable 322
%-%-return12cert%% 148
%-%-SelectCADomain%% 148
%-%-transactionid%% 322
%-%-transactionid%% variable 322

Numerics

1YBSM 152
1YBSSL 152
2YBZOS 152
2YIACS 152
5YSCEPP 152
5YSIPS 152
5YSSSL 152

A

abends, recording 529
ACBRDBRM 603
access
READ, authorizing 482
to administration pages
changing 236
to end-user web pages 376
to RACF group 39
to VSAM data sets 39
access control list (ACL), LDAP 98
access control, setting up 39, 619
accessibility
contact IBM 703
features 703
ACL (access control list), LDAP 98
actions
on certificate requests 409
on certificates 422
active (status of certificate) 421
active, AutoRenewDisabled (status of certificate) 421
active, NotRenewable (status of certificate) 421
active, AutoRenew (status of certificate) 421
ActiveX controls for PKI Services
administrator tasks to set up 698
building installer programs for using Microsoft Visual Studio 699
description 693
installing from PKI Services home page 693
installing when renewing a certificate 695
signing 698
ActiveX subdirectory 604
admactcert.rexx 234
admacttid.rexx 234
admacttid2.rexx 234
admicl.rexx 233
admiclall.rexx 235
admiclcert.rexx 234
admin number
indicator in pkitmpl.xml 239
administration
changing log options 541
changing requestor email 424
deleting certificate requests 416
deleting certificates 424
deleting preregistered requests 416
disabling automatic renewal of certificates 423
displaying log options settings 542
enabling automatic renewal of certificates 423
log options
changing 541
displaying 542
modifying certificate requests 413
processing
certificate requests using searches 417
certificates using searches 424
multiple certificate requests 418
multiple certificates 424
selected certificate requests 419
selected certificates 426
single certificate 422
single certificate request 411
single preregistered request 411
RACF
ongoing administration 481
running IKYSETUP 39
rejecting certificate requests 416
resuming certificates 424
revoking certificates 423
searching
certificate requests 416
certificates 424
selected certificate requests 419
selected certificates 426
starting PKI Services 129
stopping PKI Services daemon 131
suspension certificate processing 424
administration group
GID, IKYSETUP variable 42
IKYSETUP variable 58
setting up 39
user IDs, IKYSETUP variable for 42
administration group PKIGRP 58
administration home page
accessing 405
using 410
administration tasks
PKI Services
processing certificate requests 409
processing certificates 421
RACF
ongoing administration 481
running IKYSETUP 39
administration Web application
t description 4
administration web pages
customizing 233
fields 408
using 405
administration Web pages
changing access to 236
steps for customizing 235
administrative functions
protecting 39, 621
administrator
access required 620
administrator notification
copying files for 70
AdminNotifyForm (parameter in pkiserv.conf) 87
AdminNotifyModForm (parameter in pkiserv.conf) 87
AdminNotifyNew (parameter in pkiserv.conf) 79
AdminNotifyReminder (parameter in pkiserv.conf) 79
ADMINNUM tag on certificate approvals <ADMINAPPROVE> 156
ADMINNUM tag on preregistration records <PREREGISTER> 158
adminPW
LDAP server configuration file 97, 102
ADMINSCOPE subsection (in APPLICATION section of pkiserv.tmpl) 148, 235
admmain.rexx 233
admmotid.rexx 233
admpend.rexx 233
admpendall.rexx 234
admpendtid.rexx 233
advanced customization 283
AIEALNKE 603
alias
for certificate template
changing 221
description 151
list 152
for database entry 360
for IKYSPROC 682
PKISERVD 682
AltDomain (named field in pkiserv.tmpl) 139
AltEmail (named field in pkiserv.tmpl) 139
alternate name
domain name 380
e-mail address 380
IP address 381
other name 381
uniform resource identifier (URI) 381
AltIPAddr (named field in pkiserv.tmpl) 140
AltOther (named field in pkiserv.tmpl) 140
AltURI (named field in pkiserv.tmpl) 140
APPL subsection (in TEMPLATE section of pkiserv.tmpl) 154
application domain
adding 298
steps for adding, when you use JSPs 301
steps for adding, when you use REXX CGIs 300
APPLICATION section of pkiserv.tmpl
ADMINHEADER subsection 235
ADMININFOOTER subsection 235
ADMINSCOPE subsection 148, 235
APPLICATION sections of pkiserv.tmpl
ADMININFOOTER subsection 149
APPLICATION sections of pkiserv.tmpl (continued)
  ADMINHEADER subsection 148
  CONTENT subsection 147
  examining 166
  FAILURECONTENT subsection 148
  FINDRECOVERCONTENT subsection 148
  RECONTENT subsection 148
  RECONTENT2 subsection 148
  RECOVERCONTENT subsection 148
  REFAILURECONTENT subsection 148
  RENEWEDCERT subsection 148
  RESUCCESSCONTENT subsection 148
  RETRIEVECONTENT2 subsection 148
  RETURNCERT subsection 148
subsections 147

approval of certificates 156
approve (action on certificate request) 410
approve with modifications (action on certificate request) 410
approved (status of certificate request) 409
APROCLIB 603
ARL (authority revocation list) distribution point 295
ARLDist (parameter in pkiserv.conf) 79, 295
ASAMPLIB 603
assistive technologies 703
associating user ID with PKI Services started procedure 619
attributes
  HIGHTRUST 483
  LDAP, that PKI Services requires 687
  OU 111, 113
  PROTECTED 620
  RDN 687
  RESTRICTED 46, 620
Authenticate - code signing PKI server certificate description 150
Authenticate code signing PKI server certificate fields 162–164
AuthName1 (parameter in pkiserv.conf) 110
AuthorityInformationAccess certificate extension 510
AuthorityKeyIdentifier certificate extension 510
CRL extension 510
authorization checking, using exit routine 352
AuthPwd1 (parameter in pkiserv.conf) 111
auto-approval
  access required 621
  indicator in pkitmpl.xml 239
  of certificates 149–151
automatic certificate renewal
  exit routine processing for 349
  indicator in pkitmpl.xml 240
  setting up 323
automatic deletion
  from ICL 78
  from object store 78
automatic renewal of certificates 152
AUTORENEW tag on certificate templates 152

backing up

backing up (continued)
  VSAM data sets
    sample JCL 680
  backup_dsn (variable in IKYSETUP) 55
base64-encoded
  #10 certificate request 145
  certificate 136, 217, 219
  response 6
base64-encoded PKCS (field in end-user web pages) 383
base64cert substitution variable 136, 139, 217
basic constraints extension, including in certificate request 147
BasicConstraints (certificate extension) 510
bin subdirectory 604
binary attribute, posting to the LDAP server with 110
bind passwords for LDAP
  encrypted 501
  in the clear 501
binding
  distinguished name for LDAP 110
  passwords for LDAP servers 111
BindProfile1 (parameter in pkiserv.conf) 112
bpx_userid (Variable in IKYSETUP) 50
brackets (in substitution variables) 136
browser certificates
  aliases 152
  installing 391, 392
  n-year PKI certificate for extensions demonstration 151
  one-year PKI S/MIME browser certificate 150
  one-year PKI SSL browser certificate 149
  one-year SAF browser certificate 149
  requesting 384
  retrieving 391, 392
  supported types 7
  two-year PKI browser certificate for authenticating to z/OS 150
browsers supported 6
browsertype substitution variable 136
Business Category (field in end-user web pages) 379
BusinessCat (named field in pkiserv.tmpl) 140

C

CA (certificate authority)
  distinguished name, IKYSETUP variable 41
  overview 3
CA certificate
  backing up 39
  creating
    using IKYSETUP 39
  expiration date, IKYSETUP variable 56
  exporting 39
  installing 377, 406
  installing on Microsoft Windows system 696
  Key rollover 491
  label, IKYSETUP variable 42
  life span, IKYSETUP variable 56
  locating 484
  Rekeying 491
  renewing 488
  specifying expiration 54
CA certificate and private key
  backing up 622
CA certificate profile, recovering 490
CA domain to which a CMP request is routed, Determining  
CA domains  
adding 302  
CA functions  
authorizing PKI Services daemon user ID for 39  
CA private key for PKI  
Rekeying 492  
Replacing 492  
Retiring 492  
Rollover 492  
CA revocation list (ARL) 290  
ca_dn (variable in IKYSETUP) 41  
ca_domain (variable in IKYSETUP) 56  
ca_expires (variable in IKYSETUP)  
changing value of 54  
ca_exyears (variable in IKYSETUP)  
changing value of 54  
ca_keysiz (Variable in IKYSETUP) 51  
ca_label (variable in IKYSETUP) 42  
ca_ring (variable in IKYSETUP) 57  
CA, intermediate  
establishing PKI Services as 486  
cacert_dsn (variable in IKYSETUP) 57  
cacerts 341  
cadisplay.rexx 219  
cadomain substitution variable 136  
cagetcert.rexx 219  
cagetcert2.rexx 219  
cagorcvr.rexx 219  
camain.rexx 218  
camodify.rexx 219  
carecover.rexx 218  
careq.rexx 218  
caretrieve.rexx 218  
caretrieve.rexx 218  
C4ring (default name of SAF key ring) 57, 87  
caStore (variable in IKYSETUP) 57  
catmpl.rexx 218  
CBC.SCLBDLL 53  
CBRDBRM 603  
CDSA 3  
CEE.SCEERUN 53  
CertGroupVerify 507  
certificate  
posting to the LDAP server with binary attribute 110  
certificate approvals  
ADMINNUM tag 156  
certificate authority (CA)  
certificate  
backing up 39  
creating 39  
exporting 39  
installing 377, 406  
renewing 488  
overview 3  
certificate data set, editing 487  
certificate extensions  
customizing 8  
host identity mapping 9  
in PKI Services 8  
standard 8  
supported by PKITP 510  
certificate extensions defining custom 328  
certificate generation application Web page 147  
certificate management protocol (CMP), support for  
enabling 81  
error codes and messages returned 474  
PKIBody structure, fields supported 455, 456  
PKIHeader structure, fields supported 455  
PKIMessage structure, fields supported 454, 455  
pkiserv.conf parameter to enable 81  
setting up client to make requests 463  
trace file, specifying 473  
trace options, specifying 473  
tracing 474  
type cp message, fields supported 458  
type cr message, fields supported 456  
type error message, fields supported 460  
type p10cr message, fields supported 457  
type rp message, fields supported 459  
type rr message, fields supported 459  
Certificate management protocol (CMP), support for  
HTTP Server environment variables 466  
Certificate management protocol (CMP), Support for  
Determining the CA domain to route request to 460  
certificate path length constraint  
enabling 81  
certificate policies  
CertificatePolicies extension 284  
PKITP supports 509  
certificate preregistration  
enabling in pkiserv.conf 82  
certificate preregistration records  
ADMINNUM tag 158  
certificate profile, recovering 490  
certificate renewal, automatic  
exit routine processing for 349  
certificate request message for CMP, fields supported 456  
certificate requests  
actions on 409  
changing 413  
deleting 416  
modifying 413  
processing  
multiple 418  
selected 419  
single 411  
using searches 416  
processing selected 419  
rejecting 416  
relationship with certificates 428  
searching 416  
states 409  
statuses 409  
synchronous fulfillment 325  
updating 413  
certificate response message for CMP, fields supported 458  
certificate revocation list (CRL)  
constant portion, distribution point URI 80  
constant portion, file system full path for the distribution  
point 80  
constant portion, relative distinguished name 80  
creating immediately 431  
maximum number of certificates 80  
revoked certificates on 422  
suspended certificates on 422  
time interval between issuances 85  
utility program for creation of 431
certificate revocation list (CRL) (continued)
  validity period 80
  certificate revocation list (CRL), allowing access to 98
  certificate revocation request message for CMP, fields
  supported 459
  certificate revocation response message for CMP, fields
  supported 459
  Certificate revocation status
    check revocation status 289
  certificate store, using gskkyman for 691
  certificate suspension grace period 83
  certificate templates
    adding 227
    alias 151, 152
    AUTORENEW tag 152
    file
      customization, additional first-time 221
      customization, minimal 219, 221
      customizing the OtherName field for REXX CGI
      execs 230
      for JSPs 237
      retrofitting release changes 224
      name 151, 152
      nickname 151, 152
      one-year PKI generated key 150
      pkiserv.tmpl 149
      subsections, summary 159
      true name 152
  certificate templates and JSPs
    file
      retrofitting release changes 276
  certificate validation service 507
  CertificateIssuer (CRL entry extension) 511
  CertificatePolicies extension
    defining 284
    in certificate 84
    organization name for 84
    PolicyCritical (parameter in pkiserv.conf) 84
    supported by PKITP 510
    using 284
  certificates
    actions on 422
    auto-approval 149–151
    automatic renewal 323
    capturing 352
    changing requestor email 424
    defining custom extensions for 328
    deleting 424
    disabling automatic renewal
      by administrator 423
    enabling automatic renewal
      by administrator 423
    expiration messages, when processed 92
    expired, removing 92
    extensions 8
    generating keys for 86, 325
    locating 484
    posting 441
    preregistering a SCEP client 402
    preregistering an EST client 342
    preregistration 151
    processing 405, 421
    processing selected 426
    recovering if PKI Services generated the keys 398
  certificates (continued)
    relationship with certificate requests 428
    renewal messages, when processed 92
    renewing
      by way of Web page, steps for 394
    renewing automatically 323
    requesting 384
    resuming 424
    retrieving
      from bookmarked page 391
      from home page 392
    revoking
      by administrator 423
      by user 397
    searching 424
    single 422
    standard extensions 8
    states 421
    statuses 421
    supported types 7
    suspending
      by administrator 424
      by user 397
    uses 7
    X.509v3 support 8
  certificates, authorization for creation 98
  Certification Practice Statement
    Uniform Resource Identifier 79
  CertPlist class 369
  CertPolicy section (of pkiserv.conf)
    default values 79
    description 73
    excerpt 74
    information needed 79
  CertValidityConstraint (parameter in pkiserv.conf) 79
  CF lock structure
    defining in SMS base configuration 118
    defining to MVS 118
  CGI debugging, flag in pkiserv.tmpl 135
  CGIs
    admactcert.rexx 234
    admacttid.rexx 234
    admacttid2.rexx 234
    admicl.rexx 233
    admiclall.rexx 235
    admiclcert.rexx 234
    admmain.rexx 233
    admmodtld.rexx 233
    admpend.rexx 233
    admpendall.rexx 234
    admpendtid.rexx 233
    cadisplay.rexx 219
    cagetcert.rexx 219
    cagetcert2.rexx 219
    cagorcvr.rexx 219
    camain.rexx 218
    camaincert.rexx 219
    camodify.rexx 219
    carecover.rexx 218
    careq.rexx 218
    caretrieve.rexx 218
    catmpl.rexx 218
    installcert.rexx 219
    summary 233
  chains 507
challenge passphrase (field in end-user web pages) 383
ChallengePassPhrase (named field in pkiserv.tmpl) 140
Change IKYSETUP variables 49
change requestor email (action for certificate) 422
CISIZE statements 119
clear key 325
clear, LDAP bind passwords in 501
client user ID 227
ClientName (named field in pkiserv.tmpl) 141
CMP (certificate management protocol), support for
enabling 81
erss error codes and messages returned 474
HTTP Server environment variables 466
PKIBody structure, fields supported 455, 456
PKIHeader structure, fields supported 455
PKIMessage structure, fields supported 454, 455
pkiserv.conf parameter to enable 81
setting up client to make requests 463
trace file, specifying 473
trace options, specifying 473
tracing 474
type cp message, fields supported 458
type cr message, fields supported 456
type error message, fields supported 460
type p10cr message, fields supported 457
type rp message, fields supported 459
type rr message, fields supported 459
CMP (certificate management protocol), Support for
Determining the CA domain to route request to 460
code samples
configuration directives for IBM HTTP Server - Powered
by Apache 649
configuration file 607
environment variables file 617
expiringmsg.form 319
httpd.conf for IBM HTTP Server - Powered by Apache
649
IKYCDB2 655
IKYCDBV1 658
IKYCVSAM 661
IKYCVSV1 665
IKYRVSAM 670
IKYRVSV1 673
IKYSBIND 678
IKYSETUP 624
IKYSGRNT 679
IKYVBKUP 680
IKYVREST 681
JCL to back up VSAM data sets 680
JCL to create VSAM data sets
  not using RLS 661, 665
  using RLS 670, 673
JCL to restore VSAM data sets 681
job to build Db2 package and plan for object store and
ICL 678
job to create Db2 objects for object store and ICL 655, 658
job to grant execute privilege on the Db2 package 679
pendingmsg.form 320
pendingmsg2.form 320
pkiserv.conf 607
pkiserv.envars 617
pkiserv.tmpl
  APPLICATION section 166
code samples (continued)
pkiserv.tmpl (continued)
  INSERT section 185
  TEMPLATE section 179
PKISERVD 668
pkitpsamp.c 517
procedure to start PKI Services daemon 682
readymsg.form 319
recoverymsg.form 320
rejectmsg.form 319
renewcertmsg.form 320
server.xml for Liberty 654
server.xml for WebSphere Application Server 654
vhost1443.conf for IBM HTTP Server - Powered by
Apache 649
vhost443.conf for IBM HTTP Server - Powered by
Apache 649
vhost80.conf for IBM HTTP Server - Powered by Apache
649
code signing server certificate
  fields 162–164
codes returned from CMP functions 474
Common Data Security Architecture (CDSA) 3
common name (field in end-user web pages) 379
CommonName (named field in pkiserv.tmpl) 141
completed (status of certificate request) 409
components
diagram 5
  in message numbers 547
components of PKI Services 4
configurable section of IKYSETUP 39
configuration directives
  example for IBM HTTP Server - Powered by Apache 649
configuration file
  example 607
  path name 615
  updating
    overview 72
Configuration file
  updating
    steps 74
configuration, PKI Services
  testing 129
configuring
  system for PKI Services 37
CONSTANT subsection (in TEMPLATE section of
pkiserv.tmpl) 154
contact
  z/OS 703
CONTENT subsection
  in APPLICATION section of pkiserv.tmpl 147
  in TEMPLATE section of pkiserv.tmpl 153
CONTROL access for IRR.DIGTCERT.GENCERT 621
core function 616
CORE subcomponent 616
country (field in end-user web pages) 379
Country (named field in pkiserv.tmpl) 141
cp message type for CMP, fields supported 458
cps in URI 79
cps1 (parameter in pkiserv.conf) 286
cpsn (parameter in pkiserv.conf) 79
cr message type for CMP, fields supported 456
createcrs utility 431
CreateInterval (parameter in pkiserv.conf) 79
CreateOUValue (parameter in pkiserv.conf) 111
creating VSAM data sets using RLS 670, 673
critical (marking of extension) 509
critical flag 84
CRL
allowing access to 98
creating immediately 431
distribution point, customizing 290
enabling support for large 297
entry extensions 511
extensions 510
larger than 32KB 81, 297
posting to the LDAP server with binary attribute 110
revoked certificates on 422
suspended certificates on 422
time interval between issuances 85
utility program for creation of 431
CRLDistDirPath (parameter in pkiserv.conf) 80, 295
CRLDistName (parameter in pkiserv.conf) 80, 294
CRLDistributionPoints (certificate extension) 296, 510
CRLDistSize (parameter in pkiserv.conf) 80, 294
CRLDistURI (parameter in pkiserv.conf) 80, 294
CRLDuration (parameter in pkiserv.conf) 80
CRLDPExt (parameter in pkiserv.conf) 81
CRLNumber (CRL extension) 511
CRLReason (CRL entry extension) 511
CRLWTONotification (parameter in pkiserv.conf) 81
cryptographic service provider (field in end-user web pages) 384
cryptography
standards supported 6
CRYPTOZ class
profiles to allow PKI Services to generate key pairs 624
cryptoz_grp (variable in IKYSETUP) 51
CSECTs
IKYBB 530
IKYP0N 529
IKYP81 529
IKYP8A 529, 530
IKYP8B 529
IKYSCHDR 531
IKYSTART 532
IKYTIMER 533
CSF.SCSFMOD0 53
CSF.SCSFMOD1 53
csfkeys_profile (variable in IKYSETUP) 51
csferv_profile (variable in IKYSETUP) 52
csfusers_grp (variable in IKYSETUP) 52
CSSM_TP_PASSThrough DBList 512
evidence 512
format 512
functions
CertGroupVerify 507
FreeEvidence 507
initial policy 512
parameters 512
performing certificate validation 515
purpose 512
return codes 512

CUSTOMERS
application name 168
CustomExt (named field in pkiserv.tmpl) 141
customization
advanced 283
customizing
certificate templates file
minimal 219
distribution point
minimal 219
end-user web pages
PKISERV 60
pkiserv.tmpl
minimal 219
customizing web pages
JSPs 276

D
daemon
PKI Services, description 5
sample procedure for starting 682
starting 129
stopping 131
user ID
creating 619
PKISRVD 57
variable (user ID for PKI Services) 57
daemon (variable in IKYSETUP) 57
daemon user ID
authorizing for CA functions 39
creating 39
UID, IKYSETUP variable for 42
WEBSRV 60
daemon_uid (variable in IKYSETUP) 42
daemon, PKI Services
user ID 87
daily maintenance task
functions performed 92
specifying the days that it runs 85
specifying the time that it runs 86
specifying when it runs 92
specifying whether it runs at startup 86, 92
daily_Timer task,
specifying when it runs 92
data set name
certificate expiring message form 86
certificate ready message form 86
certificate reject message form 86
data sharing environment, for VSAM RLS 118
DB subcomponent 616
Db2
converting between available Db2 table formats 333
converting existing VSAM data sets to Db2 tables 125
installing and configuring 35
use by PKI Services 4
versions supported 11
Db2 database administrator
skills 17
Db2 database resource manager (DBRM)
choosing the correct DBRM 122
creating package with 678
grant execute privilege to 679
IKYPDBR1 603
IKYPDBRM 603
Db2 objects
for object store and ICL, creating 655, 658, 678
Db2 package
Db2 package (continued)
job to grant execute privilege to 679
Db2 tables for ICL and ObjectStore
utility program to convert between Db2 table formats 432
utility program to convert to from VSAM files 448
db2_repos (variable in IKYSETUP)
description 52
db2_subsys (variable in IKYSETUP)
description 52
db2conv utility 432
DBPackage (parameter in pkiserv.conf) 75
DBSubsystem (parameter in pkiserv.conf) 75
DBType (parameter in pkiserv.conf) 75
DBWaitTime (parameter in pkiserv.conf) 76
debug flag 135
decision tables
db2_repos in IKYSETUP 47
key_backup in IKYSETUP 45
key_type in IKYSETUP 45
restrict_surrog in IKYSETUP 46
unix_sec in IKYSETUP 47
default
/etc/pkiserv 11
/usr/lpp/pkiserv 11
/var/pkiserv 11
binding information 501
CAring (SAF key ring) 57
certificate, data set for backup copy of 55
daemon user ID
PKI Services 57
Web server 60
data set
for copy of PKI Services certificate and private key 55
for copy of PKI Services certificate to assist backup process 57
for copy of PKI Services RA certificate and private key 58
for Web server's root CA certificate for copying to file system 57
data set for backup copy of PKI Services certificate, private key 55
data set for backup copy of PKI Services RA certificate, private key 58
environment variables file 70
file locations 95
ICSF
profile to protect ICSF services 52
profile to protect PKI Services key 51
installation directory 11
key, data set for backup copy of 55
key, data set for backup copy of RA certificate 58
message level 541, 616
OMVS_KERN (z/OS UNIX user ID) 50
PKI Services
administration group 58
configuration file 129
daemon user ID 57, 87
surrogate user ID 59
pkiserv.conf file values 74
primary and secondary extent allocations (in JCL) 116
default (continued)
RA certificate, data set for backup copy of 58
runtime directory 11
SAF key ring 87
sendmail location 71
STDOUT_LOGGING 616
surrogate user ID for PKI Services 59
time zone 130
UNIX user ID 50
variables directory 11
VSAM data set name
object store alternate index 76
Web server's daemon user ID 60
Default
CA private key size 51
disable (action for certificate) 422
disable (action on certificate request) 410
diagnostic messages, logging 617
diagram, PKI Services system 5
digital certificates
exporting certificates using R_PKIServ callable service 495
generating certificates using R_PKIServ callable service 495
retrieving certificates using R_PKIServ callable service 495
DIR parameter 71
directives
data set
for copy of PKI Services certificate and private key 55
for copy of PKI Services certificate to assist backup process 57
for copy of PKI Services RA certificate and private key 58
for Web server’s root CA certificate for copying to file system 57
data set for backup copy of PKI Services certificate, private key 55
data set for backup copy of PKI Services RA certificate, private key 58
environment variables file 70
file locations 95
ICSF
profile to protect ICSF services 52
profile to protect PKI Services key 51
installation directory 11
key, data set for backup copy of 55
key, data set for backup copy of RA certificate 58
message level 541, 616
OMVS_KERN (z/OS UNIX user ID) 50
PKI Services
administration group 58
configuration file 129
daemon user ID 57, 87
surrogate user ID 59
pkiserv.conf file values 74
primary and secondary extent allocations (in JCL) 116
documents
  configuring UNIX runtime environment 69
  installing prerequisite products
    ICSF 34
    LDAP 32
    OCSF 35
    sendmail 34
    RACF administration 40
    UNIX programmer 69
Domain component
  field in end-user web pages 379
  domain name
    fully qualified, for LDAP 97, 102, 110
  domain name, alternate
  field in end-user web pages 380
Domain to which a CMP request is routed, Determining 460
DomainName (named field in pkiserv.tmpl) 141
DP CRLs
  customizing 290
  DSA
    signature algorithm
      updating 287
E
  e-mail notifications
    retrieving your certificate 391
    variables
      %%pendreqlist%% 321
    ear 259
    EAR 274
    EAR file for JSPs
      updating 258, 273
    editing
      IKYSETUP 61
      email
        applications 3
        secure 3
    Email (deprecated field in pkiserv.tmpl) 141
    email address
      for alternate name (field in end-user web pages) 380
      for distinguished name (field in end-user web pages) 379
      for notifications 383
    email notifications
      AdminNotifyForm
        updating 92
      certificate expiration
        when processed 92
      certificate renewal
        when processed 92
      copying files for 70
      customizing
        overview 318
        steps for 322
      editing 322
      environment variables, updating for 71
      ExpireWarningTime
        description 82
        updating 90
    ExpiringMessageForm
      description 86
      updating 92
    expiringmsg.form
  email notifications (continued)
    expiringmsg.form (continued)
      copying 70
      description 67
    forms for
      expiringmsg.form 319
      pendingmsg.form 320
      pendingmsg2.form 320
      readymsg.form 319
      recoverymsg.form 320
      rejectmsg.form 319
      renewcertmsg.form 320
    NotifyEmail 144
    pendingmsg.form
      copying 70
      description 67
    pendingmsg2.form
      copying 70
      description 67
    pkiserv.conf
      updating, overview 73
      updating, steps 88
    ReadyMessageForm
      description 86
      updating 92
    readymsg.form
      copying 70
      description 69
    recoverymsg.form
      copying 70
      description 69
    RejectMessageForm
      description 86
      updating 92
    rejectmsg.form
      copying 70
      description 69
    RenewCertForm
      updating 92
    renewcertmsg.form
      description 69
      updating
        environment variables 71
    ExpireWarningTime 90
    expiringmsg.form 322
    readymsg.form 322
    recoverymsg.form 322
    rejectmsg.form 322
    variables
      %%cadomain%% 321
      %%dn%% 321
      %%modreqlist%% 321
      %%notafter%% 321
      %%printcert%% 321
      %%quicklink%% 321
      %%recoverylink%% 321
      %%recoverylist%% 322
      %%rejectreason%% 322
      %%requestor%% 322
      %%transactionid%% 322
    EmailAddr (named field in pkiserv.tmpl) 141
    enable (action for certificate) 422
EnableCMP (parameter in pkiserv.conf) 81
EnableEST steps 341
EnableEST (parameter in pkiserv.conf) 81
EnableLargeCRLPosting (parameter in pkiserv.conf) 81
EnablePathLenConstraint (parameter in pkiserv.conf) 81
EnableSCEP (parameter in pkiserv.conf) 82
encrypted passwords for LDAP servers
   BindProfile1
      description 112
      RACF administration 501
      storing information for 107
      updating LDAP section of pkiserv.conf 108
Encryption 287
end-user function 495
end-user functions
   protecting 39, 619
end-user Web application
description 4
end-user web pages
   accessing 376
   code locations 225
   customizing
      minimal 219
   fields 379
   using 375
end-user Web pages
   customizing
      additional first-time 221
      OtherName field for REXX CGI execs 230
Enrollment over Secure Transport (EST)
enabling 341
   messages and codes 344
   overview 341
   preregistering 342
   processing 342
   set up 341
   simpleenroll 341
   simpereenroll 341
   tracing the program 343
   using 341
Enrollment Over Secure Transport (EST)
two-year PKI certificate for EST preregistration 151
environment variables
   _PKISERV_CA_DOMAIN 615
   _PKISERV_CONFIG_PATH 615
   _PKISERV_ENABLE_JSP 617
   _PKISERV_EXIT 615
   _PKISERV_FIPS_LEVEL 615
   _PKISERV_MSG_LEVEL 615
   _PKISERV_MSG_LOGGING 616
code sample file 617
file name
   DIR parameter 71
   FN parameter 71
   in PKISERVD 682
   TZ 71
   updating
      overview 70
      steps 72
Environment variables
   Description 615
   HTTP Server, for CMP 466
error codes returned from CMP functions 474
error message for CMP, fields supported 460
error message type for CMP, fields supported 460
error messages
   list 547
error messages, logging 617
errorinfo substitution variable 136
EST CA
   setup 341
EST certificates
   enabling 341
   requesting 402
EST processing 341
EST5EDT 130
ESTCAFile 341
ESTCAFile (parameter in pkiserv.conf) 82
ESTTemplate 341
ESTTemplate (parameter in pkiserv.conf) 82
EV (Extended Validation) certificates 7
event code, SMF 685
examples:
   _PKISERV_CA_DOMAIN 615
   _PKISERV_MSG_LEVEL 616
configuration directives for IBM HTTP Server 649
configuration file 607
environment variables file 617
expiringmsg.form 319
httpd.conf for IBM HTTP Server - Powered by Apache 649
IKYCDB2 655
IKYCDBV1 658
IKYCVSAM 661
IKYCVSV1 665
IKYRVSAM 670
IKYRVSV1 673
IKYSBIND 678
IKYSETUP 624
IKYSGRNT 679
IKYVBKUP 680
IKYVREST 681
JCL
   IKYCVSAM 662
   IKYCVSV1 665
   IKYRVSAM 670
   IKYRVSV1 673
   IKYVBKUP 680
   IKYVREST 681
   PKISERVD 682
log options settings 542
LOGREC data 533
named field 137
output from displaying log options settings 542
pendingmsg.form 320
pendingmsg2.form 320
pkiserv.conf 607
pkiserv.envs 617
pkiserv.tmpl
   APPLICATION section 166
   INSERT section 185
   TEMPLATE section 179
PKISERVD 682
pkitpsamp.c 517
procedure to start PKI Services daemon 682
readymsg.form 319
recoverymsg.form 320
examples (continued)
  rejectmsg.form 319
  renewcertmsg.form 320
  server.xml for Liberty 654
  server.xml for WebSphere Application Server 654
  substitution variable 136
  vhost1443.conf for IBM HTTP Server - Powered by
  Apache 649
  vhost443.conf for IBM HTTP Server - Powered by
  Apache 649
  vhost80.conf for IBM HTTP Server - Powered by Apache
  649
excerpt
  pkiserv.conf
    CertPolicy section 74
    General section 74
    LDAP section 107
    ObjectStore section 73
    OIDs section 73
    SAF section 74
  pkiserv.tmpl 166
exit
  _PKISERV_EXIT environment variable 615
environment variable 615
  path name 615
preprocessing
  automatic renewal 351
scenarios
  maintaining customized certificate repository 360
exit methods for JSPs 361
exit routine
  arguments 353
  post-processing
    EXPORT 357
    GENRENEW 355
    REQRENEW 356
    REVOKE 358, 359
  postprocessing
  automatic renewal 351
preprocessing
  EXPORT 356
  GENCERT 354
  GENRENEW 354
  QRECOVER 358
  REQRENEW 355
  REVOKE 357
scenarios
  allowing only selected users to request certificates
  automatic renewal of certificates 351
  recover lost passphrase 361
  renewal only within 30 days of expiration 360
  updating sample code 350
  updating sample code for CGIs 352
  using 349
exit, PKI Services
description of 5
ExitTimeout (parameter in pkiserv.conf) 85, 350
expired (status of certificate) 422
expired certificates
  removing 92
ExpirationWarningTime (parameter in pkiserv.conf) 82
expiring message form for certificate 86
ExpiringMessageForm (parameter in pkiserv.conf) 86
expirationmsg.form
  code sample 319
  copying 70
  customizing 322
  in samples directory 606
  purpose 67
EXPORT
accesses required 497
description 360
parameters
  post-processing 357
  preprocessing 356
  R_PKIServ function 620
return codes
  post-processing 357
  preprocessing 356
export_dsn (variable in IKYSETUP) 57
ExportCert class 368
extended key usage (field in end-user web pages) 382
extended validation certificate 150, 162–164
Extended Validation certificates 7
extensions
  CertificatePolicies 84
  custom 328
  supported by PKI services 328
  supported by PKI Services 8
  supported by PKITP 510
  X.509 version 3 standard 8
extensions demonstration
  certificate
  fields 160–162
  extent allocations in IKYCVSV1 116
ExtKeyUsage (named field in pkiserv.tmpl) 142

F

FACILITY class profile
  IRR.PROXY.DEFAULTS 501, 502
FACILITY class resource
  IRR.RPKISERV.PKIADMIN 498
FAILURECONTENT subsection
  in APPLICATION section of pkiserv.tmpl 148
FAILURECONTENT subsection (in TEMPLATE section of pkiserv.tmpl) 157
Federal Information Processing Standards
Prerequisites 12
Requirements 12
feedback xxxi
fields
  administration web pages 408
  end-user web pages 379
in IKYSETUP REXX exec
  change based on setup 44
  change optionally 54
  change required 41
  modifiable by administrator 416
  X.509 version 3 standard 8
file directory structure 603
file system
  installation directory 11
  runtime directory 11
  subdirectories 603
files
  CGIs
files (continued)
CGIs (continued)
administrator web pages 233
end-user Web pages 217
code sample 654
copying
for configuring PKI Services 69
exit 349
expiringmsg.form
code sample 319
copying 70
customizing 322
httpd.conf for IBM HTTP Server - Powered by Apache
code sample 649
IKYCVSAM
code sample 662
IKYCVSV1
code sample 665
copying 118
extent allocations 116
updating 118
IKYRVSAM
code sample 670
copying 119
updating 120
IKYRVSV1
code sample 673
copying 119
updating 120
IKYSETUP
code sample 624
running 39
IKYVVKUP
code sample 680
IKYVREST
code sample 681
Makefile.pkiexit 349
pendingmsg.form
code sample 320
copying 70
pendingmsg2.form
code sample 320
copying 70
pkiexit.c 349
pkiserv.conf
code sample 607
copying 69
updating 72, 108, 284, 286
pkiserv.envars
code sample 617
copying 70
updating 72
pkiserv.tmpl
additional customization 221
contents 135
copying 70
minimal customization 219
retrofitting changes 224
PKIServ.xsd
copying 70
description 237
PKISERVD
code sample 682
updating 72

files (continued)
pkitmpl.xml
copying 70
description 237
updating 258, 273
PKITP 511
pkitp.h 604
pkitp.so 605
pkixgen.tmpl
description 237
readymsg.form
code sample 319
copying 70
customizing 322
recoverymsg.form
code sample 320
copying 70
customizing 322
rejectmsg.form
code sample 319
copying 70
customizing 322
renewcertmsg.form
code sample 320
server.xml for Liberty 654
server.xml for WebSphere Application Server 654
vhost1443.conf for IBM HTTP Server - Powered by Apache
code sample 649
vhost443.conf for IBM HTTP Server - Powered by Apache
code sample 649
vhost80.conf for IBM HTTP Server - Powered by Apache
code sample 649
FINDRECOVERCONTENT subsection
in APPLICATION section of pkiserv.tmpl 148

FIPS
Certificate rekeying or key rollover 491
Deciding the value of key_type 45
Environment variables 615
HTTP environment variables for CMP 466
IKYSETUP sample 624
Prerequisites 12
Requirements 12
updating the signature algorithm 287

firewall certificate
description 151
fields 162~164
five-year PKI intermediate CA certificate
description 151
fields 162~164
five-year PKI IPSEC server (firewall) certificate
description 151
fields 162~164
five-year PKI SSL server certificate
description 151
fields 162~164
five-year SCEP certificate
description 151
five-year SCEP preregistration
fields 164, 165
FN parameter 71
forms for email notifications
forms for email notifications (continued)
copying 70
customizing 318, 322
expiringmsg.form 319
pendingmsg.form 320
pendingmsg2.form 320
readymsg.form 319
recoverymsg.form 320
rejectmsg.form 319
renewcertmsg.form 320
variables
%%cadomain%% 321
%%dn%% 321
%%modreqlist%% 321
%%notafter%% 321
%%pendreqlist%% 321
%%printcert%% 321
%%quicklink%% 321
%%recoverylink%% 321
%%recoverylist%% 322
%%rejectreason%% 322
%%requestor%% 322
%%transactionid%% 322
FreeEvidence 507
fully qualified domain name
LDAP 97, 102
functions that use it 101

G
GENCERT
accesses required 497
exit routine scenario use 360
parameters
post-processing 355
preprocessing 354
R_PKIServ function 620
return codes
post-processing 355
General section (of pkiserv.conf)
default values 85
description 74
excerpt 74
information needed 85
generated key pairs for certificates
TokenName keyword in configuration file 88
GENRENEW
accesses required 497
exit routine scenario use 360
parameters
post-processing 355
preprocessing 354
R_PKIServ function 620
return codes
post-processing 355
getCertificate method 368
getPassphrase method 368
getTransactionId method 368
GLD.SGLDLNK 53
global ARL (CA revocation list) 290
grace period, certificate suspension 83
groups
authorizing 482
deleting 482
GSK.SGSKLOAD 53
gskkyman 691

H
HIGHTRUST attribute 483
HoldInstructionCode (CRL entry extension) 511
host identity mapping 9
HostIdMap (named field in pkiserv.tmpl) 142
HostIdMappings
field (on end-user web pages) 382
HostIdMappings extension
administering 482, 483
PKITP support 510
HTTP server
requirement for 13
HTTP Server
Environment variables for CMP 466
installing and configuring 30
starting and stopping 104
HTTP Server, IBM
use by PKI Services 5
httpd.conf
for IBM HTTP Server - Powered by Apache 649
httpd.conf configuration file for IBM HTTP Server - Powered by Apache 649

I
IBM HTTP Server
requirement for 13
setting up for surrogate operation 39
use by PKI Services 5
IBM HTTP Server - Powered by Apache
installing and configuring 30
operating modes PKISERV requires 623
requirement for 13
setting up for surrogate operation 624
updating configuration files 101
IBM HTTP Server - Powered by Apache configuration directives
for IBM HTTP Server - Powered by Apache 649
IBM HTTP Server - Powered by Apache httpd.conf
setting up 101
ICL
base cluster
VSAM data set name for 77
certificates maintained in 421
creating Db2 objects for, steps 123
description 115
local Db2 subsystem, IKYSETUP variable for 52
repository, IKYSETUP variable 52
requestor
VSAM data set name for 77
sample job to create Db2 package and plan for 678
sample to create Db2 objects for 655, 658
space considerations, using VSAM 117
status alternate index
VSAM data set name for 77
time period before automatic deletion
expired certificates 78
versions supported 116
ICL (issued certificate list)
ICL (issued certificate list) (continued)
configuration parameter for database implementation 75
converting VSAM files to Db2 tables 448
space considerations, using Db2 123
viewing 433
ICL data sets and indexes
creating 118
ICLDsn (parameter in pkiserv.conf) 77
ICRRequestorDSn (parameter in pkiserv.conf) 77
ICLSCEPtdsn (parameter in pkiserv.conf) 78
ICLStatusDSn (parameter in pkiserv.conf) 77
iclview utility 433
ICSF
authorizing PKI Services 39
default profile to protect services 52
installing and configuring 33
migrating CA certificate and private key to 622
migrating RA certificate and private key to 622
requirement for 14
use by PKI Services 5
ICSF programmer
skills 15
tasks 15
IDCAMS 117
IDP extension 81
iecert substitution variable 136
IKYBB CSECT 530
IKYALLOCC
library installed in 603
IKYDB2
library installed in 603
sample 655
IKYDBV1
library installed in 603
sample 658
IKYCVSAM
library installed in 603
sample 661
IKYCVSV1
copying 118
creating VSAM data sets 116
extent allocations 116
library installed in 603
sample 665
updating 118
IKYDDEFF
library installed in 603
IKYISMKD
library installed in 603
IKYMKDIR
library installed in 603
IKYP0NCSECT 529
IKYP1CSECT 529
IKYP8ACSECT 529, 530
IKYP8BCSECT 529
IKYPDBRM
choosing the correct DBRM 122
IKYPDBRM
choosing the correct DBRM 122
IKYPKID 603
IKYPRTM 603
IKYRVSAM
copying 119
IKYRVSAM (continued)
library installed in 603
sample 670
updating 120
IKYRVSV1
copying 119
library installed in 603
sample 673
IKYRBIND
library installed in 603
sample 678
IKYSCHDR CSECT 531
IKYSETUP
variables 49
IKYSETUP Rexx exec
actions 619
code sample 624
command to run 62
decision tables
for AdminGranularControl 48
for db2_repos 47
for key_backup 45
for restrict_surrog 46
for unix_sec 47
key_type 45
library installed in 603
parts 39
RACF administration
actions 619
steps for 60
sample log data set 63
structure and divisions 40
variables
backup_dsn 55
cadn 41
cadomain 56
caxpires 56
cayear 56
calab 42
caring 57
cacert_dsn 57
castore 57
changes based on setup 44
changes optional 54
changes required 41
csfkeys_profile 51
csfserv_profile 52
csfusers_grp 52
daemon 57
daemon_uid 42
db2_repos 47, 52
db2_subsys 52
export_dsn 57
key_backup 45, 52
key_gen 53
key_type 45, 53
log_dsn 58
pgmcntl_dsn 53
pkigd 42
pkigroupl 58
pkigroupmem 42
pkigroupmem. 42
pkigroupl 58
IKYSETUP REXX exec (continued)
variables (continued)
pkigroup1_mem 53
pkigroup2 58
pkigroup2_mem 53
ra_backup_dsn 58
ra_dn 43
ra_label 43
restrict_surrog 46, 54
signing_ca_label 59
surrog 59
surrog_uid 43
unix_dn 47, 54
vsamhlq 59
web_dn 44
web_expires 59
web_exyears 60
web_label 60
web_ring 44
webserver 60
Variables
AdminGranularControl 50
bpx_userid 50
cryptoz_grp 51
IKYSETUP Variables 49
IKYSGRNT
library installed in 603
sample 679
IKYSPROC 603
IKYSTART CSECT 532
IKYTIMER CSECT 533
IKYVBKUP
library installed in 603
sample 680
using 121
IKYVREST
library installed in 603
sample 681
using 122
implementation plan, creating
include subdirectory 604
INETD 130
informational messages, logging 617
InitialThreadCount (parameter in pkiserv.conf) 85
inquiry access, authorizing users for 481, 482
INSERT sections of pkiserv.tmpl 137, 185
INSERTs (continued)
AltIPAddr 140
AltOther 140
AltURI 140
BusinessCat 140
ChallengePassPhrase 140
ClientName 141
CommonName 141
Country 141
CustomExt 141
DNQualifier 141
DomainName 141
Email 141
EmailAddr 141
ExtKeyUsage 142
HostIdMap 142
InstallCert 143
JurCountry 143
JurLocality 143
JurStateProv 143
KeyProt 143
KeySize 143
Label 143
Locality 143
Mail 143
NotAfter 144
NotEmpty 144
NotifyEmail 144
Org 144
OrgUnit 144
OrgUnit2 144
PassPhrase 144
PostalCode 144
PublicKey 145
PublicKey2IE 145
PublicKey2NS 145
PublicKeyIE 145
PublicKeyNS 145
RecoverEmail 145
requestor 138
Requestor 145
requestor2 139
Requestor2 145
returnbrowsercertIE 139
returnbrowsercertNS 139
returnpkcs10 139
Securityn 145
SerialNumber 145
SignWith 146
StateProv 146
Street 146
Title 146
TransactionId 146
Uid 146
UnstructAddr 146
UserId 146
install_pkitp 511, 512
install-dir 11
installation directory 11
installation exit routine 349
InstallCert (named field in pkiserv.tmpl) 143
installcert.rexx 219
installing
installing (continued)
PKI Services
  skills 16
prerequisite products
  skills 15
intermediate CA
certificate
description 151
  description of template 151
  fields 162–164
  template description 151
establishing PKI Services as 486
intermediate certificate authority
  establishing PKI Services as 486
Internet Explorer
  configuring to trust PKI services 696
  key protection field on end-user web page 384
  requesting a certificate 385
  selecting a key size 386
  setting up to run end-user web application on Windows system supported standard 693
supported standard 6
  verifying certificate installed correctly 392, 393
Internet Protocol Security standard (IPSEC) 3
interval
  before certificate expiration 82
  between certificate revocation lists 80, 85
  certificate suspension grace period 83
  scanning database for approved requests 79
  warning message about certificate expiration 82
introduction to PKI Services 3
InvalidityDate (CRL entry extension) 511
IP address
  AltIPAddr field 140
  format 140
  LDAP fully qualified domain name 97
IP address, alternate
  field in end-user web pages 381
IPSEC
certificate format 6
certificates 7
  supported standard 3
IRR.DIGTCERT.ADD 497, 621
IRR.DIGTCERT.CERTFAUTH.* 51
IRR.DIGTCERT.EXPORT 497
IRR.DIGTCERT.GENCERT 497, 621
IRR.DIGTCERT.GENCERT.ADD 497, 621
IRR.DIGTCERT.REQCERT 497, 621
IRR.DIGTCERT.REQCERT.Add 497, 621
IRR.DIGTCERT.REQCERT.ADD 497, 621
IRR.DIGTCERT.REQCERT.ADD 497, 621
IRR.DIGTCERT.REQCERT.REQRENEW 497, 621
IRR.DIGTCERT.REQRENEW 497, 621
IRR.DIGTCERT.RESPOND 497
IRR.DIGTCERT.REVOKE 497
IRR.DIGTCERT.SCEPREQ 497
IRR.DIGTCERT.VERIFY 497
IRR.PROXY.DEFAULTS 108, 501, 502
IRR.PROXY.DEFAULTS profile in FACILITY class 501
IRR.RPKISERV 496
IRR.RPKISERV.PKIADMIN 498, 621
IRRSPX00 and IRRSPX64 callable service
  controlling the use 495
IRRSPX00 and IRRSPX64 SAF callable service
description 5
IRRSPX00 SAF callable service
  exit routines 353
issued certificate list (ICL)
  configuration parameter for database implementation 75
  converting VSAM files to Db2 tables 448
description 115
  space considerations, using Db2 123
  viewing 433
IssuerAltName
certificate extension 510
IssuerAltName (CRL extension) 511
Issuing Distribution Point (IDP) extension 81
IssuingDistributionPoint (CRL extension) 511
J
Java server pages (JSPs)
description 237
  environment variable for enabling 617
  locating for 276
  updating 258, 273
XML template for 237, 258, 273
JavaServer pages (JSPs)
deploying to a WebSphere application server 262
  exit routine processing for 361
  implementing the Web application using 237
  TemplateTool utility 442
JCL
  backing up VSAM data sets 680
  creating VSAM data sets not using RLS 661, 665
  using RLS 670, 673
example
  IKYCVSAM 662
  IKYCVSV1 665
  IKYRVSAM 670
  IKYRVS1 673
  IKYVBKUP 680
  IKYVREST 681
  PKISERVD 682
EXEC card, PARM= operand limitation 71
  restoring VSAM data sets 681
VSAM data sets
  not using RLS 661, 665
  using RLS 670, 673
JOB card 118
JSPs (Java server pages)
description 237
  locating for 276
  updating 258, 273
XML template for 237, 258, 273
JSPs (JavaServer pages)
deploying to a WebSphere application server 262
  exit routine processing for 361
  implementing the web application using 237
  TemplateTool utility 442
JurCountry (named field in pkiserv.tmpl) 143
Jurisdiction Country (field in end-user web pages) 379
Jurisdiction Location (field in end-user web pages) 379
Jurisdiction State or Province (field in end-user web pages) 379
JurLocality (named field in pkiserv.tmpl) 143
JurStateProv (named field in pkiserv.tmpl) 143
key certificate
fields 164, 165
key generation for certificates 325
key pairs for certificates
allowing PKI Services to generate 624
key pairs for certificates, generating
TokenName keyword in configuration file 88
key protection (field in end-user web pages) 384
key ring
  associating Web server and CA certificates with 39
  locating 484
key ring, SAF
  IKYSETUP variable 57
key size (field in end-user web pages) 383, 384
key usage (field in end-user web pages) 382
key_backup (variable in IKYSETUP)
  decision table 45
  default value 52
  description 52
key_gen (variable in IKYSETUP) 53
key_type (variable in IKYSETUP)
  decision table 45
  default value 53
  description 53
keyboard
  navigation 703
  PF keys 703
  shortcut keys 703
keyid substitution variable 136
KeyProt (named field in pkiserv.tmpl) 143
KeyRing (parameter in pkiserv.conf) 87
keys for certificate requests
  setting up PKI Services to generate 86, 325
KeySize (named field in pkiserv.tmpl) 143
KEYSMSTR class
  activating 502
  profile, defining 502
KeyUsage (certificate extension) 510
KeyUsage (named field in pkiserv.tmpl) 143
LDAP (continued)
directory server requirements 687
distinguished name
  administrator’s 97, 102
  for binding 110
domain name
  description 97, 102
  Server1 parameter 110
encrypted passwords
  BindProfile1 description 112
  LDAPBIND class profile 107
  RACF administration tasks for 501
  storing information for 107
  updating LDAP section of pkiserv.conf 108
establishing secure connection with 98
  fully qualified domain name
    description 97, 102
    for LDAP server 110
    Server1 parameter 110
installing 31
IP address
  for LDAP server 110
IP address and port 110
objectclasses required by PKI Services 687
  OU attribute 111, 113
password
  administrator’s 97, 102
  encrypted 501
  for binding 111
  in the clear 501
PKI Services objectclasses and attributes requirements 687
port
  description 97, 102
  for LDAP server 110
post interval 109
profile name 112
receiving post requests 112
servers available (number of) 108
subcomponent for message logging 616
suffix, description 98
tailoring configuration for PKI Services 97
tailoring pkiserv.conf 107
TDBM Db2 backend 32
time interval for scanning for items to post 109
use by PKI Services 5
version supported 7
LDAP programmer
  skills 15, 17
tasks
  configuration, tailoring LDAP 97
  configuring LDAP 31
  CRLs, allowing access to 98
  installing LDAP 31
  LDAP configuration, tailoring 97
  schema.user.ldif, updating 97
  setting up LDAP ACL for accessing CRLs 98
  setting up LDAP ACL for creating certificates 98
summary 15, 17
tailoring LDAP configuration 97
  updating schema.user.ldif 97
LDAP section (of pkiserv.conf)
  default value 108–112
description 74

L
label (field in end-user web pages) 383
Label (named field in pkiserv.tmpl) 143
LargeCRLPostPath (parameter in pkiserv.conf) 83
LDAP
  administrator’s distinguished name
    description 97, 102
  administrator’s password
    description 97, 102
  allowing access to CRLs 98
  attributes
    mapped to DN fields 688
    mapped to object identifiers 688
    PKI Services requires 687
  authorization to create certificates and CRLs 98
  backend 32
  bind passwords
    encrypted 501
    in the clear 501
  configuring 31
LDAP section (of pkiserv.conf) (continued)

exerpt 107
information needed 108–112
tailoring 108

LDAP server
requirement for 13
LDAP server configuration file
adminPW 97, 102
LDAP setting up an ACL 98
LDAPBIND class
displaying information about 502, 503
profile
creating 502
specifying name when configuring 108

LDBM backend 13
ldif2tdbm load utility 97, 102
legal statement about certificate issuance and use 85
lib 605
lib64 605
liberty 274
Liberty Profile users
authorizing to renew and revoke browser certificates 271
Liberty users
authorizing to use PKI Services functions 268

libraries
ACBRDBRM 603
AIEALNKE 603
APROCLIB 603
ASAMPLIB 603
CBRDBRM 603
PROCLIB 603
SAMPLIB 603
SIEALNKE 603
load libraries 53
load utility (ldif2tdbm) 97, 102
local PKI certificate authority 42
Local PKI RA (default RA certificate label) 87
local PKI registration authority 43
locality (field in end-user web pages) 380
Locality (named field in pkiserv.tmpl) 143
log data set

from running IKYSETUP 63
log data set name
IKY SETUP variable 58
log options
changing 541
displaying 542
log_dsn (variable in IKYSETUP) 58
logging message level 616
LOGREC
description 529
sample data 533
logs
changing options for 541
IKYSETUP data set sample 63
using information from 537

M

mail (field in end-user web pages) 380
Mail (named field in pkiserv.tmpl) 143
maintenance task, daily
functions performed 92
maintenance task, daily (continued)
specifying the days that it runs 85
specifying the time that it runs 86
specifying when it runs 92
specifying whether it runs at startup 86, 92
MaintRunDays (parameter in pkiserv.conf) 85
MaintRunTime (parameter in pkiserv.conf) 86
Makefile.pkiexit 349, 350, 352
Makefile.pkitsamp 511
mapping
DN fields to LDAP attributes 688
host identity 9
MaxSuspendDuration (parameter in pkiserv.conf) 83
members
connecting
to new group 482
to RACF group 481
deleting from group 482
deleting from RACF group 481
message form
certificate expiring 86
certificate ready 86
certificate rejected 86
message levels
_PKISERV_MSG_LEVEL 541
for logging 616
logging
diagnostic 617
error 617
informational 617
severe 617
verbose diagnostic 617
warning 617
message logging
CORE subcomponent 616
DB subcomponent 616
LDAP subcomponent 616
PKID subcomponent 616
POLICY subcomponent 616
SAF subcomponent 616
TPOLICY subcomponent 616
message numbers
components identified 547
message types 547
messages
Enrollment over Secure Transport (EST) 344
messages and codes returned from EST functions 344
messages returned from CMP functions 474
methods, exit, for JSPs 361
Microsoft Internet Explorer
key protection field on end-user Web page 384
requesting a certificate 385
selecting a key size 386
supported standard 6
verifying certificate installed correctly 392, 393
Microsoft Windows
installing PKI Services CA certificate on 696
setting up to run end-user web application 693
MODIFY command
change log options 541
display logging options 542
stop PKI Services daemon 131
Mozilla-based browser
key size field on end-user Web page 384
Mozilla-based browser (continued) requesting a certificate 385
selecting a key size 386 verifying certificate installed correctly 392, 393
MVS programmer installation of PKI Services 11
skills 17
  tasks
  creating VSAM data sets 116
  enabling VSAM data sets for RLS 119
  establishing RLS, preliminary steps 117
  RLS, enabling VSAM data sets for 119
  RLS, preliminary steps for establishing 117
  starting PKI Services daemon 129
  stopping PKI Services daemon 131
  VSAM data sets, creating 116
MyPolicy (parameter in pkiserv.conf) 75, 285

N
n-year PKI certificate for extensions demonstration
description 151
n-year PKI extensions demonstration certificate
fields 160–162
name
  certificate templates
    alias names 151
    nicknames 152
    short names 152
    table summarizing 152
    true names 151
  field (in end-user web pages) 383
named fields (in pkiserv.tmpl) 137
navigation
  keyboard 703
nickname
  certificate template 151, 152
Non-FIPS CA private key for PKI
  Rekeying 493
  Replacing 493
  Retiring 493
  Rollover 493
normal operating mode of IBM HTTP Server - Powered by
  Apache 623
not after date (field in end-user web pages) 380
not before date (field in end-user web pages) 380
NotAfter (named field in pkiserv.tmpl) 144
NotBefore (named field in pkiserv.tmpl) 144
notice, legal, for certificate 85
notification email address (field in end-user web pages) 383
notification forms
  copying 70
  customizing 318
  notifications
    customizing 322
    retrieving your certificate 391
NotifyEmail
  deleting 220
  must match MAIL 397
NotifyEmail (named field in pkiserv.tmpl)
  description 144
notifying users
  forms for
    pendingmsg.form 320
notifying users (continued)
  forms for (continued)
    pendingmsg2.form 320
    renewcertmsg.form 320
NumServers (parameter in pkiserv.conf) 108

O
Object ID
  for policy 84
object identifiers
  mapping to LDAP attributes 688
object store
  configuration parameter for database implementation
    75
    creating Db2 objects for, steps 123
    description 115, 428
    enabled for sysplex 78
    local Db2 subsystem, IKYSETUP variable 52
    repository, IKYSETUP variable 52
    sample job to create Db2 package and plan for 678
    sample to create Db2 objects for 655, 658
    space considerations, using Db2 123
    space considerations, using VSAM 117
    time period before automatic deletion
      inactive requests 78
      unsuccessful requests 78
    time period before automatic deletion from
      completed requests 78
      incomplete requests 78
    versions supported 116
    VSAM data set names
      requestor alternate index 76
      status alternate index 76
      TID alternate index 76
object store data set records
  viewing 444
objectclasses
  LDAP, that PKI Services requires 687
ObjectDSN (parameter in pkiserv.conf) 76
ObjectRequestorDSN (parameter in pkiserv.conf) 76
ObjectSCEPTidDSN (parameter in pkiserv.conf) 77
ObjectStatusDSN (parameter in pkiserv.conf) 76
ObjectStore
  converting VSAM files to Db2 tables 448
  DB subcomponent for message logging 616
  section of pkiserv.conf
    default value 75
    description 73
    excerpt 73
    information needed 75
ObjectTidDSN (parameter in pkiserv.conf) 76
OCEP
  configuring for PKITP 511
  data library (DL) 512
  installing and configuring 35
  optional installation 14
  programmer
    skills 15
  Trust Policy 507, 509, 512
OCSF
  configuring 35
  installing 35
  programmer

729
OCSF (continued)
programmer (continued)
installing and configuring OCSF 35
skills 15
requirement for 13
Trust Policy
module 512
overview 507
plug-in 507
OCSF Trust Policy
API
CSSM_TP_PassThrough 512
OCSPTypE (parameter in pkiserv.conf) 83
OIDs section (of pkiserv.conf)
default value 75
description 73
excerpt 73
information needed 75
OMVS_KERN 50
one-year PKI generated key certificate
description 150
fields 164, 165
one-year PKI S/MIME browser certificate
description 150
fields 160–162
one-year PKI SSL browser certificate
description 149
fields 160–162
one-year SAF browser certificate
description 149
fields 164, 165
one-year SAF server certificate
description 149
fields 164, 165
optfield substitution variable 136
Org (named field in pkiserv.tmpl) 144
organization (field in end-user web pages) 380
organization name
for CertificatePolicies extension 84
organizational unit (field in end-user web pages) 380
organizationalUnit objectclass 111
OrgUnit (named field in pkiserv.tmpl) 144
OrgUnit2 (named field in pkiserv.tmpl) 144
other name, alternate
field in end-user web pages 381
OtherName (field in end-user Web pages)
customizing for REXX CGI execs 229
OU attribute 111, 113
overview of PKI Services 3

P

p10cr message type for CMP, fields supported 457
p12cert substitution variable 136
Parallel Sysplex support
prerequisites 11
parameters
changing 352
validating 352
passphrase
recovering 352
passphrase (field in end-user web pages) 383
PassPhrase (named field in pkiserv.tmpl) 144

passwords
binding 501
encrypted, for LDAP servers
LDAPBIND class profile 107
RACF administration for 501
for LDAP binding 111
for LDAP servers, encrypted
storing information for 107
updating LDAP section of pkiserv.conf 108
LDAP
encrypted 501
in the clear 501
LDAP administrator’s 97, 102
RACF administration for 501
path length constraint
enabling 81
path length constraint value in basic constraints extension 83
path name
certificate expiring message form 86
certificate ready message form 86
certificate reject message form 86
configuration file 615
exit program 615
renewed certificate message form 87
request(s) pending for approval message form 87
requests meeting criteria for recovery message form 87
pathLenConstraint field 81
PathLength (parameter in pkiserv.conf) 83
pending approval (status of certificate request) 409
pendingmsg.form
code sample 320
copying 70
in samples directory 606
purpose 67
pendingmsg2.form
code sample 320
copying 70
in samples directory 606
purpose 67
pgmcntl_dsn (variable in IKYSETUP) 53
PKCS #10
browser certificate format 6
certificate request 383
EST certificate request 341
SCEP certificate request 333, 334
server certificate format 6
PKCS #10 certificate request message for CMP, fields supported 457
PKCS #11 token
IKYSETUP variable 57
PKCS12Content (parameter in pkiserv.conf) 83
PKI (public key infrastructure)
defined 4
PKI Authenticode code signing server certificate
fields 162–164
PKI browser certificate for authenticating to z/OS
description 150
fields 160–162
PKI certificate for extensions demonstration
description 151
PKI EST CA 341
PKI extensions demonstration certificate
fields 160–162
PKI generated key certificate
description 150
PKI intermediate CA certificate
description 151
fields 162–164
PKI IPSEC server (firewall) certificate
description 151
fields 162–164
PKI S/MIME browser certificate
description 150
fields 160–162
PKI samples 654
PKI Services
daemon user ID
PKISRVD 57
Set up as an EST CA 341
starting 129
stopping 129, 131
updating
certificate templates file 221
using
administration web pages 405
web pages
using 405
PKI Services administration
processing certificate requests
selected 419
selected certificate requests 419
PKI Services daemon
starting 129, 682
PKI Services daemon user ID
creating 619
PKI SSL browser certificate
description 149
fields 160–162
PKI SSL server certificate
description 151
fields 162–164
PKI Windows logon certificate
fields 160–162
pkig (variable in IKYSETUP) 42
PKIBody structure for CMP, fields supported 455, 456
PKICEnroll.dll
signing 698
PkICertificate class 370
PKID
subcomponent for message logging 616
pkixit.c
description 349
scenarios
allowing only selected users to request certificates 359
automatic renewal of certificates 351
maintaining customized certificate repository 360
recover lost passphrase 361
renewal only within 30 days of expiration 360
updating sample code 350
updating sample code for CGIs 352
pkigroup (variable in IKYSETUP) 58
pkigroup_mem (variable in IKYSETUP) 42
pkigroup_mem. (variable in IKYSETUP) 42
pkigroup1 (variable in IKYSETUP) 58
pkigroup1_mem (variable in IKYSETUP) 53
pkigroup2 (variable in IKYSETUP) 58
pkigroup2_mem (variable in IKYSETUP) 53
PKIGRP 58
PKIHeader structure for CMP, fields supported 455
pkjsp subdirectory 605
PKIMessage structure for CMP, fields supported 454, 455
pkipreget utility 437
PKISERV
application name 147, 166
IBM HTTP Server - Powered by Apache operating modes
required 623
runtime user ID 227
surrogate user ID 59, 620
PKISERV class
protecting R_PKIServ administrative functions with 499
PKIServ subdirectory 605
pkserv.conf
CertPolicy section
default values 79
description 73
excerpt 74
information needed 79
changing
signature algorithm 288
code sample 607
copying 69
distribution point CRLs, customizing 293
editing
for configuring PKI Services 74
to change signature algorithm 288
to create CertificatePolicies extension 284, 286
to customize distribution point CRLs 293
to test configuration 129
General section
default values 85
description 74
excerpt 74
information needed 85
LDAP section
default value 108–112
description 74
excerpt 107
information needed 108–112
ObjectStore section
default value 75
description 73
excerpt 73
information needed 75
OIDs section
default value 75
description 73
excerpt 73
information needed 75
parameters
AdminGranularControl 79
AdminNotifyForm 87
AdminNotifyModForm 87
AdminNotifyNew 79
AdminNotifyReminder 79
ARLDist 79, 295
AuthName1 110
AuthPwd1 111
BindProfile1 112
CertValidityConstraint 79
CPS1 286
pkiserv.conf (continued)
parameters (continued)
CreateInterval 79
CreateOuValue 111
CRLDistDirPath 80, 295
CRLDistName 80, 294
CRLDistSize 80, 294
CRLDistURI 80, 294
CRLDuration 80
CRLPEXt 81
CRLWTONotification 81
DBPackage 75
DBSubsystem 75
DBType 75
DBVersion 75
DBWaitTime 76
EnableCMP 81
EnableEST 81
EnableLargeCRLPosting 81
EnablePathLenConstraint 81
EnableSCEP 82
ESTCafFile 82
ESTTemplate 82
ExitTimeout 85
ExpireWarningTime 82
ExpiringMessageForm 86
ICLDSN 77
ICLRequestorDSN 77
ICLSCEPtidDSN 78
ICLStatusDSN 77
InitialThreadCount 85
KeyRing 87
LargeCRLPostPath 83
MaintRunDays 85
MaintRunTime 86
MaxSuspendDuration 83
MyPolicy 75, 285
NumServers 108
ObjectDSN 76
ObjectRequestorDSN 76
ObjectSCEPtidDSN 77
ObjectStatusDSN 76
ObjectTidDSN 76
OCSPType 83
PathLength 83
PKCS12Content 83
Policy1Notice1 84, 285
Policy1Org 84, 285
PolicyCritical 84, 285
PolicyName1 84, 285
PolicyRequired 84, 285, 286
PostInterval 109
RA_label 87
ReadyMessageForm 86
RecoverForm 87
RejectMessageForm 86
RemoveCompletedReqs 78
RemoveExpiredCerts 78
RemoveExpiredCertsAndKeys 78
RemoveInactiveReqs 78
RenewCertForm 87
RetryMissingSuffix 112
RunMaintAtStart 86
SecureKey 87

pkiserv.envs

pkiserv.tmpl

APPLICATION section
ADMINFOOTER subsection 235
ADMINHEADER subsection 235
ADMINSCOPE subsection 148, 235
application sections
adding 299
APPLICATION sections
ADMINFOOTER subsection 149
ADMINHEADER subsection 148
CONTENT subsection 147
FAILURECONTENT subsection 148
FINDRECOVERCONTENT subsection 148
RECONTENT subsection 148
RECONTENT2 subsection 148
RECOVERCONTENT subsection 148
REFAILURECONTENT subsection 148
RENEWEDCERT subsection 148
RESUCCESSCONTENT subsection 148
RETRIEVECONTENT2 subsection 148
subsections 147
certificate templates 149
changing
to add application sections 299
copying 69
customizing
customization, additional first-time 221
customizing the OtherName field 230
minimally 219
retrofitting release changes 224
pkiserv.tmpl (continued)
debug flag 135
description 135
ingestion
  administration Web pages 236
  end-user web pages 219
to add application sections 299
INSERT sections 137, 185
INSERTs
  -AdditionalHeadIE 138
  -ChallengePassphrase 138
  -ChallengePassphrase2 138
  -ObjectHeaderIE 138
  -preregok 139
  -RecoverEmail 138
  -RecoverEmail2 138
  -renewkeysetIE 139
  -renewkeysetNS 139
  -renewrevokebad 139
  -renewrevokeok 139
  -requestbad 138
  -requestok 138
  -returnpkcs10 139
  Security 145
  SerialNumber 145
  With 146
  StateProv 146
  Street 146
  Title 146
  TransactionId 146
  Uid 146
  UnstructAddr 146
  UserId 146
named fields
  `%=-renewrevokebad=-% 148
  `%=-renewrevokeok=-% 148
  `%=-requestok=-% 157
  `%=returnpkcs10=-% 148
  `%=SelectCADomain=-% 148
purpose 68
sections 135
substitution variables 136
TEMPLATE section
  ADMINAPPROVE subsection 155
  APPL subsection 154
  CONSTANT subsection 154
  CONTENT subsection 153
  FAILURECONTENT subsection 157
  PREREGISTER subsection 158
  RETRIEVECONTENT subsection 157
  RETURNCERT subsection 158
subsections 153
  SUCCESSCONTENT subsection 157
updating
  customization, additional first-time 221
  customizing the OtherName field 230
  minimally 219
  retrofitting release changes 224
PKIServ.xsd
  in samples directory 606
PKISERVD
code sample 682
  in PROCLIB 603
  updating environment variables 71
PKISRVD
  PKI Services daemon user ID 57, 87
pkitmpl.xml
description 237
  in samples directory 606
purpose 68
pkitmpl.xml file
description 237
  updating 258, 273
PKITP
  API called CSSM_TP_PassThrough 512
  certificate extensions supported 510
  certificate policies supported 509
  configuring 511
profile (continued)
CA certificate, recovering 490
FACILITY class
   IRR.PROXY.DEFAULTS 501, 502
   IRR.DIGTCERT.ADD 497
   IRR.DIGTCERT.EXPORT 497
   IRR.DIGTCERT.GENCERT 497
   IRR.DIGTCERT.GENEREWEB 497
   IRR.DIGTCERT.RECOVERY 497
   IRR.DIGTCERT.RECERT 497
   IRR.DIGTCERT.RECREWEB 497
   IRR.DIGTCERT.REVOKED 497
   IRR.DIGTCERT.REVOKET));// 497
   IRR.DIGTCERT.REVOKED 497
   IRR.DIGTCERT.REVOKET));// 497
   IRR.DIGTCERT.SCEPREQ 497
   IRR.DIGTCERT.VERIFY 497
   IRR.RPKISERV.PKIADMIN 498
KEYSMSTR class
   LDAP.BINDPW.KEY 502
LDAPBIND class profile
defining 502
PROTECTED attribute 620
protocols
   supported in PKI Services 6
province (field in end-user web pages) 380
public key cryptography
   standards supported 6
Public Key Infrastructure for X.509 3
PublicKey (named field in pkiserv.tmpl) 145
PublicKey2IE (named field in pkiserv.tmpl) 145
PublicKey2NS (named field in pkiserv.tmpl) 145
PublicKeyIE (named field in pkiserv.tmpl) 145
PublicKeyNS (named field in pkiserv.tmpl) 145
Q
QRECOVER
   accesses required 497
   parameters
      preprocessing 358
      R_PKIServ function 620
   return codes
      post-processing 359
      preprocessing 358
QRecover class 368
QrecoverResultsList class 371
R
R_PKIServ callable service
   administrative functions 497
   controlling the use 495
   description 5
   end-user functions 495
   FACILITY class resources that protect 496, 498
   PKISERV class resources that protect 499
   protected by FACILITY class resources 620
R_PKIServ SAF callable service
   exit routines 353
RA
   distinguished name, IKYSETUP variable 43
   RA certificate
      creating using IKYSETUP 39
RA certificate (continued)
   label, IKYSETUP variable for 43
   locating 484
RA certificate and private key
   backing up 622
ra_backup_dsn (variable in IKYSETUP) 58
ra_dn (variable in IKYSETUP) 43
RA_label (parameter in pkiserv.conf) 87
ra_label (variable in IKYSETUP) 43
RACF
   administering PKI Services 481
   authorizing
      READ access 482
      users for inquiry access 481
   connecting members
to group 481
to new group 482
deleting groups 482
deleting members from group 481, 482
setting up PKI Services 39
   use by PKI Services 5
RACF administration
   for PKI Services, ongoing 481
   for setting up PKI Services using IKYSETUP
      steps for 60
      using IKYSETUP 619
RACF administrator
   ongoing administration for PKI Services 481
   running IKYSETUP
      overview 39
      steps 62
   skills 17
tasks
   IKYSETUP, running 39
   ongoing administration for PKI Services 481
   performed by IKYSETUP 619
   running IKYSETUP 39
   setting up PKI Services using IKYSETUP 60
RACF group
   providing access 39
RDB (request database) 428
RDN attribute 687
READ access
   authorizing 482
   IRR.DIGTCERT.GENEREWEB 621
   IRR.DIGTCERT.RECERT 621
   IRR.DIGTCERT.RECREWEB 621
   IRR.RPKISERV.PKIADMIN 621
   readonly substitution variable 137
   ready message form for certificate 86
   ReadyMessageForm (parameter in pkiserv.conf) 86
   readymsg.form
      code sample 319
      copying 70
      customizing 322
      in samples directory 606
      purpose 69
   recent activity (field in administration web pages) 408
RECONTENT subsection (in APPLICATION sections of pkiserv.tmpl) 148
RECONTENT2 subsection (in APPLICATION sections of pkiserv.tmpl) 148
record level sharing (VSAM RLS) 118

735
RECOVERCONTENT subsection (in APPLICATION sections of pkiserv.tmpl) 148
RecoverEmail (named field in pkiserv.tmpl) 145
RecoverForm (parameter in pkiserv.conf) 87
recoverymsg.form
  code sample 320
  copying 70
  customizing 322
  in samples directory 606
  purpose 69
REFAILURECONTENT subsection (in APPLICATION section of pkiserv.tmpl) 148
registration authority (CA)
certificate
  creating 39
reject (action on certificate request) 410
reject message form for certificate 86
rejected (status of certificate request) 409
rejected, user notified (status of certificate request) 409
RejectMessageForm (parameter in pkiserv.conf) 86
rejectmsg.form
  code sample 319
  copying 70
  customizing 322
  in samples directory 606
  purpose 69
Rekey
  CA private key for PKI 492
  CA private key for SAF: Scenario 1 494
  CA private key for SAF: Scenario 2 494
  Non-FIPS CA private key for PKI 493
relationship between certificate requests and certificates 428
relocate section
  variable data for type 80 SMF records 685
RemoveCompletedReqs (parameter in pkiserv.conf) 78
RemoveExpiredCerts (parameter in pkiserv.conf) 78
RemoveExpiredCertsAndKeys (parameter in pkiserv.conf) 78
RemoveInactiveReqs (parameter in pkiserv.conf) 78
renew (action for certificate) 422
Renew or revoke a browser certificate Web page 148
renewal of certificate, automatic
  exit routine processing for 349
renewal of certificates, automatic 152
RenewCertForm (parameter in pkiserv.conf) 87
renewcertmsg.form
  code sample 320
  in samples directory 606
  purpose 69
RENEWEDCERT subsection (in APPLICATION sections of pkiserv.tmpl) 148
REQCERT
  accesses required 497
  exit routine scenario use 360
  parameters
    post-processing 356
    preprocessing 355
    R_PKIServ function 620
  return codes
    post-processing 356
REQRENEW (continued)
  parameters (continued)
    post-processing 356
    preprocessing 355
    R_PKIServ function 620
  return codes
    post-processing 356
reqest database
  description 115
reqest database (RDB) 428
reqest database records
  viewing 444
requestor
  alternate index
    VSAM data set name for 76
Requestor (named field in pkiserv.tmpl) 145
requestor email, changing for certificate 424
requestor name (field in administration web pages) 408
requestor substitution variable 137
requestor's name (field in end-user web pages) 383
requestor2 139
Requestor2 (named field in pkiserv.tmpl) 145
requirements
  LDAP directory server 687
  prerequisite products 12
  skills 14
  sysplex support 11
Requirements
  FIPS 12
RESPOND
  accesses required 497
  R_PKIServ function 620
restoring from backup
  VSAM data sets
    sample JCL 681
  restrict_surrog (variable in IKYSETUP)
    decision table 46
    default value 54
    description 54
RESTRICTED attribute 620
RESUCCESSCONTENT subsection (in APPLICATION sections of pkiserv.tmpl) 148
resume (action for certificate) 422
RETRIEVECONTENT subsection (in TEMPLATE section of pkiserv.tmpl) 157
RETRIEVECONTENT2 subsection (in APPLICATION sections of pkiserv.tmpl) 148
RetryMissingSuffix (parameter in pkiserv.conf) 112
return codes
  CSSM_TP _PassThrough 512
  EXPORT
    post-processing 357
    preprocessing 356
  GENCERT
    post-processing 355
  GENRENEW
    post-processing 355
  QRECOVER
    post-processing 359
    preprocessing 358
  recording 529
REQCERT
  post-processing 356
REQRENEW
  post-processing 356
return codes (continued)

REQRENEW (continued)
post-processing 356

REVOKE
post-processing 358

returnbrowsercertIE 139
returnbrowsercertNS 139

RETURNCERT subsection (in APPLICATION sections of pkiserv.tmpl) 148
RETURNCERT subsection (in TEMPLATE section of pkiserv.tmpl) 158
returnpkcs10 139

revocation list, certificate authority (ARL) 290, 295
revocation request message for CMP, fields supported 459
revocation response message for CMP, fields supported 459

REVOKE
accesses required 497
parameters
post-processing 358, 359
preprocessing 357
R_PKIServ function 620
return codes
post-processing 358
revoke (action for certificate) 422
RevokeCert class 369
revoked (status of certificate) 422
revoked, expired (status of certificate) 422
RFC 4210, support for 453
RFC 4211, support for 453

RLS
enabling VSAM data sets for 119
MVS programmer task 17
preliminary steps for establishing 118
setting up, preliminary steps 117
RLS, VSAM record-level sharing 670, 673
roadmaps
for implementing PKI Services 26
roles of team members 14
Rollover
CA private key for PKI 492
CA private key for SAF: Scenario 1 494
CA private key for SAF: Scenario 2 494
Non-FIPS CA private key for PKI 493
Rollover, PKI Services Private key 491
rp message type for CMP, fields supported 459
RpkiservException class 372
rr message type for CMP, fields supported 459

RSA
signature algorithm
updating 287
RunMaintAtStart (parameter in pkiserv.conf) 86
runtime directory 129
runtime environment
configuring 67
runtime user ID
changing
for requesting certificates 228
for retrieving certificates 228
runtime-dir 11

S

S/MIME

S/MIME format 6

S/MIME (continued)
description of certificate 150
fields of certificate 160–162

SAF
browser certificate
description 149
fields 164, 165
key ring
creating 39, 622
KeyRing parameter 87
section (of pkiserv.conf)
default value 87
description 74
excerpt 74
parameter description 87
server certificate
description 149
fields 164, 165
subcomponent for message logging 616

SAF key ring
IKYSETUP variable 57

SAMPLB 152
samples
_PKISERV_CA_DOMAIN 615
_PKISERV_MSG_LEVEL 616
configuration directives for IBM HTTP Server - Powered by Apache 649
configuration file 607
directives 649
environment variables file 617
expiringmsg.form 319
httpd.conf for IBM HTTP Server - Powered by Apache 649
IKYCD2 655
IKYCDV1 658
IKYCVSAM 661
IKYCVSV1 665
IKYRVSAM 670
IKYRVSV1 673
IKYSBIND 678
IKYSETUP 624
IKYSGRNT 679
IKYVBKUP 680
IKYVREST 681

JCL
IKYCVSAM 662
IKYCVSV1 665
IKYRVSAM 670
IKYRVSV1 673
IKYVBKUP 680
IKYVREST 681
PKISERVD 682
log data set from IKYSETUP 63
LOGREC data 533
pendingmsg.form 320
pendingmsg2.form 320
pkiserv.conf 607
pkiserv.envars 617
pkiserv.tmpl
APPLICATION section 166
INSERT section 185
TEMPLATE section 179
samples (continued)
PKISERVD sample procedure 682
pkitpsamp.c 517
readymsg.form 319
recoverymsg.form 320
rejectmsg.form 319
renewcertmsg.form 320
server.xml for Liberty 654
server.xml for WebSphere Application Server 654
vhost1443.conf for IBM HTTP Server - Powered by Apache 649
vhost443.conf for IBM HTTP Server - Powered by Apache 649
vhost80.conf for IBM HTTP Server - Powered by Apache 649
samples subdirectory 606
SAMPLIB 603
scenarios
exit routine
allowing only selected users to request certificates 359
maintaining customized certificate repository 360
providing customized TITLE 359
recover lost passphrase 361
renewal only within 30 days of expiration 360
SCEP certificates
requesting 402
SCEP preregistration certificate
fields 164, 165
SCEPReq
accesses required 497
sections of pkiserv.conf
CertPolicy section 73
General section 74
LDAP section 74
ObjectStore section 73
OIDS section 73
SAF section 74
secure
email 3
secure connection with LDAP, establishing 98
secure key 325
Secure Multipurpose Internet Mail Extensions (S./MIME) 3
Secure Sockets Layer (SSL) 3, 6, 98
SecureKey (parameter in pkiserv.conf) 87
Securityn (named field in pkiserv.conf) 145
sending to IBM
reader comments xxxi
sendmail
configuring 34
not using default 71
requirement for 14
serial number
field in administration web pages 408
field in end-user web pages 380
serialno substitution variable 137
SerialNumber (named field in pkiserv.tmpl) 145
SERVAUTH class 483
server certificates (continued)
installing 391, 392
one-year SAF server certificate 149
retrieving 391, 392
supported types 7
two-year EV SSL server certificate 150
server.xml 654
server.xml for Liberty 654
server.xml for WebSphere 654
server.xml for WebSphere Application Server 654
Server1 (parameter in pkiserv.conf) 110
setPassphrase method 368
setting up
PKI Services 37
var directory 95
settings
contained in pkiserv.conf 68
displaying log options 542
IKYP025I displays 582
log options, displaying 542
setTransactionId method 368
severe messages, logging 617
SharedPLEX (parameter in pkiserv.conf) 78
SharedVSAM (parameter in pkiserv.conf) 78
sharing control data sets (SHCDS) 118
SHCDS 118
shortcut keys 703
SIEALNKE 603
SigAlg1 (parameter in pkiserv.conf) 85, 289
Signature algorithm
 updating 287
signing key 33
signing_ca_label (variable in IKYSETUP) 59
SignWith (named field in pkiserv.tmpl) 146
Simple Certificate Enrollment Protocol (SCEP) certificate
description 151
description of template 151
template description 151
certificate fields 164, 165
enabling 333, 334
enabling in pkiserv.conf 82
fingerprint checking 337
overview 333, 334
preregistration
overview 333, 334
RA certificate
creating using IKYSETUP 39
record 334
request processing, overview 335
request states 335
steps for enabling 337
tags 336
variables 334, 335
single certificate, processing 422
single request, processing 411
skill requirements 14
skills
Db2 database administrator 17
ICSF programmer 15
installing PKI Services 16
installing prerequisite products 15
LDAP programmer 15, 17
MVS programmer 17
skills (continued)

OCEP programmer 15
OCSF programmer 15
RACF administrator 17
UNIX programmer 15, 18
Web server programmer 16, 18
smart card, certificate for 150
smart cards 3
SMP/E 11
SMS base configuration 118
space considerations
for ICL, using Db2 123
for ICL, using VSAM 117
for object store, using Db2 123
for object store, using VSAM 117
for VSAM data sets 116
SPANNED statements 119
square brackets (in substitution variables) 136
SSL

certificate
creating 39, 623
use 7
delivering certificates through 3
supported standards 6
with client authentication operating mode of IBM HTTP Server - Powered by Apache 623
without client authentication operating mode of IBM HTTP Server - Powered by Apache 623
SSL (Secure Sockets Layer) 98
SSLring 44
standards
certificate extensions supported 8
LDAP 7
public key cryptography, supported 6
started procedure for PKI Services
associating user ID with 39
starting
PKI Services 129
PKI Services daemon 129
state (field in end-user web pages) 380
StateProv (named field in pkiserv.tmpl) 146
status
alternate index
VSAM data set name for 76
statusess
certificate requests 409
certificates 421
STDERR_LOGGING 616
STDOUT
EXEYPT
preprocessing 356
GENCERT
post-processing 355
preprocessing 354
GENRENEW
post-processing 355
preprocessing 354
REQCERT
post-processing 356
preprocessing 355
REQRENEW
post-processing 356
preprocessing 355
STDOUT_LOGGING 616
steps
access to administration pages, changing 236
accessing
administration home page 405
end-user Web pages 376
adding
application sections 299
adding new certificate template 227
administering HostIdMappings extensions 483
administration Web pages
changing access to 236
customizing 235
approving single request 411
authorizing users for inquiry access 482
bind passwords encrypted for LDAP
IRR.PROXY.DEFAUlTS profile 502
LDAPBIND class 502
building sample application 516
CA certificate
renewing 488
CA certificate, locating 484
certificate templates file
customization, additional first-time 221
customization, minimal 219
customizing the OtherName field 230
retrofitting release changes 224
certificate templates file and JSPs
retrofitting release changes 276
certificates, locating 484
changing
administration Web pages 235
end-user web pages 219
end-user Web pages 221, 224
evironment variables 72
fields in requests 411, 414
runtime user ID for requesting certificates 228
runtime user ID for retrieving certificates 228
signature algorithm 288
changing PKI Services from a self-signed CA to an intermediate CA 486
configuirng
IBM HTTP Server - Powered by Apache 30
ICSF 33
LDAP 31
PKITP 511
copying files
expiringmsg.form 70
pendingmsg.form 70
pendingmsg2.form 70
pkiserv.conf 69
pkiserv.envvars 70
pkiserv.tmpl 69
readymsg.form 70
recoverymsg.form 70
rejectmsg.form 70
creating
application sections 299
CertificatePolicies extension 284
ICL data sets 118
VSAM object store 118
customizing
administration Web pages 235
distribution point CRLs 293
steps (continued)
customizing (continued)
  email notifications 322
  end-user web pages 219
  end-user Web pages 221, 224
  pkiserv.tmpl 219, 221, 224
Db2 conversions 333
deleting
  multiple certificates 424
  selected certificates 426
  single certificate 422
  single request 411
email notifications, customizing 322
enabling Simple Certificate Enrollment Protocol (SCEP) 337
encrypted passwords for LDAP servers 501
environment variables, updating 72
establishing your CA and RA certificates 622
gskkyman for certificate store 691
HostIdMappings extensions, administering 483
ICL data sets, creating 118
IKYSETUP, using 60
inquiry access, authorizing users for 482
installing
  IBM HTTP Server - Powered by Apache 30
  ICSF 33
  LDAP 31
intermediate certificate authority, changing PKI Services to 487
invoking the certificate validation service 516
key ring, locating 484
LDAP
  schema.user.ldif, updating 97
  section of PKI Services configuration file, tailoring 108
  updating schema.user.ldif 97
LDAP bind passwords, encrypted
  IRR.PROXY.DEFAULTS profile 502
  LDAPBIND class 502
LDAP servers, encrypted passwords for 501
locating
  CA certificate 484
  key ring 484
  PKI Services certificates 484
  RA certificate 484
modifying single request 411
passwords, encrypted LDAP binding
  IRR.PROXY.DEFAULTS profile 502
  LDAPBIND class 502
performing RACF administration using IKYSETUP 60
PKI Services certificate authority certificate, renewing 488
PKI Services certificates, locating 484
PKI Services daemon
  starting 129
  stopping 131
PKI Services RA certificate, renewing 490
pkiserv.conf
  copying 69
  updating 88
pkiserv.tmpl
  copying 69
  customization, additional first-time 221
  customization, minimal 219
steps (continued)
pkiserv.tmpl (continued)
customizing the OtherName field 230
retrofitting release changes 224
PKITP, configuring 511
pkitpsamp.c 516
preregistering a SCEP client 402
processing
  multiple certificates 424
  multiple requests through searches 417
  selected certificates 426
  selected requests 419
  single certificate 422
  single request 411
RA certificate
  renewing 490
RA certificate, locating 484
RACF administration using IKYSETUP 60
rejecting single request 411
renewing
  certificate 394
  PKI Services certificate authority certificate 488
  PKI Services RA certificate 490
requesting a certificate 384
retrieving a certificate
  from bookmarked web page 391
  from PKI Services home page 392
retrofitting changes into certificate templates 224
retrofitting changes into certificate templates and JSPs 276
revoking
  certificate (by user) 397
  multiple certificates 424
  selected certificates 426
  single certificate 422
RLS
  enabling VSAM data sets for 119
  preliminary steps for establishing 118
running IKYSETUP 60
searching for requests 417
setting up the var directory 95
Simple Certificate Enrollment Protocol (SCEP) enabling 337
starting
  PKI Services 129
  PKI Services daemon 129
stopping PKI Services daemon 131
suspending
  certificate (by user) 397
tailoring LDAP section of PKI Services configuration file 108
updating
  configuration file 88
  environment variables 72
  exit code sample for CGIs 352
  exit routine code sample 350
  LDAP section of pkisigs 112
  pkixit.c 350
  pkixit.c for CGIs 352
  pkiserv.conf 88
  signature algorithm 288
  single request 411
user ID for requesting certificates, changing 228
user ID for retrieving certificates, changing 228
steps (continued)
using
  gskkyman 691
  IKYSETUP 60
using encrypted passwords for LDAP servers
creating IRR.PROXY.DEFAULTS profile 502
creating LDAPBIND class profile 502
var directory, setting up 95
viewing web pages 129
VSAM conversions 333
VSAM object store, creating 118
Steps
CA certificate profile, Recovering 491
Recovering a CA certificate profile 491
setting up key ring for Liberty server 271
updating
  configuration file 74
  pkiserv.conf 74
STOP command 131
stopping
  PKI Services 129, 131
storage needs
  for ICL, using Db2 123
  for ICL, using VSAM 117
  for object store, using Db2 123
  for object store, using VSAM 117
STORCLAS statements 119
store
  creating 118
storing
  certificate requests 428
  certificate revocation lists 5
certificates 5
street (field in end-user web pages) 380
Street (named field in pkiserv.tmpl) 146
subcomponent level
  for logging 616
subdirectory
  ActiveX 604
  bin 604
  include 604
  lib 605
  lib64 605
  pkiijsp 605
  PKIServ 605
  samples 606
SubjectAltName (certificate extension) 510
SubjectKeyIdentifier (certificate extension) 510
subordinate certificate authority
  using PKI Services as 486
subsections in certificate templates, summary 159
substitution variables
  base64cert 136, 139
  browsertype 136
  cadomain 136
  errorinfo 136
  ieccert 136
  keyid 136
  optfield 136
  p12cert 136
  pkiserv.tmpl 136
  printablecert 136
  readonly 137
  requestor 137
substitution variables (continued)
  serialno 137
  tmplname 137
  transactionid 137
SUCCESSCONTENT subsection (in TEMPLATE section of pkiserv.tmpl) 157
suffix
  LDAP 98
summary of changes xxxvii
Summary of changes
  Version 2 Release 2 xxxvii
  Version 2 Release 3 xxxiv
  Version 2 Release 4 xxxiii
surrog (variable in IKYSETUP) 59
surrog_uid (variable in IKYSETUP) 43
surrogate operation
  setting up 39, 624
surrogate user ID
  creating 39
  IKYSETUP variable 59
  PKISERV 59, 620
  UID, IKYSETUP variable 43
suspend (action for certificate) 422
suspended (status of certificate) 422
synchronous certificates 325
SYS1.CSSLIB 53
SYS1.LINKLIB 53
SYS1.LINKLIB(IKYSETUP) 39
SYSOUT
  records, contents 540
  viewing information 537
sysplex support
  daemon, PKI Services, starting 129
  PKI Services daemon, starting 129
  pkiserv.conf
    updating, overview 72
    updating, steps for 88
  prerequisites 11
  requirements 11
  RLS
    enabling VSAM data sets for 119
    preliminary steps for establishing 117
  SharedPLEX
    description 78
    updating 90
    starting PKI Services daemon 129
    updating pkiserv.conf 72
    updating SharedPLEX 90
system architecture diagram 5
T
task roadmaps
  for implementing PKI Services 26
tasks
  (noun, gerund phrase)
    steps 695
  allowing WebSphere users to renew and revoke browser certificates
    steps 248
  application domain, creating
    steps 301
  authorization to PKI Services functions, giving to users
tasks (continued)

authorization to PKI Services functions, giving to users (continued)
steps 243, 268
automatic certificate renewal, setting up steps 323
backing up the VSAM data sets steps 121
CA certificate, setting the expiration date steps 55
certificate for CMP requester, setting up in RACF database steps 463
configuring Internet Explorer to trust PKI Services steps 696
CRL, enabling support for large steps 298
custom extension, adding to a certificate template steps 328, 329
EAR file, creating new steps 261
encryption of keys on CMP requests using key ring, setting up PKI Services for steps 464
ICL, converting from VSAM to Db2 steps 125
ICL, creating Db2 objects for steps 123
installer program for ActiveX controls, building steps 699
installing PKI Services ActiveX program steps 693
installing the PKI Services CA certificate on a Windows system steps 697
JSP files, deploying to a Websphere application server steps 262
object store, converting from VSAM to Db2 steps 125
object store, creating Db2 objects for steps 123
PKI Services ActiveX program, signing steps 698
PKI Services web application, implementing using the JSPs roadmap 242
PKI Services web application, implementing using the JSPs in Liberty roadmap 267
preparing to implement the PKI Services Web application using the JSPs steps 242
preparing to implement the PKI Services Web application using the JSPs in Liberty steps 268
preparing Windows and Internet Explorer for use with end-user web application roadmap 693
recovering a certificate whose keys were generated by PKI Services steps 398
restoring the VSAM data sets steps 122
retrieving a PKI generated key certificate steps 393
timeout value (continued)
for PKI Services exit 85
Title 146
title (field in end-user web pages) 380
TKDS
time period before automatic deletion expired certificates 78
TKDS (token data set)
specifying a token in for PKI Services 88
TLS (Transport Layer Security) 98
tmplname substitution variable 137
token data set
time period before automatic deletion expired certificates 78
token data set (TKDS)
specifying a token in for PKI Services 88
token, PKCS #11
IKYSETUP variable 57
TokenName (parameter in pkiserv.conf) 88
TPOLICY
subcomponent for message logging 616
tracing
Enrollment over Secure Transport (EST) 343
tracing CMP
environment variables 472
tracking the PKI EST program 343
trademarks 710
traditional websphere 259
transaction ID
field in administration web pages 409
field in end-user web pages 383
TransactionId (named field in pkiserv.tmpl) 146
transactionid substitution variable 137
Transport Layer Security (TLS) 98
true name of certificate templates 152
trust level for PKI Services 483
Trust Policy
API called CSSM_TP_PassThrough 512
overview 507
two-year EST preregistration
certificate fields
two-year EST preregistration 164, 165
preregistration certificate
fields 164, 165
two-year EV server certificate
description 150
two-year EV SSL server certificate
fields 162–164
two-year PKI Authenticode - code signing server certificate
description 150
two-year PKI Authenticode code signing server certificate
fields 162–164
two-year PKI browser certificate for authenticating to z/OS
description 150
fields 160–162
two-year PKI Windows logon certificate
description 150
fields 160–162
type 80 SMF record
table of event codes and qualifiers 685
table of relocate section variable data 685
TZ environment variable 71

U
Uid (named field in pkiserv.tmpl) 146
unencrypted, LDAP bind passwords 501
Uniform Resource Identifier (URI)
Certification Practice Statement 79
uniform resource identifier (URI), alternate
field in end-user web pages 381
UNIX programmer
skill planning 15, 18
task planning 15, 18
tasks
configuring sendmail 34
configuring UNIX runtime environment 67
LDAP section of pkiserv.conf, updating 107
runtime environment, configuring 67
sendmail, configuring 34
UNIX runtime environment, configuring 67
updating LDAP section of pkiserv.conf 107
UNIX runtime environment
configuring 67
unix_sec (variable in IKYSETUP)
decision table 47
default value 54
description 54
UnstructAddr (named field in pkiserv.tmpl) 146
unstructured address
field in end-user web pages 380
unstructured name
field in end-user web pages 380
UPDATE access
IRR.DIGTCERT.ADD 621
IRR.RPKISERV.PKIADMIN 621
updating
certificate templates file
minimal 219
retrofitting changes 224
pkiserv.tmpl
minimal 219
URI
containing CPS 79
URI, alternate field in end-user web pages 381
usage policy 75
UseBinaryAttr1= (parameter in pkiserv.conf) 110
user ID
associating with PKI Services started procedure 39, 619
changing
for retrieving certificates 228
requesting certificates 228
field in end-user web pages 380
PKI Services daemon 87
runtime
changing 227
user ID, surrogate
creating 39
user interface
ISPF 703
TSO/E 703
user notifications
copying files 70
customizing forms 322
UserExit class 362
UserExitException class 369
UserId (named field in pkiserv.tmpl) 146
VSAM (continued)

- Converting between available VSAM data formats 333
- Converting existing VSAM data sets to Db2 tables 125
- Data set name for ICL data 77
- Data set name for ICL requestor alternate index 77
- Data set name for ICL SCEP Transaction ID alternate index 78
- Data set name for ICL status alternate index 77
- Data set name for object store base cluster 76
- Data set name for object store requestor alternate index 76
- Data set name for object store SCEP Transaction ID alternate index 77
- Data set name for object store status alternate index 76
- Data set name for object store TID alternate index 76
- RLS enabling data sets for 119
- Preliminary steps for establishing 118

VSAM data sets
- Backing up
  - Sample JCL 680
- Choosing the data format version 116
- Creating
  - Not using RLS 661, 665
  - Using RLS 118, 119, 670, 673
- Giving administrators access to 39
- Restoring from backup
  - Sample JCL 681
- RLS, enabling for 119

VSAM files for ICL and ObjectStore
- Utility program to convert between VSAM data formats 450
- Utility program to convert to Db2 tables 448

VSAM ICL data set records
- Viewing 433

VSAM object store data set records
- Viewing 444

VSAM object store, creating 118
- Vsonadb2 utility 448
- Vssonmconv utility 450
- Vsamhlq (variable in IKYSETUP) 59

W

- Warning message before certificate expiration 82
- Warning messages, logging 617

Web pages
- Accessing 376, 405
- Web pages, administration
  - Customizing 233
- Web pages, end user
  - Customizing 135
  - Fields 379
  - Using 375

Web server
- Daemon user ID, IKYSETUP variable 60
- Distinguished name, IKYSETUP variable 44
- SAF key ring, IKYSETUP variable for 44

Web server certificate
- Expiration date, IKYSETUP variable 59
- Label, IKYSETUP variable 60
- Life span, IKYSETUP variable 60

Web server certificate specifying expiration 54
Web server programmer (continued)

skills 16, 18

tasks
  configuring IBM HTTP Server - Powered by Apache 29
  IBM HTTP Server - Powered by Apache, installing and configuring 29
  installing IBM HTTP Server - Powered by Apache 29

Web server programmer
  installing and configuring IBM HTTP Server - Powered by Apache 29

web_dn (variable in IKYSETUP) 44
web_expires (variable in IKYSETUP)
  changing value of 54
web_exyears (variable in IKYSETUP)
  changing value of 54
web_label (variable in IKYSETUP) 60
web_ring (variable in IKYSETUP) 44
webserver (variable in IKYSETUP) 60

WebSphere application server
  deploying JSP file to 262
WebSphere Application Server
  installing and configuring 31
  requirement for 13
  use by PKI Services 5

WebSphere users
  authorizing to renew and revoke browser certificates 247
  authorizing to use PKI Services functions 243

WEBSRV user ID 60

Windows
  installing PKI Services CA certificate on 696
  setting up to run end-user web application 693

Windows logon certificate
  description 150

X

X.509v3 certificates 8
XML template file
  description 237, 258, 273

Z

z/OS
  PKI browser certificate for authenticating to
  description 150
  fields 160–162
  PKI Windows logon certificate
  fields 160–162
z/OS Liberty Embedded
  use by PKI Services 5
z/OS product libraries
  ACRDBRM 603
  AIEALNKE 603
  APROCLIB 603
  ASAMPLIB 603
  CBRDBRM 603
  PROCLIB 603
  SAMPLIB 603
  SIEALNKE 603
z/OS UNIX level security 47
zip code (field in end-user web pages) 380