z/OS
Version 2 Release 3

Hardware Configuration Definition User's Guide

IBM
Note
Before using this information and the product it supports, read the information in “Notices” on page 443.

This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until otherwise indicated in new editions.

Last updated: 2019-02-16

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
## Chapter 2. Migration
- Migration overview.......................................................... 11
- Migration roadmap............................................................... 11
- Security migration................................................................. 11
- Migration tasks....................................................................... 12

## Chapter 3. How to set up, customize and start HCD
- Setting up HCD....................................................................... 13
- How to invoke HCD in dialog mode......................................... 14
- Tailoring the CLIST CBDCHCD.............................................. 15
- Starting and ending HCD........................................................ 16
- Defining an HCD profile........................................................ 16
- Working with the HCD Profile Options dialog......................... 17
- Keywords.............................................................................. 19
- Customizing HCD EXEC procedures....................................... 26

## Chapter 4. How to work with I/O definition files (IODF)
- IODF naming convention....................................................... 27
- Work IODF.......................................................................... 27
- Production IODF.................................................................... 28
- Associated data sets.............................................................. 28
- Create or specify an IODF...................................................... 28
- Multi-user access................................................................. 29
- Sharing IODFs...................................................................... 30
- Deciding on the number of IODFs.......................................... 30
- The master IODF concept...................................................... 31
- How HCD arranges devices into groups in an IODF................. 32
- Change to another IODF......................................................... 33
- Change a production IODF / Create a work IODF based on a production IODF........................................ 33
- View active IODF.................................................................. 33
- Backup work or production IODFs......................................... 33
- Maintain IODFs..................................................................... 34
- Delete an IODF..................................................................... 34
- Copy an IODF...................................................................... 34
- Change IODF attributes......................................................... 35
- View an IODF...................................................................... 35
- Export an IODF.................................................................... 36
- Import an IODF.................................................................... 38
- Upgrade an IODF.................................................................. 38
- Work with configuration packages....................................... 40
- Activity logging and change logging.................................... 44
- Rules for automatic activity logging..................................... 45
- Actions performed on IODFs and related activity and change log files....................................................... 45
- IODF release level compatibility........................................... 46

## Chapter 5. How to use the dialog
- Window layout...................................................................... 47
- Working with lists.................................................................. 49
- Numbered selection lists....................................................... 49
- Unnumbered single selection lists........................................ 49
- Unnumbered multiple selection lists..................................... 50
- Action lists.......................................................................... 51
- Message lists........................................................................ 53
- Promptable lists................................................................. 54
- Commands and function keys.............................................. 55
- Getting help......................................................................... 55
### Chapter 6. How to define, modify, or view a configuration

<table>
<thead>
<tr>
<th>Task</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating new objects</td>
<td>63</td>
</tr>
<tr>
<td>Add</td>
<td>63</td>
</tr>
<tr>
<td>Add like</td>
<td>63</td>
</tr>
<tr>
<td>Repeat (copy)</td>
<td>64</td>
</tr>
<tr>
<td>Navigating through HCD</td>
<td>64</td>
</tr>
<tr>
<td>Centralized navigation</td>
<td>64</td>
</tr>
<tr>
<td>Hierarchical navigation</td>
<td>64</td>
</tr>
<tr>
<td>Graphical navigation</td>
<td>64</td>
</tr>
<tr>
<td>Navigation map</td>
<td>65</td>
</tr>
<tr>
<td>Suggested sequence to define a configuration</td>
<td>66</td>
</tr>
<tr>
<td>Working with operating system configurations</td>
<td>67</td>
</tr>
<tr>
<td>Defining operating system configurations</td>
<td>67</td>
</tr>
<tr>
<td>Changing operating system configurations</td>
<td>68</td>
</tr>
<tr>
<td>Repeating (copying) operating system configurations</td>
<td>69</td>
</tr>
<tr>
<td>Deleting operating system configurations</td>
<td>69</td>
</tr>
<tr>
<td>Working with EDTs</td>
<td>70</td>
</tr>
<tr>
<td>Defining EDTs</td>
<td>70</td>
</tr>
<tr>
<td>Changing EDTs</td>
<td>70</td>
</tr>
<tr>
<td>Repeating (copying) EDTs</td>
<td>71</td>
</tr>
<tr>
<td>Deleting EDTs</td>
<td>71</td>
</tr>
<tr>
<td>Working with generics</td>
<td>71</td>
</tr>
<tr>
<td>Working with esoteric groups</td>
<td>72</td>
</tr>
<tr>
<td>Defining esoteric groups</td>
<td>72</td>
</tr>
<tr>
<td>Changing esoteric groups</td>
<td>72</td>
</tr>
<tr>
<td>Adding devices to esoterics</td>
<td>73</td>
</tr>
<tr>
<td>Repeating (copying) esoteric groups</td>
<td>73</td>
</tr>
<tr>
<td>Deleting esoteric groups</td>
<td>74</td>
</tr>
<tr>
<td>Working with processors</td>
<td>74</td>
</tr>
<tr>
<td>Defining processors</td>
<td>74</td>
</tr>
<tr>
<td>Changing processors</td>
<td>76</td>
</tr>
<tr>
<td>Repeating (copying) processors</td>
<td>78</td>
</tr>
<tr>
<td>Copying an SMP processor to an XMP channel subsystem</td>
<td>79</td>
</tr>
<tr>
<td>Priming processor data</td>
<td>80</td>
</tr>
<tr>
<td>Deleting processors</td>
<td>81</td>
</tr>
<tr>
<td>Working with channel subsystems</td>
<td>81</td>
</tr>
<tr>
<td>Defining channel subsystems</td>
<td>81</td>
</tr>
<tr>
<td>Repeating (copying) channel subsystems</td>
<td>82</td>
</tr>
<tr>
<td>Copying a channel subsystem to an SMP processor</td>
<td>84</td>
</tr>
<tr>
<td>Changing channel subsystems</td>
<td>85</td>
</tr>
<tr>
<td>Deleting channel subsystems</td>
<td>85</td>
</tr>
<tr>
<td>Working with partitions</td>
<td>85</td>
</tr>
<tr>
<td>Defining partitions</td>
<td>86</td>
</tr>
<tr>
<td>Changing partitions</td>
<td>87</td>
</tr>
<tr>
<td>Repeating (copying) partitions</td>
<td>88</td>
</tr>
<tr>
<td>Transferring partition configurations</td>
<td>88</td>
</tr>
<tr>
<td>Deleting partitions</td>
<td>90</td>
</tr>
<tr>
<td>Working with PCIe functions</td>
<td>91</td>
</tr>
<tr>
<td>Defining PCIe functions</td>
<td>91</td>
</tr>
<tr>
<td>Changing PCIe functions</td>
<td>94</td>
</tr>
<tr>
<td>Deleting PCIe functions</td>
<td>95</td>
</tr>
</tbody>
</table>
### Chapter 8. How to work with I/O Autoconfiguration 167

- How to define autoconfiguration policies.................................................................167
- How to set keywords for autoconfiguration policies..................................................168
- How to change autoconfiguration policies during the autoconfiguration process........171
- How to define logical partition groups for autoconfiguration........................................172
- How to define OS groups for autoconfiguration.........................................................173
- How to perform automatic I/O configuration..............................................................175
- How to apply updates to the autoconfiguration proposals............................................177
- How to work in unattended mode.................................................................................181
- Prerequisites and operational considerations for using I/O Autoconfiguration...............181

### Chapter 9. How to activate or process configuration data 183

- Build a production IODF..............................................................................................184
- Build an IOCDS.............................................................................................................187
- Build processor cluster IOCDSs..................................................................................190
- Manage processor cluster IPL attributes......................................................................192
- Build an IOCP input data set........................................................................................193
  - How to build an IOCP data set..................................................................................194
  - IOCP enhancements.................................................................................................195
  - IOCP input data sets using extended migration.......................................................195
  - Using the IOCP data set as input for the CHPID Mapping Tool...............................197
- How to interact with the CHPID Mapping Tool..........................................................197
  - Process overview......................................................................................................198
  - How to insert or update PCHIDs...............................................................................198
- Create JES3 initialization stream checker data.............................................................199
- Build I/O configuration data.........................................................................................200
- Verify an I/O configuration..........................................................................................201
  - Verifying a configuration against the local system................................................201
  - Verifying a configuration against a system in the sysplex.......................................201
  - The I/O path list.......................................................................................................202
- Activate a configuration dynamically..........................................................................203
  - View active configuration.......................................................................................203
  - How to activate if hardware and software changes are allowed.............................204
  - How to activate if software-only changes are allowed.............................................206
- Activate a configuration sysplex-wide.........................................................................207
  - Displaying active sysplex members........................................................................207
  - Activate software configuration changes only.......................................................208
  - Activate software and hardware configuration changes.........................................210
  - Switch IOCDS for the next POR.............................................................................211
- Activate a configuration HMC-wide.............................................................................211
  - Available configuration activation actions..............................................................214
  - Establishing connectivity to remote systems.........................................................216
  - Prerequisites for working with CPC images.........................................................217
- Activate a configuration on systems not running HCD.............................................217
  - Activate hardware changes only (action code 'a')...................................................218
  - Recovery................................................................................................................219
  - View current active configuration (action code 'c')................................................219
  - Download active configuration (action code 'd').....................................................220
- Prerequisites................................................................................................................220
- Build a CONFIGxx member.........................................................................................220
- Process the Display M=CONFIG(xx) command..........................................................222
Switch IOCDS for next POR................................................................. 222
Switch IOCDS for processor without SNA address.............................. 223
Switch IOCDS for processors in a processor cluster with SNA address defined ........................................ 223
Switch IOCDS for systems in a sysplex.............................................. 223
Specify an IODF for IPL................................................................. 224
IODF processing at IPL................................................................. 224

Chapter 10. How to print and compare configuration data.................. 225
Print configuration reports............................................................. 225
Channel Subsystem Report.............................................................. 225
Switch Report.................................................................................... 226
Operating System Report............................................................... 226
CTC Connection Report................................................................. 226
I/O Path Report................................................................................. 226
Supported Hardware Report............................................................. 227
I/O Definition Reference................................................................. 227
How to print a textual report............................................................. 227
Create or view graphical configuration reports................................. 228
Prerequisites.................................................................................... 228
How to create a graphical configuration report................................. 229
Printing the output........................................................................... 231
Viewing the output........................................................................... 231
How to print list panels..................................................................... 234
HCD compare functions................................................................. 236
Compare IODFs............................................................................... 236
Compare CSS / operating system views......................................... 240
View and print the HCD activity log................................................ 240

Chapter 11. How to query supported hardware and installed UIMs.......... 241
Query supported processors........................................................... 241
Query supported switches............................................................... 243
Query supported control units....................................................... 244
Query supported devices.................................................................. 245
Query installed UIMs....................................................................... 246

Chapter 12. How to migrate existing input data sets............................ 249
Migration sequence......................................................................... 249
LPAR considerations........................................................................ 249
Preparing your input data sets for migration..................................... 249
Data requiring attention.................................................................. 250
Preparing additional input data sets for migration........................... 252
Migrating input data sets using the HCD dialog................................. 256
Step 1: Specify the work IODF......................................................... 256
Step 2: Migrate the input data sets.................................................. 256
Step 3: Analyze errors and correct the input data......................... 258
Step 4: Update configuration data.................................................. 258
Migrating input data sets using the batch utility............................... 258
Step 1: Create the work IODF......................................................... 258
Step 2: Migrate input data set........................................................ 259
Step 3: Analyze errors and correct the input data......................... 259
Step 4: Build production IODF....................................................... 259
Changing I/O configurations by editing data sets.............................. 259
Additional parameters and statements............................................ 260
Updating parts of a configuration by migrating input data sets......... 283
Possible actions on objects using the incremental update............... 283
How to invoke the incremental update........................................... 288
Resolving migration errors............................................................. 293
Appendix C. Problem determination for HCD...................................................... 401
  Identifying problems.......................................................................................... 401
    HCD abnormal termination.............................................................................. 402
    Error during IPL (Wait State Codes)............................................................... 404
    Problems with panels and function key assignment....................................... 405
    Problems with help information provided by HCD......................................... 405
    Problems with output of HCD textual reports................................................ 407
    Problems with output of HCD graphical reports............................................ 407
    Problems during initialization of HCD............................................................ 409
    Problems with UIMs....................................................................................... 410
    HCD internal problems.................................................................................. 411
    Problems with the Transmit Configuration Package action............................. 412
  Diagnostic information and tools....................................................................... 416
    HCD messages............................................................................................... 416
    HCD trace facility.......................................................................................... 417
    IODF dump..................................................................................................... 422
    Repair an IODF............................................................................................. 423
    MVS dumps and traces.................................................................................. 423
    IPCS reports................................................................................................. 424
  Searching problem reporting data bases and reporting problems..................... 424
  Sending an IODF to a different location........................................................... 424

Appendix D. HCD object management services.................................................. 427
  How to invoke the HOM services..................................................................... 427
    Data input and output areas............................................................................ 428
    Request block (HRB).................................................................................... 429
    Functions........................................................................................................ 430
    Example......................................................................................................... 431
    Return codes............................................................................................... 432
    Reason codes.............................................................................................. 432

Appendix E. Establishing the host communication............................................ 433
  Setting up TCP/IP definitions for z/OS............................................................. 433
  Controlling access to HCD services................................................................. 434
  Skeleton used to start the HCD agent.............................................................. 435
  Starting the HCD dispatcher as a started task................................................ 435
  Starting the HCD dispatcher as a batch job..................................................... 436
  Stopping the HCD dispatcher.......................................................................... 436
  Define an HCD profile.................................................................................... 436
  Allocate the HCD trace data set for remote HCD sessions.............................. 437
  Verifying TCP/IP host communication........................................................... 437
TCP/IP problem determination............................................................................................................... 437

Appendix F. Accessibility................................................................................................................... 439
  Accessibility features.......................................................................................................................... 439
  Consult assistive technologies......................................................................................................... 439
  Keyboard navigation of the user interface......................................................................................... 439
  Dotted decimal syntax diagrams...................................................................................................... 439

Notices........................................................................................................................................ 443
  Terms and conditions for product documentation......................................................................... 444
  IBM Online Privacy Statement.......................................................................................................... 445
  Policy for unsupported hardware..................................................................................................... 445
  Minimum supported hardware.......................................................................................................... 446

Trademarks....................................................................................................................................... 447

Programming interface information................................................................................................ 449

Glossary.............................................................................................................................................. 451

Index.............................................................................................................................................. 459
## List of Figures

1. Multiple data set configuration definition without HCD ................................................................. 2
2. Single data set configuration definition with HCD ............................................................................. 3
3. Configuration definition with HCD .................................................................................................... 5
4. Objects managed by HCD .................................................................................................................... 6
5. Building a production IODF and an IOCDS .......................................................................................... 6
6. Relationship of data sets used by HCD ................................................................................................. 7
7. Processor configuration with coupling facility implemented ............................................................. 9
8. Sample ISPF Master Application Menu ............................................................................................ 15
9. HCD Primary Task Selection panel .................................................................................................... 16
10. Profile Options and Policies ............................................................................................................... 18
11. HCD Profile Options ......................................................................................................................... 18
12. Example of an HCD Profile ............................................................................................................... 25
13. Create Work I/O Definition File ......................................................................................................... 29
14. IODF Distribution/Merge Process ..................................................................................................... 32
15. Maintain I/O Definition Files ............................................................................................................. 34
16. Create New I/O Definition File ........................................................................................................... 35
17. View IODF information ....................................................................................................................... 36
18. Define JCL for IODF Import ............................................................................................................... 37
19. Specify Target IODF and User Password ............................................................................................ 37
20. Upgrade an IODF ................................................................................................................................. 39
21. Create Work I/O Definition File ......................................................................................................... 40
22. Sample Configuration Package List — left panel ............................................................................... 40
23. Add Configuration Package ................................................................................................................ 41
24. Transmit Configuration Package ......................................................................................................... 43
25. Example of an Activity Log without automatic logging ...................................................................... 44
26. View Activity Log ................................................................................................................................. 45
27. Example of a window layout ............................................................................................................... 47
28. Layout of a data entry dialog ................................................................................................................ 48
29. Primary Task Selection panel ............................................................................................................. 49
30. Example of a single selection list ....................................................................................................... 50
31. Example of a Multiple Selection List ................................................................................................. 50
32. Action list with a context menu ......................................................................................................... 51
33. Action list with action codes .............................................................................................................. 52
34. Message List ....................................................................................................................................... 53
35. Explanation Message ........................................................................................................................ 53
36. Example of a Prompt Selection Panel ............................................................................................... 54
37. Using the Goto Action Bar Choice ..................................................................................................... 57
38. Operating System Configuration List as example of a Selection List ................................................. 57
39. Filter example ..................................................................................................................................... 60
40. Filter I/O Device List..........................................................................................................................61
41. Reduced I/O Device List (using a filter).................................................................................................61
42. Navigation map.......................................................................................................................................66
43. Operating System Configuration List....................................................................................................67
44. Add Operating System Configuration....................................................................................................68
45. EDT List..................................................................................................................................................70
46. Add EDT..................................................................................................................................................70
47. Work with esoterics.................................................................................................................................72
48. Add Esoteric..........................................................................................................................................72
49. Assign/Unassigned devices to esoteric..................................................................................................73
50. Define, modify, or view configuration data............................................................................................74
51. Add a processor......................................................................................................................................75
52. Available support levels..........................................................................................................................75
53. Change Processor Definition..................................................................................................................76
54. Update Channel Path Identifiers............................................................................................................77
55. Repeat Processor...................................................................................................................................77
56. Copy to Channel Subsystem....................................................................................................................78
57. Add Channel Subsystem..........................................................................................................................78
58. Confirm Priming Processor List...............................................................................................................79
59. Channel Subsystem List..........................................................................................................................81
60. Add Channel Subsystem..........................................................................................................................82
61. Repeat Channel Subsystem.....................................................................................................................82
62. Specify New Partition Names...................................................................................................................83
63. Add Channel Subsystem..........................................................................................................................83
64. CTC Connection Update List..................................................................................................................84
65. Copy to Processor..................................................................................................................................84
66. Change Channel Subsystem....................................................................................................................85
67. Partition List..........................................................................................................................................86
68. Add Partition..........................................................................................................................................86
69. Transfer Partition Configuration...............................................................................................................89
70. Confirm Delete Partition...........................................................................................................................90
71. PCIe Function List..................................................................................................................................92
72. PCIe Function List..................................................................................................................................92
73. Add PCIe Function..................................................................................................................................93
74. Add/Modify Physical Network IDs........................................................................................................94
75. Define Access List..................................................................................................................................94
76. Channel Path List....................................................................................................................................96
77. Add Channel Path....................................................................................................................................97
78. Define Access List....................................................................................................................................97
79. Define Access List....................................................................................................................................98
80. Define Candidate List...............................................................................................................................98
81. Channel Path/Partition Matrix.................................................................................................................99
82. Update CHPID Settings............................................................................................................................100
83. Specify IQD Channel Parameters.................................................................101
84. Allow for more than 160 TCP/IP stacks.........................................................102
85. Specify HCA Attributes.................................................................................102
86. Specify Coupling PCHID/Port Attributes....................................................102
87. CF Channel Path Connectivity List..............................................................104
88. Connect to CF Channel Path.........................................................................105
89. Add CF Control Unit and Devices.................................................................106
90. Channel Path List..........................................................................................106
91. Confirm Copy Control Unit and Device Attachments......................................109
92. Aggregate CHPID........................................................................................110
93. Select Control Units to be Aggregated........................................................111
94. Control Unit List..........................................................................................112
95. Add Control Unit.........................................................................................113
96. Select Processor / Control Unit (1)..............................................................114
97. Select Processor / Control Unit (2)..............................................................114
98. Add Control Unit.........................................................................................115
99. Change Channel Path Link Addresses........................................................116
100. Modify Affected Control Unit Parameters..................................................117
101. Modify Device Parameters........................................................................117
102. Confirming Priming Control Unit Data List................................................118
103. I/O Device List with device groups............................................................120
104. I/O Device List with single devices..............................................................120
105. Add Device................................................................................................121
106. Device / Processor Definition....................................................................122
107. Define Device / Processor........................................................................123
108. Define Device Candidate List.....................................................................124
109. Define Device to Operating System Configuration......................................125
110. Specify Subchannel Set ID.........................................................................125
111. Define Device Parameters / Features.........................................................125
112. Assign/Unassigned Device to Esoteric.......................................................126
113. Change Device Definition.........................................................................126
114. Change Device Group / Operating System Configuration................................128
115. Define Device Group Parameters / Features...............................................128
116. Attribute Group Change............................................................................129
117. Device Type Group Change.......................................................................129
118. Specify Subchannel Set ID.........................................................................130
119. Eligible Channel Subsystems......................................................................130
120. Eligible Operating System Configurations..................................................130
121. Define Device to Operating System Configuration......................................131
122. Device Parameters / Features Profile........................................................132
123. I/O Device List..........................................................................................132
124. Confirm Priming Device Data List.............................................................133
125. NIP Console List........................................................................................134
255. Partial Migration of an IOCP Input Data Set. A new partition is added. Control units and devices are mapped. ................................................................. 288
256. Partial migration of an IOCP input data set. The whole logical control unit (control unit 100 and 200 and connected devices) are replaced by control unit 100 and its connected devices........ 289
257. Partial migration of an IOCP input data set. CHPIDs are defined as in the IOCP input data set....... 290
258. Partial migration of an IOCP input data set. Control unit defined for two processors is migrated to the first processor................................................................. 291
259. Partial migration of an IOCP input data set. Control unit defined for two processors is migrated to the second processor......................................................... 292
260. Partial migration of an MVSCP input data set.............................................................................. 293
261. Message List............................................................................................................................. 294
262. Message List containing an Assembler message......................................................................... 294
263. Example: HCD Migration Log....................................................................................................... 296
264. Build IOCDS job.......................................................................................................................... 309
265. Build IOCP input data set.............................................................................................................. 309
266. Activate IODF job......................................................................................................................... 310
267. Recommended IODF catalog structure.......................................................................................... 337
268. Define a VM operating system....................................................................................................... 339
269. Define Device Parameters/Features for VM Device.................................................................... 339
270. Primary Task Selection panel.......................................................................................................... 341
271. HCD - Edit profile options and policies - Option 0....................................................................... 341
272. HCD - Define, Modify, or View Configuration Data - Option 1...................................................... 342
273. HCD - Define Operating System - Option 1.1............................................................................... 342
274. HCD - Define Switch - Option 1.2............................................................................................... 343
275. HCD - Define Processor and Channel Path - Option 1.3.............................................................. 343
276. HCD - Define Control Unit - Option 1.4....................................................................................... 344
277. HCD - Define I/O Device - Option 1.5........................................................................................... 344
278. HCD - Primary Tasks - Options 2 - 7............................................................................................ 345
279. HCD - Generic Action Bar Options.................................................................................................. 346
280. HCD - Generic Action Bar Options................................................................................................ 346
281. Processor Summary Report............................................................................................................ 347
282. Channel Subsystem Summary Report............................................................................................ 348
283. PCIe Function Summary Report.................................................................................................... 349
284. CHID Summary Report.................................................................................................................. 350
285. Partition Report............................................................................................................................ 350
286. IOCDS Report............................................................................................................................... 351
287. Channel Path Summary Report..................................................................................................... 352
288. Channel Path Detail Report............................................................................................................ 354
289. CF Channel Path Connectivity Report............................................................................................ 355
290. Control Unit Summary Report....................................................................................................... 356
291. Control Unit Detail Report............................................................................................................. 357
292. Device Summary Report............................................................................................................... 358
293. Device Detail Report...................................................................................................................... 360
294. Switch Summary Report................................................................................................................ 360
## List of Tables

1. Syntax examples..................................................................................................................................... xxviii
2. Batch Jobs Used by the HCD Dialog........................................................................................................... 26
3. Size considerations when upgrading a back-level IODF.............................................................................. 39
4. Coexistence Considerations for IODFs........................................................................................................ 46
5. Online Help Information............................................................................................................................ 55
6. Result of the Transfer (Move) Partition Configs Action................................................................................. 89
7. Operating System Syntax............................................................................................................................. 263
8. NIP consoles Syntax.................................................................................................................................... 263
9. EDT Syntax............................................................................................................................................... 264
10. Esoteric Syntax....................................................................................................................................... 265
11. Generic Syntax....................................................................................................................................... 265
12. Switch Syntax....................................................................................................................................... 266
13. Port Syntax.......................................................................................................................................... 267
14. Switch Configuration Syntax....................................................................................................................... 268
15. Port Configuration Syntax.......................................................................................................................... 269
16. Processor Syntax.................................................................................................................................... 270
17. Channel subsystem and partition Syntax..................................................................................................... 271
18. PCIe Function Syntax................................................................................................................................ 273
19. Channel Path Syntax.................................................................................................................................. 275
20. Control Unit Syntax.................................................................................................................................. 278
21. Device Syntax....................................................................................................................................... 279
22. Actions on IODF Objects............................................................................................................................ 283
23. Standard DD names Used by HCD.............................................................................................................. 329
24. CBD.CPC.IPLPARM access authority and HCD IPL attribute management functions............................. 332
25. CBD.CPC.IOCDs access authority and HCD IOCDS management functions.................................................. 333
26. Description of the columns in the Control Unit Detail Report.................................................................... 357
27. Symptoms of system problems................................................................................................................ 401
28. Search Argument.................................................................................................................................. 403
29. Problem Data....................................................................................................................................... 403
30. Search Argument.................................................................................................................................. 404
31. Problem Data....................................................................................................................................... 404
32. Search Argument.................................................................................................................................. 404
33. Problem Data....................................................................................................................................... 405
34. Search Argument.................................................................................................................................. 405
35. Problem Data....................................................................................................................................... 405
36. Search Argument.................................................................................................................................. 406
37. Search Argument.................................................................................................................................. 406
38. Problem Data....................................................................................................................................... 406
39. Problem Data....................................................................................................................................... 407
About this document

This document explains how to use Hardware Configuration Definition (HCD) to accomplish the following:

• Define new hardware configurations
• Modify existing hardware configurations
• View existing hardware configurations
• Activate configurations
• Query supported hardware
• Maintain IODFs
• Compare two IODFs
• Compare an IODF with an actual configuration
• Print reports of configurations
• Create graphical reports of a configuration
• Migrate existing configuration data

Note

Unless otherwise noted, the term MVS as used in this document refers collectively to the older MVS operating system as well as to its successors OS/390 and z/OS, in which MVS is one of the basic components. For purposes of this document, MVS used alone and without reference to a specific release is to be understood as the generic operating system type supported by HCD.

Who this document is for

This document is for the person who is responsible for defining the hardware configuration for a z/OS system. It is assumed that:

• The person has a basic knowledge of z/OS, and hardware configuration.
• Configuration planning has been completed before HCD is used to enter definition data. For information on configuration planning, refer to z/OS HCD Planning.

For the person responsible for problem determination, this document also explains what to do if a problem arises with HCD.

This information is for system programmers and system operators.

Related information

Please see the z/OS Information Roadmap for an overview of the documentation associated with z/OS.

To view, search, and print z/OS publications, go to the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

Softcopy documentation is available as online collection kit that is available in compressed format for download from the IBM Publications Center (www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss).

Also visit the HCD and HCM home page (www.ibm.com/systems/z/os/zos/features/hcm), which provides information concerning product updates, newsletters, conferences, and more.
How to use this document

Before you start to use HCD, you should read

- Chapter 1, “Hardware configuration definition - What is it?” on page 1 and
- Chapter 5, “How to use the dialog,” on page 47.

These topics provide information about the general concepts and facilities of HCD.

If you want to use HCD to define a new configuration, you should read

- Chapter 5, “How to use the dialog,” on page 47,
- Chapter 6, “How to define, modify, or view a configuration,” on page 63, and
- Chapter 7, “How to work with switches,” on page 145.

Chapter 5, “How to use the dialog,” on page 47 explains how to use the HCD panels, get online help information, enter data and select items such as tasks, objects and actions. Chapter 6, “How to define, modify, or view a configuration,” on page 63 and Chapter 7, “How to work with switches,” on page 145 explain how to define operating system (OS) configurations, processors, control units, I/O devices, and switches.

How this document is organized

Chapter 1, “Hardware configuration definition - What is it?” on page 1 explains how HCD fits into the context of hardware configurations and systems management. It also explains the environment in which HCD is used.

Chapter 2, “Migration,” on page 11 discusses how to move from a previous HCD release to HCD under z/OS. It also refers to other sections in this document dealing with migration and conversion tasks.

Chapter 3, “How to set up, customize and start HCD,” on page 13 provides information on how to install, customize, and start HCD, and how to set up an HCD installation for the first time in z/OS.

Chapter 4, “How to work with I/O definition files (IODF),” on page 27 explains how to work with I/O definition files (IODFs), for example, creating, changing, viewing, and deleting them. It also explains how to use configuration packages to create subset IODFs for distribution.

Chapter 5, “How to use the dialog,” on page 47 explains the general facilities of the HCD dialog, that is panels, online help, navigation, making selections, and entering data.

Chapter 6, “How to define, modify, or view a configuration,” on page 63 explains the navigation through the HCD dialog and how to define, change, copy, delete, and view operating system configurations, processors, control units, and devices. It also explains how to prime processor, control unit, and device data.

Chapter 7, “How to work with switches,” on page 145 includes basic information about switches and explains how to define, change, prime, and delete switches, how to define and prime switch connections (ports), and how to work with switch configurations. It also describes how to migrate, activate, and save switch configuration data.

Chapter 8, “How to work with I/O Autoconfiguration,” on page 167 explains how to perform automatic discovery and definition of switched FICON connected DASDs and tape control units and devices. Also, it describes how to specify options and policies how HCD should process the automatic I/O configuration.

Chapter 9, “How to activate or process configuration data,” on page 183 explains how to make a configuration available for use by the system. It further explains how to compare a configuration defined in an IODF with the configuration sensed on the system. It includes information on activating a configuration dynamically, activating a configuration sysplex-wide, and on remote IOCDS management functions.

Chapter 10, “How to print and compare configuration data,” on page 225 explains how to build textual and graphical reports about channel subsystem, switch, and operating system configuration, I/O paths,
and CTC definitions and how to compare IODFs. It also explains how to print the data that is currently displayed on a list panel.

Chapter 11, “How to query supported hardware and installed UIMs,” on page 241 explains how to use HCD to view system data.

Chapter 12, “How to migrate existing input data sets,” on page 249 contains information for migrating existing IOCP/MVSCP/HCPRIO definitions and explains the steps in the migration process.

Chapter 13, “How to invoke HCD batch utility functions,” on page 299 describes the HCD programming interface.

Chapter 14, “Security and other considerations,” on page 331 provides information on various HCD-related topics.

Appendix A, “How to navigate through the dialog,” on page 341 illustrates the flow from the HCD main panel options and the various actions that can be taken from each option.

Appendix B, “Configuration reports,” on page 347 contains examples of the various reports that can be printed by using HCD.

Appendix C, “Problem determination for HCD,” on page 401 explains what to do if problems occur with HCD.

Appendix D, “HCD object management services,” on page 427 explains how to use the HCD application programming interface to retrieve configuration data, such as switch data, device type, or control unit type, from the IODF.

Appendix E, “Establishing the host communication,” on page 433 describes how to set up TCP/IP definitions for z/OS target systems as a prerequisite for working with CPC images, or how to link the host and the workstation if you want to work with HCM.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram symbols, items that may be contained within the diagrams (keywords, variables, delimiters, operators, fragment references, operands) and provides syntax examples that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that comprise a command statement. They are read from left to right and from top to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams are provided in dotted decimal format.

Symbols

The following symbols may be displayed in syntax diagrams:

Symbol

Definition

 Indicates the beginning of the syntax diagram.

 Indicates that the syntax diagram is continued to the next line.

 Indicates that the syntax is continued from the previous line.

 Indicates the end of the syntax diagram.
**Syntax items**

Syntax diagrams contain many different items. Syntax items include:

- **Keywords** - a command name or any other literal information.
- **Variables** - variables are italicized, appear in lowercase, and represent the name of values you can supply.
- **Delimiters** - delimiters indicate the start or end of keywords, variables, or operators. For example, a left parenthesis is a delimiter.
- **Operators** - operators include add (+), subtract (-), multiply (*), divide (/), equal (=), and other mathematical operations that may need to be performed.
- **Fragment references** - a part of a syntax diagram, separated from the diagram to show greater detail.
- **Separators** - a separator separates keywords, variables or operators. For example, a comma (,) is a separator.

**Note:** If a syntax diagram shows a character that is not alphanumeric (for example, parentheses, periods, commas, equal signs, a blank space), enter the character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or default. Fragments, separators, and delimiters may be displayed as required or optional.

<table>
<thead>
<tr>
<th>Item type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Required items are displayed on the main path of the horizontal line.</td>
</tr>
<tr>
<td>Optional</td>
<td>Optional items are displayed below the main path of the horizontal line.</td>
</tr>
<tr>
<td>Default</td>
<td>Default items are displayed above the main path of the horizontal line.</td>
</tr>
</tbody>
</table>

**Syntax examples**

The following table provides syntax examples.

<table>
<thead>
<tr>
<th>Item</th>
<th>Syntax example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required item.</td>
<td>Required items appear on the main path of the horizontal line. You must specify these items.</td>
</tr>
<tr>
<td>Required choice.</td>
<td>A required choice (two or more items) appears in a vertical stack on the main path of the horizontal line. You must choose one of the items in the stack.</td>
</tr>
<tr>
<td>Optional item.</td>
<td>Optional items appear below the main path of the horizontal line.</td>
</tr>
<tr>
<td>Optional choice.</td>
<td>An optional choice (two or more items) appears in a vertical stack below the main path of the horizontal line. You may choose one of the items in the stack.</td>
</tr>
<tr>
<td>Item</td>
<td>Syntax example</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Default</td>
<td>Default items appear above the main path of the horizontal line. The following example displays a default with optional items.</td>
</tr>
<tr>
<td></td>
<td><img src="default_choice1" alt="Diagram" /></td>
</tr>
<tr>
<td>Variable</td>
<td>Variables appear in lowercase italics. They represent names or values.</td>
</tr>
<tr>
<td></td>
<td><img src="variable" alt="Diagram" /></td>
</tr>
<tr>
<td>Repeatable item</td>
<td>An arrow returning to the left above the main path of the horizontal line indicates an item that can be repeated. A character within the arrow means you must separate repeated items with that character. An arrow returning to the left above a group of repeatable items indicates that one of the items can be selected, or a single item can be repeated.</td>
</tr>
<tr>
<td></td>
<td><img src="repeatable_item" alt="Diagram" /></td>
</tr>
<tr>
<td>Fragment</td>
<td>The fragment symbol indicates that a labelled group is described below the main syntax diagram. Syntax is occasionally broken into fragments if the inclusion of the fragment would overly complicate the main syntax diagram.</td>
</tr>
<tr>
<td></td>
<td><img src="fragment" alt="Diagram" /></td>
</tr>
</tbody>
</table>
How to send your comments to IBM

We invite you to submit comments about the z/OS® product documentation. Your valuable feedback helps to ensure accurate and high-quality information.

**Important:** If your comment regards a technical question or problem, see instead “If you have a technical problem” on page xxxi.

Submit your feedback by using the appropriate method for your type of comment or question:

**Feedback on z/OS function**
If your comment or question is about z/OS itself, submit a request through the IBM RFE Community (www.ibm.com/developerworks/rfe/).

**Feedback on IBM® Knowledge Center function**
If your comment or question is about the IBM Knowledge Center functionality, for example search capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center Support at ibmkc@us.ibm.com.

**Feedback on the z/OS product documentation and content**
If your comment is about the information that is provided in the z/OS product documentation library, send a detailed email to mhvr nfs@us.ibm.com. We welcome any feedback that you have, including comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

- Your name, company/university/institution name, and email address
- The following deliverable title and order number: z/OS HCD User's Guide, SC34-2669-30
- The section title of the specific information to which your comment relates
- The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the issues that you submit.

**If you have a technical problem**

If you have a technical problem or question, do not use the feedback methods that are provided for sending documentation comments. Instead, take one or more of the following actions:

- Go to the IBM Support Portal (support.ibm.com).
- Contact your IBM service representative.
- Call IBM technical support.
Summary of changes for z/OS Version 2 Release 3 (V2R3) as updated November 2018

The following changes are made for z/OS Version 2 Release 3 (V2R3) as updated November 2018.

Dynamic activate for stand alone coupling facilities

You can use a new dynamic activate function of HCD to remotely activate hardware only changes on processors not running an operating system that supports HCD. For example: a processor running only coupling facilities.

Hardware Support

Support of new PCIe function - NVMe:

The processor supports a new PCIe function type called NVMe which provides high bandwidth and low latency access for non-volatile memory.

Processor support:

HCD supports the IBM z14 processor family:

- processor types 3906-M01, -M02, -M03, -M04, -M05 (support level H180913)
- processor types 3906-LM1, -LM2, -LM3, -LM4, -LM5 (support level H180913)
- processor types 3907-ZR1 (support level H180913)
- processor types 3907-LR1 (support level H180913)

Summary of changes for z/OS Version 2 Release 3 (V2R3)

The following changes are made for z/OS Version 2 Release 3 (V2R3).

z/OS V2R2 was the last release with LDAP back end support for HCD and therefore the LDAP chapter has been removed from the HCD User's Guide.

Hardware Support

Support of new PCIe functions:

1. The processor supports a new PCIe function type called zHyperLink (HYL). They require a new PCIe function attribute for identifying a port on the adapter to which the function is related.

2. The processor supports a new PCIe function type called RoCE-2 (ROC2). Similar to the existing RoCE adapter as it is a network adapter that supports a port attribute. Each port connects to one network and there can only be one PNETID being defined for that adapter.

New chpid type - CL5:

A new coupling link for extended distances is supported as a new chpid type CL5. The new adapter card (based on the RoCE adapter) is a mixture of a HCA (host communication adapter) and a 'normal' chpid. It is defined by a combination of PCHID and PORT attributes.

Processor support:

HCD supports the IBM processor family:
Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated September 2016

The following changes are made to z/OS Version 2 Release 2 (V2R2).

**Hardware Support**

**PCIe UID support:**
To provide the ability to enable/disable UID-checking for a logical partition a new attribute (UID) for PCIe functions is introduced and works in combination with the new partition attribute (uniqueness flag). A function has a unique UID if there is no other PCIe function accessible by the same partition that has the same UID defined.

**Processor support:**
HCD supports the IBM z13 processor family with UID support:
- processor types 2964-N30, -N63, -N96, -NC9, -NE1 (new support level H160930)
- processor types 2964-L30, -L63, -L96, -LC9, -LE1 (supported level H160930)
- processor types 2965-N10 and N20 (support level H160930)
- processor types 2965-L10 and L20 (support level H160930)

Summary of changes for z/OS Version 2 Release 2 (V2R2) as updated March 2016

The following changes are made to z/OS Version 2 Release 2 (V2R2).

**Hardware Support**

**Support of new PCIe functions:**
Two new PCIe function types are supported - ISM and RCE.

1. An ISM (Internal Shared Memory) network adapter allows a virtual PCIe function requiring a unique VCHID with up to 255 virtual function IDs. The ISM network adapter allows one PNETID to be specified which has to be identical for all virtual functions of a VCHID.
2. An RCE (Regional Crypto Enablement) function is used for all IBM approved vendor crypto adapters.

**PCIe enhancement:**
The definition of PCIe functions for virtual functions of an adapter is now easier because 'Add PCIe function' offers a new field 'Number of virtual function' which helps to define multiple functions for one CHID at a time by incrementing the Virtual Function ID.

**Validation enhancement:**
At Build production time it is checked if for those PCIe functions using PNETIDs a channel path exists which is accessing at least one identical LPAR and has the same PNETID defined. Chpids and PCIe functions requiring a VCHID (currently CHPIDs of type IQD and functions of type ISM) now require a processor unique PNETID.

**Processor support:**
HCD supports the IBM z13 processor family:

- processor types 2964-N30, -N63, -N96, -NC9, -NE1 (new support level H160310)
- processor types 2964-L30, -L63, -L96, -LC9, -LE1 (support level H160310)
- processor types 2965-N10 and N20 (support level H160310)
- processor types 2965-L10 and L20 (support level H160310).

**Summary of changes for z/OS Version 2 Release 2 (V2R2)**

The following changes are made for z/OS Version 2 Release 2 (V2R2).

z/OS V2R2 is planned to be the last release to include the LDAP back-end support for HCD. Users will no longer be able to use the LDAP interface to modify the content of an HCD IODF.

For a description of the new and changed support for V2R2, see “Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated February, 2015” on page xxxiv.

**Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated February, 2015**

**New Hardware Support**

**Support 6 Channel Subsystems and 4 Subchannel Sets**
For the new processor type the maximum number of channel subsystems is extended to 6 and the number of subchannel sets is increased. See “Defining channel subsystems” on page 81 for more information.

**PCle function enhancements**
With processor IBM z13® the PCle functions of type ROCE now require a virtual number definition and allow only 2 PNET ID for its external physical network assignments. See “Working with PCle functions” on page 91 and “Defining PCle functions” on page 91 for more information.

**VCHID support for internal channels**
For internal channel paths, like IQD, there does not exist a physical correspondence to hardware, hence there does not exist a PCHID value. Instead a unique virtual channel ID (VCHID) is assigned. A VCHID value can arbitrarily be selected out of the supported range for valid PCHID values. See “PCle function” on page 272 for more information.

**New CS5 chpid type**
A new CHPID type CS5 based on PCle technology is supported. See “Defining or editing channels using Host Communication Adapters” on page 102 for more information.

**Processor support**
HCD supports the IBM z13 processor family (processor types 2964-N30, -N63, -N96, -NC9, -NE1).

**Summary of changes for z/OS Version 2 Release 1 (V2R1)**

**Enhancements of the I/O Autoconfiguration function**
HCD provides the following enhancements of the I/O Autoconfiguration function that has been introduced in z/OS V1R12:

- In addition to switched FICON connected controllers, I/O Autoconfiguration can now discover FICON directly attached controllers and devices and proposes point-to-point connection paths if available.
- I/O Autoconfiguration supports the inclusion or exclusion of specific switches or CHPIDIs into the discovery and proposal process, that users can explicitly specify with the invocation of an I/O function.
Autoconfiguration request. For this purpose, HCD introduces four new autoconfiguration policy keywords:

- AUTO_CHPID_INCLUDE
- AUTO_CHPID_EXCLUDE
- AUTO_SWAD_INCLUDE
- AUTO_SWAD_EXCLUDE

- The autoconfiguration policy keyword AUTO_SS_DEVNUM_SCHEME accepts a new value NONE. This value bypasses control unit and device number proposals by HCD and lets the user manually apply the numbers for detected objects.
- I/O Autoconfiguration allows discovery by controller serial number and filters the discovered controllers accordingly.
- HCD can process an I/O Autoconfiguration request that is partially directed against unavailable systems of an LPAR group or a sysplex, or against systems that are not capable to support I/O Autoconfiguration. Users can specify that the request applies to appropriate systems only, and that unavailable/uncapable systems are tolerated but ignored.
- HCD allows users to change certain I/O Autoconfiguration policies between two subsequent controller discoveries without the need to make a new fabric discovery. This enables I/O Autoconfiguration to perform each new controller discovery with changed policies.
- HCD provides the SAVE command on the I/O Autoconfiguration list panels (Discovered New or Changed Controller List, Proposed Control Unit List, and Proposed Control Unit / Device List) to allow users to save the fabric and controller discovery results and proposals in a data set.

HMC-wide activate

You can use a new HMC-wide activate function of HCD to remotely distribute and activate a new production IODF from a single managing z/OS system on all target systems of those CPCs that are configured in the Hardware Management Console (HMC) and that are defined in a specified TCP/IP connection table.

Launch this function from the Processor Cluster List using action Work with CPC images introduced in z/OS V1R13. The upcoming CPC Image List now displays the activation status of the connected z/OS and z/VM systems and provides new actions to activate the accessed production IODF for hardware and/or software changes at the selected z/OS or z/VM system. The new production IODF is sent to the target system if necessary. You can remotely issue any operational commands that are required for the activation. The messages resulting from the activation or from processing system commands are displayed in a message list.

For the HMC-wide activate function on remote z/OS and z/VM systems, HCD to HCD communication needs to be set-up. For this communication, the HCD agent is used. In previous releases, the HCD agent was only required when using HCM. The description of this set-up is now provided as a copy and adaption from the z/OS and z/VM HCM User’s Guide in Appendix E, “Establishing the host communication,” on page 433.

Support of PCIe functions

Peripheral Component Interconnect Express (PCIe) adapters offer new functionality to systems running on IBM zEnterprise EC12 and BC12 (zEC12 and zBC12) processors in order to connect, for example, to an IBM zEnterprise BladeCenter Extension (zBX). Therefore, HCD introduces a new dialog where users can define PCIe functions, assign them to LPARs, and activate them via IOCP or dynamically.

In addition, HCD provides the following new reports:

- The PCIe Function Summary Report displays the partitions in the access and candidate lists which are entitled to access the available PCIe functions.
- The PCIe Function Compare Report shows the changes of PCIe functions between processors of two IODFs.
In addition, HCD supports the new I/O configuration statement FUNCTION for defining and configuring PCIe functions.

**Validation enhancements**

HCD implements several new validation checks to help users to avoid unintended results:

**New warning message when a CF coupling connection changes due to connectivity updates**

HCD issues a new warning message CBDG422I, when users add or delete a CSS to/from a coupling CHPID that involves a change of the coupling facility connection, affecting the definition of the connected processor. This message informs the user about the change and a potentially required dynamic activation of the target processor.

**Warning message CBDA845I now also issued for ACTIVATE SOFT system command**

For users of the HCD *Activate* dialogs, if required, HCD issues warning message CBDA845I when users specify an ACTIVATE software-only request without hardware validation, because this will not process involved changes to coupling facility control units and devices for the software. This message is now also issued, if users specify an ACTIVATE SOFT system command without hardware validation.

**Enhanced CF Channel Path Connectivity List**

A new column in the *CF Channel Path Connectivity List* shows for both the source and destination channel path either the physical channel identifier (PCHID) to which the channel path is assigned or its host communication adapter ID and port number.

**OS group change action available for device groups**

The *OS group change* action up to now has been available from the *I/O Device List* showing single devices only. Starting with this release, this action is also available from the *I/O Device List* showing device groups.

**HCD batch enhancements**

HCD provides the following new batch utility features:

**Filter parameters for graphical reports created via batch utility**

As with the HCD dialog for creating graphical reports, you now can specify filter parameters when creating graphical reports with the batch utility function.

**ACTIVATE command now available as an HCD batch command**

Users can now issue the ACTIVATE command as an HCD batch command. The syntax is the same as described in *z/OS MVS System Commands*.

**New profile options**

There are the following new keywords that you can specify in the HCD profile for the following purposes:

- **Unconditional generation of D/R site OS configurations**: Use profile option UNCOND_GENERATE_DROS to regenerate D/R site OS configurations whenever a new production IODF is built, independent from whether the configurations have been previously modified or not.

- **Specify remote call connection table**: Use profile option CONNECTION_TABLE to specify the name of a data set that contains the connection table for establishing connectivity to the remote systems while working with CPC images.

- **Enable remote call logging**: Use profile option RCALL_LOG to activate logging of remote calls into a data set while working with CPC images.

- **Set initial remote call timeout value**: Use profile option RCALL_TIMEOUT to set the timeout value for the initial connection to a remote system when working with CPC images.
CHID Summary Report

The CHID Summary Report as part of the CSS Summary Report lists all defined channel paths and PCIe functions grouped by their defined PCHID values or, as applicable, by their HCA adapter or port IDs.

Verify a configuration by means of I/O Autoconfiguration (zDAC)

With HCD you can now verify the active or target configuration by means of z/OS discovery and I/O Autoconfiguration (zDAC), if Tivoli System Automation (TSA) I/O operations is not installed or not working. This is possible for a processor supporting I/O Autoconfiguration and for a system in the local sysplex, which is capable for dynamic activates. The verification is limited to FICON attached storage devices.

When generating the I/O path report, HCD includes information about single point of failures (SPOFs) into the sensed data if the report is produced for the local system. This is done when getting the report via (TSA) I/O operations as well as via zDAC.

Hardware support

HCD supports the IBM zEnterprise EC12 and BC12 (zEC12 and zBC12) processor family (processor types 2827-H20, -H43, -H66, -H89, -HA1 and 2828-H06, -H13).
Chapter 1. Hardware configuration definition - What is it?

Overview
This topic explains:
• What HCD is and how it differs from MVSCP and IOCP
• What HCD offers you
• How HCD works
• The environment in which HCD operates

What HCD is and how it differs from MVSCP and IOCP

The channel subsystem (CSS) and the IBM z/OS operating system need to know what hardware resources are available in the computer system and how these resources are connected. This information is called hardware configuration.

Hardware Configuration Definition (HCD) provides an interactive interface that allows you to define the hardware configuration for both a processor’s channel subsystems and the operating system running on the processor.

Before HCD was available, you had to use IOCP to define the hardware to the channel subsystem and the MVS Configuration Program (MVSCP) to define the hardware to the MVS operating system. The following sections explain in what way HCD differs from MVSCP and IOCP when defining, validating and reconfiguring configuration data.

Definition of configuration data
This topic informs about the differences between MVSCP and IOCP on the one hand and HCD on the other hand when performing the task of defining configuration data.

How MVSCP and IOCP worked
With MVSCP and IOCP you were limited to defining one processor or operating system per input data set. This meant that you needed more than one data set when you used MVSCP or IOCP.

Figure 1 on page 2 illustrates the definition process using several sources for writing and modifying the hardware configuration using IOCP and MVSCP data sets.
Figure 1: Multiple data set configuration definition without HCD

What HCD does

The configuration you define with HCD may consist of multiple processors with multiple channel subsystems, each containing multiple partitions. HCD stores the entire configuration data in a central repository, the input/output definition file (IODF). The IODF as single source for all hardware and software definitions for a multi-processor system eliminates the need to maintain several independent MVSCP or IOCP data sets. That means that you enter the information only once using an interactive dialog.

Figure 2 on page 3 illustrates the definition process using one source for writing and modifying configuration data in the IODF.
Validation of configuration data

How MVSCP and IOCP worked

MVSCP and IOCP were separately running independent programs. Prior to IPL it was not checked whether the MVSCP output matched the configuration in the I/O configuration data set (IOCDS). Even if the definitions of both programs were not identical, it was possible for an IPL to be successful if the devices needed to start the system were included in both programs. Therefore, discrepancies would be detected only after the system had been running for some time. Such a discovery could have happened at a very inconvenient moment.

What HCD does

The data entered with HCD is validated and checked for consistency and completeness. Because the check is performed when the data is defined, rather than when the device is accessed, inconsistencies can be corrected right away, and unplanned system outages resulting from inconsistent definitions can be avoided.

If you include ESCON or FICON Director definitions in the IODF, HCD also validates the switch port usage and connection information for all devices and channels connected to each of the directors in the configuration. In addition, HCD validates the complete path from the processor through the switch to the control unit and device.

Planned I/O paths, as defined in an IODF, can be checked against the active configuration on the system. Discrepancies are indicated and can be evaluated before and after the IODF is activated.

Reconfiguration of configuration data

How MVSCP and IOCP worked

The IOCP updated the input/output configuration data set (IOCDS) that resided in the hardware support processor. This information was loaded into the hardware system area during power-on reset (POR). If the configuration was changed, it was necessary to write a new IOCDS using IOCP and to load it into the hardware system area with a POR.
MVSCP created the control information (such as UCBs, EDTs, and NIPCONs) needed by MVS to describe the hardware configuration and stored this information in the SYS1.NUCLEUS data set. The nucleus information was loaded at IPL time into storage. If a change was made to the I/O configuration, it was necessary to IPL to make the information available to MVS.

What HCD does

Dynamic reconfiguration management is the ability to select a new I/O configuration during normal processing and without the need to perform a power on reset (POR) of the hardware or an initial program load (IPL) of the z/OS operating system.

The ability of HCD to provide equivalent hardware and software I/O definitions and to detect when they are not in sync is essential for dynamic I/O reconfiguration management. HCD compares both the old and the new configuration and informs the hardware and software about the differences. You may add, delete, and modify definitions for channel paths, control units and I/O devices without having to perform a POR or an IPL.

What HCD offers you

This section summarizes what you can do with HCD and how you can work with HCD.

**Single Point of Control:** With HCD you have a single source, the IODF, for your configuration data. This means that hardware and software definitions as well as ESCON or FICON director definitions can be done from HCD and can be activated with the data stored in the IODF.

**Increased System Availability:** HCD checks the configuration data when it is entered and therefore reduces the chance of unplanned system outages due to inconsistent definitions.

**Changing Hardware Definitions Dynamically:** HCD offers dynamic I/O reconfiguration management. This function allows you to change your hardware and software definitions on the fly - you can add devices, or change devices, channel paths, and control units, without performing a POR or an IPL. You may also perform software-only changes, even if the hardware is not installed.

**Sysplex Wide Activate:** HCD offers you a single point of control for systems in a sysplex. You can dynamically activate the hardware and software configuration changes for systems defined in a sysplex.

**Migration Support:** HCD offers a migration function that allows you to migrate your current configuration data from IOCP, MVSCP, and HCPRIO data sets into HCD. Migration support also allows you to make bulk changes to the configuration using an editor on the IOCP/MVSCP/HCPRIO macro statements.

**Accurate Configuration Documentation:** The actual configuration definitions for one or more processors in the IODF are the basis for the reports you can produce with HCD. This means that the reports are accurate and reflect the up-to-date definition of your configuration.

HCD provides a number of textual reports and graphical reports, that can be either printed or displayed. The printed output can be used for documentation purposes providing the base for further configuration planning tasks. The display function allows you to get a quick overview of your logical hardware configuration.

**Guidance through Interactive Interface:** HCD provides an interactive user interface, based on ISPF, that supports both the hardware and the software configuration definition functions. The primary way of defining the configuration is through the ISPF dialog. HCD consists of a series of panels that guide you through all aspects of the configuration task. The configuration data is presented in lists.

HCD offers extensive online help and prompting facilities. Help includes information about panels, commands, data displayed, available actions, and context-sensitive help for input fields. A fast path for experienced users is also supported.

**Batch Utilities:** In addition to the interactive interface, HCD also offers a number of batch utilities. You can use these utilities, for instance, to migrate your existing configuration data; to maintain the IODF; or to print configuration reports. For a complete list of batch utility functions, refer to Chapter 13, “How to invoke HCD batch utility functions,” on page 299.
**Cross Operating System Support**: HCD allows you to define both MVS type (for example OS/390 or z/OS) and VM type configurations from z/OS and to exchange IODFs between z/OS HCD and z/VM HCD.

**Support of processor clusters**: HCD provides single point of control functions in a processor cluster for dynamic I/O configuration changes and for the management of IOCDSs and IPL attributes. These functions assist users in configuring and operating those processors that are configured in a processor cluster controlled by the same Hardware Management Console (HMC).

**How HCD works**

HCD stores the hardware configuration data you defined in the IODF. A single IODF can contain definitions for several processors (or LPARs) and several MVS or VM operating systems. It contains all information used to create IOCDSs and the information necessary to build the UCBs and EDTs. When HCD initiates the function to build the IOCDS, the IODF is used as input. The IOCDS with the channel subsystem definitions of a processor is then used to perform POR. The same IODF is used by MVS to read the configuration information directly from the IODF during IPL. If your environment includes z/OS and z/VM on different processors or as logical partitions on the same processor, the IODF can also be used to document the z/VM configuration.

Figure 3 on page 5 shows an example of a configuration using HCD.

![Diagram of configuration definition with HCD](image)

**Objects managed in the IODF**

HCD lets you define the configurations as objects and their connections. The following objects and their connections are managed by HCD:

- Hardware configuration definition
- Processor
- MVS with EDT, NIP,...
- I/O Definition File
- Tape
- Control Unit
- Terminal

Figure 3: Configuration definition with HCD
For all these objects the HCD dialog provides action lists where you can define the characteristics and the relation between the objects.

**IODF used at IPL**

After you complete the input of your configuration data, you have to build a production IODF. The production IODF is used by the operating system to build the configuration data (for example, control blocks) at IPL time. This active production IODF is also used for building the IOCDS. Figure 5 on page 6 illustrates the build phase of a production IODF and of an IOCDS.

The production IODF cannot be updated (read-only). This ensures that the data in the production IODF used at IPL remains the same during the run time of that system.

**Relationship of data sets used by HCD**

Figure 6 on page 7 shows the relationship between the data sets used by HCD and how you can work with or change these data sets.

By using the define and modify tasks or by migrating MVSCP, IOCP, and HCPRIO input data sets you create a work IODF. After finishing the definition, you build a production IODF from your work IODF, which you can use to IPL your system or to activate your configuration dynamically. The data sets shown at the
The environment in which HCD operates

HCD is part of z/OS. It needs a running z/OS system before it can be used to define a hardware configuration. Therefore, an installation should first load a z/OS system, using an old IODF, or a ServerPac Starter IODF to IPL the z/OS system for the first time. HCD can then be used on that system to define the full configuration.

HCD uses the unit information modules (UIMs) of z/OS. UIMs contain device dependent information, such as parameters and features of devices. The UIMs must be installed in the z/OS system before you use
HCD to define a configuration. The UIMs are also used at IPL time to build the UCBs. That is why they have to be installed in SYS1.NUCLEUS at IPL time.

UIMs are provided for the IBM devices supported by z/OS, OS/390, or MVS by the device product owners. You can write your own UIMs for non-IBM devices. To get information about UIMs, see z/OS MVS Device Validation Support.

HCD and I/O Operations

The ESCON and FICON architectures are supported by a class of devices called Directors (switches) that manage the switching functions. These switches may be connected to a processor (via channel path), a control unit, or another switch. The switches connect channel paths and control units only for the duration of an I/O operation. The "internal" configuration of a switch is called switch configuration.

The I/O Operations component of Tivoli System Automation for z/OS (TSA for z/OS, formerly known as ESCON Manager) maintains and manages switch configurations.

I/O Operations functions, such as the activation of switch configurations and the retrieval of the active configuration data, can be invoked from HCD. This gives you a single point of control for all switch configuration activities, as well as the possibility to check whether a certain data path (from processor to device) is fully configured or not.

Moreover, you can use HCD to migrate switch configurations into HCD from three different sources: directly from the switches, from a saved switch file, or from ISPF tables saved by I/O Operations. You also can save switch configuration data in a switch file, as well as activate the switch configuration. Thus, the switch is activated using the switch configuration stored in the IODF.

I/O Operations permits retrieval of information from the active system. Parts of this information (serial numbers, VOLSERs, port names) can be provided by HCD via the functions Priming, Sensing, Activate Verification, and Prompting for VOLSER. I/O Operations must be installed for this purpose, even if there are no switches in the configuration.

Prerequisites

For information on general installation requirements, refer to the PSP Bucket for the latest information about the prerequisites. Also consider the following prerequisites and recommendations:

• For migrating existing switch configurations and activating switch configurations, Tivoli System Automation for z/OS (I/O Operations), must be installed and active.

• If TSA for z/OS (I/O Operations) is not installed for verifying the I/O configuration or generating the I/O Path Report for a system of the local sysplex, a subset of the function is available for FICON attached storage devices by means of the zDAC function. In order to use zDAC for this purpose, discovery data must be available from the LPARs that you wish to verify.

If you want to prime, then in order to obtain the data for a system in a sysplex, there must also be a VTAM session between the local system and the target system. The target system must have I/O Operations installed and running.

HCD and the coupling facility

HCD provides the user interface to support processors that have coupling facility capability.

The coupling facility itself is implemented as an extension to PR/SM features on selected processors (refer to z/OS HCD Planning for a list) and runs in a PR/SM partition. It enables direct communication between processors through a specific communication partition (coupling facility partition), connected by coupling facility channels.

You use HCD to specify whether a logical partition is running a coupling facility or an operating system. New channel path definitions in the IODF are used to connect a coupling facility-capable processor to a coupling facility partition:

• The coupling facility receiver channel (CFR channel) path that accesses the partition the coupling facility is running on.
- The coupling facility sender channel (CFS channel) path that accesses the partition the operating system is running on.
- The coupling facility peer channel path that accesses either partition bidirectionally on IBM zSeries processors or their successors.

HCD automatically generates the coupling facility (CF) control unit and devices that are necessary for IOCP processing. Figure 7 on page 9 shows a processor configuration with coupling facility implemented.

Figure 7: Processor configuration with coupling facility implemented

HCD enables you to dynamically reconfigure the coupling facility channels that are connected to the operating system partition.

**Note:** With CF duplexing, a CF logical partition can use the coupling facility sender function to communicate with another CF logical partition. That means, you can define sender channel paths (CFS, CBS, ICS) besides the receiver channel paths (CFR, CBR, ICR) in a CF partition.

For more information on HCD and coupling facility, refer to z/OS Parallel Sysplex Overview.

**Support of processor clusters**

**Note on terminology:**

The term processor cluster, used in the HCD dialog and throughout this documentation, refers to central processor complexes (CPCs) controlled through the Hardware Management Console (HMC).

HCD allows you to define and control configuration data for each CPC that is configured in a processor cluster. You use HCD for those CPCs that can have their IOCDS and IPL attribute management and their dynamic I/O configuration changes controlled remotely:

- Writing IOCDSs
- Managing write-protection
- Marking the IOCDS as active POR IOCDS
- Updating IPL address and LOAD parameter values
• Distributing and activating new production IODFs on connected target systems

HCD displays all CPCs that are configured in a processor cluster and controlled by the Hardware Management Console (HMC). The CPCs and the HMC must be connected to the same management network. A CPC is identified by the system network architecture (SNA) address of its support element, which is specified when the processor complex is configured on the HMC. HCD uses the SNA address to be able to write and manage IOCDSs from any processor in a processor cluster, and to view and update IPL attributes.

From the Processor Cluster List on a single point of control, users can select an option to list all logical partitions (images) belonging to the current CPC along with various information for each partition, for example, their operation status (deactivated, activated, IPLed), the system name, sysplex name, operating system type and release level.

If users provide a connection table that contains the IP addresses and user logon data on the target systems, HCD shows the corresponding activation status and allows distributing and activating new production IODFs on those systems.

Support of the sysplex environment

If you have interconnected systems, it is important to have a single point of control for systems in such a sysplex environment. HCD offers the support of the sysplex environment in several ways:

• You can define all processor and operating system configurations in one IODF.
• After a complete definition you can download the IOCDSs for all processors. This can be initiated from the controlling HCD.
• If you want to change configurations dynamically within the sysplex, you can initiate the activation of the hardware and software configuration changes for systems defined in a sysplex from the controlling HCD.

In addition, HCD offers a function that compares the active I/O configuration against the defined configuration in an IODF. This function can produce reports or lists of I/O paths to show the sensed data against the logical definitions of the paths in the IODF. HCD provides this function to get the data for your local system and for systems in a sysplex.

Based on a production IODF, HCD can also build CONFIGxx members for your local system or for systems in the sysplex.

For systems which are members of a sysplex, CONFIGxx members can be verified against selected systems. Responses are displayed in a message list.

Refer to Chapter 13, “How to invoke HCD batch utility functions,” on page 299, if you want to run batch jobs in a sysplex environment.
Chapter 2. Migration

Overview
This topic explains:
• An overview of the migration process
• Steps needed for migrating to HCD for z/OS Version 2 from an earlier HCD release

Migration overview
Your plan for migrating to the new level of HCD should include information from a variety of sources. These sources of information describe topics such as coexistence, service, hardware and software requirements, installation and migration procedures, and interface changes.

The following documentation provides information about installing your z/OS system. In addition to specific information about HCD, this documentation contains information about all of the z/OS elements.

• z/OS Planning for Installation
  This book describes the installation requirements for z/OS at a system and element level. It includes hardware, software, and service requirements for both the driving and target systems. It also describes any coexistence considerations and actions.

• ServerPac Installing Your Order
  This is the order-customized installation book for using the ServerPac Installation method. Be sure to review "Appendix A. Product Information", which describes data sets supplied, jobs or procedures that have been completed for you, and product status. IBM may have run jobs or made updates to PARMLIB or other system control data sets. These updates could affect your migration.

• z/OS Migration
  This document describes how to migrate to the current z/OS version and release from previous releases for all z/OS elements and features and also includes migration actions for HCD and HCM.

“Migration roadmap” on page 11
• identifies the migration paths that are supported with the current level of HCD
• describes the additional publications that can assist you with your migration to the current level

Migration roadmap
This section describes the migration paths that are supported by the current release of HCD. It also provides information about how to migrate to the current HCD release from previous releases.

You can find further migration information in z/OS Migration.

Security migration
With z/OS V2R1, HCD uses the application ID CBDSERVE to verify any user that logs on to the HCD agent, this is, any user that uses HCM to perform hardware configuration definitions. If you have the APPL class active in your external security manager, for example in RACF, and you have a generic profile in that class that covers the new HCD application ID CBDSERVE, you need to permit all HCM users READ access to that profile. Otherwise, the users of HCM are no longer able to log on to HCD. If you use the existing generic APPL profile for other purposes, you may define your own CBDSERVE profile in the APPL class to control access specific for HCD. For details see “Controlling access to HCD services” on page 434.
Migration tasks

The following sections contain additional migration procedures or information:

- “Upgrade an IODF” on page 38
- “IODF release level compatibility” on page 46
- “Migrating existing switch configurations” on page 162
- “IOCP input data sets using extended migration” on page 195
- Chapter 12, “How to migrate existing input data sets,” on page 249
- “Upgrade IODF” on page 302
- “Migrate I/O configuration statements” on page 302

Information on IODF coexistence can be found in “IODF release level compatibility” on page 46.
Chapter 3. How to set up, customize and start HCD

Overview
This information unit handles the following topics:

• “Setting up HCD” on page 13
• “Tailoring the CLIST CBDCHCD” on page 15
• “Starting and ending HCD” on page 16
• “Defining an HCD profile” on page 16
• “Customizing HCD EXEC procedures” on page 26

Setting up HCD

HCD is a base element of z/OS and therefore installed with the z/OS product. For more information, refer to z/OS Planning for Installation.

The installation of HCD is carried out using SMP/E. The install logic and the JCLIN are provided by HCD.

Setting up HCD requires the following steps:

1. Install z/OS with the HCD FMIDs.
2. Install other products that are required for HCD (refer to z/OS Planning for Installation).
3. Before you start HCD, you have to set up the load libraries that contain the HCD help modules. You can achieve this in one of the following ways:
   • Include SYS1.SCBDHENU (or SYS1.SCBDHJPN for Kanji) in the linklist concatenation (LNKLSTxx member), or
   • Allocate data set SYS1.SCBDHENU (or SYS1.SCBDHJPN for Kanji) to ISPLLIB.

   If you choose to access the libraries through the ISPLLIB concatenation, ISPLLIB must be allocated prior to invoking ISPF with the TSO ALLOC command or through a CLIST. ISPLLIB is used as a tasklib by ISPF as it is searched first.

   When using the View graphical configuration report:
   • Include the GDDM load library in the linklist concatenation (LNKLSTxx member).
   • Allocate the GDDM sample data set:

     For GDDM 2.1 and 2.2:
     \[\text{ALLOCate} \ F(ADMPC) \ DSN('pplib.GDDM.GDDMSAM') \ SHR \ REUSE\]

     For GDDM 2.3 or later:
     \[\text{ALLOCate} \ F(ADMPC) \ DSN('pplib.GDDM.GDDMSAM') \ SHR \ REUSE\]

     If you are using a programmable workstation and you communicate with the host using a 3270 emulator session, the GDDM-OS/2 link files must be installed on your workstation. Note that the high-level qualifier for the GDDM data set might vary from installation to installation.

4. Allocate the data set SYS1.SCBDCCLST to the SYSPROC ddname concatenation.

   Note: SYS1.SCBDCCLST has a fixed record format (RECFM=FB). If your other SYSPROC data sets have a variable record format (RECFM=V or VB), copy SYS1.SCBDCCLST to a data set with variable record format. You have to remove sequence numbers (in the CLIST) after copying the members to a data set with variable record format.
5. For processing large IODFs, and when HCD option IODF_DATA_SPACE is set to NO, the size of your TSO region may not be sufficient. When you specify the region size on the TSO logon panel, calculate as follows:

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times \text{IODF size} + 4 \text{ MB}$</td>
</tr>
</tbody>
</table>

Assumed IODF size: 8000 blocks, 4 KB per block = 32 MB

Suggested region size: 68 MB

To run HCD, the modules in SYS1.SCBDHENU (containing HCD help members) and SYS1.NUCLEUS (containing the UIMs) must be accessible. For the HCD dialog, you can achieve this in three ways:

1. Include SYS1.SCBDHENU in the linklist concatenation (LNKLSTxx member).
2. Include SYS1.SCBDHENU in the JOBLIB/STEPLIB concatenation of the TSO logon procedure.
3. Include SYS1.SCBDHENU in the ISPLLIB load library concatenation. If you include SYS1.SCBDHENU into the ISPLLIB concatenation, ISPLLIB must be allocated prior to invoking ISPF (in TSO or through JCL in the logon procedure). ISPLLIB is used as a tasklib by ISPF and is searched first. A pure LIBDEF for ISPLLIB does not suffice to invoke HCD.

HCD allocates SYS1.NUCLEUS automatically at initialization time if the keyword UIM_LIBNAME is not specified in the HCD profile. You may use the HCD profile to specify a different name and the volume serial number of the library that contains the UIMs (see also “Defining an HCD profile” on page 16). If you do not specify a name in the profile, SYS1.NUCLEUS is assumed as default name for the UIMs. For IPL, however, the UIMs and UDTs must be in SYS1.NUCLEUS.

The following HCD libraries are defined via the ISPF 'ISPEXEC LIBDEF' command if HCD is invoked via CLISTS CBDCHCD and CBDCHCD1:

- SYS1.SCBDPENU for panels
- SYS1.SCBDMENU for messages
- SYS1.SCBDTENU for tables

**How to invoke HCD in dialog mode**

To invoke HCD in dialog mode, ISPF must be active. After you have invoked ISPF, you can use the CLIST CBDCHCD to activate the HCD function. You may add HCD to an ISPF selection menu, for example, the ISPF/PDF Master Application Menu (ISP@MSTR), and invoke HCD using the CLIST CBDCHCD. Figure 8 on page 15 shows a sample panel that illustrates how to include HCD on the main ISPF/PDF panel. Alternatively, the CLIST can be invoked from the ISPF option 6, or from the command line.

Note that HCD must be invoked with the "NEWAPPL(CBD)" parameter in the CLIST CBDCHCD.

To ensure that the CBDCHCD CLIST can successfully allocate the following libraries, make sure that these libraries are cataloged:

- SYS1.SCBDPENU --> HCD Panel Library
- SYS1.SCBDMENU --> HCD Message Library
- SYS1.SCBDTENU --> HCD Table Library

**Note:** The HCD Panel, Message, and Table libraries are allocated by the CBDCHCD CLIST using the LIBDEF function of ISPF. If other ISPF Dialogs are using the LIBDEF function of ISPF, and you do not want HCD to overlay their allocations, you can update your ISPF startup by adding the HCD data sets to the ISPF ISPLLIB, ISPMLIB, and ISPTLIB concatenations.
Tailoring the CLIST CBDCHCD

A sample CLIST CBDCHCD (CBDCHCDJ for Kanji) is provided in SYS1.SCBDCLST to assist you in invoking HCD from the ISPF dialog. It allocates the HCD message log file (HCDMLOG), the trace data set (HCDTRACE), and the HCD term file (HCDTERM) with a default high-level qualifier of the userID (&SYSUID). The CLIST also allocates the HCD data sets SYS1.SCBDPENU, SYS1.SCBDMENU, and SYS1.SCBDTENU (or SYS1.SCBDPJPN, SYS1.SCBDMJPN, and SYS1.SCBDTJPN for Kanji).

In CBDCHCD and CBDCHCDJ, the ISPPEXEC LIBDEF statement for ISPPLIB, ISPTLIB and ISPMLIB is done with the STACK option. This leaves existing LIBDEFs untouched, so that after exit, the existing HCD libraries ISPPLIB, ISPTLIB and ISPMLIB are freed again.

If the prefixes for message, trace, and term data sets do not conform to the installation conventions, you may tailor the CLIST to match your installation defaults. If you want HCD to use your TSO prefix as the high level qualifier, you can call CBDCHCD with the parameter NOPREF(YES). This causes HCD to use the qualifiers &PREFIX..&SYSUID.

CBDCHCD invokes another CLIST, CBDCHCD1. You may tailor this CLIST as well.

In any case, use the application ID for HCD: NEWAPPL(CBD).

The CLIST also tailors the ISPF environment by:

- Setting PFSHOW on. This forces all 24 function keys to be shown (if ISPF is defined to show 24 function keys).
- Setting lower PFKEYS as primary function keys.

**Note:** HCD can be invoked with the activated TRACE option, when you have specified parameter TRACE(YES) in the default CLIST. The size of the trace data set can be changed by modifying the CLIST. In addition, you can delete the HCD provided trace data set and allocate one according to your specific needs.
Starting and ending HCD

You start HCD like any other ISPF application in your TSO/E system. The procedure for starting an application is different for each installation but you can probably select HCD from a menu of applications that are available in your system. This causes a TSO/E CLIST to be executed. The sample CLIST that is supplied with HCD is CBDCHCD in library SYS1.SCBDCLST.

After you start HCD, the first panel that you see contains a menu of the HCD primary tasks:

```
z/OS V2.1 HCD
Command ==> _____________________________________________________

Hardware Configuration

Select one of the following.
1. Edit profile options and policies
2. Define, modify, or view configuration data
3. Activate or process configuration data
4. Print or compare configuration data
5. Create or view graphical configuration report
6. Make migration I/O definition files
7. Query supported hardware and installed UIMs
8. Getting started with this dialog
9. What's new in this release

For options 1 to 5, specify the name of the IODF to be used.
I/O definition file . . . 'SYS1.IODF00.HCD.WORK'

F1=Help     F2=Split    F3=Exit     F4=Prompt   F9=Swap    F12=Cancel
F22=Command

Figure 9: HCD Primary Task Selection panel
```

If you select task "1. Define, modify, or view configuration data", as shown in Figure 9 on page 16 and press the Enter key, you trigger this task using the IODF 'SYS1.IODF00.HCD.WORK'.

To end an HCD session, either return to the Primary Task Selection panel and press the F12=Cancel key or the F3=Exit key twice or use the fast path command GOTO X.

Note:
1. Chapter 13, “How to invoke HCD batch utility functions,” on page 299 explains how you can invoke HCD from another program using the HCD programming interface.
2. To see a description of new functionality of the current release, select option 9. What's new in this release. Here you may find information about SPEs that are delivered after the completion of this document.

Defining an HCD profile

Before you start HCD, you can define an HCD profile to tailor HCD supplied defaults and processing options to your specific installation needs. Using a profile is optional and will remain in effect for the entire HCD session. At initialization time, HCD reads the profile and processes each statement in turn.

The profile statements are contained in a data set allocated to the DD name HCDPROF. The following statement allocates the profile data set to HCDPROF:

```
//HCDPROF DD DSN=&SYSUID..HCD.PROFILE,DISP=SHR
```

The data set must have the following characteristics:
• Be either a sequential data set or a member of a partitioned data set
• Have fixed-length, fixed-blocked record format
• Have 80 character records.

The HCD profile comprises the keywords described in “Keywords” on page 19 as well as policies for automatic I/O configuration described in Chapter 8, “How to work with I/O Autoconfiguration,” on page 167.

You can use the **HCD Profile Options** dialog (see “Working with the HCD Profile Options dialog” on page 17) to edit the profile keywords after having created and allocated the profile data set to HCDPROF.

In addition, you can define profile options manually in the profile data set.

You can extend a comment to the next line by using an asterisk (*) as a continuation character in column 1, as shown in the example:

```
MAP_CUTYPE=9000,NOCHECK /* map CU type 9000 to type NOCHECK */
```

or:

```
MAP_CUTYPE=9000,NOCHECK /* map CU type 9000 to type
* NOCHECK                                                   */
```

However, be aware that the **HCD Profile Options** dialog truncates comments longer than 32 characters.

It is also possible to define profile options using inline statements in a batch job. The following example shows an inline profile definition:

```
//HCDPROF DD *
MIGRATE_EXTENDED = YES
VM_UIM = NO
/*
```

**Note:** When starting an HCD batch job from the dialog, the HCD profile data set is not passed automatically to the job but, if required, has to be specified in the JCL.

The following syntax rules apply to a profile statement:

```
keyword = value
```

**keyword**

- is the name of the HCD keyword; each keyword starts on a new line.

=  

- can be omitted, if the keyword is followed by a blank.

**value**

- specifies one or more values to be assigned to the keyword.

**Note:**

1. A single statement must not exceed 72 characters.
2. Do not use sequence numbers in your HCD profile.
3. Use / and */ as delimiters for comments in a profile statement.

**Working with the HCD Profile Options dialog**

You can maintain your HCD profile values in your profile data set using the HCD dialog. Select **Edit profile options and policies** from the HCD **Primary Task Selection** panel and then select **HCD profile options** from the **Profile Options and Policies** menu to invoke the **HCD Profile Options** dialog.
Profile Options and Policies

Select type of data to define.

- 1. HCD profile options
- 2. Autoconfiguration policies
- 3. LP groups for autoconfiguration
- 4. OS groups for autoconfiguration

F1=Help  F2=Split  F3=Exit  F9=Swap  F12=Cancel

Figure 10: Profile Options and Policies

You can add, delete or modify keywords in your profile data set via this dialog. When you leave the HCD session, HCD writes all changes specified in this dialog to the profile data set.

In this dialog, all HCD profile keywords are listed in alphabetical order, followed to the right by their value and possibly a description (user comment). To see the Description column, scroll to the right (Shift + PF8).

• If a profile data set exists, HCD reads the contained keywords with their values and, if available, their descriptions. For keywords that are not explicitly defined in your profile data set, HCD shows the defaults.

• If you have no own profile data set allocated, this dialog lists the HCD default values. You cannot change these settings.

Note: The remainder of this section describes the use of the HCD Profile Options dialog with an allocated profile data set.

HCD Profile Options

Row 1 of 40 More:       >

Command ===> ___________________________________________ Scroll ===> CSR

Edit or revise profile option values.

HCD Profile : DOCU.HCD.PROFILE

/ Profile keyword      A Value +
# ACTLOG_VOL          Y *
- ALLOC_SPACE          Y HCDASMP,60
- ALLOC_SPACE          Y HCDRPT,60
# BATCH_IODF_NAME_CHECK Y NO
# BYPASS_UPD_IODF_FOR_SNA Y YES
# CHANGE_LOG           N NO
# CHECK_IODF           Y YES
# CHLOG_EXTENSION      Y 0
# CHLOG_VOL            Y *
# COLOR_BACKGROUND     Y ____________________________________________
# COLOR_HIGH           Y RED -------------------------------------------

F1=Help        F2=Split       F3=Exit        F4=Prompt      F5=Reset
F7=Backward    F8=Forward     F9=Swap       F12=Cancel     F20=Right
F22=Command

Figure 11: HCD Profile Options

If you change a displayed default value, HCD writes the changed entry into your data set.

The HCD Profile Options dialog accepts a description (comment) of maximum 32 characters. A comment must start on the same line as the keyword assignment, using the ‘/*’ notation.

If you specified a longer comment in a manually edited profile data set, HCD shows the truncated comment only and also truncates the text in the profile data set the next time, HCD writes any modifications from the dialog.

For profile keywords which may occur multiple times with different value assignments, the dialog offers actions to add or delete selected entries (action codes ‘a’ or ‘d’). Profile keywords which can only occur with a single value assignment are disabled for any action by a # sign in the action column.
**Column A:** This column is set to Y(es), if a change of the keyword value will become active immediately. Value N(o) denotes that the value change does not become active until the next start of HCD.

**Column Value:** You can overtype the current values. Also, if you position the cursor on a value in this column, you have the following options:

- Pressing PF4 lets you prompt for available values (PF4) where applicable, and select one value from the offered list.
- By pressing PF1, you can obtain an explanation of the selected keyword.

Figure 12 on page 25 shows the contents of a sample profile data set.

**Keywords**

The following keywords are supported for a profile statement:

**Volume serial number to allocate output data sets**

To place the IOCP, HCPRIO, and JES3 INISH stream checker data sets to a specific volume within HCD, you can specify this target volume via two profile options:

- **HCDDECK_VOL**
  - Specifies the volume serial number for allocating a new IOCP, HCPRIO or other data set containing I/O configuration statements.

- **HCDJES3_VOL**
  - Specifies the volume serial number for allocating a new JES3 initialization stream checker input data set.

In a non-SMS managed environment, the generated corresponding output data set is placed on the indicated volume. The profile option is ignored if the specified output data set already exists on a different volume. In this case, the new output data set replaces the existing data set on this volume. In an SMS-managed environment this option is ignored.

The two options have no effect in an SMS managed environment since SMS overrules the VOLUME parameter.

If the keywords are omitted, the placements of the IOCP, HCPRIO, JES3 INISH, and other I/O configuration data sets are controlled via SMS or ESOTERIC system defaults (ALLOCxx of SYS1.PARMLIB or the UADS, respectively).

**Volume serial numbers to allocate log data sets and HCM MCF data set**

- **ACTLOG_VOL**
  - If the dataset names are not managed by SMS, this keyword specifies the up to 6 characters long volume serial number to allocate a new activity log. Using an asterisk (*) indicates that the activity log file will be placed on the same volume where the associated IODF resides.

- **CHLOG_VOL**
  - If the dataset names are not managed by SMS, this keyword specifies the up to 6 characters long volume serial number where to allocate the change log data set. Using an asterisk (*) indicates that the change log file will be placed on the same volume where the associated IODF resides.

- **MCF_VOL**
  - If the data set names are not managed by SMS, this keyword specifies the up to 6 characters long volume serial number where to allocate the MCF data set. Using an asterisk (*) indicates that the MCF data set will be placed on the same volume where the associated IODF resides.

**Automatic activity logging**

- **CHANGE_LOG**
  - YES/NO. Specifies whether you want to activate change logging (YES). The default is NO.

If enabled, and HCD additionally maintains an activity log file for the IODF, then HCD logs all updates applied to the IODF in a change log file, and automatically generates activity log entries for updates on HCD objects, for example, add, delete, update or connect, disconnect. These entries are proposals.
and are shown in the activity log panel where you can modify them before you exit the IODF (see also “Activity logging and change logging” on page 44).

A change of the value setting for this keyword will not be active until the next start of HCD.

Allow or prohibit mixed esoterics

**MIXED_ESOTERIC**  
YES/NO. Specifies whether you want to allow or prohibit mixed devices (DASD and TAPE) under the same esoteric name. If you specify NO, which is the default, and your configuration contains an esoteric with mixed DASD and TAPE devices, the request to build a production IODF will fail with error message CBDA332I. If you specify YES, HCD issues message CBDA332I as warning message and continues the request.

HLQ for exporting IODFs

**EXPORTED_HLQ**  
By default, when exporting an IODF, the generated sequential data set is written with the high-level qualifier (HLQ) of the userID that issued the Export IODF function. If this convention is not suitable for your installation, you can use the keyword EXPORTED_HLQ to specify a different HLQ (up to 8 characters).

Allocation space for data sets allocated due to HCM requests

**ALLOC_SPACE**  
This HCD profile option lets you overwrite the default allocation (CYL,50,50) for data sets that are temporarily allocated in response to HCM requests, such as HCDASMP, HCDRPT, HCDIN. For example, specify: ALLOC_SPACE = HCDASMP,nn where nn is the size (decimal number) used for primary and secondary allocation (in CYL).

Extending allocation space

**MCF_EXTENSION**  
This HCD profile option lets you define additional space when allocating the MCF data sets to allow for updates.

With this keyword, you specify the percentage of additional space that is to be allocated when defining an MCF data set. Per default an MCF data set is allocated with 30 percent additional space than actually needed to hold the MCF data. You can use this space for updates that consume data space without the need to allocate a new MCF and delete the old one. For example, MCF_EXTENSION = 50 allocates 50% additional space.

**CHLOG_EXTENSION**  
This HCD profile option lets you define additional space when allocating the change log data set.

With this keyword, you specify the percentage of additional space that is to be allocated when defining a change log data set. By default, a change log data set is allocated with the same size as the associated IODF. For example, a value set to 50 allocates 50% additional space.

The default extension is 0.

Name and volume serial number for UIM library

**UIM_LIBNAME**  
Specifies the name of the data set containing the UIMs, the associated UDTs, and any help members for the UIMs. If the keyword is omitted, SYS1.NUCLEUS is assumed (Note: only UIMs residing in SYS1.NUCLEUS are read during IPL!).

When UIM_LIBNAME is specified, HCD does not implicitly access SYS1.NUCLEUS for loading the UIMs.

If you specify an asterisk (*) as data set name, HCD assumes that the UIM data set (including SYS1.NUCLEUS) is part of the ISPF load library concatenation chain, contained in the JOBLIB/STEPLIB concatenation chain, or specified in the active LNKLSTxx member.
You can only define one data set with the UIM_LIBNAME statement. If you want to specify several data sets, specify an asterisk (*) as data set name and specify the data sets in the JOBLIB/STEPLIB concatenation chain.

**UIM_VOLSER**
Specifies the volume serial number of the UIM library. Required only if the data set is specified via keyword UIM_LIBNAME and is uncataloged.

**Load VM UIMs**

**VM_UIM**
YES/NO. Specifies whether VM UIMs will be loaded. The default is YES. Installations without VM should specify NO to gain some performance improvement during HCD initialization.

**Options for text reports**

**LINES_PER_REPORT_PAGE**
Specifies the maximum number of lines per page for reports. The default value is 55.

**UPPERCASE_ONLY**
YES/NO. Specifies whether all HCD reports will be written in uppercase or not. This is useful when using printers that do not have the English codepage. The default is NO.

**Layout of graphical reports**

**GCR_SCALE**
Specifies the scaling factor for graphical reports when using BookMaster. The default is GCR_SCALE=.6.

**GCR_COMPACT**
YES/NO. Allows more objects to be displayed in a graphical report. The default is NO. Depending on the report type, a different maximum number of objects is shown on one page:

<table>
<thead>
<tr>
<th>Report Type</th>
<th>COMPACT=NO</th>
<th>COMPACT=YES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CU</td>
<td>12 channels, 8 control units</td>
<td>16 channels, 10 control units</td>
</tr>
<tr>
<td>LCU</td>
<td>8 channels, 8 control units</td>
<td>8 channels, 8 control units</td>
</tr>
<tr>
<td>CHPID</td>
<td>8 channels, 64 control units</td>
<td>16 channels, 64 control units</td>
</tr>
<tr>
<td>Switch</td>
<td>1 switch</td>
<td>1 switch</td>
</tr>
<tr>
<td>CF</td>
<td>1 coupling facility</td>
<td>1 coupling facility</td>
</tr>
</tbody>
</table>

**GCR_FORMAT**
Specifies the formatting type:

**BOOKIE**
For BookMaster. This is the default.

**DCF**
creates a data set for DCF containing script commands.

**GML**
creates a data set for DCF containing GML tags.

**GDF**
creates one or more members in GDF format for printing with GDDM (not for batch).

**GCR_FONT**
Specifies the font to be used for printing; applicable only if GCR_FORMAT=DCF or GCR_FORMAT=GML was specified. Specify the appropriate font supported by your installation. For information on how to create a graphical report, see "Create or view graphical configuration reports" on page 228.
Color settings for graphical display function

(The following colors are valid specifications: green, red, blue, black, purple, pink, yellow, brown, and white.)

**COLOR_NORM**
Specifies the color used when drawing the picture. Make sure that the color is visible on defaulted or specified background. The default is GREEN.

**COLOR_TEXT**
Specifies the color used for any text in the picture. The default is GREEN.

**COLOR_HIGH**
Specifies the color to be used when identifying a focused object. The default is RED.

**COLOR_BACKGROUND**
Specifies the background color. If nothing is specified, the graphical display function uses the standard background of the terminal.

Support of TSO option NOPREFIX

**TSO_NOPREFIX**
YES/NO. Specifies whether the TSO profile option NOPREFIX is recognized by HCD. The default is NO. If you specify TSO_NOPREFIX=YES, and the TSO option NOPREFIX is active, all data set names specified in the HCD dialog are taken as is, i.e. HCD does not add a high-level qualifier. Data set names that are generated by HCD act independent of the TSO option NOPREFIX, and the user ID is added as the high-level qualifier.

Esoteric token when migrating MVSCP input data sets

**ESOTERIC_TOKEN**
YES/NO. YES specifies that HCD will assign esoteric tokens in ascending order when migrating an MVSCP input data set. NO (which is the default) specifies that no tokens will be assigned.

Control unit type when migrating IOCP input data sets

**MAP_CUTYPE**
Specifies how a control unit type in an IOCP input data set is mapped to a control unit type in the IODF. Specify one or more of the following mappings:

```
MAP_CUTYPE = xxxx, yyyy-yy
```

*xxxx* is the control unit type specified in an IOCP input data set

*yyyy-yy* is the control unit type and model to be used in the IODF.

For example parameters, see the sample profile in Figure 12 on page 25.

Extended migration

**MIGRATE_EXTENDED**
YES/NO. Specify YES to exploit the extended migration possibilities as described in “Changing I/O configurations by editing data sets” on page 259.

If you specify NO (which is the default), the additional keywords are not generated during IOCP build and when re-migrating IOCP input data sets, the migration function ignores the commented *$HCDC*$ and *$HCD*$ tags.

Bypass IODF information update for SNA processor

**BYPASS_UPD_IODF_FOR_SNA**
YES/NO. This provides a possibility of bypassing the attempt to update the IODF information for SNA processors after having successfully built the IOCDS.
If you specify YES, then no attempts will be made to update the IODF with IOCDS status information, which will usually fail as a result of the IODF being in an exclusive access mode with the dialog.

If you specify NO (which is the default), then for SNA and non-SNA processors, an attempt is made to update IOCDS information in the IODF after the IOCDS has been built successfully.

**Display information during ACTIVATE**

**SHOW_IO_CHANGES**

YES/NO. This option applies to dynamic activate. When performing both a hardware and software change, specify YES (which is the default) to get information about the channel paths, control units, and devices that are deleted, modified, or added.

**Loading an IODF into a data space**

**IODF_DATA_SPACE**

YES/NO. If you specify YES (which is the default), the IODF is loaded into a data space.

If you specify NO, the IODF is loaded into the user address space.

**IODF name verification for batch jobs**

**BATCH_IODF_NAME_CHECK**

YES/NO. If you specify YES (which is the default), HCD checks if the IODF specified for a batch job conforms to the naming convention as described in “IODF naming convention” on page 27. Processing of IODFs with invalid names is limited to deletion.

If you specify NO, HCD does not check the IODF names specified for batch jobs.

**IODF checker automation**

**CHECK_IODF**

YES/NO. If you specify YES, HCD checks an IODF for consistency and structural correctness whenever the IODF accessed in update mode is unallocated. This corresponds to the TRACE ID=IODF command and will consume processing time depending on the size of the IODF.

If you specify NO (which is the default), HCD does not check the IODF automatically.

**Delay device regrouping**

**DELAYED_GROUPING**

YES/NO. If you specify YES, HCD performs any necessary device regrouping after a device group split only when the IODF is closed. This gives a better response time in the HCD dialog for large IODFs.

If you specify NO (which is the default), HCD performs a necessary device regrouping each time when users exit the I/O Device List, or, in case the I/O Device List was called from either the Operating System Configuration List or the Channel Subsystem List, when leaving these lists.

**Group devices for activate request**

**DEVGRP_ACTIVATE**

YES/NO. If you specify YES (which is the default), HCD groups device related change requests during dynamic activation. The intent is to reduce memory requirements during dynamic activates. This option is only evaluated starting with HCD 2.2. The default is YES and should only be changed if instructed by IBM service.

**Default settings for OS parameters**

**OS_PARM_DEFAULT**

This keyword overrides a parameter default value set by the UIM. The value is used as a default on the HCD Define Device Parameters/Features panel. The syntax is:

```
OS_PARM_DEFAULT = xxxxxx,yyyyyy
```

where:
Extension of the attachable device list of a control unit

**CU_ATTACHABLE_DEVICE**

This keyword allows the attachable device list of a control unit to be extended to include additional device types. Both the control unit type and the device type must be defined via UIMs. The value syntax is:

```
xxxxxx,yyyyyy
```

where:

- `xxxxxx` is the control unit type
- `yyyyyy` is the additional device type

Note that more than one device type can be added to the same control unit type.

Example:
```
CU_ATTACHABLE_DEVICE = RS6K,3174
CU_ATTACHABLE_DEVICE = RS6K,3274
```

A change of the value settings for this keyword will not be active until the next start of HCD.

Show partition defaults in IOCP statements

**SHOW_IOCP_DEFAULTS**

YES/NO. Use this option to write comment lines into the generated IOCP deck which show the partition assignments in effect for those CHPID and IODEVICE statements which make use of the IOCP defaults for the PARTITION and NOTPART values.

Setting this option to YES causes the suppressed PARTITION / NOTPART keywords to be generated as comments prefaced by the tag *$DFLT*$.

The default is NO.

Export/import additional configuration objects

**SHOW_CONFIG_ALL**

YES/NO. Use this option to write additional configuration objects during export of switch configuration statements.

Setting this option to YES affects the Build I/O configuration data dialog and batch utility to write configuration statements for unconnected control units and devices in addition to those for switches, if the Configuration/Switch ID is specified as *.

The default is NO.

Unconditional generation of D/R site OS configurations

**UNCOND_GENERATE_DROS**

YES/NO. If you change a generated D/R site OS configuration before building a new production IODF, it loses the generated attribute and therefore is not regenerated when the production IODF is built (see also “D/R site OS configurations” on page 68). Instead, you must manually delete the D/R site OS configuration and rebuild the production IODF to get the configuration regenerated automatically.
Setting the `UNCOND_GENERATE_DROS` option to YES affects that HCD regenerates D/R site OS configurations whenever a new production IODF is built, independent from whether the configurations have been previously modified or not. This helps to avoid manual user interventions in cases where changes on the primary configuration are not automatically applied to the D/R site OS configuration.

The default is NO.

**HMC-wide activation**

**CONNECTION_TABLE**

Use this profile option to specify the name of a data set that contains the connection table for establishing connectivity to HCD on the remote systems via TCP/IP.

**RCALL_LOG**

YES/NO. Use this profile option to activate logging of remote calls into a data set.

Setting this option to YES allocates a new data set named HLQ.CBDQCLNT.LOG, if it does not yet exist. Otherwise an existing data set is used. The default is NO.

**RCALL_TIMEOUT**

Use this profile option to set the timeout value for the initial connection to a remote system.

Specify the timeout value in seconds using a decimal number. Specifying zero causes HCD to use the default. The default is 60.

**Example**

The following figure shows a profile with sample data:

```hcl
/* ****************************************************************** */
/*                                                                    */
/* HCD Profile                                                        */
/* Created :  2012-11-27  16:09:15  by user : DOCU                    */
/*                                                                    */
/* ****************************************************************** */
/* ****************************************************************** */
/*                                                                    */
/* HCD Profile Section for Standard Profile Options                    */
/*                                                                    */
ACTLOG_VOL = *                    /* ACTlog on same volume as IODF    */
ALLOC_SPACE = HCDASMP,60          /* changed to non-default NO        */
BATCH_IODF_NAME_CHECK = NO        /* No IODF update with IOCDS data   */
BYPASS_UPD_IODF_FOR_SNA = YES     /* No IODF update with IOCDS data   */
CHANGE_LOG = YES                  /* CHANGE LOG REQ. ACTIVITY LOG = O */
CHLOG_VOL = *                     /* default was GREEN                */
COLOR_NORM = BLACK                /* default was GREEN                */
COLOR_TEXT = BLUE                 /* default was GREEN                */
CONNECTION_TABLE = DOCU.HCD.CONN(TABLE) /* HMC wide activate          */
CU_ATTACHABLE_DEVICE = RS6K,3274  /* extend attachable device list    */
ESOTERIC_TOKEN = YES              /* Esoteric token: ascending order  */
GCR_FONT = X0GT20                 /* default was GREEN                */
HCDDECK_VOL = D83WL2              /* default was GREEN                */
HCDJES3_VOL = D83WL4              /* default was GREEN                */
LINES_PER_REPORT_PAGE = 60       /* Max. number of lines per page    */
MAP_CUTYPE = 3705,3745            /* Replace CU type during migration */
MAP_CUTYPE = 3880,3880-23         /* Replace CU type during migration */
MIGRATE_EXTENDED = YES            /* Enable migration enhancements    */
MIXED_ESOTERIC = YES              /* Allow mixed dev. w same esoteric */
OS_PARM_DEFAULT = LOCANY,YES      /* Default for parameter LOCANY     */
RCALL_TIMEOUT = 10                /* Default is 60                    */
SHOW_CONFIG_ALL = YES             /* write additional config objects  */
SHOW_IOPC_DEFAULTS = YES          /* show IOPC default for partitions */
TSO_NOPREFIX = YES                /* Enable TSO Noprefix (Default NO) */
UNCOND_GENERATE_DROS = YES        /* regenerate D/R site OS config     */
*/
```

**Figure 12:** Example of an HCD Profile
Customizing HCD EXEC procedures

Some of the HCD tasks, invoked from the dialog, generate batch jobs. These batch jobs use EXEC procedures, as shown in Table 2 on page 26.

Your installation can use normal ISPF or TSO/E facilities to change the job control statements in these EXEC procedures. They are stored in the library SYS1.PROCLIB. You can customize these procedures according to your own needs.

You can also modify the EXEC procedures by using JCL overwrite statements in the HCD dialog. Thus, you can, for example, add a statement that refers to the HCD profile. See “Job statement information used in panels” on page 62 on how to specify JCL statements in the HCD dialog.

### Table 2: Batch Jobs Used by the HCD Dialog

<table>
<thead>
<tr>
<th>HCD Task</th>
<th>EXEC Procedure</th>
<th>Job Step Name</th>
<th>More Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build an IOCDS</td>
<td>CBDJIOCP</td>
<td>GO</td>
<td>see “Build an IOCDS or an IOCP input data set” on page 307</td>
</tr>
<tr>
<td>Build an IOCP input data set</td>
<td>CBDJIOCP</td>
<td>GO</td>
<td>see “Build an IOCDS or an IOCP input data set” on page 307</td>
</tr>
<tr>
<td>Print a configuration report</td>
<td>CBDJRPTS</td>
<td>GO</td>
<td>see “Print configuration reports” on page 314</td>
</tr>
<tr>
<td>Compare IODFs and CSS/OS views</td>
<td>CBDJCMPR</td>
<td>GO</td>
<td>see “Compare IODFs or CSS/OS Reports” on page 320</td>
</tr>
<tr>
<td>Import an IODF</td>
<td>CBDJIMPT</td>
<td>IMP</td>
<td>see “Import an IODF” on page 325</td>
</tr>
<tr>
<td>Transmit part of an IODF</td>
<td>CBDJXMIT</td>
<td>GO</td>
<td>see “Transmit a configuration package” on page 42</td>
</tr>
</tbody>
</table>
Chapter 4. How to work with I/O definition files (IODF)

Overview

This information unit includes:

• IODF naming convention
• Working with I/O definition files (specify, change, create, view, backup, delete, copy, export, import, and upgrade IODFs)
• Working with large IODFs
• Activity Logging
• Using an IODF among different release levels

When you start an HCD session, you need to specify the IODF that HCD is to use. How to do this, how to change to another IODF, and how to use HCD tasks to maintain your IODFs is described subsequently.

Before you can activate your configuration, you must build a production IODF. This task is described in “Build a production IODF” on page 184.

Note: The IODF data sets must be cataloged so that you can use them with HCD.

IODF naming convention

You need to comply to naming conventions for work IODFs, production IODFs, and further data sets associated to an IODF (activity log, change log and HCM MCF data set).

The IODF is a VSAM LINEAR data set with different names for the cluster component and the data component. The name of the data set with a cluster component has the format:

'hhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}.CLUSTER'

The name of the data set with a data component has the format:

'hhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}'

Work IODF

The data set name for a work IODF has the format of:

'hhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}'

hhhhhhhh
is the high-level qualifier; up to 8 characters long.

cc
is any two hexadecimal characters (that is, 0-9 and A-F).

yyyyyyyy
are optional qualifiers, separated by . and up to 8 characters long. The following qualifiers must not be used as last qualifier: CLUSTER, ACTLOG, CHLOG or MCF.

You can use any number of optional qualifiers but do not make the total name longer than 35 characters because, in some circumstances, HCD appends an additional qualifier.
If you use a change log or an HCM master configuration file, the total IODF name must not exceed 29 characters.

If you omit the high-level qualifier and the enclosing single quotation marks, HCD automatically adds your user prefix (your user ID is the default).

**Production IODF**

The data set name for a production IODF has the same format as a work IODF. You may specify additional qualifiers to differentiate among IODFs (for example for backup reasons). However, the optional qualifiers must be omitted if the IODF is to be used for IPL or dynamic activation. Thus, the format would be:

```
'hhhhhhhhh.IODFcc'
```

*hhhhhhhh* is the high-level qualifier; up to 8 characters long.

*cc* is any two hexadecimal characters (that is, 0-9 and A-F).

**Associated data sets**

Files associated to an IODF, if used, also must conform to the IODF naming conventions, plus a required last qualifier:

**Activity log** (a sequential fixed 80 character data set):

```
'hhhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}.ACTLOG'
```

**Change log** (a VSAM LINEAR data set with cluster component and data component):

```
'hhhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}.CHLOG'
```

**HCM master configuration file** (MCF, a VSAM LINEAR data set with cluster and data components):

```
'hhhhhhhhh.IODFcc{.yyyyyyyy. ... .yyyyyyyy}.MCF'
```

**Create or specify an IODF**

You specify the name of the IODF that you want to use on the *Primary Task Selection* panel. The first time you use the dialog, HCD puts the default name SYS1.IODF00.WORK in the IODF name field (see Figure 29 on page 49). You can type over this name to specify the name you want to use.

If you specify an IODF name that does not exist, HCD assumes that you intend to create a new IODF and displays a panel to let you specify the required attributes. HCD then creates and automatically catalogs the IODF.
Create Work I/O Definition File

The specified I/O definition file does not exist. To create a new file, specify the following values.

IODF name . . . . . . 'DOCU.IODF01.ZOS110.HCDUG.WORK'
Volume serial number . ______  +
Space allocation . . 1024 (Number of 4K blocks)
Activity logging . . Yes (Yes or No)
Multi-user access . . No (Yes or No)
Description . . . . . ___________________________________________
___________________________________________
___________________________________________

F1=Help    F2=Split   F3=Exit    F4=Prompt  F9=Swap   F12=Cancel

Figure 13: Create Work I/O Definition File

- Volume serial number (of the data volume the IODF will reside on)
  This entry is ignored if your system is managed by SMS, otherwise it is mandatory.
- Space allocation
  The online HELP gives advice on how much space to allocate. If you run out of space while working with an IODF, you can use the Copy IODF task to copy the IODF to a larger data set.
- Activity logging
  You have to decide now whether you want HCD to maintain an activity log for the IODF; you cannot specify it later. If you want to use an activity log, your system must have Program Development Facility (PDF) installed.
- Multi-user access
  Specify whether or not you want to enable the IODF for multi-user access.
- Description
  Here you may enter any useful additional information concerning the IODF, for example, the system it applies to, a special purpose of the IODF, or the author.

The IODF remains in effect throughout all tasks of your current session and later HCD sessions, until you change it.

Multi-user access

Up to z/OS V1R9 HCD, multiple users could read an IODF simultaneously, but no user could read an IODF while it was accessed in update mode by another user. Also, a user could only update an IODF, if no other user accessed the IODF, neither in read nor update mode.

Starting with release z/OS V1R10 HCD, when creating an IODF, you can specify a multi-user access option in the Create Work I/O Definition File dialog (Figure 13 on page 29). The default is single-user access.

Having exclusive access to an IODF, users can also switch between single-user mode and multi-user access using an option in the Change I/O Definition File Attributes dialog.

Note:
1. To enable an IODF for multi-user access you need ALTER access authority.
2. You can check whether the multi-user access property is enabled for an IODF using View I/O definition file information from the Maintain I/O Definition Files task.
With the multi-user access option specified, an IODF is kept in exclusive update mode for a user only for the duration of a single transaction. If the updates of this transaction are committed, another user may update the IODF without requiring the first user to release it.

If a user is updating a multi-user access enabled IODF, HCD implements the following processing: HCD locks the IODF. If multiple subsequent users now also want to apply concurrent updates to the same IODF, they must wait in a queue. However, since the first user’s single transaction may last a split-second only, HCD repeats all other users’ subsequent update requests a couple of times. If all attempts fail, for example, because the first user updates the IODF using the dialog and is delaying required input, HCD will notify all other requesting users with a message, telling who is currently updating the IODF.

Associated change log files inherit the multi-user access ability from the IODFs.

**Note:**
When several users simultaneously work on the same IODF, exploiting the multi-user access capability, it is recommended that they co-ordinate their activities in order to ensure the consistency and integrity of the changes made to the IODF.

**How to release a lock after an abnormal termination:** In most cases of abnormal termination while working with IODFs in multi-user access, HCD invokes a recovery routine that deletes a pending lock. If, however, HCD cannot enter this routine, the lock remains active, and any user, when trying to access the IODF next time, receives a message about who is holding the lock.

In such a case, a user with ALTER access right must re-access the IODF exclusively and select action **Change I/O definition file attributes** to set back the multi-user access capability to NO. This action deletes the lock, and multi-user access can now be reactivated for that IODF.

**Sharing IODFs**

If you want to share an IODF across two or more systems, you must:

1. Catalog the IODF in the user catalog that is shared by those systems.
2. Define an ALIAS to that catalog in the master catalog of each system that uses the IODF (for details, refer to “Catalog considerations” on page 336).

**Note:** Control of sharing the IODF resource between multiple systems is achieved via Global Resource Serialization (GRS).

**Important:**
If you update an IODF simultaneously from different systems that are not in the same GRS complex, you may destroy data in the IODF.

**Deciding on the number of IODFs**

The decision whether to create one IODF for each processor, or to combine the I/O definitions for two or more processors in a single IODF, depends on your environment. This section explains when it is advantageous or even necessary to keep the I/O definitions of two or more processors in the same IODF.

**Shared control units and devices**

If control units and devices are shared by different processors, the I/O definitions for these processors should be kept in the same IODF to keep change effort to a minimum and to avoid conflicting definitions.

**Processor and related OS configuration(s)**

For a full dynamic reconfiguration, the IPLed OS configuration must be in the same production IODF as the processor configuration selected for POR.

**Coupling facility support**

For coupling facility support, you have to maintain your coupling facility definitions for the processors to be connected in the same IODF.
Switch connections
It is recommended that you maintain your switch configurations in the same IODF as the hardware and software configuration definitions to provide complete validation of the data path.
In order to lookup the port connections of a switch, all connected objects to the ports of a switch have to be defined in the same IODF.

CPCs of a processor cluster
To manage IODFs, IOCDSs, and IPL parameters within the CPCs of a processor cluster from a focal-point HCD, the corresponding processor configurations have to be kept in the same IODF.

Dynamic sysplex reconfiguration
To dynamically reconfigure the I/O configuration of a system within a sysplex from a focal-point HCD, the processor and OS configuration of the sysplex system have to be defined in the same IODF.

CTC connection report
All CTC connections listed in a CTC connection report must be defined in the same IODF. Misconfigurations can be detected only within the scope of one IODF.

Reporting
The scope of the reports (textual or graphical) is a single IODF. All I/O definitions required for a report must be kept in the same IODF.

Validation
The scope of the validation function is a single IODF.

HCM
The scope of the configuration shown by HCM is a single IODF.

These requirements and recommendations may lead to a large IODF, depending on the size of the installation. The number of elements in the single IODF may be too large for effective management. HCD provides the possibility of creating manageable subset IODFs with a scope limited to a part of the I/O configuration from a master IODF describing the entire configuration. For details on this IODF management strategy refer to “The master IODF concept” on page 31.

The master IODF concept
In order to take full advantage of the available HCD functions and to keep a maximum of freedom for reconfigurations it is proposed to keep a master IODF. A master IODF may contain the I/O definitions for an entire enterprise structure. However, a user may decide to divide the I/O configuration definitions of the whole enterprise into several master IODFs, where little or no interference is expected.

Major configuration changes are done in the master IODF. These include:
- processor configurations,
- OS configurations,
- switch configurations, and
- definitions spanning multiple configurations, e.g. coupling facility connections.

After such changes have been made, a production IODF is built. From this IODF comprehensive reports can be obtained.

HCD provides a set of functions which allows the management of very large IODFs for their activation on individual systems, like POR, IPL, dynamic I/O changes, or for processor cluster management tasks. Using these functions, subset IODFs containing I/O definitions relevant to only one particular system may be built from the master IODF.

There are no strict rules about what a subset IODF must consist of. Typically it contains:
- a processor configuration with its related OS configuration, or
- all I/O configurations describing the CPCs in a processor cluster, or
- all I/O configurations describing the systems of a sysplex.
The content of a subset IODF is specified in a configuration package (see “Work with configuration packages” on page 40).

The subset IODF is transferred to the corresponding target system where it is imported and used as the IODF for that system. A subset IODF constitutes a fully functional IODF. When it is built from a master IODF, the processor tokens are preserved. If necessary, updates concerning the target system alone may be carried out using the subset IODF. Subsequently, the subset IODF can be sent back to the system administering the master IODF and merged back into the master IODF, thereby updating it with the changes made at the target system.

Figure 14 on page 32 illustrates the possible flow of I/O information according to the master IODF concept.

---

How HCD arranges devices into groups in an IODF

IODF versions up to V4 contained a separate device definition record for each single device. To reduce the size of IODFs and to improve the processing performance of large configurations, z/OS V1.7 HCD uses a new IODF format V5, arranging single devices into a device group, if they have the following characteristics in common:

- The device numbers of all devices are in consecutive sequence.
• All devices of the group have the same device type (unit, model) and attribute values (Serial-#, Description, VOLSER).
• All devices of the group are attached to the same control unit(s).
• All devices of the group are connected to the same processors/channel subsystems and have the same corresponding processor-specific attributes.
• All devices of the group are connected to the same operating systems and have the same corresponding OS-specific attributes (device type, parameters, features, console definition, subchannel set number).
• For each OS and each eligible device table (EDT) in the OS, all devices of the group are connected to the same esoterics.

Devices that adhere to these rules are aggregated into device groups containing the maximum number of applicable devices. If you apply a change on one or more devices from a group, HCD checks how to rearrange the devices and device groups contained in the IODF in order to achieve the best possible organisation of devices into groups again according to the specified rules. Another example may be that you change the attributes of a group in a way that two previously similar groups now must be merged into one group. However, the required rearrangements are not necessarily performed by HCD at once, but may be delayed to an appropriate point in time.

**Change to another IODF**

You can work with only one IODF at a time. If, during an HCD session, you want to change to another IODF, you must return to the *Primary Task Selection* panel and specify the new IODF. If the old IODF has an activity log and has been modified, a panel is displayed to let you add a comment into the activity log (“Activity logging and change logging” on page 44 tells you how). The new IODF now becomes the current IODF.

**Change a production IODF / Create a work IODF based on a production IODF**

HCD allows you to perform all tasks on the data stored in a production IODF as long as you do not try to change it. If you try though, HCD displays the *Create Work I/O Definition File* panel where you can define a new work IODF based on the current production IODF.

HCD then copies the production IODF to that new work IODF, makes the work IODF the currently accessed IODF, and applies to it all further changes.

You must specify a new data set for the work IODF; you cannot use an existing one. HCD creates a default work IODF name by appending the qualifier WORK to the production IODF name. You can change this default work IODF name.

When you have completed the changes, you can use HCD to build a new production IODF from the work IODF.

**View active IODF**

HCD provides information about the IODF that has been used for last POR/IPL or for dynamic activation (that is, the currently active IODF); in addition the operating system ID and EDT ID used for IPL are shown, and the configuration token that is currently active in the HSA (hardware system area). For a description of this function, see “View active configuration” on page 203.

**Backup work or production IODFs**

You can use the *Backup* action bar choice on any action list panel to copy a work or production IODF to a backup data set. Thus you can keep track of different stages of the configuration as well as retrieve data lost by accident. When you do the first backup, you must also specify the volume serial number, if
applicable, and the space allocation for the backup data set. HCD uses the normal catalog process to catalog copies of the IODFs.

If you backup a work IODF, you need to specify the name of the backup data set only once for each IODF (when you do the first backup). HCD saves the name of the backup IODF data set, so you can reuse this data set for each subsequent backup (or use a different one if you want).

If you backup a production IODF, HCD does not save the name of the backup data set, because a production IODF cannot be edited. It is suggested that you maintain a backup copy of your production IODF on a separate volume that is accessible from all systems that will be sharing the backup. When the primary IODF volume is inaccessible or the IODF itself is corrupted, the system can be IPLed through a backup IODF on the alternate volume.

It is also recommended that you choose an alternate high level qualifier for your backup IODF since a lost IODF volume may imply a lost IODF catalog. This high level qualifier can be cataloged in either the master catalog or in an alternate user catalog.

As an alternative method to create a backup IODF, you can use the following procedure:

1. Select **Maintain I/O definition files** from the **Primary Task Selection** panel (Figure 9 on page 16).
2. Select **Copy I/O definition file** from the **Maintain I/O definition Files** panel (Figure 15 on page 34).
3. Specify the name of the backup IODF.

## Maintain IODFs

HCD provides the tasks listed on the Maintain I/O Definition Files panel (Figure 15 on page 34) to help you maintain your IODFs. You can reach this panel from the **Primary Task Selection** panel (see Figure 29 on page 49).

### Figure 15: Maintain I/O Definition Files

Select one of the following tasks.

1. Delete I/O definition file
2. Copy I/O definition file
3. Change I/O definition file attributes
4. View I/O definition file information
5. Export I/O definition file
6. Import I/O definition file
7. Work with Configuration Packages
8. Upgrade I/O definition file to new format

F1=Help F2=Split F3=Exit F9=Swap F12=Cancel

### Delete an IODF

This task deletes an IODF. If the IODF has an activity log, that log is also deleted. Also, if an HCM master configuration file (MCF) is associated with the IODF, it is deleted along with the IODF. HCD asks you for confirmation before actually deleting the IODF. It will not be possible to delete the currently active IODF of the system, HCD is running on.

### Copy an IODF

You can invoke the task **Copy I/O definition file from the Maintain I/O Definition Files panel** (Figure 15 on page 34). This task copies any IODF to another IODF (either existing or new). You must specify the name, volume serial number, if applicable, and the space allocation of the target data set. If the IODF has an activity log, that log may also be copied. Also, if an HCM master configuration file (MCF) is associated
with the IODF, it is copied along with the IODF. However, a change log file (CHLOG), if available, is not copied.

During a definition task, you can use **Copy IODF** to copy the existing data to a larger data set if you have allocated insufficient space to a work IODF. In this case, you need to return to the **Primary Task Selection** panel afterwards to specify the new data set as the IODF you are working with from now on.

You can also use the **Copy I/O definition file** task to upgrade a V4 IODF to a V5 IODF. The result of the copy process will always be a V5 IODF.

In the **Copy I/O Definition File** dialog, if you specify a target IODF that does not yet exist, HCD displays the dialog from Figure 16 on page 35 where you can create a new target IODF. The space allocation default depends on the source IODF:

- for a V5 source IODF, the allocation default is the number of **allocated** blocks of the source IODF.
- for a V4 source IODF, the allocation default is the number of **used** blocks of the source IODF.

![Create New I/O Definition File](image)

*Figure 16: Create New I/O Definition File*

If you copy an IODF which is enabled for multi-user access, this property is not inherited by a target IODF. However, an existing target IODF defined with the multi-user access property will always preserve this property, independent from the source IODF.

You can also invoke the **Copy I/O definition file** task in batch mode. For details refer to “**Copy IODF**” on page 313.

**Change IODF attributes**

With this task, you can change certain attributes of an IODF. You can change the description and you can enable or disable the IODF for multi-user access.

**Note:** To enable or disable an IODF for multi-user access you need ALTER access authority.

**View an IODF**

This task displays information about the currently accessed IODF. The information includes the type and version of the IODF, its description, the creation date, the last update, and how much of the allocated space for the IODF data set has been used.

You can also invoke the **View IODF** task from the **View** action bar, and by issuing the SHOWIODF command from the command line.
Export an IODF

This task sends an IODF, and optionally, its activity log file to another (local or remote) system. On the Export IODF panel, specify or revise the IODF name you want to export, the user ID, or the nickname (only for an attended target system), node ID, and status (attended or unattended) of the operating system (OS) to which the IODF is to be sent.

If the target system is unattended, the IODF is sent as a job to the target system, which must be a system of type MVS. In this case no explicit action on the target system is required. You can specify whether to replace an existing IODF with the same name. If the existing IODF is the active IODF for the remote system HCD is running on, replace will not be possible.

If the target system is attended (receiving to be done by the user on the remote system), the IODF is sent to the target system as a sequential data set. There it has to be received by using the TSO RECEIVE command. As a second step the IODF is imported on the target system (see also “Import an IODF” on page 38).

To export an IODF, HCD uses the TSO command TRANSMIT. Therefore, HCD creates a cataloged sequential data set named tsoid.EXPORTED.iodfname, where tsoid is the sending TSO user ID or the TSO prefix, or is determined by the profile option EXPORTED_HLQ, and iodfname is the part of the IODF data set name after the high-level qualifier.

After processing the TRANSMIT command, the sequential data set is deleted.

If you have specified to send the selected IODF to a system with an operating system running in unattended mode, use the panel from Figure 18 on page 37 to define the job control language (JCL) statements for importing the IODF on that unattended system.
Define JCL for IODF Import

Specify or revise the job control statements for importing the IODF on an MVS system.

//JOBNAME  JOB (ACCT,BOX), 'USER', CLASS=CLASS,
//MSGCLASS=MSGCLASS, MSGLEVEL=(1,1),
/*LEAVE THIS JOB CARD UNCHANGED: USERID AND PASSWORD ARE GENERATED
/*ROUTE    XEQ HCD3
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
F1=Help     F2=Split    F3=Exit     F5=Reset    F9=Swap    F12=Cancel

Figure 18: Define JCL for IODF Import

You can also invoke the Export IODF task by using the Export task in batch mode. For details refer to “Export an IODF” on page 326.

Prerequisites:

1. Network Job Entry (NJE) must be active.
2. The target user ID and password, and, if the target system is not SMS managed, the volume serial number of the receiving data volumes have to be known when the IODF is exported to an unattended system.

User authentication for unattended mode

If you export an IODF to a target system running in unattended mode, there are two alternatives for user authentication:

• sending the target user ID and password to the target node (that is, the user ID which receives the IODF)
• defining a surrogate user ID on the target to act on behalf of the receiver

Sending user ID and password:

To authenticate the receiving user with its user ID and password at the receiving system, enter the correct password on the panel from Figure 19 on page 37 twice. By default the password is translated to uppercase, but by setting the 'Translate password to uppercase' field to '2', the translation can be avoided.

Specify Target IODF and User Password

Specify or revise the following values.

Target IODF name . . . 'USER1.IODF89.TEST2.WORK1'
Volume serial number . . ______ (If IODF does not exist
at the target node)
Replace target IODF . . . 2  1. Yes
2. No (If IODF already exists)
User ID . . . . . . . : USER1
Node . : TESTNODE
Password . . . . . . .
Reentered password . .
Translate password to uppercase . . 1  1. Yes
2. No

Figure 19: Specify Target IODF and User Password
Defining a surrogate for the receiving user ID:

If you want to avoid sending passwords across the net, on the receiving system, you can define a surrogate user ID for the receiving user. The import job, submitted by the surrogate user, will run with the identity and authorization of the receiving user, without a password being sent.

To enable user authentication without sending a password, perform the following steps:

1. Define a surrogate user ID for the receiving user and the appropriate access rights for the sending and receiving users as shown in the example hereafter. This step is required as a setup only once.

2. When you export an IODF in unattended mode, on the Specify Target IODF and User Password panel (Figure 19 on page 37), enter a dummy character for the password and password confirmation (for example, an ‘*’*) to suppress sending of a password to the receiving target system.

3. On panel Define JCL for IODF Import panel (Figure 18 on page 37), replace the statement

   /*LEAVE THIS JOB CARD UNCHANGED: USERID AND PASSWORD ARE GENERATED

   with the target/receiving user ID to provide the following JCL:

   //JOBNAME  JOB (ACCT,BOX), 'USER',CLASS=CLASS,
   //          MSGCLASS=MSGCLASS,MSGLEVEL=(1,1),
   //          USER=user_r
   /*ROUTE    XEQ HCD3

   In the following example, user_s and node_s denote user ID and node ID of the sender and user_r and node_r denote the respective ids of the receiving system (running an operating system in unattended mode).

On the node_r issue:

- The first statement controls whether jobs coming from node_s are allowed to enter the system from node_s. It also controls, whether jobs that enter the system from node_s nodes have to pass user identification and password verification checks.
- The second statement defines a user_r.SUBMIT profile in the SURROGAT general resource class for user_r who requires a surrogate user to act on his behalf.
- The third statement authorizes user_s to act as a surrogate for user_r.

Import an IODF

This task imports previously received IODF data into HCD. You can export and import IODFs between different HCD versions. You can, for example, export an IODF from HCD 1.4 and import it with HCD 1.7. Note that in this case you have to upgrade the earlier version IODF before using it with HCD, because the export/import function does not change the format of the IODF.

You can also invoke the Import IODF task by using the Import task in batch mode. For details refer to “Import an IODF” on page 325.

At an unattended target system, the IMPORT batch utility is invoked automatically when an IODF, with its associated job control, arrives at the system.

Upgrade an IODF

This task upgrades an IODF from a back-level format to the new format that is required for the current release of HCD.

Invoke the Upgrade I/O definition file to new format task as follows:

1. On the HCD Primary Task Selection panel (Figure 9 on page 16), specify the IODF to be upgraded at the bottom of the menu and then select option 6. Maintain I/O definition files.
2. From the Maintain I/O Definition Files panel (Figure 15 on page 34), invoke option 8. **Upgrade I/O definition file to new format**.

HCD displays the following dialog:

![Upgrade I/O Definition File dialog](image)

**Figure 20: Upgrade an IODF**

Table 3 on page 39 shows the options you have. You can either:

- Upgrade into a new work IODF
- Upgrade in place

<table>
<thead>
<tr>
<th>Table 3: Size considerations when upgrading a back-level IODF.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Upgrade IODF</strong></td>
</tr>
<tr>
<td>From</td>
</tr>
</tbody>
</table>
| V4 IODF | V5 IODF | 1. with Condense option: Default size of new IODF is double the size of the related production IODF. You can change this default size, if necessary.  
2. without Condense option: Default size of new IODF is the size of V4 IODF. | V5 IODF has same size (number of allocated blocks) as V4 IODF |

**Note:**

1. The **Upgrade in place** option cannot be requested for a production IODF (as a production IODF cannot be altered). The final result of the upgrade IODF function is always a work IODF.
2. If you plan to add or change many devices in the configuration, ensure that you increase the space allocation when creating the IODF to allow for these changes.

If you select to upgrade in place, the accessed IODF is formatted to a V5 IODF. While the allocated and used space values do not change, the space utilization of the used blocks will decrease depending on the number of devices that can be grouped.

If you select to upgrade to a new IODF, the accessed IODF will not be changed. HCD displays the **Create Work I/O Definition File** dialog (see Figure 21 on page 40). The space allocation default is set as follows:

- If you select **Condense IODF = Yes**, the default allocation value is set to double the size required for a corresponding production IODF. This may result in much lower space requirements than without condensing.
• If you select Condense IODF = No, the default allocation value is set to the number of used blocks of the IODF to be upgraded.

Create Work I/O Definition File

The current IODF was created by an earlier HCD release, and you have requested upgrade to a new data set. To create this data set, specify the following values.

Source IODF . . . . : 'DOCU.IODF00.TREXDOCU.HCMUG'
Allocated space . . : 1024
Used space . . . . : 27
IODF name . . . . : _____________________________________
Volume serial number : ______ +
Space allocation . . 64 (Number of 4K blocks)

F1=Help    F2=Split    F3=Exit    F4=Prompt    F9=Swap    F12=Cancel

Figure 21: Create Work I/O Definition File

After the upgrade completed successfully, HCD issues a message of success and accesses the upgraded IODF with which you can start to work now.

You can also invoke the Upgrade I/O definition file to new format task in batch mode. For details refer to “Upgrade IODF” on page 302.

Note: An IODF can also be upgraded using the Copy IODF task (see “Copy an IODF” on page 34).

Work with configuration packages

Configuration packages define subset IODFs which are extracted from the accessed IODF (centrally administered master IODF) and distributed for activation at selected target systems, while keeping the processor token in sync.

When invoked with option Work with Configuration Packages from the panel shown in Figure 15 on page 34, this task displays the Configuration Package list. Configuration packages can be added and edited, transmitted from a production IODF, and they can be deleted.

Figure 22: Sample Configuration Package List — left panel
The target user and node as well as the description of a configuration package can be edited by overwriting the information on the panel. When scrolling to the right you can also overwrite the target IODF name and attended/unattended information.

Define a configuration package

To define a new configuration package perform the following steps:

1. On the Configuration Package List, use F11=Add. If you want to use an existing configuration package as a model, select the package and the Add like action from the context menu (or use action code a). The Add Configuration Package panel is displayed.

Add Configuration Package

Specify the following values.

- Package name . . . . . . CBBA____
- Package description . . For A/T system M8ATSO
- User ID . . . . . . . . OS390H1
- Node ID . . . . . . . . PKSTCB88
- Operating system status 2 1. Attended 2. Unattended (MVS only)
- Target IODF name . . . . 'IODFST.IODF8A'
- Target volume . . . . . CMNSTC (for unattended, if not SMS)

Figure 23: Add Configuration Package

2. Enter a package name and other entry data as appropriate. The user ID and node specify the destination of the corresponding subset IODF. The name of the accessed IODF is used as default for the name of the IODF at the target system and for the Descriptor field 1 and Descriptor field 2 parameters during the Build Production IODF step, when the configuration package is transmitted (see step “5” on page 44 in section “Transmit a configuration package” on page 42). If no value is entered for the Operating system status, Attended is assumed which means that a user has to import the subset IODF into HCD at the target system. This is done automatically if 2 (Unattended) is specified.

3. After you press ENTER, HCD displays the updated Configuration Package list.

Edit a configuration package

The target user and node, the attended/unattended information, the target IODF name, and the description of a configuration package can be edited on the Configuration Package List (see Figure 22 on page 40).

To edit a configuration package perform the following steps:

1. Display the Configuration Package List.
2. Make changes to the configuration package by overwriting the entries on the list panel.
   - To change the IODF name and attended/unattended information scroll to the right and overwrite.
3. Press ENTER.

Delete a configuration package

To delete a configuration package perform the following steps:

1. On the Configuration Package List select the package and the Delete action from the context menu (or use action code d). The Confirm Delete Configuration Package panel is displayed.
2. Press the Enter key to confirm the deletion. HCD displays the updated Configuration Package list.
Work with configuration package objects

Configuration package objects are operating systems or processors. The objects in a configuration package determine the scope of the corresponding subset IODF. To change the content of a configuration package select the package from the Configuration Package List (see “Work with configuration packages” on page 40) and the Work with Configuration Package Objects action from the context menu (or use action code  Q). The Configuration Package Objects List is displayed.

Add a configuration package object

To add a configuration package object to a configuration package perform the following steps:

1. Use F11=Add or select an object from the Configuration Package Object List and the Add like action from the context menu (or use action code  A). The Add Configuration Package Object panel is displayed.
2. Select the Configuration type, processor (PR) or OS configuration (OS), and specify the Configuration ID of the object.
3. Press the Enter key. The updated Configuration Package Object List is displayed.

Merging changes into a master work IODF

If a system has been supplied with a subset IODF and configuration changes have been made using the subset IODF, you may want to update the master IODF with these changes. This can be done by merging the changed configuration package objects from the subset IODF back into the master work IODF.

First the updated subset IODF is exported on the corresponding system and imported at the system administering the master IODF. You can update the master work IODF by merging or by replacing configuration package objects.

The Merge action updates new/changed data in the master work IODF.

The Replace action first deletes the object configuration present in the master work IODF and then replaces it with the new one.

To merge a configuration package object into a master IODF perform the following steps:

1. Access the master work IODF the configuration package belongs to.
2. Display the Configuration Package Object List and select one or more objects. Select Merge (action code  M) or Replace (action code  R) from the context menu.
3. Specify the source IODF the configuration package refers to and press the Enter key.
4. The master work IODF is updated and a new master production IODF can be built.

Note:

1. Switch configurations are not repeated by Merge and Replace. If necessary, switch configuration changes should be made in the master IODF before Merge or Replace are performed.
2. The Merge and Replace actions utilize the Repeat action for entering the new configuration data into the master work IODF. Refer to “Repeating (copying) processors” on page 78 and “Repeating (copying) operating system configurations” on page 69 for details on the Repeat action.

Delete configuration package objects

To delete a configuration package object from a configuration package perform the following steps:

1. Select an object from the Configuration Package Object List and the Delete action from the context menu (or use action code  C).
2. Press the Enter key. The updated Configuration Package Object List is displayed.

Transmit a configuration package

Transmitting a configuration package means building a subset IODF and transmitting it to the target system specified in the configuration package. This action can only be carried out from a production IODF. To transmit a configuration package perform the following steps:
1. Select the package from the Configuration Package List and the Transmit configuration package action from the context menu (or use action code X).

2. If the following conditions are fulfilled, the Transmit Configuration Package panel is displayed:
   - The accessed IODF is a production IODF.
   - The selected configuration package contains at least one configuration object (OS or processor).
   - In the selected configuration package a destination user and node are specified.
   - In the selected configuration package a target IODF is specified.

   Descriptor field 1 is defaulted to the HLQ of the target IODF name in the configuration package; Descriptor field 2 is defaulted to the 2nd qualifier of the target IODF name in the configuration package.

<table>
<thead>
<tr>
<th>Transmit Configuration Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package name . . . . : PACK1</td>
</tr>
<tr>
<td>High level qualifier . . : HCDI</td>
</tr>
<tr>
<td>JCL member used . . . : CBDJXMIT</td>
</tr>
<tr>
<td>Volume . . . . . . . . . . . . . . . . .</td>
</tr>
<tr>
<td>Space . . . . 32 (4K blocks)</td>
</tr>
<tr>
<td>Descriptor field 1 . . : WEID</td>
</tr>
<tr>
<td>Descriptor field 2 : IODFCC</td>
</tr>
<tr>
<td>Target user ID . . . : WEID</td>
</tr>
<tr>
<td>Target node ID . . : BOEHCD1</td>
</tr>
<tr>
<td>Operating system status</td>
</tr>
<tr>
<td>1. Attended</td>
</tr>
<tr>
<td>2. Unattended (MVS only)</td>
</tr>
</tbody>
</table>

   Specify or revise the job control statements for the transmit job.
   
   //HCDIXMT JOB (3243),'WEID',CLASS=A,MSGCLASS=H,REGION=0M,NOTIFY=HCDI
   //*/
   //*/

   **Figure 24: Transmit Configuration Package**

3. Review the entry data displayed. You may change Descriptor field 1, Descriptor field 2, the target user ID and node ID, the Operating system status, the high level qualifier and/or the volume of the IODFs and other data sets to be generated temporarily, as well as the estimated size of the target IODF.

   If you want to use a customized transmit procedure you can specify a different JCL member and/or a JCLLIB parameter in the job control statement area. Once changed, the statements will be retained across sessions. If you want to use different load libraries, specify JOBLIB, because the procedure contains several steps.

   If the transfer is performed unattended, the Specify Target IODF and User Password dialog is displayed. Refer to “User authentication for unattended mode” on page 37 for more information.

The master production IODF is updated with the last sent date and time when the job stream is built. The JCL member provided, CBDJXMIT, consists of the following steps:

1. A temporary work and a temporary production IODF, according to the values entered in the Transmit Configuration Package panel are initialized.

2. The processor configurations included in the selected configuration package are written to a data set and then migrated to the temporary work IODF.

   To generate coupling facility connections, HCD needs both the CF sender and CF receiver channel paths, or peer channel definitions, within the same IODF. Therefore, if a processor of the configuration package contains a connected sending CF channel path, the processor containing the coupling facility partition will be included (with the coupling facility partition only) even if it is not part of the configuration package. (The receiving CF channel paths of the CF partition are indicated as occupied if they have connections to processors outside of the package.)

   The switches and ports which contain connections to a processor of the configuration package are distributed as well. Ports that contain connections to a processor, switch or control unit outside of the scope of the configuration package are indicated as occupied.
3. The OS configurations related to the selected configuration package are written to a data set and then migrated to the temporary work IODF.

4. The switch configurations related to the selected configuration package are written to a data set and then migrated to the temporary work IODF.

5. A temporary production IODF is built from the temporary work IODF.

   The processor token is not changed by this action.

6. The production IODF is exported to the specified user ID and node, attended or unattended, as selected.

7. The temporary work and production IODFs are deleted.

The transmit action can also be carried out using a batch utility. A sample job, CBDSXMIT, has been provided in SYS1.SAMPLIB.

**Activity logging and change logging**

When you end an HCD session or access a different IODF after modifying some configuration data, and if an activity log is enabled for the currently accessed IODF (“Create or specify an IODF” on page 28 explains how to specify an activity log), then HCD displays an activity log panel, showing the information which will be added to the activity log.

```
Date & Time . . . . . . :   2005-11-07  10:54:46
User  . . . . . . . . . :   BOKA
I/O definition file  . :   'BOKA.IODF00.ACT'
Change reference number :   000002

****** ******************* Top of Data *******************
000001 Type your log entries here ...
000002 ...
000003 ...
000004 ...

****** ******************* Bottom of Data *******************
```

*Figure 25: Example of an Activity Log without automatic logging*

This information comprises the date and time, the user ID of the user who modified the IODF, the name of that IODF, and a change reference number. You can add your own comments to the log, for example, describing what you have done.

You can enable **automatic activity logging** by entering the following keyword into the HCD profile:

```
CHANGE_LOG = YES
```

With this setting, HCD generates automatic entries into the activity log panel, describing the updates on HCD objects, like for example, add, delete, or connect, disconnect. You can see examples of such entries in Figure 26 on page 45. You can edit the entries before you exit this panel.

The activity log panel is an ISPF/PDF panel, so the normal ISPF/PDF rules apply to it. Activity log editing requires the profile option AUTOSAVE ON. When calling the ISPF editor, macro CBDCACTL is used. You can tailor this macro to your installation needs (for example, for setting specific profile options). Use the F3=Exit key to continue.

HCD appends the qualifier ACTLOG to the IODF data set name to create the data set name for the activity log. If the ACTLOG data set does not yet exist, HCD dynamically allocates one using ESOTERIC system defaults (see “SMS-related considerations” on page 338). If you want to use a specific volume, you can specify the volume serial number to allocate a new activity log in the HCD profile (see “Defining an HCD profile” on page 16).
You can view or print the activity log associated with the currently accessed IODF during an HCD session by selecting the option **Print or compare configuration data** from the **Primary Task Selection** panel and then **View the activity log** or **Print the activity log**.

You can also use the ISPF/PDF facilities to browse or print an activity log.

HCD generates its proposed activity log entries from the change log file. Setting the `CHANGE_LOG = YES` option in the HCD profile causes HCD to create the change log file and store in it all update operations on the related IODF in a wrap-around manner.

The change log file is a VSAM data set. If it is not accessible for any reason, HCD cannot create any automatic activity log entries.

The name of the change log file is built from the related IODF data set name plus the suffix CHLOG. It is allocated in the same size as the related IODF.

You can write the contents of the change log file to the HCD trace data set using the TRACE command with ID=CLOG: `trace on, id=clog, level=8`.

With the profile options CHLOG_VOL and ACTLOG_VOL, in non SMS-managed environments, you can specify the volume serial numbers where to allocate a new change log or activity log.

---

### Figure 26: View Activity Log

<table>
<thead>
<tr>
<th>Command ==&gt;</th>
<th>Scroll ==&gt; PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity log . . : BOKA.IODF00.ACT.ACTLOG</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REFERENCE</th>
<th>DATE</th>
<th>TIME</th>
<th>USER ID</th>
<th>IODF NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>000001:</td>
<td>2005-10-13</td>
<td>17:02:15</td>
<td>DOCU</td>
<td>DOCU.IODFA0.TES</td>
</tr>
<tr>
<td>Device 0001 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS device MVS1.0001 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device 0001(2) added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS device MVS1.0001(2) added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000002:</td>
<td>2005-10-13</td>
<td>17:14:11</td>
<td>DOCU</td>
<td>DOCU.IODFA0.TES</td>
</tr>
<tr>
<td>Processor PROC2 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSS PROC2.0(2) added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device 0003 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OS device MVS1.0003 added</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

### Rules for automatic activity logging

HCD applies the following rules during automatic activity logging:

- When creating an object with immediate updates without leaving HCD, HCD only creates an ‘**add object**’ log entry in the activity log.
- When updating the same object multiple times during one HCD session, HCD creates only one **update object** entry.
- Consecutive IDs, for example for channel subsystems, channel paths, control units or devices, are marked with a ‘quantity’ number in parenthesis behind the starting ID.
- When repeating an object into a new IODF, no entry is created in the target IODF since this IODF is not in access by the user.

### Actions performed on IODFs and related activity and change log files

- When you delete an IODF, HCD also deletes the related activity and change log files.
• When you copy an IODF, HCD also copies the activity log file with all its contents. However, HCD does not copy the change log file. Instead, a new change log file is created for the new IODF.
• When you build a production IODF, HCD copies the activity log file, but not the change log file.
• When you enable or disable an IODF for multi-user access, the same action is applied to the change log file. Before an update request is performed on an IODF, the change log file is refreshed to have the latest updates available. The activities of multiple users are logged in chronological order.
• An activity log data set is not enabled for multi-user access. If multiple users simultaneously access and update the related IODF, the activity log file is accessed sequentially in the order the users end the HCD session or access a different IODF. The users' activity log entries are written to the data set grouped by the user ID.

IODF release level compatibility

If you plan to share an IODF among multiple z/OS or OS/390 systems that are at different release levels, you have to consider several restrictions concerning IPL, IODF usage, and dynamic reconfiguration.

Table 4 on page 46 shows possible z/OS HCD levels that could be installed on your system. For each HCD level, the table shows whether you can take the following actions:

IPL
 IPL the z/OS release
HCD
 Use HCD to work with the IODF
Dyn
 Do a dynamic reconfiguration

<table>
<thead>
<tr>
<th>HCD installed with:</th>
<th>Action</th>
<th>IODF Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>V4 IODF</td>
</tr>
<tr>
<td>z/OS 1.9 HCD (HCS7740)</td>
<td>IPL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HCD</td>
<td>Yes (See note 1.)</td>
</tr>
<tr>
<td></td>
<td>Dyn</td>
<td>Yes</td>
</tr>
<tr>
<td>z/OS 1.10 HCD (HCS7750) or later</td>
<td>IPL</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>HCD</td>
<td>Yes (6)</td>
</tr>
<tr>
<td></td>
<td>Dyn</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following notes refer to Table 4 on page 46.

Note:
1. Read-only access is provided. Upgrade of V4 IODF to V5 IODF is required for updates.
2. With HCD releases earlier than z/OS 1.10, you cannot directly access a multi-user access enabled V5 IODF. First you must remove the multi-user access capability from the IODF with z/OS 1.10 HCD or higher. In addition, you need to install the coexistence PTF for the corresponding z/OS release to prevent earlier HCD releases from accessing an IODF prepared for multi-user access (APAR OA22842).
Chapter 5. How to use the dialog

Overview
This information unit explains the following topics:

- Window layout
- Working with lists
- Promptable fields
- Commands and function keys
- Getting help
- Navigating through the dialog
- Filtering
- Job statement information used in dialogs

Window layout

Figure 27 on page 47 explains the areas of an HCD dialog window. These areas appear in the same position on every window unless you use ISPF to change the position of the command line. Not all areas are included on all dialogs.

1. Action bar.
   HCD provides an action bar-driven interface. You can select any of the action bar choices and display pull-down choices. Use F10=Actions to move the cursor to the action bar.

2. Title Line.
   - Shows the window title.
• Displays window identifiers, if you have asked for them.
• Displays positional information for the work area:

Row 1 of 3302 specifies that the first row of data that is displayed in the work area is the first row of 3302 available rows.

More: > specifies that more data can be seen by moving the work area to the right using F20=Right. This can also be More: <, which means moving is possible to the left, or More: < >, which means moving is possible to the left and right.

Instead of Row 1 of 3302, Filter Mode would be shown if the action list is filtered. For additional information, refer to “Filtering” on page 59.

3 Instruction Area.

Tells you how to proceed on the dialog window. On action lists (see “Action lists” on page 51) you can get more instruction information by pressing the F13=Instruct key or by using the INSTRUCT command.

4 Work Area.

You can use the following facilities to control the work area:

• The Filter action reduces the number of objects in an object list; this is described further in “Filtering” on page 59.
• The F7=Backward and F8=Forward keys scroll the work area backward and forward. The end of the information is indicated by a line containing - end - or BOTTOM OF DATA.
• The F19=Left and F20=Right keys move the work area of an action list left and right (or RIGHT and LEFT command).
• The LOCATE command scrolls an object list so that a specific object (or the nearest lower match) is at the top of the work area. Search criteria is the object identifier shown in the leftmost data column.
• The TOP command scrolls backward to the top of the work area.
• The BOTTOM command scrolls forward to the bottom of the work area.

Figure 28 on page 48 shows the areas of a data entry dialog.

![Add Channel Path](image)

Specify or revise the following values.

Processor ID . . . . : GA2
Configuration mode . : LPAR
Channel Subsystem ID : 0

Channel path ID . . . . - + Channel ID . . . ___
Number of CHPIDs . . . : 1
Channel path type . . . +
Operation mode . . . : DED +
Managed . . . . . . No (Yes or No) I/O Cluster ________ +
Description . . . . ________________________________

Specify the following values only if connected to a switch:
Dynamic switch ID . . . __ + (00 - FF)
Entry switch ID . . . __ +
Entry port . . . . - +
F1=Help F2=Split F3=Exit F4=Prompt F5=Reset F9=Swap F12=Cancel

Figure 28: Layout of a data entry dialog

This panel has the following characteristics:
• The position and length of empty entry fields are shown by underscore characters ( _ ) and highlighting. If an entry field contains an entry, the underscore characters are not shown.
• Fields that you cannot change are preceded by a colon ( : ).
• Fields that you must complete may (depending on the terminal) be highlighted by a different color.
• Input fields with a plus sign (+) indicate that you can prompt information for this field using F4=Prompt. For more information on the prompt facility, refer to “Promptable fields” on page 54.

Working with lists

HCD presents most of the information in form of lists. Depending on the list, there are different methods to select an item from the list or to perform actions. The different types of lists are:

• Numbered selection lists
• Unnumbered single selection lists
• Unnumbered multiple selection lists
• Action lists
• Message lists

This section describes the different types of lists and the respective selection methods.

Numbered selection lists

To select an item from a numbered selection list, type the number you want to select in the input field (precedes the first list item) and press the Enter key. An example of a numbered list is the HCD Primary Task Selection panel (see Figure 29 on page 49), displayed when you start an HCD session.

```
z/OS V2R2 HCD
Command ==> _____________________________________________________
Hardware Configuration
Select one of the following.
- 0. Edit profile options and policies
  1. Define, modify, or view configuration data
  2. Activate or process configuration data
  3. Print or compare configuration data
  4. Create or view graphical configuration report
  5. Migrate configuration data
  6. Maintain I/O definition files
  7. Query supported hardware and installed UIMs
  8. Getting started with this dialog
  9. What's new in this release

For options 1 to 5, specify the name of the IODF to be used.
I/O definition file . . . 'DOCU.IODF00.HCD.WORK' +
```

Figure 29: Primary Task Selection panel

Unnumbered single selection lists

To select a list item from an unnumbered list from which you can select only one item, you can:

• Place the cursor in front of a list item and press the Enter key
• Select a list item with an S or a / (slash) and press the Enter key.

Figure 30 on page 50 is an example of a list of IODFs from which you can select one IODF.
You can request a list like the one in Figure 30 on page 50 by pressing F4=Prompt while your cursor is on the I/O definition file entry field (Figure 29 on page 49). For more details concerning prompting, refer to “Promptable fields” on page 54.

<table>
<thead>
<tr>
<th>IODF Name</th>
<th>MUA</th>
<th>Volume</th>
<th>Size</th>
<th>Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCU.IODF0A.CTC.SCEN1</td>
<td>Yes</td>
<td>HCDSMS</td>
<td>1080</td>
<td>2008-10-21</td>
</tr>
<tr>
<td>DOCU.IODF0A.CTC.SCEN2A</td>
<td>Yes</td>
<td>HCDSMS</td>
<td>1080</td>
<td>2008-10-21</td>
</tr>
<tr>
<td>DOCU.IODF0A.CTC.SCEN2B</td>
<td>No</td>
<td>HCDSMS</td>
<td>1080</td>
<td>2008-10-21</td>
</tr>
<tr>
<td>DOCU.IODF0A.CTC.SCEN2C</td>
<td>Yes</td>
<td>HCDSM2</td>
<td>1080</td>
<td>2008-10-22</td>
</tr>
<tr>
<td>DOCU.IODF0B.HCD.PROD</td>
<td>MIGRAT</td>
<td>2008-02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOCU.IODF0B.HCD.WORK</td>
<td>MIGRAT</td>
<td>2008-02-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOCU.IODF0B.HCM.TUTORIAL.PROD</td>
<td>No</td>
<td>HCDSMS</td>
<td>2880</td>
<td>2008-06-17</td>
</tr>
<tr>
<td>DOCU.IODF0B.HCM.TUTORIAL.WORK</td>
<td>Yes</td>
<td>HCDSM3</td>
<td>2160</td>
<td>2008-09-12</td>
</tr>
<tr>
<td>DOCU.IODF0B.ZOS111.WORK</td>
<td>Yes</td>
<td>HCDSMS</td>
<td>2880</td>
<td>2008-09-26</td>
</tr>
<tr>
<td>DOCU.IODF0B.ZOS110.HCDUG</td>
<td>Yes</td>
<td>HCDSM2</td>
<td>1080</td>
<td>2008-09-27</td>
</tr>
<tr>
<td>DOCU.IODF44.MAINT.WORK</td>
<td>MIGRAT</td>
<td>2008-03-06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**NOTE:** For migrated IODFs (with indication MIGRAT in column Volume), HCD cannot determine the MUA-status and the size and therefore, columns MUA and Size remain blank in such cases.

**Unnumbered multiple selection lists**

To select a list item from an unnumbered list, from which you can select one or more list items, place a slash (/) in front of one or several list items and press the Enter key. In some cases, list items in unnumbered multiple selection lists are already preselected. You can overwrite this preselection.

To select a range of objects, you can place a left parenthesis ( in front of the first item in the range and a right parenthesis ) in front of the last item in the range. See also “Using the context menu” on page 51.

Figure 31 on page 50 is an example of an unnumbered multiple selection list.

<table>
<thead>
<tr>
<th>CSS ID</th>
<th>Partition Name</th>
<th>Number Usage Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_0</td>
<td>HUGO</td>
<td>2 OS</td>
</tr>
<tr>
<td>_1</td>
<td>LPAR01</td>
<td>1 CF/OS</td>
</tr>
</tbody>
</table>

**Figure 30: Example of a single selection list**

**Figure 31: Example of a Multiple Selection List**
**Action lists**

Figure 33 on page 52 is an example of an action list. You see a panel like this one when you want to define, modify, or view I/O devices.

HCD uses the concept of object-to-action processing. That is, to work with an object, you first have to select the object, and then the action. For some actions, you do not have to explicitly select an object; for example, to add an object to an action list.

In an action list, you have several possibilities to perform an action on a list object:

- Using the context menu
- Using the action code
- Typing over data in the panel

**Using the context menu**

To perform an action on one or several objects in an action list, you can use the context menu:

1. Select an object by placing a slash */ in front of a list item.
   
   To select a range of objects, you can place a left parenthesis ( in front of the first item in the range and a right parenthesis ) in front of the last item in the range.

2. Press the Enter key. HCD displays a context menu showing all valid actions for the selected objects.

   ```
   Goto  Filter  Backup  Query  Help
   -----
   Actions on selected devices
   Command ===> Select by number or action code and press Enter.
   Select one or
   --------
   Devis
   / Number Type
   0001 3278
   0008 9033
   0009 9032
   009A 9032
   00C1 3480
   01D1 3390
   01D2 3390
   01D3 3390
   01D4 3390
   01D5 3390
   01D6 3390
   01D7 3390
   01D8 3390
   01D9 3390
   * = requires TSA I/O Operations, ** = requires GDDM
   / 0001 F1=Help  F2=Split  F3=Exit  F9=Swap  F12=Cancel
   0008 F2=Help  F3=Exit
   0009 F4=Prompt
   009A F5=Reset
   00C1 F7=Backward
   01D1 F8=Forward  F9=Swap  F10=Actions  F11=Add  F12=Cancel  F13=Instruct
   01D2 F20=Right  F22=Command
   01D3
   01D4
   01D5
   01D6
   Figure 32: Action list with a context menu
   
   3. Select an action by entering the number or action code (letter in parentheses) in the entry field. After pressing the Enter key, the context menu is closed and the action is performed for the selected rows.

   If only one action is possible on an action list panel, the context menu is not shown, but the action is performed immediately after entering a */ (slash) or an s.

   In the example in Figure 32 on page 51, the following objects are changed:

   - Objects 0001 through 01D4, and
   - Object 01D6

   A # marker in the selection column indicates that the row is disabled and not available for processing. For example, coupling facility devices are marked in such a way.
Using the action code

As you get familiar with the dialog, you might find it easier to select a list item and an action in one operation by means of an action code. To do this, enter the action code in the action column, which is the entry field to the left of the associated list item; then press the Enter key. Figure 33 on page 52 shows an example (d for delete and c for change).

<table>
<thead>
<tr>
<th>Number</th>
<th>Device</th>
<th>Type</th>
<th>CSS</th>
<th>OS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>9632-3</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>9632-3</td>
<td></td>
<td>3</td>
<td>4</td>
<td>0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0022</td>
<td>BSC2</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0023</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0024</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0025</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0026</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0027</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0028</td>
<td>TWX</td>
<td>1</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0029</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002A</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002B</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002C</td>
<td>BSC2</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002D</td>
<td>BSC2</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002E</td>
<td>BSC1</td>
<td>4</td>
<td>4</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFFC</td>
<td>CFS</td>
<td>1</td>
<td>4</td>
<td>FFFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 33: Action list with action codes

You can select more than one list element and, if necessary, you can specify different action codes for each of the objects. You are first asked to confirm the deletions. Then the other actions (for example, in Figure 33 on page 52 a change c) are performed sequentially row after row.

To get a list of action codes, place the cursor in the action column field and then press the F4=Prompt key. The same context menu is shown when using the / in front of a list item and pressing the Enter key. For an example, see Figure 32 on page 51, or Appendix A, “How to navigate through the dialog,” on page 341.

If you press the F1=Help key instead of the F4=Prompt key, you get a list from which you can request explanation of the action codes.

Action codes and selection markers

You can also specify individual action codes within a marked range. If you do so, the following rules apply:

- When you press the Enter key, the single action codes are processed. The row selected with selection markers are not processed, they are still shown after processing the action codes.
- When you press the Enter key again, HCD shows the context menu for the rows selected with selection markers.

After successful operation, selection markers and action codes are removed from the list. If the operation is interrupted due to an error, selection markers and action codes not yet processed are still shown. You can remove them by pressing the F5=Reset key.

Typing over existing data

You can also make changes to editable fields by typing in new data or typing over existing data directly on the displayed panel.
You have to press the Enter key to process the changes. HCD then validates the data and displays the panel again. The changes are processed sequentially row after row. Changes, which would need a processing of multiple row changes at once will not be possible.

When you exit action lists, all changes to the list since you last pressed the Enter key are cancelled. You can use the F5=Reset key to reset the values of all fields that you have changed since you last pressed the Enter key.

Message lists

One single operation can produce multiple messages. In this case, HCD displays a message list. You can then:

- Use the **Explain message** action from the context menu (or action code 3) to get an explanation of the message.

  ![Message List](image)

  *Figure 34: Message List*

  - Use the **Delete message** action from the context menu (or action code d) to delete a message from the message list.
  - Select **Save messages** from the **Save** action bar to save the displayed messages in the corresponding message log file.

How to use the dialog 53
The messages in Figure 34 on page 53 are sorted by severity, which is indicated in column **Sev**:

- Messages with severity code **T** (terminating) and **E** (error) require your intervention before you can continue to work with HCD.
- For warning messages there are two severity codes **S** (severe warning) and **W** (normal warning). Both severities let you finish the current HCD function. However, you should carefully consider the warnings and it is recommended to remove the reason of the messages.
- Messages preceded by severity code **I** are informational messages.

**Promptable fields**

The HCD prompt facility reduces what you have to remember, what you have to type, and, possibly, what you have to correct due to typing errors. You can use the prompt facility if there is a plus sign (+) to the right of an entry (or its column heading on an action list). Just place the cursor on the entry field and press the F4=Prompt key.

HCD then displays a prompt selection menu that lists all the values that are currently valid for the field. For long lists (of I/O devices, for example), HCD first displays a menu to let you limit the values listed (to only DASD devices, for example).

```
Add Partition

Specify the following values.

Partition name . . . PROD
Partition number . . 1
Partition usage . . OS  +
UID uniqueness . . N (Y/N)

Description

Available Partition Usage Types
Select one.
F1=Hel
F9=Swa

Usage   Explanation
OS      Operating system
CF      Coupling facility
CF/OS   Coupling facility or operating system

*********** BOTTOM OF DATA ***********
```

*Figure 36: Example of a Prompt Selection Panel*

Prompt is also available for the action column. For this purpose you must place the cursor on the action column. HCD displays the same context menu as when using the `/` (slash) in the action column and pressing the Enter key. For an example, see Figure 32 on page 51. Note that there is no '+' sign shown for the action column heading.

To select a value, place the cursor to the left of (or on) that value or select the value with `S` or `/` (slash), then press the Enter key. HCD inserts that value into the entry field or, in case of selecting an action, performs that action immediately.

The prompt list is built dynamically; if a value can be used only once in a configuration then, after it has been selected, either it does not appear in the list again, or it is marked as nonselectable - with the hash sign (#).

**Note:** It is possible that HCD initially accepts a selection, but rejects it later after further validation when the entered context information is completed.

Some promptable fields can have a large number of choices, for example prompts for device numbers or control unit numbers. In these cases HCD limits the values to a maximum of 128 entries. If the value, you are looking for, is not contained in the choices, you can enter a reference number into the field. If you then press the F4=Prompt key, HCD will display the numbers that follow the reference number.
Commands and function keys

All HCD list panels have a command line on which you can enter the usual ISPF commands, TSO commands, or specific HCD commands.

You can use F22=Command to move the cursor to the command line. When the cursor is in the command line, F22=Command lets you step back through the commands that you have previously entered (including ISPF commands).

The HCD dialog uses 24 function keys, if your ISPF session allows the use of 24 function keys. The function keys assignments can be shown or hidden by entering PFSHOW in the command line.

To perform a function, just press that function key.

Getting help

HCD offers an extensive help facility. From any panel, you can get context-sensitive help by pressing the F1=Help key. Table 5 on page 55 shortly explains the available types of help and how to obtain it.

<table>
<thead>
<tr>
<th>Type of Help</th>
<th>Description</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>An explanation of what you can enter in a specific entry field on the current panel.</td>
<td>Place the cursor in the entry field and press the F1=Help key.</td>
</tr>
<tr>
<td>Extended</td>
<td>Gives information on the content and task of a function panel.</td>
<td>Move the cursor to a non-interactive field in the function panel and press F1, or select Extended help in the action bar, or press F2=Ex_help in field help panels.</td>
</tr>
<tr>
<td>Instruction</td>
<td>Specific instructions on what you can do on the current action list panel.</td>
<td>Press the F13=Instruct key. Or select Help from the action bar.</td>
</tr>
<tr>
<td>Command</td>
<td>An explanation of the HCD commands that you can enter in the command line.</td>
<td>Place the cursor in the command line and press the F1=Help key. For detailed help on a specific command, type the name of the command and press the F1=Help key.</td>
</tr>
<tr>
<td>Keys</td>
<td>An explanation of the function keys.</td>
<td>Press the F1=Help key, then press the F9=Keyshelp key from the help panel. Or select Help from the action bar.</td>
</tr>
<tr>
<td>Reference Phrase</td>
<td>An explanation of any of the highlighted words or phrases that appear on a help panel.</td>
<td>Place the cursor on the word or phrase and press the Enter key.</td>
</tr>
<tr>
<td>Message</td>
<td>An explanation of a message that is displayed on the current panel.</td>
<td>Press the F1=Help key when a message is displayed, regardless of the cursor position.</td>
</tr>
<tr>
<td>Help for Help</td>
<td>A general explanation of how to use the help facility.</td>
<td>Press the F1=Help key, then press the F1=Help key again from the help panel. Or select Help from the action bar.</td>
</tr>
</tbody>
</table>
Table 5: Online Help Information (continued)

<table>
<thead>
<tr>
<th>Type of Help</th>
<th>Description</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Bar</td>
<td>An explanation of the action bar of a panel.</td>
<td>Request extended help, then place the cursor on the reference phrase of the action you want help for, and press Enter.</td>
</tr>
</tbody>
</table>

On a help panel, you can use F5=Window to change the size of the window, to reduce the scrolling required, or to see more of the underlying panel.

**Navigating through the dialog**

Most tasks you do with HCD are done in one step. However, some tasks need more than one step (multi-step tasks). For example, when you define an I/O device, you usually want to define the processor and operating system data for that device at the same time. HCD lets you define this data together, in one task, by displaying a sequence of panels in a predefined order.

**Moving forward and backward within a task**

The following function keys are available to move forward and backward in a multi-step task.

**Enter**
Displays the next panel in the predefined order. HCD validates your data, but does not save it in the IODF until you complete the task. At the end of the task, HCD redisplays the action list that precedes the task.

**F3=Exit**
Completes the task. HCD saves in the IODF all valid data that you have entered so far in the task (plus any data in the following steps that has been inherited by, for example, an Add like action). It then redisplays the action list.

**F6=Previous**
Available on the second and subsequent steps. It cancels the current step and redisplays the previous panel. Any data that you have entered on the current panel is lost.

**F12=Cancel**
Cancels the current task. Data entered in the current step is lost but, if you have entered data in any of the previous steps, HCD gives you the option to save that data (and any inherited data in the following steps) in the IODF.

**Fast path**

HCD offers you a fast path to jump directly from an action list to another panel without having to navigate through the dialog.

HCD offers you two possibilities to use this fast path:

- Using the Goto action bar choice
- Using the GOTO command

**Using the action bar choice**

Select the Goto action bar choice and on the resulting pull-down menu the target object you want to navigate to.
Objects marked with ... are associated with another object (for example, an EDT list is associated with an operating system). If you select such an object, HCD displays a list on which you can select the associated object:

**Figure 38: Operating System Configuration List as example of a Selection List**

**Using the GOTO command**

Specify GOTO (or just GO) and the target you want to jump to in the HCD command line. If you type GOTO without a target, a panel is displayed showing the same list of target objects as when using the Goto pull-down menu.

You can also jump to list panels that are associated with another object (for example, to the EDT list associated with an operating system). In this case, specify both the target and the object with which it is associated. If you omit this object, a selection list is displayed (for example, the Available Operating System list appears when going to the EDT list).

Optionally, you can also specify the object that will be shown as the first element of a list if you jump to a list panel.

The following figure shows the syntax of the command. The parameters can be separated by either blank, comma, or dot.
GOTO command:

- CHPID: processor ID
- CONS: OS ID
- CU: first list element
- DEV: first list element
- EDT: OS ID
- EDT: OS ID
- EDT: EDT ID
- GEN: OS ID
- GEN: EDT ID
- MIS: first list element
- PART: first list element
- PCIE: processor ID
- PORT: switch ID
- PR: first list element
- SW: first list element
- SWCON: switch ID
- MATRIX: switch ID
- X: first list element
First list element
The object that will be shown as the first element of a list if you jump to a list panel (same as if using the LOCATE command).

Examples
To go to the channel path list of processor SYSA and display CHPID 27 as the first element of the list, enter:

```
GO CHPID SYSA 27
```

To go to the esoterics list of EDT A1 in operating system MVSPROD and display the esoteric group ESO12 as the first element in the list, enter:

```
GO ESO MVSPROD A1 ESO12
```

To specify the processor ID and channel subsystem ID for XMP processors in GOTO PART or GOTO CHPID commands, you use the dot to concatenate both parts:

```
GO PART P2684.3
```

Filtering
If a displayed object list is too long, and scrolling back and forth is getting cumbersome, you may use the Filter function that lets you limit the displayed information. The Filter function is available when the action bar shows a Filter action bar choice. This is the case in a:

- Processor list
- Channel path list
- CTC connection list
- CF channel path connectivity list
- Switch list
- PCIe function list
- Port list
• Control unit list
• Device list
• Esoteric list
• I/O Path list

For example, on the device list, you can limit the displayed information by the following filter criteria:

• Device type
• Device group
• Whether the devices are defined to an operating system or not
• Serial number and description
• Volume serial number
• Device parameters and features (if you navigated to the I/O Device List via the operating system configuration list)
• Whether the devices are connected to a control unit or not
• Up to four control units, to which the devices may be connected
• Subchannel set ID

Rather than seeing all devices defined in the IODF, you see only those devices that are, for example, of a certain type connected to a certain control unit.

How to request filtering is illustrated in the following scenario:

1. Navigate to a processor's I/O Device List. Note that for XMP processors you first need to navigate to its Channel Subsystem List and then to its I/O Device List. Now tab to the action bar and select Filter from the action bar. The pull-down menu shown in Figure 39 on page 60 is displayed:

```
Goto     Filter     Backup     Query     Help
----------------------------------------------
  1. Set Filter                             Row 1 of 6 More:       >
  2. Clear Filter                            __________ Scroll ===> CSR
  3. Count rows on (filtered) list
Select    To add, use F11.
```

Processor ID : TSPROC1    Proc supporting multiple SSs    CSS ID : 0

```
----------Device--------- --#-- --------Control Unit Numbers + --------
/ Number   Type +        SS IM OS 1--- 2--- 3--- 4--- 5--- 6--- 7--- 8---
_ 0001     3390A         0  0  1  0001 0002 ____ ____ ____ ____ ____ ____
_ 0001     3390A         1  2  1  0001 ____ ____ ____ ____ ____ ____ ____
_ 0002,4   3390A         1  2  1  0001 ____ ____ ____ ____ ____ ____ ____
_ 0006,3   3390A         0  2     0001 0002 ____ ____ ____ ____ ____ ____
_ 0006A    3380A         2  1  0001 ____ ____ ____ ____ ____ ____ ____

******************************* Bottom of data ********************************
```

F1=Help      F2=Split     F3=Exit      F4=Prompt    F5=Reset     F7=Backward
F8=Forward   F9=Swap     F10=Actions  F11=Add      F12=Cancel   F13=Instruct
F20=Right    F22=Command

Figure 39: Filter example

2. Select Set Filter. This displays the Filter I/O Device List (Figure 40 on page 61), tailored for the underlying I/O Device List, where you can specify your filter criteria. Note that for example, the 'Subchannel set ID' filter criteria is only available for the I/O Device List if invoked from the Channel Subsystem List of a z9 EC processor or later model, or from the Operating System Configuration List (action code U in both cases). Similar panels are displayed for the other lists.

An alternative way to select filtering is to tab to the command line and type in FILTER SET.
Specify or revise the following filter criteria.

Device type . . . 3390A___ +
Device group . . . ________ +
Subchannel set ID . 0 +
Defined to OSs . . Y (Y = Yes; N = No)
Serial number . . _________
Description . . ________________________________
Volume serial number . . . __________ (for DASD)
Connected to CUs . . _ (Y = Connected; N = Not connected)
Specific CUs . . . ____ or ____ or ____ or ____

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset
F9=Swap     F12=Cancel

---Figure 40: Filter I/O Device List---

3. On this filter panel you can specify one or more filter criteria. All specified filter criteria must match to display the item. For example, if you specify a device type and a subchannel set where the devices of this type should be defined, and then press the Enter key, the I/O Device List is displayed again, now showing only those devices that match these filter criteria. Figure 41 on page 61 shows an example of a filtered list. If Filter Mode is displayed in the right top corner of the panel, it indicates that the filter mode is active.

---Figure 41: Reduced I/O Device List (using a filter)---

Most of the entry fields support wildcards, that means that an asterisk (*) can be specified in front and/or after the specified term. The following table illustrates the wildcard processing using the device type field as an example.

<table>
<thead>
<tr>
<th>Specified Term</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3380</td>
<td>Displays all devices of type 3380</td>
</tr>
<tr>
<td>3380*</td>
<td>Displays all devices of type 3380 regardless of its model</td>
</tr>
<tr>
<td>338*</td>
<td>Displays all devices whose type starts with '338'</td>
</tr>
<tr>
<td>*80</td>
<td>Displays all devices whose type ends with '80'</td>
</tr>
<tr>
<td><em>42</em></td>
<td>Displays all devices containing the string '42' within the type, for example 3420.</td>
</tr>
</tbody>
</table>

Use Field Help on the Filter panel to get information on whether wildcards are supported or not.
To remove the filter, use **Clear Filter** from the **Filter** action bar, or enter **FILTER CLEAR** in the command line.

To count the rows on a filtered list, use **Count rows on (filtered) list** from the **Filter** action bar choice, or enter **FILTER NUM** in the command line. An informational message displays the number of rows in the current list. If this list is filtered, only the rows matching the underlying filter criteria are counted.

### Job statement information used in panels

Some of the HCD tasks, invoked from the dialog, generate batch jobs. These batch jobs use EXEC procedures as shown in Table 2 on page 26.

The first time you use a task that generates an HCD batch job, you must specify a JOB control statement for the job. This statement can contain user-specific information, such as an account number and SYSOUT class. For example:

```plaintext
//WASR    JOB (3259,B0X10), 'SMITH', NOTIFY=WAS,
//            CLASS=A, REGION=4M, MSGCLASS=F, MSGLEVEL=(1,1)
```

You need to specify the statement only once; it is saved in your user profile and reused for all subsequent HCD batch jobs that you request (in this and following HCD sessions) until you change it. HCD does not validate the JOB statement.

With JCL overwrite statements you can modify the EXEC procedures that are invoked by the job.

**Note:**

1. A batch job requires a region size large enough to contain the HCD code (4M bytes) as well as the IODF (or two IODFs when you compare two IODFs).
2. A batch job to build an IOCDS must run on the processor on which the IOCDS is to be updated, except for processors configured in a processor cluster.
3. A batch job generated by HCD cannot run when the HCD dialog has exclusive access to the same IODF that the batch job uses. You can release the IODF by changing to another IODF or by ending the HCD session.
4. To use the HCD profile options (e.g. `UIM_LIBNAME=*`) for a batch job that is started from the dialog, you need to allocate the HCD profile data set to `xx.HCDPROF`, where `xx` is the job step name.
5. In a sysplex environment, use the `JOBPARM` parameter to specify in which system of the sysplex you want the batch job to run. For additional information, see Chapter 13, “How to invoke HCD batch utility functions,” on page 299.

Table 2 on page 26 lists the HCD tasks that use batch jobs. It also lists their job step names, and EXEC procedure names.
Chapter 6. How to define, modify, or view a configuration

Overview
This information unit describes:

• The possibilities for creating new objects
• The navigation methods through HCD
• A suggested sequence to define a configuration
• Step-by-Step instructions on how to work with (for example, define, change, prime, delete):
  – Operating system configurations
  – EDTs
  – Generics
  – Esoteric groups
  – Processors
  – Channel subsystems (for XMP processors only)
  – Partitions
  – PCIe functions
  – Channel paths
  – Control units
  – Devices
  – Consoles
• The possibilities to view information about objects

The information on how to work with switches is described in Chapter 7, “How to work with switches,” on page 145.

Before using the dialog of HCD to define a hardware configuration, you should have a plan of what your configuration should look like, and what you have to do to accomplish that. Preferably, the requirements of your configuration should be established in a configuration plan. Refer to z/OS HCD Planning (for a z/OS, OS/390, or MVS configuration) and z/VM CP Planning and Administration (for a z/VM configuration) for a description of what needs to be considered when this plan is prepared.

Creating new objects
You have three possibilities to create new objects: add, add like, and repeat (copy).

Add
Use the F11=Add key to define a new object. Initially, the entry fields contain (where applicable) default values supplied by HCD.

Add like
Use the Add like action from the context menu to define a new object that is based on the definition of an existing object. You just have to enter the fields that are different. A field that needs a unique value, such as the object’s identifier, is not copied.
Repeat (copy)

The action **Repeat (copy)** from the context menu is similar to **Add like**, but the definitions of all related objects are also copied. For example, if you repeat an operating system configuration, HCD also copies the definitions for all EDTs and consoles, and the connections to all I/O devices attached to that operating system. You can repeat parts of a configuration within the same or to another IODF.

This function is useful when you want to consolidate configuration data from several IODFs into one single IODF or to repeat configuration data (for example, esoterics) that is used several times in an IODF.

When copying parts of a configuration, the source data and the target data are merged.

- If the source object does not exist in the target IODF
  The new object is defined using the attributes you specified while copying the object. The objects and connections that are related to the object you want to copy are created with the same attributes as the source objects and connections.

- If the source object already exists in the target IODF
  The attributes of the target object are updated according to the attributes of the source object. If related objects or connections do not yet exist, they are created. If they already exist, their attributes are updated according to the attributes of the source.

Navigating through HCD

HCD offers three methods to navigate to objects:

- Centralized navigation
- Hierarchical navigation
- Graphical navigation

Centralized navigation

Centralized navigation means that you always navigate to objects starting from the Define, Modify, or View Configuration Data panel.

The tasks described in this section use this navigation method.

Hierarchical navigation

Hierarchical navigation means that you navigate to objects from top to bottom.

In Figure 42 on page 66 you start, for example, with option 3 to open the Processor List. From the Processor List, you can navigate to channel paths, from channel paths to control units, and finally from the control unit list to the device list. This device list - called Device List (attached) in Figure 42 on page 66 - is different from the device list you reach with option 5 from the Define, Modify, or View Configuration panel:

- The devices on this list are limited to the control unit you selected on the preceding control unit list.
- The actions offered on this list differ from the actions available on the device list reached with option 5 from the Define, Modify, or View Configuration panel.

Hierarchical navigation is useful, for example, when you want to use the **Attribute group change** action necessary to change the DYNAMIC parameter for a group of devices. In this case, you have to navigate to the device list via the operating system configuration list.

Graphical navigation

Graphical navigation means that you navigate to objects by viewing a graphical configuration report and jumping to the object lists using the F4=Jump function. Refer to “Create or view graphical configuration reports” on page 228 for information on how to use the graphical configuration report.
The graphical navigation is useful when you prefer a graphical representation of your configuration to navigate from object to object.

**Navigation map**

Figure 42 on page 66 illustrates how you can navigate from object to object. You can either navigate to objects using the *Work with object* actions from the context menu or using the appropriate action code, for example $s$. Note that you can reach the Generic List with two action codes: $g$ (ordered by name) or $p$ (ordered by preference value). For information on how to use action codes refer to “Using the action code” on page 52.

**Control Unit list and Device list**

You reach these lists with option 4 and 5 from the Define, Modify, or View Configuration Data panel. These lists show all devices defined in the IODF.

The Control Unit list (attached) and the Device list (attached) can only be reached from an object higher in the hierarchy. These lists are limited to the object higher in the hierarchy and the actions available on these lists differ from the actions available on the device and control unit lists you reach with option 4 and 5 from the Define, Modify, or View Configuration panel (refer to “Hierarchical navigation” on page 64). You can, for example, limit a control unit list to the control units attached to one specific channel path by opening the list from the channel path list.
**Suggested sequence to define a configuration**

A hardware configuration consists of:

- Information needed by z/OS and by z/VM. This is known as the operating system configuration or OS configuration.
- Information needed by the channel subsystem (CSS). This defines all the hardware resources (such as control units, channel paths, and I/O devices) and how they are connected.
- In some cases, your configuration contains information needed by the switch. For definitions and modifications of switches, refer to Chapter 7, “How to work with switches,” on page 145.

You can define the objects of a configuration in almost any order but at one point you have to connect objects together. You can only connect objects that are already defined; therefore it is useful to define the objects in a logical order. For example, when defining I/O devices during the hardware definition, you are...
prompted to add devices to existing operating system definitions. Therefore, it is useful to define the operating system before the devices.

The suggested sequence to define a configuration is:

1. Operating systems
2. EDTs (MVS-type only)
3. Esoterics (MVS-type only)
4. Switches (explained in Chapter 7, “How to work with switches,” on page 145)
5. Processors
6. Channel subsystems (for XMP processors)
7. Partitions (if processor in LPAR mode)
8. PCIe functions
9. Channel paths
10. Control units
11. Devices
12. Consoles

Working with operating system configurations

An operating system (OS) configuration defines the data that is used by z/OS or z/VM to build its control blocks. An IODF can contain more than one OS configuration; z/OS is told which one to use at IPL time.

Defining operating system configurations

It is recommended to define the operating system configuration before you define anything else. Proceed as follows to define an operating system configuration:

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations. HCD displays the Operating System Configuration List of all operating system configurations currently defined in the IODF:

   ![Operating System Configuration List](image)

   **Figure 43: Operating System Configuration List**

   If there are no existing configurations in the IODF, the operating system configuration list is empty.

2. Use F11=Add to define a new configuration. The data-entry fields are shown in the following figure, with sample data:
Add Operating System Configuration

Specify or revise the following values.

OS configuration ID . . . . . MVSD_____
Operating system type . . . . MVS       +
Description . . . . . . . . . z/OS operating system
OS config ID for D/R site . . DRMVSD__ (generated for GDPS)

Figure 44: Add Operating System Configuration

3. After you press the Enter key, HCD displays the updated Operating System Configuration List.

D/R site OS configurations

You can optionally type the name of a disaster recovery (D/R) site operating system configuration into the OS config ID for D/R site field. You need a D/R site OS configuration in a GDPS managed environment, where storage devices are mirrored over peer-to-peer remote copy (PPRC) connections in order to have a backup system defined for an emergency situation.

During the Build production I/O definition file or Build validated work I/O definition file tasks, the named D/R site OS configuration is automatically created as copy of the primary OS configuration. The resulting OS configuration is called generated OS configuration. It has all DUPLEX defined storage devices, that are classified by PPRC usage type DUPLEX, attached with reversed OFFLINE parameter value. That is, if the primary OS configuration specifies OFFLINE=NO, the D/R site OS configuration attaches the devices with OFFLINE=YES and vice versa.

Following rules apply to generated D/R site OS configurations:

• A generated OS configuration is re-created with every Build production I/O definition file or Build validated work I/O definition file from its primary OS configuration.

• With any kind of changes done to a D/R site OS configuration, (for example, modifying device-to-operating-system-relations, or changing EDT definitions), it loses its generated status. It is not automatically re-created with the next Build production IODF, so that the user modifications are preserved. To let it generate again from the primary site OS configuration, you must delete the modified D/R site OS first or specify profile option UNCOND_GENERATE_DROS=YES.

However, changing the description of a D/R site OS configuration does not change its generated status.

• You cannot specify the name of a D/R site OS configuration for a generated OS configuration.

The generated status of an OS configuration is shown in column Gen in the Operating System Configuration List (Figure 43 on page 67).

Changing operating system configurations

You can change the description of an operating system by just typing over the Description column or by using the Change action from the context menu (or action code C) on the Operating System Configuration List.

Changing the operating system configuration ID

To change the ID of an operating system, perform the following steps:

1. On the OS Configuration List select the operating system and the Repeat (copy) OS configurations action from the context menu (or action code R). The Identify Target IODF panel is displayed.

2. Press the Enter key to accept the default target IODF name, that is the IODF you are currently working with. The Repeat Operating System Configuration panel is displayed.
Specify or revise the following values.

OS configuration ID . . . . . ________
Operating system type . . . : MVS
Description . . . . . . . . . z/OS operating system

3. Specify the new identifier for the operating system and press the Enter key.

HCD displays the OS Configuration List now showing the new operating system.

4. Delete the old operating system by selecting the operating system and the Delete action from the context menu (or action code d). HCD displays a confirmation panel before showing the updated OS Configuration List.

Repeating (copying) operating system configurations

You can copy operating systems within the same or to another IODF. When copying an operating system, the following related objects and connections are also copied:

- Devices defined for the operating system
- List of consoles (NIPCONs for MVS)
- EDTs including their esoterics and generic groups

In the following example, you copy an operating system to another IODF that already contains an operating system with the same ID that you specify in the repeat panel.

1. Make sure that the operating system in the target IODF has the same operating system type as the one in the source IODF.

2. On the Operating System Configuration List, copy the operating system using the Repeat (copy) OS configurations action from the context menu (or action code r). The Identify Target IODF panel is displayed.

3. Specify the IODF to which the selected operating system is to be copied. The default IODF is the IODF you are currently working with.

4. On the following Repeat Operating System Configuration panel, specify the required values and press the Enter key.

   If a device defined to the operating system already exists in the target IODF, HCD tries to map the device. If more than one device with the same type and number exist, HCD maps the device to the first device found. To avoid this sometimes erroneous mapping, specify a processor and partition on the Repeat Operating System Configuration panel in which the operating system is to be run. Refer to “Migrating additional MVSCP or HCPRIO input data sets” on page 254 for detailed rules when a device is mapped.

   Console devices (NIPCONs for MVS) from the source operating system are copied to the beginning of the target's console chain.

5. Because you copy an operating system that already exists in the target IODF, HCD displays a panel to confirm the merging of configuration data.

Deleting operating system configurations

You can delete the complete definition of an operating system using the Delete action from the context menu (or action code d) on the Operating System Configuration List. This also deletes all EDTs, esoterics, consoles, and connections to devices defined for this operating system.
Working with EDTs

For an MVS-type operating system, you have to define at least one eligible device table (EDT). An EDT can consist of one or more esoteric device groups and names of the generic device types. Esoteric device groups are installation-defined groupings of I/O devices.

An OS configuration can contain more than one EDT; z/OS or OS/390 is told which one to use at IPL time. For background information about I/O device allocation in z/OS that you need to know when defining EDTs and esoteric groups, refer to [z/OS HCD Planning](#).

Defining EDTs

Before you can define EDTs, you must have defined an operating system. You define an EDT as follows:

1. On the **Primary Task Selection** panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations. HCD displays the Operating System Configuration List of all operating system configurations currently defined in the IODF.

2. On the Operating System Configuration List, select the OS configuration and the Work with EDTs action from the context menu (or action code S). HCD displays the EDT List.

![Figure 45: EDT List](image)

If there are no EDTs defined in the IODF, the EDT list is empty.

3. Use F11=Add to add a new EDT. The data-entry fields are shown in the following figure, with sample data:

![Figure 46: Add EDT](image)

4. After you press the Enter key HCD displays the updated EDT List.

Changing EDTs

You can change the description of an EDT by just typing over the Description column or using the **Change** action from the context menu (or action code C) on the EDT List.

**Changing the EDT ID**

To change the ID of an EDT, perform the following steps:
1. On the EDT List select the EDT and the Repeat (copy) EDTs action from the context menu (or action code r). The Identify Target IODF panel is displayed.

2. Press the Enter key to accept the default target IODF name, that is the IODF you are currently working with. The Repeat EDT panel is displayed.

3. Specify or revise the following values.

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration ID</td>
<td>0PSYS01</td>
<td>special</td>
</tr>
<tr>
<td>EDT identifier</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Description</td>
<td>.</td>
<td>special</td>
</tr>
</tbody>
</table>

4. Specify the new identifier for the EDT and press the Enter key. HCD displays the EDT List now showing the new EDT.

4. Delete the old EDT by selecting the EDT and the Delete action from the context menu (or action code d). HCD displays a confirmation panel before showing the updated EDT List.

Repeating (copying) EDTs

You can copy EDTs within the same or to another IODF. When copying an EDT, the esoteric groups and the VIO eligible parameter are also copied. Perform the following steps to repeat an EDT:

1. Make sure that the devices are already defined to the target operating system.

2. On the EDT List, select an EDT and the Repeat (copy) EDTs action from the context menu (or action code r). The Identify Target IODF panel is displayed.

3. Specify the IODF to which the selected operating system is to be copied. The default IODF is the IODF you are currently working with.

4. On the following Repeat EDT panel, specify the required values and press the Enter key.

   If the EDT already exists in the target IODF, the esoteric groups and their devices are merged. In this case, HCD displays a panel to confirm the merging of data.

Deleting EDTs

You can delete the definition of an EDT using the Delete action from the context menu (or action code d) on the EDT List. This also deletes the esoterics.

Working with generics

Device types with similar characteristics are logically grouped together and assigned a name to by the system. Such a group is called a generic device type. Reference to a generic device type is made by its name. To request a device allocation, a user can specify a generic device type rather than a specific device number. z/OS or OS/390 then allocates a device from the specified generic device type.

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations. HCD displays the OS Configuration List of all operating system configurations currently defined in the IODF.

2. On the Operating System Configuration List, select the OS configuration and the Work with EDTs action from the context menu (or action code w). HCD displays the EDT List.

3. To change the generics, select either the action Work with generics by name from the context menu (or action code g), or the action Work with generics by preference value (or action code p) on the EDT List. On the resulting panels you can then change the VIO indicator, the preference value for a generic, and you can display a subsequent panel that lists the devices belonging to the specific generic.
Working with esoteric groups

An esoteric device group identifies the I/O devices that are included in that group. The name you assign to an esoteric device group is called the esoteric name. To request allocation of a device from an esoteric device group, specify the esoteric name on the UNIT parameter of a JCL DD statement. The name esoteric device group is often shortened to esoteric group or simply esoteric.

Defining esoteric groups

You can define which esoteric device groups are in each EDT after you have defined the OS configuration. But you cannot assign I/O devices to an esoteric device group until the devices have been defined.

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations. HCD displays the OS Configuration List of all operating system configurations currently defined in the IODF.
2. On the Operating System Configuration List, select the OS configuration and the Work with EDTs action from the context menu (or action code S). HCD displays the EDT List.
3. On the EDT List, select the EDT and the Work with esoterics action from the context menu (or action code S). HCD displays the Esoteric List.

Figure 47: Work with esoterics

4. Use F11=Add to add a new esoteric group. The data-entry fields are shown subsequently, with sample data:

Add Esoteric

Specify the following values.

Esoteric name . . . ES002___
VIO eligible . . . No     *(Yes or No)
Token . . . . . . _____

Figure 48: Add Esoteric

5. After you press the Enter key HCD displays the updated Esoteric List.

Assigning devices to esoterics

You must define the I/O devices before you can assign them to an esoteric group. This is described in “Defining devices” on page 119. The State column on the Esoteric List indicates the esoteric groups that have no devices defined; so you can check later that your groups are properly defined.

If I/O devices are already defined, you can assign them to esoteric groups as described in “Adding devices to esoterics” on page 73.

Changing esoteric groups

You can change the following data of an esoteric group by just typing over the corresponding columns or by using the Change action from the context menu (or action code C) on the Esoteric List:
Adding devices to esoterics

You have two possibilities to add devices to esoterics:

While defining devices

When you define a device, HCD automatically prompts you to define the device to an operating system, then to an EDT and esoterics. Refer to “Defining devices” on page 119 for a step-by-step instruction on how to do that.

While modifying esoterics

You can add existing devices to esoterics at any time from the Esoteric List as follows:

1. On the Esoteric List, select the esoteric and the Assign devices action from the context menu (or action code S). HCD displays the Assign/Unassign Devices to Esoterics panel.
2. On the Assign/Unassign Devices to Esoterics panel, overwrite the values in the Assigned column to assign (YES) or unassign (NO) devices to the esoterics of the selected row.

If you do not want to assign a complete group of devices, you can limit the range by specifying a starting number and the number of devices. If you omit the number of devices, 1 is assumed.

![Assign/Unassign Devices to Esoteric](image)

Figure 49: Assign/Unassigned devices to esoteric

3. Press the Enter key to process the changes. Then press the F3=Exit key to return to the Esoteric List.

Repeating (copying) esoteric groups

You can copy esoterics within the same or to another IODF. When copying an esoteric, the list of assigned devices is also copied.

Perform the following steps to repeat esoterics:

1. Make sure that the devices are already defined to the target operating system.
2. On the Esoteric List select an esoteric and the Repeat (copy) esoterics action from the context menu (or action code R). The Identify Target IODF panel is displayed.
3. Specify the IODF to which the selected operating system is to be copied. The default IODF is the IODF you are currently working with.
4. On the following Repeat Esoteric panel, specify the required values and press the Enter key.

If the esoteric already exists in the target IODF, the devices defined for the esoteric are merged. In this case, HCD displays a panel to confirm the merging.
Deleting esoteric groups
You can delete the definition of an esoteric using the **Delete** action from the context menu (or action code `D`) on the Esoteric List.

Working with processors

A note on terminology:
Throughout this document, the following terms are used:

**XMP processors and SMP processors**
The term **XMP processors** designates processors that support multiple logical channel subsystems (LCSS). It is used in contrast to the term **SMP processors**, which designates processors of previous generations that support only one channel subsystem.

For XMP processors, the HCD dialog offers methods to explicitly define multiple logical channel subsystems (MCSS). For SMP processors, the single channel subsystem is implicitly defined with the processor.

You can define more than one processor in an IODF and for each defined processor you can configure processor-related data for further use by the CSS.

For processors that are physically partitioned, you must define each physical partition as an individual processor.

Defining processors
Define a processor as follows:

1. On the **Primary Task Selection** panel, select **Define, modify, or view configuration data** and on the resulting panel the object **Processor**. HCD displays the Processor List of all processors currently defined in the IODF.

```
Goto  Filter  Backup  Query  Help
-------------------------------------------------------------------------------------------------
Command ====> _______________________________________________ Scroll ====> CSR

Select one or more processors, then press Enter. To add, use F11.

/ Proc. ID Type + Model + Mode + Serial-# + Description
_ PROC1  2817  M49  LPAR  __________ z196 first processor
_ PROC2  2817  M32  LPAR  __________ z196 second processor
_ PROC3  2818  M10  LPAR  __________ z114 BC
_ PR2827  2827  H75  LPAR  __________ zEC12 with PCIe functions

Figure 50: **Define, modify, or view configuration data**
```

2. Use F11=Add to add a new processor. The data-entry fields are shown in the following figure, with sample data:

```
/ Proc. ID Type + Model + Mode + Serial-# + Description
_ PROC1  2817  M49  LPAR  __________ z196 first processor
_ PROC2  2817  M32  LPAR  __________ z196 second processor
_ PROC3  2818  M10  LPAR  __________ z114 BC
_ PR2827  2827  H75  LPAR  __________ zEC12 with PCIe functions

Figure 50: **Define, modify, or view configuration data**
```
On the Add Processor panel, you can specify the network name and the CPC name, when the processor is configured in a processor cluster. If you specify a SNA address, refer to “Security-related considerations” on page 331 for specific access authority.

A local system name (eight alphanumeric characters) is used by the CPC to identify itself when establishing a coupling facility connection. You need to specify local system names for both the target and source processors of the coupling facility. If you do not enter a local system name, and a CPC name is given, the local system name defaults to the CPC name.

For SMP processor you must not specify a local system name.

Use Prompt on the Add Processor panel for the SNA addresses for those CPCs that are currently configured in the processor cluster.

3. Depending on the processor type/model, there may be more than one support level for the processor type. The support level defines the supported channel path types, and the features. If the processor has several support levels, HCD displays another panel showing a list of available support levels for the processor (in our example, for a processor of type 2964).

Select the appropriate support level. HCD uses this level when validating the configuration for this processor. It relates to the installed microcode.

**Note:** On the Available Support Levels panel you can retrieve an explanation of the processor support level. Position the cursor on the support level description and press the F1 key to get an enumeration of functions provided by this support level.
4. After you press the Enter key HCD displays the updated Processor List.

You can now use the F20=Right key to scroll to the right to see the SNA address, if you have defined one.

Changing processors

You can change the following data of the processor:

- Type
- Model
- Configuration Mode
- Serial Number
- Description
- Network name
- CPC name
- Local system name

1. On the Processor List, select the processor and apply the Change action from the context menu (or action code C). The Change Processor Definition dialog is displayed.

```plaintext
Change Processor Definition

Specify or revise the following values.

Processor ID . . . . . . . . : PROC4
Support level:
XMP, 2817 support, SS 2, 32 CIB CF LINKS
Processor type . . . . . . . . : 2817 +
Processor model . . . . . . . . : M80 +
Configuration mode . . . . . . : LPAR +
Serial number . . . . . . . . : 1234562817 +
Description . . . . . . . . . : IBM z196 processor

Specify SNA address only if part of a processor cluster:

Network name . . . . . . . . : ________ +
CPC name . . . . . . . . . . : ________ +
Local system name . . . . . : ________
```

Figure 53: Change Processor Definition

2. To change the processor type, or model, overtype the old processor type, or model values, and press the Enter key. To change the support level for the same processor type, move the cursor to the Support level line and press the Enter key. If you have installed a new processor type or model, or a new processor support level, you need to upgrade the processor definition within HCD. HCD selects the proper configuration rules that are dependent on the processor type, and support level, and generates the correct input for the IOCDS download process.

**Note:** If the processor change leads to error message CBDA102I, make sure that the new processor type/model supports the same configuration rules as the old processor type, for example, that the same channel path types are supported. Subsequent messages indicate an invalid support level. You first have to update your configuration according to the new processor type/model before you can change the processor.

**Note:** In case of different configuration rules HCD might provide defaults or clear conflicting values. Appropriate messages will be displayed.

3. If more than one support level is available for the processor type, the Available Support Levels panel is displayed where you can select the correct support level for your processor.
Note: On the Available Support Levels panel you can retrieve an explanation of the processor support level: Position the cursor on the processor support level description and press the F1 key to get an enumeration of functions provided by this support level.

4. The Update Channel Path Identifiers panel is displayed. This panel shows the old channel path definitions, which you can change according to your new processor configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Scroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>====&gt;</td>
<td>CSR</td>
</tr>
</tbody>
</table>

Specify any changes to the channel path identifiers in the list below.

Processor ID . . . . . : PROC1
Channel Subsystem ID . . : 0

<table>
<thead>
<tr>
<th>CHPID</th>
<th>Type</th>
<th>Side</th>
<th>Until CHPID</th>
<th>New CHPID</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>OSD</td>
<td>--</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>OSC</td>
<td>--</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>OSM</td>
<td>--</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>CFP</td>
<td>--</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>CFP</td>
<td>--</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>CNC</td>
<td>--</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>2A</td>
<td>FC</td>
<td>--</td>
<td></td>
<td>2A</td>
</tr>
<tr>
<td>2B</td>
<td>FC</td>
<td>--</td>
<td></td>
<td>2B</td>
</tr>
<tr>
<td>2C</td>
<td>FCP</td>
<td>--</td>
<td></td>
<td>2C</td>
</tr>
</tbody>
</table>

Figure 54: Update Channel Path Identifiers

The column New CHPID shows the channel path IDs to which the values of column CHPID are mapped by default.

- You can overtype the values of the column New CHPID. Leave the column Until CHPID blank. Press the Enter key to move the old channel path IDs to the new channel path IDs.
- If you enter a value in the column Until CHPID, you move all defined CHPIDs in the range defined by the channel paths specified in the CHPID and Until CHPID column to the new range that starts with the value in the New CHPID column. If the values for the CHPID column have a 'gap', the 'gap' is also reflected in the New CHPID column range. When you entered a value in the Until CHPID column, press the Enter key. The Update Channel Path Identifiers panel is redisplayed where the new range is resolved in the New CHPID. The Until CHPID column is shown as blank. To process the updates, press the Enter key again.

5. The source and target CHPIDs of a CIB coupling connection are each given the local system name of the processor to which they will connect. This is automatically done by HCD at the moment when the I/OCP input file is built. Therefore, you should be aware of the consequences of changing the local system name. Consider, for example, a scenario, where during a processor upgrade, you want to adapt an existing local system name to match with a new CPC name. Then the I/O configuration of the target processor of an existing CIB connection also changes and requires a dynamic activate or a POR (in case of a stand-alone CF CPC) to re-establish the CF links. Therefore, HCD issues the CBDG400I warning message whenever a user changes a processor’s local system name.

Note: If the processor upgrade changed the SYSTEM value of the corresponding I/OCP configuration, it may not be possible to do an IOCDS download. It is only possible to perform an IOCDS download for specific processor types because I/OCP validates the generated I/OCP statements according to the configuration rules of the executing processor. See “Supported hardware report” on page 369 for the processor type which allows you to download an IOCDS in preparation for a processor upgrade.

If a processor type change leads to change of the SYSTEM value of the corresponding I/OCP configuration, see “Build an IOCDS” on page 187 and “Build processor cluster IOCDSs” on page 190.

Changing the processor ID

To change the ID of a processor, perform the following steps:

1. On the Processor List, select the processor and the **Repeat (copy) processor configurations** action from the context menu (or action code `T`). The Identify Target IODF panel is displayed.
2. Press the Enter key to accept the default target IODF name, that is the IODF you are currently working with. The Repeat Processor panel is displayed.

![Repeat Processor](image)

Specify or revise the following values.

- **Processor ID**: PROC5_
- **Processor type**: 2817
- **Processor model**: M80
- **Configuration mode**: LPAR
- **Serial number**: 1234562817 +
- **Description**: IBM z196 processor

Specify SNA address only if part of a processor cluster:

- **Network name**: __________ +
- **CPC name**: __________ +

Figure 55: Repeat Processor

3. Specify the new identifier for the processor and press the Enter key. HCD creates a new processor with the same characteristics and connections as the old one.

4. On the resulting Processor List, delete the old processor by selecting the processor and selecting the **Delete** action from the context menu (or action code ![Delete](image)). HCD displays a confirmation panel before showing the updated Processor List.

**Repeating (copying) processors**

You can copy processors within the same or to another IODF. When copying a processor, the following related objects and connections are also copied:

- Channel subsystems (for XMP processors only)
- Partitions
- Channel paths
- PCIe functions
- Control units
- Devices

When you copy a processor within the same IODF, you create a new processor. When you copy a processor into a different IODF, you can either create a new processor with the **Repeat (copy) processor configuration** action, or, with the same action, merge the configuration of the source processor into an existing configuration of the target processor.

Before copying the processor to an existing processor in another IODF (merge the processor configurations), check the following:

1. Make sure that source and target processor have the same type-model and support level.
2. Check the partition usage type if the processor has several partitions.

You cannot replace a partition that has a different usage type (except if there are no channel paths defined for this partition):

<table>
<thead>
<tr>
<th>Usage Type in Source IODF</th>
<th>Matching</th>
<th>Usage Type in Target IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>→</td>
<td>OS</td>
</tr>
<tr>
<td>CF</td>
<td>→</td>
<td>CF</td>
</tr>
<tr>
<td>CF/OS</td>
<td>→</td>
<td>CF, OS, or CF/OS</td>
</tr>
</tbody>
</table>

If the partition usage types do not match, change them in the target IODF.
3. If a channel path already exists in the target IODF, make sure that it has the same type.

4. If the target channel path connects to another dynamic switch than the source channel path, disconnect the channel in the target IODF.

5. To replace a shared channel path mode by a dedicated or reconfigurable channel path mode, change the mode or delete the incompatible channel path in the target IODF.

6. If a processor is copied that has a local system name defined, but the CPC name is changed for the copied processor, the local system name is left unchanged. Whenever a local system name has been defined, either explicitly or by default, a change only happens by explicit user action.

Copy a processor as follows:

1. Copy the processor using the **Repeat (copy) processor configurations** action from the context menu (or action code Y) on the Processor List. The Identify Target IODF panel is displayed.

2. Specify the IODF to which the selected processor configuration is to be copied. The default IODF is the IODF you are currently working with.

3. On the following Repeat Processor panel, specify the required values and press the Enter key.

   Definitions for source partitions are merged with the definitions of the target partitions. If a target partition has another partition number than the source partition, HCD keeps the target partition number.

   If control units, devices, CHPIDs, or PCIe functions already exist in the target IODF (same number and type), HCD tries to map them. “Migrating additional IOCP input data sets” on page 252 explains in detail when a device or control unit is mapped. The general rule is, that target definitions are updated from the source definitions.

   See “Explicit device candidate lists” on page 89 on how to handle explicit device candidate lists.

**Copying an SMP processor to an XMP channel subsystem**

You can copy the configuration of an SMP processor into an XMP channel subsystem within the same or to another IODF. When copying an SMP processor to a CSS, the following related objects and connections are also copied:

- Partitions
- Channel paths
- Control units
- Devices

You can use this function for the following alternative tasks:

1. **alternative “1” on page 79**: merge the source processor with an existing CSS in the target processor

2. **alternative “2” on page 79**: copy the source processor to a new CSS in the target processor

Copy an SMP processor to a channel subsystem as follows:

- On the Processor List, select an SMP processor and the action **Copy to channel subsystem... (SMP)** from the context menu (or action code Y).
- Specify the IODF to which the selected operating system is to be copied. The default IODF is the IODF you are currently working with.
- On the following panel, specify your target processor ID and channel subsystem ID. Make sure that the target processor supports multiple logical channel subsystems.
Copy to Channel Subsystem

Specify or revise the following values.

Source processor:
Processor ID . . . . . : PROCA0   Processor with single CSS

Target channel subsystem:
Processor ID . . . . . . PROC4__  
Channel subsystem ID . . 0  

Figure 56: Copy to Channel Subsystem

After pressing the Enter key:

- **for alternative “1” on page 79**, you are prompted to confirm or cancel the merging of the source processor into the existing target CSS. A message will inform you about the success of the operation.
- **for alternative “2” on page 79**, on the Add Channel Subsystem panel, you are prompted to define the ID for the new CSS and the maximum number of allowed devices.

Add Channel Subsystem

Specify or revise the following values.

Processor ID . . . . . . : P2964   performance test system
Channel Subsystem ID . . . 4  
Description . . . . . . . CSS 4 of processor P2964________

Maximum number of devices
in subchannel set 0 . . 65280  
in subchannel set 1 . . 65535  
in subchannel set 2 . . 65535  
in subchannel set 3 . . 65535  

Figure 57: Add Channel Subsystem

If, by chance, partition names from the source processor already exist in the target processor, you are prompted to specify new names for those partitions.

**Priming processor data**

You can prime your I/O configuration in a work IODF with the processor serial number for the active processor.

To prime, select the action **Prime serial number** from the context menu (or action code `1`) on the Processor List.

The Confirm Priming Processor List shows the selected processors with the sensed data for the processor type and serial number of the active processor and their corresponding definitions in the IODF. If the processor type of the active processor and the defined processor match, they are shown in the Confirm Priming Processor List.

The sensed data for the processor serial numbers can be confirmed before being taken into the IODF. If a value is blanked out, the defined IODF value is not changed. If you use the F12=Cancel key, none of the sensed values is taken.
Deleting processors

You can delete the definition of a processor using the Delete action from the context menu (or action code 4) on the Processor List. If you delete a processor, all channel paths, partitions, and connections to control units and devices for that processor are also deleted; the control units and devices are not deleted.

Working with channel subsystems

Note:

All tasks described in this unit’s subsections are only available for XMP processors.

For XMP processors, you may define multiple logical channel subsystems (up to n), identified by a unique 1-digit hexadecimal number (range 0 through n-1). For each channel subsystem you may define its own set of partitions and CHPIDs.

Defining channel subsystems

Define a channel subsystem as follows:

- On the Processor List, select an XMP processor and the action Work with channel subsystems . . (XMP) from the context menu (or action code S). HCD displays the Channel Subsystem List.

- Use F11=Add to define a new channel subsystem. The data-entry fields are shown in the following figure, with sample data:
Add Channel Subsystem

Specify or revise the following values.

Processor ID . . . . . . : P2964 performance test system
Channel Subsystem ID . . . . . . : 4 +
Description . . . . . . . : CSS 4 of processor P2964

Maximum number of devices
in subchannel set 0 . . . 65280 +
in subchannel set 1 . . . 65535 +
in subchannel set 2 . . . 65535 +
in subchannel set 3 . . . 65535 +

Figure 60: Add Channel Subsystem

Define the ID for the new CSS and the maximum number of allowed devices. For z9 EC processors or later, you can specify the maximum number of devices for more than one subchannel set.

Pressing the Enter key brings you back to the Channel Subsystem List.

Starting with IBM System z10 processors, the maximum number of channel subsystems is predefined during creation of this processor.

Repeating (copying) channel subsystems

You can copy channel subsystems within the same or to another IODF:
1. merge the source CSS with an existing target CSS in the same processor
2. copy a source CSS to a new target CSS in the same processor
3. copy a source CSS to another XMP processor

Copy or repeat a channel subsystem as follows:

• On the Processor List, select an XMP processor and the action Work with channel subsystems . . . (XMP) from the context menu (or action code S).

• On the Channel Subsystem List, for the source CSS, select action Repeat (Copy) channel subsystem from the context menu (or action code R).

• Specify the IODF to which the selected operating system is to be copied. The default IODF is the IODF you are currently working with.

• On the following panel, specify your target processor and CSS ID:

Repeat Channel Subsystem

Specify or revise the following values.

Processor ID . . . . . . : PROC4 +
Channel subsystem ID . . . . . . : 2 +

Figure 61: Repeat Channel Subsystem

• Depending on what you want to do, continue as follows:

  – To merge source and target CSS, you are prompted for confirmation for merging the source CSS data into the target CSS data. If you confirm, you are prompted to specify new partition names, because the partitions within an XMP processor must be unique:
Specify New Partition Names

Command ==> ____________________________________________

The partitions listed have already been defined in the target processor. Specify new names and press ENTER.

<table>
<thead>
<tr>
<th>Partition</th>
<th>New Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPAR01</td>
<td>________</td>
</tr>
<tr>
<td>LPAR02</td>
<td>________</td>
</tr>
</tbody>
</table>

 périodicienne ** Bottom of data """"""

Figure 62: Specify New Partition Names

A message indicates the successful processing.

- **To copy the source CSS into a new target CSS**, you can specify or revise certain characteristics of the target CSS:

  
  
<table>
<thead>
<tr>
<th>Add Channel Subsystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor ID . . . . . : P2964 performance test system</td>
</tr>
<tr>
<td>Channel Subsystem ID . . . 4 +</td>
</tr>
<tr>
<td>Description . . . . . CSS 4 of processor P2964_______</td>
</tr>
<tr>
<td>Maximum number of devices</td>
</tr>
<tr>
<td>in subchannel set 0 . . 65280 +</td>
</tr>
<tr>
<td>in subchannel set 1 . . 65535 +</td>
</tr>
<tr>
<td>in subchannel set 2 . . 65535 +</td>
</tr>
<tr>
<td>in subchannel set 3 . . 65535 +</td>
</tr>
</tbody>
</table>

  
  

Figure 63: Add Channel Subsystem

You are prompted to specify new partition names. Also, a message indicates the successful processing.

- **To copy a source CSS to another XMP processor**, the processing is identical as copying into a new target CSS. However, specifying new partition names is only necessary if the partition names of the source processor already exist in the target processor.

  
  
  Note: CHID values are not copied.

Copying/repeating channel subsystems with CTC connections

When copying channel subsystems or partitions within the same IODF, valid CTC connections in the source are not automatically copied and changed in the target configuration. Instead, HCD displays the **CTC Connection Update List**. This list shows all valid CTC connections of the source configuration that need an update before being copied to the target. From this list, you can select those connections that you want to copy. For each selected CTC connection, HCD updates the CUADD definition such that the valid CTC connection is moved from the source to the target. For FCTC control units, HCD generates the full-byte CUADD value for target XMP processors, consisting of the concatenation of CSS and MIFID.
### Copying a channel subsystem to an SMP processor

HCD offers actions to copy a channel subsystem to an SMP processor or merge the CSS to an existing SMP processor configuration. When copying a channel subsystem to an SMP processor, the following related objects and connections are also copied:

- Partitions
- Channel paths
- Control units
- Devices

1. Use action **Work with channel subsystems . . (XMP)** (or action code **S**) for an XMP processor which brings you to its Channel Subsystem List.

2. Now you select action **Copy to processor** (or action code **Y**) for the CSS that you want to copy.

3. The Identify Target IODF panel is displayed. Specify the IODF where the target processor is defined. The default IODF is the IODF you are currently working with. Press the Enter key. The Copy to Processor panel is displayed.

```
<table>
<thead>
<tr>
<th>Procedure CSS ID Part.</th>
<th>Devices CH CU</th>
<th>Target processor CSS ID Part.</th>
<th>Devices CH CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREX.0 TCSS0LP2 8004,2</td>
<td>20 8004 P2064M2</td>
<td>FREE2LP2 8000,2</td>
<td>21 8000</td>
</tr>
<tr>
<td>TREX.0 TCSS0LP2 9000,2</td>
<td>20 9000 RAPTOR</td>
<td>RAPOS4 9004,2</td>
<td>10 9004</td>
</tr>
<tr>
<td>TREX.0 TCSS0LP3 9002,2</td>
<td>20 9002 RAPTOR</td>
<td>RAPOS4 9006,2</td>
<td>10 9006</td>
</tr>
<tr>
<td>TREX.0 TCSS0LP3 9002,2</td>
<td>21 9002 RAPTOR</td>
<td>RAPOS4 9006,2</td>
<td>10 9006</td>
</tr>
<tr>
<td>TREX.0 TCSS2LP2 8000,2</td>
<td>21 8000 P2064M0</td>
<td>FREE0LP2 8004,2</td>
<td>20 8004</td>
</tr>
<tr>
<td>TREX.0 TCSS2LP5 8002,2</td>
<td>21 8002 P2064M0</td>
<td>FREE0LP3 8006,2</td>
<td>20 8006</td>
</tr>
</tbody>
</table>
```

4. Specify your target processor (an SMP processor) and press the Enter key.

   **Note:** If the target processor does not yet exist, HCD invokes the Add Processor dialog. If the target processor already exists, you must confirm that you want to merge the configuration data. Anyway, make sure that the target processor does not support multiple logical channel subsystems.

5. Before returning to the Channel Subsystem List, a message will inform you about the success of the action.
Changing channel subsystems

You can change the following characteristics of a channel subsystem:

- Description
- Maximum number of devices per subchannel set

To perform this task, proceed as follows:

1. On the Processor List, select an XMP processor and the action **Work with channel subsystems** (XMP) from the context menu (or action code 3).
2. On the Channel Subsystem List, for the CSS you want to change, select action **Change** from the context menu (or action code C).
3. The Change Channel Subsystem panel is displayed, where you can specify your changes. Then press the Enter key. This returns you to the Channel Subsystem List.

![Change Channel Subsystem panel](image)

Figure 66: Change Channel Subsystem

Changing the channel subsystem ID

To change a CSS ID is only possible via the deviation of repeating (copying) the channel subsystem with a new ID and then delete the source CSS. If you cannot repeat the channel subsystem in the same processor, because all available IDs are occupied, and you want to exchange the IDs of two existing CSSs, then you need to copy both CSSs into a different target processor, delete them in the source processor and copy them back to the source processor with the exchanged IDs.

It may be necessary to restore certain definitions afterwards, for example, coupling facility connections get lost during the copy process.

Deleting channel subsystems

You can delete the definition of a channel subsystem using the **Delete** action from the context menu (or action code D) on the Channel Subsystem List. If you delete a channel subsystem, all channel paths, partitions, and connections to control units and devices for that CSS are also deleted; the control units and devices are not deleted.

Working with partitions

The following section describes how to work with partitions. Note that you can define partitions for a processor regardless of whether it is defined with configuration mode BASIC or LPAR.
Defining partitions

Define partitions as follows:

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Processors. HCD displays the Processor List of processors currently defined in the IODF.

2. On the Processor List:
   - for SMP processors, select the processor and the Work with partitions action from the context menu (or action code P).
   - for XMP processors, select the processor and the Work with channel subsystems . . . (XMP) action from the context menu (or action code S) to display the Channel Subsystem List. From this list, select the appropriate channel subsystem and the Work with partitions action from the context menu (or action code P).

HCD displays the Partition List showing the currently defined partitions for the designated processor. For most processor types HCD will populate all possible partitions as reserved partitions, when adding a processor.

Note: Starting with processor type 3906 (support level H180913) partitions 'B'-'F' in the highest CSS are reserved for internal use (usage type is FW).

```
Partition List
Goto Backup Query Help
-----------------------------------------------------------------------
Row 1 of 15 Scroll ==> CSR
Command ==> ________________________________________
Select one or more partitions, then press Enter. To add, use F11.
Processor ID . . . . : P2964V3   z13 V3 support
Configuration mode  . : LPAR
Channel Subsystem ID  : 0
/ Partition Name   Number Usage + UID  Description
_ LP0A             A      CF/OS   Y    Linux Test
_ LP0B             B      OS      Y    Linux Test BTM
_ LP0C             C      OS      Y    Linux Test
_ LP0D             D      OS      N    Mini-VM 5 Guests
_ LP0E             E      OS      N    Mini-VM 10 Guests
_ LP0F             F      OS      N    Bib-VM 60 Guests + BTM guests
_ LP01             1      OS      N    Linux Test
*************************** Bottom of data ***************************
```

3. Use F11=Add to add the partitions. The data-entry fields are shown in the following figure, with sample data:

```
Add Partition
Specify the following values.
Partition name . . . LP01____
Partition number . . 1    (same as MIF image ID)
Partition usage . . OS  +
UID uniqueness . . . N    (Y/N)
Description . . . . Test partition 01________________
```

The partition usage field marks a partition to be used for coupling facility support, for operating system usage or internal use. The type of partition usage can be either: CF, OS, CF/OS or FW.

---

86 z/OS: Hardware Configuration Definition User’s Guide
Specify CF/OS if the partition usage will be determined at partition activation. You can then include this partition into the access list of all channel path types. At partition activation those definitions are ignored that are not valid for the actual usage.

The partition UID uniqueness field can be set to 'Y' (the default is 'N') if PCIe UID uniqueness is required for PCIe functions accessed by this partition. PCIe UID uniqueness checking is done during build production IODF.

Partition 'B' in the highest CSS is an internally used firmware partition (also called Licensed Machine Code or LMC partition). It has to be defined with partition name 'MCS_1' and partition type 'FW'.

4. Press the Enter key. HCD displays the updated Partition List, if you have not yet defined any channel paths.

If you have already defined channel paths, HCD displays the Update CHPID Access and Candidate Lists panel, where you can include the partition in the access or candidate list of a channel path. For an explanation of access and candidate list, refer to "Defining channel paths" on page 96.

After pressing the Enter key HCD displays the Update Device Candidate Lists panel, if the new partition is given access to a channel path that attaches devices with an explicit device candidate list. Use this panel to add the new partition to the device candidate list of the listed devices.

Note: Depending on the defined processor type there might exist one or more partitions which can not be used/changed because they are reserved for internal use.

Defining reserved partitions

For XMP processors, HCD provides the capability to add or remove logical partitions via dynamic I/O configuration. In an IODF used to create your initial IOCDS for power-on reset (POR), you can define reserved partitions, which you plan to add dynamically at a later point in time. In the Add Partition dialog (see step “3” on page 86 from the previous list), you specify an '*' as the placeholder partition name for reserved partitions. Reserved partitions will appear with this '*' at the end of the Partition List. Furthermore, you specify a partition number, a usage type and optionally a description.

Reserved partitions do not appear in the access or candidate lists of channel paths or devices.

To activate a partition dynamically, you need to change the '*' name to a valid partition name and to define the appropriate partition configuration before building a new production IODF.

Note: You cannot change the partition number dynamically.

Changing partitions

You can change the following data of a partition using the Change action from the context menu (or action code C) on the Partition List. On the resulting Change Partition panel, you can change:

- Name
- Number
- Usage
- UID uniqueness
- Description

If there are already channel paths attached to the partition, HCD displays the channel path access and candidate lists after pressing the Enter key on the Change Partition panel. On these lists, you can update the channel path access of the partition.

For internal partition 'B' in the highest CSS a slightly modified panel appears on which you can only change the partition name from 'MCS_1' to '*' or vice versa and the partition description.

Notes:

- You can also change these partition definitions (except the name) by simply typing over the appropriate columns on the Partition List.
- To dynamically change the "UID uniqueness" attribute of a partition, the partition cannot be active.
Changing partition names dynamically

To dynamically change a partition name, you have to perform two steps:

1. Disconnect all channel paths and devices from the partition and change the partition name to * (see “Defining reserved partitions” on page 87). Activate this intermediate IODF. (This is the only required step if you want to keep this partition as a reserved partition).

2. Now you can change the * partition name to a new valid name, reconnect the wanted channel paths and devices and activate the new configuration.

Repeating (copying) partitions

You can copy partitions within the same or to another IODF. When copying a partition, the following related objects and connections are also copied:

- Channel paths having the partition in their access list
- Control units reached by the partition
- Devices reached by the partition

**Note:** CHID values are not copied.

Before copying the partition, perform the same checks as when repeating a processor (see “Repeating (copying) processors” on page 78). Omit step 1 that applies to a processor repetition only.

Then copy a partition as follows:

1. Copy the partition using the **Repeat (copy) partitions** action from the context menu (or action code 7) on the Partition List. The Identify Target IODF panel is displayed.

2. Specify the IODF to which the selected partition is to be copied. The default IODF is the IODF you are currently working with.

3. On the following Repeat Partition panel, specify the required values and press the Enter key.

Definitions for the source partition are merged with the definitions of the target partition. If the target partition has another partition number than the source partition, HCD keeps the target partition number.

If control units or devices already exist in the target IODF (same number and type), HCD tries to map them. “Migrating additional IOCP input data sets” on page 252 explains in detail when a device or control unit is mapped. If they are mapped, the attributes of the target control unit or device are kept.

See “Explicit device candidate lists” on page 89 how to handle device candidate lists.

**Note:** HCD provides special processing when copying/repeating partitions with CTC connections. For more information refer to “Copying/repeating channel subsystems with CTC connections” on page 83.

Transferring partition configurations

Use this function to transfer control units and devices attached to a channel path from one partition to another within the same IODF.

In contrast to the **Repeat (copy) function**, you do not copy the partition and channel paths, but move the attached control units and devices to another partition, possibly in another processor.

Before transferring the data, you must define the target channel path with its partition access and candidate list, dynamic switch ID, entry switch ID and entry port.

The new channel path may have a different type than the source channel path.

1. On the Partition List, select the **Transfer (move) partition configs** action from the context menu (or action code X).  

2. On the **Identify Target Partition** panel, specify the target processor and partition.
3. The **Transfer Partition Configuration** panel is shown. To transfer all control units and devices reached by the source partition, specify a new CHPID value for every source CHPID. The new CHPID of the target partition must exist.

The data-entry fields with sample data are shown in the following figure.

![Transfer Partition Configuration](image)

**Figure 69: Transfer Partition Configuration**

4. After you press the Enter key the Partition List is displayed again.

The attribute values of the transferred control units and devices remain the same for unit address/range, destination link address, time-out, and STADET. The logical address, protocol, and I/O concurrency level of a control unit remain the same if they are compatible with the target processor and channel path. If they are not compatible, default values are used.

**Explicit device candidate lists**

If the devices that are affected by the **Transfer (move) partition configs** action from the context menu (or action code X) have an explicit device candidate list, the result of the transfer action depends on whether or not the device was already connected to the target processor. See Table 6 on page 89 for the different combinations. These combinations also apply to the **Repeat Partition** and **Repeat Processor** actions.

<table>
<thead>
<tr>
<th>Table 6: Result of the Transfer (Move) Partition Configs Action.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transfer source partition</strong></td>
</tr>
<tr>
<td><strong>Device already connected to target partition</strong></td>
</tr>
<tr>
<td>no cand</td>
</tr>
<tr>
<td>cand + (partition included)</td>
</tr>
<tr>
<td>cand - (partition not included)</td>
</tr>
</tbody>
</table>
Note: Result of the Transfer Action, Relation of Device to Partition:

= no action, target partition remains unchanged

no cand no explicit device candidate list exists for partition

cand + partition included in explicit device candidate list

cand – partition not included in explicit device candidate list

Note: (*) The source partition is not included in the explicit device candidate list. During the transfer, HCD checks whether all partitions of the source processor in the candidate list have the same name on the target processor. If partitions with the same name on the target processor are identified they are added to the device candidate list for the target processor. If no partition with the same name is found for the target processor, no explicit device candidate list is built. Therefore, a partition transfer can result in a loss of candidate lists, if all partition names between source and target processor are different. It is recommended to run a device compare report after the partition has been transferred.

CF channel paths
Connections of CF sender and CF receiver channel paths will not be transferred. You have to connect them again after having transferred the partition.

Deleting partitions
You can delete the definition of a partition using the Delete action from the context menu (or action code F1) on the Partition List.

To enhance deleting of partitions, which have a CHPID assigned to only this partition in either the access or candidate list, the Confirm Delete Partition indicates all such CHPIDs that are exclusively assigned to this partition by flagging them with an “*” (CHPIDs B8 and BA in Figure 70 on page 90). Thus, users can remove the flagged CHPIDs in one step and then delete the partition more efficiently.

Confirm Delete Partition

Command ===> ________________________________ Scroll ===> CSR

Scroll forward to view the complete list of partitions to be deleted. Channel paths that are flagged (*) are connected to only one partition and need to be removed before the partition can be deleted. Press ENTER to confirm delete request. Press F12 to cancel delete request.

Processor ID . . . . : PROC01 Processor type 2694

Partition Name Connected to CHPIDs
COH1 0D, 0E, 0F, 10, 13, 18, 40, 41, 43, 44, 45, 47, B4,*B8,*BA, BC

************************************************************************ Bottom of data************************************************************************

F1=Help       F2=Split      F3=Exit       F7=Backward   F8=Forward
F9=Swap       F12=Cancel    F22=Command

Figure 70: Confirm Delete Partition
Starting with processor type 2827, Peripheral Component Interconnect Express (PCIe) adapters attached to a system can provide the operating system with a variety of so-called PCIe functions to be exploited by entitled logical partitions (LPARs).

Currently HCD supports:

- **Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCE and RoCE-2).** PCIe functions of type RoCE may be assigned to external physical networks by specifying corresponding PNET IDs.

- **Internal Shared Memory PCIe Adapter (ISM).** A virtual PCIe adapter for which a virtual channel identifier (VCHID) has to be defined.

- **Regional Crypto Enablement (RCE).** This PCIe function type is used for IBM approved vendor crypto adapters.

- **zEDC-Express.** For PCIe functions of type zEDC-Express, a virtual function number must be specified.

- **zHyperLink (HYL).** These PCIe functions require an additional attribute specifying the port on the adapter.

- **Non Volatile Memory Express (NVMe).** A PCIe adapter which provides high bandwidth and low latency access for non-volatile memory.

**Note:** The support of virtual functions, the allowed range of virtual functions and support of PNETIDs depends on the processor type and support level. HCD offers prompts for virtual functions and ensures that the validation rules are fulfilled.

HCD provides dialogs to define, change, delete, and view PCIe functions, and to control, which LPARs have access to which PCIe functions.

**Defining PCIe functions**

1. On the *Primary Task Selection* panel, select *Define, modify, or view configuration data* and on the resulting panel, select *Processors*. HCD displays the Processor List of defined processors.

2. On the *Processor List* panel, select an eligible processor and action *Work with PCIe functions* from the context menu (or action code [F]).

   HCD displays the *PCIe Function List* showing all PCIe functions defined for the selected processor.
PCIe Function List     Row 1 of 16 More:       >
Command ===> _______________________________________________ Scroll ===> CSR

Select one or more PCIe functions, then press Enter. To add, use F11.

Processor ID . . . . : P3906

<table>
<thead>
<tr>
<th>FID</th>
<th>CHID+</th>
<th>P+</th>
<th>VF+</th>
<th>Type+</th>
<th>UID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>100</td>
<td>31</td>
<td>ROCE</td>
<td>F010</td>
<td>roce vf=31 2pnetids</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>120</td>
<td>31</td>
<td>ROCE</td>
<td>F011</td>
<td>roce vf=31 1pnetid</td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td>115</td>
<td>1</td>
<td>127</td>
<td>ZHYPERLINK</td>
<td>synch io 15 port 115/1 vf 1</td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td>115</td>
<td>1</td>
<td>127</td>
<td>ZHYPERLINK</td>
<td>synch io 16 port 115/1 vf 127</td>
<td></td>
</tr>
<tr>
<td>0017</td>
<td>115</td>
<td>2</td>
<td>127</td>
<td>ZHYPERLINK</td>
<td>synch io 17 port 115/2 vf 127</td>
<td></td>
</tr>
<tr>
<td>0018</td>
<td>115</td>
<td>2</td>
<td>1</td>
<td>ZHYPERLINK</td>
<td>synch io 18 port 115/2 vf 1</td>
<td></td>
</tr>
<tr>
<td>0019</td>
<td>115</td>
<td>2</td>
<td>2</td>
<td>ZHYPERLINK</td>
<td>synch io 19 port 115/2 vf 2</td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td>7C0</td>
<td>1</td>
<td>ISM</td>
<td>00A4</td>
<td>synch io adapter 20 port 115/2</td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td>7C0</td>
<td>2</td>
<td>ISM</td>
<td>00A5</td>
<td>synch io adapter 21 port 115/2</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>130</td>
<td>___</td>
<td>RCE</td>
<td>____</td>
<td>__________________________</td>
<td></td>
</tr>
<tr>
<td>0031</td>
<td>131</td>
<td>___</td>
<td>RCE</td>
<td>____</td>
<td>__________________________</td>
<td></td>
</tr>
<tr>
<td>0150</td>
<td>150</td>
<td>2</td>
<td>100</td>
<td>ROCE-2</td>
<td>roc2 adapter 150 port 150/2</td>
<td></td>
</tr>
<tr>
<td>0151</td>
<td>150</td>
<td>2</td>
<td>101</td>
<td>ROCE-2</td>
<td>roc2 adapter 151 port 151/2</td>
<td></td>
</tr>
<tr>
<td>0217</td>
<td>117</td>
<td>2</td>
<td>1</td>
<td>ZHYPERLINK</td>
<td>synch io adapter 217 port 117/2</td>
<td></td>
</tr>
<tr>
<td>0218</td>
<td>117</td>
<td>1</td>
<td>1</td>
<td>ZHYPERLINK</td>
<td>synch io adapter 218 port 117/1</td>
<td></td>
</tr>
<tr>
<td>0252</td>
<td>250</td>
<td>10</td>
<td>ZEDC-EXPRESS</td>
<td>888A</td>
<td>__________________________</td>
<td></td>
</tr>
</tbody>
</table>

Figure 71: PCIe Function List

A PCIe function is defined by a unique identifier, the function ID (FID). Each function specifies a function type and a channel identifier CHID. Multiple functions may be specified to the same CHID or CHID/port value provided that each of these functions defines a unique virtual function VF number.

When defining a PCIe function, you may specify a description which is shown in this list.

Use PF20=Right to scroll to the partition assignments for the displayed PCIe functions, one panel for each defined channel subsystem.

PCIe Function List     Row 1 of 13 More: <
Command ===> _______________________________________________ Scroll ===> CSR

Select one or more PCIe functions, then press Enter. To add, use F11.

Processor ID . . . . : P3906

<table>
<thead>
<tr>
<th>FID</th>
<th>CHID</th>
<th>P+</th>
<th>VF+</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>100</td>
<td>31</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>120</td>
<td>31</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0015</td>
<td>115</td>
<td>1</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0016</td>
<td>115</td>
<td>1</td>
<td>127</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>0017</td>
<td>115</td>
<td>2</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td>7C0</td>
<td>1</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0021</td>
<td>7C0</td>
<td>2</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0030</td>
<td>130</td>
<td>___</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0031</td>
<td>131</td>
<td>___</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0150</td>
<td>150</td>
<td>2</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0151</td>
<td>150</td>
<td>2</td>
<td>101</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>0217</td>
<td>117</td>
<td>1</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0218</td>
<td>117</td>
<td>2</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>0252</td>
<td>250</td>
<td>10</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

Figure 72: PCIe Function List

3. Use F11=Add to define a new PCIe function. The data-entry fields are shown in the following figure, with sample data:
**Add PCIe Function**

Specify or revise the following values.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor ID</td>
<td>P3906</td>
</tr>
<tr>
<td>Function ID</td>
<td>18</td>
</tr>
<tr>
<td>Type</td>
<td>ZHYPERLINK</td>
</tr>
<tr>
<td>Channel ID</td>
<td>115 +</td>
</tr>
<tr>
<td>Port</td>
<td>2 +</td>
</tr>
<tr>
<td>Virtual Function ID</td>
<td>1 +</td>
</tr>
<tr>
<td>Number of virtual functions</td>
<td>2</td>
</tr>
<tr>
<td>UID</td>
<td>a4</td>
</tr>
</tbody>
</table>

Description: _______________________________

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset    F9=Swap
F12=Cancel

**Figure 73: Add PCIe Function**

You define a new PCIe function specified by its required function ID, function type and CHID value, a port value and a virtual function number can be specified if allowed for the specified function type as well as a description. After pressing the Enter key, the LPARs can be selected that should be entitled to access the function. If you specified an Add-like action, the data entry fields, except the function ID, and the LPAR connections are preset with the values of the selected source function.

Each PCIe function is identified by a four-digit hexadecimal function ID that is unique within a processor configuration. You must specify a function type and a CHID value which describes the related PCIe adapter card in the assigned slot of the I/O drawer. Multiple PCIe functions may be defined for the same CHID/port by assigning a unique virtual function ID to each of these functions.

HCD also supports overgenned PCIe functions. You define overgenned PCIe functions by providing an asterisk (*) for the CHID value. Overgenned functions are validated like other PCIe functions but they are excluded from the IOCP input statements and from dynamic activation.

You can define multiple PCIe function with identical attributes and increasing virtual function IDs at a time by specifying a value greater than 1 in the 'Number of virtual functions' field.

A UID value can be defined for a PCIe function which will be checked for uniqueness if one or more partitions in the access/candidate list have the UID flag set to yes.

**Note:** If partitions require uniqueness, but no PCIe UID is specified, the a unique UID is generated by HCD when a production IODF is built.

Depending on the function type, you can assign physical network IDs to a PCIe function. Each physical port of the PCIe adapter can be assigned to a (possibly different) physical network. If you press the Enter key, for a function supporting PNETIDs, HCD displays the Add/Modify Physical Network IDs window where you can enter a physical network ID (PNET ID) for each physical port of the adapter. The sequence of the PNET IDs corresponds to the sequence of the port numbers on the adapter card. All functions of a given CHID must have the same set of PNETIDs. 'Build production' will check if PCIe functions with PNETIDs specified have a corresponding channel path (same PNETID) accessing at least one identical LPAR.

**Note:** PNETIDs are used by IBM Z. For additional information about the z/OS usage of PNETIDs, refer to the Physical Network Considerations chapter in *z/OS Communications Server: IP Configuration Guide.*
Add/Modify Physical Network IDs

If the Channel ID (CHID) is associated to one or more physical networks, specify each physical network ID corresponding to each applicable physical port.

Physical network ID 1 . . PNET01__________  
Physical network ID 2 . . PNET02__________  
Physical network ID 3 . . ________________  
Physical network ID 4 . . ________________  

F1=Help     F2=Split    F3=Exit     F5=Reset    F9=Swap    F12=Cancel

Figure 74: Add/Modify Physical Network IDs

If you press the Enter key either on the Add/Modify Physical Network IDs window for PCIe functions supporting PNETIDs, or directly on the Add PCIe function window for PCIe functions without PNETID support, HCD displays the Define Access List window, where you can specify one partition to be connected to the defined PCIe function.

Define Access List

Row 1 of 67

Select one or more partitions for inclusion in the access list.

Function ID . . . . : 222

/ CSS ID Partition Name Number Usage Description
  0      LP0A             A OS Linux Test
  / 0      LP0B             B OS Linux Test BTM
    . .
  _ 1      LP1A             A OS Linux Test
  _ 1      LP1B             B OS Linux Test BTM
    . .
  _ 2      LP2A             A OS Linux Dev
  _ 2      LP2B             B OS Linux Dev
    . .
  _ 3      LP3A             A OS Midi test systems
  _ 3      LP3C             C OS z/OS for HCD changes
    . .
  _ 4      LP4A             D CF/OS
  _ 4      LP4B             E CF/OS
    . .
  _ 5      LP51             1 CF/OS
  _ 5      LP52             2 CF/OS

Figure 75: Define Access List

Pressing Enter again leads you to the Define Candidate List window. Here you can modify the candidate list of partitions assigned to the PCIe function. You can define partitions from any channel subsystem.

Changing PCIe functions

You can change the following characteristics of a defined PCIe function:
- type
- CHID
- port
- virtual function number, if supported
- UID
- description
- physical network IDs, if supported
- assigned partition in the access list
- assigned partitions in the candidate list
You can change a PCIe function using the **Change** action from the context menu (or action code 3) on the **PCIe Function List**.

You can also change the PCIe function definitions and the related access and candidate list by simply tying over the appropriate values in the **PCIe Function List**. For certain changes of the function type, HCD enforces the specification of a virtual function number.

You have to press the Enter key to process the changes. HCD then validates the data and displays the panel again. The changes are processed sequentially row after row. Changes that require a processing of multiple row changes at once will not be possible.

**Deleting PCIe functions**

You can delete a PCIe function using the **Delete** action from the context menu (or action code 4) on the **PCIe Function List**. Before deleting the PCIe function, HCD prompts you for a confirmation.

**Working with channel paths**

Channel paths can be dedicated, reconfigurable, shared, or spanned. The following list explains when to use which channel path operation mode.

**DED**
Dedicated; if you want only one logical partition to access a channel path, specify that channel path as dedicated. You cannot reconfigure a dedicated channel path. This is the default mode.

**REC**
Reconfigurable; if you want only one logical partition at a time to access a channel path and you want to be able to reconfigure the channel path from one partition to another, specify that channel path as reconfigurable.

**SHR**
Shared; if you want more than one logical partition to access a channel path simultaneously, specify that channel path as shared.

**SPAN**
Spanned; if in XMP processors for certain channel types, you want to have a shared channel accessed by partitions from multiple logical channel subsystems, specify that channel path as spanned.

On the Add Channel Path panel, enter a channel path type and use F4=Prompt for the operation mode to find out the allowed operation modes for the specified type.

Channel paths can also be categorized as static or managed. For more information, see “Defining managed channel paths” on page 100.

**Using Multiple Image Facility**

If a processor complex has Multiple Image Facility (MIF) capability, and is running in LPAR mode, multiple logical partitions can access the same shared channel paths, thereby reducing the number of required physical connections. In contrast, if a processor complex does not have MIF capability, all logical partitions must use separate channel paths to share I/O devices. For more information about LPAR mode and MIF, see the **PR/SM Planning Guide**.

**More about spanned channel paths in multiple LCSSs**

Depending on the processor type, in the HCD dialog you may define certain channel paths with operation mode SPAN. A spanned CHPID will have partitions belonging to more than one channel subsystem in its access and candidate list.

A spanned channel path will be created with the same CHPID number in all channel subsystems that are using it. For example, you have a processor MCSSPRO1 with channel subsystems 0 through 3, and you create CHPID 1A (type IQD, SPAN) and let it access partitions from CSS 0, 2, and 3. Then CHPID 1A is the same CHPID in CSSs 0, 2, and 3. In CSS 1, you can use CHPID 1A for a different channel path.
Generally speaking, a channel subsystem that is not using a spanned channel can use the CHPID of that spanned channel for a separate channel path definition.

If you define a channel as SPAN, but connect it to partitions from a single channel subsystem only, then HCD displays its operation mode as SHR. The other way round, if a shared channel path is eligible for being spanned, and you enlarge its access or candidate list with partitions from multiple logical channel subsystems, then HCD displays this channel's operation mode as SPAN.

**Note:**

It is dependent on the processor support level which channel path types can be defined as spanned. Managed channels cannot be defined as spanned.

**Defining channel paths**

At first, you define a channel path together with its access to logical partitions. Then you may define special channel path characteristics. These possibilities are described in “Defining special channel path characteristics” on page 99.

1. On the HCD entry panel, select the task **Define, modify, or view configuration data** and from the resulting panel, select **Processors**. HCD displays the Processor List of defined processors.

2. On the Processor List:
   - **for SMP processors**, select the processor and the **Work with attached channel paths (SMP)** action from the context menu (or action code $s$).
   - **for XMP processors**, select the processor and the **Work with channel subsystems . . (XMP)** action from the context menu (or action code $s$) to display the Channel Subsystem List. From this list, select the appropriate channel subsystem and the **Work with attached channel paths** action from the context menu (or action code $s$).

HCD displays the Channel Path List showing all channel paths defined for the selected processor/channel subsystem.

3. Use F11=Add to add channel paths. The data-entry fields are shown in the following panel, with sample data:

```
Figure 76: Channel Path List

If the Type contains three asterisks (**\*\**), the IODF channel path type is unknown to the currently used HCD.

3. Use F11=Add to add channel paths. The data-entry fields are shown in the following panel, with sample data:
```
Add Channel Path

Specify or revise the following values.

- Processor ID: P2964, test system
- Configuration mode: LPAR
- Channel subsystem ID: 4, CSS 4 of P2964
- Channel path ID: C4
- Channel ID: __
- Channel ID: __ +
- Number of CHPIDs: 1
- Channel path type: CS5
- Operation mode: DED
- Managed: No
- Description: ________________________________

Specify the following values only if connected to a switch:
- Dynamic switch ID: __ + (00 - FF)
- Entry switch ID: __ +
- Entry port: __ +

F1=Help  F2=Split  F3=Exit  F4=Prompt  F5=Reset  F9=Swap  F12=Cancel

---

Figure 77: Add Channel Path

For physical channels on an XMP processor, you have to specify the channel identifier (Channel ID or CHID) belonging to the channel path identifier (CHPID). For internal channel paths a range of virtual CHIDs (promptable in HCD) is reserved. This range is depending on the processor type.

The CHPID Mapping Tool (CMT) can be used to make the mapping between CHPIDs easier (see “How to interact with the CHPID Mapping Tool” on page 197).

4. For each static channel path you can specify which logical partitions can access that channel path. After you press the Enter key on the Add Channel Path panel, HCD displays the Define Access List.

---

Figure 78: Define Access List

If you are working on spanned channel paths of an XMP processor, the Define Access List also shows the partitions defined for other channel subsystems:
Figure 79: Define Access List

If you want a logical partition to access a dedicated, reconfigurable, or shared channel path when you initially activate the logical partition, place that logical partition in the channel path's access list. For shared channel paths and spanned channel paths, you can place more than one partition in the access list.

5. If you do not include all partitions in the access list, you are prompted for the candidate list (for reconfigurable and shared channel paths) after pressing the Enter key.

From the IOCP point of view, the channel path candidate list includes the channel path access list. From the HCD point of view, the channel path candidate list does not include the channel path access list. The partitions already in the access list do not appear in the candidate list.

Figure 80: Define Candidate List

If you want to be able to configure a reconfigurable or shared channel path online to a logical partition, place that logical partition in the channel path's candidate list.

6. After pressing the Enter key, you return to the Channel Path List. Scroll to the right to get an overview of the access and candidate list of a channel path. The following matrix is displayed:
The legend, which precedes the partition matrix shows how the partition names are associated with the columns of the partition matrix. The headings Partitions 0x, Partitions 1x, Partitions 2x and so on, if scrolling to the right, indicate that the partitions for the related channel subsystems (0, 1, 2, ...) are shown. The column numbers correspond to the partition numbers in the pertaining channel subsystem. Also, the partition usage type OS, CF or CO (for CF/OS) is indicated in the legend.

In the previous example, column 1 under Partitions 0x shows the definitions for partition H05LP01 of usage type OS with partition number 1 in CSS 0.

The following entries may appear in the partition matrix:

- **a** indicates that the partition is in the channel path's access list.

- **c** indicates that the partition is in the candidate list.

- ***** is shown for a managed channel path in all logical partitions that potentially can access that channel path.

- **#** indicates that the channel path (which is defined to the channel subsystem named in the Channel Subsystem ID field) cannot be attached to the partitions of another channel subsystem. Either a channel path with the same identifier is already defined for the other channel subsystem, or the channel path cannot be spanned or it can be spanned, but the channel path mode is not SPAN or SHR. For information on how to change a CHPID's operation mode to SPAN, if applicable, refer to “Changing the operation mode of a channel path” on page 108.

**Defining special channel path characteristics**

This section handles the following topics:

- “Defining managed channel paths” on page 100
- “Defining multiple channel paths in one step” on page 100
- “Connecting a channel path to a switch” on page 100
- “Defining IQD channel parameters” on page 100
- “Defining more than 160 TCP/IP stacks” on page 101
- “Defining an OSD channel path to physical networks” on page 102
Defining or editing channels using Host Communication Adapters on page 102
Defining spanned channel paths on page 103
Over-defining a CHPID on page 103

Defining managed channel paths

You can define a channel path as being managed by Dynamic Channel Path Management (DCM). DCM will use such a channel path to dynamically assign the logical paths to control units in order to optimize I/O activity. A managed channel path must connect to a dynamic switch and may be used for control units that connect to the same switch. If a channel path is defined as managed in an LPAR mode processor, it must be defined as shared. It cannot be connected to logical partitions but must specify an I/O cluster name. An I/O cluster is a sysplex that owns the managed channel path. All systems of the sysplex on the given processor are allowed to share the managed channel path. A managed channel path cannot be connected to a control unit by HCD.

Defining multiple channel paths in one step

You can define, in one step, a group of channel paths of the same type and mode and with consecutive identifiers. It is recommended to define only a group of channel paths that have the same partitions in their access and candidate lists. Otherwise, you have to change the channel paths that have different partitions in their access and candidate list in a further step.

1. Define the group by specifying the first channel path identifier (CHPID) and the number of channel paths in the group. Define a channel path type, mode, and description. HCD applies the definition to all channel paths in the group.
2. Type over the fields that are different, for example description, in the Channel Path List.

Connecting a channel path to a switch

If you have already defined a switch, you can connect the channel path to the switch on the Add Channel Path panel. Specify the dynamic switch ID, the entry switch ID, and the entry port to connect the channel path to a switch.

The values are only valid for the first channel path if you have defined a group of channel paths in one step. To define values for the other channel paths of the group, HCD displays an additional panel. This panel allows you to define the entry ports for all subsequent channel paths of the group. For information on dynamic switch ID and entry switch ID, refer to “Possibilities of switch connections” on page 145.

Update CHPID Settings

Specify or revise the following values.
Processor ID . . . . : PROC1
Channel Subsystem ID : 0
DynEntry --Entry---
CHPID PCHID Switch + Switch Port
 1C ___ 98 98 C8
 1D ___ 98 98 __
 1E ___ 98 98 __
*************** BOTTOM OF DATA **************

Figure 82: Update CHPID Settings

Defining IQD channel parameters

For an IQD channel path type, HCD allows you to specify the following parameters:

Maximum frame size
If you define or update an IQD channel path, HCD displays a dialog that allows you to specify a maximum frame size to be used for IQDIO requests on that channel path. For further information refer to z/OS Communications Server: IP Configuration Guide
**IQD function**

Starting with processor types 2817 and 2818, the Internal Queued Direct I/O (IQDIO) support offers two new options besides the basic HiperSockets functions:

- integration with the intraensemble data network (IEDN) controlled by the zManager functions which provide access controls, virtualization and management functions necessary to secure and manage the IEDN. This functionality is called extended IQD (IQDX).
- bridging an IQD channel to an external (customer managed) network

To support these functions, for IQD channels, HCD offers three choices:

**Basic HiperSockets**

The IQD channel path is connected to the internal HiperSockets network and is used without connection to the IEDN or an external network. This is the default.

**IEDN Access (IQDX)**

The IQD channel path supports IEDN via the Internal Queued Direct I/O Extensions (IQDX) function.

**External Bridge**

The IQD channel path works in basic HiperSockets mode and can be transparently bridged to an external (customer managed) network via the z/VM Virtual Switch bridge support.

**Physical network ID**

An IQD channel path may be defined to a physical network.

---

**Specify IQD Channel Parameters**

Specify or revise the values below.

- Maximum frame size in KB . . . . . . . 16 +
- IQD function . . . . . . . . . . . . 1 1. Basic HiperSockets
  2. IEDN Access (IQDX)
  3. External Bridge
- Physical network ID . . . . . . . . PNET03__________

**Figure 83: Specify IQD Channel Parameters**

---

**Defining more than 160 TCP/IP stacks**

When defining or changing channel paths of type OSD, OSM, or OSX for processors with the corresponding support level, HCD prompts you with a dialog whether you want to allow for more than 160 TCP/IP stacks with this channel. This is done by disabling priority queuing. If priority queuing is disabled, the channel can support four times as many queues (4 * 480 = 1920 subchannels) corresponding to four times as many TCP/IP stacks (4 * 160 = 640) as with enabled queue prioritization.

OSM channels require that more than 160 TCP/IP stacks are allowed.
Allow for more than 160 TCP/IP stacks

Specify Yes to allow more than 160 TCP/IP stacks, otherwise specify No. Specifying Yes will cause priority queuing to be disabled.

Will greater than 160 TCP/IP stacks be required for this channel? . . . No

Figure 84: Allow for more than 160 TCP/IP stacks

**Defining an OSD channel path to physical networks**

When defining or changing channel paths of type OSD for processors with the corresponding support level, HCD prompts you with a dialog to add or modify physical network IDs. Up to four physical network IDs PNET IDs may be specified for customer networks. The PNET IDs have to be specified in the sequence of the physical port on the OSA channel adapter card. That means, Physical network ID 1 has to specify the ID of the physical network that is used for the first physical port of the channel adapter card, Physical network ID 2 has to specify the ID of the physical network that is used for the second physical port, and so on. This dialog is not shown for channel path types OSX and OSM, since these channel path types belong to the internal physical network IEDN.

**Defining or editing channels using Host Communication Adapters**

When defining or changing a channel using HCA (e.g. CIB or CS5 channel paths), HCD prompts you with a dialog which asks for the specification of the **Adapter ID** of the HCA and the **Port** on the HCA of that channel path.

Specify HCA Attributes

Specify or revise the values below.

**Adapter ID of the HCA** . . . . . . . +
**Port on the HCA** . . . . . . . +

Figure 85: Specify HCA Attributes

**Defining or editing channels using a PCHID and a port**

When defining or changing a channel using a PCHID with a port (for example: CL5 channel), HCD prompts you with a dialog that asks for the specification of the PCHID and the port on the adapter for that channel.

Specify Coupling Pchid/Port Attributes

Specify or revise the values below.

**Physical channel ID** . . . 010
**Coupling port** . . . . . . . 1 +

Figure 86: Specify Coupling PCHID/Port Attributes
**Defining or editing channels using a HCA Port and a PCHID**

When defining or changing a channel using a HCA port with a PCHID (for example: CL5 channel paths), HCD prompts you with a dialog that asks for the specification of the PCHID and the Port on the HCA for that channel path.

<table>
<thead>
<tr>
<th>Specify Coupling Pchid/Port Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify or revise the values below.</td>
</tr>
<tr>
<td>Physical channel ID . . . 010</td>
</tr>
<tr>
<td>Coupling port . . . . . . 1 +</td>
</tr>
</tbody>
</table>

**Defining spanned channel paths**

You can define a suitable channel path as **spanned** directly when creating it. On the Add Channel Path panel from Figure 77 on page 97, specify

| Operation mode . . . . SPAN |

After pressing the Enter key, HCD displays the combination of the Define Access List and the Define Candidate List, offering partitions from multiple logical channel subsystems. Note that if you, nevertheless, in both lists select only partitions from the current CSS, then the operation mode of the channel path is set back to SHR.

For information on how to change a CHPID’s operation mode to SPAN, if applicable, refer to “Changing the operation mode of a channel path” on page 108.

**Over-defining a CHPID**

For an XMP processor, you can define a channel path that is not physically installed on the machine. This may be useful if you want to migrate from a machine with more channels defined than the target XMP processor has currently installed, or if you want to prepare a configuration for future upgrades of the channel cards.

You can also over-define CF channel paths (for example: CIB, CS5, or CL5) for your OS partition. This avoids an outage for the definition of new CF connections between an OS partition and a stand-alone coupling facility CPC.

To distinguish an over-defined CHPID from a physically installed CHPID, use character * for the CHID value or the HCA ID when over-defining the CHPID. An over-defined CHPID must adhere to all validation rules.

When installing the channel path later, you must edit the CHPID and replace the * by its valid CHID or HCA ID.

Over-defined channel paths are not taken into account by an IOCDS download, by an IOCP build and by a dynamic activation of an I/O configuration. If a control unit contains only CHPIDs with a CHID value or HCA ID *, the whole control unit (including any attached devices) is omitted from the configuration.

If a CHPID changes its CHID or HCA ID from * to a valid value during a dynamic activation, an CHPID request is generated. Correspondingly, if the PCHID or HCA ID is changed from a valid value to an *, a Delete CHPID request is generated.

When building a CONFIGxx member, CHPIDs with a CHID/HCA ID * are skipped. Attached control units including attached devices are also omitted.

When copying a configuration or generating I/O configuration statements, channel path definitions with CHID=*, CHID, and AID=* are included.

When building a production IODF, HCD requires that the CF channels are connected, even if they are over-defined. If the connection is within the same processor, a mix of over-defined and fully-defined HCA IDs is not accepted. In this case, error message CBDG541I is issued and the production IODF is not built.
Establishing coupling facility channel path connections

Before you start to establish a Coupling Facility (CF) channel path connection, you must have defined a processor that supports coupling facilities, a coupling facility partition, a coupling facility receiver (CF receiver) channel path and coupling facility sender (CF sender) channel path, or peer channel paths.

1. On the Channel Path List (Figure 81 on page 99) select a channel path and the Connect CF channel path action from the context menu (or type action code $T$). HCD displays the CF Channel Path Connectivity List showing all CF channel paths defined for a processor.

To show that a CHPID is already connected in another IODF you can set the indicator in the Occ (occupied) column to Y (yes). You cannot connect a CHPID labeled Y. However, you can change the occupied status by overwriting.

2. Select the source channel path for a coupling facility connection and the Connect to CF channel path action from the context menu (or action code $P$). HCD displays the Connect to CF Channel Path panel. The data-entry fields are shown in the following figure, with sample data:

Note:

a. The Source partition name field indicates a name only when the Filter function is employed.

b. Column CHID for both the source and destination of the connection can be:
   - the physical channel identifier to which the channel path is assigned
   - the host communication adapter ID and port number
   - the physical channel identifier combined with the host communication adapter port number.

c. Column CF indicates Y if at least one partition specified in the access or candidate list is of type CF or CF/OS, which is a prerequisite for establishing CF channel paths.

d. Column CU Type indicates the type of the connected control unit(s).

e. Column # Dev indicates the number of CF devices connected to the CU(s) and used for the CF connection.

2. Select the source channel path for a coupling facility connection and the Connect to CF channel path action from the context menu (or action code $P$). HCD displays the Connect to CF Channel Path panel. The data-entry fields are shown in the following figure, with sample data:
3. To establish the CF channel path connection, specify the destination processor ID, destination channel subsystem ID and destination channel path ID.

If the CF control unit definition does not yet exist, HCD automatically generates a CF control unit and CF devices for a sending channel path when CF channel paths are connected. HCD uses type CFS for a (legacy) CF sender channel path and type CFP for a CF peer channel path. The sending CF channel paths, that connect one CSS of a processor to a CF partition, are assigned to the same CF control unit. For each CF sender channel path connection, HCD generates two CF devices. For each sending CF peer channel path, HCD generates seven (or 32) CF devices. This allows eight CF links between a single CSS and a specific target CF partition. HCD proposes the highest unused control unit number and highest unused consecutive device numbers in the IODF. If a CF peer channel path does not connect to a target CF partition (that is, the sending function is not used), HCD does not connect the channel path to CF control unit and CF devices.

If a CF control unit definition is already used for another CF connection from the CSS of the sending CF channel path to the same target CF partition, HCD proposes the same control unit number. This control unit number may be overwritten by an unused control unit number, provided the partition lists of the channel paths on the existing control unit do not overlap with the partition list of the sending CF channel path for the new CF connection. Thus, it is possible to establish more than eight CF links between a single CSS of a CPC and a specific target CF partition.

**Note:** HCD checks the partition access lists of the channel paths for an overlap. That means, you can define an overlap in the partition candidate lists. In such cases however, you must ensure by operational means that at any one time, the CHPIDs of only one of the control units with overlapping partitions are configured online.

You can also choose to use the same control unit for all partitions of a sysplex that is shared across more than one CSS of a processor for the CF links to a specific target CF partition. This is necessary, if you plan to use a mix of shared (SHR) and spanned (SPAN) CIB connections between your sysplex and the target CF partition. In such a case, it is recommended to define first the SPAN and then the SHR CHPIDs.

**Note:** If you start defining SHR CHPIDs from two CSSs connected to the same target CF partition, HCD proposes for each CSS its own control unit with the CHPIDs from its CSS. If you now want to add a connection with a spanned CHPID that is spanning both of the original CSSs, you cannot add the new spanned CHPID to both control units. Instead, you must break all the connections from one CSS, then connect the new spanned CHPID, with HCD forcing you to use just one control unit, and then reconnect all the broken CHPIDs, with HCD also forcing them to use the same control unit.

The **Add CF Control Unit and Devices** panel is displayed twice (for the source and for the destination side), where you must confirm or revise the values for the CF control unit and CF devices. The data-entry fields are shown in **Figure 89 on page 106**, with sample data:
Add CF Control Unit and Devices

Confirm or revise the CF control unit number and device numbers for the CF control unit and devices to be defined.

- Processor ID: XMPPROC1
- Channel subsystem ID: 0
- Channel path ID: 1B
- Operation mode: SHR
- Channel path type: CFP
- Control unit number: FFFE
- Device number: FFCF
- Number of devices: 7

Figure 89: Add CF Control Unit and Devices

**Note:**

a. The CF control unit and device definitions are displayed on the Control Unit List and on the I/O Device List, but in a disabled state where they cannot be modified or deleted.

b. If you specified a timing-only link in the dialog from Figure 88 on page 105, then the field Number of devices is set to 0 and cannot be changed, as no devices are created for such links. For more information on timing-only links (STP links), read “Defining Server Time Protocol (STP) links” on page 106.

c. If you are defining a coupling facility link (CF link) the field Number of devices is initially defaulted according to the chpid and processor type. If both processors connected by the CF link, support more subchannels than initially set the Number of devices value can be changed.

Changing the Number of devices results in a new device number (except you changed this value as well; in this case a message is shown) and a redisplay of the window showing the modified values. Pressing Enter again displays the same window again, but this time with the destination side values.

4. After you press the Enter key, HCD redisplays the CF Channel Path Connectivity List with the new connection defined.

**Defining Server Time Protocol (STP) links**

HCD supports Server Time Protocol (STP) links (timing-only links) between two zSeries (z890, z990) or later processors. Timing-only links are only needed in the case when coupling links are neither desired nor possible or not needed. If you want to define a coupling facility connection which will be used as a timing-only link, you must set the Timing-only link entry in the Connect to CF Channel Path panel (Figure 88 on page 105) to Yes. Both source and destination processors must be timing capable in this case, and the used channel paths must be from one of the channel path types CFP, CBP or CIB.

Establishing a timing-only link between two processors does not require a CF partition, but can be established between two OS partitions.

For an STP only link, HCD generates a control unit of type ‘STP’ on both sides of the connection. No devices are defined. ‘STP’ is used as control unit type in the CF Channel Path Connectivity List in column CU type, which indicates the type of the connecting control unit(s) for non-STP links (see Figure 87 on page 104).

For changing a CF connection to an STP only connection and vice versa, you must break the existing connection and establish a new one.

**Disconnecting coupling facility channel path connections**

Perform the following steps to break a coupling facility channel path connection:
1. On the Channel Path List select any channel path and the **Connect CF channel path** action from the context menu (or action code 1). HCD displays the CF Channel Path Connectivity List showing all CF channel paths defined for a processor.

2. Select the source channel path for a coupling facility connection and the **Disconnect** action from the context menu (or action code D).

   **Note:** The appropriate CF control unit definition is removed implicitly with the last broken connection to the coupling facility to which the control unit belongs. The appropriate CF device definitions are removed implicitly, when the coupling facility connection to which they belong is broken.

### Changing channel paths

To change channel path data you have to follow the same panel flow as for defining channel path data:

- Changing channel path characteristics
- Changing channel path access and candidate list

The following steps describe the panel flow and where you can change the data.

1. On the Channel Path List, select a channel path and the **Change** action from the context menu (or action code C).

2. On the following Change Channel Path Definition panel you can change channel path definitions such as:
   - Channel path ID (see also “Changing processors” on page 76 for an example of the Update Channel Path Identifiers panel, and how to change the CHPID values)
   - Channel path type (see “Changing the type of a channel path” on page 108)
   - Operation mode (see “Changing the operation mode of a channel path” on page 108)
   - CHID
   - Description
   - If connected to a switch
     - Dynamic switch ID
     - Entry switch ID
     - Entry port

3. After pressing the Enter key, the Define Access List is displayed. Select one or more partitions to be included in the access list.

4. After pressing the Enter key again, the Define Candidate List is displayed (if applicable). Select one or more partitions to be included in the candidate list.

You can also change channel path definitions (except the channel path ID) and the channel path's access and candidate list by simply typing over the appropriate values on the Channel Path List. To change the access and candidate list definitions, scroll to the right to see the channel path/partition matrix (refer to Figure 81 on page 99). Overwrite the values in the channel path/partition matrix with either a for access list and c for candidate list.

### Changing the ID of a channel path

Changing the ID of a channel path may first require the disconnection of the entry switch and entry port on the channel path. If channel paths of multiple processors or channel subsystems (e.g. spanned CHPIDs) connect to the same entry switch and entry port, proceed as follows:

1. Remove the entry switch and entry port from the channel path definitions.
2. Change the channel path ID of the corresponding channel paths.
3. Once again add the entry switch and entry port to the channel paths.
Changing the type of a channel path
Changing the type of a channel path from parallel to serial (or vice versa) will result in changing the type of all other channel paths that are attached to the affected logical control units. When changing the type of a channel path:

• The new/changed channel path type must not conflict with the already existing channel path IDs, control unit and device parameters. Adjust the values of the affected control units and devices according to the rules of parallel or serial channel path type. (For information on how to change control unit processor attachment and device parameters, see: “Changing control units” on page 116.)

• When changing from serial to parallel, you have to disconnect the entry switch and entry port first, if the channel path is connected to a switch.

• When changing a channel path of type BL or BY that is connected to more than one control unit, the channel path has to be defined to a corresponding CVC (converter channel path) first and then be changed to serial.

**Note:** A channel path type change cannot be performed in one step while changing the channel path ID.

Changing the type of a coupling facility channel path
To change the type of CF channel paths, disconnect the channel path you want to change before performing the type change. Any coupling facility devices associated with the changed channel path are removed by HCD. The associated control unit is removed only when the last connection to the coupling facility to which the control unit belongs is broken. (For details on that task, see “Establishing coupling facility channel path connections” on page 104.)

Changing the operation mode of a channel path
Changing the operation mode of a channel path is dependent on its type. For example, BL, BY, CVC, CBY, and CF receiver channel paths cannot be shared.

Before you can change the operation mode of a channel path, the rules for partition access and candidate lists of those channel paths that are attached to the affected logical control units must conform to the rules for the new operation mode. You have to check which partitions have access to these channel paths. When changing the channel path operation mode from SHR to REC or DED, you first have to remove partitions in the appropriate access and candidate lists. The partition lists for the affected logical control units have to be changed when the mode change has been done.

Changing the operation mode of a channel path to SPAN
If you want to change the operation mode to SPAN for applicable channel path types, you must ensure that the CHPID is unused in those channel subsystems into which it should be spanned. This means that the CHPID whose operation mode you want to change, must be unique throughout the processor complex. So you need to distinguish the following scenarios:

• For an existing shared CHPID that is uniquely defined throughout all LCSSs of the processor:

  Enlarge its access and candidate lists with partitions from other channel subsystems. For a shared CHPID, in the Channel Path List, scroll right once for each CSS of the current processor to see the available partitions that you can specify for access or candidates.
Select one or more channel paths, then press Enter. To add, use F11.

Processor ID : XMPP01     CSS ID  : 0   LPAR01 - LPAR02
1=OS LPAR01    2=OS LPAR02    3=             4=             5=
6=             7=             8=             9=             A=
B=             C=             D=             E=             F=
CHID+           I/O Cluster ------ Partitions 0x -----
_ 00    ____   IQD   SPAN  No    ________
_c  _ _ _ _ _ _ _ _ _ _ _ _ _
******************************* Bottom of data ********************************

Figure 90: Channel Path List

1=OS LPAR01 2=OS LPAR02 and ------ Partitions 0x ---- in our example indicate that partitions LPAR01 and LPAR02 are available as partitions of usage type OS in the CSS with ID=0 (0x).

With the codes a and/or c you specify which partitions you want to access. Note that if the CHPID's operation mode in column Mode of the Channel Path List was SHR before your changes, it is set to SPAN automatically after specifying partitions from different channel subsystems (0x, 1x, ...).

• For an existing dedicated or reconfigurable CHPID that is uniquely defined throughout all LCSSs of the processor:
  You can change its operation mode to SPAN using the Change action from the context menu (or action code c) on the Channel Path List. In the subsequent Define Access List and Define Candidate List, you must select at least two partitions from different channel subsystems, because otherwise, HCD sets the operation mode to SHR.

• For any existing CHPID that is multiply defined throughout the LCSSs in the processor complex:
  You must delete the CHPID from all but one LCSS, before you can change its operation mode to SPAN, using the Change action from the context menu (or action code c) on the Channel Path List and selecting appropriate partitions from the Define Access List and the Define Candidate List.

When spanning a channel path, that has control unit(s) (and devices) attached, to a new CSS, HCD invokes a dialog asking whether these control unit(s) (and devices) should also be reachable from the new CSS.

Figure 91: Confirm Copy Control Unit and Device Attachments

Specify Yes, if you want all existing CU and device connections of the designated channel path to be copied to all channel subsystems the channel path gets newly spanned to.
Changing the operation mode of CF channel paths

CF channel paths that connect a processor to the same coupling facility partition via the same control unit must be either all shared or all nonshared. Hence, if you want to change the operation mode for one channel path (from non-SHR to SHR), you have to change it for all. To do this proceed as follows:

1. Disconnect all receiving CF channel paths that connect a processor to the same coupling facility partition (see “Disconnecting coupling facility channel path connections” on page 106).
2. Change the operation mode of all sending CF channel paths.
3. Re-establish the connections for all channel paths that you disconnected in step “1” on page 110.

The associated coupling facility control unit and coupling facility devices are removed and generated again by HCD.

Changing a coupling facility connection

To change a coupling facility connection:

1. Disconnect a connection (see “Disconnecting coupling facility channel path connections” on page 106).
2. Establish the new connection (see “Establishing coupling facility channel path connections” on page 104).

**Note:** A Y (yes) in column Occ (occupied) of the channel path list indicates that this CHPID is occupied. This is useful if you have another IODF where the CF connection is already defined. If you wish to connect this path, you must first change the occupied status by overwriting the Y with N.

It is not possible to include the first CF or CF/OS LP in, or remove the last CF or CF/OS LP from, the combined access and candidate list of a connected CF peer channel. Instead, the CF connection first has to be removed. Then, the CF LP can be connected to or disconnected from the CF peer channel path; afterwards, the CF peer connection can be reestablished. This is to avoid implicit generations of deletions of CF control units and devices.

Aggregating channel paths

When selecting **Aggregated channel paths** from the Channel Path List against a channel path, HCD offers the possibility of moving all control units from a source channel path to the selected target channel path of the same processor. This is useful for combining several under-utilized channel paths to a single one.

You can aggregate channel paths using the **Aggregated channel paths** action. The following steps describe the procedure:

1. On the Channel Path List select a channel path and then the **Aggregated channel paths** action from the context menu or type action code [g] next to the selected CHPID.
2. On the following Aggregate CHPID definition panel you can enter the target channel path ID for the aggregate action.

![Aggregate CHPID](image)

HCD displays a list of control units that are currently attached to the source CHPID. If possible, each control unit shows the switch port to which it is connected. Also, the target switch port and the target
link address after the aggregate is shown if HCD can determine these. You can select all or a subset of control units to be aggregated to the target CHPID. The selected control units and their attached I/O devices are disconnected from the source CHPID and connected to the target CHPID. The target CHPID may now be connected to a different switch than the source CHPID. Panel **Select Control Units to be Aggregated** allows you to change the control unit port and link address for the move to the target CHPID.

After successful aggregation, a message will be displayed and the Aggregate CHPID panel will remain to allow you to aggregate additional channel paths. If aggregation fails because of validation errors, the validation errors are displayed. If prompting for channel paths for aggregation, HCD will only show the channel paths that allow aggregation without validation errors. Prompting is thus a useful planning aid.

The **Aggregate Channel Paths** action is only possible if the following prerequisites are fulfilled:

- Source and target channel paths must be different.
- All selected control units connected to the source channel path must be connectable to the target channel path.
- The source channel path must not be connected to a control unit which is already connected to the target channel path. In addition, a link address - unit address - CUADD combination used by a control unit connected to the source channel path must not also be used by a control unit connected to the target channel path.
- Either the source channel path must have the same channel path mode as the target channel path, or all devices accessible by the source channel path must be connected to only one channel path.
- Source and target channel paths must have defined a dynamic switch.
- The user must not lose connectivity by a channel path aggregate action. The source channel path access and candidate list must be the same as or a subset of the target channel path access and candidate list.
- By connecting control units of the source channel path to the target channel path, the defined maximum value for the target channel path type (e.g. maximum number of unit address ranges) must not be exceeded.

As a result of an aggregation action, HCD will:

- Change the preferred channel path of a device to the target channel path if the source channel path was the preferred channel path of the device initially.
- Leave the reachability of devices by logical partitions unchanged.
- Move the CTC control units of the source channel path port to the entry port to which the target channel is connected.
Deleting channel paths

You can delete the definition of a channel path using the **Delete** action from the context menu (or action code D) on the Channel Path List. If you delete a spanned channel path, it is removed from all channel subsystems which had access to it.

Working with control units

The following section describes how to work with control units.

Defining control units

You need two steps to define a control unit:

- Define the control unit characteristics
- Define how the control unit is attached to processors.

Before you define a control unit, you should have defined the processors and channel paths to which the control unit is to be attached.

Defining the control unit characteristics

1. On the **Primary Task Selection** panel, select **Define, modify, or view configuration data** and on the resulting panel the object **Control units**. HCD displays the Control Unit List showing all control units currently defined in the IODF.

   ![Control Unit List](image)

   **Figure 94: Control Unit List**

   Column CUADD shows the CUADD value defined for the control unit, where available. If the CUADD is inconsistently set for the control unit among processors, an * is displayed.

   Column #CSS shows the number of channel subsystems to which a control unit is connected. This column contains a value only if a connection exists.

   Column #MC shows the greater of the number of managed channel paths defined for the connected processors or the number of managed channel paths defined for the selected processor when coming down from the processor. This column contains a value only if managed channel paths are defined for the control unit.

   **Note:** The CF control units generated when connecting CF channel paths are listed but are disabled for any action. It is not possible to add a new such control unit via this dialog.

2. Use F11=Add to define a new control unit. The preceding data-entry fields are shown, with sample data:
Defining switch connections

The **Add Control Unit** panel can also be used to specify the switches and ports the control unit is attached to.

If you specify Yes for **Define more than eight ports**, the **Define Control Unit Ports** dialog will be displayed to allow you to specify up to 64 control unit switch port connections. To connect a unit to a maximum of 128 switch ports, in this dialog, you can invoke another panel to define an additional 64 switch port connections.

If you specify Yes for **Propose CHPID/link addresses and unit addresses** and the control unit is connected to at least one switch, HCD suggests control unit to processor attachment parameters (channel path/link addresses and the unit address range) based on the switch/ports the control unit is connected to. HCD will propose up to eight channel path/link address pairs, starting with the channel path that has the lowest number of devices attached to it.

If you add a new control unit (via Add or Add-like), HCD automatically assigns as many logical paths as possible for all processors defined.

The following prerequisites must be fulfilled for this function:

- The control unit must support ESCON or FICON attachments and not be used for channel-to-channel (CTC) connections.
- The control unit must have physical switch / port connections (switch entry ports) defined.
- Channel paths that use the connected switch as a dynamic switch must exist.

HCD then automatically selects the channel paths and link addresses according to the following rules for each processor that has been defined.

- All channel paths that use a switch that connects to the control unit as a dynamic switch are candidates for assignment.
- The channel paths are sorted ascending by the value of the reversed channel path ID. The resulting sequence is again sorted ascending by the number of connected devices.
- The connected control unit ports are ordered ascending by the numbers of already connected control units and path connections, respectively.
- For each connected switch port in the resulting sequence, the channel paths are tested in sequence. If the switch port can be used as a link address, the CHPID/link address is taken.
- A maximum number (up to 8) of possible CHPID/link address combinations is assigned.

On the following **Select Processor/Control Unit** panel you can type over the fields that are different from the suggested attachment values.
Defining processor attachment data

1. After pressing the Enter key on the Add Control Unit panel HCD displays a list that shows all the defined processors. You can then define how the control unit is to be attached to one or more processors.

```
Select Processor / CU     Row 3 of 5 More:       >
Command ===>
Select processors to change CU/processor parameters, then press Enter.
Control unit number . . : 0000     Control unit type . . . : 3422
Proc.CSSID 1------ 2------ 3------ 4------ 5------ 6------ 7------ 8------
| XMPP01.0 09.0122 14.01A2 46.0222 52.02A2 33.0422 84.04A2
| XMPP01.1 33.0422 84.04A2 0A.0522 14.05A2
| XMPP01.2 33.0422 09.0722 14.07A2
| XMPP01.3 33.0422 84.04A2 0A.0522
```

Figure 96: Select Processor / Control Unit (1)

```
Select Processor / CU     Row 3 of 5 More: <     >
Command ===>
Select processors to change CU/processor parameters, then press Enter.
Control unit number . . : 0000     Control unit type . . . : 3422
CU   Unit Address . Unit Range +
Proc.CSSID Att ADD+ 1----- 2----- 3----- 4----- 5----- 6----- 7----- 8-----
| XMPP01.0 Y 00   00.256
| XMPP01.1 Y 00   00.256
| XMPP01.2 Y 00   00.256
| XMPP01.3 Y 00   00.256
```

Figure 97: Select Processor / Control Unit (2)

A Y for Yes in the Att column indicates that the control unit is attached to the processor.

2. Select a processor and the Select (connect/change) action from the context menu (or action code S).

When a control unit is attached to multiple processors, you can use the Group connect action from the context menu (or action code G). This group action is particularly useful when performing symmetric changes, for example, on CPCs defined in a processor cluster. The changes are applied to all selected processors, when you issued the change action against a group of processors.

When you issue a change or group connect action, the following panel for processor-dependent control unit information is displayed:
Specify or revise the following values.

Control unit number : 0099         Type : 2105
Processor ID : FR38LPAR     Raised floor production
Channel Subsystem ID :

Channel path IDs . . . . . . 07 08 * * * __ __ __ +
Link address . . . . . . . . . 80__ 81__ _____ _____ _____ _____ +
Unit address . . . . . . . . . __ __ __ __ __ __ __ __ +
Number of units . . . . . . . ___ ___ ___ ___ ___ ___ ___ ___
Logical address . . . . . . . + (same as CUADD)
Protocol . . . . . . . . . . . + (D,S or S4)
I/O concurrency level : 2 + (1, 2 or 3)

Figure 98: Add Control Unit

3. On the Add Control Unit panel specify the channel paths that connect the control unit to the processor.

If the control unit is attached to a switch, you have to define a link address for each channel path. The link address is the port to which the control unit attaches. If the control unit attaches only to one port, the link address is the same for each channel. For addressing the target control unit in a fabric containing cascade switching, a two-byte link address is used, which specifies as first byte the switch address and as second byte the port address to which the control unit is attached.

For a description what the link address is, see Figure 141 on page 146, Figure 142 on page 146 and Figure 144 on page 147.

Note: For managed control units, i.e., control units that can have managed channel paths assigned by DCM, you must indicate how many managed channel paths can be connected to the control unit. Enter at least one static channel path and the corresponding link address, and, in addition, an * (instead of the channel path ID and link address) for each managed channel path.

You must also specify the unit address and the number of units, that is the unit address range of I/O devices that the control unit recognizes. Serial control units may have specified only one unit address range starting with 00.

If the path to the control unit is not unique, and more than one serial control unit connects to the same channel path via the same link address, you have to specify a logical address (CUADD parameter). For more information refer to the explanation of the CUADD in the IOCP User's Guide for your processor.

4. Press the Enter key. HCD displays the updated Select Processor/Control Unit panel. There you may scroll to the right (using F20=Right) to see the data that you have entered on the previous panel.

5. Repeat defining processor attachment data for all processors the control unit should be attached to.

6. Press the Enter key to return to the Control Unit List.

Upgrading to two-byte link addresses

In a FICON fabric, all one-byte link addresses on a channel path may need to be migrated to a two-byte link address. HCD supports this definition change via the Change Channel Path Link Addresses dialog. If you specify a two-byte link address on a control unit for a specific channel path, and there are already one-byte link addresses specified on that path, the panel shown in Figure 99 on page 116 appears.

This panel shows all link addresses specified for the specific channel path that must be changed. If there has been an entry switch defined for the channel, its ID and switch address (if defined) are displayed; else the displayed information is taken from the dynamic switch.

You can change the switch address. HCD then uses the modified value to preset the two-byte link addresses in the displayed New column. Its value is stored, if the entry switch is defined. Alternatively, the new two-byte link addresses can be entered.

Pressing Enter will change the control unit link addresses on the corresponding control units.
Change Channel Path Link Addresses

Specify or revise the following values.

Processor ID . . . . . : MCSS01
Channel Path ID . . . : 81
Entry Switch ID . . . : B0
Switch Address . . . . : 26

<table>
<thead>
<tr>
<th>Control Unit -- Link Address --</th>
<th>Number CSSID</th>
<th>Current</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000</td>
<td>0</td>
<td>02</td>
<td>2602</td>
</tr>
<tr>
<td>6200</td>
<td>1</td>
<td>03</td>
<td>2603</td>
</tr>
<tr>
<td>6400</td>
<td>1</td>
<td>04</td>
<td>2604</td>
</tr>
<tr>
<td>6600</td>
<td>1</td>
<td>05</td>
<td>2605</td>
</tr>
<tr>
<td>7000</td>
<td>2</td>
<td>09</td>
<td>2609</td>
</tr>
<tr>
<td>0E06</td>
<td>2</td>
<td>FE</td>
<td>26FE</td>
</tr>
</tbody>
</table>

***************************** Bottom of data *****************************

Figure 99: Change Channel Path Link Addresses

You may want to change link addresses from two byte to one byte. This is possible, as long as all affected control units are attached to the channel path switch. If a defined two-byte link address is changed to a one-byte link address on a given channel path, all other two-byte link addresses defined for control units attached to that channel have to be changed to a one-byte link address also.

Changing control units

To change control unit data, follow the same panel flow as for defining control units.

• Changing Control Unit Characteristics
• Changing Processor Attachment Data

The following steps describe the panel flow and where you can change the data.

1. On the Control Unit List select a control unit and the Change action from the context menu (or action code C).
2. On the following Change Control Unit Definition panel you can change the following data:
   • Control unit number
   • Type-model
   • Serial number
   • Description
   • Connections to switches/ports

   **Note:** You can also change these control unit definitions (except the control unit number and the connections to switches/ports) by simply typing over the appropriate columns on the Control Unit List.

3. After pressing the Enter key you see the Select Processor/Control Unit panel. Select a processor and the Select (connect/change) action from the context menu (or action code S).
4. On the following Change Control Unit Definition panel you can change the processor attachment data:
   • Channel paths / Link addresses
   • Unit addresses / Number of units
   • Logical address
   • Protocol
• I/O concurrency level

When changing control unit data of control units that affect other control unit or device data (like unit address/ranges), a list is displayed that shows all affected control units and proposed new address ranges for those control units. A panel like the following one is displayed:

**Figure 100: Modify Affected Control Unit Parameters**

After you modified control unit data (like protocol, I/O concurrency level, or unit address range), and pressed the Enter key, the Modify Device Parameters panel is shown with the devices attached to the affected control units. The devices are grouped by ranges:

**Figure 101: Modify Device Parameters**

HCD proposes starting unit addresses for the listed device groups.

Use the F20=Right key to scroll to the right to see the attached control units. Accept or change the definitions for unit address (UA New), Time-Out, STADET, and preferred CHPID.

**Changing control unit attachment parameters for multiple processors**

You can change control unit (CU) attachment parameters or attach a control unit for a group of processors. If all parameters to be changed are identical, use the following group action.

1. On the Control Unit List, select a control unit that is attached to the group of processors and use the **Change** action from the context menu (or action code \[C\]).

2. On the Change Control Unit panel press the Enter key. HCD then displays a Select Processor/Control Unit panel with a list of processors already defined (see Figure 96 on page 114).

3. Select the processors for which you want to change the control unit-processor definitions and use the **Group change** action from the context menu (or action code \[G\]).

4. The Change Control Unit Definition panel is displayed showing the values/attributes for the first processor in the group. An * in the Processor ID field indicates that you are using the **Group connect** action from the context menu and the changes will be applied to more than one processor.
Disconnecting control units from a processor

1. On the Control Unit List, select a control unit and the Change action from the context menu (or action code C). HCD displays the Change Control Unit Definition panel.

2. On the Change Control Unit Definition panel, press the Enter key. HCD displays the Select Processor/Control Unit panel.

3. On the Select Processor/Control Unit panel select a processor and the Disconnect action from the context menu (or action code n).

Disconnecting multiple control units from a processor:

If you want to disconnect multiple control units from one processor in one step, open the Control Unit list via the Channel Path List. On the Control Unit List, select one or multiple control units and use the Disconnect action from the context menu (or action code n).

Priming control unit data

You can prime your I/O configuration in a work IODF with the control unit serial number for the active processor. For the prerequisites for this function refer to “Prerequisites” on page 8.

To prime the control unit serial number, select the action Prime serial number from the context menu (or action code i) on the Control Unit List. The Confirm Priming Control Unit Data List shows the selected control units with the sensed data for the control unit types and serial numbers, and their corresponding definitions in the IODF.

```
Confirm Priming Control Unit Data List
Command ===> ___________________________ Scroll ===> CSR
Press Enter to confirm priming, or Cancel to leave the list. A blank value will not change the IODF definition.

CU     ---------- Type ----------- --- Serial Number ---
Number actual        defined       sensed     defined
90C1  3990-L03      3990          __________ 33333
9100  3990-L03      3990          30984        30984
9101  3990-L03      3990          30984      30984
9140  3990-L03      3990          37160      A7199
9141  3990-L03      3990          37160      A7199
9180  3990-L03      3990          37201
9181  3990-L03      3990          37201
91C0  3990-L03      3990          37163      37163
91C1  3990-L03      3990          37163      37163

************* Bottom of data **********************
```

---

1. The control unit serial number is defined in the IODF, but no sensed data is available on the active system.

2. No control unit serial number is defined in the IODF, but the sensed data of the active system is available. To confirm the sensed data, and to define them in the IODF, press Enter.

3. The control unit serial numbers that are defined in the IODF, and that are sensed are different. Press Enter, to overwrite the defined data by the sensed data.

**Note:** The sensed values can only be blanked out or left unchanged. Blank out the sensed values, if you don't want to change the defined IODF values. To confirm priming, press Enter. Use the F12=Cancel key, if you don't want to use the sensed values, and to leave the list.
Deleting control units

You can delete the definition of a control unit using the **Delete** action from the context menu (or action code D). Deleting a control unit means that all connections to channel paths, switches, and I/O devices are also deleted; these objects are not deleted.

Working with devices

Operating systems need I/O device data to address the devices. The CSS also needs the data to provide the required information for performing I/O operations to a specific device.

Defining devices

You need three steps to define an I/O device:

- Define device characteristics and control unit connection
- Define CSS-related definitions for a device
- Define OS-related definitions for a device (including EDT and esoteric group assignment - MVS-type only).

Before you define a device that should be defined to an operating system and to the channel subsystem (CSS), you must have defined the operating system configuration, processor, channel path, and control unit. HCD omits some steps if data is missing. For example:

- You cannot define the processor data for the device if the device is not attached to a control unit or the control unit is not attached to a processor.
- You cannot define the EDT/esoteric group data for the device until you have defined an EDT for the OS.

Defining device data

1. On the **Primary Task Selection** panel, select **Define, modify, or view configuration data** and on the resulting panel, select **I/O devices**. HCD displays an initial I/O Device List where devices with consecutive device numbers having the same definitions are automatically grouped together (Figure 103 on page 120).

   A device group is shown as device number, range. A range value of one (1) is not explicitly shown. For example, the entry ‘0002,4 3390A’ indicates a device group of four devices of type 3390A with consecutive device numbers from 0002 through 0005. Using action **Work with single I/O devices** from the context menu (or action code S) displays the I/O Device list showing all single devices defined in the IODF, with all device groups resolved (Figure 104 on page 120).
The # sign in front of a row indicates that this row is disabled. You cannot modify or delete it. In the example from Figure 103 on page 120, you can see four devices of type CFS that are used for coupling facility connections.

If you scroll to the right in the I/O Device List, you can see additional columns **PU** (showing the PPRC usage), **Serial-#**, **Description**, and **VOLSER**.

Columns **CSS** and **OS** state the number of channel subsystems and operating systems accessing the device. If the I/O Device List is called from the Processor List or Channel Subsystem List, the number in the **IM** column states how many partitions (images) of the selected processor or channel subsystem are accessing the device. For basic processors this value is one.

If the I/O Device List is called from either

* the Operating System Configuration List

---

**Figure 103: I/O Device List with device groups**

**Figure 104: I/O Device List with single devices**
• the Processor List for SMP processor
• the Channel Subsystem List for XMP processor

using action **Work with attached devices** from the context menu (or action code \( U \)), then the list contains an additional column **SS** which indicates, if applicable, in which subchannel set the device should be placed.

2. Use \( F_{11} \)=Add to add I/O devices. The data-entry fields are shown in the following figure, with sample data:

![Add Device](image)

**Figure 105: Add Device**

In the **Device number** field, you can use the \( F_{4} \)=Prompt key to have a list displayed containing unused device number ranges. If you select a proposal from this list, HCD fills **Device number** and **Number of devices** with the selected values.

The **Add Device** panel can also be used to specify the control units the devices are connected to.

For a DASD device, you can optionally define its peer-to-peer remote copy (PPRC) usage type as either:

**Duplex (D)**
A volume composed of two physical devices within the same or different storage subsystems that are defined as a pair by a dual copy, PPRC or XRC operation and are not in suspended or pending state. The operation records the same data onto each volume.

**FlashCopy (F)**
A point-in-time copy services function that can quickly copy data from a source location to a target location.

**Simplex (S)**
A volume is in the simplex state if it is not part of a dual copy or a remote copy volume pair. Ending a volume pair returns the two devices to the simplex state. In this case, three is no longer any capability for either automatic updates of the secondary device or for logging changes as it would be the case in a suspended state.

**Utility (U)**
A volume that is available to be used by the extended remote copy function to perform data mover I/O for a primary site storage control's XRC-related data. A device that is used to gather information about the environment for configuration setup. It is also used to issue PPRC Freeze commands to the SSID-pair.

**Nonsysplex (N)**
A special case of SIMPLEX which can be used for z/VM devices in a z/VM-z/OS-mixed environment.
Whereas a classification as Flashcopy, Simplex, Utility, or Nonsysplex is only of a descriptive character, the Duplex usage type of a DASD device triggers the following: Duplex devices, attached to a primary operating system configuration with OFFLINE=YES are defined to an optional D/R site OS configuration with OFFLINE=NO and vice versa, when the D/R site OS configuration is generated (see also “D/R site OS configurations” on page 68).

Since VM dummy devices are definable with an arbitrary device type, a device with an unknown device type is accepted by HCD. It is treated like an unsupported device with the device type DUMMY. For MVS-type systems, you have to explicitly define the device as DUMMY.

**Defining multiple devices in one step**

You can define, in one operation, a group of I/O devices of the same type and with consecutive device numbers. You define the group by specifying the first device number and the number of devices in the group. Then HCD applies the definition to all devices in the group. On the I/O Device List, you can type over the values that should be different.

**Use and definition of serial number of device**

HCD allows you to assign the same device number to more than one I/O device; that is, device numbers alone do not uniquely identify a device in an IODF. To clearly identify devices, HCD keeps track of each occurrence of the same device number by appending an internal suffix to the device number.

When *activating a configuration dynamically*, HCD might be unable to determine whether certain I/O devices in the currently active IODF and the IODF to be activated are physically the same. This may happen, if the new IODF was not created by copying or updating the current IODF but was newly created by migrating with IOCP or using the HCD dialog. In this case HCD is unable to determine which of the devices are physically identical.

To avoid problems when activating a configuration dynamically, you should check if more than one device uses the same device number attached to the same control units in the current IODF and in the newly created (not copied) IODF. If so, specify the same serial number for the devices that HCD should treat as physically the same.

**Defining CSS-related definitions for a device**

If you have defined a connection to a control unit on the Add Device panel, and the control unit is connected to a processor, then HCD displays the Device / Processor Definition panel (Figure 106 on page 122) that shows the processors to which the control units are attached.

```
Device / Processor Definition

Select processors to change device/processor definitions, then press Enter.

Device number .. : 01E1           Number of devices . : 8
Device type . . : 3745

/ Proc.CSSID SS+ UA+ Time-Out STADET Preferred Device Candidate List
  XMPPRO1.0 __ 05 No      Yes __ No         Explicit Null
  G29.0    __ F0 No No    No __ No         Null         ___
  G29.1    __ F0 No No    No __ No         Null         ___

******************************************************************************

Figure 106: Device / Processor Definition
```

On the Device / Processor Definition panel you can proceed in two ways:

- You can specify the CSS-related definitions directly by typing over the fields in each column. If you want to specify an explicit device candidate list for a device, type 'yes' into column Device Candidate List - Explicit. This leads you to panel Define Device Candidate List (Figure 108 on page 124).
You can select a processor and press the Enter key. The Define Device / Processor panel is displayed (Figure 107 on page 123). From this panel you can edit the same values as shown in the Device / Processor Definition panel.

Define Device / Processor

Specify or revise the following values.

- Device number . . . : 01E1
- Number of devices . . . : 8
- Device type . . . : 3745
- Processor ID . . . : XMPPR01
- Channel subsystem ID : 0
- Subchannel set ID . . . : + (Only necessary when different from
the last 2 digits of device number)
- Unit address . . . . . : E1 (Only necessary when different from
the last 2 digits of device number)
- Time-Out . . . . . . : No (Yes or No)
- STADET . . . . . . . : Yes (Yes or No)
- Preferred CHPID . . . . : + (Yes or No)
- Explicit device candidate list . No (Yes or No)

Figure 107: Define Device / Processor

Defining the subchannel set for a device

Starting with z9 EC processors, each channel subsystem contains more than one subchannel set (SS 0, SS 1), where you can place the devices. Starting with z/OS V1R7 HCD, you can place PAV alias devices (types 3380A and 3390A) into an alternative subchannel set. In SS 0, you can place 63.75K devices, and in SS 1 you can place 64K-1 PAV alias devices.

Starting with zEnterprise processors, each channel subsystem contains a third subchannel set (SS 2). Starting with z/OS V1R10 HCD, you can place PAV alias devices (types 3380A and 3390A), PPRC secondary devices (type 3390D) and Db2 data backup volumes (type 3390S) into an alternative subchannel set. You cannot define 3390D and 3390S devices in subchannel set SS 0.

You can specify the subchannel set ID for a device either in column SS of Figure 106 on page 122 or in field Subchannel set ID of Figure 107 on page 123.

HCD messages that refer to a device in a subchannel set with a subchannel set ID > 0 will display the device number in the format n-devnumber where n is the subchannel set ID. For example, the device 1234 located in subchannel set 1 will show up as 1-1234. A device 4567 in subchannel set 0 will further on be shown as 4567.

Rules for placing devices into subchannel sets:

Observe the following rules and recommendations when working with different subchannel sets:

- There is no required correspondence between device numbers in the subchannel sets. For example,

| Devices in the range 8000-807F in SS0 | Devices in the range 8000-807F in SS1 (PAV alias devices) |

may relate to completely separate devices. However, you can use this feature to have PAV base and aliases in different subchannel sets, but with the same device numbers.

- Unit addresses of base and alias devices on a single control unit must be unique. These cannot be duplicated across subchannel sets. So if you want to define the PAV base and alias devices in the range 8000-807F in different subchannel sets, but on the same control unit, you can define them like follows:

| Base devices, range 8000-807F in SS0, unit address 00-7F (CU number 8000) | Alias devices, range 8000-807F in SS1, unit address 80-FF (CU number 8000) |

- You can use dynamic reconfiguration to move eligible devices from SS 0 to an alternate subchannel set.
Restricting Partition Access for Devices

You can restrict logical partition access to an I/O device on a shared channel path by using the explicit device candidate list to select which logical partitions can access that I/O device. On the Define Device / Processor panel enter Yes or No in the Explicit device candidate list field to specify whether you want to restrict logical partition access to an I/O device:

- A No specifies that all logical partitions can access this I/O device. No is the default; all logical partitions are in this I/O device's candidate list.
- A Yes specifies that only your selected logical partitions can access this I/O device. Note that the partition must also be in the channel path access or candidate list to access the device. On the Define Device Candidate List, place a slash (/) character to the left of each selected Partition Name.

If you specify Yes in the Explicit device candidate list field, the following panel is displayed, showing possible candidate partitions:

![Define Device Candidate List](image)

Figure 108: Define Device Candidate List

A Yes in the Reachable column indicates that the device can be reached from the respective partition, through at least one physical channel. You can only include reachable partitions into the explicit device candidate list by typing a slash (‘/’) into the action column. Deleting the slash means to remove the respective partition from the device candidate list.

**Null device candidate list for XMP processors**

If devices are connected to a control unit which is shared between multiple channel subsystems, some (not all) of these devices may specify an empty (or null) device candidate list for one or more CSSs. You create a null device candidate list for a device either by deselecting all candidate partitions from an existing list or by not selecting any partition for a new list.

If you define a null device candidate list of a device for a certain CSS, then no partition of this CSS may have access to the device. If you define an explicit device candidate list for a device, the Device / Processor Definition panel (Figure 106 on page 122) indicates whether this candidate list is a null device candidate list in column Device Candidate List - Null. If no partition is allowed to have access to the device, value Yes is shown, otherwise value No. This field is left blank if no explicit device candidate list exists for the selected device (which is the default when creating new devices).

**Defining OS-related definitions for a device**

1. After pressing the Enter key on the Define Device / Processor panel, the Device / Processor Definition panel is displayed again. Select another processor or press the Enter key again to display the Define Device to Operating System Configuration panel that shows all the defined OS configurations.
Figure 109: Define Device to Operating System Configuration

Select an operating system and the Select (connect/change) action from the context menu (or action code S).

As described in “Defining the subchannel set for a device” on page 123, starting with 2094 (z9 EC) processors, you can place PAV alias devices (types 3380A and 3390A) into SS 1.

If you define a PAV alias device, as shown in our example from Figure 105 on page 121, HCD displays the Specify Subchannel Set ID panel that asks for the subchannel set where you want to place the device. The default depends on the value given for the corresponding CSS definition.

Figure 110: Specify Subchannel Set ID

2. Pressing Enter on the dialog from Figure 110 on page 125 brings you to the following panel where you can now define the data about device parameters and features that are required by the operating system configuration.

Figure 111: Define Device Parameters / Features

The Parameter/Feature fields vary depending on the I/O device type and operating system type. A plus sign (+) in the Value column indicates that you may use F4=Prompt to get a list of possible values for the parameter/feature in the same row. Note that not all parameters are promptable.

A Y in the R column indicates that a value for the parameter/feature in the same row is required.
You accomplish the change by accepting the default values or by changing the Value entries and pressing the Enter key. The default values are set in the UIM for the device type. For parameters you can specify different default values via the OS_PARM_DEFAULT keyword in the HCD profile.

3. For eligible devices, after you have defined the device parameter and feature data and pressed the Enter key, HCD displays the Assign/Unassign Device to Esoteric panel.

![Assign/Unassign Device to Esoteric Panel](image)

**Figure 112: Assign/Unassigned Device to Esoteric**

4. On the Assign/Unassign Devices to Esoterics panel, overwrite the values in the Assigned column to assign (Yes) or unassign (No) devices to the selected esoterics.

If you do not want to assign a complete group of devices, you can limit the range by specifying a starting number and the number of devices. If you omit the number of devices, 1 is assumed.

**Changing devices**

To change device data, you have to follow the same panel flow as for defining a device:

1. Changing device and control unit definitions
2. Changing CSS-related definitions
3. Changing OS-related definitions

The following steps describe the panel flow and where you can change which data.

1. On the I/O Device List, select a device or a group of devices and the Change action from the context menu (or action code C). HCD shows the following panel:

![Change Device Definition Panel](image)

**Figure 113: Change Device Definition**

Depending on whether you invoke this action for a single device or a group of devices, the line Number of devices shows how many devices are affected by the change.

2. On the Change Device Definition panel you can change device and control unit definitions such as:
3. After pressing the Enter key, the **Device / Processor Definition** panel is displayed. Select a processor and press the Enter key to change the following CSS-related definitions:

- Subchannel set ID
- Unit address
- Time-Out
- STADET
- Preferred CHPID
- Explicit device candidate list

4. After pressing the Enter key twice, the **Define Device to Operating System Configuration** panel is displayed. Select an operating system and the **Select (connect/change)** action from the context menu (or action code 3) if you want to change the following OS-related definitions:

- Parameters/Features
- Assignments to esoterics

5. After pressing the Enter key again, the Assign/Unassign Device to Esoteric panel is displayed. If you want to change the assignment of devices to esoterics, type over the values in the **Assigned** column by either Yes or No.

6. Press the Enter key twice to return to the I/O Device List.

**Changing CSS-related definitions of a group of devices**

You can change CSS-related definitions of a group of devices using the **CSS group change** action. This helps you, for example, to attach a group of DASDs to another control unit. To do this, the devices to be changed must be in the same device group, that is, they must all be of type, for example, DASD or TAPE.

1. On the **I/O Device List** select one or more devices and use the **CSS group change** action from the context menu (or action code g). The Change Device Group panel is displayed.

   **Change Device Group**

   Specify the control units the devices are attached to.

   Connected to CUs . . 00D1 00D2 ___ ___ ___ ___ ___ ___ ___ +

   HCD displays the definition of the first device in the group. You can modify this definition and HCD applies the definition to all devices in the group.

2. After pressing the Enter key, HCD displays the Change Device Group / Processor Definition panel, where you can select the processors for which you want to change the CSS-related definitions. For an example of this panel, see “Defining CSS-related definitions for a device” on page 122.

**Changing esoterics for a group of devices**

For a description of how to change esoterics for multiple devices, refer to “Adding devices to esoterics” on page 73.

**Changing OS-related definitions of a group of devices**

You can change OS-related definitions for a group of devices using the **OS group change** action (or action code o). This helps you, for example, to attach a group of devices to another operating system. The device parameter/features will be the same for all devices in the group.
If you want to change OS-related definitions for PAV devices, HCD displays a similar dialog as shown in Figure 110 on page 125 which lets you change or specify the subchannel set ID where to place the device or the device group.

1. On the I/O Device List for device groups or single devices select one or more devices or groups and use the OS group change action from the context menu (or action code [Q]). HCD displays the Change Device Group / Operating System Configuration dialog.

   **Figure 114: Change Device Group / Operating System Configuration**

   HCD applies the OS related changes to all selected devices, if a user performs an explicit action (for example, Select (connect/change) or Disconnect from OS, see next step). You might need to also disconnect from those operating systems, which are not shown as connected (status is shown only for the first device) to ensure, that all selected devices are disconnected.

2. If you want to disconnect the selected device group(s) from specific operating systems, select those operating systems and action Disconnect from OS (action code [N]) from the context menu.

   Otherwise, select the operating system to which you want to attach the group of devices and the Select (connect/change) action from the context menu (or action code [S]). HCD displays the following dialog:

   **Figure 115: Define Device Group Parameters / Features**

   You accomplish the change by accepting the default values or by changing the Value entries and pressing the Enter key.

   The specified device parameters/features are applied to all devices of the group.

   **Changing the DYNAMIC, LOCANY or OFFLINE parameter of a group of devices**

   You can change the DYNAMIC, LOCANY or OFFLINE parameter of a group of devices using the Attribute group change action. This function helps you to change parameters for a group of devices without having to use the Change action for each device individually.
This function can only be invoked from the I/O Device List accessible from the Operating System Configuration List.

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations.

2. Select an operating system and select the Work with attached Devices action from the context menu (or action code U). HCD displays the I/O Device List.

3. Select one or more devices on the I/O Device List and the Attribute Group change action from the context menu (or action code E). HCD displays the Attribute Group Change panel:

```
Attribute Group Change

For all devices in the selected group, choose whether ...

1. Allow dynamic configuration ........... DYNAMIC=YES
2. Do not allow dynamic configuration .... DYNAMIC=NO
3. UCB can reside in 31 bit storage ...... LOCANY=YES
4. UCB can not reside in 31 bit storage .. LOCANY=NO
5. Device is set offline at IPL .......... OFFLINE=YES
6. Device is set online at IPL ........... OFFLINE=NO
```

Figure 116: Attribute Group Change

Select the appropriate parameter.

HCD only changes the single parameter for all devices of the group, leaving the other parameters/features of the group unchanged.

**Changing type/model of a group of devices**

You can change the type or model for a group of devices using the Device type group change action. However, you have to make sure that all devices to be changed in one step have the same device type and model. The control units the devices are attached to, have to support the attachment of the new device type as well, and required parameters have to be identical. The new device type has to be supported by the same operating system type.

1. Select one or more devices on the I/O Device List.

2. Use the Device type group change action from the context menu (or action code T). HCD displays the Device Type Group Change panel:

```
Device Type Group Change

Specify a new device type-model.

Current device type-model . : 3380
New device type-model . . . . 3390_________ +
```

Figure 117: Device Type Group Change

Specify a new device type-model.

**Changing the subchannel set placement for a group of devices**

You can change the placement of PAV alias devices any time, for example, if you want to migrate PAV alias devices into a subchannel set of a new processor. From the I/O Device List showing device groups or single devices, use action Subchannel Set ID group change from the context menu (or action code M). HCD displays the following dialog where you can specify the new ID of the subchannel set.

**Note:** When defining or changing the subchannel set placement for devices, you need to observe certain rules. For more information, read “Defining CSS-related definitions for a device” on page 122 and refer to the z/OS HCD Planning.
Specify Subchannel Set ID

Specify the ID of the subchannel set into which devices are placed, then press Enter.

Subchannel Set ID    1  +

F1=Help    F2=Split    F3=Exit    F4=Prompt    F5=Reset    F9=Swap
F12=Cancel

Figure 118: Specify Subchannel Set ID

If at least one of the selected devices has a connection defined to a processor supporting multiple subchannel sets, HCD displays a dialog where you can select from the eligible channel subsystems where to move the devices.

Eligible Channel Subsystems

Select all channel subsystems for which the subchannel set ID has to be changed for all selected devices that have a connection to them.

/ Proc.CSSID  Description
  _ MSSPROC1.0  CSS0 of MSSPROC1
  _ TSPROC1.0   CSS0 of TSPROC1
  _ TSPROC1.1   CSS1 of TSPROC1

*************** Bottom of data ***************

F1=Help         F2=Split        F3=Exit
F7=Backward     F8=Forward      F9=Swap
F12=Cancel      F22=Command

Figure 119: Eligible Channel Subsystems

Also, if at least one of the selected devices has a connection defined to an operating system configuration, HCD displays a dialog listing all OS configurations that have connections to any of the selected devices. You can select all OS configurations for which you want to change the subchannel set ID for the selected devices.

Eligible Operating System Configurations

Select all operating system configurations for which the subchannel set ID has to be changed for all selected devices that have a connection to them.

/ Config.ID    Type             Description
  _ ZOS17        MVS              first z/OS 1.7 operating system
  _ Z17SCND      MVS              second z/OS 1.7 operating system

*************** Bottom of data ***************

F1=Help       F2=Split      F3=Exit       F7=Backward   F8=Forward
F9=Swap      F12=Cancel    F22=Command

Figure 120: Eligible Operating System Configurations
Changing the device number

To change the number of a device:

1. Remove the connections to the control units for the devices to be changed as follows:
   a. On the I/O Device List, select the devices to be changed and the **CSS group change** action from the context menu (or action code \[\text{a}\]). The Change Device Group panel is displayed.
   b. Remove the control unit numbers from the panel and press the Enter key.
2. On the I/O Device List, select the device and the **Add like** action from the context menu (or action code \[\text{a}\]). The Add Device panel is displayed.
3. Specify the new number for the device and the control unit numbers to which the devices are to be attached. Press the Enter key. HCD now displays a series of panels showing the settings of the previously selected device (the one to be changed). The settings are propagated to the new devices. Press the Enter key until HCD redisplays the I/O Device List now showing the new device.
4. Delete the old device by selecting the device and selecting the **Delete** action from the context menu (or action code \[\text{d}\]).

Disconnecting devices from an operating system

Perform the following steps to disconnect a device from an operating system.

1. On the I/O Device List select a device and the **Change** action from the context menu (or action code \[\text{c}\]).
2. On the **Change Device Definition** panel, press the Enter key.
3. On the **Device / Processor Definition** panel, press the Enter key once again. HCD displays the **Define Device to Operating System Configuration** panel.

![Define Device to Operating System Configuration](image)

4. On the Define Device to Operating System Configuration panel select an operating system and the **Disconnect from OS** action from the context menu (or action code \[\text{n}\]). The Define Device to Operating System Configuration panel is displayed again without showing a Yes in the Defined column.

Disconnecting multiple devices from an operating system:

If you want to disconnect multiple devices from one operating system in one step, open the I/O device list via the OS configuration list. On the I/O Device List, select one or multiple devices and use **Disconnect from OS** action from the context menu (or action code \[\text{n}\]).

Showing or hiding parameter/feature definitions of devices

You can define up to five parameters/features for a device that can be shown on the I/O Device List in addition to the default information. These parameters/features will be retained across sessions.

1. On the Operating System Configuration List, use the **Work with attached devices** action from the context menu (or action code \[\text{U}\]).
2. On the following I/O Device List, select the **Show parameters/features** pull-down choice from the **Show/Hide** action bar (no action code available).

3. On the following Device Parameters/Features Profile, you can specify up to five parameters/features that will be displayed on the I/O Device List. HCD saves your settings across sessions.

   ![Device Parameters / Features Profile](image)

   **Figure 122: Device Parameters / Features Profile**

4. On the I/O Device List, use the F20=Right key to scroll to the rightmost part of the panel, where the information is displayed. Note that the DYNAMIC parameter and LOCANY parameter are default information that is also shown on the leftmost part of the I/O Device List in columns **D** and **L**.

   ![I/O Device List](image)

   **Figure 123: I/O Device List**

   You can filter the shown devices by device parameters and features using the **Set Filter** function. On the Filter I/O Device List, you can specify a value for any displayed parameter/feature you want to use for filtering.

   In case you no longer need the parameters/features to be displayed, you use **Hide device parameters/features** pull-down choice from the **Show/Hide** action bar on the I/O Device List.

### Priming device data

You can prime your I/O configuration in a work IODF with the device serial numbers and volume serial numbers (VOLSER) for the active processor. For the prerequisites for this function refer to “Prerequisites” on page 8.

To prime, select the action **Prime serial number and VOLSER** from the context menu (or action code `i`) on the I/O Device List.

The Confirm Priming Device Data List shows the selected devices with the sensed data for the device types and serial numbers, and their corresponding definitions in the IODF. For DASD devices, the sensed VOLSER is also shown on this panel.
**Confirm Priming Device Data List**

Command ===> ___________________________________________ Scroll ===> CSR

Press Enter to confirm priming, or Cancel to leave the list. A blank value will not change the IODF definition.

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Serial</th>
<th>Number</th>
<th>VOLSER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0AF0</td>
<td>3390-B3C</td>
<td>B9888</td>
<td>B9888</td>
<td>PETHS2</td>
</tr>
<tr>
<td>0AF1</td>
<td>3390-B3C</td>
<td>B9888</td>
<td>B9888</td>
<td>D83NE2</td>
</tr>
<tr>
<td>0AF2</td>
<td>3390-B3C</td>
<td>B9888</td>
<td>B9888</td>
<td>D83NE2</td>
</tr>
<tr>
<td>0AF3</td>
<td>3390-B3C</td>
<td>B9888</td>
<td>B9888</td>
<td>D83WL4</td>
</tr>
<tr>
<td>0AF4</td>
<td>3390-B3C</td>
<td>B9916</td>
<td>A9999</td>
<td>PETOFF</td>
</tr>
<tr>
<td>0AF5</td>
<td>3390-B3C</td>
<td>B9916</td>
<td>B9916</td>
<td>PETDL2</td>
</tr>
<tr>
<td>0AF6</td>
<td>3390-B3C</td>
<td>B9916</td>
<td></td>
<td>TSOPAK</td>
</tr>
<tr>
<td>0AF7</td>
<td>3390-B3C</td>
<td>B9916</td>
<td>B9916</td>
<td>CMNAF7</td>
</tr>
</tbody>
</table>

F1=Help        F2=Split       F3=Exit        F5=Reset       F7=Backward
F8=Forward     F9=Swap       F12=Cancel

**Figure 124: Confirm Priming Device Data List**

1. The values that are defined in the IODF and that are sensed are different. Press Enter, to overwrite the defined data by the sensed data.

2. No values are defined in the IODF, but the sensed data of the active system is available. To confirm the sensed data, and to define them in the IODF, press Enter.

**Note:** The sensed values can only be blanked out or left unchanged.

Blank out the sensed values, if you don't want to change the defined IODF values.

To confirm priming, press Enter.

Use the F12=Cancel key, if you don't want to use the sensed values, and to leave the list.

**Deleting devices**

You can delete the definition of a device or a device group using the Delete action from the context menu (or action code d). If you delete a device, all connections to the operating system including esoterics and EDTs are also deleted.

**Working with operating system consoles**

The following procedure describes how to specify which devices MVS can use as NIP consoles and which devices VM can use as VM consoles. Before you can define consoles you must have defined these I/O devices to the operating system.

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Operating system configurations. HCD displays the Operating System Configuration List showing all OS configurations currently defined in the IODF.

2. Select an OS configuration and the Work with consoles action from the context menu (or action code n). HCD displays the NIP Console List or VM Console List (depending on the type of the selected operating system).
3. Use F11=Add to define each console. The following panel is displayed:

**Figure 126: Add NIP Console**

The order number is the sequence the consoles are used by the operating system.

**Changing operating system consoles**

You can change the order number of an operating system console by just typing over the corresponding column or by using the **Change** action from the context menu (or action code C) on the Console List.

**Deleting operating system consoles**

You can delete the definition of an operating system console using the **Delete** action from the context menu (or action code D) on the Console List. The devices are not deleted.

**Working on IODFs enabled for multi-user access**

When multiple users concurrently use the same IODF, a user's changes are not immediately refreshed in the views of the other users. However, each user has a consistent view of the data either from the initial access to the IODF or after each last update that he had applied to the IODF.

In a few scenarios, this information unit demonstrates how HCD applies these rules when two users, **UserA** and **UserB** concurrently view or update an IODF:

- “Simultaneously updating and viewing an IODF” on page 134
- “Concurrently updating an IODF” on page 135
- “Immediately reflecting changes during concurrent updates” on page 136

**Simultaneously updating and viewing an IODF**

Imagine that both users **UserA** and **UserB** invoke the **Channel Subsystem List** of the same IODF. **UserA** wants to delete channel subsystems CSS 1 and CSS 3, and **UserB** wants to work with the partitions of CSS 1.
Both users press Enter. While UserA sees the updated Channel Subsystem List, UserB sees the partitions of the meanwhile deleted CSS 1, because he still views the state of the IODF as loaded from storage. He will get a refreshed view after applying an update on the IODF.

Concurrently updating an IODF

Both users UserA and UserB start on the Channel Subsystem List of the same IODF. UserA invokes action Change on CSS 1 and UserB updates Maximum Devices in SS0 for CSS2 and CSS3 from 65280 to 64512 and additionally invokes action Delete on the same CSS 1 maybe a few seconds later.

HCD displays panel Change Channel Subsystem for UserA while UserB receives message CBDA340I. When UserB returns from the Message List to the Channel Subsystem List, the panel is not refreshed and UserB’s updates are kept on the screen. Thus, UserB can retry his update request several times until UserA releases the lock on the IODF.
Immediately reflecting changes during concurrent updates

Both users UserA and UserB start on the Channel Subsystem List of the same IODF. UserA invokes action Delete on CSS 1 and CSS 2, locking the IODF, and UserB at the same time invokes action Change on several CSSs.

Even after UserA has successfully deleted the two channel subsystems, UserB sees the Channel Subsystem List with all channel subsystems, because this is the state of the IODF as loaded from storage. Let us suppose, he wants to change channel subsystems CSS 1, CSS 2 and CSS 3. An appropriate message is displayed for each channel subsystem that is already deleted. When returning to the Channel Subsystem List, UserB sees the refreshed contents of this panel.
Viewing information

HCD offers several possibilities to view information that might be helpful when defining or maintaining your configuration data.

Viewing object definitions

To view information about objects that are defined in your configuration, select the Define, modify, or view configuration data option from the Primary Task Selection panel. From the resulting panel, select the desired object to get the appropriate list, on which you can use Work with object actions from the context menu that lead to further list panels that display other related objects. You can use these panels to define, modify, and view configuration data. See Figure 42 on page 66 on how to navigate to related list panels of different objects.

Viewing full definition of an object

You can ask HCD to display, for viewing only, the full definition of an object. This might include additional information that is not displayed on the action list panel.

To view object definitions select an object on an action list and use the View object definition action (or action code V).

This following lists offer this possibility:

- Processor List
- PCIe Function List
- Channel Path List
- Control Unit List
- I/O Device List

Viewing additional object lists

Besides the action list panels shown in Figure 42 on page 66, there are list panels, on which you can only view information about objects without being able to change it. You can navigate to these lists using the View objects actions from the context menu. HCD offers View objects actions on the following panels:

List Panel
  View
  Channel Path List
    Connected switches
  Partition List
    Attached channel paths
    Attached control units
    Attached devices
  Operating System List
    Generics
  Generics List
    Devices
  Esoteric List
    Devices

Graphical view

HCD offers you the possibility to view a graphical representation of the configuration.

Use the task Create or view graphical configuration report on the Primary Task Selection panel to view the entire configuration. To view objects in context of their attached objects you can also select an object...
from an action list panel and use the **View graphically** action from the context menu (or action code H).

The following object lists support this possibility:

- Channel Path List
- Control Unit List
- I/O Device List (only for devices that connect to a control unit)
- Partition List
- Switch List

For more information on how to view a graphical report, refer to “Create or view graphical configuration reports” on page 228.

**Viewing logical control units**

On a Control Unit List or I/O Device List, you can display the groups of logical control units that HCD has created to represent the physical control units defined in a configuration. Logical control units are used by the CSS to schedule the processing of I/O requests.

**Viewing coupling facility information**

HCD lets you view information for a specific CF channel path. You can view, for example, access and candidate list of selected channel paths and information on the CF control units and devices in a CF channel path connection.

On the CF Channel Path Connectivity List, select a channel path and one of the following actions:

- The **View source channel path definition** action displays the View Channel Path Definition panel for the source channel path of the CF connection.
- The **View destination channel path def.** action displays the View Channel Path Definition panel for the destination path of the CF connection.
- The **View CF control unit and devices** action displays the View CF Control Unit and Devices panel that shows the CF control unit number(s), the starting CF device number(s), and the range of devices defined for a CF connection.

**Viewing CTC connections**

HCD offers you the possibility to view and verify your CTC connections. You can view existing CTC connections including online diagnostic messages on the following lists:

- Processor List
- Partition List
- Channel Path List
- Control Unit List
- I/O Device List

The **CTC Connection List** lets you immediately verify whether your definitions are done correctly.

**ESCON channel-to-channel support**

An ESCON CTC connection requires a CTC channel at one end of the connection and a CNC or FCV channel at the other end of the connection. The two channels can be considered as communicating directly with each other in a peer-to-peer fashion. Each channel defines the channel at the other end of the CTC connection as an SCTC control unit. This is illustrated in #unique_345/unique_345_Connect_42_ctcx44.

**FICON channel-to-channel support**

FCTC support differs from ESCON CTC support not only in the channel types used. The main differences are as follows:

- An FCTC connection is given via a FICON channel path on each side of the FCTC communication line.
• It is possible to have an FCTC connection between the LPARs of the same CEC via a single FICON channel path in a switched environment.

In order to be usable as an FCTC connection channel, a FICON channel path must be defined to an FCTC control unit which is connected to FCTC devices.

![Diagram showing CTC/CNC connection established using a dynamic connection](image)

**Figure 133: CTC/CNC connection established using a dynamic connection**

The entry port of the channel at the other end of the CTC connection corresponds to the link address of the control unit representing the channel.

The CTC devices associated with the control units at both ends of the CTC connection may have different device numbers, but they must have the same unit address. The device type of both devices must be the same (for example, SCTC or BCTC).

**Restrictions applying to the CTC Connection List**

• HCD can only show CTC connections if the connected processors are defined in one IODF.

• For a switched SCTC connection, the CNC/FCV and CTC channel paths must be connected to the same ESCON director. CTC connections running via chained ESCON directors cannot be determined.

• CTC connections using a stand-alone CTC adapter cannot be shown.

**CTC connections with shared channels**

If your processor has MIF support you can share your channels among several partitions to save physical connections. The following figure shows you the case when a CNC channel is shared between two partitions. The CTC channel will need a separate control unit definition for each partition sharing the CNC channel. Each of these control unit definitions has the same destination link address but the control unit logical addresses (CUADD) must be different. The control unit logical address must correspond to the image number of the logical partition.

**Note:** If the target channel path is non-shared, either you must not specify a control unit logical address, or its value must be 0.
For further specification rules, refer to the IOCP User’s Guide for your processor.

**Point-to-point CTC connection**

Each point-to-point CTC connection is realized by a cable plugged into the ends of the connection (imagine, the connecting cable has a serial number). In addition the control unit and device definitions must match the desired CTC connection – similar to the switched connection (CUADD on one side must match the partition image number on the other side, the explicit device candidate list must allow the LPAR of the same side to use the device.

To verify and report point-to-point CTC connections, HCD uses serial numbers. To find the both ends of the connection, all control units connected to the chpids must have the same serial numbers.

**How to view CTC connections**

You can use action **View related CTC connections** (or action code \(\text{K}\)) on the following lists:

- Processor List
A panel similar to the following one is displayed:

<table>
<thead>
<tr>
<th>CTC or FC side</th>
<th>CNC/FCV or FC side</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC001A</td>
<td>0500,5 20 1020</td>
<td>PROC001</td>
</tr>
<tr>
<td>PROC001A</td>
<td>0690,1 20 0069</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0650,1 11 0065</td>
<td>PROC002</td>
</tr>
<tr>
<td>PROC002</td>
<td>0680,1 11 0068</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0701,1 12 0050</td>
<td>PROC003</td>
</tr>
<tr>
<td>PROC002</td>
<td>0800,5 22 0060</td>
<td>PROC003</td>
</tr>
<tr>
<td>PROC002</td>
<td>0805,1 22 0060</td>
<td>PROC003</td>
</tr>
<tr>
<td>PROC002</td>
<td>0806,3 22 0060</td>
<td>PROC003</td>
</tr>
<tr>
<td>PROC002</td>
<td>2400,1 24 0024</td>
<td></td>
</tr>
<tr>
<td>XMP1.1 PART1</td>
<td>1105,1 21 0105</td>
<td>PROC001</td>
</tr>
<tr>
<td>XMP1.1 PART1</td>
<td>1107,1 21 0107</td>
<td>PROC002</td>
</tr>
<tr>
<td>XMP1.1 PART2</td>
<td>0300,1 10 1012</td>
<td></td>
</tr>
<tr>
<td>XMP1.1 PART2</td>
<td>0300,2 10 1012</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 136: CTC Connection List**

This panel shows the definitions of the CNC/FCV side in relation to the definitions of the CTC side, such as processor, partition, channel path, control unit, and device information.

**Incomplete CTC definitions**

If the CTC connection is not correctly defined, the fields on the CTC Connection List can be incomplete and an error message is shown. For example, G754 in column Msg. refers to message CBDG754I, which indicates that HCD cannot determine the connection, because no control units and devices match to the processor, partition, control unit, and device of the same row.

**Displaying more detailed information**

Scroll to the right to see more detailed information about the CTC side of the connection, such as channel path mode, switch information, detailed control unit and device information.
Select CTC connections to view CTC Messages, then press Enter.

<table>
<thead>
<tr>
<th>Partition--</th>
<th>Devices-----</th>
<th>CHPID-</th>
<th>Entry Dyn</th>
<th>Link CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROC001A</td>
<td>0500,5</td>
<td>BCTC N</td>
<td>00 20 DED</td>
<td></td>
</tr>
<tr>
<td>PROC001A</td>
<td>0690,1</td>
<td>SCTC N</td>
<td>00 11 DED</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0650,1</td>
<td>SCTC N</td>
<td>00 10 DED</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0701,1</td>
<td>SCTC N</td>
<td>01 12 DED</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0800,5</td>
<td>SCTC N</td>
<td>00 22 DED</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>0805,1</td>
<td>BCTC N</td>
<td>05 22 DED</td>
<td></td>
</tr>
<tr>
<td>PROC002</td>
<td>2400,1</td>
<td>SCTC N</td>
<td>00 24 DED</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>1105,1</td>
<td>SCTC N</td>
<td>00 21 DED</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>1106,1</td>
<td>SCTC N</td>
<td>00 10 DED</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0301,1</td>
<td>SCTC N</td>
<td>00 10 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0400,5</td>
<td>SCTC N</td>
<td>00 11 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0405,1</td>
<td>SCTC N</td>
<td>05 11 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0406,3</td>
<td>SCTC N</td>
<td>06 11 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>1108,1</td>
<td>SCTC N</td>
<td>00 26 DED</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>1109,1</td>
<td>SCTC N</td>
<td>00 10 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0200,2</td>
<td>SCTC N</td>
<td>00 10 DED</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0300,1</td>
<td>SCTC N</td>
<td>00 10 SHR</td>
<td></td>
</tr>
<tr>
<td>XMP1.1</td>
<td>0300,2</td>
<td>SCTC N</td>
<td>00 10 SHR</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 137: CTC Connection List (CTC/FC)**

Scroll once again to the right to see the same detailed information for the CNC/FCV side of the connection.

Filtering CTC definitions

To get a better overview of your CTC connections you can filter the list by specifying different filter criteria. Select action bar **Filter** and then **Set filter**. The following panel appears:
Filter CTC Connections

Specify or revise the following filter criteria and press Enter.

Message ID . . . . . .
Device type . . . . . . (SCTC/BCTC/FCTC)
Dynamic switch . . . . +

CTC or FC side
Processor.CSSID . . . . . . . . +
Partition . . . . . . . . . . +
CHPID . . . . . . . . . . +
CU number . . . . . .
Starting device no. . . . .
Defined to OS . . . . (Y/N)

CNC/FCV or FC side
Processor.CSSID . . . . . . . . +
Partition . . . . . . . . . . +
CHPID . . . . . . . . . . +
CU number . . . . . .
Starting device no. . . . .
Defined to OS . . . . (Y/N)

Printing CTC connection lists

You can also print the list panel using the SAVE command as described in “How to print list panels” on page 234.

Displaying diagnostic messages

For each connection, HCD displays one message, even if the connection includes several errors. HCD displays the messages according to the following priority list:

1. **CBDG750I**
   Logical address (CUADD) is specified for CU @1, but CHPID @2 of processor @3 is not defined as shared.

2. **CBDG751I**
   Device type of device @1 connected to processor @2, CHPID @3 does not match with device type of device @4 on the other side.

3. **CBDG752I**
   Channel path type error. CHPID @1 of processor @2 is connected to a CHPID @3 of processor @4 with the same type.

4. **CBDG753I**
   Wrap around connection detected for processor @1 (partition @2) via CHPID @3 and CHPID @4.

A message list may look as follows. The messages are sorted by severity.

```
Save  Query  Help
------------------------------------------------------------------------
Command ===>
Message List                     Row 1 of 11
Messages are sorted by severity. Select one or more, then press Enter.
/ Sev Msg. ID  Message Text
  E   CBDG750I Logical address (CUADD) is specified for CU 1010, but CHPID 20 of processor PROC001A is not defined as shared.
  E   CBDG752I Channel path type error. CHPID 20 of processor PROC001A is connected to CHPID 11 of processor PROC002 with the same type.
  W   CBDG753I Wrap around connection detected for processor PROC002 (partition - none -) via CHPID 11 and CHPID 13.
  I   CBDG756I HCD cannot determine connection. CHPID 24 of processor PROC002 is connected via chained switches.
```

Figure 140: Message List
Chapter 7. How to work with switches

Overview
This information unit explains:

- The possibility of switch connections
- The advantages when you define switches with HCD
- How to work with switches (defining, changing, priming, deleting)
- How to work with connections to switches (channel paths, control units, priming switch port names and connections, actions on the Port List)
- How to work with switch configuration data (defining, changing, deleting)
- How to migrate, activate, and save switch configuration data

You can define switches, switch connections and how the switches are physically cabled. A switch configuration, also called port matrix, defines how the various ports of the switch connect to each other. For example, the switch configuration defines whether a port is blocked, has a dedicated connection to another port, or whether dynamic connections to other ports are allowed or prohibited. In other words, the switch configuration defines the inside of a switch.

Possibilities of switch connections

ESCON switches (aka ESCON Directors, ESCDs) enable either dynamic connections or dedicated connections. FICON switches only allow the definition of dynamic connections.

HCD supports fabrics containing cascade switching using FICON switches. Such a fabric consists of two or more FICON switches.

**Note:** Other than for chained ESCON switches where the dynamic switch for a channel path specifies the switch containing the port address that is used as link address, in the FICON case the dynamic switch ID is always the channel path entry switch.

The following four figures illustrate the path types of switch connections for ESCON Directors or FICON switches. For FICON switches, only the first and the fourth configuration type is supported. Figure 141 on page 146 shows a configuration with a single switch; the entry switch is the dynamic switch. (The dynamic switch in HCD corresponds to the SWITCH keyword of the CHPID macroinstruction from the IOCP point of view.)
Figure 141: Configuration with one switch

Figure 142 on page 146 shows a configuration with two switches, where the entry switch is different from the dynamic switch. (The two switches are chained and the entry switch for the channel path has a dedicated connection.)

Figure 142: Configuration with two switches (1)

Figure 143 on page 147 shows a configuration with two switches, where the entry switch is the same as the dynamic switch. (The two switches are chained and the CU switch has a dedicated connection.)
Figure 143: Configuration with two switches (2)

Figure 144 on page 147 shows a configuration with cascading switches. The fabric in this figure contains two cascading FICON switches. The link address 5904 specifies 59 as switch address and 04 as port address.

Note:
The switch address is unique within a fabric, but may occur also in other cascaded switch fabrics. However, as HCD has no knowledge of which switches are within the same fabric, it is highly recommended to assign unique switch addresses across fabrics, for example, by using the switch IDs as switch addresses.

Figure 144: Configuration with two cascading FICON switches

Advantages of switch definitions with HCD

You have the following advantages when you define switches with HCD:
• More rigorous validation of the configuration definition.

If all switches between the channels and control units are defined, HCD can determine whether a valid path exists between the processor and control unit. For example, HCD can validate that the destination link address specified for a channel path is a valid port on the dynamic switch.

• The possibility to define several switch configurations for each switch.

• The possibility to define and activate switch configurations without leaving HCD (from the same workplace).

If you have defined a switch configuration using HCD, you can activate the switch configuration without leaving HCD and do not need any knowledge about other operating system components that are involved in the activation process.

• The possibility to define a switch as CU, device, and switch as such, to:
  1. Migrate an active switch configuration from a switch, or a saved switch configuration from a switch file, or convert an ISPF table to a HCD switch configuration for later manipulation by HCD.
  2. Send switch configuration data from an IODF to a switch, making it the active port matrix, or save it in a switch file.

• Graphical configuration reports include switch connections.

Note: HCD supports a generic FICON switch (type FCS) supporting port addresses 00 to FF. This switch type does not support a switch control unit and switch device and therefore cannot be accessed by I/O Operations functions like migrate or activate switch configuration.

### Defining switches

To define switches and their associated ports, you need to

• define switch characteristics,
• define connections to channel paths, control units, and other switches,
• define switch configuration data (port matrix).

### Working with switches

In this section, you can learn how to define, change, prime, and delete switches.

### Defining switch characteristics

1. On the Primary Task Selection panel, select Define, modify, or view configuration data and on the resulting panel the object Switches. HCD displays the list of all switches currently defined in the IODF.
Figure 145: Switch List (left part)

The Switch List (left part), Figure 145 on page 149, lists one switch control unit and device. If there is more than one switch control unit and device, the list entry gets an indication (‘>’). With the F20=Right key, you can scroll to the right part of the Switch List. Up to five switch control units and devices can be shown. If there are more, an indication is given for the corresponding entry (‘Yes’ in column ‘More?’ on the right part of the Switch List). These additional switch control units and devices can be viewed, for example, on the Port List for port FE.

Figure 146: Switch List (right part)

2. Use the F11=Add key to add a new switch.
Add Switch

Specify or revise the following values.

Switch ID . . . . . . . . 99 (00-FF)
Switch type . . . . . . . 9032 +
Serial number . . . . . . ASW3333333
Description . . . . . . . First Switch ________________
Switch address . . . . . . _ (00-FF) for a FICON switch

Specify the port range to be installed only if a larger range than the minimum is desired.

Installed port range . . C0 - FB +

Specify either numbers of existing control unit and device, or numbers for new control unit(s) and device(s) to be added.

Switch CU number(s) . . 0099 ***** ***** ***** +
Switch device number(s) . 0099 ***** ***** *****

F1=Help    F2=Split   F3=Exit    F4=Prompt  F5=Reset   F9=Swap
F12=Cancel

Figure 147: Add Switch

HCD allows you to specify the port range of a switch to be set to installed, if more ports are to be used than the minimum range. Specify the first and last port of the range you want to use. If you do not specify values for the Installed port range field, the hardware status of the minimum range of supported ports is set to installed.

In order to allow consistency checks for the configuration, when adding a new switch, you can optionally define a switch address for a FICON switch.

You can also specify control unit numbers and device numbers for the switch.

On the Add Switch panel you can initially define up to five switch control units and devices for the switch. To define more than five switch control units and devices, or to add additional switch control units and devices later, you must use the control unit and device definition dialogs.

If you specify switch control units that do not yet exist, they are automatically added as new objects to the IODF, and are connected to the switch through the switch control unit port. In this case, you need to specify new switch devices. The switch devices are also automatically added as new objects to the IODF and connected to the switch through the switch control units. However, to complete the configuration path, you must attach the switch control units and switch devices to a processor, and then you can assign the switch devices to an operating system.

If the switch control units already exist, they are automatically connected to the control unit port on the newly defined switch. In this case, you do not need to specify switch devices. If you do, the switch devices must already exist and be attached to the designated switch control units.

Specified serial numbers or descriptions are also copied to the switch control units and switch device definitions.

3. After you press the Enter key, HCD displays the updated Switch List.

   • Connect the switch control units to the processor (which also connects the switch devices to the processor). To specify additional parameters use the Change action on the Control Unit List. For details, see “Defining processor attachment data” on page 114.

   • Connect the switch devices to the operating system. Use the Change action on the I/O Device List. For details, see “Changing devices” on page 126.

### Changing switch data

To change the following switch characteristics, you can type over the columns on the Switch List, or you can use the Change action from the context menu (or action code 2) on the Switch List:
• Switch type
• Serial number and description

When you change the type, serial number, or description of the switch, the control units, and devices attached to the switch are also updated.

![Figure 148: Change Switch Definition](image)

### Priming switch data

You can prime your I/O configuration in a work IODF with the switch serial number for the active processor. For the prerequisites for this function see “Prerequisites” on page 8.

To prime, select the action **Prime serial number** from the context menu (or action code ![I](image)) on the Switch List.

The Confirm Priming Switch List shows the selected switches with the sensed data for the switch types, serial numbers, switch control units, and switch device numbers, and their corresponding definitions in the IODF.

**Note:** Only one defined switch control unit and one defined switch device is shown even if several have been defined. If the sensed switch control unit and device is one that has been defined, it will be displayed. Otherwise the defined switch control unit and device with the lowest control unit number will be displayed.

An update of the switch serial number also updates the serial number of the corresponding switch control units and switch devices.

The sensed data for the switch serial numbers are shown on the Confirmation panel, and can be accepted, or rejected before being incorporated into the IODF. If a value is blanked out, the defined IODF value is not changed. If you use the F12=Cancel key, none of the sensed values is used.

![Figure 149: Confirm Priming Switch Data List](image)
Moving ports

When selecting Move Ports, HCD offers the possibility of moving control unit, channel path or switch port connections on the same switch or from other switches to the selected target switch.

To perform this action, select the target switch for a port move action on the Switch List (see Figure 145 on page 149). The panel Actions on selected switches appears and the action Move Ports can be selected. You can also reach this panel directly by typing in the action code x next to the appropriate switch in the Switch List menu. This brings up the following panel Move Ports to a Target Switch.

This panel contains data entry fields for the ports to be moved. It is also possible to move a range of ports from a switch to the target switch occupying subsequent port addresses starting with the target port address specified. The target switch field in this panel has been preset and cannot be changed.

Depending on the context, HCD performs the following as part of the Move Ports action:

- Copies the attributes of the source port to the target port (and set the target port to installed, if necessary).
- Disconnects all source ports from the connected units.
- Connects all target ports to the units previously connected to the source ports.
- Copies existing port configurations of the source port if the move is on the same switch and port configurations exist. The source port configurations will be set to default, i.e., all dynamic and dedicated connections are reset.
- Changes the dynamic switch of the connected channel path to the target switch if the source switch serves as a dynamic switch and the target switch is different from the source switch.
- Changes the link address to the target port if the source port serves as a link address to a channel path connection for a control unit and is connected to a control unit or another switch.

Note: HCD does not perform any checks on whether the user also moves implied ports as well. For example, if a channel path is moved to another switch, the control units that are connected to the channel path must also be moved. Moving a control unit may imply that connected channel paths must be moved as well. If not all implied ports are moved, the configuration may become invalid and a validation error will be shown either during the Move Ports action or later during the Build Production IODF action.

Note: If the target switch has switch configurations defined and the port move occurs between different switches, then the switch configurations must be adapted after the port move action.
The **Move Ports** action is especially of value when consolidating switches or installing new switches.

**Deleting switches**

You can delete the complete definition of a switch or switch configuration by using the **Delete** action from the context menu (or action code D) on the Switch List or Switch Configuration List. This also deletes the connections from the ports to channel paths, control units, and other switches. The link address and dynamic switch definitions for a channel path are not deleted.

The Confirm Delete Switch panel shows all the switch control units and devices that will be deleted with the switch. If you don’t want them to be deleted with the switch, disconnect the control units from port FE of the switch, before you delete the switch.

![Figure 151: Confirm Delete Switch](image)

**Working with connections to switches**

In this section, you will learn about how to define connections to switches, for example channel paths, control units, other switches, how to prime switch port data, and what kind of additional actions is offered on the Port List.

**Defining connections to switches**

You can connect the following objects to a switch starting from the Switch List:

- Channel paths
- Control Units
- Other switches

You can also define connections from the objects to the switch when defining the object themselves. See Chapter 6, “How to define, modify, or view a configuration,” on page 63 for a description how to define the objects.

**Connecting a channel path**

The following procedure describes how to define a connection between a channel path and a switch starting from the Switch List.

1. On the Switch List, select the switch and the **Work with ports** action from the context menu (or action code D). The Port List is displayed.

   Ports which show value Y in column 0 indicate that they are occupied by a processor, control unit or switch that is not defined in the accessed IODF.
2. Select a port and the **Connect to channel path** action from the context menu (or action code $2$).

Occupied ports cannot be connected. However, you may change the Occupied status of a port by overwriting the Occupied indicator.

On the resulting Connect to Channel Path panel specify the target processor ID and channel path ID.

**Note:** If you selected a spanned physical channel path as connection target, HCD connects the port to all of the channel’s instances across all channel subsystems. You can see the result of your connection action in the Port List (Figure 152 on page 154).

### Connecting a control unit

The following procedure describes how to define a connection between a control unit and a switch starting from the Switch List.

1. On the Switch List, select the switch and the **Work with ports** from the context menu (or action code $p$). The Port List is displayed (see Figure 152 on page 154).

2. Select a port and the **Connect to control unit** action from the context menu (or action code $u$).
Connect to Control Unit

Specify the following values.

Switch ID . . . . : 99  Port . . . . . . . : C4
Control unit numbers . 00E1  ____  ____  ____  ____  ____  ____  ____  +
F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset    F9=Swap

F12=Cancel

Figure 154: Connect to Control Unit

You can enter up to eight control unit numbers each time the panel is displayed.

3. Repeat defining connections for all control units connected to the switch.

Connecting another switch

The following procedure describes how to define a connection between a switch and another switch.

1. On the Switch List, select the switch and the **Work with ports** action from the context menu (or action code `p`). The Port List is displayed (see **Figure 152** on page 154).

2. Select a port and the **Connect to switch** action from the context menu (or action code `W`).

Connect to Switch

Specify the following values.

Switch ID : 99  Port . . . : C4
Switch ID . . . . .98  +
Port . . . . . . . . C1  +
F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset    F9=Swap
F12=Cancel

Figure 155: Connect to Switch

3. Repeat defining connections for all other switches connected to the selected switch.

Priming switch port data

You can prime your I/O configuration in a work IODF with the switch port names, and connections for the active processor. For the prerequisites for this function refer to “Prerequisites” on page 8.

To prime, select the action **Prime port name and connections** from the context menu (or action code `I`) on the Port List.

The Confirm Priming Port Data List lists the selected ports with the sensed data for the port names, and for the connected control units, or switches, or the connections to channel paths of the active processor. Their corresponding definitions in the IODF are shown in the line under the sensed data on the panel.

You get sensed data for connected channel paths only if the processor definition in the IODF contains a serial number that matches the serial number of the active processor.

The sensed port names and connection data can be confirmed before being taken into the IODF. If a value is blanked out, the defined IODF value is not changed. If you use the F12=Cancel, or the F3=Exit key, none of the sensed values is used.
Confirm Priming Port Data List

Command ==> ________________________________  Scroll ==> CSR

Press Enter to confirm priming, or Cancel to leave the list. A blank value will not change the IODF definition.

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Port --- Sensed Port Name ---</th>
<th>Sensed Connection</th>
<th>--- Defined Port Name ---</th>
<th>Defined Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>200A-E</td>
<td>CU 200A</td>
<td>3990-6</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>400B-CG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>360A-00</td>
<td>CU 360A</td>
<td>9343-DC4</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>VMA(32)</td>
<td>PR VMABASIC CHPID 32 9672-R61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 156: Confirm Priming Port Data List

1. No defined data is available for the port connection on the active system. The sensed and defined port names are the same.

2. The sensed and defined port names are available. The port connection is defined in the IODF, but no sensed data is available on the active system.

3. No sensed port name data is available on the active system. The port connection shows differences of the switch type, but the sensed data is not taken in the IODF.

4. No sensed data is available for the port connection on the active system. The sensed and defined port names are the same.

Additional actions on the port list

Besides connecting channel paths, control units, and other switches to a switch, you can perform additional actions on the Port List. Most of these actions are also possible on the Port Matrix panel, this panel offers an alternative procedure. The following panel shows data after connecting a channel path, a control unit, and another switch as described in the previous sections.
Select one or more ports, then press Enter.

Switch ID ............... : 71   Address : Switch 71
Switch configuration ID : SW71

<table>
<thead>
<tr>
<th>Port</th>
<th>H Name +</th>
<th>Unit ID</th>
<th>Unit Type</th>
<th>O B CON +</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>Y</td>
<td>SW 03</td>
<td>PO 20</td>
<td>2032</td>
</tr>
<tr>
<td>93</td>
<td>Y</td>
<td>PR P2084.1</td>
<td>CHP 21</td>
<td>2084-B16</td>
</tr>
<tr>
<td>94</td>
<td>Y</td>
<td>PR P2084.2</td>
<td>CHP 22</td>
<td>2084-B16</td>
</tr>
<tr>
<td>95</td>
<td>SUBC6F-A2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>SUBC91-A0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Y</td>
<td>SUBC6F-C0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Y</td>
<td>SUBC6F-C6</td>
<td>CU BA80</td>
<td>3990</td>
</tr>
<tr>
<td>99</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Y</td>
<td>SUBC6F-A2</td>
<td>CU BD80</td>
<td>3990</td>
</tr>
<tr>
<td>98</td>
<td>Y</td>
<td>SUBC91-A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Y</td>
<td>N40-50</td>
<td></td>
<td>N N</td>
</tr>
<tr>
<td>9C</td>
<td>Y</td>
<td>SUBC2D</td>
<td></td>
<td>N N</td>
</tr>
<tr>
<td>9D</td>
<td>Y</td>
<td>SUBC6F-C2</td>
<td></td>
<td>N N</td>
</tr>
<tr>
<td>9E</td>
<td>Y</td>
<td>SUBC6F-H0</td>
<td></td>
<td>N N</td>
</tr>
<tr>
<td>9F</td>
<td>Y</td>
<td>SUBC6F-H2</td>
<td></td>
<td>N N</td>
</tr>
<tr>
<td>A0</td>
<td>Y</td>
<td>JE0-25</td>
<td>PR CB89</td>
<td>CHP 25</td>
</tr>
<tr>
<td>A1</td>
<td>Y</td>
<td>JE0-26</td>
<td>PR CB89</td>
<td>CHP 26</td>
</tr>
</tbody>
</table>

Figure 157: Port List

A disabled marker # in the action entry field indicates that the field is nonselectable and the whole row is disabled for processing. This occurs if more than one object is attached to one port, for example, for spanned channels or when multiple control units are connected to the same port. Except for the first object attached to the port, all other objects are flagged with the # sign. For example, if the port is connected to more than one unit, a disconnect action specified in the selectable row of that port will lead to the display of another panel where you can select the unit(s) to be disconnected.

Changing ports to installed or uninstalled

The H column indicates whether the ports are installed (Y for Yes) or not (N for No). If you did not specify a range of ports to be set to installed while adding a switch, HCD automatically sets the minimum range of ports to installed at switch definition time.

You can set the port to installed or uninstalled by just typing over the Y or N value in the H column.

Changing ports to occupied or not occupied

The O column indicates whether a port is occupied (Y for Yes) or not (N for No) by a system external to the IODF.

You can change the port to Occupied or Not Occupied by just typing over the Y or N value in the O column.

Establishing dedicated connections and blocking ports

If no switch configurations are defined for a switch, the B and Ded Con columns for blocked indicator and port of dedicated connection are not shown. If switch configurations are defined, data of the first switch configuration (in alphabetical order) is displayed. To display this data for other switch configurations, use **Select other switch configurations** from the **Option** action bar choice.

You can change the blocked indicator and dedicated connections for the switch configuration displayed in the panel header by just typing over the values in the appropriate column. See also “Establishing dedicated connections” on page 159 and “Blocking ports” on page 159 for detailed explanations.

**Note:** You cannot establish dedicated connections for a FICON switch.
Working with switch configurations

In this section you can learn about defining switch configuration data, changing the switch configuration IDs, and deleting switch configurations.

Defining switch configuration data

After defining the switch, you can define the switch configuration, that is the "inside" of the switch.

1. On the Switch List, select the switch and the Work with switch configurations action from the context menu (or action code 5). HCD displays the Switch Configuration List containing all currently defined configurations for that particular switch.

```
<table>
<thead>
<tr>
<th>Switch ID</th>
<th>Config. ID</th>
<th>Connection + Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td>BASIC</td>
<td>_________________________</td>
</tr>
</tbody>
</table>
```

Figure 158: Switch Configuration List

2. Use F11=Add to add a new switch configuration. The data-entry fields are shown, with sample data:

```
Add or Repeat Switch Configuration

Specify or revise the following values.
Switch ID . . . . . : 99
Switch configuration ID . BASIC___
Description . . . . . ________________________________
Default connection . . . _1  1. Allow
                          2. Prohibit
```

Figure 159: Add or Repeat Switch Configuration

The Default connection field sets the default connection for all ports, either allowed or prohibited. Individual port connections can be reset on the Port Matrix panel described in the next step.

3. On the Switch Configuration List, select the switch configuration and the Work with port matrix action from the context menu (or action code 5). HCD displays the Port Matrix panel showing all ports currently installed on the switch.
Establishing dedicated connections

You can establish a dedicated connection between two ports by specifying the number of a port to which a dedicated connection is defined in the Ded Con column. After pressing the Enter key HCD completes the definition by mirroring the definition. For example, if you specify a dedicated connection in the row of port E0 to port E4, HCD establishes the same dedicated connection in the row of E4 to port E0.

A dedicated connection acts like a physically cabled connection between two ports. Establishing a dedicated connection is not the same as prohibiting all but one connection to a port. Dedicated connections are required to support communication through an ESCD with an ESCON Converter (ESCC), and to support chained ESCDs.

If you maintain switch configurations with HCD, you must define the required dedicated connections before you connect a CVC or CBY channel path to a switch port.

If you have alternate required dedicated actions in a configuration (for example, for backup purposes), you must define alternate switch configurations.

Blocking ports

You can block or unblock a port by just specifying a Y for Yes or N for No in the B column.

Dynamic connection ports

In our example the default switch connection is set to allowed. To prohibit a switch connection from, for example, EA to FA, scroll down to port EA and scroll right to port FA. Then type over the * symbol with a p under the heading Dynamic Connection Ports. After pressing the Enter key HCD automatically mirrors the entries on the diagonal of the matrix. That means, HCD applies the same entry not only to the matrix element EA/FA but also to FA/EA.

To ensure a correct mirroring of the entries, press the Enter key each time you changed one complete row.

The following symbols can be shown under the heading Dynamic Connection Ports:

- **A**: Indicates that the dynamic connection is allowed.
- **P**: Indicates that the dynamic connection is prohibited.
- *****: Indicates that the dynamic connection is set to the default connection attribute (shown in the instruction area on the top of the panel).
Indicates the intersection of a port's column and row. (This is only shown for the matrix of an ESCON switch since the dynamic connection of an ESCD port to itself is prohibited and cannot be changed. A FICON switch, however, supports the definition of such a loopback port.)

- Indicates that one of the dynamic connection ports is not installed or supported.

To allow you a more comfortable scrolling in the matrix, use the FIND command. For example, type:

```
FIND EA, FA
```

to find the row of port EA and the column of port FA.

**Changing the switch configuration ID**

To change the ID of a switch configuration, perform the following steps:

1. On the Switch List, select the switch and select the Work with switch configuration action from the context menu (or action code S). HCD displays the Switch Configuration List.
2. On the Switch Configuration List select the switch configuration and the Repeat (copy) switch configurations action from the context menu (or action code R). The Repeat Switch Configuration panel is displayed.
3. Specify the new identifier for the switch configuration and press the Enter key. HCD displays the Switch Configuration List now showing the new switch configuration.
4. Delete the old switch configuration by selecting the switch configuration and the Delete action from the context menu (or action code D). HCD displays a confirmation panel before showing the updated Switch Configuration List.

**Generating a switch matrix**

When selecting Generate Matrix, HCD will define the content of the switch matrix according to the logical paths defined and the existing matrix will be replaced.

This is useful, if channel path - control unit connections have been added or changed and you want to define a switch configuration which considers all defined logical paths running through the selected switch.

To generate a matrix, perform the following steps:

1. On the Switch List select the switch and select the Work with switch configuration action from the context menu (or action code S). HCD displays the Switch Configuration List.
2. On the Switch Configuration List select a configuration (or action code G). HCD will issue an informational message requiring you to confirm your action. The successful generation of the matrix is confirmed by HCD.
When generating the switch configuration, all defined logical paths will be analyzed by HCD. In the case of chained connections, all possible paths of chaining switches will be determined by their respective switch configurations. Therefore, it is necessary, that you select a switch configuration for each chained switch, for which more than one switch matrix has been defined. In this case, the following panel

```
Select Active Switch Configurations
Row 1 of 2
Command ===> ___________________________________________ Scroll ===> PAGE

For each switch select one to be used as context to generate a switch matrix.

Switch ID: 01 Configuration ID: SC1
/ Switch       Configuration Description
  02      SC1
  _ 02      SC2

******************************************************************************** Bottom of Switch Configurations data ********************************************************************************
```

*Figure 162: Select Active Switch Configurations*

will be displayed allowing selection of the related switch configurations which are considered for the *Generate matrix* action.

The following rules are applied when generating a matrix:

- The default connection for the switch configuration will be set to prohibited.
- A logical definition between a channel path using the switch as a dynamic switch and a control unit will lead to a dynamically allowed connection between the channel path entry port and the port serving as the link address.
- A logical definition between a channel path without a dynamic switch and a control unit, or connections via a chaining switch, will lead to a dedicated connection.

HCD will define a dedicated connection in all the cases where there is only one connection possibility left between the control unit and the channel path entry port. For dedicated connections, HCD considers only those ports, which have not yet been used for dynamic connections. In the case of chained connections, the selected switch configurations of chaining switches are used to determine the possible paths.

- Connections between ports connected to a channel path type, which make a specific port configuration necessary, will be set accordingly. For example, connections between ports serving as entry ports for FCV channels will be defined as explicitly dynamically prohibited.
- In addition to generating the matrix, HCD issues informational messages for all cases in which a path was not completely defined or where different paths conflict with each other. If HCD is not able to determine port connections unambiguously, it will leave those definitions to the user.

**Deleting switch configurations**

To delete a switch configuration, perform the following steps:

1. On the Switch List, select the switch and select the *Work with switch configuration* action from the context menu (or action code \[S\]). HCD displays the Switch Configuration List.
2. On the Switch Configuration List select the switch configuration and the *Delete* action from the context menu (or action code \[D\]). The Confirm Delete Switch Configuration panel is displayed.
Confirm Delete Switch Configuration

Command ====> _________________________________ Scroll ==> PAGE

croll forward to view the complete list of switch configurations to be deleted. Press ENTER to confirm delete request. Press F12 to cancel delete request.

Switch ID . . . . . . . : 03
Switch Config. ID Description
SWCON1

Figure 163: Confirm Delete Switch Configuration

3. Press the Enter key to confirm deletion of the switch configuration, or use the F12=Cancel key to cancel the delete request.
4. The updated Switch Configuration List is displayed.

Migrating existing switch configurations

HCD allows to migrate a switch configuration from three sources into the IODF:
- An ISPF table containing a switch configuration as stored by I/O Operations
- An active switch
- A saved switch file

Prerequisites

To migrate from an ISPF table, the I/O Operations ISPF table data set name escm.SINGITBL has to be concatenated in the table library chain in your HCD start-up procedure, where "escm" is the high-level qualifier for your I/O Operations installation, or any other ISPF table data set containing ISPF tables saved by I/O Operations.

For additional information, see “Prerequisites” on page 8.

Migration steps

1. On the Primary Task Selection panel select Migrate configuration data.
2. On the resulting panel select Migrate switch configuration data.

Migrate Switch Configuration Data

Migrate switch configuration definitions to:
Switch ID . . . . . . . . . . . . 98 +
Switch configuration ID . . . . A98BC___ +

From one of the following:
__  1. ISPF table
  2. Active Director
  3. Saved Director file

Figure 164: Migrate Switch Configuration Data

Specify the switch ID and the switch configuration ID of the empty switch configuration in the IODF to which you want to migrate the data.

If you have not previously defined the switch and the switch configuration, a panel appears that lets you define them (see “Defining switches” on page 148).
Select the source from which you want to migrate the switch configuration.

3. A panel appears on which you can define the source:
   - From ISPF tables:
     - Specify the name of the ISPF table that contains the configuration.
   - From an active director:
     - Specify the device number of the switch.
   - From a saved director file:
     - Specify the name of the switch file.
     - Specify the device number of the switch from which the switch file is to be taken.

The following panel is displayed when you are migrating from a saved switch file.

![Migrate from Saved Director File panel](image)

**Figure 165: Migrate from Saved Director File**

**Note:** The source of the switch configuration as specified in the switch device number field does not have to be the switch as specified in the Switch ID field on the Migrate Switch Configuration Data panel. It is possible to take a switch configuration from any switch and save it with HCD for another switch. However, the description of each port connection is saved with the switch configuration, and has to be updated to reflect the real channel path and control unit connections of the target switch.

**Changing port names**

In HCD, port names are saved with the ports, because the port names reflect the connections of a port. When migrating switch configurations with different port names to HCD, the IODF reflects the port names defined in the switch configuration that were migrated last.

**Changing hardware status of a port**

If the migration source contains ports set to installed and the existing IODF contains the same ports set to uninstalled, the hardware status after the migration depends on the kind of source:

<table>
<thead>
<tr>
<th>Migration Source</th>
<th>Hardware Status of Ports after Migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active switch</td>
<td>Changed to installed</td>
</tr>
<tr>
<td>Saved director file</td>
<td>Uninstalled, migrated values ignored</td>
</tr>
<tr>
<td>ISPF table</td>
<td>Uninstalled, migrated values ignored</td>
</tr>
</tbody>
</table>

**Activating switch configuration data**

You can activate a switch configuration, which has been defined or changed with HCD, for a switch. Thus, change and maintenance in a configuration controlled by I/O Operations is simplified by the possibility to use the same user interface.

**Prerequisites**

- The IODF has to be a production IODF.
• A switch control unit must be defined for each switch.
• A switch device must be defined for each switch control unit.
• The switch control unit must have at least one channel path connected using the switch.
• For activation and saving, an ESCON Manager lock of another user must not exist.

For additional information, see “Prerequisites” on page 8.

Activation steps

1. On the Primary Task Selection panel, select Activate or process configuration data and from the resulting panel, select Activate switch configuration. The Activate Switch Configuration panel is displayed.

![Activate Switch Configuration panel](image)

**Figure 166: Activate Switch Configuration**

2. You may choose between two different kinds of switch activation:

Single switch activation

For single switch activation, use the Activate Switch Configuration panel to:

• Specify the switch ID and the switch configuration ID that is to be written to the switch.
• Select how to handle an existing ESCON Manager lock if it is in use by another user.

I/O Operations uses a locking mechanism to serialize connectivity changes across multiple users and systems. This lock allows only one user (or program) to control I/O Operations command processing at a time. If more than one user at your installation is given the ability to enter I/O Operations commands, they must synchronize their usage of I/O Operations to avoid delays or contention for I/O Operations resources.

Multiple switch activation

For multiple switch activation, use the Activate Switch Configuration panel to:

• Specify only the switch configuration ID and no Switch ID. A panel is displayed showing all switches that have a configuration under the specified name.

![Switch Activation List panel](image)

**Figure 167: Switch Activation List**
Switches that are not connected to any switch device are marked with a disabled marker # in the action column, and cannot be selected for activation. The panel shows 'YES' in the 'More?' column if there are more than one control unit and one device. If there is only one control unit and one device, the 'More?' column is left blank. HCD uses the switch devices that are connected to the active system.

- Select the switches that will be activated simultaneously.

When you have finished your selection, press the Enter key. A confirm panel is displayed. On this panel you have to confirm if you want the active switch configuration of all switches shown in the list to be updated.

**Note:** In case a switch activation fails, no switch will be activated, the rule is "none or all".

For activating switch configuration data, refer to IBM System Automation for z/OS (www.ibm.com/support/knowledgecenter/SSWRCJ/kc_sazos_welcome.html).

## Saving switch configuration data

Use the Save switch configuration data function to save an existing switch configuration definition in a switch file. For information on prerequisites to save a switch configuration, see “Activating switch configuration data” on page 163.

1. On the **Primary Task Selection** panel, select **Activate or process configuration data**, and from the resulting panel, select **Save switch configuration**. The Save Switch Configuration Data panel is displayed.

   **Figure 168: Save Switch Configuration Data**

2. Use the Save Switch Configuration Data panel to:

   - Specify the switch ID and the switch configuration ID for the configuration data that is to be saved in the switch file
   - Specify the name of the switch file used to store the switch configuration data
   - Select how to handle an existing ESCON Manager lock
   - Indicate whether to overwrite an existing switch file with the file name you specified.
Chapter 8. How to work with I/O Autoconfiguration

You can use the HCD I/O Autoconfiguration function to perform automatic configuration changes in order to define switched FICON connected or FICON directly connected DASD and tape control units and devices which are currently not yet defined in the base IODF, which can be either the active or currently accessed IODF. Proposed definitions are automatically written into a specified target work IODF which is created as a copy of the active or accessed IODF.

For I/O Autoconfiguration, HCD invokes the Input/Output Subsystem (IOS) to discover I/O hardware in the current configuration that is accessible to the system. HCD can define connections between processors and controllers through combinations of switch-attached paths and point-to-point paths. Proposed definitions are automatically written into a specified target work IODF which may be created as a copy of the active or accessed IODF. You can control the proposals for autoconfiguration changes by specifying autoconfiguration policies.

I/O Autoconfiguration is available starting with zEnterprise processors (processor type 2817). It requires the same access authorization as used for dynamic reconfiguration (see “Giving users access authority” on page 332).

During I/O Autoconfiguration processing, HCD presents the discovered controllers, control units and devices to the user and offers proposals how to configure them. The user can accept or change these definition proposals. On the user’s confirmation, the configuration definitions are then written into the specified target IODF.

HCD provides a series of dialogs to perform automatic I/O configuration:

1. **A dialog to define autoconfiguration policies:**

   Before you start the discovery processing, you can define the policies which control the automatic definition of discovered control units and devices.

   For more information, refer to “How to define autoconfiguration policies” on page 167.

2. **A dialog to perform the discovery and definition process:**

   You define the scope of discovery, select the autoconfiguration operation mode (attended or unattended fast-path mode), select the IODF against which the discovery should run and the target IODF that receives the resulting configuration definitions for all discovered new or changed controllers.

   After having defined or revised the mentioned options, you can invoke the discovery and definition processing. Depending on the selected operation mode, the dialog either leads you through the configuration steps or directly defines the discovered controllers and devices in the target IODF.

   For more information, refer to “How to perform automatic I/O configuration” on page 175.

Through determining the configuration characteristics of the discovered control unit as established at the controller side, and through establishing a recommended configuration based on availability and performance considerations, this functionality ensures that the controller configuration matches its logical definition.

After a successful run of I/O Autoconfiguration, you have complete update control regarding the I/O definitions written to the target IODF.

**How to define autoconfiguration policies**

Before you let HCD discover and define control units and I/O devices, you must specify your desired autoconfiguration policies. This task comprises the following subtasks:

- “How to set keywords for autoconfiguration policies” on page 168
How to set keywords for autoconfiguration policies

To set the autoconfiguration policies by means of keywords, perform the following:

1. Select **Edit profile options and policies** from the HCD **Primary Task Selection** panel to invoke the **Profile Options and Policies** menu (Figure 169 on page 168).

   ```
   Profile Options and Policies
   
   Select type of data to define.
   1. HCD profile options
   2. Autoconfiguration policies
   3. LP groups for autoconfiguration
   4. OS groups for autoconfiguration
   
   F1=Help     F2=Split    F3=Exit     F9=Swap    F12=Cancel
   ```

   *Figure 169: Profile Options and Policies*

2. Select **Autoconfiguration policies**.

3. This invokes the **Autoconfiguration Policies** dialog which displays the current value settings for autoconfiguration policy keywords as they are either explicitly set in the HCD profile data set or as they are defaulted by HCD. Use this dialog to revise or change the displayed keyword values.

   The autoconfiguration policies are saved in the HCD profile (see also “Defining an HCD profile” on page 16 for information on how to edit the HCD profile data set).

   ```
   Autoconfiguration Policies
   
   Command ===> ___________________________________________ Scroll ===> CSR
   
   Edit or revise autoconfiguration policies.
   
   HCD Profile : DOCU.HCD.PROFILE
   
   / Policy keyword P Value +
   _ AUTO_CHPID_EXCLUDE N SYSA.0,00-09
   _ AUTO_CHPID_INCLUDE N SYSA.1,1A-1F
   # AUTO_MATCH_CU_DEVNUM Y YES
   # AUTO_SS_ALTERNATE Y 1
   # AUTO_SS_DEVNUM_SCHEME Y PAIRING
   # AUTO_SUG_CU_RANGE Y 0001-FFFF
   # AUTO_SUG_DEV_RANGE Y 0001-FFFF
   # AUTO_SUG_DYN_CHPIDS Y 2
   # AUTO_SUG_LPGROUP N ________________________________
   # AUTO_SUG_OSGROUP N ________________________________
   # AUTO_SUG_STAT_CHPIDS Y 6
   _ AUTO_SWAD_EXCLUDE N 1A
   _ AUTO_SWAD_INCLUDE N
   
   ********************************************** Bottom of data **********************************************
   ```

   *Figure 170: Autoconfiguration Policies*

   Column **P** is set to Y (for yes), if a change of the policy key value is active immediately. Value N denotes that the value change only becomes active with a new discovery. For more information, refer to “How to change autoconfiguration policies during the autoconfiguration process” on page 171.

   You can scroll to the right in this list to see a **Description** column for each policy keyword. This column may display an existing user comment, which you can change, or you can specify a new comment.

   For keywords that you may specify multiple times with different values, for example, **AUTO_CHPID_EXCLUDE**, actions **Add** and **Delete** are available from the context menu.
To retrieve an online explanation of a keyword, move the cursor into its Value column and press the F1 key.

The subsequent topics list and explain the available keywords for defining your desired autoconfiguration policy.

**Exclude CHPIDs from the discovery**

**AUTO_CHPID_EXCLUDE**

This policy specifies a single CHPID number or a range of CHPID numbers that are excluded from being used for discovery or channel path assignment for a specific channel subsystem (by giving its ID) or all channel subsystems (by specifying *) of a certain processor. The keyword can occur multiple times.

The following example specifies that CHPIDs 04, 20 to 2F, and 42 are not used for channel subsystem PROCA.0. CHPID 42 is also not used for all other channel subsystems of processor PROCA.

```
AUTO_CHPID_EXCLUDE = PROCA.0,04
AUTO_CHPID_EXCLUDE = PROCA.0,20-2F
AUTO_CHPID_EXCLUDE = PROCA.*,42
```

**Include CHPIDs for the discovery**

**AUTO_CHPID_INCLUDE**

This policy specifies a single CHPID number or a range of CHPID numbers that should be considered for discovery and channel path assignment for a specific channel subsystem (by giving its ID) or all channel subsystems (by specifying *) of a certain processor. The keyword can occur multiple times. If this option is specified, no other channel paths are considered.

The following example specifies that CHPIDs with numbers 04, 20 - 2F, and 42 are used for discovery and definition from channel subsystem PROCA.0. CHPID 42 may also be used from all other channel subsystems of processor PROCA. No other unspecified CHPID number for processor PROCA is considered for discovery and definition.

```
AUTO_CHPID_INCLUDE = PROCA.0,04
AUTO_CHPID_INCLUDE = PROCA.0,20-2F
AUTO_CHPID_INCLUDE = PROCA.*,42
```

If no value is specified for a given channel subsystem, all CHPID numbers (00 - FF) are considered for discovery and channel path assignment.

**Control unit number should match base device number**

**AUTO_MATCH_CU_DEVNUM**

This policy specifies whether for autoconfiguration definitions a control unit number should match the starting base device number.

If you specify YES (which is the default), the first base device is set to the same number as the control unit. If NO is specified, the device number of the first base device and the control unit number do not necessarily need to match.

**Alternate subchannel set for proposed alias devices**

**AUTO_SS_ALTERNATE**

This policy specifies the ID of the subchannel set in which newly discovered PAV alias devices are defined during an auto-definition process, provided that free device numbers are available in this subchannel set, and processors that have access to the device range, support alternate subchannels.

The default subchannel set ID is 1.

**Subchannel set device numbering scheme**

**AUTO_SS_DEVNUM_SCHEME**

This policy defines the scheme for assigning device numbers to PAV alias devices in an alternate subchannel set.
Supported schemes are:

**CONSECUTIVE**
The alias device numbers in an alternate subchannel set are consecutive to the base device numbers.

**DENSE**
The device numbers in an alternate subchannel set are densely assigned, that is, the next free device numbers in the assigned device number range are used.

**PAIRING**
Base and alias device numbers are assigned alternatively starting with, for example, device numbers xx00 and xx80 for base devices versus xx80 and xx00 for alias devices.

**NONE**
Device and control unit numbers are not automatically applied. Instead, HCD presents the new discovered control units with a control unit number 0000 in the **Proposed Control Unit List** and the new devices with starting device number 0000 in the subsequent **Proposed Control Unit / Device List**. You can thus manually insert free control unit numbers, respectively device numbers on the according lists, which are validated by HCD. HCD issues a message to notify you to assign the numbers.

If you work in attended operation mode, (that is, **Show proposed definitions** has been set to **Yes** in Figure 177 on page 175), HCD once more offers you the opportunity to review your input by redisplaying both lists with the updated numbers after you pressed enter. All actions are now available on the lists as in any other setting of the AUTO_SS_DEVNUM_SCHEME policy.

Otherwise, if you work in unattended fast-path operation mode, HCD accepts the numbers you entered and processing proceeds.

PAIRING is the default.

**Control unit number range for auto proposal**

**AUTO_SUG_CU_RANGE**
This policy specifies the range of control unit numbers from which numbers for auto-defined control units are taken. If no value is specified, range 0001-FFFE is taken as default.

Specify the range according to the following syntax:

```
nnnn-mmmm,   where:  nnnn is the lower range boundary,
                   mmmm is the upper range boundary.
```

**Device number range for auto proposal**

**AUTO_SUG_DEV_RANGE**
This policy specifies the range of device numbers from which device numbers for auto-defined devices are taken. If no value is specified, range 0001-FFFF is taken as default.

**Note:** For **AUTO_SUG_DEV_RANGE** and **AUTO_SUG_CU_RANGE**, I/O Autoconfiguration avoids using device and control unit numbers in the 0000-00FF range in subchannel set 0. If you have no alternative number ranges available, you must configure the CUs or devices manually in this range.

**Number of static CHPIDs to be assigned**

**AUTO_SUG_STAT_CHPIDS**
This policy specifies the number of static channel paths to be assigned to a control unit definition, if it is auto-defined. At least one and not more than 8 static channel paths can be defined.

The default is 6.
Maximum number of dynamic CHPIDs

**AUTO_SUG_DYN_CHPIDS**
This policy specifies the number of dynamically managed channel paths allowed on a control unit definition, if it is auto-defined. A maximum number of 7 dynamic channel paths is allowed, however, the sum of AUTO_SUG_STAT_CHPIDS and AUTO_SUG_DYN_CHPIDS must not exceed 8.

The default is 2.

LP group for autoconfiguration

**AUTO_SUG_LPGROUP**
This policy specifies the name of a group of logical partitions to which discovered devices are assigned. If no name is set, devices are assigned to all partitions of the active sysplex. The reserved group name ALL signals this during autoconfiguration processing.

OS group for autoconfiguration

**AUTO_SUG_OSGROUP**
This policy specifies the name of a group of OS configurations to which discovered devices are assigned. If no name is set, devices are assigned to all OS configurations which correspond to the active LP group.

Exclude switch addresses from the discovery

**AUTO_SWAD_EXCLUDE**
This policy specifies a single switch address or a range of switch addresses that are excluded from being used for discovery or channel path assignment. Note that switch addresses have to be specified rather than switch IDs. The keyword can occur multiple times.

The following example specifies that switches with addresses 14 and 20 to 2F are not used for discovery and channel path assignments:

```
AUTO_SWAD_EXCLUDE = 14
AUTO_SWAD_EXCLUDE = 20-2F
```

If no value is specified, no switch is excluded from discovery and channel path proposal.

Include switch addresses for the discovery

**AUTO_SWAD_INCLUDE**
This policy specifies a single switch address or a range of switch addresses that can be used for discovery and channel path assignment. Note that switch addresses have to be specified rather than switch IDs. The keyword can occur multiple times.

The following example specifies that switches with addresses 14 and 20 to 2F can be used for discovery and channel path assignments. No other unspecified switch address is considered for discovery and channel path assignments.

```
AUTO_SWAD_INCLUDE = 14
AUTO_SWAD_INCLUDE = 20-2F
```

If no value is specified, all switch addresses in the range 00 to FF can be used for discovery and channel path proposal.

How to change autoconfiguration policies during the autoconfiguration process

You can change your defined autoconfiguration policies between two subsequent controller discoveries without the need to restart I/O Autoconfiguration. For this purpose, in the Discovered New or Changed Controller List dialog (Figure 178 on page 177), select the Policy action bar choice, and then select **1. Change policy options** to invoke the Autoconfiguration Policies dialog as described in “How to set keywords for autoconfiguration policies” on page 168. You can now change the values of certain keywords that you want to apply on the subsequent controller discovery and control unit autoconfiguration. However, only changes for those keywords become effective immediately for which HCD sets column **P** to
Y in the **Autoconfiguration Policies**, for example, AUTO_MATCH_CU_DEVNUM (see also Figure 170 on page 168).

Changes of all policy keywords denoted with value N in column $P$ are also possible between two controller discoveries, but require a new fabric discovery (as described in “How to perform automatic I/O configuration” on page 175) to become effective.

### How to define logical partition groups for autoconfiguration

A logical partition group (LP group) is a collection of logical partitions containing z/OS systems that belong to the same sysplex. This collection is used by I/O Autoconfiguration to determine to which partitions the discovered devices should be assigned.

Selecting option 3 **LP groups for autoconfiguration** from the **Profile Options and Policies** menu (see Figure 169 on page 168) invokes the **Autoconfiguration LP Group List** which displays a list of partition groups (LP groups).

Use the **Autoconfiguration LP Group List** to define or delete LP groups, to assign logical partitions to a group or unassign partitions from a group.

---

**Autoconfiguration LP Group List**

Command ==> ___________________________ Scroll ==> CSR

To view assigned partitions, select one or more LP groups, then press Enter. To add an LP group, use F11.

<table>
<thead>
<tr>
<th>/ LP group name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>_LPGROUPO</td>
<td>COM1</td>
</tr>
<tr>
<td>_LPGROUPX</td>
<td>COM1, SYSA1</td>
</tr>
<tr>
<td>_LPGROUP0</td>
<td>SYSA1, SYSA2, SYSA3, SYSA4</td>
</tr>
<tr>
<td>_LPGROUP2</td>
<td>SYSA1, SYSA2</td>
</tr>
<tr>
<td>_LPGROUP1</td>
<td>SYSA1, SYSA3, SYSA4</td>
</tr>
</tbody>
</table>

*************** Bottom of data ***************

F1=Help        F2=Split       F3=Exit        F4=Prompt
F7=Backward    F8=Forward     F9=Swap       F11=Add
F12=Cancel     F22=Command

**Figure 171: Autoconfiguration LP Group List**

Invoking action **Add like** with action code $A$ for an LP group, or just pressing F11, invokes the **Add Autoconfiguration LP Group** dialog with two entry fields for the LP group name and an optional user description.

Invoking action **View/Assign logical partitions** with action code $S$ for an LP group invokes the **Autoconfiguration LP Group Assignment List**. This list displays all logical partitions assigned to the named LP group. You can assign a new partition to or unassign an included partition from the LP group.
To add a partition to an LP group, press F11 in this list to invoke the Add Partition to LP Group dialog.

In the entry fields Processor ID and Partition Name, specify the name of the processor and the name of the partition which you want to add to the LP group. After you entered a processor name, the dialog lets you select a certain partition from that processor. You can only enter processor IDs from processors that are defined in the currently accessed IODF.

How to define OS groups for autoconfiguration

An OS group is a collection of OS configurations which is used by autoconfiguration to determine to which operating systems of type MVS the auto-defined devices should be assigned.

Selecting option 4 OS groups for autoconfiguration from the Profile Options and Policies menu (see Figure 169 on page 168) invokes the Autoconfiguration OS Group List which displays a list of operating system groups.

Use the Autoconfiguration OS Group List to view, add, or delete OS groups or to assign autoconfigured devices to operating systems.
Autoconfiguration OS Group Assignment List

Command ==> ___________________________ Scroll ==> CSR

Select one or more OS configurations, then press Enter. To add, use F11.

OS group name : OSGROUP1 Currently active OS group

/ OS Configuration ID Description
_ OS1 Primary OS
_ OS2 MVS Test System
_ OS3 Backup

Figure 175: Autoconfiguration OS Group Assignment List

To add an OS configuration to an OS group, press F11 in this list to invoke the Add Operating System Configuration to OS Group dialog.

Add Operating System Configuration to OS Group

Specify the following values.

OS group name . . . . : OSGROUP1 Currently active OS group
OS configuration ID . . OS4_____ +

Figure 176: Add Operating System Configuration to OS Group

For the entry field OS configuration ID, this dialog provides prompting support to let you easily select a certain OS configuration defined for the sysplex.
How to perform automatic I/O configuration

After having specified all policies as described in “How to define autoconfiguration policies” on page 167, you can let HCD try to discover and automatically define control units and I/O devices into a specified target IODF.

The I/O autoconfiguration process consists of the following steps:

1. **The fabric discovery:** You invoke the I/O Autoconfiguration function from the HCD Primary Task Selection panel. This in turn causes HCD to invoke IOS to perform the fabric discovery process. You can select the scope of discovery by searching all controllers, new controllers only, search for the controller containing a specific control unit, or search for a controller with a certain serial number or for multiple controllers matching a serial number pattern. The result of the fabric discovery is the list of controllers that is new or has changed compared to the base IODF.

   Note that the scope of discovery is the active sysplex.

2. **The controller discovery:** From the discovered controllers, HCD retrieves and proposes control unit and device types and numbers, channel path assignments, partition access, and OS device parameters. You can choose whether HCD should perform the definition without user interaction, or whether the dialog should show the proposed definitions so that you can confirm or change these values.

I/O Autoconfiguration makes temporary changes to the active I/O configuration by adding devices that are used exclusively for discovery on the targeted systems in order to search for attached devices.

You invoke the I/O Autoconfiguration process from the HCD dialog as follows:

1. From the Primary Task Selection panel select 1. Define, modify, or view configuration data.
2. Then select 6. Discovered new and changed control units and I/O devices.

HCD invokes the Discovery and Autoconfiguration Options dialog shown in Figure 177 on page 175 which lets you select processing options for discovery and autoconfiguration.

![Discovery and Autoconfiguration Options](image)

**Figure 177: Discovery and Autoconfiguration Options**

Specify your desired processing options for discovery and autoconfiguration definition:

**Autoconfiguration is based on**

Choose whether the active production IODF or the currently accessed IODF should be taken as the base for new configuration definitions resulting from the discovery process.
This means, HCD checks the discovered devices accessible to the system against this selected IODF, whether they are already defined or not. If they are found to be new or changed, the resulting configuration proposals are also adopted to fit into this IODF.

HCD copies this IODF to the selected target IODF (see **Target IODF name** later in this list) which receives all changes done to the configuration during autoconfiguration processing.

**Note:** You can use an IODF as base IODF, if it represents the active configuration or a potential target configuration for the next dynamic activation.

**Scope of discovery**

With this option you decide about the controllers to be discovered:

- **New controllers only:** HCD discovers and returns only new controllers, which are not yet known to the LPARs in the selected LP group.
- **All controllers:** HCD discovers and returns all new controllers as well as all changed controllers.
- **Controller containing CU:** HCD performs a discovery limited to that controller containing the control unit with the specified number. The referenced control unit must be a DASD or tape control unit and must be defined in the base IODF.
- **Controller with S/N:** HCD performs a discovery limited on that controller with the specified serial number or on multiple controllers matching a serial number pattern. You can specify a complete serial number, or look for multiple controllers using a wildcard (*) as prefix or suffix or both of the pattern. A wildcard matches any number of characters. For example, F30WD, F3*, *F3*, *WD, or *WD* are valid values to include controller F30WD.

**Show proposed definitions**

You can decide whether the dialog should display proposed definitions for possible configuration changes. Select Yes if you want to work in an attended operation mode. In this mode, HCD invokes a subsequent series of dialogs in which you can revise and change the proposed settings. How to work in this attended mode is described in “How to apply updates to the autoconfiguration proposals” on page 177.

Select No if you want to run the unattended fast-path of I/O Autoconfiguration. In this case, HCD does not offer a possibility to revise the proposals or to update or add definitions. Instead, the HCD definitions are completely saved in the target IODF immediately. However, if you specified AUTO_SS_DEVNUM_SCHEME = NONE in your autoconfiguration policy, the dialogs where you can define control unit and device numbers are shown.

**Force full mode discovery**

Decide when discovery processing should stop. If set to No, which is the default, processing stops after several consecutive unused CUADD values that do not exist on a target controller. With this option set to Yes, for each discovered controller, all unused logical control unit addresses (CUADD values) and unit addresses are checked for changes.

**Tolerate incapable systems**

Decide whether discovery processing should stop if the discovery target scope (specified with policy AUTO_SUG_LPGROUP)

- includes partitions that contain systems that are not able to perform I/O autoconfiguration because of missing support in software or hardware, or
- if it includes partitions that are not active or that are containing systems that do not belong to the current sysplex.

If set to No, which is the default, processing stops if the active LP group contains an inactive system or a system not capable for autoconfiguration. With this option set to Yes, incapable or inactive systems are ignored and excluded from the active LP group.

**Target IODF name**

Type the name of a work IODF that will receive the configuration definitions for all discovered new or changed controllers, according to your selected scope of discovery.
This input is required. The specified IODF can either be an existing work IODF, or it is created by HCD. In any case, the IODF specified in the Autoconfiguration is based on entry field is copied to the specified target IODF.

The target IODF must not be enabled for multi-user access.

Note: As soon as you accepted any proposals into your target IODF, it becomes the new currently accessed IODF.

How to apply updates to the autoconfiguration proposals

This topic explains how to work in the attended operation mode, that is, with option Show proposed definitions set to 1 (Yes) in the Discovery and Autoconfiguration Options panel shown in Figure 177 on page 175.

“How to work in unattended mode” on page 181 explains the unattended fast-path discovery.

After specifying your desired options on the Discovery and Autoconfiguration Options panel, pressing Enter starts the discovery process. HCD notifies users with the message: FABRIC discovery in progress - please wait ...

After a successful discovery, HCD displays the result in the Discovered New or Changed Controller List (Figure 178 on page 177). Only discovered controllers are displayed, which are reachable from all target systems, which are capable of discovery, and which have partitions defined in the LP group referenced by the AUTO_SUG_LPGROUP policy.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Type</th>
<th>Model</th>
<th>Name</th>
<th>Plant</th>
<th>Serial-#</th>
<th>New</th>
<th>Processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>2107</td>
<td>9A2</td>
<td>IBM</td>
<td>13</td>
<td>15663</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>2107</td>
<td>921</td>
<td>IBM</td>
<td>13</td>
<td>34211</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>2107</td>
<td>922</td>
<td>IBM</td>
<td>13</td>
<td>67884</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>3491</td>
<td>A01</td>
<td>IBM</td>
<td>13</td>
<td>18321</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>1750</td>
<td>511</td>
<td>IBM</td>
<td>13</td>
<td>28824</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>2105</td>
<td>F10</td>
<td>IBM</td>
<td>13</td>
<td>28251</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>2105</td>
<td>F20</td>
<td>IBM</td>
<td>13</td>
<td>12353</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IBM</td>
<td>2105</td>
<td>800</td>
<td>IBM</td>
<td>13</td>
<td>17791</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 178: Discovered New or Changed Controller List

This panel lists all discovered controllers which are either not yet defined in the IODF, or whose definition in the IODF is different from discovered controller characteristics.

If you selected AUTO_SS_DEVNUM_SCHEME = NONE, all control unit numbers for new controls are prefilled with 0000. You see message Assign numbers for control units or devices. Then hit Enter. Exclude all control units which should not be added, and assign control unit numbers. Pressing Enter processes the line commands or edited fields. After pressing Enter a second time with no changes on the list, you see the message Items have been processed. Review them, then press Enter. You are then in the normal process flow as if control unit numbers have been proposed.

On this dialog, using action code 7, you can select multiple controllers that you want to be defined or changed in the target IODF. HCD subsequentially processes each selected controller in the way described in the remainder of this topic.
Pressing Enter on this panel with selected controllers starts the controller discovery and definition process for the next selected controller. Users are notified with the message: **CONTROLLER discovery in progress - please wait ...** As a result of the discovery process, the Proposed Control Unit List offers definition proposals for the control units found in the currently processed controller.

To accept the proposed values, press Enter. To modify them, edit the fields, or select one or more control units to change, exclude or include the corresponding definitions, then press Enter.

<table>
<thead>
<tr>
<th>CU</th>
<th>CU number</th>
<th># of devices</th>
<th>LPAR</th>
<th>Access+</th>
<th>New</th>
<th>Description</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>00/130</td>
<td>256</td>
<td>ALL</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>_</td>
<td>01/140</td>
<td>96</td>
<td>ALL</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>_</td>
<td>02/150</td>
<td>64</td>
<td>ALL</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>_</td>
<td>03/160</td>
<td>64</td>
<td>ALL</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>

To accept the proposed values, press Enter. To modify them, edit the fields, or select one or more control units to change, exclude or include the corresponding definitions, then press Enter.

Figure 179: Proposed Control Unit List

The panel shown in Figure 179 on page 178 shows proposed definition details for existing or new control units configured in the discovered controller with the serial number 28824 displayed in the header of the panel. The indicated controller type 1750 has been determined by discovery, and is the proposed control unit type for all listed control units within the controller.

All control units are connected to the proposed switch ports as listed in the upper part of the panel. A plus sign (+) at the end of the switch port list signals, that the control units will have connections to more than eight switch ports. You can see the full list of connected switch ports for a control unit on the View Control Unit Definition dialog.

You can accept the proposed control unit definitions, or you can perform the following modifications:

- For control units showing Yes in column New (which indicates whether the control unit is not yet defined in the IODF, or is not yet connected to any of the LPARs defined in the AUTO_SUG_LPGROUP policy), you can overtype the values in column CU number.
- Also, you can overtype the values in the LPAR Access and Description fields in this dialog. Note that when changing the prefilled LP group name in the LPAR Access column, you can only replace it by the name of another LP group, which defines a subset of those logical partitions contained in the LP group used during the autoconfiguration propose step.
- With action code / you get an overview of available actions on the selected control units:
  - With action code I, you can include the corresponding control unit definition into the target IODF, or with action code E, you can exclude the control unit from being defined. Your selection is reflected in column I: Y denotes included and N denotes excluded control units.
  - Using action code C leads you to the Select Processor / CU panel (see Figure 96 on page 114). On this window, HCD displays a list of all defined processors. You can define how the control unit is to be attached to one or more processors.

When the controller discovery returns control units and devices, HCD checks the discovered switch ports (Figure 179 on page 178) for existing definitions in the target IODF to match the existing control unit/device numbers with the proposed ones and proceeds like follows:
Rules for discovered control units:

- For each discovered control unit that is already defined with the same CUADD value, the existing control unit definition is checked for the same serial number. If the serial numbers match, or the IODF definition does not contain a serial number, the control unit number of the existing control unit is used and updated with the serial number of the discovered control unit. If the serial numbers do not match, a warning message is given, and the discovered control unit is proposed to be newly defined with a new serial number. It is, however, recommended that the serial numbers match, or the serial number of the defined control unit should be blank.

- For each discovered control unit that is not yet defined in the IODF, a new control unit number is proposed.

- When a new control unit number is proposed, its value is taken from the preferred range specified by policy AUTO_SUG_CU_RANGE. If there is no free control unit number in the IODF within that range, a warning message indicates that the policy could not be followed, and a free control unit number outside of the range is proposed.

- Proposed existing control units are updated with the discovered serial number. If the type of a discovered control unit differs from its definition in the IODF, the definition is updated.

- Some controllers may respond indicating over-defined unit address configurations. In these situations, devices are included in the proposal for unit addresses that are not configured on the controller. You can leave these devices in the configuration, or you can remove them from the proposal.

Rules for discovered devices:

- For each discovered device that is already defined with the same unit address on an existing control unit, the existing device number is proposed. In that case, the definition may differ from the specified policy, for example for the subchannel set number.

  For non-existing devices on the control unit, the existing device numbering scheme is applied if possible.

- For new devices on new or existing control units where the existing device number scheme could not be applied, the device numbers are determined based on policies AUTO_SUG_DEV_RANGE and AUTO_MATCH_CU_DEVNUM. For PAV alias devices the numbers are additionally determined based on policies AUTO_SS_ALTERNATE and AUTO_SS_DEVNUM_SCHEME. If a policy could not be applied because no free numbers are available for the active LP group and OS groups, a warning message is given and free device numbers outside the policies may be used.

You can now apply desired modifications and press Enter after you are finished, or you can accept the proposed definitions without changes and press Enter. In both cases, HCD now displays the Proposed Control Unit / Device List.
To accept the proposed values, press Enter. To modify them, edit the
fields, or select one or more device ranges to change, exclude or include
the corresponding definitions, then press Enter.

------Device----- S CU   UA    OS
/ Number   Type+    S Num  Range Access+  N Description                      I
_ 6300,128 3390B    0 0130 00-7F ALL      N ________________________________ Y
_ 6380,128 3390A    1 0130 80-FF ALL      N ________________________________ Y
_ 6400,32  3390B    0 0140 00-1F ALL      N ________________________________ Y
_ 6420,64  3390A    1 0140 20-5F ALL      N ________________________________ Y
_ 6500,16  3390B    0 0150 00-0F ALL      Y ________________________________ Y
_ 6510,48  3390A    1 0150 10-3F ALL      Y ________________________________ Y
_ 6600,16  3390B    0 0160 00-0F ALL      Y ________________________________ Y
_ 6610,48  3390A    1 0160 10-3F ALL      Y ________________________________ Y

******************************* Bottom of data ********************************

Figure 180: Proposed Control Unit / Device List

This list proposes definition details for existing or new devices accessible by the currently processed
discovered control units (0130 - 0160 from Figure 180 on page 180). In the header of this panel, you can
see the control unit type and serial number of the discovered controller.

If you selected AUTO_SS_DEVNUM_SCHEME = NONE, all device numbers for new devices are prefilled
with 0000. You see a message Assign numbers for control units or devices. Then hit Enter. Exclude all
devices which should not be added, and assign device numbers. Pressing Enter processes the line
commands or edited fields. After pressing Enter a second time with no changes on the list, you see the
message Items have been processed. Review them, then press Enter. You are then in the normal process
flow as if device numbers have been proposed.

You can accept the proposed device definitions without changes by pressing Enter. Also, you can narrow
by overtyping one or more of the device ranges, but only those with a Y in column N (abbreviation for
New), which indicates that the device range is not yet defined in the IODF.

Furthermore, for one or more of the listed device ranges with Y in column N, you can change the OS
Access and the Description fields by overtyping the values in the panel. Again, a changed OS group must
be a subset of the initial OS group.

For further available actions on devices, select one or more devices using action code I:

• By selecting action code I, you can include, or with action code C, you can exclude the corresponding
devices from autoconfiguration.

• Using action code C leads you to the Device / Processor Definition panel (see Figure 106 on page 122).
On this panel, HCD displays a list of all defined processors that have one or more channel paths to the
control unit to which the device being added or changed is attached. Here you can select the processor/ CSS(s) for which you want to change the device-to-processor definition.

In both cases, either with modifications applied or with accepting the unchanged proposals, pressing
Enter lets you return to the Discovered New or Changed Controller List. For each successfully handled
controller, its Processed field is now turned to Yes (see Figure 178 on page 177).

You can select the next controller for being auto-configured, or you can exit the dialog. Exiting the dialog
saves all applied configuration changes in the target IODF.

For documenting the progress of your configuration actions, and for later reference, you can save the lists
from Figure 178 on page 177, Figure 179 on page 178, and Figure 180 on page 180 in a data set using the
SAVE command as described in “How to print list panels” on page 234.
How to work in unattended mode

To run the unattended fast-path mode for I/O Autoconfiguration, specify 2 (No) for option Show proposed definitions from the Discovery and Autoconfiguration Options dialog shown in Figure 177 on page 175. In this case, after pressing Enter to start the discovery process, HCD notifies the user on the Discovered New or Changed Controller List that the discovery process is started: CONTROLLER discovery in progress - please wait ... After a successful autoconfiguration run, with all proposals automatically defined without user interaction, HCD sets the Processed field in Figure 178 on page 177 to Yes for each successfully configured controller. However, if you specified policy AUTO_SS_DEVNUM_SCHEME = NONE, I/O Autoconfiguration asks you to enter your own control unit and device numbers as described in “How to apply updates to the autoconfiguration proposals” on page 177.

Prerequisites and operational considerations for using I/O Autoconfiguration

Consider the following information when exploiting the I/O Autoconfiguration functionality of HCD:

- The I/O Autoconfiguration process requires that the systems in the partitions from the LP groups are running on a zEnterprise 196 (z196) processor with at least z/OS V1R12.
- The target work IODF should be equal to, or be a descendent of the active IODF. This restriction is not enforced but recommended to facilitate consistent discovery of devices. If devices need to be added to do discovery, failures may occur due to inconsistent IODFs. Hardware definitions of this active IODF will remain consistent.
- All active IODFs for the systems in a SYSPLEX should be the same. This restriction is not enforced, but allows HCD to optimize the discovery process for the different systems by reusing the defined configuration. Tokens should be in sync, prior activates should have been completed.
- Without indicating Force full mode discovery, there is a limit on the number of subsequent failures. Unless force full mode discovery is requested, processing assumes that CUADD values start at 00 and continue to the last defined value in consecutive order, with no missing CUADDs.
- For DASD controllers, all newly discovered devices are assumed to be 3390 type devices, either type 3390A or 3390B.
- Switches may have port restrictions via zoning or via using a switch matrix, that limit the ability of a CHPID to connect to a destination port of a control unit interface. If such port restrictions exist within a switch, I/O Autoconfiguration may configure paths that cannot be used. If a port is discovered on a controller, it is assumed that it has access to all configured logical control units on that controller.
- Only accessible FICON CHPIDs, switches, and ports that are configured online are considered during discovery. CHPIDs connected to switches, must be fully defined and include actual values in the Dynamic entry switch ID, Entry switch ID, and Entry port fields.
- At least one system per CPC must have the ability to perform dynamic I/O configuration changes. This system needs not be part of the target LP group.
- A logical control unit containing only secondary devices in an active PPRC relationship may not be able to be discovered. The I/O processing used to determine the devices configured on a logical control unit cannot be performed on secondary devices.
- I/O Autoconfiguration is a configuration tool that configures for availability. You can use Dynamic CHPID Management (DCM) for performance management. CHPID and path selection of I/O Autoconfiguration minimizes or even eliminates single points of failure for newly discovered logical control units. DCM manages the performance by adding CHPIDs and paths to the logical control units as needed.
- Within a target LP group, I/O Autoconfiguration proposes definitions only for controllers that are consistently defined or absent for the target LP group systems in the base IODF. If a controller is partially defined in the LP group, meaning that some systems have logical control units and devices configured that others do not have, I/O Autoconfiguration does not propose definitions for the systems within the LP group that do not have the control units. In such a situation, you can control the target discovery scope using LP groups that contain only systems which require the definition.

How to work with I/O Autoconfiguration 181
If candidate access lists currently exclude an LPAR from accessing a control unit already defined on a CSS, I/O Autoconfiguration does not discover and add that control unit. Therefore, it is recommended that all systems in the participating LP groups should have a homogeneous view of the devices and control units. If this is not the case, you can update device candidate lists in HCD to add devices and control units to the desired LPARs before you start I/O Autoconfiguration.

If switches are connected such that it would be possible to have three or more switches in a path to a control unit, it is possible that this path would be chosen if no viable alternative exists.

HCD requires that either all or none of the switches and ports in the path from the CHPID to the control unit are defined in the target IODF. Otherwise, path validation may report errors.

Discovery attempts should be performed during times where changes are minimal. ACTIVATE processing and CF CHP commands may affect discovery processing and should be avoided as far as possible.

I/O Autoconfiguration can write diagnostic messages to the SYSLOG to help understand the processing decisions. To enable this, add the TRAPS NAME(IOSZDACMSGS) statement to the DIAGxx member that is currently in use and then issue the SET DIAG=xx command to refresh the current settings. See z/OS MVS Initialization and Tuning Reference for information on the TRAPS NAME() keyword.

When performing autoconfiguration for a processor, consider including LPARs on all CSSs on the processors in the discovery scope (using the AUTO_SUG_LPGROUP option). Note that if only a single CSS is requested in the scope of the discovery and autoconfiguration option, subsequent attempts to discover and autoconfigure on other CSSs for that same processor may experience resources exceeded conditions when spanned CHPIDs are in use. If the discovery must use the scope of a single CSS, discovered control units and devices may need to be manually copied to the other CSSs using HCD panels.

Several devices are required for the discovery process. The active configuration must have devices available for discovery for all target systems. Requirements include a free range of 256 consecutive device numbers to be used for disk exploration, a free range of 16 consecutive device numbers to be used for tape exploration, and another single free device to be used to explore the fabric for controllers.

During a discovery process, avoid removing or adding systems to the sysplex. This could cause the active discovery attempt to fail. If you need to IPL or remove a system in the sysplex, you can exit the I/O Autoconfiguration process and resume it once the systems have been IPLed or removed.

If a discovery would produce a proposal containing a two-byte link address for a control unit, hinting to a switch connection for this control unit, but no switch definition is found in the IODF, then the proposal fails. HCD issues a message containing the missing switch address. Users must now first define the switch using the reported switch address and then repeat the discovery. HCD then performs the control unit's connection to the switch automatically.

If a proposal for a control unit contains a switch port that is defined as uninstalled or occupied in the IODF, HCD automatically changes the switch port to either installed or not occupied and then defines the connection.

When a mixture of switched and directly attached paths to a control unit are found, path proposal processing only creates a set of all switched paths or all directly attached paths. Path proposal processing favors directly attached paths over switched paths in most cases, except for when a set of switched paths can satisfy the number of requested static paths when not enough directly attached paths are available for proposal.
Chapter 9. How to activate or process configuration data

Overview

This information unit describes how to:

- “Build a production IODF” on page 184
- “Build an IOCDS” on page 187
- “Build processor cluster IOCDSs” on page 190
- “Manage processor cluster IPL attributes” on page 192
- “Build an IOP input data set” on page 193
- “Create JES3 initialization stream checker data” on page 199
- “Build I/O configuration data” on page 200
- “Verify an I/O configuration” on page 201
- “Activate a configuration dynamically” on page 203
- “Activate a configuration sysplex-wide” on page 207
- “Activate a configuration HMC-wide” on page 211
- “Activate a configuration on systems not running HCD” on page 217
- “Build a CONFIGxx member” on page 220
- “Process the Display M=CONFIG(xx) command” on page 222
- “Switch IOCDS for next POR” on page 222
- “Specify an IODF for IPL” on page 224

Before the channel subsystem and the operating system can use the configuration that you have defined with HCD, you must build a production IODF from the work IODF.

With the production IODF, you can perform the following tasks in preparation for IPL or for dynamic activation.

- Build an input/output configuration data set (IOCDS) from the production IODF for processors not configured in a processor cluster. The configuration can then be used by the channel subsystem.
- Build IOCDSs of central processor complexes (CPCs) configured in a processor cluster.
- Manage IPL attributes of central processor complexes (CPCs) configured in a processor cluster.
- Build an input data set for the input/output configuration program (IOCP) from the production IODF.
- Create data for input to the JES3 Initialization Stream Checker. This checker program ensures that the data used by MVS is consistent with the data used by JES3. (This task can also be done with a work IODF.)
- Build an OS configuration data set from the production IODF. For VM this is an HCPRIO input data set.
- Verify the configuration described in an IODF against a system.
- Activate the configuration dynamically using the activate function (locally, sysplex wide, or HMC-wide).
- Build a CONFIGxx member for a system from the I/O definitions in an IODF.
- Compare the information in the CONFIGxx member of a system of the sysplex with the existing configuration on that system.
- Switch the IOCDS for the next POR
Build a production IODF

Although HCD validates configuration data as it is entered, a complete validation may not be performed, because data may not be defined at this time. Therefore, a "post-validation" is performed at "Build Production IODF" time. This validation might issue messages you have to deal with, according to their severity. The production IODF is not created if any errors with a severity higher than 'warning' are produced.

During the validation HCD invokes the IOCP program to perform checking of the channel packaging rules. Therefore, note that the correct version of the IOCP program must be accessible.

Depending on what is defined in the configuration, the work IODF must contain a definition for at least one operating system, or one processor, or one switch.

- For an MVS operating system, the IODF must contain at least one EDT and one device.
- For a VM operating system, the IODF must contain at least one device as console.
- For a processor, the IODF must contain a definition for at least one device or console.

Note

A production IODF must have a single extent. If the production IODF has multiple extents, the IPL process results in a WAIT state (wait state code '0B1', reason code '002'). HCD issues error message CBDA009I if a production IODF cannot be built in a single extent.

You can use production IODFs with multiple extents for dynamic activation only. In this case, HCD warns you with message CBDA009I that an IPL with this IODF is not possible, but dynamic activation continues.

To build a production IODF, perform the following steps:

1. On the HCD entry panel, select **Activate or process configuration data**.

   Activate or Process Configuration Data
   Select one of the following tasks.
   __ 1. Build production I/O definition file
   2. Build IOCDS
   3. Build IOCP input data set
   4. Create JES3 initialization stream data
   5. View active configuration
   6. Activate or verify configuration dynamically
   7. Activate configuration sysplex-wide
   8. *Activate switch configuration
   9. *Save switch configuration
   10. Build I/O configuration data
   11. Build and manage processor cluster IOCDSs, IPL attributes and dynamic I/O changes
   12. Build validated work I/O definition file

   * = requires TSA I/O Operations
   F1=Help   F2=Split   F3=Exit   F9=Swap
   F12=Cancel

   Figure 181: Activate or Process Configuration Data

2. From the resulting panel, select **Build production I/O definition file**. Prior to actually building the production or validated work IODF, HCD updates the work IODF in the following way:

   - For processors, that must be defined for a maximum HSA, it extends the processor configuration to its maximum. This means, HCD ensures that all logical channel subsystems as well as all partitions are defined for the processor, and that each channel subsystem allows for the maximum number of devices per subchannel set.
- For every primary operating system configuration that specifies the name of a disaster recovery (D/R) site operating system configuration, HCD generates the D/R site OS configuration.

Thereafter, HCD validates the configuration data in the work IODF. If the work IODF is valid, then a production IODF or validated work IODF can successfully be built.

HCD also invokes the IODF checker function that performs a health check of the IODF. In case of defects, HCD issues a severe warning message.

For work IODFs containing XMP processor definitions, before you can build a production IODF, the correct PCHIDs must be defined in the work IODF. You can use the CHPID Mapping Tool to achieve the task to either insert missing PCHIDs or to update PCHIDs in a work IODF. However, inserting or updating PCHIDs into an IODF using the CHPID Mapping Tool is only possible with a so-called **validated work IODF** that you can get in one of two ways:

a. Use the task **Build validated work I/O definition file**. This task validates a work IODF for correctness and completion, and may issue messages that describe incomplete or erroneous logical definitions. Missing PCHID values are not flagged as errors. If errors occur, correct them and restart this task. As soon as no more errors occur, the output from this task is a validated work IODF.

b. If you tried to build a production IODF without being aware of one or more missing PCHIDs for XMP processors, but the work IODF satisfies all other validation rules, then the output from **Build production I/O definition file**, too, is a validated work IODF. A message will show all CHPIDs for which the required PCHIDs are missing.

With a validated work IODF, you can use the CHPID Mapping Tool to accomplish the task to update or insert required PCHIDs. Input to this tool is an IOCP input data set. To get this input, now use the task **Build IOCP input data set** from the panel shown in Figure 181 on page 184. This leads you to the **Build IOCP Input Data Set** panel shown in Figure 192 on page 194. Because the input to the CHPID Mapping Tool must be a stand-alone IOCP, in this panel, specify the appropriate option as shown:

| Input to Stand-alone IOCP? | Yes (Yes or No) |

How to proceed using the CHPID Mapping Tool to get PCHIDs inserted or updated in the validated work IODF, see “How to interact with the CHPID Mapping Tool” on page 197. As soon as all PCHIDs are correct in the validated work IODF, the production IODF can be built.

3. If you initially requested activity logging, a panel like the one shown in “Activity logging and change logging” on page 44 is displayed. Enter the activity logging details your installation requires. The Build Production I/O Definition File screen is displayed.

```
Build Production I/O Definition File

Specify the following values, and choose how to continue.

Work IODF name . . . : 'DOCU.IODF01.WORK'

Production IODF name . 'DOCU.IODF01'

Volume serial number . DATA01 +

Continue using as current IODF:
  1. The work IODF in use at present
  2. The new production IODF specified above

F1=Help    F2=Split    F3=Exit    F4=Prompt    F9=Swap    F12=Cancel
```

_Figure 182: Build Production I/O Definition File_

The selection of option **Continue using as current IODF** controls which IODF is in access after the production IODF has been built. In addition, if you select option 1, The work IODF in use as present, the content of the currently built production IODF is copied to the work IODF. This ensures that the work IODF contains the latest configuration tokens of the IODF, and you can continue to use
the work IODF for further updates. If you select option 2, the new production IODF specified above, the content of the production IODF is not mapped into the work IODF. In that case, you should start from the newly built production IODF when performing further changes to the I/O configuration.

4. Specify the name and volume serial number (if applicable) for the production IODF. “IODF naming convention” on page 27 describes the syntax of a production IODF name. If you choose a name without complying to the prescribed syntax of a production IODF name, that IODF can not be used for the IPL and dynamic activate. Moreover, to perform a dynamic activate, the high-level qualifier of the production IODF has to be the same as the one of the IODF used for the previous IPL or dynamic activate.

If the data set name for the production IODF does not adhere to the naming convention for a production IODF, the Confirm Production IODF Name panel is displayed, and you must confirm the IODF name.

If you use the same name for the new IODF as for an existing IODF, you can replace the existing IODF. In that case, the Confirm Delete I/O Definition panel is shown. Select yes, to confirm deletion of the IODF. Be careful, not to delete the active IODF. If you have specified the name of the active IODF, another confirmation panel is shown that warns you once more about the effect of the chosen name.

5. After pressing Enter, the Define Descriptor Fields panel appears.
Define Descriptor Fields

Specify or revise the following values.

Production IODF name . : 'DOCU.IODF01'
Descriptor field 1 . . . DOCU
Descriptor field 2 . . . IODF01

Figure 185: Define Descriptor Fields

Specify the descriptor field 1, 2, or leave the default values. The descriptor fields describe the IODF and will be part of the HSA token. **Attention:** If you specify asterisks (**), equals (==), pluses (+), or minuses (--) for the IODF suffix in LOADxx, never change the default descriptor field values, because z/OS uses these values to find the current IODF during IPL. Take this relationship also into consideration, if you copy the IODF to a different data set name. For further details refer to z/OS HCD Planning.

6. If the work IODF has an activity log file defined for the work IODF, it is copied. After the production IODF has been built, HCD informs you that the production IODF has been created.

You can also create a production IODF using the HCD batch facility (for details see “Build a Production IODF” on page 305).

**Note:**

If the work IODF has an associated MCF, the MCF data set is copied and associated to the production IODF.

Build an IOCDS

When a production IODF has been created, you can build an IOCDS (it can be built only from a production IODF). Processors may have varying numbers of IOCDSs. A particular IOCDS is used at POR time to make the configuration data known to the CSS.

The following procedure is only recommended for processors that do not have an SNA address defined, including processors configured in a processor cluster. For processors in a processor cluster with an SNA address defined, use the procedure described under “Build processor cluster IOCDSs” on page 190.

While building IOCDSs HCD internally calls the IOCP program. Therefore, note that HCD must be installed in an APF-authorized library.

1. On the Primary Task Selection panel, specify the name of a production IODF and select **Activate or process configuration data.**

2. From the resulting panel select **Build IOCDS.** HCD displays the Processor List.

3. On the Processor List, select the processor and press the Enter key. HCD displays the IOCDS List.
The IOCDS list shows those IOCDSs that are built using the currently accessed production IODF.

4. Whenever the IOCDS list is invoked, HCD tries to get actual IOCDS data (e.g. date and time of last update) for processors with SNA addresses directly from the support element (SE) and displays it. IODF data is shown only if the SE does not provide information or where an SNA address is not defined.

A production IODF is updated with data retrieved from the SE if discrepancies between that data and the stored IODF data are detected.

5. On the IOCDS List, select the IOCDSs that you want to update and select Update IOCDS from the context menu (or action code U). HCD displays the Build IOCDS panel.

On this panel, you can:

- Into the Title1 field enter identification information you want to be written on the first header line of the IOCP input data set. The first eight characters are used as IOCDS name. This input is used as the MSG1 parameter value of the IOCP ID statement. The batch job passes the MSG1 parameter to the IOCP input data set via the HCDCNTL DD statement (see Figure 264 on page 309 and Figure 265 on page 309).

- Specify the Dualwrite option that describes whether the IOCDS is to be updated on both sides of a physically partitioned processor.

- Specify whether you want to perform a remote or local write of an IOCDS for a processor that has a SNA address defined. The Remote Write option is initialized with 'Yes' if a SNA address is defined.
to the selected processor. In such a case, HCD initiates a remote IOCDS build and write to the support element with the designated SNA address. If the option is changed to ‘No’, a local IOCDS build is performed.

- Specify the Switch IOCDS for next POR option, that means whether you want to make this IOCDS the active one for the next power-on reset (POR).

- Specify whether to Write IOCDS in preparation of upgrade. This specifies whether an IOCDS is to be written regardless of processor type. This is useful to prepare for a processor upgrade.

If Yes is specified, an IOCDS for the selected processor is written regardless of the processor type. For a list of processors that support writing an IOCDS, in preparation for a processor upgrade, or for which such an IOCDS can be written, see “Supported hardware report” on page 369.

**Note:** If, as a result of a processor upgrade, an IOCDS download is not possible you can, after having built the production IODF, create an IOCP input data set that can be used with the stand-alone IOCP to generate an IOCDS for use with POR.

- Change the job statement information to meet the installation needs. Note that a batch job to build an IOCDS must run on the processor on which the IOCDS is to be updated. (See “Job statement information used in panels” on page 62 for a description of the job control information that you need to specify when you build an IOCDS.)

  In a multiprocessor JES environment, be sure to specify the JES command and/or job class to ensure that the job runs on the correct processor(s).

  The recommended region size is 2 MBytes more than the IOCP needs. For the region size required by IOCP, refer to the IOCP User’s Guide for your processor.

6. When an IOCDS is built, a record is written for the processor configuration. If you build a new IODF from an existing IODF, the records are copied to the new IODF. When you build IOCDSs from this new IODF, the IOCDSs from the old IODF are also shown on the IOCDS list. Because the batch job requires exclusive use of the production IODF for processors that have no SNA address specified, you have to either leave the HCD session or change the currently accessed IODF to run the submitted job.

You can also invoke the Build IOCDS task in batch mode, see “Build an IOCDS or an IOCP input data set” on page 307.

**Note:**

1. Unlike writing an IOCDS using the IOCP program, the HCD process generates no IOCP report when using the Build IOCDS function.

2. When a processor has been upgraded in the IODF, the old IOCDS status data in the IODF is deleted.

**Using this procedure for processors with an SNA address:**

If you use this procedure for processors in a processor cluster with an SNA address defined, HCD does the following:

- HCD writes the IOCDS for that processor to the support element with the designated SNA address (remote IOCDS build).

- If you run the job under MVS/ESA SP Version 5, OS/390, or z/OS, HCD writes the IOCDS for that processor to the support element with the designated SNA address.

To run the batch job, you do not have to leave the HCD session. If the processor has defined an SNA address, HCD assumes that it is part of a processor cluster. In this case, the job can immediately start without the need to free the currently accessed IODF.

HCD tries to update the IOCDS record but is not able to because the IODF is still allocated by the HCD dialog. This results in an error message on the console log. To avoid this error message, HCD offers the profile option of bypassing the IODF information update (see “Bypass IODF information update for SNA processor” on page 22).
Build processor cluster IOCDSs

The following procedure describes how to build an IOCDS for processors in a processor cluster with an SNA address defined.

To build IOCDSs within a processor cluster:

- The SNA address has to be defined for a CPC configured in a processor cluster.
- Specific RACF authority has to be attained (for details on required access authority, refer to “Security-related considerations” on page 331).
- The operating system must not be running as a guest under z/VM.

Perform the following steps:

1. On the **Primary Task Selection** panel, select **Activate or process configuration data** and from the resulting panel select **Build and manage processor cluster IOCDSs, IPL attributes and dynamic I/O changes**. The **Processor Cluster List** is displayed:

   ![Processor Cluster List](image)

   **Figure 188: Processor Cluster List**

   This panel shows all CPCs configured in a processor cluster. They are identified by the SNA address of their support element and displayed together with their Type and Model as well as the Processor ID in the IODF. The SNA address has been specified in the processor definition task for the IODF processor definitions and enables the relation to the configured CPCs.

   A disabled sign (#) in the action entry field can be due to:

   - SNA address not defined in the IODF. In this case, the IODF Processor ID shows no value. Either define the SNA address for a corresponding processor in the accessed IODF or use another IODF.
   - SE (support element) of CPC did not respond. In this case, the CPC Type and Model fields show no values.

   A processor ID followed by two dots (..) indicates that this SNA address has been defined for several processors in the IODF. The first processor ID (in alphabetical order) with the SNA address is displayed. If you want to apply any of the group actions on another processor, use **Select other processor configuration** from the context menu (or action code P).

2. On the **Processor Cluster List**, select the CPCs for which you want to build and manage the IOCDSs and **Work with IOCDSs** from the context menu (or action code S). HCD displays the IOCDS List (shown with sample data):
On the IOCDS List, all applicable IOCDSs of the selected CPCs are displayed and arranged in ascending order by IOCDS names (starting, for example, with A0-IOCDSs, A1-IOCDSs). This list enables you to apply the IOCDS functions as group actions against one or several IOCDSs for all selected processors.

The data displayed is retrieved directly from the support elements. If, however, the support element does not answer, HCD displays the data saved in the IODF and issues a message accordingly.

A production IODF will be updated with data retrieved from the support element if discrepancies between that data and the stored IODF data are detected. A work IODF will remain unchanged.

The **Type** field contains one of the following types of power-on reset modes to be used with the I/O configuration defined in the IOCDS: S/370, ESA/390, or LPAR.

The **Status** field indicates the status of the IOCDS:

- **Alternate**: not to be used at the next POR
- **POR**: to be used at the next POR
- **Invalid**: IOCDS is opened for update

The Token Match - IOCDS/HSA field indicates whether the IOCDS token matches the current HSA token. If Yes is shown, it means that the IOCDS has been built by HCD, and that it matches the current I/O configuration - either because this IOCDS was used for the last POR, or the matching configuration has been activated dynamically.

The Token Match - IOCDS/Proc. field indicates whether the IOCDS token matches the processor token in the IODF, currently used in the HCD dialog. If Yes is shown, the IOCDS has been built from the IODF currently used in the HCD dialog.

3. On the IOCDS List, you can select the following actions from the context menu:
   - Use the **Update IOCDS** action (or action code **u**) to build or update the selected IOCDSs with the I/O configuration data from the currently accessed production IODF. See step “4” on page 192 on how to proceed.
   - Use the **Switch IOCDS** action (or action code **s**) to mark an IOCDS as the IOCDS that is used for the next POR. The Status field will be set accordingly.

   You can only switch to an IOCDS that has an IOCDS/HSA token match or to an IOCDS of a processor that is not activated ('POR-required' status).
   - Use the **Enable write protection** or **Disable write protection** action (or action codes **e** and **w**) to allow or prohibit updating the selected IOCDSs of the designated CPCs. The Write Protect field will be set accordingly.
Use the F20=Right key to move the screen to the right to see information such as date and time of the last IOCDS update and the IOCDS configuration token.

4. If you select the **Update IOCDS** action, HCD displays the Build IOCDs dialog.

![Build IOCDs dialog](image)

**Figure 190: Build IOCDs**

On this panel you can:

- Enter identification information you want to be written on the first header line of the IOCP input data set in the Title1 field.
- Specify the Switch IOCDS option, if you want to make this IOCDS the active one for the next power-on reset (POR).
- Specify whether to Write IOCDS in preparation of upgrade. This specifies whether an IOCDS is to be written regardless of processor type. This is useful to prepare for a processor upgrade.

If Yes is specified, an IOCDS for the selected processor is written regardless of the processor type. For a list of processors that support writing an IOCDS, in preparation for a processor upgrade, or for which such an IOCDS can be written, see “Supported hardware report” on page 369.

**Note:** If, as a result of a processor upgrade, an IOCDS download is not possible you can, after having built the production IODF, create an IOCP input data set that can be used with the stand-alone IOCP to generate an IOCDS for use with POR.

5. After pressing the Enter key on the Build IOCDs panel, the Job Statement Information panel is displayed. Specify the information for the batch job that HCD generates to build the IOCDSs.

The recommended region size is 2 MBytes more than the IOCP needs. For the region size required by IOCP, refer to the **IOCP User’s Guide** for your processor.

### Manage processor cluster IPL attributes

For IPL operations for CPCs configured in a processor cluster, you can:

- Display the IPLADDR and IPLPARM attribute values of the last and for the next IPL.
- Modify IPLADDR and IPLPARM attribute values to be used for next IPL.

Perform the following steps:

1. On the **Primary Task Selection** panel, select **Activate or process configuration data** and from the resulting panel, select **Build and manage processor cluster IOCDs, IPL attributes and dynamic I/O changes**. The **Processor Cluster List** is displayed (see Figure 188 on page 190).
2. On the **Processor Cluster List** select the CPCs for which you want to view and modify IPL attributes.
3. Select the **Work with IPL attributes** action from the context menu (or action code 1). HCD displays the IPL Attribute List.
IPL Attribute List

Update the values to be used for the next IPL and press Enter. To view the values used for the last IPL, scroll to the right.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Partition</th>
<th>IPL</th>
<th>IODF</th>
<th>LOADxx</th>
<th>Prompt/Msg</th>
<th>Nucl</th>
<th>Unformatted</th>
</tr>
</thead>
<tbody>
<tr>
<td>H05</td>
<td>LIN1</td>
<td>4800</td>
<td>1</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>1</td>
</tr>
<tr>
<td>H05</td>
<td>LIN2</td>
<td>4801</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>H05</td>
<td>BVM1</td>
<td>A140</td>
<td>0EA0</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>H05</td>
<td>COM1</td>
<td>1A00</td>
<td>1A10</td>
<td>FI</td>
<td>_</td>
<td>_</td>
<td>1A10F1</td>
</tr>
<tr>
<td>H05</td>
<td>COM2</td>
<td>1A01</td>
<td>1A10</td>
<td>FA</td>
<td>A</td>
<td>_</td>
<td>1A10FAA2</td>
</tr>
<tr>
<td>H05</td>
<td>AVM4</td>
<td>A100</td>
<td>CONS</td>
<td>SY</td>
<td>S</td>
<td>G</td>
<td>CONSSYSG</td>
</tr>
</tbody>
</table>

Figure 191: IPL Attribute List

The IPL Attribute List displays the IPLADDR and IPLPARM attribute values for all selected processor definitions and their partitions that are obtained from the support element of the associated CPCs.

4. On the **IPL Attribute List**, view or modify the attribute values for IPLADDR and IPLPARM.

Use F20=Right to move the screen to the right to view the IPL attributes used for the last IPL.

The **IPL ADDR** column shows the LOAD address used for next IPL.

The **Next IPLPARM** column shows the LOAD parameter used for z/OS and is a concatenation of the following attributes: IODF Device, LOADxx Suffix, Prompt/Message Option, and Nucleus Suffix. An additional column shows unformatted IPL parameters. You can use these unformatted values to specify non z/OS IPL parameters, for example, for z/VM or Linux on IBM Z for the next IPL. This unformatted string can be up to eight characters long. HCD does not perform any semantic checks of these values, as the content depends on the operating system for which they are used.

When providing input to the unformatted IPL parameters, you must specify the value at the correct position in the string. For non-specified leading or intermediate characters, use a period (.) instead of a blank, since blanks are removed by ISPF.

You cannot type values into both the left four columns and the right **Unformatted** column of **Next IPLPARM**. If you provide values into the **Unformatted** column, they are transferred into the left four columns.

The **IPL ADDR** and/or the **Next IPLPARM** values for the next IPL are taken, when 'Use dynamically changed IPL address' and/or 'Use dynamically changed IPL parameter' are selected on a LOAD profile that is used to initiate an IPL, or to activate an operating system. This enables you to change the values of IPLADDR and IPLPARM without updating the profile.

**Build an IOCP input data set**

Sometimes it is necessary to build an IOCP input data set:

- If you have to use the stand-alone IOCP program, which does not support direct access to the production IODF.
- If you want to create a backup on tape in case you need to recover the contents of the IOCDS in the service processor.
- If you need an IOCP input data set as input to the CHPID Mapping Tool in order to map CHPIDs to PCHIDs for XMP processors.
- If you need an IOCP input data set for a processor on which there is no HCD running (e.g. a new processor). Also, if you upgrade a processor to a model that results in a new IOCP SYSTEM value and
the processor does not support an IOCDS write in preparation for a processor upgrade, you have to run
the stand-alone IOCP program.

How to build an IOCP data set

1. On the **Primary Task Selection** panel, specify the name of a production IODF and select **Activate or process configuration data**.
2. On the resulting panel select **Build IOCP input data set**. HCD displays the Available Processors screen.
3. On the Available Processors screen, select the processor for which you want to build the IOCP input data set. HCD displays the Build IOCP Input Data Set dialog.

   **Figure 192: Build IOCP Input Data Set**

4. On this panel you can:
   - Enter the identification information you want to be written on the first header line of the IOCP input data set in the **Title1** field.
   - Specify the name of the IOCP input data set. The IOCP input data set will automatically be allocated (record length 80, record format fixed block). If the data set already exists, you will be asked to confirm replacing it with the new one.
   - Specify whether to build the IOCP data set for stand-alone IOCP.
     **Yes**
     This is the default. The generated IOCP statements can be used as input to the stand-alone IOCP program or to the CHPID Mapping Tool.
     **Note:** You may not be able to use such a generated IOCP input data set for the migration function of HCD because, for example, the unit name of control units and device types can be truncated due to IOCP restrictions.
     **No**
     The IOCP input data set is built using the IOCP changes described in “IOCP enhancements” on page 195 and generating the extended migration parameters and statement (if the profile statement MIGRATE_EXTENDED is set to YES) as described in “IOCP input data sets using extended migration” on page 195. Note that if you try to process these IOCP statements with the stand-alone IOCP program, you may run into problems, because the program may not accept the generated syntax.
   - Change the job statement information to meet the installation needs. With JCL overwrite statements you can modify the EXEC procedure that is invoked. You can, for example, specify the HCD profile using the job step name GO. (See “Job statement information used in panels” on page 62 for a description of the job control information that you need to specify when you build an IOCP input data set.) Ensure that the batch job runs in a region with at least 4 MBytes.
**TOK=value**

Configuration programs use this keyword to forward information to the CPC which is required to enable the dynamic I/O configuration capability of any resulting IOCDS. This keyword is not intended for direct user input. The contents needs not relate to the target processor. It just must match the token in the IOCDS/HSA and the currently active IODF.

You can also invoke this task in batch mode. See “Build an IOCDS or an IOCP input data set” on page 307.

**Note:**

You should never change an IOCP input file generated by HCD and use it to write an IOCDS. If changes are necessary, use HCD to regenerate the IOCP input.

**IOCP enhancements**

The generated IOCP data set contains control unit and device types of 8 characters and a device model of up to 4 characters. Such an IOCP input data set can be processed by IOCP (with APAR OW13343) and remigrated to HCD without the need to correct the control unit and device types that exceed the 5 character UNIT and 2 character MODEL value limitation.

It also now contains an all-character readable token which allows the user to preserve the dynamic capability when performing a stand-alone IOCP run on a processor cluster CPC using IOCP input from diskette.

**Important Note:**

It may not be possible to remigrate an IOCP input data set generated by HCD back into the IODF. The reasons are:

- HCD uses the High Level Assembler program for parsing the IOCP statements. The High Level Assembler earlier than V1.5 is restricted to 255 characters for any keyword value. IOCP statements, however, may contain keywords with a value greater than 255 characters. High Level Assembler V1.5 removes this restriction.

- HCD keeps additional data for a processor configuration that is not contained in an IOCP input data set. This data may be used for validation and, therefore, missing at the migrate step leading to validation errors. For example, the partition usage is defaulted to CF/OS. For a shared CF peer channel, this may lead to a validation error, because only a CF partition may be specified in the access or candidate list.

- Since the IOCP data are only a subset of the processor configuration data, you may lose this additional configuration data if you update a processor configuration from an IOCP input data set.

- IOCP data sets do not contain devices connected to a processor with a null device candidate list because of IOCP rules. If the device is connected to another processor with the same control unit, this is an ambiguous configuration and is not migrated.

For updating the IODF via I/O configuration statements, it is recommended to use the extended I/O configuration statements of HCD instead of an IOCP input data set (see "IOCP input data sets using extended migration" on page 195).

**IOCP input data sets using extended migration**

As described in “Updating parts of a configuration by migrating input data sets” on page 283, HCD introduces an extended migration to allow you to define your complete configuration without using the ISPF front end dialog.

For example, the extended migration allows you to define a switch with its ports or define serial numbers and descriptions for devices and control units by editing your input data sets and migrating them into HCD.

Analogously, when building an IOCP input data set from an IODF, information is generated that describes the additional parameters of the configuration objects (if the prerequisites under “Prerequisites to exploit the extended migration” on page 196 are met). Within the generated IOCP input data set, the additional
parameters and control statements are shown as comments with special HCD tags so that they can be processed by the IOCP program. When re-migrating such an IOCP input data set to HCD, the tagged comments are identified by HCD and migrated correspondingly.

If you want to use the input data set for both, IOCP processing and HCD migration, the new records must apply to the following rules, so that they can be processed by both programs:

- The new parameters start with the string *$HCDC$ in column 1.
- The new SWITCH statement starts with the string *$HCD$ in column 1.
- The IOCP statement does not have any comment.
- The additional HCD tagged records follow immediately the last record of the corresponding IOCP statement.
- The first keyword starts at column 16.
- The last operand is not followed by a comma.
- There is no comment to the right of the operand.

**Prerequisites to exploit the extended migration**

To generate the additional keywords during IOCP data set build, note the following prerequisites:

- Specify the following entry in the HCD profile:

  ```
  MIGRATE_EXTENDED = YES
  ```

  When you specify MIGRATE_EXTENDED = NO (which is default), the additional keywords are not generated during IOCP build. In addition, when remigrating the IOCP input data sets, the migration function ignores the commented *$HCDC$‘ and *$HCD$‘ tags.

  The HCD profile is explained in “Defining an HCD profile” on page 16.

- When building IOCP input data sets, you have to set the option Input to Stand-alone IOCP to No on the Build IOCP Input Data Set panel. See “Build an IOCP input data set” on page 193 for a description of the new option.

**Example of an IOCP input data set**

Figure 193 on page 197 shows you an example of a generated IOCP input data set with the new parameters. Note that each new parameter starts with an *$HCDC$ in column 1. The new switch control statement starts with *$HCD$ in column 1.
### Figure 193: Example of an input data set for migration enhancements

#### Using the IOCP data set as input for the CHPID Mapping Tool

HCD will allow generating an IOCP deck that does not contain any or all necessary PCHID values. You can use this IOCP deck as input to the CHPID Mapping Tool in order to have PCHIDs inserted or updated. The CHPID Mapping Tool then generates a new IOCP input deck containing the assigned PCHID values. You can then migrate the updated PCHIDs into a validated work IODF (see also “How to interact with the CHPID Mapping Tool” on page 197).

#### How to interact with the CHPID Mapping Tool

Correct PCHIDs are required in the configuration for XMP processors before you can successfully build a production IODF. The task of adding or updating required, PCHID information for a work IODF for XMP

<table>
<thead>
<tr>
<th>ID</th>
<th>MSG1='IOCDSNAM', MSG2='BOKA.IODF03 - 95-07-21 16:00', *</th>
<th>TOK=('TWO',00000001900096721600E870406995202F00000000,0000* 0000, '95-07-21', '16:00:57', 'BOKA', 'IODF03')</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>$HCDC$</strong> Desc='Cluster(099) test floor'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='10440009672'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SNAADDR=(USIBMSC, TWO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> RESOURCE PARTITION=((CF001,3), (MVSSMAL,2), (PRIME,1))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC=('Coupling facility', 'MVS 5.2.0 System', 'Products on CF image')</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CHPID PATH=(10), PARTITION=((CF001), (CF001)), TYPE=CFR</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='Receiver'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CHPID PATH=(13), PARTITION=((PRIME), (PRIME)), TYPE=CFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='Sender'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CHPID PATH=(20), PARTITION=((MVSSMAL), (MVSSMAL)), SWITCH=AB, TYPE=CNC</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=((AA, C0))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='Channel for DASD'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=((AA, C5))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='Switch connection'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CNTLUNIT CNUMBR=0005, PATH=(25), UNITADD=((00, 001)), UNIT=9032-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=((AB, FE))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU511'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='SWITCH AB'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CNTLUNIT CNUMBR=0006, PATH=(26), UNITADD=((00, 001)), UNIT=9033</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=((AA, FE))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU510'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='SWITCH AA'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CNTLUNIT CNUMBR=000F, PATH=(20, 21), UNITADD=((08, 008)), LINK=(A1, A2), CUADD=3, UNITADD=3995-151</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=((AA, C3), (AB, 82))</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='5512003330'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='DASD on Q4-B3'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> IODEV ADDRESS=(080, 004), MODEL=151, UNITADD=08, CNUMBR=(000F), STADET=Y, UNIT=9032</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU511'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='SWITCH AB'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> IODEV ADDRESS=129, UNITADD=00, CNUMBR=(0006), STADET=Y, UNIT=9033</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU510'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='SWITCH AA'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> IODEV ADDRESS=110, MODEL=3, UNITADD=00, CNUMBR=(0005), STADET=Y, UNIT=9032</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU511'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> DESC='Switch connection'</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> CNTLUNIT CNUMBR=000F, PATH=(13), UNIT=CFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SWPORT=(CA, FE), SWPORT=(CA, FE), SERIAL='1021-CU510', DESC='Switch AB', PORT=((C0, CE), (FE, FE)), UNIT=9033</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> IODEV ADDRESS=(FFFE, 002), CNUMBR=(FFFE), UNIT=CFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>$HCDC$</strong> SERIAL='1021-CU511', DESC='Switch AB', PORT=((80, F0), (FE, FE)), UNIT=9032</td>
<td></td>
</tr>
</tbody>
</table>

Correct PCHIDs are required in the configuration for XMP processors before you can successfully build a production IODF. The task of adding or updating required, PCHID information for a work IODF for XMP.
processors is eased by an interaction between HCD and the CHPID Mapping Tool (CMT). Prerequisite for this task is a so-called **validated work IODF** that you can get in one of two ways described in “Build a production IODF” on page 184.

You can download the CHPID Mapping Tool from the Internet. It runs on a workstation.

**Process overview**

Input to the CMT is the hardware configuration file (CFReport) of your machine and a valid IOCP input file (with missing or obsolete PCHIDs).

Output from the CMT is again an IOCP input file that now has all missing or updated PCHID values filled in. Upload this IOCP input file and re-import it into the validated work IODF using the HCD primary task **Migrate configuration data**.

Via this migration task, it is possible to update a validated work IODF with the PCHID values that have been written by the CMT into the IOCP input file. Other changes on the validated work IODF are not possible without loosing the status of a validated work IODF. A PCHID migration is only possible to a validated work IODF. Since PCHID migration changes the IODF, the IODF status is reset to 'not validated'. All functions that allow read-access to a work IODF are also possible for a validated work IODF. Activate functions are not possible, except for building an IOCP deck that can be used as input to the CMT. Only after all PCHIDs have been inserted into the validated work IODF, you can successfully build a production IODF.

**How to insert or update PCHIDs**

Here are the detailed steps you need to perform to insert or update PCHIDs in a validated work IODF.

1. Create a validated work IODF with one of the two methods described in “Build a production IODF” on page 184. Your validated work IODF may lack at least one PCHID that you need to insert or may contain obsolete PCHIDs that you want to update.

2. Go back to the **Activate or Process Configuration Data** menu shown in Figure 181 on page 184 and use task **Build IOCP input data set** to export the I/O configuration from the validated work IODF to an IOCP data set (with PCHIDs still missing or obsolete). The hardware configuration token is passed with the IOCP statements (TOK keyword). This token is used to assure that during the process of assigning PCHID values the contents of the IODF is not changed.

Download this IOCP data set to the workstation where the CMT is running.

3. Use the CHPID Mapping Tool with the downloaded IOCP data set. For information on how to use the CHPID Mapping Tool, refer to the online help and the related documentation.

The output of a successful CMT run is again an IOCP data set which contains the original I/O definitions together with inserted and/or updated PCHID values. The original hardware configuration token is still contained in the generated statements.

4. Upload the new IOCP data set to the host and use the HCD primary task **Migrate configuration data** to import the PCHIDs from the updated IOCP data set into the validated work IODF. During this task, you select

   *migrate option ---> 3. PCHIDs*

   from Figure 254 on page 256 in “Migrating input data sets using the HCD dialog” on page 256.

   When importing these statements into the validated work IODF via the migration process for PCHID migration, HCD verifies that the token passed with the IOCP statements match the token stored in the IODF. If this is the case, and if the logical I/O definition described by the imported IOCP statements does not differ from the IODF data, HCD writes the PCHID values into the IODF. If the token does not differ from the IODF data, HCD writes the PCHID values into the IODF. If the token does not differ from the IODF data, HCD writes the PCHID values into the IODF. If the token does not differ from the IODF data, HCD writes the PCHID values into the IODF. If the token does not differ from the IODF data, HCD writes the PCHID values into the IODF.

---

1 When a machine is ordered, the output of the order process is a binary file that represents the physical description of the final machine. One of the components of that file is the type and physical location, including the Physical Channel Identifier (PCHID) value assigned to that location, of all the I/O features in the final machine. This file is called a CFReport.
match, for example, because the IODF has been updated in the meantime, a PCHID migration will not be performed. In this case you must start the process from the beginning.

**Note:** The IOCP input data set may contain keyword values which exceed the 255 character limitation of the assembler program used by HCD for parsing the IOCP statements. This may be the case for the PARTITION (PART) keywords on the RESOURCE statement and on the CHPID statements for spanned channel paths. The affected I/O configuration statements must be deleted in order to perform a successful PCHID migration. However, note that the High Level Assembler V1.5 removes the 255 character limitation.

5. If a PCHID migration has been successfully done, you can invoke the **Build Production IODF** task (again). HCD now builds a production IODF that contains all the data that is required to write the I/O configuration data set (IOCDS) via the IOCP program to the Support Element (SE) of the machine, ready to be used for the next IML.

**Note:** If for any reasons for an XMP processor you want to define a channel that is not physically installed on the machine yet, you can use the method of over-defining a channel path as described in “Over-defining a CHPID” on page 103. Thus you can avoid to let the CHPID Mapping Tool run into an error, because it cannot find the PCHID.

To support the algorithm of mapping the logical CHPID definitions to physical channels, a CMT user can specify priorities to the control units (CU priorities). It is possible to preserve these values across different invocations of the CMT. For this purpose, the CMT passes the CU priorities as special comments to HCD. HCD takes these comment lines and stores them in the IODF attached to the corresponding processor. When generating an IOCP input file for the CMT, HCD includes these comments into the generated statements. HCD does not make these comments visible in the HCD dialog or in the reports.

## Create JES3 initialization stream checker data

Because JES3 does not access the IODF directly, it has to be checked whether JES3 I/O and MVS I/O definitions are the same. It is essential that these definitions are consistent. Each time you run this task, the JES3 initialization stream checker data is stored in a data set, thus allowing JES3 to check the previous mentioned definitions and to detect inconsistencies among them.

You can start the task from a work IODF as well as from a production IODF. However, it is recommended to use a production IODF to ensure that the same information is used for IPL.

1. On the **Primary Task Selection** panel, select **Activate or process configuration data**.

2. On the resulting panel select **Create JES3 initialization stream data**. HCD displays the Create JES3 INISH Stream Checker Data panel.

3. Specify the required values.

   The output data set will automatically be allocated (record length 80, record format fixed block). Depending on whether you specify the data set name as sequential or partitioned, the data set will be either sequential or partitioned. It is recommended to specify a partitioned data set (PDS), because this is required by the JES3 initialization stream checker.

   If the data set already exists, you will be asked to confirm replacing it with the new one.
You can also invoke this task in batch mode. See “Build I/O configuration data” on page 311 for a description of the job control information that you need to specify when you build JES3 initialization stream checker data.

Build I/O configuration data

You can use HCD to create an I/O configuration data set containing either:

- an OS configuration
- a processor configuration
- a switch configuration
- FCP device data.

1. On the Primary Task Selection panel, select Activate or process configuration data.
2. From the resulting panel select Build I/O configuration data. HCD displays the Build I/O Configuration Data dialog.

![Figure 195: Build I/O Configuration Data](image)

3. Specify one of the available configuration types:

   - **Options 1 - 3:**
     
     Specify the identifier of the configuration to be used and a name for an output data set to contain the configuration statements according to the specified configuration type. The data set is automatically allocated (record length 80, record format fixed block).

     Specifying an asterisk (*) in the Configuration ID field generates all configurations of the specific type to the output I/O configuration data set.

     If the data set already exists, you will be asked to confirm replacing it with the new one.

     For Option 3, HCD offers an additional feature:

     If you specifying an asterisk (*) in the Configuration ID field for a switch configuration, and with profile keyword SHOW_CONFIG_ALL set to YES, HCD additionally generates configuration statements for control units and devices without a processor and OS connection.

   - **Option 4:**

     HCD exports the FCP device configurations for a specific processor from the currently accessed IODF as comma-separated values into a CSV output format which you can use as input to the WWPN Prediction Tool to assign world-wide port names to virtualized FCP ports. This HCD output file is also referred to as FCP SAN configuration template file.

     Specify the desired processor ID in the Configuration ID field. The data set will be automatically allocated (record length 132, record format fixed block).
If the data set already exists, you will be asked to confirm replacing it with the new one. You can also invoke this task in batch mode. See “Build I/O configuration data” on page 311 for a description of the job control information that you need to specify.

Verify an I/O configuration

HCD allows you to check the definitions in your IODF against the actual configuration as sensed from the active system. This can be done using TSA I/O Operations (see “Prerequisites” on page 8 for the prerequisites) or zDAC.

The verify function results in a list of all sensed paths in comparison to the defined paths. Using a filter, this usually extensive list can be reduced to the data of interest. The list can be saved and/or printed. The verification can also be carried out as a batch job resulting in an I/O Path Report (see the example Figure 308 on page 368 in section “Print configuration reports” on page 314).

Verifying a configuration against the local system

1. To verify the I/O configuration of the local system select **Activate or process configuration data** from the primary task level. From the resulting panel select **Activate or verify configuration dynamically**. The Activate or Verify Configuration panel is displayed.

   **Note:** For the verify function on the Activate or Verify Configuration panel to be available, the processor configuration from which the active IOCDS was built must match the configuration in the IODF used for IPL (token match).

2. Select the **Verify active configuration against system** task to compare the system against the active IODF. Select the **Verify target configuration against system** task to compare the system against the accessed IODF. The Identify System I/O Configuration panel is displayed.

   **Figure 196: Identify System I/O Configuration**

   Specify or revise the following values. Press ENTER to continue.

   IODF to be used . . . . : IODFST.IODF4F
   Processor ID . . . . . : FR38LPAR +
   Partition name . . . . : F38H +
   OS configuration ID . : B710 +
   I/O Cluster name . . . . : ________ + (only for Build CONFIGxx)

   3. Specify the processor ID and OS configuration ID. If the specified processor is in LPAR mode, you must also specify a partition name.

Verifying a configuration against a system in the sysplex

1. Select **Activate or process configuration data** from the primary task level. From the resulting panel select **Activate configuration sysplex-wide**. The **Active Sysplex Member List** is displayed, listing all active systems of the Sysplex as stored in the sysplex couple data set of the system.

2. After selecting the system to be verified a context menu with two verification actions is displayed. Select the **Verify active configuration against system** task (action code [K]) to compare the system against the active IODF. Select the **Verify target configuration against system** task (action code [L]) to compare the system against the accessed IODF.

   The Identify System I/O Configuration panel is displayed (see Figure 196 on page 201).

3. Specify the processor ID and OS configuration ID. If the specified processor is in LPAR mode, you must also enter a partition name.
The I/O path list

The I/O Path List is the output of the verify function available on the Active Sysplex Member List and the Activate or Verify Configuration Dynamically panel (see “Verifying a configuration against the local system” on page 201 “Verifying a configuration against a system in the sysplex” on page 201). The list compares the configuration in the accessed or the active IODF with the actual configuration as sensed from the system.

The report extends over two pages and can be scrolled horizontally.

---

**Figure 197: I/O Path List**

For each channel path sensed and/or defined in the accessed IODF, the list contains a row showing the I/O path and the sensed and defined channel path, control unit, and device information. If a switch is included in the path, the right page shows the corresponding switch information.

Any discrepancies between the defined and the sensed data are indicated in column D on the right. For channel paths for which column D is blank, the defined and sensed data are consistent. The following values may appear:

**Symbol**

<table>
<thead>
<tr>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>O</td>
</tr>
<tr>
<td>@</td>
</tr>
</tbody>
</table>

On the display column D is highlighted.

Columns STAT and O indicate the status of the I/O path and the connected device, respectively. An empty field means that the corresponding I/O path or device is online. Offline I/O paths are marked with OFFL and offline devices with Y. If the system is unable to sense the status of an I/O path, it is marked UNKN. If
a path is online, HCD checks, whether a single point of failure (SPOF) can be found for this path. If yes, this single point of failure is mapped to the following:

- BLANK: Sensed I/O Path is online and no SPOF exists

If the sensed I/O path is online and a SPOF exists, an up to four digit number is shown with a SPOF indication as follows:

- Position 1 contains blank or SPOF indication 3 (book), 4 (cage), 5 (fail-over domain), 6 (fan-out), 7 (domain), 8 (secondary STI/STI).
- Position 2 contains C if the controller interface shares a SPOF.
- Position 3 contains P if the device has only one path online.
- Position 4 contains S if all paths go through the same switch.

Asterisks (*) in the CHT (channel type), CUTYPE (control unit type), or DEVTYPE (device type) columns indicate that I/O paths are returned but the values for the corresponding types are blank or invalid.

For certain configurations the I/O path list, although restricted to one processor or partition, can be extensive. Using the Filter action you can reduce the list to the entries of interest.

You can save the displayed list by entering SAVE in the command line on the I/O Path List.

**Note:** The LOCATE command is not available for the I/O path list.

### Activate a configuration dynamically

The system programmer (or other authorized persons) can use the option **Activate or verify configuration dynamically** or the ACTIVATE operator command to make changes to a running configuration. That is, the possibility is offered to change from a currently active configuration to some other configuration that is to be made active without the need to POR or IPL the system again.

When activating a configuration dynamically, HCD compares the currently active IODF with the IODF that is to be activated and then processes the difference.

For the IODF that is to be activated, HCD uses the production IODF that is currently in use with the dialog. Use the same high-level qualifier for the currently active IODF and the IODF to be activated.

*z/OS HCD Planning* gives a detailed description of how to dynamically activate a configuration. It describes the prerequisites for a dynamic activation, explains when hardware and software changes or software-only changes are allowed, and describes the actions necessary to change your I/O configuration dynamically. The following sections describe how to use the HCD dialog for this purpose.

Before activating a configuration dynamically, you may want to view information about the IODF that has been used for IPL or the last dynamic activation.

### View active configuration

HCD allows you to view the name and status of the IODF that has been used for IPL or for last dynamic activation. The operating system configuration and EDT identifier and, if applicable, the configuration token, which is currently active in the HSA (hardware system area), are shown. Use the **View active configuration** function for an overview of the actual status for dynamic activation, indicating whether hardware and software changes are allowed.

1. On the **Primary Task Selection** panel, select **Activate or process configuration data** and then **View active configuration**.

The **View Active Configuration** window with sample data is shown:
How to activate if hardware and software changes are allowed

The following procedure describes how to activate a configuration dynamically if both hardware and software changes are allowed. Refer to z/OS HCD Planning on information when both hardware and software configuration changes are allowed and when only software configuration changes are allowed.

1. On the Primary Task Selection panel, select Activate or process configuration data, and from the resulting panel select Activate or verify configuration dynamically. HCD displays the Activate or Verify Configuration panel.

Activate or Verify Configuration

The currently active IODF matches the hardware I/O configuration. Both hardware and software definitions may be changed. Select one of the following tasks.

__  1. Activate new hardware and software configuration.
  2. Activate software configuration only. Validate hardware changes. Process changes to Coupling Facility elements.
  3. Activate software configuration only.
  4. Verify active configuration against system.
  5. Verify target configuration against system.
  6. Build CONFIGxx member.

F1=Help      F2=Split     F3=Exit      F9=Swap     F12=Cancel

2. Select what you want to activate. The following figure assumes that you selected task 1. Activate new hardware and software configuration. The panels when you select the other tasks are similar.
Activate New Hardware and Software Configuration

Specify or revise the values for the IODF activation.

<table>
<thead>
<tr>
<th>Currently active IODF</th>
<th>SYS4.IODF10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor ID</td>
<td>ECL2</td>
</tr>
<tr>
<td>Configuration ID</td>
<td>MVSVM</td>
</tr>
<tr>
<td>EDT ID</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IODF to be activated</th>
<th>SYS4.IODF71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor ID</td>
<td>ECL2</td>
</tr>
<tr>
<td>Configuration ID</td>
<td>MVSVM</td>
</tr>
<tr>
<td>EDT ID</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test only</th>
<th>Yes (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow hardware deletes (FORCE, FORCE=DEVICE)</td>
<td>No (Yes or No)</td>
</tr>
<tr>
<td>Delete partition access to CHPIDs unconditionally (FORCE=CANDIDATE)</td>
<td>No (Yes or No)</td>
</tr>
<tr>
<td>Write IOCDS</td>
<td>No (Yes or No)</td>
</tr>
<tr>
<td>Switch IOCDS for next POR</td>
<td>No (Yes or No)</td>
</tr>
</tbody>
</table>

Figure 200: Activate New Configuration: Hardware and Software Changes

The panel contains information about the currently active IODF.

3. On the Activate New Hardware and Software Configuration panel you can change the fields that relate to the IODF that is to be activated, and you can specify options as applicable to your requirements. It is recommended that you first specify to test an activation before you dynamically activate a configuration.

Allow hardware deletes option:

If logical partitions have been defined for the currently active configuration, you can specify whether you want to allow hardware deletes.

Yes means that the hardware deletes become effective for all partitions.

No (the default) means that, if the changes include requests for deleting hardware, the activation is rejected.

Note that hardware delete can also be indirectly performed as a result of other changes, for example, a change of a channel path consist of a deletion and an addition of a channel.

A configuration change is rejected if it includes a hardware delete for an I/O component that is online to the logical partition from which you are making the change, even if you have entered Yes in the Allow hardware deletes option field. Therefore, you should vary offline any affected I/O component in all logical partitions. For example, when changing a channel path from unshared to shared, you must allow hardware deletes, and you must configure the channel path offline and vary offline the associated I/O devices before you activate the configuration. See z/OS HCD Planning for details about preventing disruption when changing the characteristics of I/O components.

Delete partition access to CHPIDs unconditionally option:

You can also specify how this activation should treat any deletion of a partition from the access or candidate list of a channel path. In the field Delete partition access to CHPIDs unconditionally (FORCE=CANDIDATE), enter either Yes or No. If you specify Yes, the access to the channel path will be revoked even if the channel is configured online to the partition; the channel will be configured offline to the partition, and active I/O operations might be disrupted. If you specify No (the default), the activation will be rejected if it includes a deletion of partition access to a channel path that is configured online to that partition.

Note: You cannot unconditionally delete the partition that is invoking the activate request from the candidate or access list of a channel path if the channel path is currently configured online.

4. If the dynamic activation completed successfully, HCD displays a message.
Configure channel path online to the partition

When activating a configuration in which a partition is added to the access list of a channel path, you must configure the channel path online to the partition using either the MVS CONFIG command or the processor console CHPID command. PR/SM will configure the channel path to the partition at subsequent activations only after you configure it using the previous commands at least once.

When a particular IOCDS is used in a POR for the first time after it has been written, the definitions in that IOCDS are used to determine the assignment of channel paths to logical partitions according to the channel path access lists that are defined. All previous information about channel configurations associated with this IOCDS is discarded. The exception to this rule is when a newly written IOCDS is first used as part of a dynamic I/O change to the system. For example, the new IOCDS is used as a result of a Switch IOCDS for next POR or the new IOCDS is the target of the ACTIOCDS= parameter of the MVS ACTIVATE command. When a new IOCDS is used in this manner, the current state of channel configurations is preserved and immediately associated with the newly written IOCDS.

See z/OS MVS System Commands for information about the MVS CONFIG command and see the applicable Processor Resource/Systems Manager Planning Guide for information about the CHPID command and for a description of automatic configuration of channel paths to partitions.

If dynamic activation fails

If the activation is rejected, HCD displays a panel that lists the messages and reasons for a failure. From the displayed message list, you can request further information. The message list can also be displayed by using the command SHOWMSG ACTIVATE on any panel that has a command line (except on help panels).

In some cases a dynamic activation may fail and HCD recommends recovery. HCD displays a panel where you can specify whether you want to recover:

- If you confirm recovery by specifying Yes, HCD performs hardware-only changes.
  
  You can specify to recover in two ways:
  
  - To resume activation of the target IODF. That is, HCD tries to continue with the activation.
  - To reset the configuration to the source IODF. That is, HCD activates the configuration that existed before the failure occurred.

- If you do not confirm recovery by specifying No, HCD allows you to continue with software-only changes. Hardware changes are activated up to the point where the failure occurred.

Detection of illegal split/merge of LCU

If a request for activating a new configuration causes a logical control unit (LCU) to be split or merged illegally, HCD rejects the request. HCD considers an LCU to be:

- Illegally split if a physical control unit (PCU) is removed from the LCU that has devices remaining connected to it.
- Illegally merged if a physical control unit is added to an LCU that has devices connected to it.

HCD detects every split/merge during activation and informs you by message. The message tells between which PCU and which device the split/merge occurred; it also explains how to correct the condition.

For more information on how to recover after a system failure, refer to z/OS HCD Planning.

How to activate if software-only changes are allowed

The following procedure describes how to activate a configuration dynamically if only software changes are allowed. Refer to z/OS HCD Planning on information when both hardware and software configuration changes are allowed and when only software configuration changes are allowed.

1. On the Primary Task Selection panel, select Activate or process configuration data, and from the resulting panel select Activate configuration dynamically. HCD displays the following panel:
Activate Software Configuration Only

Specify or revise the values for IODF activation.

Hardware changes will be validated, and the activation will be rejected in the case of an error.

Currently active IODF . : SYS4.IODF10
Processor ID . . . . : ECL2
Configuration ID . . : MVSVM
EDT ID . . . . . . . : 00

IODF to be activated . : SYS4.IODF71
Processor ID . . . . : ECL2
Configuration ID . . : MVSVM
EDT ID . . . . . . . : 00

Test only . . . . . . . Yes  (Yes or No)

Figure 201: Activate Software Configuration Only

The panel contains information about the currently active IODF.

2. On the Activate Software Configuration Only panel, you can change the fields that relate to the IODF that is to be activated. It is recommended that you first test an activation before you actually dynamically activate a configuration.

3. If the dynamic activation completed successfully, HCD displays a message.

If dynamic activation fails

If the activation is rejected, HCD displays a panel that lists the message(s) and reasons for a failure. From the displayed message list, you can request further information. The message list can also be displayed by using the command SHOWMSG ACTIVATE on any panel that has a command line (except on help panels).

Activate a configuration sysplex-wide

HCD offers you a single point of control for systems in a sysplex. You can now dynamically activate the hardware and software configuration changes for each system in a sysplex from any other system in the same sysplex. You can:

- Display active sysplex members
- Activate Software Configuration Changes Only
- Activate Software and Hardware Configuration Changes
- Switch IOCDS for the next POR

z/OS HCD Planning gives a detailed description of how to dynamically activate a configuration. It describes the prerequisites for a dynamic activation, explains when hardware and software changes or software-only changes are allowed, and describes the actions necessary to change your I/O configuration dynamically. The following sections describe how to use the HCD dialog for dynamically activating systems in a sysplex.

Displaying active sysplex members

Before you can make any change to a configuration in a sysplex, you must display the Active Sysplex Member List. From this list you then select different actions.

1. On the Primary Task Selection panel, select Activate or process configuration data, and from the resulting panel select Activate configuration sysplex-wide. HCD displays the Active Sysplex Member List.
You can see the system names, and the processor IDs and partition names associated with the system names. You can also see the IODF to be activated, the name of the sysplex, the active IODFs, the configuration IDs and EDT IDs used for IPL, and the Activate status, which is empty initially.

HCD requests the information from the sysplex couple data set and the HSA of every CPC and displays it in a formatted list.

**Refreshing the Active Sysplex Member List:** The Active Sysplex Member List will be refreshed whenever you press the Enter key. If a system joins the sysplex, it will be added to the list in alphabetical order. If a system leaves the sysplex, it will be deleted from the list.

**Empty Processor ID:** The entry in the Processor ID column is empty when the operating system runs as a VM guest.

This does not mean that you cannot initiate an activation request for that system. It means that you have to specify the correct processor ID later on by yourself, as required.

2. Select a system name and specify **View the configuration status** from the context menu (or select action code `V`) to see the following information:
   - information about the currently active hardware configuration token stored in the HSA
   - information about the free space in the HSA.

**Activate software configuration changes only**

The following procedure describes how to change the software configuration for one or more systems in a sysplex.

1. Select one or more systems from the Active Sysplex Member List (see Figure 202 on page 208) and the **Activate software configuration only** action from the context menu (or action code `o`). The **Activate Software Configuration Only** dialog is displayed.
All systems you have selected are shown together with the associated processor IDs.

**Empty Processor ID:** If the Processor ID field is empty, prompt for the processor IDs and select the actual one.

**Empty Configuration or EDT ID:** If the Config. ID and the EDT ID fields are empty, it is an indication that the ID of the currently active configuration is not defined in the IODF to be activated. Prompt for the new ID. Updating the processor ID, the Config. ID or the EDT ID fields might be required if your IODF to be activated contains IDs different from those displayed as default IDs.

2. On the Activate Software Configuration Only panel, update the fields of one or more systems. It is recommended that you first test an activation before you actually dynamically activate a configuration.

3. If the hardware token matches, the Valid. HW Ch. option is set to 'Yes'. It is recommended to validate hardware changes when performing a software change. This is required when the configuration change contains coupling facility control units or devices.

4. After pressing the Enter key, the Active Sysplex Member List is displayed again, but now the Active Status column shows the status In progress. If you refresh the list occasionally, you can see that one system after the other completes the activation request. This is indicated by the status Messages.

5. Select a system and the View messages action from the context menu (or action code m). The messages returned from that system as the result of the activation request are displayed.

```
Message List
Row 1 of 4

System name: SC52
/ Message Text
  IOS500I ACTIVATE RESULTS 084
  # ACTIVATE COMPLETED SUCCESSFULLY
  # NOTE = 0100,SOFTWARE-ONLY CHANGE
  # COMPID=SC1C3
****************************************************************************** Bottom of data******************************************************************************
```

Figure 204: Message panel

6. If you do not need the messages any longer, you can delete them by using the option Delete messages (or action code d).

**If dynamic activation fails**

If the activation is rejected, HCD displays a panel that lists the messages and reasons for a failure.

To get more information you also use the View configuration status option (or action code v). This option provides you the same information as when entering the command D IOS,CONFIG(ALL) at the system console.
View configuration status of selected systems.

Message Text

IOS566I 06.49.55 I/O CONFIG DATA 378
ACTIVE IODF DATA SET = SYS6.IODF29
CONFIGURATION ID = L06RMVS1       EDT ID = 01
TOKEN:  PROCESSOR DATE     TIME     DESCRIPTION
SOURCE: P101     95-05-09 15:34:56 SYS6     IODF29
48 PHYSICAL CONTROL UNITS
547 SUBCHANNELS FOR SHARED CHANNEL PATHS
548 SUBCHANNELS FOR UNSHARED CHANNEL PATHS
23 LOGICAL CONTROL UNITS FOR SHARED CHANNEL PATHS
23 LOGICAL CONTROL UNITS FOR UNSHARED CHANNEL PATHS

Figure 205: View Configuration Status

HCD offers you two possibilities after an activation failed:

- Select **Resume activation of target configuration** (or action code T) to force the activation of the system.
- Select **Reset source configuration** (or action code R) to reset the original configuration.

Activate software and hardware configuration changes

The following procedure describes how to change the software and hardware configuration for one or more systems in a sysplex.

1. Select one or more systems from the Active Sysplex Member List and the **Activate software and hardware configuration** action from the context menu (or action code A). The Activate Hardware and Software Configuration panel is displayed.

![Activate Hardware and Software Configuration panel](image)

Specify or revise the values for activation, then press Enter.

IODF to be activated: SYS4.IODF71

<table>
<thead>
<tr>
<th>System</th>
<th>Processor</th>
<th>Partition</th>
<th>Config.</th>
<th>EDT</th>
<th>-FORCE Option-</th>
<th>Switch</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>ID +</td>
<td>Name</td>
<td>ID +</td>
<td>ID +</td>
<td>DEVICE CANDID.</td>
<td>IOCDS +</td>
<td>Only</td>
</tr>
<tr>
<td>IRD4</td>
<td>ECL2</td>
<td>IRD4</td>
<td>MVSVM</td>
<td>00</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>IRD6</td>
<td>R35</td>
<td>IRD6</td>
<td>MVSVM</td>
<td>00</td>
<td>No</td>
<td>No</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure 206: Activate Hardware and Software Configuration

The systems you have selected are shown together with the associated processor IDs.

**Empty Processor ID:**

If the Processor ID field is empty, prompt for the processor IDs and select the actual one.

**Empty Configuration or EDT ID:**

If the Config. ID and the EDT ID fields are empty, it is an indication that the ID of the currently active configuration is not defined in the IODF to be activated. Prompt for the new ID. Updating the Processor ID, the Config. ID or the EDT ID fields might be required if your IODF to be activated contains IDs different from those displayed as default IDs.

**Switch IOCDS:**

In the Switch IOCDS column, you can define the IOCDS name used for the next POR.
Note: If you prompt for IOCDS, you might see outdated IOCDS update dates, if it was not possible with the last write IOCDS action to update the IOCDS records in the IODF. To ensure update of the IOCDS dates, use option 2.2 (write IOCDS) for the processor in focus.

2. On the Activate Hardware and Software Configuration panel, update the fields of one or more systems. It is recommended that you first test an activation before you dynamically activate a configuration.

If you plan to delete a device for a specific system, specify Yes in the FORCE DEVICE field of that system. If you plan to remove a partition from the access or candidate list of a channel path belonging to a specific system, specify Yes in the FORCE CANDID. field of that system.

3. After updating the panel, press the Enter key. The Active Sysplex Member list will be displayed again, but now the Active IODF fields have changed for the affected systems and now contain the name of the IODF to be activated. If you have defined different processor IDs, configuration IDs or EDT IDs, and you have activated their configurations, these fields also have been changed.

4. Select a system and the View messages action from the context menu (or action code m). The messages returned from that system as the result of the activation request are displayed.

5. If you do not need the messages any longer, you can delete them by using the option Delete messages (or action code d).

If Dynamic Activation Fails

Refer to “If dynamic activation fails” on page 209 for information on how to proceed, if your activation has been rejected.

Switch IOCDS for the next POR

In addition to dynamically activating a sysplex, you can also specify the IOCDSs to be used for the next POR from the Active Sysplex Member List.

Refer to “Switch IOCDS for systems in a sysplex” on page 223 for a description of how to switch the IOCDS for the next POR.

Activate a configuration HMC-wide

HCD provides a function to manage dynamic I/O changes from a single point of control (managing system) for all systems running on CPCs that are controlled by the same hardware management console (HMC). The function includes the following features:

- listing all partitions on the HMC-controlled CPCs with their status (deactivated, activated, IPLed), and partition dependent information
- distributing a production IODF to selected target systems
- remotely performing dynamic hardware or software changes, or both, on selected target systems and showing the resulting messages
- operating selected target systems for the activation remotely and showing the resulting messages

To work with HMC-wide activate functions, start from the Processor Cluster List (Figure 188 on page 190), where you can select action Work with CPC images (action code V) to obtain the CPC Image List (see Figure 207 on page 213).

The CPC Image List displays information about the selected CPC. This includes the processor ID, SNA address, and the HSA token.

Partitions that are deactivated or not IPLed, or that do not run any z/OS (MVS) or z/VM (VM) system are shown as disabled (with a # sign in the action column) and no action is possible for such a partition.

Also all LPARs without an entry in the connection table which are not reachable indirectly via a reachable sysplex are listed but marked as disabled (#) in the action column.

The CPC Image List displays all partitions defined on the selected CPC with their operation status, connection status, and activation status:
• partition name
• partition ID (LPID from the support element)
• operation status of the partition:

0001
The partition is operational and a system is IPLed.

0002
The partition is activated but no system is IPLed.

0008
The partition is deactivated.

0010
There are exceptions.

Any other value indicates a special condition for the partition that you can check at the Support Element (SE) of the selected CPC or the HMC.

• The connection status (column Co ST) for z/OS and z/VM systems running in the image, indicating whether this system is reachable or not. This information depends on the content of your connection table.

  BLANK
  Indicates that no entry for the system exists in the connection table and therefore, a connection between HCD of the local system to the displayed system does not exist.

  Y
  Indicates that a connection between HCD of the local system to the displayed system exists because of an entry in the connection table.

  S
  Indicates that a connection between HCD of the local system to the displayed system exists because they are either identical or in the same sysplex, or another member of the sysplex has a direct connection via an entry in the connection table.

  N
  Indicates that a connection between the local HCD and the displayed system failed in spite of an entry in the connection table.

• The activation status of the image contains information about its activation capabilities and currently active configurations.

  Activation HW
  Indicates whether a Hardware Activate is possible: Y or not: N, or whether it is unknown: ?.

  Activation SW
  Indicates whether a Software Activate is possible (Y or N). If the software is not managed by HCD, a switch of the IODF is possible: S.

  Activation Status
  Indicates the status of an activate request for connected z/OS and z/VM systems (for example, Activating or In Progress). It indicates also whether hardware or software changes or both are possible.
Select one or more systems of the CPC, then press Enter. To refresh the Activate/Verify Status, press Enter without selections made.

Processor ID : R35            SNA Address : IBM390PS.R35
HSA Token . : R35      12-02-06 09:26:03 SYS4     IODF71

**-- Partition --- Co Sysplex  ------ System ------  ----- Activation -----**

<table>
<thead>
<tr>
<th>Name</th>
<th>ID Stat St</th>
<th>Name</th>
<th>Name</th>
<th>Type</th>
<th>Level</th>
<th>HW SW Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWB1</td>
<td>2A 0001</td>
<td>DWB1PLEX</td>
<td>DWB1</td>
<td>MVS</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>DWB2</td>
<td>3A 0001</td>
<td>DWB1PLEX</td>
<td>DWB2</td>
<td>MVS</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>IRD6</td>
<td>1B 0001</td>
<td>IRD4PLEX</td>
<td>IRD6</td>
<td>MVS</td>
<td>2.1</td>
<td>Y Y</td>
</tr>
<tr>
<td>R35LP29</td>
<td>1E 0001</td>
<td>R35SSI</td>
<td>BOER3529</td>
<td>VM</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>R35LP43</td>
<td>2D 0001</td>
<td>R35SSI</td>
<td>BOER3543</td>
<td>VM</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>TRX1</td>
<td>2C 0001 S</td>
<td>TRX1PLEX</td>
<td>TRX1</td>
<td>MVS</td>
<td>2.1</td>
<td>Y Y</td>
</tr>
<tr>
<td>TRX2</td>
<td>3C 0001 Y</td>
<td>TRX1PLEX</td>
<td>TRX2</td>
<td>MVS</td>
<td>1.13</td>
<td>Y Y</td>
</tr>
<tr>
<td>IRD7</td>
<td>0C 0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRD8</td>
<td>1C 0002 N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R35LP10</td>
<td>0A 0001</td>
<td>LINUX</td>
<td>3.0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goto Query Help

-------------------------------------------------------------------------- CPC Image List Row 1 of 60 More: >
Command ===> _______________________________________________ Scroll ===> PAGE

**Figure 207: CPC Image List**

Scrolling to the right displays further activation status information as shown in **Figure 208 on page 213**:

- active IODF
- active OS configuration ID in column **Conf ID** (available for z/OS systems; available for z/VM systems only if z/VM manages the software configuration via HCD)
- active EDT ID (only available for z/OS systems)

---

**Figure 208: CPC Image List scrolled to the right**

Use PF keys to sort the list by the following columns:

- **F14** sort by **Partition Name**
From the **CPC Image List** you can launch dynamic hardware and software configuration changes on any reachable system (in any sysplex) on any CPC that is configured in the same Hardware Management Console (HMC). All available actions are introduced in “Available configuration activation actions” on page 214.

Press the Enter key without further selection to refresh the display of the activation status, for example, when there is an activation in progress.

The save list function is available for the **CPC Image List**.

**Note:** If you stopped and restarted an HCD dispatcher on a connected system, while you have opened a **CPC Image List** connected to the CPC where this system is running, you must reconnect this CPC before performing any new action on the **CPC Image List** containing the concerned system. Otherwise you may get message CBDA605I, saying that HCD remote processing failed.

**Available configuration activation actions**

The following configuration actions are available from the **CPC Image List**:

- **Activate software configuration only** (action code O). This action is available if column **Activation SW** shows Y or S.
- **Activate software and hardware configuration** (action code A). This action is available if column **Activation HW** shows Y.
- **Resume activation of target configuration** (action code L). This action is needed if a previous hardware activation failed and the target system requires recovery. Column **Activation HW** must show Y.
- **Reset source configuration** (action code R). This action is needed if a previous hardware activation failed and the source system requires recovery. Column **Activation HW** must show Y.
- **Transmit IODF** (action code X). The Export IODF dialog is invoked. This action is available for a selectable image.
- **Process system commands** at the target system and show the result of the command execution on the managing system (action code C).

The actions **Resume activation of target configuration** and **Reset source configuration** use the same dialogs, interaction and processing as the corresponding actions available from the **Active Sysplex Member List** as described in “Activate a configuration sysplex-wide” on page 207.

Action **Transmit IODF** allows sending an IODF to a target system. This task does not require that a connection exists between the local HCD client (managing system) and the HCD of the target system.

For details about the remaining actions, see the following information units:

- “How HCD processes Activate actions” on page 214
- “How HCD processes system commands” on page 215

**How HCD processes Activate actions**

With action codes O (for **Activate software configuration only**) and A (for **Activate software and hardware configuration**), you can send the corresponding activation requests to the selected remote target systems. The invoked dialog and the processing is the same as with actions available from the **Active Sysplex Member List** as described in “Activate a configuration sysplex-wide” on page 207.

However, the request is sent to the selected target system and the messages are returned from that system to the managing system.

When performing an Activate action on a remote system, HCD checks whether the currently accessed target IODF is already available at the remote system. HCD looks for a matching IODF name with a high-level qualifier that corresponds to the high-level qualifier (HLQ) of the active IODF on the remote system.
If there exists one, HCD checks whether the IODF token of that IODF and the IODF token of the target IODF match. If they do match, the new target IODF can be accessed by the remote system and the remote Activate request can be sent. For example, if the target IODF on the managing system is JOE.IODFA1 with an IODF token of token777, and the HLQ of the currently active IODF on the managed system is SYS4, then HCD looks for IODF SYS4.IODFA1. If this IODF is found, and has the IODF token token777, this existing IODF is used for the remote activate request.

If the target IODF can not be accessed from the remote system due to failing conditions, the target production IODF is transferred to the remote system cataloged there with an HLQ that corresponds the HLQ of the active IODF on the target system and on the same volume as the active IODF resides on. Before a production IODF on the remote system is replaced, you must confirm the deletion of the old IODF version. Data sets that are associated with the production IODF, like activity log, change log or HCM MCF data set are not sent.

If the target system is an MVS system, the remote system processes the Activate request in the same way as a sysplex-wide activate action that is issued on the target system. This means, an ACTIVATE system command is built and routed to the corresponding system in the sysplex. Activate processing is done asynchronously. On the CPC Image List on the local (managing) system, the field Activation Status is changed to Activating. You can refresh the status by pressing Enter without selecting any partition. If activate processing has not yet completed, the Activation Status field shows In progress. If the activate processing has completed on the remote system, this field switches to Messages to indicate that the resulting messages have been received from the remote system.

If the target system is a VM system, the remote system will process the Activate request synchronously. The local system waits until activate processing has been completed on the remote system. The Activation Status field shows Activating. Press Enter to switch the activation status to Messages immediately.

Now you can view the resulting messages by selecting action View messages (action code m). These messages indicate how the the activation request has processed on the remote system(s).

HCD allows you to enter activate requests to multiple partitions at a time. The requests for systems of the same sysplex are performed as a single remote activate request.

**How HCD processes system commands**

Applying action code C on a selected system in the CPC Image List invokes the Process System Command dialog. Here you can enter a system command that you want to be processed on the target system or on all systems belonging to the same sysplex. The sample dialog in Figure 209 on page 215 shows the entered system command d ios,config.

The entered command must either be an MVS system command, if the target system is of type MVS, or a CP command, if the target system is of type VM. For target VM systems, command routing to other systems in the sysplex is not supported. However, HCD does not perform any verification or validation on the command syntax, but sends the entered string to the target system(s) to be executed there.
When you press Enter, HCD redisplays the CPC Image List where column Activation Status now shows Executing for all systems where the command is processed. When you press Enter again, the Activation Status changes to Messages.

Now select action **View messages** (action code m) to display the message(s) resulting from the system command as it had processed on the remote system. An example of a returned message list for the d ios,config command is shown in Figure 210 on page 216.

![Message List](image)

**Figure 210: Process System Command - returned messages**

**Establishing connectivity to remote systems**

To establish connectivity to remote systems, you must provide connection data in a connection table. The data set containing the connection table is defined to HCD via the profile option CONNECTION_TABLE as described in “HMC-wide activation” on page 25. Specify the following information in the connection table:

- Processor SNA address with network name and CPC name as defined for the corresponding processors in the IODF and as known in the HMC/SE.
- Partition (image) name as specified in the IODF and configured in the SE.
- IP address or host symbolic destination name for the TCP/IP target system where the HCD dispatcher program is running.
- IP port ID which is used by the HCD dispatcher program at the remote site.
- User ID for the remote system.
- Optional: Password for user ID on the remote system. If you do not provide a password, HCD uses a PassTicket for verifying the authorization for the user ID on the remote system. In this case, you must provide the corresponding RACF definitions (see “How to set up PassTickets for working with CPC images on z/OS” on page 334 and “How to set up PassTickets for working with CPC images on z/VM” on page 335).

Specify the values in a single line separated by commas. You can insert comment lines using an * in column 1.

**Example:**

<table>
<thead>
<tr>
<th>NETWORK NAME</th>
<th>IMAGE</th>
<th>IP ADDR</th>
<th>PORT</th>
<th>USERID</th>
<th>PASSWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM390PS, R35</td>
<td>TRX2</td>
<td>BOETRX2</td>
<td>51107</td>
<td>USERID10</td>
<td>PASSWRD1</td>
</tr>
<tr>
<td>IBM390PS, R35</td>
<td>TRX1</td>
<td>BOETRX1</td>
<td>51107</td>
<td>USERID10</td>
<td>PASSWRD1</td>
</tr>
<tr>
<td>IBM390PS, DAN2</td>
<td>SYSB</td>
<td>BOESYSB</td>
<td>51107</td>
<td>USERID10</td>
<td>PASSWRD1</td>
</tr>
<tr>
<td>IBM390PS, DAN2</td>
<td>SYSA</td>
<td>BOESYSA</td>
<td>51107</td>
<td>USERID20</td>
<td>PASSWRD2</td>
</tr>
</tbody>
</table>
To be able to perform actions on a remote z/OS system (type MVS), a connection must exist to at least one system of the sysplex where the remote system is part of. For a remote z/VM system (type VM), a connection must exist to that system. On the remote systems, the HCD dispatcher program for remote API calls must be running and listening to the specified ports.

HCD tries to establish an initial connection for all specified target systems in the connection table when the first CPC Image List is invoked. If a connection can be established and the remote HCD program is running, the connection status shows a Y. If the initial connection failed, the connection status shows N.

Note: The CPC Image List is not refreshed as long as the underlying Processor Cluster List is open. To refresh, leave the Processor Cluster List and reopen the the CPC Image List.

Connections to z/OS or z/VM systems that are not supported (z/OS before V1.10 or z/VM before V5.4) are rejected with an error message.

The connection table data set may be sequential or a member of a partitioned data set. Record format of the data set must be F or FB with a logical record size of at least 80 characters. If no connection table is specified, the CPC Image List is displayed, but no actions are available for the listed images (with the # sign in the action column).

Prerequisites for working with CPC images

- HCD uses BCPii (Base Control Program internal interface) to query the image (partition) attributes from the Support Element (SE) of the selected CPC. In order to get the partition attributes, the following requirements must be met:
  - The BCPii address space (HWIBCPII) is active and ready to handle BCPii requests.
  - The local and remote support elements (SEs) are enabled for BCPii communication (cross-partition authority must be enabled for each CPC that is queried).
  - The BCPii community name must be defined on the SE for the local and each remote CPC that is queried.
  - The managing user ID must get the authorization to perform the BCPii calls for the target CPCs / images.
- The target systems must have a TCP/IP connection to the managing system. For more information, refer to Appendix E, “Establishing the host communication,” on page 433.
- The user must provide a connection table for the target systems which contains the TCP/IP login data.
- There must be a user ID on each target system that has the authorization to perform dynamic activations and corresponding system commands and that has access to the active production IODF.
- An HCD dispatcher must run on each of the target systems that allows directing incoming remote HCD requests to the local HCD versions.
- The required security setup for using this function is described in “Defining RACF profiles” on page 331 and “Access to HWIC.* profiles” on page 334.

Activate a configuration on systems not running HCD

HCD can activate hardware changes dynamically on all processors HCD is running on. But there are processors that are not running any operating system that runs HCD, for example a standalone coupling facility (SA CF), which runs only coupling facility control code.

The activation of hardware only changes enables HCD for z/OS to communicate with these processors via SCLP to manage the dynamic I/O changes on such a processor. This functionality requires corresponding support in the hardware.

To use the dynamic capability on the remote processors, a POR with an IOCDS containing a MCS partition is necessary. The MCS partition is called MCS_1 and needs to be defined as firmware partition (also...
known as Licensed Machine Code - LMC partition) with partition ID B in the highest channel subsystem. This hidden partition contains a service responsible for dynamic activation of hardware changes.

For a 3906, for example, the process to allow dynamic changes requires following pre-requisite steps:

- Define configuration for the processor containing the MCS_1 partition, see “Working with partitions” on page 85. This configuration then needs to be written to an IOCDS on the remote processor.
- POR the remote processor with this IOCDS.
- Provide the necessary authorization on your z/OS system that you use to initiation the hardware only activation, see “Prerequisites” on page 220.

Now this system is ready for dynamic activation of I/O configuration changes.

To perform the hardware only dynamic activate go to the 'Processor Cluster List' (option 2.11) on which the following 3 actions are provided:

- Activate hardware changes only (action code 'a').
- View current active Configuration (action code 'c').
- Download active configuration (action code 'd').

**Activate hardware changes only (action code 'a')**

HCD reads the activation status of the selected CPC.

If this status can be retrieved and is OK then the **Activate New Hardware Configuration** panel is shown on which parameters for the activation can be specified.

If the activation status can be retrieved but the system is in recovery state the **Recover Hardware Only Activation** panel is shown. See “Recovery” on page 219 for more information.

![Activate New Hardware Configuration Panel](image)

The target “Processor ID” is promptable with all processor configurations in the selected target IODF that allow hardware only activates.

Once you confirmed the activation parameters by pressing enter, the dynamic activation for the remote processor is initiated by HCD. HCD issues an information message on the panel that the operation is in process. When ready, the result messages are displayed in the same way as for other activation tasks. See “Activate software configuration changes only” on page 208.

**Note:** It is important to keep (save) the IODF to be able to do further dynamic I/O changes on the selected target processor.
Recovery

In case that the current active configuration can be retrieved from the remote processor but the last dynamic activation was interrupted and the processor requires recovering the configuration, the **Recover hardware only activation** panel is displayed. It shows the available configuration information from before the activation and the information about the target of the failing dynamic activation. The panel allows you to specify the recovery direction.

![Recover hardware only activation](image)

**Figure 212: Recover hardware only activation**

The recovery action is promptable and defaults to “Continue”. When selecting recovery action “Continue”, a forward recovery is initiated. During forward recovery HCD tries to continue from where the activation was interrupted to get to the target configuration.

When selecting recovery action “Reset”, a backward recovery is initiated. During backward recovery HCD tries to rollback all changes already done from where the activation was interrupted to get to the source configuration.

View current active configuration (action code 'c')

HCD shows information of the actual active configuration for the selected processor.

![View Active Configuration](image)

**Figure 213: View Active Configuration**

HCD allows to view the name and status of the IODF that has been used for the POR or for the last dynamic activation. The configuration token, which is currently active in the HSA (hardware system area) is shown as well as the information whether recovery is required.

If recovery is required, also the name of the target IODF and the target processor configuration ID in process when the activation failed, are shown.
**Download active configuration (action code 'd')**

The data of the currently active configuration on the remote processor is transferred to an IODF on z/OS, if available. You can use this function if requested by IBM service in case of problems during dynamic activation.

![Download Active Configuration Panel](image)

**Figure 214: Retrieve active IODF**

The panel shows the SNA of the selected processor and the name of the active IODF on that processor. In the target IODF name field you can enter the name of the target IODF for the configuration. You can choose either an existing IODF or a new one. If you select an existing one, its content will be overridden. Be aware that the active IODF is not always available at the remote processor.

**Prerequisites**

The HW only Authorization is protected by SAF profiles. You can either use a specific profile for each processor, or use more generic profiles as it fits for your organization. A specific processor will be protected by a profile CBD.CPC.ACTIVATE.netid.NAU in the FACILITY class. In the profile name netid.NAU refer to the SNA name of the processor as defined at the SE.

**Build a CONFIGxx member**

After dynamic changes have been made to a system it is recommended to update the corresponding CONFIGxx member to reflect these changes. HCD provides a function to build a CONFIGxx member containing the CHP, DEVICE, and SWITCH statements of the local system or of the selected system in a sysplex.

A CONFIGxx member can be built by:

- Selecting the **Build CONFIGxx member** action from the Activate or Verify Configuration member panel (for the local system)
- Selecting the **Build CONFIGxx member** action from the Active Sysplex Member panel (for a system in a sysplex)
- Using a batch utility (see “Build I/O configuration data” on page 311 for details)

After selecting **Build CONFIGxx member**, the Identify System I/O Configuration panel is displayed (see Figure 196 on page 201). After selecting a system, and an I/O cluster name for managed channel paths, the Restrict Ports Eligible for Dynamic CHPID Management panel is displayed if the configuration contains managed channel paths for the selected I/O cluster. This panel shows all control units known by the selected system and manageable by DCM and their switch ports set to eligible for DCM (indicated by a 'Y'). You can specify ports as ineligible for DCM by overtyping 'Y' with 'N'.

---

220  z/OS: Hardware Configuration Definition User’s Guide
Restrict Ports Eligible for Dynamic CHPID Management

Command ==> ___________________________________________ Scroll ===> CSR

Type 'N' to restrict ports related to managed CHPIDs from being used by dynamic CHPID management.

Processor ID: FR38LPAR  Partition: F38H  OS Configuration ID: B710
I/O Cluster name: UTCPLX38

---------- Last digit of port address --------
Sw.Port 0 1 2 3 4 5 6 7 8 9 A B C D E F
65.4     _ _ N _ _ _ _ _ _ _ _ _ _ _ _ _ _
65.B     _ _ _ _ _ _ _ Y _ _ _ _ _ _ _ _
66.4     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
66.B     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
67.A     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
67.B     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
68.A     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
68.B     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
69.C     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
60.D     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6E.A     _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 215: Restrict Ports Eligible for Dynamic CHPID Management

The Build CONFIGxx Member panel is then displayed.

Build CONFIGxx Member

Specify or revise the values for the CONFIGxx member. Press ENTER to continue.

Partitioned data set name . 'SYS1.PARMLIB'
Suffix of CONFIGxx member . __
Volume serial number . __ ______ + (if data set not cataloged)
F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset    F9=Swap
F12=Cancel

Figure 216: Build CONFIGxx Member

The initial value for the partitioned data set name is 'SYS1.PARMLIB'.

If the specified CONFIGxx member already exists, the Confirm Update CONFIGxx Member panel is displayed.

Confirm Update CONFIGxx Member

Specify or revise the values for the CONFIGxx member.
Press ENTER to continue.

Backup CONFIGxx member . . . . CONFBK01
Update I/O statements . . . . . 1 1. Update member
2. Replace member

F1=Help     F2=Split    F3=Exit     F5=Reset   F9=Swap
F12=Cancel

Figure 217: Confirm Update CONFIGxx Member

If you select Update member, the CHP, DEVICE, and SWITCH statements are replaced and all other statements remain unchanged. If you select Replace member, the content of the CONFIGxx member will be CHP, DEVICE, and SWITCH statements exclusively. All other statements formerly present in the member will be removed.
The following illustrates sample generated statements:

```
* CHP, DEV AND SWITCH STATEMENTS GENERATED BY
* BUILD CONFIGXX UPDATE REQUEST
* 2001-01-09 13:56:28 IODF: BOKA.IODF38
* PROCESSOR: FR38LPAR PARTITION: F38H OS CONFIGURATION ID: B710
* I/O CLUSTER: UTCPLX38
CHP (00,01,04),ONLINE
CHP (05),ONLINE,MANAGED
CHP (06,07,08,09,0A,0B,0C,0D,0E,10),ONLINE
CHP (11),ONLINE,MANAGED
....
DEVICE (0B00-0B1F),(1C),ONLINE
DEVICE (1400-143F),(0C,22,33),ONLINE
DEVICE (1440-147F),(10,1C,44),ONLINE
....
SWITCH (B565,42),NODCM
SWITCH (B565,B6,BC-BE),DCM
```

The default name for the backup member is CONFBKxx. If the name is blanked out, no backup is saved.

You can also invoke this task in batch mode. See “Build I/O configuration data” on page 311 for a description of the job control information that you need to specify when building a CONFIGxx member.

### Process the Display M=CONFIG(xx) command

HCD provides a dialog function to compare the information in the CONFIGxx member for the system in a sysplex with the hardware configuration. The comparison is carried out at the target system and any responses are displayed in a message list.

You can invoke the function from the Active Sysplex Member List by selecting the action **Process DISPLAY M=CONFIG(xx) command**. This displays the Process Display M=CONFIG(xx) Command panel.

```
Process DISPLAY M=CONFIG(xx) Command

The DISPLAY M=CONFIG(xx) command is executed on the selected target system. Specify or revise the suffix for the CONFIGxx member of SYS1.PARMLIB. Press ENTER to continue.

System . . . . . . . . : SYSTEMA
Suffix of CONFIGxx member . . __

F1=Help F2=Split F3=Exit F5=Reset F9=Swap F12=Cancel
```

**Figure 218: Process Display M=CONFIG(xx) Command**

Here, the suffix for the member to be used must be specified.

The results of this action are displayed in the HCD message panel.

### Switch IOCDS for next POR

HCD allows you to specify an IOCDS that will be used for the next POR either while building IOCDSs or as a separate action without the need to build an IOCDS. Depending on the environment you are working, you have to use different panels to switch the IOCDS:

- Switch IOCDS for processor without SNA address defined
- Switch IOCDS for a processor in a processor cluster with SNA address defined
- Switch IOCDS for systems in a sysplex
Switch IOCDS for processor without SNA address

The following procedure is only recommended for processors that do not have an SNA address defined. For a detailed description of the following dialog sequence, refer to “Build an IOCDS” on page 187.

1. On the Primary Task Selection panel, specify the name of a production IODF and select Activate or process configuration data.
2. From the resulting panel select Build IOCDS. HCD displays the Processor List.
3. On the Processor List, select the processor and press the Enter key. HCD displays the IOCDS List (see Figure 186 on page 188).
4. On the IOCDS List, select the IOCDSs you want to use for next POR and select Switch IOCDS from the context menu (or action code S).

If the HSA token is available, the HSA token is compared with the processor token. If the HSA token matches the processor token, the Switch IOCDS action is performed. A warning message is issued, if the date in the IOCDS update record is an earlier date than the date of the last CSS update. If the HSA token does not match the processor token in the IODF, the action Switch IOCDS is not performed.

If the HSA token is not available, the serial number of the processor defined in the IODF is compared with the serial number of the active processor. If the serial numbers cannot be found, the types of the processors are compared. If the processor definition in the IODF matches the active processor, the action Switch IOCDS is performed, otherwise the procedure is not performed.

Switch IOCDS for processors in a processor cluster with SNA address defined

The following procedure describes how to build an IOCDS for processors in a processor cluster with an SNA address defined. For a detailed description of the following dialog sequence, refer to “Build processor cluster IOCDSs” on page 190.

1. On the Primary Task Selection panel, select Activate or process configuration data and from the resulting panel select Build and manage processor cluster IOCDSs, IPL attributes and dynamic I/O changes. The Processor Cluster List is displayed (see Figure 188 on page 190).
2. On the Processor Cluster List, select the CPCs for which you want to switch the IOCDSs and Work with IOCDSs from the context menu (or action code S). HCD displays the IOCDS List (see Figure 189 on page 191).
3. Use the Switch IOCDS action (or action code S) to mark an IOCDS as the IOCDS that is used for next POR. The Status field will be set accordingly.

You can only switch to an IOCDS that has an IOCDS/HSA token match or to an IOCDS of a processor that is not activated (‘POR-required’ status).

Switch IOCDS for systems in a sysplex

In addition to dynamically activating a sysplex, you can also specify the IOCDSs to be used for the next POR.

1. Select one or more systems from the Active Sysplex Member List (see Figure 202 on page 208) and the Switch IOCDS for next POR action from the context menu (or action code S). The Switch IOCDS panel is displayed.
Specify the IOCDS(es) for next POR, then press Enter.

**System** | **Processor** | **Config.** | **EDT** | **Switch** | **Active** | **IOCDS + IODF**
--- | --- | --- | --- | --- | --- | ---
IRD4 | ECL2 | MVSVM | 00 | __ | SYS4.IODF10
IRD5 | ECL2 | MVSVM | 00 | __ | SYS4.IODF10
IRD6 | R35 | MVSVM | 00 | __ | SYS4.IODF10

Figure 219: Switch IOCDS

2. In the column Switch IOCDS, specify the IOCDS that is to be used for the next POR and press the Enter key.

**Note:** If you prompt for IOCDS, you might see outdated IOCDS update dates, if it was not possible with the last write IOCDS action to update the IOCDS records in the IODF. To ensure update of the IOCDS dates, use option 2.2 (write IOCDS) for the processor in focus.

### Specify an IODF for IPL

*z/OS HCD Planning* gives a detailed description of how to specify an I/O configuration at IPL. This topic summarizes the main aspects you have to consider when specifying an IODF for IPL.

**Notes:**

1. A production IODF must have a single extent. If the production IODF has multiple extents, the IPL process results in a WAIT state (wait state code '0B1', reason code '002'). HCD issues error message CBDA009I if a production IODF cannot be built in a single extent.

2. A production IODF must not be allocated with the SMS EXTENDED attribute. If the production IODF is allocated as an EXTENDED LINEAR dataset, the IPL process results in a WAIT state (wait state code 0B1, reason code 005).

### IODF processing at IPL

When you perform an IPL, the production IODF that defines the configuration to the system is selected and used.

On the LOAD parameter, you specify the device containing the IODF for IPL and the identifier for the LOADxx member. In the LOADxx member of SYSn.IPLPARM or SYS1.PARMLIB, you identify the IODF by the IODF statement. The IODF statement consists of an IODF *prefix* and an IODF *suffix*.

- The IODF prefix is an 8-byte high-level qualifier of the IODF data set name. For example, BPAN is the IODF prefix for the IODF data set BPAN.IODF01.
- The IODF suffix is the two-digit hexadecimal number that is part of the IODF name. For example, 01 is the IODF suffix for IODF01. If you do not specify a suffix, the system searches for an IODF sequentially in a numerically ascending order starting with the IODF suffix 00. If you specify ** as the suffix, the system uses the descriptor fields to find the current IODF.

During IPL, the system uses the LOADxx member that it finds first when searching in the following order:

1. The system first searches the IODF volume for SYS0.IPLPARM through SYS9.IPLPARM, in that order. Therefore, it is recommended to use SYS0.IPLPARM for best IPL performance.
2. If it does not find a SYSn.IPLPARM, it searches the IODF volume for a SYS1.PARMLIB.
3. If it does not find SYS1.PARMLIB on the IODF device, it searches for SYS1.PARMLIB on the IPL device.
4. If it does not find a SYS1.PARMLIB on the IPL device, a coded non-restartable wait state is loaded (WAIT code X'0B1').

For a detailed description of this process refer to *z/OS HCD Planning*. 
Chapter 10. How to print and compare configuration data

Overview

This information unit describes how to:

• Print configuration reports (channel subsystem, switch, OS configuration data, and CTC connections)
• Print a report of the I/O paths of the actual system compared to the defined I/O configuration
• Print a report of the supported hardware or an I/O definition reference
• Create or view a graphical report of the I/O configuration
• Compare functions (IODFs and CSS/operating system views)
• Print list panels
• View and print the activity log

Print configuration reports

You can use HCD to generate several types of reports about the configuration data in an IODF:

• Channel Subsystem (CSS) Report
• Switch Report
• Operating System (OS) Report
• CTC Connection Report
• I/O Path Report
• Supported Hardware Report
• I/O Definition Reference

In the HCD profile definition, you have the option of printing textual reports in upper case only or defining the number of lines per page (see “Options for text reports” on page 21).

Examples of these reports are shown in Appendix B, “Configuration reports,” on page 347.

Channel Subsystem Report

The Channel Subsystem Report contains all configuration data that is used by the channel subsystem. If the IODF contains data for more than one processor or logical partition, you can limit the report to the data for one processor or partition. If you limit the report to one partition, it will generate information only for channel paths, which have the partition in the access list. Channel paths that have that partition in a candidate list will not be taken into consideration.

You can select four types of reports:

• **CSS summary reports** include summary reports about:
  – Processors
  – Channel subsystems
  – Partitions
  – PCIe functions
  – PCHIDs
  – IOCDSs
- Channel paths
- Control units
- Devices

The processor and partition reports are not printed if you limit the CSS summary reports to the data for one processor or partition.

- **Channel path detail reports** include reports about:
  - Channel paths
  - CF channel path connectivity
- **Control unit detail report**
- **Device detail report**

**Switch Report**

The Switch Report contains details about the switch definition, its configurations and the port definitions.

If the IODF contains data for more than one switch, you can limit the report to the data for one switch and the configurations for this switch. In this case, you do not get a switch summary report.

**Operating System Report**

The Operating System Report contains the configuration data that is used by z/OS or z/VM. If the IODF contains data for more than one operating system, you can limit the report to the data for one operating system. You can select three types of reports:

1. The OS device report includes reports about operating systems and OS devices.
   - The operating system summary report is not printed if you limit the OS device report to the data for one operating system.
2. OS console report
3. EDT report (MVS-type only)

**CTC Connection Report**

The CTC Connection Report contains CTC connections of your configuration that are defined through a switch or point-to-point. In case of incorrect definitions, the report also contains a list of messages with diagnostic information.

If the IODF contains more than one processor or logical partition, you can limit the report to the data for one processor or partition.

For capabilities and restrictions that apply to the presentation of CTC connections in the configuration diagram and the CTC Connection Report, refer to “Restrictions applying to the CTC Connection List” on page 139.

**I/O Path Report**

The I/O Path report shows the physically sensed I/O paths (with physical types) of the active system compared with the logical definitions of the paths (also the object types) of a specific IODF.

On the Limit Reports panel (Figure 221 on page 228) the active configuration to sense the configuration from, can be specified by indicating a SYSPLEX and/or SYSTEM name. If nothing is specified, the data is taken from the local system.

For more information, see “Job statement information used in panels” on page 62.

See “Prerequisites” on page 8 for the prerequisites for the I/O Path report.
Supported Hardware Report

The Supported Hardware Report contains information about the processors, control units, and devices supported in your installation. This report can only be generated using the batch facility as described in “Print configuration reports” on page 314.

This report is generated directly from the UIMs. Therefore, it reflects the latest UIM levels installed.

I/O Definition Reference

The I/O Definition Reference contains a description of the parameters to define the device to the Channel Subsystem, and a description of the parameters and features to define the device to the operating system.

This report is generated directly from the UIMs. Therefore, it reflects the latest UIM levels installed.

This report can only be generated using the batch facility as described in “Print configuration reports” on page 314.

How to print a textual report

1. On the Primary Task Selection panel, select Print or compare configuration data.
2. On the resulting Print and Compare Configuration Data panel, select Print configuration reports. HCD then displays the following panel:

   ![Print Configuration Reports panel](image)

   Figure 220: Print Configuration Reports

3. Enter the required data.

   When you select a CSS or OS report an additional panel appears on which you can select one or more report types.

   If a data set is pre-allocated the logical record size must be 133. You can allocate the report output data set HCDRPT using the job step name GO.

4. When you select to limit the reports, possible for CSS, Switch, OS and CTC connection reports, the Limit Reports panel appears that allows you to specify a processor ID, partition name, OS configuration ID and a switch ID. When you select an I/O Path report, the Limit Reports panel always appears. This is because limiting an I/O Path report is required. Default values for the processor ID, the partition name (for an LPAR processor) and the OS configuration ID are then already filled in. These values are based on the active configuration. The system name identifies the system of a sysplex for that the I/O Path report is to be generated. The default is the local system. The sysplex name specifies the sysplex of the system for that the I/O Path report is to be generated. If you specify the sysplex, you must also specify the system name. If you do not specify the sysplex, the system name is the VTAM application.
name of the host that the I/O Path report is to be generated for. If you selected to print more than one report type, the limitations specified on the Limit Reports panel apply to all of them.

When limiting a CSS report to a single partition, the report will show channel paths, control units and devices attached by the access list as well as those attached by the candidate list.

<table>
<thead>
<tr>
<th>Limit Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>To limit the reports, specify the following criteria related to the IODF in access.</td>
</tr>
<tr>
<td>Processor ID . . . ________ + CSS, CTC, I/O path reports</td>
</tr>
<tr>
<td>Partition name . . ________ + CSS, CTC, I/O path report</td>
</tr>
<tr>
<td>OS configuration ID ________ + OS, I/O path report</td>
</tr>
<tr>
<td>Switch ID . . . . __ + switch report</td>
</tr>
</tbody>
</table>

Specify the sysplex and system name to gather the actual configuration from. (Blanks default to the local system.)

| Sysplex name . . . ________ I/O path report |
| System name . . ________ I/O path report |

F1=Help  F2=Split  F3=Exit  F4=Prompt  F5=Reset  F9=Swap  F12=Cancel

Figure 221: Limit Reports

The submitted job only starts if the IODF is accessed in read mode. If it is accessed in update mode, the job waits until you access another IODF or exit HCD.

You can also print reports using the batch mode. See “Print configuration reports” on page 314 for a description of the job control information that you need to specify when printing a report.

Create or view graphical configuration reports

HCD offers you to print and view a graphical representation of the I/O configuration based on the definitions in the IODF. The reports can be either stored in a data set for printing on an AFP printer (such IBM 3820 or IBM 3800) or via GDDM later on, or displayed on an IBM 3270 terminal with graphical capability.

The graphical report function allows you to print or view five types of reports:

- The **LCU report** shows all logical control units defined for one processor.
- The **CU report** takes a control unit as focal point and shows the connections to the processors and the devices of the IODF. On request, it shows the switches as well.
- The **CHPID report** shows the defined channel paths for a processor and the switches, control units, and devices attached to the CHPID.
- The **Switch report** takes a switch (ESCON director) as focal point and shows the processors, chained switches, and control units with devices attached to the switch.
- The **CF connection report** takes a coupling facility as focal point and shows all connections that exist between the coupling facility and the other processors defined in the IODF.

Prerequisites

**For printing**

To process the reports for printing you need one of the following:

- BookMaster Release 3.0 or higher
- DCF/GML Release 4.0
• GDDM Version 2.1 or later

To print the reports you need an AFP printer, such as IBM 3820 or IBM 3800 (not required for GDDM).

To store the output in GDF format, you have to use a terminal with a screen size of 80 columns, for example a 3278-2.

In the HCD profile, specify whether the output of this function can be processed with BookMaster, DCF, GML, or GDF (keyword GCR_FORMAT). BookMaster is the default. To use DCF or GML format, specify a mono-space font using the keyword GCR_FONT. For example, specify GCR_FONT = X0GT20 (Gothic Text 20-pitch) for a 3820 printer. For more information about the HCD profile, refer to “Defining an HCD profile” on page 16.

For viewing

To view the report on an IBM 3270 terminal with graphical capability, GDDM must be installed on your system. Refer to “Setting up HCD” on page 13 on how to setup the GDDM support.

Use a terminal with a screen size of 80 columns, for example a 3278-2. This display function does not work on terminals (or terminal emulations) with a screen size of 132 columns. HCD uses ISPF to create the GDDM display, which means that terminals running in partition mode or terminals with multiple screen widths, including 3290 and the 3278 Mod 5, are not supported for graphics interface mode.

In the HCD profile, you can specify the colors used for displaying the graphic (see “Defining an HCD profile” on page 16). If you change the default colors, make sure that foreground and background color match.

How to create a graphical configuration report

To print or view a configuration, use Create or view graphical configuration report on the Primary Task Selection panel. The dialog is described in “Using the 'Create or View Graphical Configuration Report' option” on page 229.

To view objects in context of their attached objects you can also select an object from an object list and use the View graphically action from the context menu (or action code H). The following object lists support this possibility:

• Channel path list
• Control unit list
• I/O device list (only for devices that connect to a control unit)
• Partition list
• Switch list

For example, from the Switch List, you can view a switch together with all objects that are attached to the switch. This can help you, for example, to immediately verify your definitions while defining your configuration.

Using the 'Create or View Graphical Configuration Report' option

1. Select Create or view graphical configuration report. on the Primary Task Selection panel.
2. The Create or View Graphical Configuration Report panel appears.
Create or View Graphical Configuration Report

Select the type of report you want, and specify the values below.

**IODF name**: 'BPAN.IODF00.WORK'

**Type of report**:
1. LCU report
2. CU report
3. CHPID report
4. Switch report
5. CF connection report

**Processor ID**:
(for an LCU or a CHPID report)

**Partition name**:
(to limit an LCU or a CHPID report)

**Output data set**: 'BPAN.IODF00.PRINT'

**Output**:
1. Write to output data set
2. *View
* = requires GDDM

---

**Figure 222: Create or View Graphical Configuration Report**

**Type of report**: Select the type of report you want to create.

**Processor ID** and **Partition name**: Enter the required data for an LCU or a CHPID report.

**Output**: Select whether you want to write the output to an output data set for printing or to display the output on your terminal.

**Output data set**: For BookMaster, GML, or DCF processing, the output data set must be a sequential data set or a member of a partitioned data set. If the PDS or the sequential data set does not exist, it will automatically be allocated (record length 200, record format fixed blocked).

For creating output for GDF, specify a member of a partitioned data set. If the data set does not exist, it will automatically be allocated (record length 400, record format fixed blocked). If the data set already exists, it is overwritten with the new data, you are not asked to confirm replacement. The output is written into different members, one for each segment (see “Printing the output” on page 231 for a definition what a segment is). The member names are up to eight characters long. They are derived from taking up to seven characters from the member name specified in the output data set field and adding a number. For instance, if the name was specified as ‘BPAN.IODF00.PRINT(SWITCHES)’, the member names would be SWITCH01, SWITCH02, … SWITCH10, and so on.

3. When pressing the Enter key, the Define Report Layout panel appears. The following example shows the panel for a CU report.

---

**Figure 223: Define Report Layout**

**Define Report Layout**

Specify the values below for report type: CU

Include index . . . . 1_  1. Yes 2. No
Include partitions . 1_  1. Yes 2. No

Include CTC, CF CUs. 1_  1. Yes 2. No
Only for a CU or CHPID report:
Include switches . 1_  1. Yes 2. No

Show CU . . . . . . 1_  1. Serial number 2. Description

To limit a CU report, specify only one of the following:
Range . . . . . . . 1_  1. _____ ‘_____ +
Type . . . . . . . 1_  1. ______________ +

---

230 z/OS: Hardware Configuration Definition User’s Guide
Select what you want to include in the graphical report. To limit the control units to be shown in a CU report, you can specify either the range, type, or group (for example, DASD) of the control units.

4. After pressing the Enter key the report is written to an output data set or shown on the terminal. See “Printing the output” on page 231 and “Viewing the output” on page 231 on how to proceed.

You can also create graphical reports using the batch mode. See “Create a graphical configuration report” on page 317 for a description of the job control information that you need to specify when printing a report.

**Printing the output**

1. Process the output data set using BookMaster, DCF, GML, or GDF. While processing it is recommended that you specify the following parameters:

   **Indexing**
   - To print the index you selected on the Define Report Layout panel specify INDEX for BookMaster and GML processing.

   **Full page**
   - To use the full page for the report SYSVAR S is to be set to 1 for DCF processing. Note that in many installations offset is used as default.

   **Rotate printout**
   - Specify a parameter to print the report in landscape format, that means to rotate the printout by 90 degree.

2. Print the report.

HCD tries to display a report on one page. If a report is too large for one page, HCD divides the report into segments and shows each segment on an extra page. If a CU report, for example, shows more than 8 control units, HCD shows the control units of the same type in one segment on an extra page. If a segment is too large for one page, HCD continues the segment on the next page. You can specify the GCR_COMPACT=YES keyword in the HCD profile to see more objects on one page.

For an example of a report, see “Graphical configuration reports” on page 391.

**Viewing the output**

The following figure shows an example of the panel when viewing a report.
HCD tries to display the entire configuration on one panel. If a report is too large for one panel, HCD divides the report into segments and shows each segment on an extra panel. If a CU report, for example, shows more than 8 control units, HCD shows the control units of the same type in one segment on an extra panel. You can move from segment to segment by using the Next and Previous function keys.

If a segment of control units is too large for the panel, you can scroll upwards, downwards, to the left and to the right.

The following list describes specific function keys while viewing a graphical report.

**F4=Jump**
You can use this function only when you have displayed the graphical report using the task **Create or view graphical configuration report** on the **Primary Task Selection** panel. It displays the action list of the HCD dialog that contains the object you selected with the cursor. Any change made to the configuration on the action list will not be reflected in the graphical report when you return to it. Use the REFRESH command to reflect the changes made to the objects currently shown on the display (see “Refresh Command” on page 234).

**F5=Zoom in**
Makes the graphical display bigger, so you can see the details of an object. The position of the cursor identifies the lower left corner of the part you want to enlarge. If the cursor is not positioned, HCD takes the center of the currently displayed report.

**F6=Zoom out**
Makes the graphical display smaller, so you can see more of a report on one panel.

**F7=Up**
Scrolls upwards.

---

**Figure 224: Viewing a sample report**

HCD tries to display the entire configuration on one panel. If a report is too large for one panel, HCD divides the report into segments and shows each segment on an extra panel. If a CU report, for example, shows more than 8 control units, HCD shows the control units of the same type in one segment on an extra panel. You can move from segment to segment by using the Next and Previous function keys.

If a segment of control units is too large for the panel, you can scroll upwards, downwards, to the left and to the right.

The following list describes specific function keys while viewing a graphical report.

**F4=Jump**
You can use this function only when you have displayed the graphical report using the task **Create or view graphical configuration report** on the **Primary Task Selection** panel. It displays the action list of the HCD dialog that contains the object you selected with the cursor. Any change made to the configuration on the action list will not be reflected in the graphical report when you return to it. Use the REFRESH command to reflect the changes made to the objects currently shown on the display (see “Refresh Command” on page 234).

**F5=Zoom in**
Makes the graphical display bigger, so you can see the details of an object. The position of the cursor identifies the lower left corner of the part you want to enlarge. If the cursor is not positioned, HCD takes the center of the currently displayed report.

**F6=Zoom out**
Makes the graphical display smaller, so you can see more of a report on one panel.

**F7=Up**
Scrolls upwards.
F8=Down
Scrolls downwards.

F10=Previous
Moves to the previous segment of a report, if any.

F11=Next
Moves to the next segment of a report, if any.

F19=Left
Scrolls to the left.

F20=Right
Scrolls to the right.

SAVE command
You can use the SAVE command to store a graphical configuration displayed on your screen in a member of a partitioned data set (PDS) in GDF format for printing with GDDM.

Before you use this command, the partitioned data set has to be allocated to ddname ADMGDF. The records of this PDS must have a record length of 400.

Specify SAVE (or just SA) and the member name, into which you want to save the data, on the command line. The syntax of the SAVE command is as follows:

SAVE command syntax

```
SAVE member_name
```

`member_name`

specifies the name of the member to contain the graphical configuration you want to print. Use a different name for each SAVE command, otherwise the data will be overwritten. The name may be up to eight characters long.

LOCATE command
You can use the LOCATE command to center and highlight a specific object of the report. When you locate a partition, channel paths, or coupling facility partition, the connections to the object are highlighted instead of the object itself.

Specify LOCATE (or just L) and the object you want to locate in the command line. For objects that are associated with another object (for example, CHPIDs that are associated with a processor), you have to specify this object as well.

Locating multiple objects with the same ID
The LOCATE command first searches for an object in the currently displayed panel. If the object is not found it starts with the first segment and continues to the right until an object has been found. To find the other objects with the same ID, use the + and - parameter of the LOCATE command. The + parameter searches for the next object to the right, the - parameter to the left.

The syntax of the LOCATE command is as follows:
LOCATE command syntax

CF
Coupling Facility

CHPID
Channel path

CU
Control unit

DEV
Device

PART
Partition

PR
Processor

SW
Switch

Example

To locate CHPID 27 of processor SYSA, type

L CHPID SYSA 27

Refresh Command

When you jump to an action list using F4=Jump and change objects in this list, use the REFRESH command on return to the graphical display to refresh the graphic with the changes made.

REFRESH applies to all objects that were currently shown on the graphical report when pressing the F4=Jump key, that is, added objects or those, for which you changed the ID, will not appear in the refreshed graphic.

Valid abbreviation of the REFRESH command is RE.

How to print list panels

You can use the SAVE command to save the data that is currently displayed on HCD list panels into a data set. The data set can be used for printing.

You can also save and print lists that are filtered. If you use the Set Filter option from the Filter action bar choice, you can, for example, print all channels of a processor that are not connected to a control unit.

The SAVE command is available on the following lists:

- Operating system configuration List
  - EDT List
  - Esoteric List
On these list panels, perform the following steps:

1. Enter the command

SAVE

2. The Save List appears:

Save List
Specify the following values.
Output data set  ____________________________________________________
Additional remarks (for example, the filter criteria) with DCM 2 __________________________________________________________
_____________________________________________________________________
The output data set can be a sequential data set or a member of a partitioned data set. If the data set does not exist, it will be automatically allocated (record length 300, record format fixed block). The name of the data set is saved for the next HCD session.

In addition you can specify two lines of optional comments that appear under the header of your output.
3. A result of a printed data set may look like the following example. Note that the column headers are the same as shown on the panel itself.

<table>
<thead>
<tr>
<th>CHID</th>
<th>DynEntry</th>
<th>Entry +</th>
<th>I/O Cluster</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>130</td>
<td>OSC</td>
<td>SPAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>OSC</td>
<td>SPAN</td>
<td>9.152.32.189 BL19 BT32-3</td>
</tr>
<tr>
<td>B</td>
<td>1E1</td>
<td>CFP</td>
<td>SPAN</td>
<td>to IRD7/8 as CF on Proc05 0E</td>
</tr>
<tr>
<td></td>
<td>1E1</td>
<td>CFP</td>
<td>SPAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1F2</td>
<td>CNC</td>
<td>SHR</td>
<td>for VSE Tapes</td>
</tr>
<tr>
<td></td>
<td>1F2</td>
<td>CNC</td>
<td>SHR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>FC</td>
<td>SPAN 10</td>
<td>Exp4 LX Z/OS and 1 CU z/VM</td>
</tr>
<tr>
<td></td>
<td>590</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp4 SX</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K1 DS8K13 Tape</td>
</tr>
<tr>
<td></td>
<td>202</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K13 ESS22 DS8K0</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K13 ESS22 DS8K0</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K13 ESS22 DS8K0</td>
</tr>
<tr>
<td></td>
<td>281</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K13 ESS22 DS8K0</td>
</tr>
<tr>
<td></td>
<td>282</td>
<td>FC</td>
<td>SPAN 14</td>
<td>Exp8 SX DS8K13 ESS22 DS8K0</td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>FCP</td>
<td>SPAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>412</td>
<td>FCP</td>
<td>SPAN</td>
<td></td>
</tr>
</tbody>
</table>

Figure 225: Example of a printed list

1. Header with IODF name, date, time, list name
2. Optional comments specified on Save List
3. Identifier of higher-level object, for example the processor name (and channel subsystem ID if applicable) when you print the channel path list
4. Column headers as shown on the panel itself

**HCD compare functions**

HCD offers functions to compare IODFs and device definitions for a selected CSS or operating system and to report the differences:

- “Compare IODFs” on page 236
- “Compare CSS / operating system views” on page 240

**Compare IODFs**

You can use the **Compare IODFs** function to compare two IODFs and report the differences between them. For greater clarity, you can limit the compare reports to certain perspectives of the IODF:

- The **Processor Compare Report** shows differences in the properties of channel subsystems, partitions, CHPIDs, control units, and devices.
• The **Switch Compare Report** shows differences in the properties of switches and switch configurations.

• The **OS Configuration Compare Report** shows differences in device parameters, in features, in EDTs, in esoterics, in generics defined for EDTs, and consoles.

To compare IODFs, do the following:

1. Select **Print or compare configuration data** on the **Primary Task Selection** panel.
2. On the Print or Compare Configuration Data panel, select **Compare IODFs**. The following panel is displayed:

   ![Compare IODFs Panel](image)

   **Figure 226: Compare IODFs**

   On this panel, select one or more compare report(s). In addition, you can set the limit option. When the limit option is set, the related limiting panels will come up.

   On the **Limit Processor Compare Reports** panel, you can limit the processor compare reports by selecting one or more of the specific compare reports. You can limit the reports by specifying values for a processor or either by specifying values for a channel subsystem or a partition. It is possible to compare an SMP processor to a channel subsystem of an XMP processor. If you want to limit by processor, you must specify the processor IDs for both IODFs. If you limit the processor compare report by partition name, you receive the following results:

   • The report will contain the channel subsystem in which the partition is defined.

   • Channel path compare will only contain channel paths which have the limiting partition in their access or candidate list.

   • Control unit compare will only include the control units related to channel paths which have the limiting partition in their access or candidate list.

   • Device compare will only include the devices connected via channel paths which have the limiting partition in their access or candidate list.
Limit Processor Compare Reports

Select one or more of the processor compare reports.

- Processor Compare
- Channel Subsystem Compare
- PCIe Function Compare
- Partition Compare
- Channel Path Compare
- Control Unit Attachment Compare
- Device Attachment Compare
- Control Unit Compare
- Device Compare

To limit the reports, specify the following values.

<table>
<thead>
<tr>
<th>Processor ID</th>
<th>New IODF</th>
<th>Old IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Subsystem ID</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Partition name</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset
F9=Swap    F12=Cancel

Figure 227: Limit Processor Compare Reports

On the Limit Switch Compare Reports panel, you can limit the switch compare reports by one or more of the specific compare reports. In addition, you can limit the reports by specifying a switch ID for both, the new and the old IODF.

Limit Switch Compare Reports

Select one or more of the switch compare reports.

- Switch Compare
- Switch Port Compare
- Switch Configuration Compare
- Port Configuration Compare

To limit the report, specify the following values:

<table>
<thead>
<tr>
<th>Switch ID</th>
<th>New IODF</th>
<th>Old IODF</th>
</tr>
</thead>
</table>

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset
F9=Swap    F12=Cancel

Figure 228: Limit Switch Compare Reports

On the Limit Operating System Compare Reports panel, you can limit the operating system compare reports by one or more of the specific compare reports. In addition, you can limit the reports by specifying an operating system ID for both, the new and the old IODF.
Limit Operating Systems Compare Reports

Select one or more of the operating system compare reports.

- Operating Systems Compare
- EDT Compare
- Generic Compare
- Generic Update Compare
- Esoteric Compare
- OS Console Compare
- OS Device Compare

To limit the report, specify the following values:

<table>
<thead>
<tr>
<th>Operating system ID</th>
<th>New IODF</th>
<th>Old IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>. . . . . . . . . . .</td>
<td>. . . . .</td>
<td>. . . . .</td>
</tr>
</tbody>
</table>

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset
F9=Swap    F12=Cancel

Figure 229: Limit Operating System Compare Reports

How to print a Compare IODFs Report

After you have selected the specific pairs for the compare reports, you can decide what print options to use. The print options are shown on the Select Print Options panel, see Figure 230 on page 239.

If you do not select an option (by only pressing the Enter key), the default print options are used (Print inserted data, and Print deleted data).

Examples of these reports are shown in Appendix B, “Configuration reports,” on page 347.

Select Print Options

Select one or more of the following options, or ENTER to use the defaults.

/ Print inserted data
/ Print deleted data
- Print unchanged data
- Print unchanged item IDs

F1=Help     F2=Split    F3=Exit     F4=Prompt   F5=Reset
F9=Swap    F12=Cancel

Figure 230: Select Print Options (for Compare IODFs only)

When you do not select any option, HCD prints a report of

- IDs of added or deleted objects, and those objects, that have added or deleted relations
- IDs of added relations
- Attributes of objects that are different in both IODFs

When you select the Print inserted data option, HCD prints a report of all attributes, and relations of added objects.

When you select the Print deleted data option, HCD prints a report of all attributes, and relations of deleted objects.

When you select the Print unchanged data option, HCD prints a report of all attributes, and relations of unchanged objects.

When you select the Print unchanged item IDs option, HCD prints a report of the IDs of unchanged objects. But this applies only, if the Print unchanged data option is not selected.
Compare CSS / operating system views

You can use the Compare CSS/OS Views function to compare the device definitions of a selected CSS and OS configuration, showing which devices (their numbers and types) are defined to either the CSS or the OS, or both. By using this function you can find out the differences between a hardware (channel subsystem/CSS) and software (operating system/OS) definition in the currently accessed IODF.

Specify the following values.

IODF name . . : 'DOCU.IODF00.FP.NEW'

CSS view
Processor ID . . . ________ + Partition name . . ________ +

OS view
Configuration ID . . ________ + 2 1. Print all data
2. Print different data

Job statement information
//         JOB (ACCOUNT), 'NAME'
//*
//*
//*
//*
//*
F1=Help   F2=Split   F3=Exit   F4=Prompt   F5=Reset   F9=Swap
F12=Cancel

Figure 231: Select Print Options (for CSS/OS Compare only)

When using the Compare CSS/OS Views function, you are offered the possibility of selecting what to print on the Compare CSS/OS Views panel, shown in Figure 231 on page 240. The Print all data option prints a report of all devices either defined in the CSS or the OS. The Print different data option prints a report of the devices that differ as follows:

- Defined for the CSS, but not for the OS.
- Defined for the OS, but not for the CSS.
- Defined for both, but of different device type.

If you limit the Compare CSS/OS Views Report for the CSS-side to one partition, it will generate information only for those devices that are attached to the channel paths, that have the limiting partition in the access or candidate list.

View and print the HCD activity log

The HCD activity log is described in “Activity logging and change logging” on page 44.

To look at the activity log for an IODF,

1. Select Print or compare configuration data from the Primary Task Selection panel.
2. On the Print or Compare Configuration Data panel, select View the activity log or Print the activity log.

The log has the same format in both cases. For browsing, the log is displayed by the ISPF/PDF browse facility. For printing, the log is written to the ISPF list data set.

Note: HCD maintains an activity log only if this was requested when the IODF data set was created.
Chapter 11. How to query supported hardware and installed UIMs

Overview

This information unit describes how to view system data about:

• Supported processors
• Supported switches
• Supported control units
• Supported devices
• Supported installed UIMs

Your z/OS system has several tables and modules that contain data about the general characteristics of processors, switches, control units, and devices in the system.

HCD uses this data to validate your configuration definition. You might want to look at it during the definition task; it helps you select the correct characteristics when you define your hardware units. You can also use the supported hardware report as a help when defining your configuration. See “Supported hardware report” on page 369 for an example of a supported hardware report and “I/O Definition Reference” on page 389 for an example of an I/O definition reference.

You can view the system data by selecting **Query supported hardware and installed UIMs** from the **Primary Task Selection** panel or the **Query** action from the action bar. Then select the subtask or pull-down choice that you want.

Query supported processors

The option **List supported processors** shows which processors are supported by the system. You can also see which features each processor supports, and its capabilities (such as what types of channel paths the processor supports).

```
Supported Processors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Type-Model</th>
<th>Support Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>2965-N20</td>
<td>2965</td>
<td>Support, ISM, RCE, UID, CL5</td>
</tr>
<tr>
<td>3906-LM1</td>
<td>3906</td>
<td>LinuxONE Emperor support</td>
</tr>
<tr>
<td>3906-LM2</td>
<td>3906</td>
<td>LinuxONE Emperor support</td>
</tr>
<tr>
<td>3906-LM3</td>
<td>3906</td>
<td>LinuxONE Emperor support</td>
</tr>
<tr>
<td>3906-LM4</td>
<td>3906</td>
<td>LinuxONE Emperor support</td>
</tr>
<tr>
<td>3906-LM5</td>
<td>3906</td>
<td>LinuxONE Emperor support</td>
</tr>
<tr>
<td>3906-M01</td>
<td>3906</td>
<td>Support</td>
</tr>
<tr>
<td>3906-M02</td>
<td>3906</td>
<td>Support</td>
</tr>
<tr>
<td>3906-M03</td>
<td>3906</td>
<td>Support</td>
</tr>
<tr>
<td>3906-M04</td>
<td>3906</td>
<td>Support</td>
</tr>
<tr>
<td>3906-M05</td>
<td>3906</td>
<td>Support</td>
</tr>
</tbody>
</table>
```

Figure 232: Query supported processors

The two lines in Figure 232 on page 241 marked with [1] and [2] illustrate that processors with different support levels generate more entries in the list of supported processors.
Horizontal scrolling displays additional information on the processors.

A # preceding a line indicates that this line and the previous line belong together, because the information of a horizontally scrolled screen does not fit in one line.

**Figure 233: Supported Processors**

<table>
<thead>
<tr>
<th>Processor Type-Model</th>
<th>Supported Channel Path Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>2965-N20</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, OSN, CIB, OSX, OSM, CS5, CL5</td>
</tr>
<tr>
<td>3906-LM1</td>
<td>FC, OSE, OSE, IQD, FCP, OSC, OSM</td>
</tr>
<tr>
<td>3906-LM2</td>
<td>FC, OSE, ICP, IQD, FCP, OSC, OSM</td>
</tr>
<tr>
<td>3906-LM3</td>
<td>FC, OSE, IQD, FCP, OSC, OSM</td>
</tr>
<tr>
<td>3906-LM4</td>
<td>FC, OSE, OSE, IQD, FCP, OSC, OSM</td>
</tr>
<tr>
<td>3906-LM5</td>
<td>FC, OSE, OSE, IQD, FCP, OSC, OSM</td>
</tr>
<tr>
<td>3906-M01</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, CIB, OSX, OSM, CS5, CL5</td>
</tr>
<tr>
<td>3906-M02</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, CIB, OSX, OSM, CS5, CL5</td>
</tr>
<tr>
<td>3906-M03</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, CIB, OSX, OSM, CS5, CL5</td>
</tr>
<tr>
<td>3906-M04</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, CIB, OSX, OSM, CS5, CL5</td>
</tr>
<tr>
<td>3906-M05</td>
<td>FC, OSE, OSE, ICP, IQD, FCP, OSC, CIB, OSX, OSM, CS5, CL5</td>
</tr>
</tbody>
</table>

**Figure 234: Supported Processors**

<table>
<thead>
<tr>
<th>Processor Type-Model</th>
<th>Level ID</th>
<th>Supported Protocols</th>
<th>PCIe</th>
<th>Processor Type-Model</th>
<th>Level ID</th>
<th>Supported Protocols</th>
<th>PCIe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2965-N20</td>
<td>H161231</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3906-LM1</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3906-LM2</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-LM3</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-LM4</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-LM5</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M01</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M02</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M03</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M04</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M05</td>
<td>H170913</td>
<td>D, S, S4</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Supported Processors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Type-Model</th>
<th>CUs</th>
<th>Devices</th>
<th>CHPIDs</th>
<th>LCUs</th>
<th>Partitions</th>
<th>CSS</th>
<th>SCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2965-N20</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>768</td>
<td>8192</td>
<td>4096</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td>3906-LM1</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-LM2</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-LM3</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-LM4</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-LM5</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-M01</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-M02</td>
<td>FFFE</td>
<td>FFFE</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-M03</td>
<td>FFFE</td>
<td>FFFF</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-M04</td>
<td>FFFE</td>
<td>FFFF</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3906-M05</td>
<td>FFFE</td>
<td>FFFF</td>
<td>FFFF</td>
<td>8192</td>
<td>4096</td>
<td>90</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

**Figure 235: Supported Processors**

You can view channel path, control unit, and device information by placing the cursor in front of a processor and pressing the Enter key. As a sample of this type of information, you see the channel path information in the following diagram:

### View Channel Path Information

<table>
<thead>
<tr>
<th>Processor Type-Model</th>
<th>Supported Type</th>
<th>Maximum Number per CHPID</th>
<th>UA Ranges</th>
<th>Links</th>
<th>CHPID</th>
<th>Supported Devices</th>
<th>Time-out</th>
<th>STADET</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB</td>
<td>256</td>
<td>256</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL5</td>
<td>256</td>
<td>256</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS5</td>
<td>128</td>
<td>256</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC</td>
<td>320</td>
<td>256</td>
<td>256</td>
<td>32768</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCP</td>
<td>320</td>
<td>1</td>
<td>480</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICP</td>
<td>32</td>
<td>256</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IQD</td>
<td>32</td>
<td>64</td>
<td>12288</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSC</td>
<td>48</td>
<td>1</td>
<td>254</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSD</td>
<td>48</td>
<td>16</td>
<td>480</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSE</td>
<td>48</td>
<td>1</td>
<td>255</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 236: View Channel Path Information**

Pressing the Enter key gives you a list of allowed channel path type mixtures. Pressing the Enter key again gives you similar information for control units and devices.

**Note:**

For IBM processors, you can retrieve an explanation of the processor support level: Position the cursor on the processor support level description and press PF1 to get an enumeration of functions provided by this support level.

**Query supported switches**

The option List supported switches shows the characteristics of each type of switch in the system, such as the port range and the supported channel attachments of each switch.
Query supported control units

The option List supported control units displays a panel showing a list of available control unit groups, for example the DASD control unit group. Select one control unit group to limit the list of supported control unit types. The Supported Control Units panel appears showing the characteristics of control unit types contained in a group.

Horizontal scrolling displays additional information on supported channel path type attachments.
Select a control unit to view the list of device types that can be attached to the control unit.

<table>
<thead>
<tr>
<th>Control Unit Type</th>
<th>Supported Channel Attachments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105</td>
<td>CNC, FC, FCV</td>
</tr>
<tr>
<td>2835-2</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3380-CJ2</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3830-2</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3830-3</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3851</td>
<td>BL, BY, CVC, CBY, EIO</td>
</tr>
<tr>
<td>3880-1</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-11</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-13</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-2</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-21</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-23</td>
<td>BL, CVC, EIO</td>
</tr>
<tr>
<td>3880-3</td>
<td>BL, CVC, EIO</td>
</tr>
</tbody>
</table>

*Figure 239: Supported Control Units*

You can view which devices can be attached to a certain control unit type by placing the cursor in front of a control unit and pressing the Enter key. As a sample of this type of information, you see the CU - Device Attachment List:

<table>
<thead>
<tr>
<th>Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3380</td>
</tr>
<tr>
<td>3390</td>
</tr>
</tbody>
</table>

*Figure 240: CU - Device Attachment List*

**Query supported devices**

The option **List supported devices** displays a panel showing a list of available device groups, for example the DASD device group. Select one device group to view characteristics of device types contained in this group. You can limit the list of device types to view only the device types supported by a specific operating system type. After selecting a group of devices, the Supported Device Type List appears.
Figure 241: Supported Device Type List

You can also see what control units each I/O device type can be attached to by placing the cursor in front of a device and pressing the Enter key.

As a sample of this type of information, you can see the Device - CU Attachment List:

Figure 242: Device - CU Attachment List

Query installed UIMs

The option List installed UIMs shows which UIMs are available in the system and which I/O device types are supported by each UIM.
### Installed UIMs

Select one for a list of the devices it supports.

<table>
<thead>
<tr>
<th>UIM Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDUS001</td>
<td>UIM for 3330, 3333, 3340, 3344, 3350</td>
</tr>
<tr>
<td>CBDUS002</td>
<td>UIM for 3375, 3380, 3390, 3995-151/153, 9345</td>
</tr>
<tr>
<td>CBDUS003</td>
<td>UIM for 3350P and 3351P</td>
</tr>
<tr>
<td>CBDUS004</td>
<td>UIM for 327x devices</td>
</tr>
<tr>
<td>CBDUS005</td>
<td>UIM for Magnetic Tape Devices</td>
</tr>
<tr>
<td>CBDUS011</td>
<td>UIM for 3800</td>
</tr>
<tr>
<td>CBDUS012</td>
<td>UIM for Unit Record devices</td>
</tr>
<tr>
<td>CBDUS013</td>
<td>UIM for 2305-2</td>
</tr>
<tr>
<td>CBDUS014</td>
<td>UIM for CTC Devices</td>
</tr>
<tr>
<td>CBDUS022</td>
<td>UIM for APF1 and 3820 Printers</td>
</tr>
<tr>
<td>CBDUS023</td>
<td>UIM for 37xx and 7770</td>
</tr>
<tr>
<td>CBDUS024</td>
<td>UIM for 1030, 1050, 1050X, 115A, 2740, 2740C, 2740X, 376</td>
</tr>
<tr>
<td>CBDUS025</td>
<td>UIM for 2741P, 2741C, 8383, TWX, WTTA</td>
</tr>
<tr>
<td>CBDUS026</td>
<td>UIM for BSC1, BSC2, BSC3</td>
</tr>
</tbody>
</table>

A Y (for Yes) in the E (for Error) column indicates that the respective UIM is in error and treated as not existing.

A # sign in front of a UIM name indicates that it cannot be selected because it is flagged in error.

For each of the installed UIMs you can view a list of supported devices by placing the cursor in front of a UIM and pressing the Enter key. As a sample of this type of information, you can see the View Supported Devices list:

### View Supported Devices

This UIM supports the listed device types.

**UIM name:** CBDUS002  
UIM FOR 3375, 3380, 3390, 3995-151/153, 9345

**Generic -- or --**

<table>
<thead>
<tr>
<th>Device Type</th>
<th>VM D/T</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3375</td>
<td>3375</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>3380</td>
<td>3380</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>3380-CJ2</td>
<td>3380</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>3390</td>
<td>3390</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>3995-151</td>
<td>3390</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>3995-153</td>
<td>3390</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>9345</td>
<td>9345</td>
<td>Direct Access Storage Device</td>
</tr>
</tbody>
</table>

A Y (for Yes) in the E (for Error) column indicates that the respective device type is in error and treated as not existing.

A # sign in front of a device type indicates that it cannot be selected because it is flagged in error.
Chapter 12. How to migrate existing input data sets

Overview

This information unit describes how to:

- Prepare the input data sets before migrating them
- Migrate the input data sets using the HCD dialog
- Migrate the input data sets using the HCD batch utilities
- Replace existing configuration data through migration
- Change I/O configurations by editing data sets
- Understand and resolve errors that occurred during migration

HCD allows you to migrate existing configuration data that was defined in IOCP, MVSCP, and HCPRIO input data sets to an IODF.

You can also use the migration to create I/O definitions by editing control statements. Data sets containing the statements corresponding to a specific IODF can be generated using a batch utility. Refer to “Build I/O configuration data” on page 311 for details on which data sets can be built and how to run the build process.

When migrating from input data sets, HCD checks the syntax of the input statements and runs a validation process that checks that the definitions being migrated do not conflict with the I/O configuration rules and with existing definitions in the IODF or with other definitions being migrated.

If HCD detects an error in the input data sets, it issues messages after the migration process has ended.

Note: The migration function has a prerequisite to the High Level Assembler.

Migration sequence

If you want to migrate more than one input data set into a single IODF, comply to the following migration sequence:

1. Migrate all IOCP input data sets
2. Migrate all MVSCP or HCPRIO input data sets

LPAR considerations

If you have a combined IOCP/MVSCP input data set containing definitions for more than one LPAR and the same device number specified for more than one LPAR, migrate this input data set in the following way:

1. Migrate the input data set as IOCP only input data set.
2. Remove the duplicate device number definition and repeat the migration as an MVSCP only input data set. In the appropriate IODEVICE statement, specify the control unit number the device attaches to by means of the CUNUMBR parameter.

Preparing your input data sets for migration

Before you can successfully migrate IOCP, MVSCP, or HCPRIO input data sets, you may need to change the input because HCD does a more rigorous checking of the input statements than IOCP or MVSCP.
To ensure that the migration is successful and that the resulting IODF accurately reflects the physical configuration, ensure that your input data sets apply to the validation rules that will be described. For assistance when checking the definitions in the input statements, you can use the following possibilities:

- Select **Query supported hardware and installed UIMs** from the **Primary Task Selection** panel
- Use the **Query** action bar choice
- Use the batch facility "Print a Configuration or Supported Hardware Report"

### Data requiring attention

This section details which data may need to be changed and how to change it to ensure a successful migration.

#### Control unit types

HCD checks whether a specified control unit type is valid. Review your input for invalid control unit types. If applicable, correct the UNIT parameter of the CNTLUNIT statement.

If you do not want to change the type in your input data set, you can edit the HCD profile and specify how a control unit type in the IOCP input data set is mapped to a control unit type in the IODF. Specify one or more of the following keyword:

```
MAP_CUTYPE = xxxxx,yyyy-yy
```

- **xxxxx** is the control unit type specified in the IOCP input data set
- **yyyy-yy** is the control unit type and model (optional) to be used in the IODF

For more information about the HCD profile, refer to “Defining an HCD profile” on page 16.

#### Control unit models

HCD requires, for certain control unit types, the specification of a model. For example, the IBM 3880 control unit requires a model specification. If a control unit type requires a model specification, and if you do not specify one in the input data set, HCD assigns a model to the control unit definitions based on the attached devices and the used control unit protocol. This control unit model is indicated as default model in the UIM (information message CBDA534I is issued). As processing goes on, it can be necessary to change the default model to another model to support the specified protocol (warning message CBDA536I is issued). Or, the default model is changed to attach a device type which is not supported by the default control unit model (warning message CBDA265I is issued).

**Note:** The sequence of messages is shown in reverse order in the migration log file since the messages are sorted according to decreasing severities. For an example, please see “Errors detected during assembly process” on page 294.

To assign a model to a control unit, change the UNIT parameter of the CNTLUNIT statement in the input data set. Append the model number separated by a dash to the control unit type specification. For example:

```
CNTLUNIT ...,UNIT=3880-23
```

To avoid changing the input data sets, you can also add a model number by using the MAP_CUTYPE parameter in the HCD profile as described under “Control unit types” on page 250.

#### Protocol support for control units

HCD checks the protocols supported by a control unit type. For example, in the IOCP input you may have an IBM 3745 with protocol S incorrectly specified as control unit type 3705. The IOCP program does not check the protocol S specification. To be accepted by HCD as valid input, you have to change the control unit type to 3745.
Device types

For IOCP input data sets

HCD checks the device types for validity and that they can be attached to the specified control unit. Check your IODEVICE statements in the IOCP input data set and make sure that the device types are valid and reflect the true physical device they are defining.

For MVSCP input data sets

HCD supports device types that previously had to be defined as "look-alike" devices for MVSCP. For example, for an IBM 3251 graphic device (previously defined as 2250-3), it is mandatory that the correct device type is defined in the UNIT parameter. HCD validates the PCU parameter, which is different for the IBM 3251 and the IBM 2250-3 graphic devices.

A device whose device type supports the dynamic capability may be defined as dynamic or not dynamic by means of the DYNAMIC parameter. However, there are programs, including customer programs, supplier programs and IBM products, that depend on device related data structures such as UCB and EDT, or use existing operating system services which access these data structures, and are unprepared to handle dynamic changes to these structures.

Therefore, HCD considers devices that are not specified with the DYNAMIC parameter in the IODEVICE statement as "installation-static", as it does if DYNAMIC=NO. That means, that the device might support the dynamic capability, but the installation requests that the device is not treated as dynamic.

Installation-static devices can be dynamically added to the software I/O configuration, but can not be deleted or modified while z/OS is running.

When migrating the MVSCP input data sets, HCD shows no value as default with the DYNAMIC and the LOCANY parameter, instead of specifying NO.

For HCPRIO input data sets

HCD supports device types that previously had to be defined as "look-alike" devices for HCPRIO. For example, you can define an IBM 6262 printer device (previously defined as an IBM 4248 printer device in the HCPRIO input data set) with a device type of 6262.

The support for VM type devices has been brought into line with the support for MVS type devices. However, there might be some differences to HCPRIO device type support (for example, concerning the MODEL parameter).

Esoteric token

HCD introduces an esoteric token used during allocation to find the appropriate esoteric for a data set that has been cataloged using the esoteric. You no longer have to maintain a chronological order and may delete and add esoterics without getting access problems for data sets that are cataloged using esoterics.

You may use the HCD profile (see “Defining an HCD profile” on page 16) to tell HCD to assign a token in ascending order to each esoteric when migrating an MVSCP input data set.

If you do not want to assign tokens in ascending order or when you migrate only parts of a configuration using the incremental update function (see “Updating parts of a configuration by migrating input data sets” on page 283), you can use a parameter on the UNITNAME statement. This parameter lets you specify a token for an esoteric to be migrated to HCD, as follows:

```
UNITNAME=..., TOKEN=nnnn
```

`nnnn` is a number from 1 to 8999.

You have to specify a token for all esoterics or for none at all. For more information on catalog considerations, refer to “Data sets cataloged with an esoteric device group name” on page 337.
Assembler statements

HCD generates own macro instructions into the logical input data set before processing. This may cause problems with assembler statements you inserted into your input data sets. For example, coding the ISEQ, CSECT, or RMODE instructions may cause a warning message issued by the assembler. As a consequence the migration will be terminated. To avoid this, remove your assembler statements. The generated HCD instructions look as follows:

```
PRINT OFF
COPY CBDZPARS
TITLE 'xxx LISTING'
CBDTXT CSECT
CBDTXT RMODE ANY
PRINT ON NOGEN
...
input data set statements
...
PRINT OFF
HCDEND
END CBDTXT
```

Preparing additional input data sets for migration

This section describes what to consider when migrating more than one MVSCP, IOCP, or HCPRIO input data set into one IODF.

When you migrate additional input data sets into an IODF that already contains definitions, these input data sets may contain control units and devices that are already defined in the existing IODF. HCD assumes that added control units that already exist in the IODF, refer to the same physical control unit, and that the control unit is shared between processors. The following sections describe the rules when a control unit or device is mapped to an existing one and when it is newly defined.

Migrating additional IOCP input data sets

When migrating additional IOCP input data sets, the mapping of control units and devices depends on whether the attached control units are already defined in the IODF or not.

The same control unit number is already defined in the IODF

The control unit is mapped, if both:

- the control unit type is the same, and
- the number and type of attached devices are the same.

If one of these conditions is not fulfilled, the control unit definition is rejected. Figure 245 on page 253 to Figure 247 on page 253 show examples of how control units are mapped. These examples do not show more than two control units attached to devices, but the same rules also apply if more control units are attached.
The following example shows the same control units in the IODF and IOCP input data set, but the attached devices are shared in the IOCP input data set. In this case, the devices are merged and will be shared after the migration (only if the control units do not connect to the same processor configuration).

**Figure 245: IOCP Migration**

![Diagram showing IOCP Migration with CNTLUNIT CUNUMBR=100,UNIT=3990,... IODEVICE ADDRESS=(5C0,32),UNIT=3390, CUNUMBR=100.]

**Figure 246: IOCP Migration**

The same control unit number is not yet defined in the IODF

In this case:
- a new control unit is defined.
- a new device is defined, unless
  - the device in the input data set is attached to a control unit, to which it is already attached in the IODF. In this case, the new device is mapped to the existing one and attached to both control units (see Figure 248 on page 254.)
  - or -

**Figure 247: IOCP Migration**

*The same control unit number is not yet defined in the IODF*
– a device with same device number and type already exists in the IODF and is not attached to any control unit. In this case, the new device is mapped to the existing one and attached to the new control unit (see Figure 249 on page 254).

If none of these conditions is fulfilled, a new device is defined (see Figure 250 on page 254).

Figure 248: IOCP Migration

Figure 249: IOCP Migration

Figure 250: IOCP Migration

**Migrating additional MVSCP or HCPRIO input data sets**

A device can only be mapped if the device number and device type are the same. If the device number or type is not the same, a new device is defined.

If the device number and type are the same, HCD maps the device according to the following rules:
1. If you specify an associated processor and partition on the Migrate IOCP / MVSCP / HCPRIO Data dialog or with the batch migration utility, HCD maps the new device to a device with the same device number and type connected to this processor and partition (provided that such a device exists).

2. If you do not specify an associated processor and partition or the new device does not attach to the specified processor and partition, HCD checks if the device is attached to a control unit. The device in the input data set is mapped, if:
   • the device in the IODF is attached to the same control unit
     or
   • the device in the IODF is not attached to any control unit.

This is illustrated in Figure 251 on page 255.

3. If the new device is not attached to a control unit, the device is mapped to the first device found with the same device number and type.

If the IODF contains several devices with the same device number and type, the device of the MVSCP input data set can be erroneously mapped to a wrong device. To avoid this, you can specify the associated processor and partition on the Migrate IOCP / MVSCP / HCPRIO Data dialog.

---

**Figure 251: MVSCP Migration**

If only a subset of devices in the input data set is already defined in the IODF, this subset is mapped to the existing devices and the remaining new definitions are added.

---

<table>
<thead>
<tr>
<th>IODF</th>
<th>MVSCP Input Data Set</th>
<th>Resulting IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 3990-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05C0,32 3390</td>
<td></td>
<td>05C0,32 3390</td>
</tr>
</tbody>
</table>

IODEVICE ADDRESS=(5C0,32).UNIT=3390, CNTLUNIT=100

**Figure 252: MVSCP Migration**
Migrating input data sets using the HCD dialog

The following steps describe how to migrate IOCP, MVSCP, or HCPRIO input data sets to an IODF using the HCD dialog.

**Step 1: Specify the work IODF**

Before starting the migration, you require a work IODF. You can create a new work IODF or use an existing one.

1. On the **Primary Task Selection** panel enter the name of the IODF to which you want to migrate your input data sets.
2. Select **Migrate configuration data**.
   
   If you create a new work IODF, a dialog appears on which you have to enter IODF specifications. (Refer to Figure 13 on page 29.)
3. From the following **Migrate Configuration Data** menu, select **Migrate IOCP/OS data**. The **Migrate IOCP / MVSCP / HCPRIO Data** dialog shown in Figure 254 on page 256 appears.

**Step 2: Migrate the input data sets**

<table>
<thead>
<tr>
<th>IODF</th>
<th>MVSCP Input Data Set</th>
<th>Resulting IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>05C0,32</td>
<td>05C0,64</td>
<td>05C0,64</td>
</tr>
<tr>
<td>3390</td>
<td>3390</td>
<td></td>
</tr>
</tbody>
</table>

**Figure 253: MVSCP Migration**

![Table showing IODF, MVSCP Input Data Set, Resulting IODF]

**Figure 254: Migrate IOCP / MVSCP / HCPRIO Data**

1. Specify the identifier of the processor or operating system with which the input data sets will be associated.
   - For an IOCP input data set migration, specify a processor ID.
   - For an MVSCP or HCPRIO input data set migration, specify an OS configuration ID.

   If the specified processor or operating system does not exist in the IODF, a dialog appears that allows you to define a new processor or operating system in the IODF.
Migrating of a single channel subsystem (CSS) to an XMP processor is supported via the incremental migrate option (see Figure 254 on page 256). Thus, you can consolidate multiple SMP processors on a single XMP processor using the migrate function. When migrating an SMP processor to an XMP processor, you must specify the target CSS. As default, CSS 0 is used.

2. Specify the input data set:
   - If you are migrating a combined MVSCP/IOCP input data set, specify the Combined IOCP/MVSCP input data set field.
   - If you are migrating an IOCP input data set only, specify the IOCP only input data set field.
   - If you are migrating an MVSCP or HCPRIO input data set only, specify MVSCP only or HCPRIO input data set field.
   - If you have separate IOCP and MVSCP (or IOCP and HCPRIO) input data sets, but want to migrate both into one IODF, specify both the IOCP only input data set and the MVSCP only or HCPRIO input data set field.

3. The specification of the Associated with processor and partition fields is only applicable if you migrate MVSCP or HCPRIO input data sets to an IODF.

   Specify a processor and partition with which you want to associate definitions in the input data sets. HCD uses this information to map devices correctly if the IODF contains duplicate device numbers. For more information about this mapping, refer to “Migrating additional MVSCP or HCPRIO input data sets” on page 254.

4. Specify the processing mode:
   - **Validate** causes HCD to check the input and to inform you if errors are discovered. HCD does not store the input in the IODF, even if the input data set is free of errors. Only the new processor and/or operating system definitions that you defined are stored.
     
     The validate mode provides detailed messages how HCD treats control units and devices that already exist in the IODF.
   - **Save** causes HCD to check the input, and if free of errors, to store the data in the IODF. If there are errors in the input data set(s), HCD informs you by a message, and depending on the severity of the error, does not write the input to the IODF.

5. Specify the migrate option:
   - **Complete**
     
     Select this option if you want to add a complete processor and/or OS configuration.
   - **Incremental**
     
     If the specified processor or OS configuration already contains definitions, you can add and replace existing objects with the new information defined in the input data sets. Select this option for this partial migration on the dialog from Figure 254 on page 256. Refer to “Updating parts of a configuration by migrating input data sets” on page 283 for more information about the partial migration.
   - **PCHIDs**
     
     The migration task also allows updating the PCHIDs of a processor configuration in a validated work IODF with an IOCP input data set that has been generated by the CHPID Mapping Tool. HCD checks that the tokens in the IODF and in the IOCP input data set are matching. For more information on this process, see “How to interact with the CHPID Mapping Tool” on page 197.

6. If the CBDZPARS macro, which contains the migration parsing macros, is not in SYS1.MACLIB, specify the name of the library that contains it. If the library is not cataloged, specify the volume serial number.

   After the input has been accepted, HCD issues a message informing you that the migration of input data sets is in process.
**Step 3: Analyze errors and correct the input data**

During the migration process, HCD first invokes the assembler that parses the input statements. If it detects an error, migration is terminated.

- HCD writes a message to the terminal indicating that migration completed with return code RC=12.
- HCD writes a message to the HCD message list indicating that the assembler completed with a return code other than zero.
- The assembler writes information to the assembly listing that describes the problem in more detail.

If the assembler does not detect any errors, HCD runs a validation check. If it detects an error, HCD writes:

- a message to the terminal indicating that migration completed with a return code higher than 4
- error messages to the HCD message list describing the validation problem.

If the return code is 0 or 4, the IODF is updated and saved (if you specified to save the data). It is, however, recommended that you review the message log. HCD may have made assumptions that are contrary to your configuration requirements. Your actions:

1. Review the message list. For explanations and examples refer to “Resolving migration errors” on page 293.
2. Edit and correct the IOCP, MVSCP, and HCPRIO input data sets.
3. Migrate your input data sets again.

**Step 4: Update configuration data**

If the protocol or the attached devices specified in the IOCP input data set do not match the supported control unit model, HCD may change the model definitions.

If HCD changes definitions, you are informed by messages. Review the messages, and follow the recommendation provided in the individual message.

If the type/model designated by HCD does not match the real type/model of the control unit, use the HCD dialog to specify the correct type/model.

Also, if this control unit is to be shared with another processor, update the IOCP input data set that is to be migrated accordingly.

**Note:** The configuration stored in an IODF may not match the IOCP/MVSCP or HCPRIO input. If discrepancies occur, you can make corrections by using the dialog.

The following note only applies if you do not use the extended migration function as described in “Changing I/O configurations by editing data sets” on page 259.

**For coupling facility migration:** After the IOCP input has been accepted, HCD issues messages informing you that the CF control unit and CF device definitions of the IOCP input data set were ignored.

**Migrating input data sets using the batch utility**

The following steps explain how to migrate your input data sets using the HCD batch utility instead of the HCD dialog. The batch utility is an easy way to migrate your input data sets if you are not familiar with the dialog yet. You have to use it for migrating your input data sets from MVS/XA SP 2.n or MVS/ESA SP 3.n.

**Step 1: Create the work IODF**

If an IODF does not yet exist, you first have to create a work IODF into which you want to migrate your MVSCP, IOCP, or HCPRIO data sets. Refer to “Initialize IODF” on page 301 on how to create and initialize an IODF.
Step 2: Migrate input data set

The HCD utility function for migration allows you to migrate the content of MVSCP, IOCP, and HCPRIO input data sets and to store the definitions into an IODF. For a detailed description of the utility function for migration, refer to “Migrate I/O configuration statements” on page 302.

Step 3: Analyze errors and correct the input data

During the migration process, HCD first invokes the assembler that parses the input statements. If it detects an error, the migration process is terminated.

- HCD writes a message to the data set allocated by HCDMLOG that the migration completed with return code RC=12.
- HCD writes a message to the HCD migration log (HCDPRINT) indicating that the assembler completed with a return code other than zero.
- The assembler writes information to the assembly listing (HCDASMP) that describes the problem in more detail.

If the assembler does not detect any errors, HCD runs a validation check. If it detects an error:

- HCD writes a message to the data set allocated by HCDMLOG that the migration completed with return code higher than 4.
- HCD writes error messages to the HCD migration log (HCDPRINT) describing the validation problem.

If the return code is 0 or 4, the IODF is updated. It is, however, recommended that you review the migration log. HCD may have made assumptions that are contrary to your configuration requirements.

Your actions:

1. Review the migration log. For explanations and examples refer to “Errors detected during validation process” on page 295.
2. Edit and correct the IOCP, MVSCP, and HCPRIO input data sets.
3. Migrate your input data sets again.

Step 4: Build production IODF

Before you can use the IODF to IPL your operating system you have to convert the work IODF into a production IODF. Refer to “Build a Production IODF” on page 305 for an example on how to build a production IODF using the work IODF.

Changing I/O configurations by editing data sets

With HCD, the extended migration function and the possibilities for writing and migrating configurations allow users to define or change configuration definitions without using the HCD dialog.

Using I/O configuration statements with IOCP/MVSCP syntax, you can also define all configuration objects with their attributes and their connections. Type these statements into a data set as input to the migrate function. For example, a switch together with its ports can be defined via this method.

It is also possible to recreate data sets containing I/O configuration statements for the processor, operating system and switch configurations from an IODF.

However, for some tasks, such as deleting certain configuration objects, it is necessary or easier to make the configuration changes directly in the HCD dialog. For more details on the capabilities of the migration function refer to Table 22 on page 283.

Processor configurations

The migrate IOCP function allows you to specify parameters, additional to IOCP, in the input data set. Analogously, when building an IOCP input data set from the IODF, information is generated which describes the additional parameters of the configuration objects. Processor configuration data sets can be built using the Build IOCP Input Data Set function or the CONFIG PR batch utility. For details,
For a description of the complete and valid syntax rules for all IOCP keywords and parameters, refer to the IOCP User’s Guide for your processor.

Operating system configurations
The migrate MVSCP function allows you to specify all configuration data of an OS configuration, for example the device preference values for esoterics or the user parameters for devices. Also, it is possible to generate an OS configuration data set from the IODF using the Build OS Configuration Data Set dialog or the CONFIG OS batch utility. For details, refer to “Build I/O configuration data” on page 200 and to “Build I/O configuration data” on page 311.

Switch configurations and switch-to-switch connections
It is possible to migrate switch definitions with all ports, switch-to-switch connections and all switch configurations from a data set. Analogously, it is possible to build such a data set from the IODF using the CONFIG SW batch utility. For details, refer to “Build I/O configuration data” on page 311.

Important Note:
It may not be possible to remigrate an IOCP input data set generated by HCD back into the IODF. The reasons are:

- HCD uses the High Level Assembler program for parsing the IOCP statements. The High Level Assembler earlier than V1.5 is restricted to 255 characters for any keyword value. IOCP statements, however, may contain keywords with a value greater than 255 characters. High Level Assembler V1.5 removes this restriction.
- HCD keeps additional data for a processor configuration that is not contained in an IOCP input data set. This data may be used for validation and, therefore, missing at the migrate step leading to validation errors. For example, the partition usage is defaulted to CF/OS. For a shared CF peer channel, this may lead to a validation error, because only a CF partition may be specified in the access or candidate list.
- Since the IOCP data are only a subset of the processor configuration data, you may lose this additional configuration data if you update a processor configuration from an IOCP input data set.
- IOCP data sets do not contain devices connected to a processor with a null device candidate list because of IOCP rules. If the device is connected to another processor with the same control unit, this is an ambiguous configuration and is not migrated.

For updating the IODF via I/O control statements, it is recommended to use the extended I/O configuration statements of HCD instead of an IOCP input data set (see “IOCP input data sets using extended migration” on page 195).

Additional parameters and statements

In the following, the configuration objects and their attributes you can define via I/O control statements and migrate into HCD are described. For a detailed description of the IOCP keywords and parameters, refer to the IOCP User’s Guide for your processor.

<table>
<thead>
<tr>
<th>Configuration object</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>D/R site OS configuration</td>
</tr>
<tr>
<td>NIP console</td>
<td>Device number</td>
</tr>
<tr>
<td>EDT</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Preference value</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>Configuration object</td>
<td>Attributes</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Esoteric</td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Device numbers</td>
</tr>
<tr>
<td></td>
<td>Token</td>
</tr>
<tr>
<td></td>
<td>VIO indication</td>
</tr>
<tr>
<td>Generic</td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Preference value</td>
</tr>
<tr>
<td></td>
<td>VIO indication</td>
</tr>
<tr>
<td>Switch</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Serial number</td>
</tr>
<tr>
<td></td>
<td>Installed ports</td>
</tr>
<tr>
<td></td>
<td>Chained switch connection</td>
</tr>
<tr>
<td>Port</td>
<td>Address</td>
</tr>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Occupied indication</td>
</tr>
<tr>
<td>Switch configuration</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Switch ID</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Default dynamic connection</td>
</tr>
<tr>
<td>Port configuration</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Allowed dynamic connections</td>
</tr>
<tr>
<td></td>
<td>Prohibited dynamic connections</td>
</tr>
<tr>
<td></td>
<td>Dedicated connection</td>
</tr>
<tr>
<td></td>
<td>Blocked indication</td>
</tr>
<tr>
<td>Processor</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td>Model</td>
</tr>
<tr>
<td></td>
<td>Support level</td>
</tr>
<tr>
<td></td>
<td>Configuration mode</td>
</tr>
<tr>
<td></td>
<td>SNA address</td>
</tr>
<tr>
<td></td>
<td>Serial number</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>Channel Subsystem</td>
<td>ID</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td>Maximum number of devices</td>
</tr>
<tr>
<td>Partition</td>
<td>Name</td>
</tr>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td></td>
<td>Usage</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>UUID</td>
<td>Uniqueness of PCIe User Defined Identifier</td>
</tr>
</tbody>
</table>
An operating system is specified with the IOCONFIG statement. It contains the following parameters:
ID
Specifies the numerical identifier of the OS (mandatory).
This keyword is maintained for compatibility with the MVSCP syntax.

NAME
Specifies the OS configuration ID. This is required only, if the migration is performed using the wildcard * in the parameter string of the batch utility. Otherwise, it is ignored and the OS configuration ID is taken from the invocation parameters.

TYPE
Specifies the OS configuration type. This is required only, if the migration is performed using the wildcard * in the parameter string of the batch utility. Otherwise, it is ignored and the OS configuration type is taken from the invocation parameters.

DESC
Specifies a description of the operating system (optional). The description of the OS configuration is added or updated.

DROSID
Specifies the alphanumerical identifier of the D/R site OS configuration (optional).

Table 7: Operating System Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID=id</td>
</tr>
<tr>
<td>NAME=os_name</td>
</tr>
<tr>
<td>TYPE=type</td>
</tr>
<tr>
<td>DESC='description'</td>
</tr>
<tr>
<td>DROSID=os_name</td>
</tr>
</tbody>
</table>

Example
The following example defines an OS configuration named NEWOS01B of type MVS together with the given description.

```
IOCONFIG ID=01,NAME=NEWOS01B,DESC='LPAR system',TYPE=MVS,DROSID=NEWOSDR1
```

NIP consoles
A NIP console is specified with the NIPCON statement. It contains the DEVNUM keyword.

DEVNUM
Specifies a list of device numbers to be used as NIP consoles (mandatory). All devices specified must be defined in your configuration.

NIP tries to use the devices in the order they are listed (left-to-right).

Table 8: NIP consoles Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVNUM=(device_number[,device_number]…)</td>
</tr>
</tbody>
</table>

Example
In the example the devices with numbers 102E and 102F are assigned to be used as consoles. NIP will try device 102E first.

```
NIPCON DEVNUM=(102E,102F)
```
EDT
An Eligible Device Table is specified with the EDT statement.

Note: If you want to define only one EDT, place the EDT statement ahead of all UNITNAME statements (see “Esoteric” on page 264 and “Generic” on page 265). If multiple EDT statements are written, each statement must precede the UNITNAME statements defining the corresponding EDT.

The EDT statement contains the following parameters:

**ID**
Specifies the identifier of the EDT. The default is the ID specified on the IOCONFIG statement. If multiple EDT statements are written, the ID parameter is mandatory for all but one statement.

**DEVPREF**
Specifies a list of devices in the order of preference (optional).
This parameter conforms to legacy syntax but is still supported. However, it is recommended to use the DEVPREF parameter with the UNITNAME statement, see “Generic” on page 265, instead.

**DESC**
Specifies a description of the EDT (optional).

Table 9: EDT Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ID=id</strong></td>
</tr>
<tr>
<td><strong>DEVPREF=(generic_name[,generic_name]…)</strong></td>
</tr>
<tr>
<td><strong>DESC='description'</strong></td>
</tr>
</tbody>
</table>

**Example**
The following example defines EDT 01 with the given description.

EDT ID=01,DESC='Eligible Device Table 1'

**Esoteric**
An esoteric is specified with the UNITNAME statement. For use with esoterics it contains the following parameters:

**NAME**
Specifies the name of the esoteric (mandatory).

Note: Do not use esoteric names SYSALLDA, SYS3480R, or SYS348XR.

**UNIT**
Specifies a sequence of consecutive device numbers (optional). The numbers specified must be defined in the configuration.

**TOKEN**
Allows controlling the order of esoterics in the EDT (optional). Only relevant if you have data sets that are cataloged using esoterics.

Tokens prevent the order of esoterics from becoming alphabetical after IPL, thus avoiding access problems for data sets that are cataloged using esoterics.

If a token is specified for one esoteric you must also specify tokens for all other esoterics.
VIO
States whether or not the devices are eligible for VIO. May only be set to YES if the esoteric contains at least one DASD device type (optional).

Table 10: Esoteric Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME=esoteric_name</td>
</tr>
<tr>
<td>UNIT=((devnum,n)[,(devnum,n)]…)</td>
</tr>
<tr>
<td>TOKEN=token</td>
</tr>
<tr>
<td>VIO=value</td>
</tr>
</tbody>
</table>

Example
The following example assigns eight device numbers 01D1 through 01D8 and the token value to esoteric device group ES002. The group is not eligible for VIO.

| UNITNAME NAME=ES002,                                              |
| UNIT=((01D1,8)),                                                  |
| TOKEN=2015,                                                       |
| VIO=NO                                                             |

Generic
A generic is specified with the UNITNAME statement. For use with generics it contains the following parameters:

NAME
Specifies the name of the generic (mandatory; must be a valid generic name).

VIO
Specifies whether or not the devices are eligible for VIO (optional). VIO=YES may only be specified if the generic name specifies a DASD device type.

DEVPREF
Allocates a position in a preference order of generics (optional).

For default values see the information on MVS devices within the “Supported hardware report” on page 369. This parameter value must be unique for the OS configuration.

Table 11: Generic Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME=generic_name</td>
</tr>
<tr>
<td>VIO=value</td>
</tr>
<tr>
<td>DEVPREF=pref_value</td>
</tr>
</tbody>
</table>
**Example**
The following example defines the generic device group 3390 with the preference value 150. The devices are eligible for VIO.

```
UNITNAME NAME=3390, VIO=YES, DEVPREF=150
```

**Switch**
A switch is specified with the SWITCH statement. It contains the following parameters:

**SWID**
Specifies an identifier for the switch (mandatory).

**UNIT**
Specifies the switch unit (mandatory).

**MODEL**
Specifies the switch model (optional).

**DESC**
Specifies a description of the switch (optional).

**SERIAL**
Specifies a serial number (optional).

**PORT**
Specifies the installed ports (default from UIM, optional).

Specify only ports that are supported by the switch type. At least the minimum installed port range is set to installed. If the switch already exists with an installed port range that differs from the specified installed port range(s), only the new specified ports are set to installed if possible. That means, any existing installed port that does not hold a connection to a channel path or control unit is set to not installed if not specified with the PORT parameter.

**SWPORT**
Specifies the chained switch connections (optional). If operand exceeds 255 characters, repeat the SWITCH statement with the remaining values.

If the switch already exists, all existing connections to other switches are broken. The connections to other switches are established as specified by the SWPORT parameter.

**ADDRESS**
Specifies the switch address for a FICON switch (optional).

The corresponding switch control unit and device are specified by corresponding CNTLUNIT and IODEVICE statements.

*Table 12: Switch Syntax.*

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWID=id</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td>UNIT=switch_unit</td>
<td>like CU type</td>
</tr>
<tr>
<td>MODEL=switch_model</td>
<td>like CU model</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 characters</td>
</tr>
</tbody>
</table>
### Switch Syntax

**Syntax:**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL=serial_no</td>
<td>up to 10 characters</td>
</tr>
<tr>
<td>PORT=((low_port_id,high_port_id),...)</td>
<td>up to 32 port ranges</td>
</tr>
<tr>
<td>SWPORT=((from_port,to_switch,to_port),...)</td>
<td>up to 32 switch-to-switch connections</td>
</tr>
<tr>
<td>ADDRESS=switch_address</td>
<td>2 hexadecimal characters (domain ID); for FICON switches only</td>
</tr>
</tbody>
</table>

**Example**

In the following example, switch 20 with an installed port range 00 to FF is connected to port D1 of switch 01 via port C0.

```
SWITCH SWID=20,UNIT=2032,
  PORT=((00,FF)),  *
  DESC='FICON switch, installed 10/09/11',  *
  SERIAL=55-8888,  *
  SWPORT=((C0,01,D1))  *
  ADDRESS=02          *
```

**Note:** Put the serial numbers in quotes, if you use characters such as blanks or commas as part of your serial numbers.

### Port

A switch port is specified with the PORT statement. It contains the following keywords:

**ID**

Port address identifying the port (mandatory).

**NAME**

Specifies a port name (optional).

To be accepted within I/O Operations (ESCON Manager) commands the port name must not include commas, asterisks, or blanks. It must not contain X’FF’ or any extended binary-coded decimal interchange code (EBCDIC) character less than X’40’. It must also not begin with a left parenthesis and end with a right parenthesis.

**OCC**

Indicates that the port is connected to a processor, switch, or control unit (optional).

### Port Syntax

**Syntax:**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID=port_id</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td>NAME='portname'</td>
<td>up to 24 characters</td>
</tr>
<tr>
<td>OCC</td>
<td>no value assigned</td>
</tr>
</tbody>
</table>
Example

In the following example port D5 is named connected_to_CU_7230 and indicated as occupied.

```plaintext
PORT ID=D5, NAME='connected_to_CU_7230', OCC
```

Switch configuration

A switch configuration is specified with the SWCONF statement. It contains the following parameters:

**ID**
- Specifies the switch configuration ID (mandatory).

**SWID**
- Identifies the switch owning the configuration (mandatory).

**DESC**
- Specifies a description of the switch configuration (optional).

**DEFCONN**
- Specifies whether the default port connections are set to allowed or prohibited (mandatory).

Table 14: Switch Configuration Syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID=switch_configuration_id</td>
<td>8 characters</td>
</tr>
<tr>
<td>SWID=switch_id</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 characters</td>
</tr>
<tr>
<td>DEFCONN=dynamic_default_connection</td>
<td>A (allowed) or P (prohibited)</td>
</tr>
</tbody>
</table>

Example

In the following example the default connection for switch configuration BASECONF of switch 01 is set to allowed.

```plaintext
SWCONF ID=BASECONF, SWID=01, DESC='basic configuration', DEFCONN=A
```

Port configuration

A port configuration is specified with the POCONF statement.

The POCONF statement is an optional extension to the switch configuration. With POCONF, port connections are defined explicitly and existing defaults are overridden. The statement may be a maximum of 255 characters long. To express longer statements the POCONF may be repeated. POCONF includes the following parameters:

**ID**
- Port address identifying the port (mandatory).

**PORTCF**
- Specifies the type of connections to target ports (mandatory).
  - A sets the dynamic connection to the succeeding list of target port IDs to allowed
P
sets the dynamic connection to the succeeding list of target port IDs to prohibited

D
sets a dedicated connection to the succeeding target port ID

BLOCKED
blocks the port.

Table 15: Port Configuration Syntax.

<table>
<thead>
<tr>
<th>Syntax:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID=port_id</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td>PORTCF=([A,(id1,...,idn)], [P,(id2,...,idm)], [D,(id)], [BLOCKED])</td>
<td>One or more of the following specifications: list of ports in installed range, dyn. connection allowed list of ports in installed range, dyn. connection prohibited port with dedicated connection BLOCKED attribute</td>
</tr>
</tbody>
</table>

Example

In the following example, port D2 has allowed dynamic connections to ports B1 and B3, and prohibited dynamic connections to B5 and B7. Port D4 has a dedicated connection to port C0.

POCONF ID=D2, PORTCF=(A,(B1,B3),P,(B5,B7))
POCONF ID=D4, PORTCF=(D,(C0))

Processor

A processor is specified with the ID statement. If specified, it must precede all other statements in the configuration data set. It contains the following keywords:

NAME
Specifies the processor ID. If the ID does not exist, it is created (1).

MSG1
Specifies the identification information that is printed on the ID1 line of the heading in IOCP configuration reports (optional). Only supported for compatibility with IOCP.

MSG2
Specifies the identification information that is printed on the ID2 line of the heading in IOCP configuration reports (optional). Only supported for compatibility with IOCP.

SYSTEM
Specifies the machine limits and rules that IOCP will enforce for a deck verification. The system parameter includes a specification of the processor machine type number and, optionally, a machine limits number (optional). Only supported for compatibility with IOCP.

LSYSTEM
Specifies the system name (CPC designator) of the local system; that is the system which uses this IOCDS.

UNIT
Specifies the processor unit (1).

MODEL
Specifies the processor model (1).

LEVEL
Specifies the processor support level (1). For further information on support levels refer to 'support_level_ID'.
SNAADDR
Specifies the SNA address (network name, system name) for a processor in a processor cluster (optional).

MODE
Specifies the processor configuration mode as LPAR or BASIC (1).

SERIAL
Specifies the processor serial number (optional).

DESC
Specifies a description for the processor (optional).

Note (1): UNIT, MODEL and LEVEL are processed only if the migration is performed using the wildcard * in the parameter string of the batch utility.

Table 16: Processor Syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME=processor_id</td>
<td>8 characters</td>
</tr>
<tr>
<td>MSG1='message'</td>
<td>up to 64 characters; first 8 characters are taken as IOCDS name</td>
</tr>
<tr>
<td>MSG2='message'</td>
<td>up to 64 characters</td>
</tr>
<tr>
<td>SYSTEM=(processor_unit[,limits_number]</td>
<td>4 characters followed by a decimal number</td>
</tr>
<tr>
<td>LSYSTEM=local_cpc_designator</td>
<td>8 characters</td>
</tr>
<tr>
<td>UNIT=processor_unit</td>
<td>8 characters</td>
</tr>
<tr>
<td>MODEL=processor_model</td>
<td>4 characters</td>
</tr>
<tr>
<td>LEVEL=support_level</td>
<td>8 characters</td>
</tr>
<tr>
<td>SNAADDR=(network_name,system_name)</td>
<td>list of 2 entries, each up to 8 characters</td>
</tr>
<tr>
<td>MODE=processor_mode</td>
<td>BASIC or LPAR</td>
</tr>
<tr>
<td>SERIAL=serial_number</td>
<td>up to 10 characters</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 characters</td>
</tr>
</tbody>
</table>

Example
In the following example processor PROC01 of type 2094, model S28 is defined with the serial number 0518712094, in LPAR mode, support level H050331.

```
ID NAME=PROC01,UNIT=2094,MODEL=S28,
  DESC='XMP, Basic 2094 support',SERIAL=0518712094,
  MODE=LPAR,LEVEL=H050331
```
**Channel subsystem and partition**

Depending on whether you use the RESOURCE statement for XMP processors or SMP processors, it specifies the channel subsystems, the logical partitions (names and numbers) and groups the logical partitions to the channel subsystems. It contains the following keywords:

**PART or PARTITION**
- Specifies a list of partition names with an optional addition of the corresponding partition numbers (mandatory).

**DESCL**
- Specifies a list containing descriptions for the defined partitions (optional).

**USAGE**
- Specifies a list describing the partition usage type for each partition.

**MAXDEV**
- Is only allowed for XMP processors and specifies for each channel subsystem the maximum number of devices, including those defined in the IOCDS, to be allowed using dynamic I/O. For z9 EC processors and later models, it specifies the maximum number of devices in each subchannel set.

When migrating an I/OCP deck for new processor types (requiring a maximal HSA definition): HCD ignores the MAXDEV parameter of the RESOURCE statement in the deck and sets the maximum number of devices to the predefined maximum for the processor type.

When migrating for old processor types (not requiring maximal HSA definition): Complete migration behaves as previously described. Incremental migration sets the maximum number of devices as specified in the deck. If 0 (zero) is specified in the deck, incremental migration leaves the existing value unchanged.

**CSSDESCL**
- Specifies a list of channel subsystem descriptions, one list entry for each channel subsystem listed in the MAXDEV keyword.

**Note:** If the partition type is missing, it is set automatically depending on which types of channel paths are assigned to the partition and the capability of the processor.

---

**Table 17: Channel subsystem and partition Syntax.**

<table>
<thead>
<tr>
<th>Syntax:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>For XMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td>`PARTITION= ((CSS(0),(lpname[,lpnumber]))[,(lpname[,lpnumber])...])</td>
<td>Ipname: up to 8 alphanumeric characters for the LPAR name; an * is accepted as lpname to indicate a reserved partition;</td>
</tr>
<tr>
<td><code>[,(CSS(n),(lpname[,lpnumber]))[,(lpname[,lpnumber])...]]</code></td>
<td>lpnumber: 1 hexadecimal character for the LPAR number.</td>
</tr>
<tr>
<td></td>
<td>The CSS(n) parameter(s) must be used for XMP processors and must not be used for SMP processors.</td>
</tr>
<tr>
<td><strong>For SMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td><code>PARTITION= ((lpname[,lpnumber])[,(lpname[,lpnumber])...])</code></td>
<td></td>
</tr>
<tr>
<td>**DESCL=('descp1_css0','descp2_css0',…,'descp1_css1','descp2_css1',…,'descp1_cssn','descp2_cssn',…)`</td>
<td>description for all partitions in the processor complex, up to 32 characters per description</td>
</tr>
<tr>
<td>**CSSDESCL=('desc_css0','desc_css1',…)`</td>
<td>description syntax of channel subsystems for XMP processors</td>
</tr>
<tr>
<td>**USAGE=(usage1_css0,usage2_css0,…,usage1_css1,usage2_css1,…,usage1_cssn,usage2_cssn,…)`</td>
<td>usage of each partition in the processor complex (CF, OS, or CF/OS)</td>
</tr>
</tbody>
</table>
Table 17: Channel subsystem and partition Syntax. (continued)

Syntax:

MAXDEV=((CSS(0),maxnum1[,maxnum2, maxnum3]),…,
(CSS(n),maxnum1[,maxnum2, maxnum3]))

maximum number of devices for each channel subsystem in each subchannel set

**Example**

In the following example, the processor contains three channel subsystems with three partitions in each. Channel subsystem CSS(2) contains two subchannel sets. This is indicated by the MAXDEV statement containing two maximum numbers of devices (35 and 20).

RESOURCES PART=((CSS(0),(LP01,1),(LP02,2),(LP03,3)),               *
(CSS(1),(LP11,1),(LP12,2),(LP13,3)),               *
(CSS(2),(LP21,1),(LP22,2),(LP23,3))),               *
DESL=('LPAR1_of_CSS0','LPAR2_of_CSS0','LPAR3_of_CSS0', *
'LPAR1_of_CSS1','LPAR2_of_CSS1','LPAR3_of_CSS1', *
'LPAR1_of_CSS2','LPAR2_of_CSS2','LPAR3_of_CSS2'), *
USAGE=(CF/OS,OS,CF,CF/OS,OS,CF),
MAXDEV=((CSS(0),63),(CSS(1),50),(CSS(2),35,20)),
CSSDESCL=('first CSS(0)', 'second CSS(1)', 'third CSS(2)')

For HCD, it is also possible to specify a separate RESOURCE statement for each channel subsystem. This may be required if you do not use a High Level Assembler V1.5 or later. You can split the previous RESOURCE example for an XMP processor into the following parts:

RESOURCES PART=((CSS(0),(LP01,1),(LP02,2),(LP03,3)),               *
DESL=('LPAR1_of_CSS0','LPAR2_of_CSS0','LPAR3_of_CSS0'),
USAGE=(CF/OS,OS,CF),
MAXDEV=(CSS(0),63),
CSSDESCL=('first CSS(0)')
RESOURCES PART=((CSS(1),(LP11,1),(LP12,2),(LP13,3)),               *
DESL=('LPAR1_of_CSS1','LPAR2_of_CSS1','LPAR3_of_CSS1'),
USAGE=(CF/OS,OS,CF),
MAXDEV=(CSS(1),50),
CSSDESCL=('second CSS(1)')
RESOURCES PART=((CSS(2),(LP21,1),(LP22,2),(LP23,3)),               *
DESL=('LPAR1_of_CSS2','LPAR2_of_CSS2','LPAR3_of_CSS2'),
USAGE=(CF/OS,OS,CF),
MAXDEV=(CSS(2),35,20),
CSSDESCL=('third CSS(2)')

**PCIE function**

A PCIE function is specified with the FUNCTION statement.

The FUNCTION statement contains the following keywords:

**FID**
- Identifies the PCIE function within the processor configuration (mandatory).

**TYPE**
- Identifies the PCIE function type (optional - defaults to ROCE).

**UNIT**
- Identifies the PCIE function type (optional - support for backward compatibility).

**PCHID**
- Identifies the PCIE adapter card which provides the specified function by specifying the slot of the card in the I/O drawer.

**PORT**
- Identifies the port on the PCIE adapter (optional).

**VCHID**
- Identifies a virtual PCIE adapter (exclusive to the PCHID keyword).

**VF**
- Identifies the PCIE virtual function number (optional).
**PNETID**
Identifies the physical network IDs.

**PART**
Specifies the access and candidate lists of partitions entitled to use the PCIe function.

**DESC**
Specifies a description of the PCIe function (optional).

**UID**
Specifies a user defined identifier.

*Table 18: PCIe Function Syntax.*

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FID=xxxx</td>
</tr>
<tr>
<td>TYPE=type</td>
</tr>
<tr>
<td>UNIT=type</td>
</tr>
<tr>
<td>PCHID=xxx</td>
</tr>
<tr>
<td>PORT=x</td>
</tr>
<tr>
<td>VCHID=xxx</td>
</tr>
<tr>
<td>VF=nnn</td>
</tr>
<tr>
<td>PNETID=(pnetid1,…,pnetid4)</td>
</tr>
<tr>
<td>PART=((acc_lp1[,,(cand_lp1[,,…,cand_lpn)]])</td>
</tr>
<tr>
<td>DESC='PCIe function description'</td>
</tr>
<tr>
<td>UID=xxxx</td>
</tr>
</tbody>
</table>

**Example**
The following examples define a PCIe function of type ROCE.

```
FUNCTION FID=020,VF=31,PART=((LP01),(LP21,LP22,LP23,LP24)), *
   TYPE=ROCE,DESC='max VF and 2 pnetid,a=lp01', *
   PNETID=(PNETID1,ID2,,),PCHID=4FE
```

The following example defines a PCIe function of type ISM with UID ABCD.

```
FUNCTION FID=0002,VF=7,PART=((LP01),=)),TYPE=ISM, *
   PNETID=PNETID2,VCHID=7C0,UID=ABCD
```

**Channel path**
A channel path is specified with the CHPID statement. For an XMP processor, a spanned CHPID is defined for one or more channel subsystems. Therefore, the CHPID statement must contain the appropriate channel subsystem ID(s). If only one CSS is defined, it is not required to specify its ID on the PATH keyword.
The CHPID statement contains the following keywords:

**PATH**
Specifies the CHPID number and, if required, the CSS IDs of the channel path (mandatory).

**PNETID**
Identifies the physical networks to which the channel path is assigned (optional, only for channel paths of type IQD or OSD).

**TYPE**
Specifies the channel path type of I/O operation for the channel path (mandatory).

**SHARED**
Specifies that the channel path on the CHPID statement is shared (optional).

**REC**
Specifies that the channel path on the CHPID statement is reconfigurable (optional).

**PART, PARTITION, or NOTPART**
PART and PARTITION specify the access list of logical partitions that will have the channel path configured online after POR, and the candidate list identifying the logical partitions which can access the device.

NOTPART specifies the access list of logical partitions that will not have the channel path configured online after POR, and the list of logical partitions which cannot access the device.

**REC**
REC in the PART or PARTITION keyword allows the channel path to be dynamically moved between partitions after POR.

**CHPARM, OS**
Specifies channel path data that is used by the operating system. Examples:
- CHPARM=00 is the default.
- CHPARM=01 indicates that the channel path is managed by DCM.
- CHPARM=02 indicates
  - for IQD channels: channel can access the IEDN (IQDX function)
  - for OSD, OSM, and OSX channels: priority queuing is disabled.

For OSM channel paths, device priority queuing needs to be disabled. Therefore, for these CHPIDs, HCD converts a CHPARM=00 (default with priority queuing enabled) to CHPARM=02.
- CHPARM=40 indicates that the maximum frame size for an IQD channel is 24K.

For more information about the CHPARM parameter, refer to the *IOCP User’s Guide* for your processor.

**I/O CLUSTER**
Specifies an I/O cluster name. An I/O cluster is a sysplex that owns a managed channel path for an LPAR processor configuration.

**SWITCH**
Specifies a number for a switch which is used as a dynamic switch for all paths from the channel path (CHPID) to the connected control units (required for dynamic connections through a switch).

**DESC**
Specifies a description of the channel path (optional).

**TPATH**
Specifies a connected CF channel path (optional).

The TPATH parameter can be specified for a CF channel path, either CF receiver, CF sender, or CF peer channel path.

For a CF sender or CF receiver channel path, the TPATH parameter must contain:
- the target processor
- the target CSS ID for XMP processors
• the target channel path ID
• when specified with a CF sender channel path ID, the TPATH parameter must also contain the CF sender control unit and device numbers used for the CF connection (optional for a CF receiver channel paths)

For a CF peer channel path, the TPATH parameter contains the following items for the target and source channel paths of the CF connection:
• the target/source processor
• the target/source CSS ID for XMP processors
• the target/source channel path ID
• control unit number (only if this is a sending CF channel, that is, the channel path connects to a target CF logical partition)
• starting device number (only if this is a sending CF channel)

A CF connection uses two (CF sender channel) or seven (sending CF peer channel) devices. Only the starting one can be specified (with four digits). The remaining devices are automatically assigned to the next consecutive device numbers.

Any CF control units and CF devices specified via CNTLUNIT and IODEVICE statements are ignored.

The connection can only be established if the target channel path exists. If the target channel path is already connected, the existing connection is broken and a new connection is established.

SWPORT
Specifies an entry switch port (optional).

PCHID
Specifies a physical channel identifier (optional).

VCHID
Specifies a virtual channel identifier (optional). Used for internal channel path - exclusive to the PCHID keyword.

AID
Specifies the ID of the host communication adapter (HCA) on which the channel is defined.

PORT
Specifies the port on the HCA or PCHID on which the channel is defined.

MIXTYPE
Specifies that the channel path resides on an adapter card with a mixture of FC and FCP channel paths. HCD ignores this keyword during migration. For details on when it is allowed/required by IOCP, see the IOCP User’s Guide.

Table 19: Channel Path Syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATH=([CSS(n, ...),]chpid_number[])]</td>
<td>2 hexadecimal characters for the CHPID, and a decimal number for the CSS ID(s)</td>
</tr>
<tr>
<td>PNETID=(pnetid1,...,pnetid4)</td>
<td>up to four 16-character alphanumeric physical network ID names</td>
</tr>
<tr>
<td>TYPE=type</td>
<td>valid channel path type</td>
</tr>
<tr>
<td>SHARED</td>
<td>no value assigned</td>
</tr>
<tr>
<td>REC</td>
<td>no value assigned</td>
</tr>
</tbody>
</table>
**Table 19: Channel Path Syntax. (continued)**

**Syntax:**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>For XMP processors:</strong>&lt;br&gt; PARTITION=((CSS(0),(acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)]&lt;br&gt; [,REC]) ... [(CSS(n),(acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)]&lt;br&gt; [,REC])])</td>
<td>access list and optional&lt;br&gt; candidate list of partitions;&lt;br&gt; optional addition of REC;&lt;br&gt; for XMP processors: CSS ID is required</td>
</tr>
<tr>
<td><strong>For SMP processors:</strong>&lt;br&gt; PARTITION=((acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)]&lt;br&gt; [,REC])</td>
<td>up to 2 lists of partitions</td>
</tr>
<tr>
<td><strong>For XMP processors:</strong>&lt;br&gt; NOTPART=((CSS(0),(acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)]) ... [(CSS(n),(acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)])])</td>
<td>up to 2 lists of partitions</td>
</tr>
<tr>
<td><strong>For SMP processors:</strong>&lt;br&gt; NOTPART=((acc_lp1,...,acc_lpn)&lt;br&gt; [(cand_lp1,...,cand_lp2)]</td>
<td>up to 2 lists of partitions</td>
</tr>
<tr>
<td>OS=xx, CHPARM=xx</td>
<td>2 hex character OS parameter</td>
</tr>
<tr>
<td>IOCLUSTER=sysplex</td>
<td>8 character sysplex name for managed CHPID</td>
</tr>
<tr>
<td>SWITCH=xx</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 characters</td>
</tr>
<tr>
<td>TPATH=(proc,chpid[,CFS CU,CFS device])&lt;br&gt; (for legacy CF channel path only)</td>
<td>target CHPID for&lt;br&gt; connected CHPID pairs&lt;br&gt; (CF connection): 8 character processor name&lt;br&gt; 2 hex character CHPID&lt;br&gt; 4 hex character CU number&lt;br&gt; 4 hex character device number</td>
</tr>
<tr>
<td>TPATH=((proc,chpid[,CFP CU,CFP device]),&lt;br&gt; (proc,chpid[,CFP CU,CFP device]))&lt;br&gt; (for CF peer channel path only)</td>
<td>pair of target and source CHPIDs&lt;br&gt; (CF peer connection): 8 character processor name&lt;br&gt; 2 hex character CHPID&lt;br&gt; 4 hex character CU number&lt;br&gt; 4 hex character device number</td>
</tr>
<tr>
<td>TPATH=((CSS(n),proc,chpid[,cu,device]),...)</td>
<td>for XMP processors</td>
</tr>
<tr>
<td>SWPORT=((swid,port))</td>
<td>switch and port to which the CHPID connects</td>
</tr>
</tbody>
</table>
Table 19: Channel Path Syntax. (continued)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCHID=xxx</td>
<td>three hexadecimal characters for the physical channel ID</td>
</tr>
<tr>
<td>VCHID=xxx</td>
<td>three hexadecimal characters for the virtual channel ID</td>
</tr>
<tr>
<td>AID=xx</td>
<td>two hexadecimal characters</td>
</tr>
<tr>
<td>PORT=n</td>
<td>one numeric character</td>
</tr>
<tr>
<td>MIXTYPE</td>
<td>no value assigned</td>
</tr>
</tbody>
</table>

Examples for a XMP processors

In the following example, the spanned channel path 33 of type IQD is shared by partitions from channel subsystems 0 and 1.

<table>
<thead>
<tr>
<th>CHPID</th>
<th>PATH=CSS(0,1),33, TYPE=IQD, PART=((CSS(0),(LP01,LP02)), (CSS(1),(LP11,LP12)))</th>
</tr>
</thead>
</table>

Control unit

A control unit is specified with the CNTLUNIT statement. It contains the following keywords:

- **CUNUMBR**
  Specifies a number assigned to the control unit (mandatory). The number assigned to each control unit must be unique within an IODF.

- **UNIT**
  Specifies the type of control unit (mandatory).

- **SERIAL**
  Specifies a serial number (optional).

- **SWPORT**
  Specifies switch ports to which the control unit is connected (optional). If operand exceeds 255 characters, repeat the CNTLUNIT statement with the remaining values.

- **DESC**
  Specifies a description of the control unit (optional).

- **PATH**
  For each channel subsystem, this keyword specifies the channel paths attached to the control unit (mandatory). For control units that are not connected to a processor, specify PATH=** or PATH=(**) .

- **LINK**
  For each channel subsystem, this keyword specifies the link address to which the control unit is attached (optional).

    The order in which the link addresses are specified corresponds to the order in which the channel paths are specified in the PATH keyword.

- **UNITADD**
  Specifies the unit address ranges that are recognized by the control unit (mandatory).

- **CUADD**
  Specifies the logical address for the control unit (optional).
**SHARE**
Specifies the level of concurrency of I/O requests that the parallel channel path allows for the control unit (optional).

**PROTOCOL**
Specifies the interface protocol that the parallel control unit uses when operating with the channel paths specified in the PATH keyword (optional).

### Table 20: Control Unit Syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUNUMBR=number</td>
<td>4 hexadecimal characters</td>
</tr>
<tr>
<td>UNIT=type</td>
<td>valid control unit type</td>
</tr>
<tr>
<td>SERIAL=serial_number</td>
<td>up to 10 characters</td>
</tr>
<tr>
<td>SWPORT=((swid1,port1),(swid2,port2),...)</td>
<td>list of up to 32 sublists (switch ID, port ID)</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 characters max.</td>
</tr>
<tr>
<td><strong>For XMP processors:</strong> PATH=((CSS(0),chpid[,chpid,...]) [,(CSS(1),chpid[,chpid,...])] [,(CSS(n),chpid[,chpid,...])] 0,1,... for the CSS ID; 2 hexadecimal characters for each static CHPID ** for each managed CHPID or for control units not connected to a processor</td>
<td></td>
</tr>
<tr>
<td><strong>For SMP processors:</strong> PATH=(chpid[,chpid]...)</td>
<td></td>
</tr>
<tr>
<td><strong>For XMP processors:</strong> LINK=((CSS(0),link_addr[,link_addr,...]) [,(CSS(1),link_addr[,link_addr,...])] [,(CSS(n),link_addr[,link_addr,...])] 0,1,... for the CSS ID; two or four hexadecimal characters for the link address of each CHPID *** if not specified</td>
<td></td>
</tr>
<tr>
<td><strong>For SMP processors:</strong> LINK=(link_addr[,link_addr]...)</td>
<td></td>
</tr>
<tr>
<td>UNITADD=((address[,number]),...)</td>
<td>2 hexadecimal characters for each unit address followed by a decimal number</td>
</tr>
<tr>
<td>CUADD=address</td>
<td>1 or 2 hexadecimal characters</td>
</tr>
<tr>
<td>SHARE=value</td>
<td>Y or N</td>
</tr>
<tr>
<td>PROTOCOL=value</td>
<td>D, S, or S4</td>
</tr>
</tbody>
</table>

**Example for an XMP processor**
In the following example, control unit 0780 of type 2105 is connected to channels 11 and 14 in channel subsystem 0 and to channels 21 and 24 in channel subsystem 1. All channels in both channel subsystems
use link address E8. Channels from CSS 0 are connected to the control unit via switch 01, channels from CSS are connected via switch 02.

<table>
<thead>
<tr>
<th>CNTLUNIT</th>
<th>CUNUMBR=0780, PATH=((CSS(0),11,14), (CSS(1),21,24)),</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNITADD=((00,128)), LINK=((CSS(0),E8,E8), (CSS(1),E8,E8)),</td>
</tr>
<tr>
<td></td>
<td>CUADD=F, UNIT=2105</td>
</tr>
<tr>
<td></td>
<td>DESC='ESS12 780 CU F (3390-mix) VSE128'</td>
</tr>
<tr>
<td></td>
<td>SwPORT=((01,E8),(02,E8))</td>
</tr>
</tbody>
</table>

**Device**

A device is specified with the IODEVICE statement. It contains the following keywords:

- **ADDRESS**
  - Specifies the device number and how many devices are to be defined (mandatory).

- **UNIT**
  - Specifies the device type (mandatory).

- **MODEL**
  - Specifies the model number of the device, if available (optional).

- **PART, PARTITION or NOTPART**
  - PART and PARTITION specify the candidate list identifying the logical partitions which can access the device (optional).
  - NOTPART specifies the logical partitions which cannot access the device (optional).
  - If for an XMP processors the device has access to more than one CSS, the CSS subkeyword is required to indicate to which channel subsystem the partition belongs.

- **SERIAL**
  - Specifies the serial number of the device (optional).

- **VOLSER**
  - Specifies the volume serial number (optional).

- **CUNUMBR**
  - Specifies the number(s) of the control unit(s) the device is attached to (mandatory).

- **DESC**
  - Specifies a description of the device (optional).

- **UNITADD**
  - Specifies the unit address that is transmitted on the channel path to select the I/O device (optional). If not specified, the last two digits of the device number are used.

- **PATH**
  - Specifies the preferred channel path (optional).

- **TIMEOUT**
  - Specifies whether the I/O interface timeout function is to be active (optional).

- **STADET**
  - Specifies whether the Status Verification Facility is to be enabled or disabled (optional).

- **SCHSET**
  - Specifies for z9 EC processors or later models the subchannel set ID where the device is located.

- **PPRCUSE**
  - Specifies the PPRC usage for DASD devices (optional).

**Table 21: Device Syntax.**

<table>
<thead>
<tr>
<th><strong>Syntax:</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS=(device_number,number_of_units)</td>
</tr>
</tbody>
</table>

4 hexadecimal characters followed by a decimal number in the range 1 to 4095
**Table 21: Device Syntax. (continued)**

**Syntax:**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT=device_type</td>
<td>up to 8 alphanumeric characters</td>
</tr>
<tr>
<td>MODEL=model_number</td>
<td>up to 8 alphanumeric characters</td>
</tr>
<tr>
<td><strong>For XMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td>PARTITION=((CSS(0),(lpname1[,lpname2,...]))</td>
<td>list of partition names with up to 8 alphanumeric characters;</td>
</tr>
<tr>
<td></td>
<td>0,1,... for the CSS ID;</td>
</tr>
<tr>
<td></td>
<td>For XMP processors, a 0 is accepted as lpname to indicate a null</td>
</tr>
<tr>
<td></td>
<td>device candidate list; that is, the control unit shared by several CSSs</td>
</tr>
<tr>
<td></td>
<td>cannot access the device through CSS(m).</td>
</tr>
<tr>
<td></td>
<td><strong>For SMP processors:</strong></td>
</tr>
<tr>
<td></td>
<td>PARTITION=(lpname1[,lpname2,...])</td>
</tr>
<tr>
<td><strong>For XMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td>NOTPART=((CSS(0),(lpname1[,lpname2,...]))</td>
<td>list of partition names with up to 8 alphanumeric characters;</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>For SMP processors:</strong></td>
</tr>
<tr>
<td></td>
<td>NOTPART=(lpname1[,lpname2,...])</td>
</tr>
<tr>
<td>SERIAL=serial_number</td>
<td>up to 10 numeric characters</td>
</tr>
<tr>
<td><strong>Note:</strong> Put the serial numbers in quotes if you use characters such as blanks or commas.</td>
<td></td>
</tr>
<tr>
<td>VOLSER=volume_serial_number</td>
<td>up to 6 characters</td>
</tr>
<tr>
<td>CUNUMBR=(number1[,number2]...)</td>
<td>up to 8 hexadecimal numbers of 4 characters (or **** for unconnected devices)</td>
</tr>
<tr>
<td>DESC='description'</td>
<td>up to 32 alphanumeric characters</td>
</tr>
<tr>
<td>UNITADD=unit_address</td>
<td>2 hexadecimal characters</td>
</tr>
<tr>
<td><strong>For XMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td>PATH=((CSS(0),chpid[,chpid])</td>
<td>0,1,... for the CSS ID;</td>
</tr>
<tr>
<td></td>
<td>2 hexadecimal characters for each CHPID</td>
</tr>
<tr>
<td><strong>For SMP processors:</strong></td>
<td></td>
</tr>
<tr>
<td>PATH=(chpid[,chpid])</td>
<td></td>
</tr>
<tr>
<td>TIMEOUT=value</td>
<td>Y or N</td>
</tr>
<tr>
<td>STADET=value</td>
<td>Y or N</td>
</tr>
</tbody>
</table>

280 z/OS: Hardware Configuration Definition User's Guide
Table 21: Device Syntax. (continued)

<table>
<thead>
<tr>
<th>Syntax:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHSET=n</td>
</tr>
<tr>
<td>SCHSET=((CSS(0),n),…,(CSS(m),n))</td>
</tr>
<tr>
<td>n can be one of 0, 1, or 2. Use the short form SCHSET=n if the placement of the device is the same for all CSSs. SCHSET=0 is the default.</td>
</tr>
<tr>
<td>PPRCUSE=value</td>
</tr>
<tr>
<td>D (Duplex), F (Flashcopy), S (Simplex), U (Utility), N (Nonsysplex).</td>
</tr>
<tr>
<td>USERPRM=((param1,value1),(param2,value2)]…</td>
</tr>
<tr>
<td>list of device specific parameter/value pairs</td>
</tr>
<tr>
<td>FEATURES=(feature1[,feature2]…)</td>
</tr>
<tr>
<td>list of device specific features</td>
</tr>
<tr>
<td>ADAPTER=adapter</td>
</tr>
<tr>
<td>up to 5 alphanumeric characters</td>
</tr>
<tr>
<td>DYNAMIC=value</td>
</tr>
<tr>
<td>Y or N</td>
</tr>
<tr>
<td>LOCANY=value</td>
</tr>
<tr>
<td>Y or N</td>
</tr>
<tr>
<td>NUMSECT=number</td>
</tr>
<tr>
<td>decimal number</td>
</tr>
<tr>
<td>OFFLINE=value</td>
</tr>
<tr>
<td>Y or N</td>
</tr>
<tr>
<td>OWNER=value</td>
</tr>
<tr>
<td>VTAM or OTHER</td>
</tr>
<tr>
<td>PCU=number</td>
</tr>
<tr>
<td>decimal value in the range 1 to 4095</td>
</tr>
<tr>
<td>SETADDR=value</td>
</tr>
<tr>
<td>0, 1, 2, or 3</td>
</tr>
<tr>
<td>TCU=value</td>
</tr>
<tr>
<td>2701, 2702, or 2703</td>
</tr>
</tbody>
</table>

**OS parameters/features**

In the following section device specific parameters and features are described. To find out which parameters, private parameters, and features are available to you for a particular device run your Supported HW Report and I/O Definition Reference. (See “Print configuration reports” on page 314 for details on how to run the report function.) Examples of a Supported HW Report and of an I/O Definition Reference are shown in “Supported hardware report” on page 369 and in “I/O Definition Reference” on page 389, respectively.

**USERPRM**

Allows the specification of OS private parameters.

To locate the private parameters available to you for a particular device refer to your Supported HW Report. The OS private parameters are listed in column SUPPORTED PARAMETERS / FEATURES, following PRIVATE: and extending to the slash (/). For example, device 3590 listed in the sample Supported Hardware Report - MVS Devices (“Supported hardware report” on page 369) supports the private parameters LIBRARY and AUTOSWITCH.
FEATURE
If included in the device specific parameters, FEATURE allows device specific features to be assigned. The features available depend on your UIMs.

To locate the features available to you for a particular device type refer to your Supported HW Report. The features are listed in column SUPPORTED PARAMETERS / FEATURES, following the slash (/). For example, device 3590 listed in the sample Supported Hardware Report - MVS Devices (“Supported hardware report” on page 369 supports the features SHARABLE and COMPACT.

To locate all FEATURE-related information about the device (i.e., possible values, default and description) refer to the ‘I/O Definition Reference’ report. The report can be written using the HCD batch utility (report type Y).

Note: Device features must be explicitly defined in I/O configuration statements. Otherwise the feature will not be defined during migration.

ADAPTER
Specifies either the terminal control or transmission adapter used to connect a telecommunications line to a transmission control unit, or the type of channel adapter that connects a communications controller to a channel path (optional).

DYNAMIC
Specifies if the device is eligible for dynamic I/O configuration (optional).

LOCANY
Specifies if UCB can reside in 31 bit storage (optional).

NUMSECT
Specifies the number of guaranteed 256-byte buffer sections in a 2840 display-control buffer allocated to a device 2250-3 (optional).

OFFLINE
Specifies if the device is considered online or offline at IPL (optional).

OWNER
Specifies the subsystem or access method using the device (optional).

PCU
Only applicable to a display device 2250-3 attached to a control unit 2840-2 (optional)
Identifies the 2840-2 control unit the 2250-3 display device is attached to. For all 2250-3 devices attached to the same control unit, the same value is specified.
If coded, no separate IODEVICE statement UNIT=2840 must be used.

SETADDR
Specifies which of the 4 set address (SAD) commands is to be issued to the transmission control unit for operations on the line specified by the ADDRESS operand (optional).

TCU
Specifies the transmission control unit for a telecommunications line (optional).

Example for an XMP processor
In the following example, the devices numbers 7400 to 741F of type 3390A are defined together with an explicit candidate list: they can be accessed by partition TRX1 from channel subsystem 0 and from partition TRX2 from channel subsystem 1. The Status Verification Facility is enabled. The devices are placed in subchannel set 0 for channel subsystem 0 (this is the default and needs not be specified) and in subchannel set 1 for channel subsystem 1.

```
IODEVICE ADDRESS=(7400,032),UNITADD=50,CUNUMBR=(7300),
STADET=Y,PARTITION=((CSS(0),TRX1),(CSS(1),TRX2)),
SCHSET=((CSS(1),1)),UNIT=3390A
```
Updating parts of a configuration by migrating input data sets

The HCD incremental update function allows you to modify objects in your IODF by specifying the objects with I/O control statements in data sets, e.g. IOCP, MVSCP, or HCPRIO input data sets, and migrating these input data sets into your existing IODF.

Possible actions on objects using the incremental update

Table 22 on page 283 shows what actions you can perform on objects by using the HCD incremental update function. The meaning of the markup is as follows:

- Action possible, you can make the change.
- Action not possible, you cannot make the change with the batch migration utility but must use the HCD dialog.

(x) Action possible. These attributes are deleted when the object itself is deleted.

(–) Action not possible. These attributes cannot be deleted because the object itself cannot be deleted.

See the notes below the table for further instructions on how to add, delete, or change certain objects, their attributes and connections.

Table 22: Actions on IODF Objects

<table>
<thead>
<tr>
<th>Object/Attributes</th>
<th>Add</th>
<th>Delete</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Type/model</td>
<td>x</td>
<td>(–)</td>
<td>–</td>
</tr>
<tr>
<td>Support level</td>
<td>x</td>
<td>(–)</td>
<td>–</td>
</tr>
<tr>
<td>Configuration mode</td>
<td>x</td>
<td>(–)</td>
<td>–</td>
</tr>
<tr>
<td>Serial number</td>
<td>x</td>
<td>–</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>–</td>
<td>x</td>
</tr>
<tr>
<td>SNA address</td>
<td>x</td>
<td>–</td>
<td>x</td>
</tr>
<tr>
<td>Channel Subsystem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Maximum Number Devices</td>
<td>x</td>
<td>–</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Partition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>x</td>
<td>x 1)</td>
<td>x 11)</td>
</tr>
<tr>
<td>Image number</td>
<td>x</td>
<td>(x)</td>
<td>x 11)</td>
</tr>
<tr>
<td>Usage type</td>
<td>x 10)</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>UUID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partition</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
</tbody>
</table>
Table 22: Actions on IODF Objects (continued)

<table>
<thead>
<tr>
<th>Object/Attributes</th>
<th>Add</th>
<th>Delete</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PCIe function</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FID</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VF</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>UNIT / TYPE</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>CHID (PCHID,VCHID,PCHID/PORT)</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>PNETID</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Partition</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>UID</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><strong>Channel path</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHPID</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CHID (PCHID,VCHID,AID/PORT)</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>PNETID</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Type</td>
<td>x</td>
<td>(—)</td>
<td>x 5)</td>
</tr>
<tr>
<td>Operation mode</td>
<td>x</td>
<td>(—)</td>
<td>x 5)</td>
</tr>
<tr>
<td>Access list</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Candidate list</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Dynamic switch</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Switch connection</td>
<td>x</td>
<td>x</td>
<td>x 5; 15)</td>
</tr>
<tr>
<td>CF connection</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>OS parameter</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>I/O cluster</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>AID</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td>Port</td>
<td>x</td>
<td>x</td>
<td>x 5)</td>
</tr>
<tr>
<td><strong>Control unit</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>x</td>
<td>x 2)</td>
<td>x 4)</td>
</tr>
<tr>
<td>Unit/model</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Serial number</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Switch connection</td>
<td>x</td>
<td>x</td>
<td>x 15)</td>
</tr>
<tr>
<td>Channel paths</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>DLA</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Logical address (CUADD)</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Unit addresses</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Protocol</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Object/Attributes</td>
<td>Add</td>
<td>Delete</td>
<td>Change</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>IOCL</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><strong>Device</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>x</td>
<td>x 3)</td>
<td>x 4)</td>
</tr>
<tr>
<td>Unit/model</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Serial number</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Volume serial number</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Control units</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Processor connect</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Unit address</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Preferred CHPID</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TIMEOUT</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>STADET</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Candidate list</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OS connect</td>
<td>x</td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>Subchannel set</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Parameters</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Features</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>User parameters</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>PPRC usage</td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td><strong>Operating system</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Type</td>
<td>x</td>
<td>(−)</td>
<td>—</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td>D/R site OS</td>
<td>x</td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td><strong>EDT</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td><strong>Esoteric</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>x</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>VIO</td>
<td>x</td>
<td>(−)</td>
<td>x</td>
</tr>
<tr>
<td>Device list</td>
<td>x</td>
<td>(x 6)</td>
<td>x 7)</td>
</tr>
<tr>
<td>Token</td>
<td>x</td>
<td>—</td>
<td>x</td>
</tr>
<tr>
<td><strong>Generic</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIO</td>
<td>x</td>
<td>(−)</td>
<td>x</td>
</tr>
<tr>
<td>Preference value</td>
<td>x</td>
<td>(−)</td>
<td>x</td>
</tr>
<tr>
<td>Object/Attributes</td>
<td>Add</td>
<td>Delete</td>
<td>Change</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td><strong>Console</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device list</td>
<td>x</td>
<td>x 9)</td>
<td>x 13)</td>
</tr>
<tr>
<td>Order</td>
<td>(x)</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td><strong>Switch</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unit/model</td>
<td>x</td>
<td>(-)</td>
<td>x</td>
</tr>
<tr>
<td>Ports (installed range)</td>
<td>x</td>
<td>(-)</td>
<td>x 8)</td>
</tr>
<tr>
<td>Serial number</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Switch connection</td>
<td>x</td>
<td>x 14)</td>
<td>x 15)</td>
</tr>
<tr>
<td>Address</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td><strong>Ports</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Name</td>
<td>x</td>
<td>(-)</td>
<td>x</td>
</tr>
<tr>
<td>Occupied indicator</td>
<td>x 15)</td>
<td>x 15)</td>
<td>n/a</td>
</tr>
<tr>
<td><strong>Switch configuration</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Description</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Default connection</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td><strong>Port configuration</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowed connection</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Prohibited connection</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Dedicated connection</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Blocked indicator</td>
<td>x</td>
<td>x</td>
<td>n/a</td>
</tr>
</tbody>
</table>

References to IOCP and MVSCP in the following notes refer to data sets with extended syntax as described in “Changing I/O configurations by editing data sets” on page 259.

**Note:**

1. To delete a partition, specify all connected channel paths (defined via access or candidate lists) together with their attached I/O units without referring to the partition and without repeating the partition in the RESOURCE statement.

   For incremental migration it is recommended to use notpart only in combination with resource statements.

   **For example:** IODF contains 3 LPARS (LpA, LpB, and LpC) and CHPID 11 connected to LpA and LpB (nothing else). When migrating a deck with CHPID 11 and a notpart statement to LpC and part statement to LpA, following happens:
   - HCD disconnects CHPID 11 from LpA and LpB.
   - LpA and LpB will be deleted if they don't have any chpids attached and if no resource statement is given.
• CHPID 11 is deleted and added again.
• HCD now tries to connect to LPARs: In the CHPID statement LpA and LpC are referenced. If they do not exist, they will be created and CHPID 11 will be connected to LpA.

As a result LpB is now deleted, LpC is left untouched.

**Note:** If only notpart statements would be in the deck, both LpA and LpB would remain deleted, no LPARs could be connected and CHPID 11 could not be created.

2. A control unit is implicitly deleted, if its channel paths are respecified in the IOCP input data set together with their attached I/O units (except the control unit) and it no longer has any connection to a processor.

3. A device is implicitly deleted, if its attaching control units are implicitly deleted using the incremental update specification, and there is no additional connection left to any control unit or operating system.

4. To change control unit and device attributes, specify the entire logical control unit(s) (LCU) the control unit or device is part of. For migration to an OS configuration only (MVSCP data set), respecify the I/O device with the changed parameters. HCD will redefine the device in the corresponding subchannel set.

5. To change channel path attributes, specify all logical control units the channel path is connected to in the IOCP input data set. Otherwise, the channel path is disconnected from the corresponding control units.

6. To delete an esoteric device list, specify all device definitions in the MVSCP input data set, but do not connect them to the esoteric name.

7. To add a device to an esoteric device list, specify the esoteric with the device number.

   To delete a device from the esoteric device list, specify the device in an IODEVICE statement) but do not specify the device number for the esoteric device list.

8. An installed port can be set to uninstalled only if it does not belong to the minimum installed port range and does not hold a connection to a channel path or control unit.

9. To delete a console list, specify all contained devices using the IODEVICE statement but do not include the devices in a NIPCON statement.

10. If the usage type is not specified and you add a partition, the usage type is automatically defined: if the IOCP input data set contains a CF receiver channel path with the partition in its access or candidate list, the usage type is set to CF/OS, if not, the usage type is set to OS.

11. To change the partition name or partition number specify the whole partition configuration including all channel paths with attached I/O units which have the partition in their access and candidate lists.

12. (No longer used.)

13. To change a complete console device list, use the NIPCON statement.

   To remove a single device from the console list, specify the corresponding IODEVICE statement and omit the NIPCON statement.

14. To delete a switch-to-switch connection, specify a switch via a SWITCH statement and omit the switch-to-switch connection in the SWPORT parameter.

15. When updating switch ports new connections always overwrite a previous connection or status. To be updated with an occupied status the port must currently not be connected.

16. To remove the unique UID requirements for a partition, you need to code a complete UUID statement. The statement needs to reference all partitions that still need to have this capability defined. Removing the unique UID requirement from all partitions of a processor is not possible using this path.
How to invoke the incremental update

1. Specify your objects with IOCP, MVSCP, or HCPRIO control statements. Note that you can add additional parameters and SWITCH statements to exploit the extended migration as described under “Changing I/O configurations by editing data sets” on page 259).

2. Select Migrate configuration data on the Primary Task Selection panel and on the resulting screen select the Migrate IOCP/OS data option.

3. On the following Migrate IOCP / MVSCP / HCPRIO Data dialog (see Figure 254 on page 256), enter the required data and change the incremental update to Yes.

4. After the input has been accepted, HCD issues a message informing you that the migration of input data sets is in process.

Example 1: Adding a partition

In this example, you specify a partition in your input data set that does not yet exist in the IODF. The attached control units and devices are already defined in the IODF for another processor.

The following figure illustrates the result after the incremental update:

<table>
<thead>
<tr>
<th>IODF</th>
<th>IOCP Input Data Set</th>
<th>Resulting IODF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>Part 2</td>
<td>Part 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>3880-3</td>
<td>3990-3</td>
<td>3990-3</td>
</tr>
<tr>
<td>06C0,32</td>
<td>05C0,32</td>
<td>05C0,32</td>
</tr>
<tr>
<td>3380</td>
<td>3390</td>
<td>3390</td>
</tr>
</tbody>
</table>

RESOURCE PART=(PART3)
CHPID PATH=21, TYPE=CNC, PART=(PART3)
CNTLUNIT CUNUMBR=200, UNIT=3990, PATH=(13,21)
IODEVICE ADDRESS=(5C0,32), UNIT=3990
CUNUMBR=200

Figure 255: Partial Migration of an IOCP Input Data Set. A new partition is added. Control units and devices are mapped.

The partition is added and the control unit and devices are mapped. For a detailed description when control units and devices are mapped, refer to “Migrating additional IOCP input data sets” on page 252.

Example 2: Replacing a channel path and attached control unit

In this example, you specify a channel path with attached control unit and devices in an IOCP input data set. The channel path, the control unit, and one device already exist in the IODF.
The following figure illustrates the result after the incremental update:

Figure 256: Partial migration of an IOCP input data set. The whole logical control unit (control unit 100 and 200 and connected devices) are replaced by control unit 100 and its connected devices.

The logical control unit in the IOCP input data set replaces the whole logical control unit in the IODF.

**Example 3: Replacing a channel path with a new control unit**

In this example, you specify channel paths with control unit and device in the input data set. The channel paths are already defined in the IODF, but connect to another control unit.

The following figure illustrates the result after the incremental update:
Figure 257: Partial migration of an IOCP input data set. CHPIDs are defined as in the IOCP input data set.

The channel paths in the IODF are deleted and newly defined as they are defined in the IOCP input data set.

Example 4: Replacing a control unit that attaches to two processors

In this example, you want to replace existing control units and devices by another type. The control units and devices are attached to two processors.

The incremental update must be done in several steps:

1. Specify another control unit number in your IOCP input data set than the one in the existing IODF. Specify the CHPID, CNTLUNIT, and IODEVICE control statements.
2. Migrate your input data set for the first processor.
Figure 258: Partial migration of an IOCP input data set. Control unit defined for two processors is migrated to the first processor.

3. Migrate your input data set again for the second processor.
Example 5: Updating an operating system

In this example, you update an operating system by adding and changing EDTs, generics, esoterics, and console devices.
You can either migrate the changes with a combined input data set or with an MVSCP only input data set. With a combined input data set, you can make CSS and operating system changes at the same time.

If you migrate an MVSCP only input data set, specify a processor and partition, with which device definitions in the input data sets will be associated in the IODF, on the Migrate IOCP / MVSCP /HCPRIO Data panel. HCD uses this information to map devices correctly if the IODF contains duplicate device numbers. For more information about this mapping, refer to “Migrating additional MVSCP or HCPRIO input data sets” on page 254.

The result after the migration is as follows:

• The definition of EDT input statements replaces the definition in the IODF, new definitions are added.
  That means in the example Figure 260 on page 293, EDT 01 is replaced and EDT 02 is added.

• Devices are added. To add devices, you also have to newly define the esoterics to which the devices are to be assigned.
• Devices in a UNITNAME statement are added to the devices already defined for the esoteric.
• The list of consoles is replaced.

Note: If an EDT statement is missing or specified without EDT ID, the EDT ID for esoterics and generics is taken from the ID of the IOCONFIG statement. If the IOCONFIG statement is also not available, the EDT ID will be assumed as ‘00’.

Resolving migration errors

If HCD detects an error when you migrate using the HCD dialog, it displays a message list when the migration has been completed.

Figure 261 on page 294 is an example of such a message list. It lists all the messages that were issued during the process. The list shows the statement number of the input statement for which the message was issued. You can now:

• Get explanations of messages in the list. To get explanations, use the Explain message action from the context menu or action code 3.
• Delete messages that are of no further interest. That is, delete those messages that you do not want to appear in the **HCD migration log**.

<table>
<thead>
<tr>
<th>Query</th>
<th>Help</th>
<th>Message List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Select one or more messages, then press Enter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/ Statement Orig Sev Message Text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 9 1 E Duplicate unit address F0 on channel path 01 of processor BOEHCD.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 2 W Type of control unit 0131 assumed as 3800-13 to attach device 01F0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td># I No output written to IODF. VALIDATE processing forced due to errors.</td>
</tr>
</tbody>
</table>

**Figure 261: Message List**

When you exit the message list or when you migrated your input data sets using the batch utility, HCD writes the error messages to the HCD migration log.

You can display the HCD migration log through ISPF. The name of the HCD migration log data set is developed from the name of the input data set, without high-level qualifier, and your user ID as follows:

```plaintext
userid.yyy.zzz.MESSAGES
```

where the input data set, without high-level qualifier, is:

```plaintext
yyy.zzz
```

or

```plaintext
yyy(zzz)
```

**Errors detected during assembly process**

During migration, HCD invokes the assembler to parse the input statements. If it encounters an error, it writes a message to the message list. This message points to an assembler listing for more details.

<table>
<thead>
<tr>
<th>Query</th>
<th>Help</th>
<th>Message List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Select one or more messages, then press Enter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/ Statement Orig Sev Message Text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- T Assembler processing returns with return code 8. See BPAN.CDS.CSYSIO.LISTING for details.</td>
</tr>
</tbody>
</table>

**Figure 262: Message List containing an Assembler message**

The name of the assembly listing data set is developed from the name of the input data set, without high-level qualifier, and your user ID as follows:

```plaintext
userid.yyy.zzz.LISTING
```

where the input data set, without high-level qualifier, is:

```plaintext
yyy.zzz
```
or

At the bottom of the assembly listing, you find the statement numbers where errors were detected. If you locate the statement numbers in the listing, you see the IOCP statement in error followed by the error message. The following examples show IOCP statements and the assembly messages issued.

**Example 1**

In this example an entry in the IOCP input data set is commented out, but the continuation character $ is left in column 72.

```
7493 *        CNTLUNIT CUNUMBR=02E,PATH=(02,06),SHARED=N,UNIT=3990, 91A$
7494 *              UNITADD=((E),32)),PROTOCL=S4
```

The assembler listing shows the following message:

```
IEV144 *** ERROR *** BEGIN-TO-CONTINUE COLUMNS NOT BLANK
```

**Example 2**

This example shows a line with only 87A being included in the IOCP input data set.

```
7493 *        CNTLUNIT CUNUMBR=234,PATH=24,SHARED=N,UNIT=3880, 87A
7494 *              UNITADD=(30,16),PROTOCL=S4 87A
7495                                                                      87A
7496 *IOCP                                                                87A
```

The assembler listing shows the following message:

```
IEV144 *** ERROR *** OPERATION CODE NOT COMPLETE ON FIRST CARD
```

**Example 3**

This example shows a wrong channel path type in the CHPID statement.

```
CHPID PATH=((00)),TYPE=CMC
```

The assembler listing shows the following message:

```
IEV144 *** MNOTE *** 8,003 TYPE=CMC IS INVALID
```

**Errors detected during validation process**

During the validation process, HCD checks that the definitions being migrated do not cause any conflicts with existing definitions in the IODF and with other definitions being migrated. HCD also checks that the contents of the input data sets is valid. The errors are shown in the message list and migration log.

Figure 263 on page 296 shows error messages in the migration log.
Figure 263: Example: HCD Migration Log

The messages are sorted according to their severity, and within a certain severity level according to their occurrence.

The value in the **Orig** column points to the input data set that caused this error. At the start of the migration log you find a reference list that shows the values with the names of the input data sets (see the line marked **1**).

In Figure 263 on page 296 the first message line means, that the statement number 9 in the input data set **1** (data set BBEI.IOCP01.CTL) is the cause of the error message.

The following examples show common validation errors and explain their causes.

**Example 1**

<table>
<thead>
<tr>
<th>Statement Orig</th>
<th>Sev</th>
<th>Msgid</th>
<th>Message Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>E</td>
<td>CBDA154I</td>
<td>Channel path type CNC is not supported by channel path ID 3A.</td>
</tr>
</tbody>
</table>

This message is issued, because an ESCON channel is defined although the support level was defined in the IODF as having only parallel channels installed for the specified CHPID. To resolve this, either change the channel type in the IOCP input data set, or change the processor type or support level in the IODF.

**Example 2**

<table>
<thead>
<tr>
<th>Statement Orig</th>
<th>Sev</th>
<th>Msgid</th>
<th>Message Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>E</td>
<td>CBDA234I</td>
<td>Unknown type 38823 of control unit 0000 specified.</td>
</tr>
</tbody>
</table>

This message is issued, because HCD does not know the control unit type 38823. Select the **Query supported hardware and installed UIMs** from the **Primary Task Selection** panel or use the **Query** action bar choice for information on valid control unit and device types.

**Example 3**

<table>
<thead>
<tr>
<th>Statement Orig</th>
<th>Sev</th>
<th>Msgid</th>
<th>Message Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
<td>W</td>
<td>CBDA265I</td>
<td>Type 3800-3 assumed for control unit DD32 to attach the device 0028.</td>
</tr>
<tr>
<td>227</td>
<td>I</td>
<td>CBDA534I</td>
<td>Control unit DD32 is assumed as 3800-1.</td>
</tr>
</tbody>
</table>

These messages are issued, because HCD has to choose the control unit type among several models. The control unit model 3800-1 is indicated as default model in the UIM (information message CBDA534I is issued). As processing goes on, it is necessary to change the default model (3800-1) to another model.
(3800-3) to attach a device type which is not supported by the default control unit model (warning message CBDA265I is issued).

**Note:** The sequence of messages is shown in reverse order in the migration log file since the messages are sorted according to decreasing severities. To resolve this, either include the model in the IOCP input data set, map the control unit types via HCD profile entries, or update the IODF using the HCD dialog, if HCD has made an incorrect assumption.

**Insufficient data set sizes**

HCD dynamically allocates the data sets required for migration. It can happen that the default data set sizes are insufficient for the migration of the existing data. During the migration process, the system informs you by a message which data set needs to be enlarged. In that case, the data set needs to be preallocated with a larger size before invoking the HCD migration task again.

HCD uses, by default, the following ddnames and data set sizes:

- **HCDPRINT**
  Used for the HCD migration log.
  The data set name is built from the input data set name — if two input data sets are specified from the IOCP input data set name — qualified with 'MESSAGES'. If the input is a member of a partitioned data set, an additional qualifier - the name of the member - is inserted before 'MESSAGES'. The high-level qualifier of that data set name is replaced by the TSO prefix (user ID).
  The minimum allocation (also used as default allocation if the data set does not exist) is: RECFM=FBA, LRECL=133, BLKSIZE=2926, SPACE=(TRK,(1,10)), exclusive access.

- **HCDASMP**
  Contains the assembler SYSPRINT data set, which contains the assembly listing (input statements with sequence numbers and messages).
  The data set name is built from the input data set name qualified with 'LISTING'. If the input is a member of a partitioned data set, an additional qualifier - the name of the member - is inserted before 'LISTING'. The high-level qualifier of that data set name is replaced by the TSO prefix (user ID).
  The minimum allocation (also used as default allocation if the data set does not exist) is as follows: RECFM=FBA, LRECL=121, BLKSIZE=1573, SPACE=(TRK,(15,150)), exclusive access.

- **HCDUT1**
  Used by the assembler as a work data set (UNIT=SYSALLDA, LRECL=80, BLKSIZE=3200, SPACE=(TRK, (15,150)), exclusive access).

- **HCDUT2**
  Used as output data set for the modified input stream and by the assembler as SYSIN data set (UNIT=SYSALLDA, LRECL=80, SPACE=(TRK,(10,15)), exclusive access).

- **HCDUT3**
  Used by the assembler as punch data set (SYSPUNCH).
  Used by the loader as input data set (UNIT=SYSALLDA, LRECL=80, SPACE=(TRK,(10,30)), exclusive access).

**Note:**

1. The sizes of the output data sets HCDUT2, HCDASMP, and HCDPRINT depend on the size of the input and on the number of messages produced. The space given under “Insufficient data set sizes” on page 297 should be taken as minimum allocation values.

2. For HCDASMP and HCDPRINT, HCD checks whether data sets with the default names exist. If so, the space allocations of these existing data sets are used if they exceed the minimum allocation values. If they are below the minimum allocation value, the data sets are deleted and allocated with a new (minimum) size. Correspondingly, the space of the HCDUT2 data set is made dependent on the input data set(s). This rule is only applicable if the ddnames have not been previously allocated.
3. Preallocate HCDASMP and HCDPRINT if:
   • You want to have them on a different data set than the default one
   • You want to place these data sets on a specific volume
   • The default size is not large enough
   • A size different from the default size should be used.
How to invoke HCD batch utility functions

You can invoke HCD batch utility functions:

• With an input parameter string. The following syntax diagram shows how to invoke an HCD batch utility function. For formats of the input parameter strings and sample batch jobs, see “Input parameter string” on page 300.

  ![HCD Batch Invocation Diagram]

  **HCD Batch Invocation**

  ```
  EXEC PGM=CBDMGHCP, PARM='Input Parameter String'
  ```

• By using an ATTACH or LINK module programming statement to invoke the module CBDMGHCP.

  When you invoke the module, register 1 must contain the address of a two-word parameter list.

  **Word 1**
  
  Address of input parameter (see “Input parameter string” on page 300), preceded by a two byte length field.

  **Word 2**
  
  Address of a list of alternate DD names. If not used, the address must be binary zero. For the list format of alternate DD names see “List of alternate DD names” on page 330.

You may overwrite standard DD names listed in Table 23 on page 329 as desired before invoking HCD.

If you specify the UIMs and UDTs in a library other than SYS1.NUCLEUS, you have to add the following statement to your batch jobs:

```cpp
//HCDPROF DD DSN=BPAN.HCD.PROF,DISP=SHR
```

In the HCD profile (in our example BPAN.HCD.PROF) specify the following keyword:

```
UIM_LIBNAME=libname
```

If the keyword is omitted, SYS1.NUCLEUS is assumed. If you specify an asterisk (*) as data set name, HCD assumes that the UIM data set is part of the ISPF load library concatenation chain, contained in the JOBLIB/STEPLIB concatenation chain, or specified in the active LNKLSTxx member. For more information, see “Defining an HCD profile” on page 16.

Running jobs in a sysplex environment:

If you want to execute a job on a specific system in a sysplex, you must specify in your batch job which system is to be used. If you do not specify the exact system of a sysplex for which the batch job is planned to execute on, the job executes on the system that has the free space to run on.

The output from some of the HCD functions depend very much on where the job was executed; for example, downloading IOCDSs and requesting the I/O Path report.

How to Read Syntax Diagrams

For details on this subject see “How to read syntax diagrams” on page xxvii.

**Note:** Trailing commas in the parameter string can be omitted.
**Input parameter string**

**Input Parameter String**

```
Start the dialog
  Initialize a VSAM data set into an IODF
    Upgrade an IODF
      Migrate I/O configuration statements
        Build a production IODF
          Build a work IODF from a production IODF
            Build an IOCDS or an IOCP input data set
              Build an HCPRIO input data set
                Build I/O configuration data
                  Copy an IODF
                    Print a configuration report
                      Create a graphical configuration report
                        Compare IODFs or CSS/OS views
                          Import an IODF
                            Export an IODF
```

**TRACE**

When specified, the HCD trace will be activated.

**Input Parameter String**

You will find a detailed description of the input parameter strings in the following sections.

You can also activate tracing by adding the TRACE command in the HCD profile. This allows you to specify the trace parameters in more detail. In this case, you must allocate DD name HCDPROF to the HCD profile when invoking the batch utility. For more information, see “Defining an HCD profile” on page 16, and “TRACE command” on page 419.

**Start the dialog**

This utility function starts the HCD (ISPF) Dialog session. The HCD primary task selection panel is displayed.

This function is invoked by passing the following parameter string.

Start the dialog

```
DIALOG
```

**E | J**

is a one-character code for national language support in help panels and messages. Specify one of the following (if omitted, the default is E):

```
E
  for English

J
  for Japanese
```
**Initialize IODF**

This utility function initializes a defined VSAM DIV file into an IODF. Each IODF contains as first record a header record, called the IHR (IODF Header Record). This record contains, among other information, the size of the IODF, an optional description of up to 128 characters, as well as an option whether activity logging is enabled or disabled. HCD rejects any data set that does not contain such a header record.

The VSAM DIV file must be preallocated using DD name HCDIODFT. You can add an optional IODF description using DD name HCDCNTL.

This function is invoked by passing the following parameter string.

Initialize a VSAM data set into an IODF

```
INITIODF
```

SIZE=nnnn

`nnnn` specifies the size of the IODF in 4K blocks. This value must not be greater than the number of records specified with the IDCAMS Define Cluster control statement. If `SIZE=0` is specified, the number of allocated records of the VSAM data set is used. If an existing IODF is re-initialized, the specified size value must not be smaller than the number of allocated IODF blocks.

ACTLOG=(YES | NO)

specifies enabling of activity logging. If omitted, the default is YES.

FORCE

indicates that reinitialization of an existing IODF is allowed.

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFT</td>
<td>IODF to be initialized</td>
</tr>
<tr>
<td>HCDCNTL</td>
<td>Up to 128 characters used as description for the IODF.</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

The following example shows the IDCAMS control statements necessary to define a VSAM DIV file.

```
DEFINE CLUSTER (NAME (SYS1.IODF01.CLUSTER) -
    LINEAR -
    RECORDS (1024) -
    VOLUMES (DATA02) -
  ) -
DATA (NAME (SYS1.IODF01))
```

For an example see the batch job in “Batch IODF copy example” on page 328.

**Note:**

1. This batch job issues a job message IEC161I, which can be ignored.
2. The VSAM DIV file consists of a data and a cluster file. According to the IODF naming convention (see “IODF naming convention” on page 27), the name of the data file is the IODF name (in this example `SYS1.IODF01`), and .CLUSTER is appended to the data file for a cluster file. To define your VSAM DIV...
file, you must append .CLUSTER to the IODF name in the DEFINE CLUSTER statement (in this example SYS1.IODF01.CLUSTER).

**Upgrade IODF**

This utility function upgrades a back-level IODF to be accessible with the current HCD release.

You have to allocate:

- The IODF you want to upgrade with DD name HCDIODFS
- The IODF into which the I/O definitions are to be upgraded with DD name HCDIODFT

This function is invoked by passing the following parameter string.

**Upgrade an IODF**

![Upgrade](image)

**Note:**

1. The target data set must be large enough to hold the source IODF.
2. The target IODF may be created using the utility *Initialize IODF* (described in “Initialize IODF” on page 301).
3. Both data sets must be valid IODFs.

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Back-level IODF to be upgraded</td>
</tr>
<tr>
<td>HCDIODFT</td>
<td>IODF into which IODF definitions are to be upgraded (if not specified, the IODF is upgraded in place)</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example:**

```bash
//BWINJOB  JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,
//             MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
//*
//** UPGRADE IODF
//**
//UPGRADE EXEC PGM=CBDMGHCP,PARM='UPGRADE'
//HCDIODFS DD DSN=BWIN.IODFR2.WORK,DISP=SHR
//HCDIODFT DD DSN=BWIN.IODF00.WORK,DISP=OLD
//HCDMLOG DD DSN=BWIN.HCD.LOG,DISP=OLD
//```

For considerations concerning the size when upgrading a back-level IODF, refer to Table 3 on page 39.

**Migrate I/O configuration statements**

This utility function allows you to migrate the data set containing I/O configuration statements, e.g. an IOCP, MVSCP, or HCPPRIO input data set and store the definitions into an IODF.

You have to allocate:

- The IODF into which the I/O definitions are to be migrated with DD name HCDIODFT
- The I/O configuration input data set with DD name HCDIN
- The MACLIB containing the parsing macros with DD name HCDLIB
This function is invoked by passing the following parameter string.

**Migrate I/O configuration statements**

**Function indicator:**
- **I**: Migration of processor configuration statements (e.g. IOCP data sets)
- **IP**: Partial migration of processor configuration statements
- **O**: Migration of OS configuration statements (for example MVSCP or HCPRIO data sets)
- **OP**: Partial migration of OS configuration statements
- **B**: Combined migration of processor and OS configuration statements
- **BP**: Partial combined migration of processor and OS configuration statements
- **S**: Switch migration
- **C**: physical channel ID (PCHID) migration

**Processor related variables and keywords:**
**procid**
Processor ID (up to 8 characters)

**procid.cssid, procid(#cssid)**
When migrating an SMP processor to an XMP processor, the channel subsystem ID of the target processor may be appended to the processor ID as one character either by a # and in parenthesis or by a dot (.). The default is 0.

**proctype**
Processor type and model separated by a hyphen, for example 9672-E08

**procmode**
Processor mode

  - **BASIC**
    If the processor operates in BASIC mode (default).
  - **LPAR**
    If the processor operates in LPAR mode.

**support_level_ID**
Support level ID associated with the processor. This parameter is required if the processor does not already exist and several support level IDs are installed for a supported processor type. The support level ID can be obtained by the List supported processors function or by the supported hardware report described in “Print configuration reports” on page 314. For an example of a supported hardware report refer to “Supported hardware report” on page 369.

If you do not specify a support level, the highest support level will be used for the processor.

**Note:** The support level ID is unique to HCD and does not correspond to the EC level of the processor.

* Allows multiple processor configurations to be migrated. Scans the input data set to determine which processor configurations are to be processed. For successful migration the configurations must include the ID statement described in “Processor” on page 269.

OS related parameters:

**osid**
Operating system ID (up to 8 characters)

**ostype**
OS type (MVS or VM)

**asproc**
Associated processor. For more information, see “Migrating additional MVSCP or HCPRIO input data sets” on page 254

**aspart**
Associated partition. For more information, see “Migrating additional MVSCP or HCPRIO input data sets” on page 254

* Allows multiple OS configurations to be migrated. Scans the input data set to determine which OS configurations are to be processed. For successful migration the configurations must include the IOCONFIG statement described in “Operating system” on page 262.

Switch related wildcard:

* Allows switch configurations of multiple switches to be migrated. Scans the input data set to determine which switch configurations are to be processed. For successful migration the configurations must include the SWCONF statement described in “Switch configuration” on page 268.

**Batch invocation**
A data set must be allocated to the following DD names when invoking the batch utility.
<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFT</td>
<td>IODF into which I/O definitions are to be migrated</td>
</tr>
<tr>
<td>HCDIN</td>
<td>I/O configuration input data set</td>
</tr>
<tr>
<td>HCDLIB</td>
<td>MACLIB containing the parsing macros (CBDZPARS)</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDPRINT</td>
<td>Data set for migration log (see “Insufficient data set sizes” on page 297)</td>
</tr>
<tr>
<td>HCDASMP</td>
<td>Data set for assembly listing (see “Insufficient data set sizes” on page 297)</td>
</tr>
<tr>
<td>HCDPROF</td>
<td>HCD profile (when using extended migrate function)</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

For defaults of HCDPRINT and HCDASMP, for preallocating additional migration data sets, and for viewing the migration log see “Resolving migration errors” on page 293. **Example:**

```plaintext
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
   MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
//*
//* MIGRATE AN IOPC DECK
//*
//* MIGRATE EXEC PGM=CBDMGHCP,
   //*      PARM='MIGR, I, PROC1, 9672-E08, LPAR'
//HCDIODFT DD DSN=BWIN.IODF03.WORK, DISP=OLD
//HCDIN DD DSN=BWIN.IOCP.DECK, DISP=SHR
//HCDLIB DD DSN=SYS1.MACLIB, DISP=SHR
//HCDMLOG DD DSN=BWIN.HCD.LOG, DISP=OLD
//HCDPRINT DD DSN=BWIN.IOCP.MESSAGES, DISP=OLD
//HCDASMP DD DSN=BWIN.IOCP.LISTING, DISP=OLD
//*
```

**Build a Production IODF**

This utility function creates a production IODF using the work IODF. The work IODF has to be specified with DD name HCDIODFS, the target production IODF with DD name HCDIODFT. First, the target production IODF has to be created by defining a VSAM DIV file and initializing it using the utility Initialize IODF (see “Initialize IODF” on page 301). If the target IODF is the active IODF (used for IPL and holding the active processor configuration) the IODF will not be replaced and build production IODF will be rejected.

If the work IODF has an associated MCF, the MCF data set is copied and associated to the production IODF.

After the production IODF has been built, it is copied back to the work IODF. Thus, the work IODF contains the new tokens and can be used for further updates. Since the production IODF may be larger than the original work IODF, the work IODF may be automatically enlarged to accommodate the contents of the production IODF.

This function is invoked by passing the following parameter string.

**Build a Production IODF**

```
DESC1=descriptor1
```

Default is the first qualifier of the production IODF name (up to 8 characters).
**DESC2=** descriptor 2

Default is the second qualifier of the production IODF name, which is IODFxx (up to 8 characters).

The descriptor fields describe the IODF and will be part of the HSA token. **Attention:** If you specify asterisks (* *), equals (==), pluses (++) or minuses (--) for the IODF suffix in LOADxx, never change the default descriptor field values, because z/OS uses these values to find the current IODF during IPL. Take this relationship also into consideration, if you copy the IODF to a different data set name.

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Work IODF</td>
</tr>
<tr>
<td>HCDIODFT</td>
<td>Production IODF</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example:**

```bash
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
/* *
/** BUILD PRODUCTION IODF
/**
//PROD EXEC PGM=CBDMGHCP,
PARM='PRODIODF DESC1=BWIN,DESC2=IODF03'
//HCDIODFS DD DSN=BWIN.IODF03.WORK, DISP=OLD
//HCDIODFT DD DSN=BWIN.IODF03, DISP=OLD
//HCDMLOG  DD DSN=BWIN.HCD.LOG, DISP=OLD
//
```

**Build a work IODF from a production IODF**

This utility function creates a work IODF using an existing production IODF. The production IODF has to be specified with DD name HCDIODFS, the target work IODF with DD name HCDIODFT. First, the work IODF has to be created by defining a VSAM DIV file and initializing it using the utility Initialize IODF (see “Initialize IODF” on page 301). If the target IODF is the active IODF (used for IPL and holding the active processor configuration) the IODF will not be replaced and build work IODF will be rejected.

This function is invoked by passing the following parameter string.

**Build a Work IODF**

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Production IODF</td>
</tr>
<tr>
<td>HCDIODFT</td>
<td>Work IODF</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

306  z/OS: Hardware Configuration Definition User's Guide
Build an IOCDS or an IOCP input data set

This utility function builds the IOCDS or the IOCP input data set using the definitions of a production IODF. This function is invoked by passing the following parameter string.

**io cds**

is a two-character IOCDS identifier, if building an IOCDS

**proc id**

Processor ID

**D | I | W | S | T**

One-character request code:

**D**

Build an IOCP input data set

**SA**

The generated IOCP statements can be used for the stand-alone IOCP program (default).

**NOSA**

Depending on the HCD profile option MIGRATE_EXTENDED=YES, the generated IOCP statements have additional information that can be used for the extended migration. This information is shown as comments to IOCP.

**Note:** An IOCP input data set generated with operand NOSA may not be accepted by the stand-alone IOCP program, because of differences between the IOCP program running in z/OS and the stand-alone IOCP program.

**I**

Build an IOCDS

---

Example:

```plaintext
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M

//** BUILD WORK IODF
**/
//** WORK EXEC PGM=CBDMGHCP, PARM='WORKIODF'
// HCDIODFS DD   DSN=BWIN.IODF03, DISP=SHR
// HCDIODFT DD   DSN=BWIN.IODF03.WORK, DISP=OLD
// HCDMLOG  DD   DSN=BWIN.HCD.LOG, DISP=OLD
```
**NOCHKCPC**
Write an IOCDS regardless of the type of the receiving processor. Refer to “Supported hardware report” on page 369 for a list of processor types that can receive an IOCDS in preparation for a processor upgrade and for processor types for which such an IOCDS can be written.

**LOCALWRT**
This parameter enforces a local IOCDS write. A defined SNA address which is normally used by HCD to initiate a remote IOCDS build to the support element with the designed SNA address, is ignored in this case.

**W**
Build an IOCDS with dual-write option (optionally with **NOCHKCPC** and **LOCALWRT**, see option I).

**S**
Build an IOCDS and set the IOCDS active for next POR

**T**
Build an IOCDS with dual-write option and set the IOCDS active for next POR

**Batch invocation**
A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Source IODF</td>
</tr>
<tr>
<td>HCDDECK</td>
<td>IOCP data set (if build IOCP input data set is requested)</td>
</tr>
<tr>
<td>HCDCNTL</td>
<td>Control data set for specifying the MSG1 IOCP parameter</td>
</tr>
<tr>
<td>SYSPRINT</td>
<td>SYSPRINT data set for IOCP output listing (requested for build IOCDS)</td>
</tr>
<tr>
<td>SYSIN</td>
<td>Temporary work file used as IOCP input deck</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDPROF</td>
<td>HCD profile (when generating additional information for extended migration)</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example 1:**
The following example shows a *Build IOCDS* job.
Example 2:
The following example shows a Build IOCP input data set job.

Figure 265: Build IOCP input data set

Note: HCDCNTL specifies the value of the MSG1 parameter (in the example: IOCDSNAM) which is the identification information printed on the first ID line of the heading of the IOCP input data set. Specify the text without any keyword and quotation-marks. The first eight characters are used as IOCDS name.

Activate a production IODF

This utility function activates an I/O configuration from an existing production IODF. Both the active IODF and the target IODF have to be accessible.

This function is invoked by passing the ACTIVATE command in the parameter string (PARM='...'), as shown in the example. The parameter string uses the same syntax as described for the ACTIVATE command in z/OS MVS System Commands.

Batch invocation

A data set must be allocated to the following DD names when invoking the batch utility.
**Example**

```plaintext
//BBEIJOB JOB (3259,RZ-28), 'BBEI', NOTIFY=BBEI,CLASS=A,
// MSGCLASS=Q, MSGLEVEL=(1,1), REGION=0M
//*
//* ACTIVATE PRODUCTION IODF
//*
//WORK EXEC PGM=CBDMGHCP, PARM='ACTIVATE IODF=01, TEST'
//HCDMLOG DD DSN=BBEI.HCD.MSGLOG, DISP=OLD
//*
```

Figure 266: Activate IODF job

**Build an HCPRIO input data set**

This utility function creates an HCPRIO input data set using the definitions of a VM operating system in a production IODF.

The IODF from which I/O definitions are extracted has to be specified with DD name HCDIODFS, and the HCPRIO input data set with DD name HCDDECK.

This function is invoked by passing the following parameter string.

**Build an HCPRIO input data set**

![Diagram](#)

**H**

Function indicator for HCPRIO input data set

**osid**

VM operating system ID (up to 8 characters)

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>IODF from which I/O definitions are extracted</td>
</tr>
<tr>
<td>HCDDECK</td>
<td>VM I/O configuration data set</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example:**

```plaintext
//BWINJOB JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN,CLASS=A,
// MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
//*
//* BUILD AN HCPRIO INPUT DATA SET
//*
//HCPRIO EXEC PGM=CBDMGHCP, PARM='VMBUILD,H,VM1'
//HCDIODFS DD DSN=BWIN.IODF03, DISP=SHR
//HCDDECK  DD DSN=BWIN.HCPRIO3.DECK, DISP=OLD
//HCDMLOG  DD DSN=BWIN.HCD.DECK, DISP=OLD
//*
```
Build I/O configuration data

This utility function allows you to build I/O configuration statements from an IODF and to store them in a data set. The statements describe:

- Operating system configurations
- Processor configurations
- Switch configurations

The data sets created can be edited and re-migrated into the IODF.

In addition, you can build:

- JES3 initialization stream checker data
- CONFIGxx members (from production IODF only)
- FCP device data

You invoke this function by passing the following parameter string:

Build I/O configuration data

![Diagram of parameter string]

CONFIGxx_parameters

OS | PR | SW | FCP | JES | XX

Function indicator:

**OS**

Build OS configuration statements

- **osid**
  
  OS configuration ID (up to 8 characters)

  *
  
  If you specify * in place of an OS configuration ID, HCD searches for a list of OS configuration IDs in a data set allocated to HCDCNTL. If no data set has been allocated to DD name HCDCNTL, statements are built for all operating systems in the IODF.

**PR**

Build processor configuration statement

- **procid**
  
  Processor ID (up to 8 characters)

  *
  
  If you specify * in place of a processor ID, HCD searches for a list of processor IDs in a data set allocated to HCDCNTL. If no data set has been allocated to DD name HCDCNTL, statements are built for all processors in the IODF.
If only the coupling facility partition and CF receive channels are to be generated for a particular processor, the respective processor ID in the list has to be qualified by the keyword CF, according to the following syntax:

Processor ID

```
  procid
  CF
```

**SW**
Build switch configuration statements

```
  swid
    Switch ID (2 hexadecimal characters)
  *
    If you specify * in place of a switch ID, HCD searches for a list of switch IDs in a data set allocated to HCDCNTL. If no data set has been allocated to DD name HCDCNTL, statements are built for all switches in the IODF.

    Furthermore, specifying an asterisk (*) as switch ID, and setting the profile keyword SHOW_CONFIG_ALL to YES, additionally generates configuration statements for control units and devices without a processor and OS connection.
```

**FCP**
Export FCP device data into CSV output format

```
  procid
    Processor ID (up to 8 characters) for which to export the FCP device data.
```

**JES**
Build JES3 initialization stream checker data

```
  osid
    OS configuration ID (up to 8 characters)
  edt_id
    EDT ID (2 hexadecimal characters)
```

**XX**
Build CONFIGxx members

```
  xx
    Suffix of the CONFIGxx member to be built
  procid
    Processor ID (up to 8 characters)
  partition_id
    Partition name; required entry, if the processor is in LPAR mode (up to 8 characters).
  osid
    OS configuration ID (up to 8 characters)
  U/R
    U updates the current CONFIGxx member. The CHP and DEVICE statements are replaced and all other statements remain unchanged. This is the default.
    R deletes the current CONFIGxx member and generates new CHP and DEVICE statements.
  backup
    Name for the backup copy of the current CONFIGxx member (up to 8 characters).
  sysplex
    Name of the sysplex used for setting managed channel paths to ONLINE.
```

**Batch invocation**
A data set must be allocated to the following DD names when invoking the batch utility.
<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Source IODF</td>
</tr>
<tr>
<td>HCDDECK</td>
<td>Generated output data set For CONFIGxx this must be a data set name of a partitioned data set.</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HDCNTL</td>
<td>Optional for specifying a list of operating systems, processors, or switches Not applicable for building CONFIGxx member or JES3 inish data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Optional for capturing the trace if trace is activated.</td>
</tr>
</tbody>
</table>

**Example 1:**

The following example shows a job to build a configuration data set containing processor configuration PROC1 including its CF connections to processor PROC2.

```
//BWINJOB  JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
   //** BUILD Processor configuration statement
   //** BUILD EXEC PGM=CBDMGHCP,PARM='CONFIG,PR,*'
   //HCDIODFS DD   DSN=BWIN.IODF03,DISP=SHR
   //HCDDECK  DD   DSN=BWIN.IODF.03.DECKS(PROC1),DISP=SHR
   //HCDMLOG  DD   DSN=BWIN.HCD.LOG,DISP=OLD
   //HDCNTL  DD   *
   PROC1
   PROC2,CF
   /*
   // Example 2:

The following example shows a job to update CONFIG03 in data set SYS1.PARMLIB from processor configuration PROC1, partition LPAR1 and OS configuration MVS1 while saving the existing member under the name CONFBK03.

```
//BWINJOB  JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
   //** BUILD CONFIGxx
   //** BUILD EXEC PGM=CBDMGHCP,PARM='CONFIG,XX,03,PROC1,LPAR1,MVS1,U,CONFBK03'
   //HCDIODFS DD   DSN=BWIN.IODF03,DISP=SHR
   //HCDDECK  DD   DSN=SYS1.PARMLIB,DISP=SHR
   //HCDMLOG  DD   DSN=BWIN.HCD.LOG,DISP=OLD
   /*
   //

**Copy IODF**

This utility function copies the content of the IODF, addressed by DD name HCDIODFS, into another data set, addressed by DD name HCDIODFT. If the IODF has an associated activity log, that log is also copied. Likewise, if an HCM master configuration file (MCF) is associated to the IODF, it is also copied along with the IODF. However, a change log file (CHLOG), if available, is not copied. If the target IODF is the active IODF (used for IPL and holding the active processor configuration) the IODF will not be replaced and copy IODF will be rejected.

This function is invoked by passing the following parameter string.

**Copy an IODF**

```COPYIODF```
Note:
1. The target data set must be large enough to hold the source IODF.
2. The target IODF can be created by defining a VSAM DIV file and by initializing it using the utility Initialize IODF (described in “Initialize IODF” on page 301).
3. Both data sets must be valid IODFs.
4. If you copy an IODF which is enabled for multi-user access, this property is not inherited by an existing target IODF. However, a target IODF defined with the multi-user access property will always preserve this property, independent from the source IODF.

Batch invocation
A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Source IODF</td>
</tr>
<tr>
<td>HCDIODFT</td>
<td>Target IODF</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

For an example see the batch job in “Batch IODF copy example” on page 328.

Print configuration reports
This HCD batch utility function allows you to print reports about:
• The hardware definitions stored in the specified IODF.
• The I/O paths of an actual system compared to the definitions in the IODF.
• The processors, control units, and devices supported in your installation.

This function is invoked by passing the following parameter string.
Print a configuration report

C P U D S M E N T I X Y
Type of the report. Specify one or more of the following codes in any order, with no separating characters:

C
CSS report - CSS summary report

P
CSS report - channel path detail report

U
CSS report - control unit detail report

D
CSS report - device detail report

S
Switch report

M
OS report - OS devices

E
OS report - EDTs

N
OS report - NIP/VM consoles

T
CTC report

I
I/O Path report

X
Supported hardware report

Y
I/O definition reference
procid
Processor ID to limit a CSS, CTC connection or I/O Path report to a specific processor. If not specified for an I/O Path report, the ID of the active processor configuration is taken (=default).

partnm
Partition name to limit a CSS, CTC connection or I/O Path report to a specific logical partition. The processor ID must also be specified; otherwise, the partition name is ignored for the CSS and CTC connection report. For the I/O Path report, the partition name is defaulted to a partition that contains a device common to the specified or defaulted OS configuration.

osid
Operating system configuration ID to limit an OS report or an I/O Path report to a specific operating system configuration. If not specified for an I/O Path report, the ID of the active operating system configuration is taken (=default).

swid
Switch identifier to limit a Switch report to a specific switch.

system
If the sysplex name is also specified, the system name (1 - 8 alphanumeric characters) identifies the system of a sysplex for that the I/O Path report is to be generated. If the sysplex is not specified, the system name is the VTAM application name of the host for that the I/O Path report is to be generated. The default is the local system.

dsystems
Sysplex name (1 - 8 alphanumeric characters) to specify the sysplex of the system for which the I/O Path report is to be generated. If the I/O path uses zDAC, the sysplex must be the local syplex or left blank.

XML
Specify the XML keyword if you want to print your report in XML output format.

Note: It is recommended to print the I/O Path report separately from the other reports. However, if you want to print an I/O Path report together with any other reports, your limitations for the I/O Path report are propagated to all other specified reports. These limitations to a certain processor, partition or operating system can be either user-specified or HCD takes the active processor, partition or operating system as the default.

Batch invocation
A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPLIB</td>
<td>SYS1.SCBDHENU (required for I/O definition reference)</td>
</tr>
<tr>
<td>HCDIODFS</td>
<td>Source IODF (not required when printing the supported hardware report, and I/O definition reference)</td>
</tr>
<tr>
<td>HCDRPT</td>
<td>Output data set: record size 133, record format fixed block</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

Example 1:
```bash
/BBWINJOB JOB (3259,RZ-28), 'BBWIN', NOTIFY=BBWIN, CLASS=A,
/ MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
/*******************************************************************************
/ * PRINTS A CSS SUMMARY REPORT FOR PARTION PART1 OF PROCESSOR PROC1,
/ * A SWITCH REPORT FOR SWITCH 00,
/ * AN OS REPORT FOR DEVICES, EDT AND NIP CONSOLES OF OS CONFIGURATION MVS1
/*******************************************************************************
/REPORT1 EXEC PGM=CBDMGHCP,
/ PARM='REPORT,CSMEN,PROC1,PART1,MVS1,00'
```
Example 2:

```
//BWINJOB   JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,
//              MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
//*************************************************************/
//** PRINTS A SUPPORTED HARDWARE REPORT AND
//** AN I/O DEFINITION REFERENCE
//*************************************************************/
//REPORT2   EXEC PGM=CBDMGHCP,
//            PARM='REPORT,XY'
//STEPLIB   DD   DSN=SYS1.SCBDHENU,DISP=SHR
//HCDRPT    DD   SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//HCDMLOG   DD   DSN=BWIN.HCD.LOG,DISP=OLD
```

Example 3:

```
//BWINJOB   JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,
//              MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
//*************************************************************/
//** PRINTS AN I/O PATH REPORT OF THE ACTIVE CONFIGURATION
//** COMARED TO THE DEFINITIONS IN IODF SYS1.IODF00
//*************************************************************/
//REPORT3   EXEC PGM=CBDMGHCP,
//            PARM='REPORT,I'
//HCDIODFS  DD   DSN=SYS1.IODF00,DISP=SHR
//HCDRPT    DD   SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//HCDMLOG   DD   DSN=BWIN.HCD.LOG,DISP=OLD
```

Example 4:

```
//BHEIREP  JOB (DE03243,,RZ-29),'HEISSER',CLASS=A,REGION=4M,
//            MSGLEVEL=(1,1),NOTIFY=BHEI,MSGCLASS=Q
//******************************************************************
//*EXAMPLE OF A BATCH JOB THAT IS CREATED FROM THE DIALOG AND THAT
//*COMAPRED TO THE DEFINITIONS FOR THE PROCESSOR
//*VMABASIC AND THE OPERATING SYSTEM MVSVM IN BHEI.IODF01.WORK
//******************************************************************
//REP0    EXEC PROC=CBDJRPTS,
//             RPARM='REPORT,VMABASIC,,MVSVM,,HCDTST3,LOCAL'
//             IODF='BHEI.IODF01.WORK'
```

**Note:** For generating the I/O Path Reports which are printed in examples 3 and 4, TSA for System Automation for z/OS (I/O Operations) is required or the system must be capable of running zDAC. If running the I/O path report using zDAC, a report is only possible for a system in the local sysplex, which is capable to perform dynamic activates (token match). The operational data will only be given, if the report is created for the local system.

**Create a graphical configuration report**

This utility function allows you to produce a graphical representation of the I/O configuration based on the definitions in the IODF.

This function is invoked by passing the following parameter string.
Create a graphical configuration report

**GRAPHIC**

**TYPE=**

```
CU
  - CUFROM= cu
  - CUTO= cu
  - CUTYPE= cu
  - CUGRP= cu
```

**CF**

```
CHPID
  - PROC= proc
  - PART= part
```

**Options**

```
OPT= (EP, ES, EC, SD, EI, DCF, GML)
```

**TYPE**

Type of the report. Specify one of the following codes:

- **CU**
  - CU report
  - You can specify the following filter options:
    - **CUTO**
      - last control unit number of the desired range for the CU report (maximum: FFFF)
    - **CUFROM**
      - starting control unit number of the desired range for CU report (minimum: 0000)
    - **CUTYPE**
      - limit the CU report by control unit type for supported types (see “Supported hardware report” on page 369).
    - **CUGRP**
      - limit the CU report by control unit group; valid values are: DASD, TAPE, CLUSTER, U/R, COMM, MICR/OCR, GRAPHIC, OTHER.

- **SWITCH**
  - Switch report

- **CF**
  - CF connection report

- **CHPID**
  - CHPID report

- **LCU**
  - LCU report
**Procid**
Processor ID for which the LCU or CHPID report is produced.

**Partname**
Partition name to limit an LCU or CHPID report to one partition.

**OPT**
Options of the report. Specify one or more of the following codes in any order, separated by a comma:

- **EP** Exclude partition
- **ES** Exclude switch
- **EC** Exclude CTC control units
- **SD** Show control unit description (instead of serial number)
- **EI** Exclude index
- **DCF** DCF output format
- **GML** GML output format

**Note:**
1. If no output format is specified, the specification in the HCD profile is used. If the HCD profile does not specify a formatting type either, the default BookMaster format is used.
2. The output format GDF is not supported in batch mode.

**Batch invocation**
A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>Source IODF</td>
</tr>
<tr>
<td>HCDRPT</td>
<td>Output data set: record size 200, record format FB.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This must be a cataloged data set.</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message log data set</td>
</tr>
<tr>
<td>HCDPROF</td>
<td>HCD profile data set (if profile contains keywords concerning the graphical report)</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example:**
```
//BWINGCR1 JOB (DE3259,'71034-83'), 'BWIN', NOTIFY=BWIN,CLASS=A,
// MSGCLASS=0, MSGLEVEL=(1,1), REGION=4M
// * --------------------------------------------------------
// * Graphical Configuration Report                         
// * --------------------------------------------------------
//GCREP EXEC PGM=CBDMGHCP,
// PARM='GRAPHIC TYPE=CHPID,PROC=TEST3'
//HCDIODFS DD DSN=USER.IODF00.DBR4,DISP=SHR
//HCDRPT  DD DSN=USER.IODF00.DBR4.REPORT,
// DCB=(RECFM=FBA, LRECL=200, BLKSIZE=6400),
// SPACE=(TRK,(50,50)),DISP=(NEW,KEEP),UNIT=SYSALLDA
//HCDMLOG  DD DSN=USER.HCD.LOG,DISP=OLD
//HCDPROF  DD DSN=USER.HCD.PROF,DISP=SHR
//```
**Compare IODFs or CSS/OS Reports**

This utility function allows you to compare two IODFs and report the differences. You can compare the IODFs from the CSS, OS, and switch perspective.

In addition, you can limit the CSS, OS, and switch perspective by single compare reports, and the CSS perspective by LPARs.

You have to allocate the new IODF with DD name HCDIODFS, and the old IODF with DD name HCDIODFT for comparing IODFs. If you compare the CSS to the OS definition, you always compare within one IODF that must be allocated to HCDIODFS.

You invoke this function by passing the following parameter string.

**Note:** This parameter string must not exceed 100 characters.

**Compare IODFS or CSS/OS Reports**

---

Print Options for IODF Compare Report

Print Options for CSS/OS Compare Report
Print Options for CSS/OS Compare Report

Notes:

1 Required if processor runs in LPAR mode.

Print options for IODF Compare Report

Specify one or more of the following print options, without separating characters, in exactly this order. For more information about the print option types, see "How to print a Compare IODFs Report" on page 239.

A
Print added data

B
Print deleted data
C
Print unchanged data

D
Print unchanged item IDs

CL | C | OL | O | SL | S
Type of the report. Specify one or more of the following codes in any order, with no separating characters:

CL
Limit the CSS compare report by single compare reports and LPARs

PR
Processor compare

PF
PCIe Function compare

CS
Channel subsystem compare

PA
Partition compare

CP
Channel path compare

CA
Control unit attachment compare

DA
Device attachment compare

CU
Control unit compare

DV
Device compare

procid1
New processor ID

partn1
Partition name of the new processor

cssid1
selected CSS ID of the new XMP processor, either appended by a # and in parenthesis or appended by a dot (.). If the CSS ID is specified for one processor only (old or new), the CSS ID for the other processor is defaulted to CSS ID 0.

procid2
Old processor ID

partn2
Partition name of the old processor

cssid2
selected CSS ID of the old XMP processor, either appended by a # and in parenthesis or appended by a dot (.).

C
Indicates CSS compare report

procid1
New processor ID

cssid1
selected CSS ID of the new XMP processor, either appended by a # and in parenthesis or appended by a dot (.). If the CSS ID is specified for one processor only (old or new), the CSS ID for the other processor is defaulted to CSS ID 0.
procid2
Old processor ID

cssid2
selected CSS ID of the old XMP processor, either appended by a # and in parenthesis or appended by a dot (.)

OL
Limit OS compare report by single compare reports

  OS
  Operating system compare
  ED
  EDT compare
  GE
  Generic compare
  GU
  Generic update compare
  ES
  Esoteric compare
  NI
  OS console compare
  OD
  OS device compare

osid1
New operating system ID

osid2
Old operating system ID

O
Indicates OS compare report

osid1
New operating system ID

osid2
Old operating system ID

SL
Limit switch compare report by single compare reports

  SW
  Switch compare
  PO
  Switch port compare
  SC
  Switch configuration compare
  PC
  Port configuration compare

swid1
New switch ID

swid2
Old switch ID

S
Indicates SWITCH compare report
New switch ID

Old switch ID

Print options for CSS/OS Compare Report

C
Print all devices. If C is not selected, only devices are printed that are
• Defined for the CSS, but not for the OS
• Defined for the OS, but not for the CSS
• Defined for both, but of different device type

D
Indicates CSS/OS compare

procid
Processor ID

partn
Partition name. This is a required parameter, if the processor runs in LPAR mode. For more
information, see “Compare CSS / operating system views” on page 240.

osid
Operating system ID

Batch invocation

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEPLIB</td>
<td>SYS1.SCBDHENU (required for OS device compare)</td>
</tr>
<tr>
<td>HCDIODFS</td>
<td>New IODF</td>
</tr>
<tr>
<td>HCDIODFT</td>
<td>Old IODF (only for IODF compare)</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDRPT</td>
<td>Report data set; record size 133, record format fixed block</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

Example 1:
The following example shows a job to compare two IODFs.

```sql
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
   MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
//* COMPARE IODFs WITH ADDED AND DELETED DATA
//* DEVICE, DEVICE ATTACHMENT AND OS DEVICE COMPARE
//* LIMITED TO LPAR PROC2.LPAR1 ON BOTH AND OS PROD17
//*COMPARE1 EXEC PGM=CBDMGHCP,
   PARM='COMPARE, AB, CL, DVDA, PROC2, LPAR1, PROC2, LPAR1,
   OL, PROD17, PROD17'
   STEPLIB DD DSN=SYS1.SCBDHENU, DISP=SHR
   HCDIODFS DD DSN=BWIN.IODF06.WORK, DISP=SHR
   HCDIODFT DD DSN=BWIN.IODF03, DISP=SHR
   HCDRPT DD SYSOUT=*, DCB=(RECFM=FBA, LRECL=133, BLKSIZE=6650)
   HCDMLOG DD DSN=BWIN.HCD.LOG, DISP=OLD
```

Example 2:
The following example shows a job to **compare CSS/OS reports**.

```bash
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
// MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
//*
//* COMPARE CSS/OS CONFIGURATION BETWEEN
//* DEVICES CONNECTED TO PROC1, PART1 ON CSS SIDE
//* DEFINED TO OS MVS1
//*
//COMPARE2 EXEC PGM=CBDMGHCP,
// PARM='COMPARE,AB,D,PROC1,PART1,MVS1'
//HCDIODFS DD   DSN=BWIN.IODF06.WORK,DISP=SHR
//HCDRPT DD   SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//HCDMLOG DD   DSN=BWIN.HCD.LOG,DISP=OLD
//
```

**Import an IODF**

This utility function allows you to import configuration data (previously exported from another system) into an IODF. It is assumed that the mentioned configuration data has been received outside HCD, for example, using the TSO RECEIVE command, and stored in a sequential data set.

The data set containing IODF data to be imported has to be specified with DD name HCDIN.

This function is invoked by passing the following parameter string.

**Import an IODF**

![Diagram of Import an IODF process]

**IODF name**

Specifies the name of the target IODF (fully qualified).

**volume**

Specifies the volume serial number of the IODF destination. This parameter is neglected if the target IODF already exists and REPLACE is specified, or, if the data set is SMS managed.

**REPLACE**

Specifies that an IODF with the same name will be replaced by the received IODF. If REPLACE is not specified, the IODF is not replaced.

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIN</td>
<td>The data set containing IODF data to be imported</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
<tr>
<td>HCDTRACE</td>
<td>Trace data set (if trace is activated)</td>
</tr>
</tbody>
</table>

**Example:**

```bash
//BWINJOB  JOB (3259,RZ-28), 'BWIN', NOTIFY=BWIN, CLASS=A,
// MSGCLASS=Q, MSGLEVEL=(1,1), REGION=4M
//*
//* IMPORT AN IODF
//*
//IMPORT EXEC PGM=CBDMGHCP,
// PARM='IMPORT,BWIN.IODF08,DATA04'
//HCDIN DD   DSN=BWIN.EXPORTED.IODF03,DISP=SHR
//HCDMLOG DD   DSN=BWIN.HCD.LOG,DISP=OLD
//```
Export an IODF

This utility function allows you to send an IODF to another system.

You have to preallocate the IODF you want to export with DD name HCDIODFS.

If you want to send an IODF to an unattended z/OS system, you have to allocate a data set with DD name HCDCNTL. From this data set, HCD extracts information to set up the JCL to run on the unattended target system. You have to modify or adapt the JOB statement, JES routing statement(s), and JOBLIB information in this data set before you call the export utility.

This function needs to be executed in an TSO environment, for example, by invoking HCD under control of the TSO terminal monitor program IKJEFT01.

This function is invoked by passing the following parameter string.

**Export an IODF**

![Diagram of parameter string]

**userid**

Specifies the user ID of the target, or a nickname (nickname only if the IODF is not sent to an unattended z/OS system).

**node id**

Specifies the node ID of the target system, but only if the IODF is not sent to an unattended target system (otherwise it is ignored in favor of information provided by the JCL).

**IODF name**

Specifies the name of the target IODF. Default is the name of the source IODF prefixed with the specified target user ID. This parameter is only applicable if the IODF is sent to an unattended z/OS system, otherwise it is ignored.

**volume**

Specifies the volume serial number of the DASD on which the target IODF is created if it does not exist. This parameter is only applicable if the IODF is sent to an unattended z/OS system, and the IODF data set is not managed by SMS, otherwise it is ignored.

**ACTLOG**

Specifies that the appropriate Activity Log file should also be sent. If this parameter is missing, or the target is an unattended MVS system, it is not sent.

**NOREPLACE**

For unattended exports, this keyword provides overwrite protection for an IODF at the target system with the same name as the IODF to be exported.

**Batch invocation**

A data set must be allocated to the following DD names when invoking the batch utility.

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCDIODFS</td>
<td>IODF to be exported</td>
</tr>
<tr>
<td>HCDCNTL</td>
<td>JCL data set containing the JOB statement, the JES routing statement(s) and the JOBLIB information for sending the IODF to an unattended z/OS system.</td>
</tr>
<tr>
<td>SYSTSPRT</td>
<td>Print data set</td>
</tr>
<tr>
<td>SYSTSIN</td>
<td>SYSIN data set</td>
</tr>
<tr>
<td>HCDMLOG</td>
<td>HCD Message Log data set</td>
</tr>
</tbody>
</table>
### Example 1:

The following example shows a job to export an IODF to an attended system.

```plaintext
//BWINEX1 JOB (3259,7030-83), 'BWIN', CLASS=A, USER=BWIN,
//        MSGLEVEL=(1,1), NOTIFY=BWIN, MSGCLASS=Q, REGION=4M
/*
//EXPORT1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=* 
//HCDIODFS DD DSN=BWIN.IODF52.WORK,DISP=SHR
//HCDMLOG DD DSN=BWIN.HCD.LOG,DISP=OLD
//SYSTSRT DD SYSOUT=* 
//SYSTSN DD *
  CALL 'SYS1.LINKLIB(CBDMGHCP)', +
      'EXPORT,BMGN,BOEIT1'
/*
//
```

### Example 2:

The following example shows a job to export an IODF to an unattended z/OS system.

```plaintext
//BWINEX2 JOB (3259,7030-83), 'BWIN', CLASS=A, USER=BWIN,
//        MSGLEVEL=(1,1), NOTIFY=BWIN, MSGCLASS=Q, REGION=4M
//************************************************************
//* MODIFY AND ADAPT DATA SET ALLOCATED WITH DDNAME HCDCNTL
//* BEFORE YOU SUBMIT THIS JOB.
//*   USE HCDCNTL2 FOR A JES2 SYSTEM
//*   USE HCDCNTL3 FOR A JES3 SYSTEM
//************************************************************
//EXPORT1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=* 
//HCDIODFS DD DSN=BWIN.IODF52.WORK,DISP=SHR
//HCDMLOG DD DSN=BWIN.HCD.LOG,DISP=OLD
//HCDCNTL DD DSN=SYS1.SAMPLIB(HCDCNTL2),DISP=SHR
//SYSTSRT DD SYSOUT=* 
//SYSTSN DD *
  CALL 'SYS1.LINKLIB(CBDMGHCP)', +
      'EXPORT,BMGN,,BMGN.IODF11.WORK,DATA05'
/*
//
```

### Example 2.1:

The following example shows the JCL statements that may be specified in a data set allocated with DD name HCDCNTL for a JES3 system.

```plaintext
//BWINEX1 JOB (3259,7030-83), 'BWIN', CLASS=A, NOTIFY=BWIN,
//        MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
//*
//* JCL STATEMENTS SPECIFIED WITH DDNAME HCDCNTL
//*
//*ROUTE  XEQ  BOEIT1
//BBMGNIM NJB (3259,7030-83), 'BMGN', CLASS=A, 
//        MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M, 
//        USER=BMGN,PASSWORD=password
//OUT1    OUTPUT JESDS=ALL,DEFAULT=YES,DEST=BOEVS01.BWIN
```

### Example 2.2:

The following example shows the JCL statements that may be specified in a data set allocated with DD name HCDCNTL for a JES2 system.

```plaintext
//BBMGNIM JOB (3259,7030-83), 'BMGN', CLASS=A, 
//        MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M, 
//        USER=BMGN,PASSWORD=password
```
Note: You can replace the /*ROUTE statement by the /*XMIT statement.

/*XMIT XEQ BOETST1 DLM=xx

When you use the DLM parameter with the /*XMIT statement, you specify a two-character delimiter to terminate the data being transmitted. (For the end of the records to be transmitted, the default is /* in the input stream.)

Batch IODF copy example

You may want to use the batch initialize and copy IODF functions when performing system maintenance. For example, these functions can be used when copying all the data sets from one volume (that contains IODFs) to another volume.

The following sample jobs show how to copy multiple IODFs to an alternate volume. In the example it is assumed that the following IODFs exist: SYS1.IODF00 and SYS1.IODF03. The first sample job allocates corresponding data sets on volume DATA02. The second sample job initializes these data sets into IODFs, and copies the source IODFs into the newly created IODFs. Jobs similar to these are contained in member CBDIALIO and CBDSCPIO in SYS1.SAMPLIB.

```/* JOB TO DEFINE IODF
//DEFIODF JOB REGION=4M,...
//*
//* DEFINE NEW IODF DATASETS SYS2.IODF00, SYS2.IODF03
//*
//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD  SYSOUT=*  
//SYSIN DD   *
//SYSIN DD   *
  DEFINE CLUSTER (NAME (SYS2.IODF00.CLUSTER) -
  LINEAR -
  RECORDS (1024) -
  VOLUMES(DATA02) -
  )
  DATA (NAME (SYS2.IODF00))

  DEFINE CLUSTER (NAME (SYS2.IODF03.CLUSTER) -
  LINEAR -
  RECORDS (1024) -
  VOLUMES(DATA02) -
  )
  DATA (NAME (SYS2.IODF03))
//*/ JOB TO COPY IODF
//INIDIODF JOB REGION=4M,...
//*
//** INITIALIZE AND COPY SYS1.IODF00 to SYS2.IODF00
//**
//INIT1 EXEC PGM=CBDMGHCP,PARM='INITIODF SIZE=1024,ACTLOG=NO'
//HCDCNTL DD *
This IODF is a copy of SYS1.IODF00
/*
//HCIDIODF DD DSN=SYS2.IODF00,DISP=OLD
//HCIDIOMG DD SYSOUT=x,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//**** COPY1 EXEC PGM=CBDMGHCP,PARM='COPYIODF'
//HCIDIODFS DD DSN=SYS1.IODF00,DISP=SHR
//HCIDIOMFT DD DSN=SYS2.IODF00,DISP=OLD
//HCIDIOMLG DD SYSOUT=x,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//**
//** INITIALIZE AND COPY SYS1.IODF03 to SYS2.IODF03
//**
//INIT2 EXEC PGM=CBDMGHCP,PARM='INITIODF SIZE=1024,ACTLOG=NO'
//HCDCNTL DD *
This IODF is a copy of SYS1.IODF03
/*
//HCIDIODFT DD DSN=SYS2.IODF03,DISP=OLD
//HCIDIOMLG DD SYSOUT=x,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=6650)
//******* COPY2 EXEC PGM=CBDMGHCP,PARM='COPYIODF'```
Note:

1. This batch job issues job message IEC161I, which can be ignored.
2. The VSAM DIV file consists of a data and a cluster file. According to the naming convention, the name of the data file is the IODF name (in this example SYS1.IODF01), and .CLUSTER is appended to the data file for a cluster file. Append .CLUSTER to the IODF name in the DEFINE CLUSTER statement (in this example SYS1.IODF01.CLUSTER).

When designating the number of records to be allocated in an IODF (specified on the DEFINE CLUSTER statement and as a PARM value on the INITIODF job step), it is important that the target IODF be allocated at least as big as the source IODF. While using the HCD dialog, you can use the SHOWIODF command from the command line, or the View action bar choice to display the number of records allocated in the source IODF.

Note: Remember to also copy the associated LOADxx members. For information on the LOADxx members, see z/OS MVS Initialization and Tuning Reference and z/OS MVS Initialization and Tuning Guide.

List of standard DD names

Standard DD names are used in the job control statements that define the data sets used by HCD. These names are shown in Table 23 on page 329. If you want to change these names, you must create a list of alternate DD names, using the standard format for such a list.

<table>
<thead>
<tr>
<th>DD name</th>
<th>HCD Task</th>
<th>Data Set Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>HCDLIB</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembler macro library</td>
</tr>
<tr>
<td>5</td>
<td>HCDIN</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Migration input</td>
</tr>
<tr>
<td>6</td>
<td>HCDPRINT</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Migration log (messages)</td>
</tr>
<tr>
<td>7</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HCDUT1</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembler work file</td>
</tr>
<tr>
<td>9</td>
<td>HCDUT2</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified IOCP, MVSCP, and HCPRI0 input to assembler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity Log</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target activity log during copy</td>
</tr>
<tr>
<td>10</td>
<td>HCDUT3</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembler output (object) data</td>
</tr>
<tr>
<td>11</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>HCDTERM</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembler and loader messages</td>
</tr>
<tr>
<td>13</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>not used</td>
<td></td>
</tr>
</tbody>
</table>
### Table 23: Standard DD names Used by HCD (continued)

<table>
<thead>
<tr>
<th>DD name</th>
<th>HCD Task</th>
<th>Data Set Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>not used</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>HCDRPT</td>
<td>Query/print</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCD reports</td>
</tr>
<tr>
<td>18</td>
<td>HCDALOG</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activity log</td>
</tr>
<tr>
<td>19</td>
<td>HCDJES3</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JES3 initialization stream checker data</td>
</tr>
<tr>
<td>20</td>
<td>HCDASMP</td>
<td>Migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assembler output listing</td>
</tr>
<tr>
<td>21</td>
<td>HCDECK</td>
<td>Activation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IOCP and HCPRIO input data set (output)</td>
</tr>
<tr>
<td>22</td>
<td>HCDIODFP</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First IODF</td>
</tr>
<tr>
<td>23</td>
<td>HCDIODFS</td>
<td>Maintain IODF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source IODF (for COPY, for example)</td>
</tr>
<tr>
<td>24</td>
<td>HCDIODFT</td>
<td>Maintain IODF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Target IODF</td>
</tr>
<tr>
<td>25</td>
<td>HCDPROF</td>
<td>Tailor HCD defaults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCD profile definitions</td>
</tr>
<tr>
<td>26</td>
<td>HCDMLOG</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Message log</td>
</tr>
<tr>
<td>27</td>
<td>HCDTRACE</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trace data set (if trace is activated)</td>
</tr>
<tr>
<td>28</td>
<td>HCDCNTL</td>
<td>Activation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control file for Build IOCDS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control file for Build IOCP input data set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JCL data set for Import/Export IODF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IODF description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List of configurations for Build I/O configuration data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCP/IP connection table</td>
</tr>
</tbody>
</table>

### List of alternate DD names

If used, this optional list, must start on a halfword boundary that is not also a fullword boundary.

- The first two bytes must contain a binary count of the number of bytes in the rest of the list.
- The rest of the list specifies alternate DD names that you wish to use in place of the standard DD names.
  - DD names in the alternate list must appear in the same sequence as they appear in the standard list.
  - Each name must be eight characters long. If a name contains fewer than eight characters, pad it with blanks. If you omit an alternate DD name, set that entry in the alternate DD names list to binary 0.
  - Entries in the alternate DD names list that correspond to empty entries in the standard DD names list must be set to binary 0.

End of Programming Interface information
Chapter 14. Security and other considerations

This information unit discusses the following topics:

• Security-related considerations
• Catalog-related considerations
• Considerations concerning data sets cataloged with an esoteric device group name
• SMS-related considerations
• ISPF and TSO/E aspects that you need to consider
• z/VM-related considerations

Security-related considerations

An appropriate resource-level security facility, such as Resource Access Control Facility (RACF®) 1.9 or an equivalent security product, is required to control access to the data sets used by HCD. You perform the access control in two steps:

1. Define the necessary RACF profiles
2. Give users access authority

Note: If no security product is installed, you cannot perform the activate function from HCD.

Defining RACF profiles

You define three types of profiles:

1. Data Set Profiles
   Define data set profiles for all data sets used by HCD.

2. OPERCMDS Class Profile:
   Define the profile MVS.ACTIVATE to invoke the dynamic reconfiguration function under HCD, to use the MVS operator command ACTIVATE from an MVS console, or to use the HCD I/O Autoconfiguration functionality. For a description of the command syntax, see z/OS MVS System Commands. For a description of I/O Autoconfiguration, see Chapter 8, “How to work with I/O Autoconfiguration,” on page 167.

   If you issue the ACTIVATE command, the I/O supervisor calls jobname IEASYSAS stepname IOSAS to assist in the activate procedure. IOSAS requires read access to the IODF data sets. Because the default entry for IOSAS in the Program Properties Table (PPT) is PASS, RACF checking occurs. ICH408I is the result of an ACTIVATE IODF=XX command. To ensure the successful completion of the activate process, you have to choose one of the following alternatives:

   • Place the IOSAS task into the RACF started task table (ICHRIN03) and indicate that the user is authorized.
   • Define the IODF data sets to RACF with UACC=READ.
   • Add IOSAS as an entry in the Started Procedures Table with a valid user ID. This user ID must have read access to the SYS1.NUCLEUS and the IODF data sets.

   The ACTIVATE command needs UPDATE access, regardless whether the TEST option is specified or not.

   You also have to define the profile MVS.DISPLAY.IOS with read access if you wish to work from the sysplex member list to view the active configuration status or to process a CONFIGxx member.

3. FACILITY Class Profiles:
Define the following profiles:

- CBD.CPC.IPLPARM to query and update the IPLADDR and IPLPARAM attribute values of the last IPL, and to be used for next IPL.
- CBD.CPC.IOCDS to query and update IOCDS control information.
- CBD.CPC.ACTIVATE.netid.nau to protect the hardware only dynamic activation function. Netid and nau refer to the SNA name of the processor where you want to perform the hardware only activation.

To enable users to work with CPC images (see “Activate a configuration HMC-wide” on page 211), you need to define the following profile:

- HWI.TARGET.network.cpcname.* - using the BCPii community name specified with APPLDATA('community_name'). This community name must be defined on the support element of each CPC that is queried.

See also “Access to HWI.* profiles” on page 334.

**Giving users access authority**

The access authority you can give to a user depends on the profile.

**Access to data set profiles**

You can give READ, UPDATE, or ALTER access to IODFs in general or to a specific IODF.

**Access to profile MVS.ACTIVATE**

You must give UPDATE access to allow the user to activate a configuration change or to use the I/O Autoconfiguration function.

You can give READ access if you want to restrict the `activate` function to the test option.

**Access to profile CBD.CPC.IPLPARM**

**NONE**

Indicated that the user is not allowed to query or change the IPLADDR and IPLPARAM attribute values. This is also the case if profile CBD.CPC.IOCDS is not defined or RACF is not installed.

**READ**

Allows the user to query the IPLADDR and IPLPARAM attribute values; however changing the IPLADDR and IPLPARAM attribute values is not allowed.

**UPDATE**

Allows the user to update the IPLADDR and IPLPARAM attribute values.

Table 24 on page 332 shows the relationship between HCD IPL attribute management functions and the CBD.CPC.IPLPARM access authority. Option 2.11 refers to option 2 on the Primary Task Selection panel and option 11 on the resulting panel.

<table>
<thead>
<tr>
<th>Option</th>
<th>HCD IPL Attribute Management Functions</th>
<th>RACF Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11</td>
<td>List processor cluster</td>
<td>READ (or READ authority in CBD.CPC.IOCDS)</td>
</tr>
<tr>
<td>2.11</td>
<td>View IPL attributes</td>
<td>READ</td>
</tr>
<tr>
<td>2.11</td>
<td>Update NEXT IPL attributes</td>
<td>UPDATE</td>
</tr>
</tbody>
</table>
Access to profile CBD.CPC.IOCDS

If profile CBD.CPC.IOCDS is not defined or RACF is not installed, the local IOCDS functions (that is for processors with no SNA address specified) work as before, that is, the operator will be requested to approve the write-IOCDS request.

The new remote IOCDS functions (that is for processors with an SNA address specified) require RACF authorization.

**NONE**
- The user is not allowed to query or change IOCDS control information, or to write an IOCDS (neither by HCD nor IOCP).

**READ**
- Allows the user to query IOCDS control information. Changing IOCDS control information or writing an IOCDS is not allowed (neither by HCD nor IOCP).

**UPDATE**
- Allows the user to write IOCDSs (by HCD or IOCP), or to change and view IOCDS control information. If profile CBD.CPC.IOCDS is defined, then the operator will not be requested to approve the writing of an IOCDS. (That is, only users with update access to profile CBD.CPC.IOCDS are allowed to write an IOCDS.)

Table 25 on page 333 shows the relationship between IOCDS management functions and the CBD.CPC.IOCDS access authority. The first column in the table refers to the options you have to select to get to the HCD functions, that is, you start with option 2 on the primary selection panel and select options 2, 6, or 11 on the resulting panel.

<table>
<thead>
<tr>
<th>Option</th>
<th>HCD IOCDS Management Functions</th>
<th>RACF Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11</td>
<td>List processor cluster</td>
<td>READ (or READ authority in CBD.CPC.IPLPARM)</td>
</tr>
<tr>
<td>2.11</td>
<td>View IOCDS control information</td>
<td>READ</td>
</tr>
<tr>
<td>2.11</td>
<td>Update IOCDS control information (switch IOCDS, enable or disable write protection)</td>
<td>UPDATE</td>
</tr>
<tr>
<td>2.2 or 2.6</td>
<td>Build IOCDS (SNA address not defined for processor or batch IOCP job runs on SP 4.3 system)</td>
<td>UPDATE ¹ or Profile not defined to RACF ²</td>
</tr>
<tr>
<td>2.2 or 2.6 or 2.11</td>
<td>Build IOCDS (SNA address defined for processor and batch IOCP job runs on SP 5.1 system)</td>
<td>UPDATE ¹</td>
</tr>
<tr>
<td>--</td>
<td>Direct invocation of IOCP</td>
<td>UPDATE ¹ or Profile not defined to RACF ²</td>
</tr>
</tbody>
</table>
Note:
¹ The build IOCDS function does not require authorization by the system operator, that is, no WTOR message is written.
² A WTOR message will be issued to the operator to authorize the build IOCDS function.

For more information on security considerations for IOCDS management, refer to the IOCP User’s Guide.

Access to profile CBD.CPC.ACTIVATE.netid.nau
The hardware only dynamic activate function requires SAF authorization.

NONE
The user is not allowed to perform any of the functions on the remote processor. This is the same as if the profile is not defined.

READ
Allows the user to query the current activation information or to download the active configuration of the remote processor.

UPDATE
Allows the user to query the current activation information and to initiate a hardware only activate on the remote processor.

Access to HWI.* profiles
To enable users to work with CPC images as described in “Activate a configuration HMC-wide” on page 211, define access rights as follows:

• As the profile HWI.APPLNAME.HWISERV in the FACILITY class of the security product controls which applications can use BCPii services, the security administrator must give at least READ access to this resource.
• READ access is required for users of any specific CPC resource HWI.TARGET.network.cpcname.* in the FACILITY class of the security product.

For more information, refer to z/OS MVS Programming: Callable Services for High-Level Languages.

How to set up PassTickets for working with CPC images on z/OS
If you do not provide a password in the connection table for the remote systems, HCD uses a PassTickets for verifying the authorization for the user ID on this remote system. To allow this, your z/OS security product must support creating PassTicketss(R_GenSec) and their evaluation through the SAF interfaces. If you are using a security product other than z/OS IBM Security Server (RACF®), check with your vendor.

How to configure PassTickets depends on your external security manager. The following samples show how to define PassTickets with RACF.

To configure PassTickets support for HCD to work with CPC images, you must provide the corresponding RACF definitions on both the managing system and on the affected target systems.

If you do not provide a password in the connection table for the remote systems, HCD uses a PassTickets for verifying the authorization for the user ID on this remote system. To configure PassTickets support for HCD to work with CPC images, you must provide the corresponding RACF definitions on both the managing system and on the affected target systems.

For more information about PassTickets, see z/OS Security Server RACF Security Administrator’s Guide.

A PassTickets is validated against a RACF profile name. The RACF profile name for the HCD dispatcher is CBDSERVE. You need to perform the following steps on both the managing and the target system, except of Step 3.

Step 1:
Before creating the necessary application profile, the RACF class PTKTDATA must be activated, if not already done:

Security Server (RACF) Example 1

```
SETROPTS CLASSACT(PTKTDATA)
SETROPTS RACLIST(PTKTDATA)
```

**Step 2:**
Then define a profile for the HCD dispatcher (CBDSERVE) with an associated encryption key. The key must be the same on both the system on which the PassTickets is to be generated (the HCD client system) and on the system on which the PassTickets is to be verified (the remote system).

Security Server (RACF) Example 2

```
RDEFINE PTKTDATA CBDSERVE SSIGNON([KEYENCRYPTED|KEYMASKED](<key>))
where <key> is a user-supplied 16-digit value used to generate the PassTickets. You can specify a value of your choice. Valid characters are 0 - 9 and A - F.
Example:
RDEFINE PTKTDATA CBDSERVE SSIGNON(KEYMASKED(0123456789ABCDEF))
```

**Step 3:** (on the managing system only)
The user calling the HCD dispatcher must have RACF permissions in order to generate PassTickets. Define a profile in the PTKTDATA class controlling access to the PassTickets services and set the universal access authority to NONE:

Security Server (RACF) Example 3

```
RDEFINE PTKTDATA IRRPTAUTH.CBDSERVE.* UACC(NONE)  <-- all user IDs
RDEFINE PTKTDATA IRRPTAUTH.CBDSERVE.DOCU UACC(NONE)  <-- a specific user ID
```

To generate PassTickets, all intended user IDs connecting to CBDSERVE need update permission to the newly created profile:

Security Server (RACF) Example 4

```
PERMIT IRRPTAUTH.CBDSERVE.* CLASS(PTKTDATA) ID(<user>) ACCESS(UPDATE)
where <user> is the user ID connecting to the HCD dispatcher CBDSERVE.
```

**Step 4:**
Finally you must activate the changes:

Security Server (RACF) Example 5

```
SETROPTS RACLIST(PTKTDATA) REFRESH
```

---

**How to set up PassTickets for working with CPC images on z/VM**

PassTickets are supported as an authentication method with z/VM 5.4 or later. The setup for using PassTickets on a remote z/VM system requires the same RACF configuration steps as for a z/OS remote system. Since the HCD dispatcher for z/VM uses the RACROUTE macro, the configuration steps described in z/VM Security Server RACROUTE Macro Reference are also required.
Providing additional security for devices

If your system has stringent security requirements and includes Resource Access Control Facility (RACF), you can ensure that only certain programs can allocate unit record, communication, or graphics devices. These programs include Print Services Facility (PSF) for printers, Advanced Communication Facility/Virtual Telecommunications Access Method (ACF/VTAM) for communication or graphics devices, and JES2 or JES3 for unit record, communication, or graphics devices.

When a user attempts to allocate a device, the system uses SAF (the system authorization facility) to issue an authorization check. If RACF is installed, it checks a profile in the DEVICES class to determine whether the user can access the device. If the user does not have authority to access the device, the allocation fails. (Note that the system does not retry an allocation request that fails because the user is not authorized to access the device.)

Work with your RACF security administrator to set up profiles in the DEVICES class:

1. Determine your exact security requirements. Consider questions such as these:
   - Are there some devices that only a few users can use?
   - Are there some devices that all users can use?
   - Do some devices share the same security requirements?
2. Work with your RACF security administrator to assign profile names for the devices to be protected. Assign a discrete profile name to each device that has a unique security requirement. Assign a generic profile name to each device group that shares security requirements. For devices, RACF profile names include the following information:

   `sysid`
   This is the system identifier, which is defined on the SYSNAME keyword in the IEASYSxx member of SYS1.PARMLIB.

   **Note:** The system identifier is necessary only if different devices with the same device class, unit name, and device address can be attached to multiple systems and they have different security requirements. In most cases, you should specify an asterisk (*) for this qualifier.

   `device-class`
   This can be one of the following UCB device classes:
   - **TP**
     Teleprocessing or communications devices
   - **UR**
     Unit record devices
   - **GRAPHIC**
     Graphic devices. These device classes are consistent with the class names used on the DISPLAY U operator command.

   `unit-name`
   This is a generic name (such as 3800) that identifies the device or devices.

For more details, see *z/OS Security Server RACF Security Administrator's Guide*.

Catalog considerations

One IODF can contain configuration data mirroring multiple processor or logical partition system images, but being a VSAM data set, it can be cataloged in only one catalog. Therefore, if you wish to share an IODF data set among multiple systems and each system is using a separate master catalog, you must define (in the master catalog of each system) an alias that relates to the user catalog on the DASD that is shared among the systems. Define aliases and the user catalog before using HCD to define IODF data sets. Figure 267 on page 337 shows the recommended IODF catalog structure for IODFs.
**Figure 267: Recommended IODF catalog structure**

**Note:** It is useful to catalog the IODF in a user catalog which resides on the same volume as the IODF. That way if the volume fails and must be restored, the catalog/IODF connection is always preserved across the restore. The catalog is used to reference the IODF during HCD definition activities and during dynamic I/O reconfiguration, not during IPL.

---

**Data sets cataloged with an esoteric device group name**

When using HCD, data sets that were previously cataloged with an esoteric device group name (for example, SYSDA) by use of the DEFINE NONVSAM or IMPORT CONNECT command of the Integrated Catalog Facility, can cause unpredictable results if such a data set is accessed through the catalog. The reason is that the catalog entry contains the EDT-index pointing to the esoteric. The order of the esoteric in the EDT is no longer determined by the order in which the esoterics are defined, because HCD arranges the esoterics alphabetically.

To avoid this problem, you can do one of the following:

- Specify a token for the esoterics.

  The esoteric token is used by allocation to find the appropriate esoteric for a data set that has been cataloged using the esoteric. You no longer have to maintain a chronological order and may delete and add esoterics without getting access problems for data sets that are cataloged using esoterics. Tokens for system built esoterics (for example, SYSALLDA) are generated by allocation and always have the same value (for SYSALLDA 9999 decimal, for example). You cannot control the token for system built esoterics. To circumvent the problem, define a new user esoteric with a token that corresponds to the EDT index in the catalog entry and that contains the same device list as SYSALLDA.

To get to the EDT index:

- Use the LISTCAT command, or,
- If you have your MVSCP deck, count the UNITNAME statements for esoterics up to the statement that defines the esoteric name to get to the number for the token.
• Re-catalog the data sets with a generic device type name (for example, 3380), before using HCD to migrate IOCP/MVSCP data.

To determine if you have any data sets that have been cataloged with an esoteric, use the scan utility that is provided in the SYS1.SAMPLIB member IEFESOJL. This utility scans a catalog and lists the data sets that were cataloged with esoteric device group names. The prologue of this SAMPLIB member contains information on the modifications you have to make to the JCL to run the job in your installation.

**SMS-related considerations**

In a system managed by the storage management subsystem (SMS) you need to choose one of the following alternatives:

- The IODF data set is not managed by SMS. You can then specify the IODF volume serial number when creating an IODF.
- The IODF data set is managed by SMS. The automatic class selection (ACS) routines must be set up to automatically place the IODFs on the IODF volume. In this case SMS ignores the specified volume serial number except to pass it as a symbol to the ACS routines. The ACS routines, especially the storage group ACS routine, can use the volume serial number and the unit name to decide the SMS classes and the storage group.

**Note:** These considerations are important only for a production IODF that is used for IPL.

You also have to consider that HCD dynamically allocates some data sets (with fixed naming conventions). These data sets are:

- The data set used for the activity log. For more information see “Activity logging and change logging” on page 44. If an ACTLOG data set does not yet exist, HCD dynamically allocates one, using ESOTERIC system defaults (ALLOCxx of SYS1.PARMLIB, respectively the UADS entry). You have to make sure that the entries in your ACS routines do not conflict with the SMS provided defaults. For example, if your ACTLOG data set name is not managed by SMS, whereas your default ESOTERIC defines an SMS managed volume, an allocation error might result. If you want to use a specific volume, specify a volume serial number to allocate a new activity log in the HCD profile (see “Defining an HCD profile” on page 16).

- The data sets used by HCD for the migration of IOCP/MVSCP/HCPRIO data (HCDPRINT, HCDASMP, HCDUT1, HCDUT2, HCDUT3). For detailed information refer to “Insufficient data set sizes” on page 297.

- The data sets used when building an HCPRIO or IOCP input data set (both named HCDDECK), and the data set used when creating JES3 Initialization Stream Checker data (named HCDJES3).

**ISPF-related considerations**

The usual ISPF facilities are available for the HCD dialog. For example, you can:

- Suppress the display of function key assignments.
- Display panel identifiers.
- Change the position of the command line.

HCD supports the ISPF split-screen facility with the F2=Split and F9=Swap keys. So, if necessary, you can perform other ISPF operations during an HCD session. HCD cannot be used in two parallel ISPF sessions.

Compared to traditional ISPF applications, HCD enables system programmers to control a great number of hardware configuration objects by their related actions.
**z/VM-related considerations**

HCD allows the definition of VM operating systems and their devices including their VM-specific parameters. This is triggered by the "operating system type - VM" when defining an operating system. Figure 268 on page 339 shows the panel where you can enter the operating system type.

![Add Operating System Configuration](image)

**Figure 268: Define a VM operating system**

When you attach a device to a VM operating system, the Define Device Parameters / Features panel displays the operating system-specific parameters. See Figure 269 on page 339 for an example of attaching a device to a VM operating system.

![Define Device Parameters / Features](image)

**Figure 269: Define Device Parameters/Features for VM Device**

The VM specific functions of HCD consist of:

- Defining an operating system of type 'VM'.
- Defining devices to a VM operating system.
- Defining VM consoles.
- Migrating an HCPRIO input data set to an IODF. For more details refer to Chapter 12, “How to migrate existing input data sets,” on page 249.
- Creating an HCPRIO input data set from a production IODF. See “Build I/O configuration data” on page 200 for a description how to create an HCPRIO input data set based on the definitions in the IODF.
- Issuing VM device reports (including VM console report).

In a mixed environment, running a z/OS system in one partition and z/VM in another partition, any change of the VM definitions (for example, add a device) can be done without a POR for the processor. The **Dynamic I/O Reconfiguration** function for the hardware can be used to add this device to the Channel...
Subsystem (CSS). In a second step, a device can be set online dynamically. You do not have to IPL the z/VM system image. For more details refer to z/VM CP Planning and Administration.

If you are running z/OS and z/VM on separate processors, you can configure both systems with HCD in the same IODF. You can export the IODF to the z/VM system and activate it there using z/VM HCD. See z/VM: I/O Configuration for more details.
Appendix A. How to navigate through the dialog

This appendix illustrates the flow from the options on the HCD **Primary Task Selection** panel and the various actions that can be taken from each option. The panels that appear for option 1 provide an action bar at the top and a context menu for each object. Figure 279 on page 346 shows the general action bar valid for the action list panels. Some action lists offer special action bar choices that are not shown in the figure (for example the Show/Hide action bar choice on the Device List invoked from the Operating System List). Figure 273 on page 342 to Figure 277 on page 344 shows the options on the context menu and the navigation possibilities to other panels. Almost all of the options on the context menu can be directly selected by entering the action code next to the item in the list to be selected. Available action codes are shown in parentheses below the “Options Available” heading.

**Figure 270: Primary Task Selection panel**

**Figure 271: HCD - Edit profile options and policies - Option 0**
1. Define, Modify, or View Configuration Data

Options Available

1. Operating system configurations
   - consoles
   - system-defined generics
   - EDTs
   - esoterics
   - user-modified generics
2. Switches
   - ports
   - switch configurations
   - port matrix
3. Processors
   - channel subsystems
   - partitions
   - channel paths
   - PCIe functions
4. Control units
5. I/O devices
6. Discovered new and changed control units and I/O devices

Figure 272: HCD - Define, Modify, or View Configuration Data - Option 1

1.1 Define Operations Config

Actions on device groups

(a) Add like
(c) Change
(t) Device type group change
(g) Subchannel Set ID group change
(n) Disconnect from OS
(d) Delete
(s) Work with single I/O devices
(v) View device group definition
(i) View logical CU information
(k) View related CTC connections
(h) View graphically

Actions on single devices

(a) Add like
(c) Change
(o) OS group change
(t) Device type group change
(e) Attribute group change
(m) Subchannel Set ID group change
(n) Disconnect from OS
(i) *Prime serial number and VOLSER
(d) Delete
(v) View device definition
(l) View logical CU information
(k) View related CTC connections
(h) View graphically

Figure 273: HCD - Define Operating System - Option 1.1
How to navigate through the dialog

**Figure 274: HCD - Define Switch - Option 1.2**

**Figure 275: HCD - Define Processor and Channel Path - Option 1.3**
Figure 276: HCD - Define Control Unit - Option 1.4

Figure 277: HCD - Define I/O Device - Option 1.5
### HCD - Primary Tasks - Options 2 - 7

<table>
<thead>
<tr>
<th>Task Menu</th>
<th>Action Bar</th>
<th>Options Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Activate or Process Config Data</td>
<td>N/A</td>
<td>Build production I/O definition file&lt;br&gt;Build IOCDS&lt;br&gt;Create JES3 initialization stream data&lt;br&gt;View active configuration&lt;br&gt;Activate or verify configuration dyn.&lt;br&gt;Activate configuration sysplex-wide&lt;br&gt;*Activate switch configuration&lt;br&gt;*Save switch configuration&lt;br&gt;Build I/O configuration data&lt;br&gt;Build and manage&lt;br&gt;System z cluster IOCDSs&lt;br&gt;IPL attributes and dynamic I/O changes&lt;br&gt;Build validated work I/O definition file&lt;br&gt;Activate new hardware and software configuration&lt;br&gt;Activate software config. only. Validate&lt;br&gt;Hardware changes&lt;br&gt;Activate software configuration only&lt;br&gt;Verify active configuration against system&lt;br&gt;Verify target configuration against system&lt;br&gt;Build CONFIGxx member</td>
</tr>
<tr>
<td>3 Print or Compare</td>
<td>N/A</td>
<td>Print configuration reports&lt;br&gt;Print the activity log&lt;br&gt;View the activity log&lt;br&gt;Compare IODFs&lt;br&gt;Compare CSS / operating system views&lt;br&gt;View configuration status&lt;br&gt;Verify active configuration against system&lt;br&gt;Verify target configuration against system&lt;br&gt;Build CONFIGxx member&lt;br&gt;Process DISPLAY M=CONFIG(xx) command&lt;br&gt;LCU report&lt;br&gt;CU report&lt;br&gt;CHPID report&lt;br&gt;Switch report&lt;br&gt;CF connection report&lt;br&gt;Work with IOCDSs&lt;br&gt;Work with IPL attributes&lt;br&gt;Select other processor config&lt;br&gt;Work with CPC images&lt;br&gt;Activate SW config&lt;br&gt;Activate SW and HW config&lt;br&gt;Resume activation of target config&lt;br&gt;Reset source configuration&lt;br&gt;View messages&lt;br&gt;Delete messages&lt;br&gt;Transmit IODF&lt;br&gt;Process system CMD&lt;br&gt;Add like&lt;br&gt;Delete&lt;br&gt;Work with configuration package objects&lt;br&gt;Transmit configuration package</td>
</tr>
<tr>
<td>4 Create or View Graphic</td>
<td>N/A</td>
<td>Create or view graphical configuration report&lt;br&gt;Build validated work I/O definition file&lt;br&gt;Activate new hardware and software configuration&lt;br&gt;Activate software config. only. Validate&lt;br&gt;Hardware changes&lt;br&gt;Activate software configuration only&lt;br&gt;Verify active configuration against system&lt;br&gt;Verify target configuration against system&lt;br&gt;Build CONFIGxx member</td>
</tr>
<tr>
<td>5 Migrate Config Data</td>
<td>N/A</td>
<td>Migrate IOCPS/OS data&lt;br&gt;*Migrate switch configuration data&lt;br&gt;Delete I/O definition file&lt;br&gt;Copy I/O definition file&lt;br&gt;Change I/O definition file attributes&lt;br&gt;View I/O definition file information&lt;br&gt;Export I/O definition file&lt;br&gt;Import I/O definition file&lt;br&gt;Work with Configuration Packages&lt;br&gt;Upgrade I/O definition file to new format&lt;br&gt;Add like&lt;br&gt;Delete&lt;br&gt;Work with configuration package objects&lt;br&gt;Transmit configuration package</td>
</tr>
<tr>
<td>6 Maintain I/O Def. Files</td>
<td>N/A</td>
<td>List supported processors&lt;br&gt;List supported switches&lt;br&gt;List supported control units&lt;br&gt;List supported devices&lt;br&gt;List installed UIMs&lt;br&gt;List supported processors&lt;br&gt;List supported switches&lt;br&gt;List supported control units&lt;br&gt;List supported devices&lt;br&gt;List installed UIMs&lt;br&gt;LCU report&lt;br&gt;CU report&lt;br&gt;CHPID report&lt;br&gt;Switch report&lt;br&gt;CF connection report&lt;br&gt;Work with IOCDSs&lt;br&gt;Work with IPL attributes&lt;br&gt;Select other processor config&lt;br&gt;Work with CPC images&lt;br&gt;Activate SW config&lt;br&gt;Activate SW and HW config&lt;br&gt;Resume activation of target config&lt;br&gt;Reset source config&lt;br&gt;View messages&lt;br&gt;Delete messages&lt;br&gt;Transmit IODF&lt;br&gt;Process system CMD&lt;br&gt;Add like&lt;br&gt;Delete&lt;br&gt;Work with configuration package objects&lt;br&gt;Transmit configuration package</td>
</tr>
<tr>
<td>7 Query Supported Hardware/inst. UIMs</td>
<td>N/A</td>
<td>List supported processors&lt;br&gt;List supported switches&lt;br&gt;List supported control units&lt;br&gt;List supported devices&lt;br&gt;List installed UIMs&lt;br&gt;List supported processors&lt;br&gt;List supported switches&lt;br&gt;List supported control units&lt;br&gt;List supported devices&lt;br&gt;List installed UIMs&lt;br&gt;LCU report&lt;br&gt;CU report&lt;br&gt;CHPID report&lt;br&gt;Switch report&lt;br&gt;CF connection report&lt;br&gt;Work with IOCDSs&lt;br&gt;Work with IPL attributes&lt;br&gt;Select other processor config&lt;br&gt;Work with CPC images&lt;br&gt;Activate SW config&lt;br&gt;Activate SW and HW config&lt;br&gt;Resume activation of target config&lt;br&gt;Reset source config&lt;br&gt;View messages&lt;br&gt;Delete messages&lt;br&gt;Transmit IODF&lt;br&gt;Process system CMD&lt;br&gt;Add like&lt;br&gt;Delete&lt;br&gt;Work with configuration package objects&lt;br&gt;Transmit configuration package</td>
</tr>
</tbody>
</table>

**Figure 278: HCD - Primary Tasks - Options 2 - 7**
Figure 279: HCD - Generic Action Bar Options

Figure 280: HCD - Generic Action Bar Options
Appendix B. Configuration reports

This information unit shows examples of the configuration reports that you can produce with HCD:

• “Textual configuration reports” on page 347
• “Graphical configuration reports” on page 391
• “IODF compare reports” on page 391

Textual configuration reports

This section shows examples for textual configuration reports. “Print configuration reports” on page 225 lists the different report types available and describes how to produce them.

Channel subsystem reports

The following channel subsystem reports are available:

• “Processor Summary Report” on page 347
• “Channel Subsystem Summary Report” on page 348
• “PCIE function summary report” on page 348
• “CHID Summary Report” on page 350
• “Partition Report” on page 350
• “IOCDS Report” on page 351
• “Channel Path Summary Report” on page 351
• “Channel Path Detail Report” on page 353
• “CF Channel Path Connectivity Report” on page 354
• “Control Unit Summary Report” on page 356
• “Control Unit Detail Report” on page 356
• “Device Summary Report” on page 358
• “Device Detail Report” on page 358

Processor Summary Report

![Figure 281: Processor Summary Report](image-url)
CONFIG. MODE Indicates the operation mode in which a processor may operate. These modes are:

**BASIC**
The processor is not logically partitioned.

**LPAR**
The processor is logically partitioned. Several operating systems may run concurrently in different partitions of the processor.

SNA ADDRESS The SNA Address consists of Network name and CPC name and associates the CPC and the processor definition in the IODF.

SUPPORT LEVEL Shows the ID of the processor support level and an enumeration of the provided functionality.

Channel Subsystem Summary Report

Only XMP processors will have a channel subsystem report which shows the defined channel subsystems.

<table>
<thead>
<tr>
<th>CSS ID</th>
<th>P2964 Devices in SS0</th>
<th>Devices in SS1</th>
<th>Devices in SS2</th>
<th>Devices in SS3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>65280</td>
<td>65535</td>
<td>0</td>
<td>65535</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>65280</td>
<td>16239</td>
<td>0</td>
<td>65535</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>65280</td>
<td>14587</td>
<td>0</td>
<td>65535</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>65280</td>
<td>15239</td>
<td>0</td>
<td>65535</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>65280</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>65280</td>
<td>0</td>
<td>65535</td>
<td>65535</td>
<td>0</td>
</tr>
</tbody>
</table>

CSS 4 of P2964

Note: This report and the following channel subsystem reports show the processor token only if the IODF is a production IODF.

PCIE function summary report

The PCIE Function Summary Report provides an overview of the defined PCIE functions for the specified processor.
### PCIe Function Summary Report

<table>
<thead>
<tr>
<th>FID</th>
<th>VF</th>
<th>CHID</th>
<th>PORT</th>
<th>TYPE</th>
<th>UID</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>31</td>
<td>100</td>
<td></td>
<td>ROCE</td>
<td>F010</td>
<td>roce vf=31 2pnetids</td>
</tr>
<tr>
<td>0011</td>
<td>115</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 15 port 115/1 vf 1</td>
</tr>
<tr>
<td>0015</td>
<td>115</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 16 port 115/1 vf 127</td>
</tr>
<tr>
<td>0016</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 17 port 115/2 vf 127</td>
</tr>
<tr>
<td>0017</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 18 port 115/2 vf 1</td>
</tr>
<tr>
<td>0018</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 19 port 115/2 vf 2</td>
</tr>
<tr>
<td>0020</td>
<td>1</td>
<td>7C0</td>
<td></td>
<td>ISM</td>
<td></td>
<td>ism1</td>
</tr>
<tr>
<td>0021</td>
<td>2</td>
<td>7C0</td>
<td></td>
<td>ISM</td>
<td></td>
<td>ism2</td>
</tr>
<tr>
<td>0030</td>
<td>130</td>
<td></td>
<td></td>
<td>ROCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0031</td>
<td>131</td>
<td></td>
<td></td>
<td>RCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0150</td>
<td>100</td>
<td>150</td>
<td></td>
<td>ROCE</td>
<td>1200</td>
<td>roc2 adapter 150 port 150/2</td>
</tr>
<tr>
<td>0151</td>
<td>101</td>
<td>150</td>
<td></td>
<td>ROCE</td>
<td>1201</td>
<td>roc2 adapter 151 port 150/2</td>
</tr>
<tr>
<td>0217</td>
<td>117</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io adapter 217 port 117/2</td>
</tr>
<tr>
<td>0218</td>
<td>117</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io adapter 218 port 117/1</td>
</tr>
<tr>
<td>0252</td>
<td>10</td>
<td>250</td>
<td></td>
<td>ZEDC-EXPRESS</td>
<td>888A</td>
<td></td>
</tr>
</tbody>
</table>

### Partition Numbers

<table>
<thead>
<tr>
<th>FID</th>
<th>VF</th>
<th>CHID</th>
<th>PORT</th>
<th>TYPE</th>
<th>UID</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>31</td>
<td>100</td>
<td></td>
<td>ROCE</td>
<td>F010</td>
<td>roce vf=31 2pnetids</td>
</tr>
<tr>
<td>0011</td>
<td>115</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 15 port 115/1 vf 1</td>
</tr>
<tr>
<td>0015</td>
<td>115</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 16 port 115/1 vf 127</td>
</tr>
<tr>
<td>0016</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 17 port 115/2 vf 127</td>
</tr>
<tr>
<td>0017</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 18 port 115/2 vf 1</td>
</tr>
<tr>
<td>0018</td>
<td>115</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io 19 port 115/2 vf 2</td>
</tr>
<tr>
<td>0020</td>
<td>1</td>
<td>7C0</td>
<td></td>
<td>ISM</td>
<td></td>
<td>ism1</td>
</tr>
<tr>
<td>0021</td>
<td>2</td>
<td>7C0</td>
<td></td>
<td>ISM</td>
<td></td>
<td>ism2</td>
</tr>
<tr>
<td>0030</td>
<td>130</td>
<td></td>
<td></td>
<td>ROCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0031</td>
<td>131</td>
<td></td>
<td></td>
<td>RCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0150</td>
<td>100</td>
<td>150</td>
<td></td>
<td>ROCE</td>
<td>1200</td>
<td>roc2 adapter 150 port 150/2</td>
</tr>
<tr>
<td>0151</td>
<td>101</td>
<td>150</td>
<td></td>
<td>ROCE</td>
<td>1201</td>
<td>roc2 adapter 151 port 150/2</td>
</tr>
<tr>
<td>0217</td>
<td>117</td>
<td>2</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io adapter 217 port 117/2</td>
</tr>
<tr>
<td>0218</td>
<td>117</td>
<td>1</td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>synch io adapter 218 port 117/1</td>
</tr>
</tbody>
</table>

## Legend for Partition Numbers Field:

- **A** - Partition is in Function Access List
- **C** - Partition is in Function Candidate List Only
- **-** - Partition is not in Function Access or Candidate List

---

*Figure 283: PCIe Function Summary Report*
CHID Summary Report

The **CHID Summary Report** provides an overview of all CHIDs defined for channel paths and PCIe functions of a processor and also gives an overview of the defined PNET IDs for the CHIDs.

**Figure 284: CHID Summary Report**

**Partition Report**

**Figure 285: Partition Report**

**NUMBER**

Is the partition number (MIF ID). This information is printed only for EMIF capable processors.
**USAGE**

Specifies the usage type of a partition: CF indicates a partition supporting coupling facility. OS indicates a partition running an operating system. CF/OS indicates a partition supporting coupling facility or running an operating system.

**UID**

Specifies the partition flag if UID uniqueness is required and checked.

### IOCDS Report

IOCDS data are retrieved from the support element when a SNA address is defined. Otherwise, the IOCDS data are retrieved from the IODF. An IOCDS status line at the end of the report indicates the source of the IOCDS data.

**NAME**

Represents the user-defined name of the IOCDS (derived from the MSG1 parameter)

**FORMAT**

IOCDS format (BASIC or LPAR)

**STATUS**

Indicates the status of the IOCDS: Alternate, POR, Invalid (see “Build processor cluster IOCDSs” on page 190).

**Token Match - IOCDS/HSA**

Indicates whether the IOCDS token matches the current HSA token

**Token Match - IOCDS/Proc**

Indicates whether the IOCDS token matches the current processor token in the IODF

**Write Protect**

Indicates whether the IOCDS is write-protected (Yes) or not (No), or currently write-protected because it is the POR IOCDS (Yes-POR).

**Last Update DATE/TIME**

Time stamp of IOCDS creation time

**IOCDS Configuration Token Information**

is the configuration token information stored in the support element and shows the relationship between the IOCDS and the production IODF from which it was created.

### Channel Path Summary Report

If applicable, for spanned channels, there is a separate sub-report after the partition table of a processor which shows the connection of spanned channel paths to channel subsystems.

---

Configuration reports 351
For external channels: designate the physical channel identifier (CHID), the HCA adapter ID (AID) and HCA port (P) or the physical channel identifier (CHID) and port (P). For internal channels: designate the virtual channel identifier (VCHID).

Indicates whether queue prioritization is disabled.

Designates the maximum frame size in KB. For channels of type IQD, this field also indicates whether or how this channel exploits the extended IQD function:

- blank indicates the HiperSockets function
- X indicates IEDN support (IQDX)
- B indicates bridge support

Indicates whether the channel path is managed.

The I/O cluster name for managed channel paths.
**DYN. SWITCH**
Designates the switch holding the dynamic connection.

**SWITCH ID**
Designates the switch the channel is physically plugged in (entry switch).

**PORT**
Designates the entry port on the entry switch.

**MODE**
Operation mode of the channel path.

---

**Channel Path Detail Report**

The Channel Path Detail Report lists the channel paths defined per processor with their attributes and attachment information.

In addition, the switch connections on the path between the CHPID and the control unit are shown if they can be determined by HCD. The entry switch and port of the CHPID are always shown.

For an entry switch of a CHPID which is defined as a dynamic switch, the control unit port is shown if it is compatible with the link address defined for the CHPID. For an entry switch of the CHPID which is defined as a dedicated switch, the control unit port or the ports connecting the switches are only shown if switch configurations are defined which allow HCD determining a valid path between CHPID and control unit.

In case of chained switches, the first print line for a channel path shows the switch the channel path is physically plugged in. The second print line shows the switch the control unit is connected to. In addition, the first print line shows the ID of the switch with the dynamic connection.

Each attached control unit of a specific channel path is separated by a line.

The first print line for an attached control unit shows the first unit address range defined for the control unit. If there are more unit address ranges defined for a control unit, these are shown in the following print lines. Together with the unit address range(s) of the control unit the attached devices of the control unit are shown grouped according to device types and consecutive numbers and unit addresses. The report shows the starting device number and range of the device group. The unit address describes the address of the first device in the range.

For FICON switches, the dynamic switch ID is empty. The control unit port ID is shown as a two-byte port address (the port ID prefixed by the switch address) when used in a cascaded switch environment, or as a one-byte port address otherwise. For cascaded FICON switches, only the channel path port ID and the control unit port ID are shown, but no connection between the switches.

**Note:** For a Coupling Facility control unit, all CF devices attached to this control unit are listed, not only those devices that are defined for the connected coupling facility channel path described in the row.
**Figure 288: Channel Path Detail Report**

<table>
<thead>
<tr>
<th>SWITCH ID</th>
<th>Designates the entry switch the channel path is physically plugged in. For chained ESCON switches or cascaded FICON switches, a second line is shown with the ID of the switch to which the control unit is connected.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH PR PN</td>
<td>Designates the entry port of the entry switch. In case of an ESCON chained switch, it designates the entry port of the chained switch.</td>
</tr>
<tr>
<td>SWITCH CU PN</td>
<td>Designates the port the control unit is connected to. In case of an ESCON chained switch, it designates the port of the entry switch to which the chained switch is connected. For a cascaded FICON switch, the port ID is prefixed by the switch address.</td>
</tr>
<tr>
<td>SWITCH DYN ID</td>
<td>For an ESCON environment, it designates the switch holding the dynamic connection.</td>
</tr>
</tbody>
</table>

**CF Channel Path Connectivity Report**

For XMP processors, there will be a single CF Channel Path Connectivity Report. The CHPID numbers are prefixed by the channel subsystem ID. For example 1. 0C denotes CHPID 0C from CSS 1. If a spanned channel path is used, the CHPIDs are reported from all channel subsystems together with the accessed partitions in the channel subsystems.
### Figure 289: CF Channel Path Connectivity Report

<table>
<thead>
<tr>
<th>SOURCE/DESTINATION</th>
<th>The identifier of the source/destination channel path.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPID</td>
<td>Is the type of the source/destination channel path.</td>
</tr>
<tr>
<td>SOURCE/DESTINATION</td>
<td>Is the operation mode of the source/destination channel path.</td>
</tr>
<tr>
<td>TYPE</td>
<td>CHPID is identified as occupied.</td>
</tr>
<tr>
<td>SOURCE/DESTINATION</td>
<td>Shows those partitions which the source/destination channel path has in its access or candidate list. Partitions in the candidate list are flagged with (C) behind the partition name. Partitions of type CF or CF/OS are prefixed with an *. For example, *D3F (C) or *IRD6 (C) denote coupling facility partitions in the candidate list.</td>
</tr>
<tr>
<td>MODE</td>
<td>Is the name of the processor the destination channel path is defined for.</td>
</tr>
<tr>
<td>SOURCE CNTRL UNIT</td>
<td>Is the number of the CF control unit used for the source CF channel path connection.</td>
</tr>
<tr>
<td>SOURCE DEVICE NUM, RANGE</td>
<td>Are the numbers of the CF devices and ranges of device groups defined for the source CF channel path connections via the source CF control unit.</td>
</tr>
<tr>
<td>DESTINATION CNTRL UNIT</td>
<td>Is the number of the CF control unit used for the destination CF channel path connection.</td>
</tr>
<tr>
<td>DESTINATION DEVICE NUM, RANGE</td>
<td>Are the numbers of the CF devices and ranges of device groups used for the destination CF channel path connections via the destination CF control unit.</td>
</tr>
<tr>
<td>CNTL TYPE</td>
<td>Indicates the type of the connecting control unit(s).</td>
</tr>
</tbody>
</table>
Control Unit Summary Report

The switch connection information is shown in the Control Unit Detail Report even if no complete path is defined. For example:

- If a control unit is connected to a switch, but no complete path is defined through the switch (that means, no valid path is defined through the switch, which allows a dynamic connection) the complete switch connection information with SWITCH ID, CU PN, and PR PN can be determined.

In case of chained switches, the first information in a print line is shown for the switch the control unit is connected to. The second set of switch information is for the switch that the channel path is connected to. Note that this is different from the Channel Path Detail report.

To get information about the switch with the dynamic connection (in case of chained ESCON switches), the Channel Path Detail Report has to be produced.

For each control unit belonging to a logical control unit, the channel path it is attached to, is printed together with the link address (if applicable).

For FICON cascade switching, the link address will be shown as a two-byte number. If a path from the control unit is via cascaded FICON switches, the link between the FICON switches is not shown. Instead, the control unit port of the switch connected to the control unit and the CHPID port of the switch connected to the channel path are shown. If no port connections are defined, switch data is extracted from the dynamic switch and the link address. Port IDs are shown as one-byte port addresses.

The 'DEVICE' column shows the devices which are attached to the control unit printed under column 'CU IN LCU'. If the control unit is attached to more than one channel path, the information about the attached devices is printed together with the last printed channel path. The devices attached to a control unit are displayed on page 356.
Table 26: Description of the columns in the Control Unit Detail Report

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESSOR.CSS ID</td>
<td>Designates the processors, and in case of an XMP processor, the channel subsystem to which the CU is attached.</td>
</tr>
<tr>
<td>LOG. PATHS PER CU</td>
<td>Specifies the number of defined logical paths for a control unit per channel subsystem.</td>
</tr>
<tr>
<td>CU IN LCU</td>
<td>Designates which CUs belong to the logical CU.</td>
</tr>
<tr>
<td>IOCL</td>
<td>Designates I/O concurrency level (same as SHARED in IOCP). Specifies the level of concurrency of I/O requests that the parallel channel path allows for the control unit (CU).</td>
</tr>
<tr>
<td></td>
<td>1 One I/O request at a time. (SHARED=Y)</td>
</tr>
<tr>
<td></td>
<td>2 Multiple I/O requests at a time. (SHARED=N)</td>
</tr>
<tr>
<td>CU-ADD</td>
<td>Designates the CU address.</td>
</tr>
<tr>
<td>SWITCH ID</td>
<td>Designates the switch the CU is connected to.</td>
</tr>
<tr>
<td>CU PN</td>
<td>Designates the port the CU is physically connected to.</td>
</tr>
<tr>
<td>PR PN</td>
<td>Designates the entry port of the channel (except in the case of chained switches)</td>
</tr>
<tr>
<td>CHAINED/CASC (SWITCH ID, CU PN, PR PN)</td>
<td>Designates a possible second switch the CHPID is connected to.</td>
</tr>
</tbody>
</table>

Figure 291: Control Unit Detail Report
### Table 26: Description of the columns in the Control Unit Detail Report (continued)

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHPID . LINK ADDR</td>
<td>Designates the channel path and the one- or two-byte link address to which the control unit is connected. ( n^(*) ) in this column indicates that the control unit is connected to ( n ) managed channel paths.</td>
</tr>
<tr>
<td>DEVICE NUMBER, RANGE</td>
<td>Specifies information about the devices that are attached to the processors by the control unit.</td>
</tr>
<tr>
<td>LOGICAL PATHS PER CU PORT</td>
<td>Specifies the number of defined logical paths for all control units connected to a specific port.</td>
</tr>
</tbody>
</table>

### Device Summary Report

The Device Summary Report gives you an overview of the devices defined in the currently accessed IODF and their attaching control units. The devices are grouped according to the same characteristics. The report shows the starting device number and the range of the group.

For multi-exposure devices, the base devices are grouped separately from the non-base exposure devices.

![Figure 292: Device Summary Report](image)

### Device Detail Report

The Device Detail Report lists all devices defined in the currently accessed IODF, with their attributes and attachment information. Each device is shown with the processors to which it is attached. The device - processor attachment attributes are also listed. If applicable, the subchannel set where the device is located, is also shown in column SS. If not applicable, this column shows a blank.

For each processor the device is attached to, the CUs for the attachment to the processor, as well as the channel path(s) the CU is attached to, are also listed.

The starting device number and the range of subsequent device numbers are shown in one row. A range value of 1 is omitted.

The Device Detail Report shows a partition matrix which indicates whether a logical partition of a corresponding processor has access to the device either via the channel path access list or the channel path candidate list, and whether a partition is excluded or included via the device candidate list. Devices with a null-device candidate list are excluded from the report.

At the end of the report, for SMP processors, the totals for the following items are listed for each processor:
- CHPIDS
- PHYSICAL CONTROL UNITS
- SUBCHANNELS
- LOGICAL CONTROL UNITS
For the CHPID total, the report lists separate values for the total shared and the total unshared. For the physical CU total, HCD reports the total shared (those attaching to shared channel paths) and the total unshared.

For the subchannel and logical CU totals, the report lists separate values for the shared, unshared, and additional unshared counts that are, respectively, assigned and unassigned to a logical partition. The shared count is the total number assigned to shared channel paths. The generated for LPAR unshared count is the total that would have been generated for a basic IOCDS. The additional unshared count contains the unshared values that were generated for the LPAR IOCDS.

The TOTAL value is the total that would have been contained in the generated IOCDS. The HSA TOTAL is the total that will exist in the HSA after POR. At the completion of POR, the HSA may contain more subchannels and logical CUs than does the IOCDS.

For XMP processors, the following totals are reported:
- CHPIDS
- PHYSICAL CONTROL UNITS
- DEVICES
- LOGICAL CONTROL UNITS

The column CSS TOTAL lists the number of CHPIDs, physical and logical control units and the maximum number of devices that are currently defined for that channel subsystem.

The column IOCDS TOTAL lists the number of CHPIDs, physical and logical control units and the maximum number of devices without definitions caused by over-defined CHPIDs.

Columns HSA TOTAL and HSA LIMIT are not applicable for XMP processors.

The column USER LIMIT lists the maximum number of devices defined by the user for that channel subsystem.

The column SUPPORTED LIMIT lists the maximum number of CHPIDs, physical and logical control units and the maximum number of devices that are supported for the processor for that channel subsystem.
### Device Detail Report

<table>
<thead>
<tr>
<th>DEVICE NUMBER</th>
<th>TYPE-MODEL</th>
<th>PROCESSOR</th>
<th>CSS ID</th>
<th>ADDR OUT</th>
<th>DET</th>
<th>PREFERRED</th>
<th>CHPID</th>
<th>PORT NUMBER CUADD</th>
<th>LINK</th>
<th>PARTITION NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.8</td>
<td>3398A</td>
<td>GOLDENE1</td>
<td>0</td>
<td>00</td>
<td>NO</td>
<td>YES</td>
<td>0000</td>
<td>01</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Legend for Partition Numbers Field:**

- **A** - Partition is in CHPID's access list
- **C** - Partition is in CHPID's candidate list only
- **BLANK** - Partition is not in CHPID's access or candidate list
- **-** - Partition is in CHPID's access or candidate list but partition is excluded from device's candidate list
- **+** - Partition is not in CHPID's access or candidate list but partition is included in device's candidate list

### Processor: GOLDENE1

<table>
<thead>
<tr>
<th>CSS ID</th>
<th>PARTITION NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GECSS01X</td>
</tr>
<tr>
<td></td>
<td>GECSS03X</td>
</tr>
<tr>
<td></td>
<td>GECSS09X</td>
</tr>
<tr>
<td></td>
<td>GECSS0FX</td>
</tr>
</tbody>
</table>

### Switch Summary Report

<table>
<thead>
<tr>
<th>SWITCH SUMMARY REPORT</th>
<th>TIME: 14:54 DATE: 2012-10-21 PAGE K-   1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCH ID</td>
<td>TYPE</td>
</tr>
<tr>
<td>21</td>
<td>2632</td>
</tr>
<tr>
<td>99</td>
<td>9833</td>
</tr>
<tr>
<td>99</td>
<td>9832</td>
</tr>
</tbody>
</table>

**Figure 293: Device Detail Report**

### Switch reports

The following switch reports are available:

- “Switch Summary Report” on page 360
- “Switch Detail Report” on page 361
- “Switch Configuration Summary Report” on page 361
- “Switch Configuration Detail Report” on page 361

### Switch Summary Report

- **ADDR** Shows the switch address, if available.
- **CU NUMBER** Shows all switch control units attached to the switch CU port of the switch.
- **DEVICE NUMBER** Shows all switch devices defined for a switch.
Switch Configurations

Connection Report

If the switch is connected to an XMP processor, the processor ID is qualified with the channel subsystem ID. A spanned channel path is suffixed with an asterisk (*).

Switch Configuration Summary Report

- **CONNECTION UNIT**: Specifies the type of the unit the port is connected to. PR = Processor, CU = Control Unit, SW = Switch
- **OCCUPIED**: Indicates a port connection external to the IODF.

Switch Configuration Detail Report

The Switch Configuration Detail Report lists all supported ports of a switch with their dynamic connection attributes.
Operating System reports

The following operating system reports are available:

- “Operating System Summary Report” on page 362
- “MVS Device Report” on page 362
- “MVS Device Detail Report” on page 363
- “Eligible Device Table Report” on page 363
- “NIP Console Report” on page 364
- “VM Device Report” on page 364
- “VM Device Detail Report” on page 365
- “VM Console Report” on page 365

Operating System Summary Report

<table>
<thead>
<tr>
<th>OPERATING SYSTEM ID</th>
<th>TYPE</th>
<th>GEN</th>
<th>DESCRIPTION</th>
<th>OS ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPSYS01</td>
<td>MVS</td>
<td></td>
<td>MVS operating system</td>
<td>OPSYS01D</td>
</tr>
<tr>
<td>OPSYS02</td>
<td>VM</td>
<td></td>
<td>VM operating system</td>
<td></td>
</tr>
</tbody>
</table>

Figure 298: Operating System Summary Report

MVS Device Report

The MVS Device Report gives an overview of the devices defined to an MVS-type operating system in the currently accessed IODF.

The devices are grouped according to same characteristics. The report shows the starting device number and the range of a group.

Figure 299: MVS Device Report
### MVS Device Detail Report

<table>
<thead>
<tr>
<th>OPERATING SYSTEM CONFIGURATION ID: OS000001</th>
<th>MVS DEVICE DETAIL REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DEVICE</strong></td>
<td><strong>TYPE</strong></td>
</tr>
<tr>
<td>0000,16</td>
<td>3390A</td>
</tr>
<tr>
<td>0010,16</td>
<td>3390A</td>
</tr>
<tr>
<td>0020,16</td>
<td>3380A</td>
</tr>
<tr>
<td>0020,16</td>
<td>3380A</td>
</tr>
<tr>
<td>0040,8</td>
<td>3380A</td>
</tr>
<tr>
<td>0048,8</td>
<td>3380A</td>
</tr>
<tr>
<td>0100,8</td>
<td>3390B</td>
</tr>
<tr>
<td>FFFE</td>
<td>3179</td>
</tr>
<tr>
<td>FFFF</td>
<td>3179</td>
</tr>
</tbody>
</table>

#### Figure 300: MVS Device Detail Report

**PARAMETER**

Shows the parameter values specified for the devices. If you do not specify "Yes" or "No" for devices that support the dynamic capability, the DYNAMIC parameter will not be displayed.

**FEATURE**

Shows the features given to these devices.

### Eligible Device Table Report

<table>
<thead>
<tr>
<th>OPERATING SYSTEM CONFIGURATION ID: OPSYS01</th>
<th>E D T REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NAME</strong></td>
<td><strong>TYPE</strong></td>
</tr>
<tr>
<td>3390</td>
<td>GENERIC</td>
</tr>
<tr>
<td>3480</td>
<td>GENERIC</td>
</tr>
<tr>
<td>3277-2</td>
<td>GENERIC</td>
</tr>
<tr>
<td>3240</td>
<td>GENERIC</td>
</tr>
<tr>
<td>ES001</td>
<td>ESOTERIC</td>
</tr>
<tr>
<td>ES002</td>
<td>ESOTERIC</td>
</tr>
<tr>
<td>SYS3480R</td>
<td>ESOTERIC</td>
</tr>
</tbody>
</table>

#### Figure 301: Eligible Device Table Report

**NAME TYPE**

describes the type of the device groups contained in the EDT:

- **GENERIC**
  generic device type group
- **ESOTERIC**
  esoteric device group
- **G/GENERIC**
  system generated generic device type group
- **G/ESOTERIC**
  system generated esoteric device group

**VIO**

Eligible for virtual I/O, designates temporary data sets that exist in paging storage only.

**PREF**

Preference value, indicates the order the system should follow when attempting allocation.
AFFINITY INDEX  This index is used by the system allocation programs to determine which devices have affinity to each other. Devices have affinity if either of the following statements are true:

- The devices have the same affinity index.
- The affinity index for one of the devices is a subset of the other devices' affinity index.

An affinity index is a subset of another if both of the following statements are true:

- Neither index has a value of X'FFFF'.
- One or more bits in one index are set to a binary "one" and one or more corresponding bits in the other index are set to a binary "one".

ALLOCATION DEVICE TYPE  UCB device table for allocation entry.

ASSOCIATED GENERICS  Indicates the relation of a device type to generics.

DEVICE NUMBER LISTS  Lists the devices that are included in the group. The devices are grouped according to subsequent device numbers. The report shows the range of the device group.

Note: Device ranges in a subchannel set with a subchannel set ID > 0 are displayed in a 5-digit notation with the leading digit indicating the subchannel set ID. For example, a device range 1000-103F located in subchannel set 1 is shown as 11000-1103F. A device range 2000-203F in subchannel set 0 is shown as 2000-203F.

NIP Console Report

Operating System Configuration ID: OPSYS01

<table>
<thead>
<tr>
<th>Device #</th>
<th>Type-Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>3278-3</td>
</tr>
</tbody>
</table>

Figure 302: NIP Console Report

VM Device Report

The VM Device Report gives an overview of the devices defined to a VM operating system in the currently accessed IODF.

The devices are grouped according to same characteristics. The report shows the starting device number and the range of a group.
Figure 303: VM Device Report

VM Device Report

OPERATING SYSTEM CONFIGURATION ID: VMXXL001

<table>
<thead>
<tr>
<th>DEVP, RANGE</th>
<th>TYPE-MODEL</th>
<th>SS</th>
<th>BASE</th>
<th>CLASS</th>
<th>VIRT</th>
<th>UIM-NAME</th>
<th>MX</th>
<th>DO</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>0002</td>
<td>3279-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01D1,4</td>
<td>3390</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0020,16</td>
<td>3380A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY
---
DEVP, RANGE - DEVICE NUMBER, COUNT OF DEVICES (DECIMAL)
TYPE-MODEL - DEVICE TYPE AND MODEL
SS - SUBCHANNEL SET ID
BASE - BASE DEVICE NUMBER FOR MULTIPLE EXPOSURE DEVICES
CLASS - VM DEVICE CLASS
VIRT - DEVICE IS NOT DEFINED TO CHANNEL SUBSYSTEM
UIM-NAME - UNIT INFORMATION MODULE SUPPORTING THE DEVICE
MX - DEVICE HAS MULTIPLE EXPOSURES
DO - DEVICE IS SUPPORTED DEDICATED-ONLY
US - DEVICE IS UNSUPPORTED
Y - DEVICE SUPPORTS THIS FEATURE
BLANK - DEVICE DOES NOT SUPPORT THIS FEATURE

TOTAL NUMBER OF DEVICES BY CLASS

--------------------------------
CLASS NAME       DEVICE COUNT
----------       ------------
TERMINAL         0
GRAPHIC          0
REMOTE GRAPHIC   0
SPOOL            0
TAPE             0
DASD             16
SPECIAL          0

TOTAL NUMBER OF I/O DEVICES DEFINED BY THIS I/O CONFIGURATION 16

Figure 304: VM Device Detail Report

VM Device Detail Report

OPERATING SYSTEM CONFIGURATION ID: OPSYS02

<table>
<thead>
<tr>
<th>DEVP, RANKGE</th>
<th>TYPE-MODEL</th>
<th>SS</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000,16</td>
<td>3390A</td>
<td></td>
<td>WLMPAV=YES</td>
</tr>
<tr>
<td>0100</td>
<td>3278-3</td>
<td></td>
<td>OFFLINE=NO, OFFLINE=NO</td>
</tr>
<tr>
<td>0200</td>
<td>3279-2</td>
<td></td>
<td>OFFLINE=NO, OFFLINE=NO</td>
</tr>
<tr>
<td>02D1,4</td>
<td>3390</td>
<td></td>
<td>OFFLINE=NO, OFFLINE=NO</td>
</tr>
</tbody>
</table>

PARAMETER Shows the parameter values specified for the devices.
FEATURE Shows the features given to these devices.

VM Console Report

OPERATING SYSTEM CONFIGURATION ID: OPSYS02

<table>
<thead>
<tr>
<th>DEVP, RANKGE</th>
<th>TYPE-MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0002</td>
<td>3279-2</td>
</tr>
</tbody>
</table>

Figure 305: VM Console Report
## CTC Connection Report

### Figure 306: CTC Connection Report

### Diagnostic messages

The following example shows you messages that might be returned with the report. The diagnostic messages are sorted by severity. For each connection, HCD displays only one message, even if the connection includes several errors. You first have to correct the first error before the next message is displayed. HCD displays the messages according to the priority as described in “Displaying diagnostic messages” on page 143.

### Table 1: CTC Connection Report

<table>
<thead>
<tr>
<th>Line</th>
<th>Proc.CSSID</th>
<th>Part. Name</th>
<th>CHPID</th>
<th>ID</th>
<th>Device Os</th>
<th>Device RNG</th>
<th>Device Type</th>
<th>Device UA</th>
<th>Message</th>
<th>Error Type</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G33XMP.0</td>
<td>TCSSL2P2</td>
<td>8004</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>G33XMP.0</td>
<td>TCSSL2P2</td>
<td>8006</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>G33XMP.0</td>
<td>TCSSL2P2</td>
<td>9000</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G33XMP.0</td>
<td>TCSSL2P2</td>
<td>9002</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>G33XMP.2</td>
<td>TCSSL2P2</td>
<td>8000</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>G33XMP.2</td>
<td>TCSSL2P2</td>
<td>8002</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>G33XMP.2</td>
<td>TCSSL2P2</td>
<td>9004</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>G33XMP.2</td>
<td>TCSSL2P2</td>
<td>9006</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>R31SMP</td>
<td>RAPMIX9</td>
<td>9004</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R31SMP</td>
<td>RAPMIX9</td>
<td>9006</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R31SMP</td>
<td>RAPOS4</td>
<td>9004</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>R31SMP</td>
<td>RAPOS4</td>
<td>9006</td>
<td>Y</td>
<td>SHR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Key
- **LINE NR**: LINE NUMBER USED TO REFER TO CTC MESSAGES - A MESSAGE IS INDICATED BY AN ASTERIX (*)
- **SIDE 1 / SIDE 2**: PROCESSOR ID RESPECTIVELY CHANNEL SUBSYSTEM ID
- **PARTITION NAME**: PARTITION NAME
- **DEVICE OS**: INDICATION, IF FIRST DEVICE OF RANGE IS DEFINED TO AN OPERATING SYSTEM
- **CHPID ID**: CHANNEL PATH ID IN CHANNEL SUBSYSTEM
- **PROTOCOL ID**: CHANNEL PATH MODE
- **ENTRY SW**: ENTRY SWITCH OF THE CHANNEL PATH
- **ENTRY PO**: ENTRY PORT OF THE CHANNEL PATH
- **CU ID**: CONTROL UNIT NUMBER
- **CU LA**: LINK ADDRESS OF CONTROL UNIT RELATED TO THE CHANNEL PATH
- **COMMON**: LOGICAL ADDRESS (CUADD) RELATED TO THE PROCESSOR
- **DEVICE RNG**: DEVICE RANGE FOR DEVICES ON SIDE 1 AND SIDE 2
- **DEVICE TYPE**: DEVICE TYPE COMMON TO DEVICES ON SIDE 1 AND SIDE 2
- **DEVICE UA**: UNIT ADDRESS OF DEVICES RELATED TO THE PROCESSOR (COMMON TO SIDE 1 AND SIDE 2)
<table>
<thead>
<tr>
<th>LINE</th>
<th>SEV</th>
<th>MSGID</th>
<th>MESSAGE TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>CBDG750I</td>
<td>Logical address (CUADD) is specified for CU 1010, but CHPID 20 of processor PROC001A is not defined as shared.</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>CBDG750I</td>
<td>Logical address (CUADD) is specified for CU 1010, but CHPID 20 of processor PROC001A is not defined as shared.</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>CBDG752I</td>
<td>Channel path type error. CHPID 20 of processor PROC001A is connected to a CHPID 11 of processor PROC002 with the same type.</td>
</tr>
<tr>
<td>8</td>
<td>E</td>
<td>CBDG752I</td>
<td>Channel path type error. CHPID 11 of processor PROC002 is connected to a CHPID 20 of processor PROC001A with the same type.</td>
</tr>
<tr>
<td>11</td>
<td>E</td>
<td>CBDG751I</td>
<td>Device type of device 0805 connected to processor PROC002, CHPID 22 does not match with device type of device 0405 on the other side.</td>
</tr>
<tr>
<td>13</td>
<td>E</td>
<td>CBDG750I</td>
<td>Logical address (CUADD) is specified for CU 0108, but CHPID 21 of processor PROC003 is not defined as shared.</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td>CBDG750I</td>
<td>Logical address (CUADD) is specified for CU 0108, but CHPID 21 of processor PROC003 is not defined as shared.</td>
</tr>
<tr>
<td>21</td>
<td>E</td>
<td>CBDG751I</td>
<td>Device type of device 0405 connected to processor PROC003, CHPID 11 does not match with device type of device 0805 on the other side.</td>
</tr>
<tr>
<td>6 W</td>
<td>CBDG753I</td>
<td>Wrap around connection detected for processor PROC002 (partition - none - ) via CHPID 11 and CHPID 13.</td>
<td></td>
</tr>
<tr>
<td>7 W</td>
<td>CBDG753I</td>
<td>Wrap around connection detected for processor PROC002 (partition - none - ) via CHPID 13 and CHPID 11.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>W</td>
<td>CBDG754I</td>
<td>HCD cannot determine connection. No control units and devices match to processor PROC003, partition PART1, CU 1012 and device 1012.</td>
</tr>
<tr>
<td>19</td>
<td>W</td>
<td>CBDG754I</td>
<td>HCD cannot determine connection. No control units and devices match to processor PROC003, partition PART2, CU 1012 and device 1012.</td>
</tr>
<tr>
<td>5 I</td>
<td>CBDG757I</td>
<td>HCD cannot determine connection. CHPID 10 of processor PROC002 has no dynamic switch defined.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td>CBDG756I</td>
<td>HCD cannot determine connection. CHPID 24 of processor PROC002 is connected via chained switches.</td>
</tr>
</tbody>
</table>

Figure 307: Sample of Diagnostic Messages coming with the CTC connection report

**I/O Path Report**

The I/O Path report shows the physically sensed I/O paths (with physical types) of the active system compared with the logical definitions of the paths (also the object types) of a specific IODF.

- If the sensed I/O path reports a switch, the verification assumes that this is a dynamic switch. It checks whether the defined I/O path in the IODF contains a dynamic switch, and whether the link address corresponds to the output port of the sensed data. If the IODF contains defined switch data, it is verified whether the defined data correspond to the sensed data. If dedicated switches are defined, the I/O Path report always shows differences in the D column.

- When you compare between the sensed and defined data, not all fields are used to determine if there is a difference between the two sides (either an *, or @ is shown in the column D of the report). The data that is used are the CHPID, the control unit number, the device number, and the switch information of the defined dynamic switches and the sensed dynamic switches.

The I/O path verification checks if the actual system contains the same paths as in the defined I/O configuration. Differences are indicated in the I/O Path report in column D with the following characters:

- The * indicates that differences are found between the sensed and the defined I/O path. Either
  - only sensed data is available, or
  - only defined data in the IODF is available, or
  - the sensed and defined switch data differ.
The C indicates that the defined and the sensed I/O path are the same, but the defined I/O path is defined to the CSS only.

An @ is a combination of * and C, and indicates that differences are found between the sensed and the defined I/O path, and that the I/O path is defined to the CSS only.

The 0 indicates that the defined I/O path in the IODF is defined to the operating system only.

---

**Figure 308: Example and Legend of an I/O Path Report (Part 1 of 2)**

**Figure 309: Example and Legend of an I/O Path Report (Part 2 of 2)**
DYN.SWITCH
Contains either the switch information for the dynamic switch in the path or the dedicated switch if there is no dynamic switch.

PATH STAT
Represents the status of the I/O path between the CHPID and the devices that it is connected to.

blank
Represents the situations where the sensed I/O path is online. For more information, refer to “The I/O path list” on page 202.

OFFL
Represents the situations where there is no I/O path to be found or when the I/O path is offline.

UNKN
Represents the situations where the I/O path is currently in a pending state or when z/OS is running as a guest on a z/VM system and the path status can not be obtained from the system.

Supported hardware report
The Supported Hardware Report shows the actual status of the hardware supported in your installation. It shows the following supported hardware:

• Processors
• Control units
• Devices including:
  Device characteristics
  Control unit attachments
• MVS devices including:
  Device capabilities
  Parameters (with selection values) / features
• VM devices including
  device capabilities
  parameters/features

The following figure shows you an example of a supported hardware report. The example may differ from the report you get on your system, because the data depend on the installed processor support modules and UIMs.
<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>MOD</th>
<th>SUFFIX</th>
<th>IOC SYSTEM</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHPID TYPES</th>
<th>WI</th>
<th>RI</th>
<th>DP</th>
<th>FCT</th>
<th>CHPID</th>
<th>CU</th>
<th>LCU</th>
<th>SUBCH</th>
<th>LPAR</th>
<th>CSS</th>
<th>SCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2064-1C1</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C1</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C2</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C2</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C3</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C3</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C4</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C4</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C5</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C5</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C6</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C6</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C7</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C7</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C8</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C8</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C9</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C9</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C10</td>
<td>200</td>
<td>H000931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-1C10</td>
<td>202</td>
<td>H010931</td>
<td>IYP 2064,1</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA, FC, FCP, CBR, CPB, OSP, OSE, CFP, CPB, ICP, IOF, FCP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 310: Supported Hardware Report (Part 1 of 27)
Figure 311: Supported Hardware Report (Part 2 of 27)
<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>MOD</th>
<th>SUPLEVEL</th>
<th>IOCP</th>
<th>SYSTEM</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHPID TYPES</th>
<th>TIME</th>
<th>RI</th>
<th>SP</th>
<th>FCT</th>
<th>LCU</th>
<th>SUBCH</th>
<th>LPAR</th>
<th>CSS</th>
<th>SCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2064-2C4</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-2C5</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-2C6</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-2C7</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-2C8</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2064-2C9</td>
<td>208</td>
<td>H8200931</td>
<td>IYP</td>
<td>2064</td>
<td>BL, BY, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2066-0A1</td>
<td>206</td>
<td>H8200931</td>
<td>IYP</td>
<td>2066</td>
<td>CNC, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2066-0A2</td>
<td>206</td>
<td>H8200931</td>
<td>IYP</td>
<td>2066</td>
<td>CNC, CTC, CVC, CFR, CPS, OSA,</td>
<td>FC, FCV, CFR, OSA, CTC,</td>
<td>Y Y N</td>
<td>256</td>
<td>8192</td>
<td>64512</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 312: Supported Hardware Report (Part 3 of 27)
<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>MOD</th>
<th>SUPLEVEL</th>
<th>IOCP</th>
<th>SYSTEM</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHPID TYPES</th>
<th>TIME: 09:58</th>
<th>DATE: 2018-06-19</th>
<th>PAGE X</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2066-842</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, IQD, FCP, OSC, OSN</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-881</td>
<td>206</td>
<td>H820331</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, IQD, FCP, OSC, OSN</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-881</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, IQD, FCP, OSC, OSN</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8CF</td>
<td>207</td>
<td>H820331</td>
<td>1YP</td>
<td>2062</td>
<td>CFP, CBP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8C1</td>
<td>206</td>
<td>H820331</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8E1</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8E1</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8L6</td>
<td>206</td>
<td>H820331</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8L6</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>206</td>
<td>H820331</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
<tr>
<td>2066-8K2</td>
<td>208</td>
<td>H820731</td>
<td>1YP</td>
<td>2061</td>
<td>CFP, CBP, ICP, ICP, OSC, ICP, ICP, ICP, ICP</td>
<td>Y Y N N</td>
<td>256</td>
<td>8192</td>
<td>4096</td>
<td>65280</td>
</tr>
</tbody>
</table>

**Figure 313: Supported Hardware Report (Part 4 of 27)**
<table>
<thead>
<tr>
<th>TYPE</th>
<th>MODEL</th>
<th>MOD</th>
<th>SUPPLVID</th>
<th>IOCP</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHFID TYPES</th>
<th>TIME</th>
<th>RP</th>
<th>DATE</th>
<th>PAGE</th>
<th>X-</th>
</tr>
</thead>
<tbody>
<tr>
<td>2096-L11</td>
<td>103</td>
<td>M10311</td>
<td>10563</td>
<td>1</td>
<td>CIB, OSX, OSM, CS5</td>
<td>FC, BSD, ICP, IOP, FCP, OSC, OSN, CIB</td>
<td>1:00 PM</td>
<td>08:29</td>
<td>2018-06-19</td>
<td>X-</td>
<td>5</td>
</tr>
<tr>
<td>2096-L11</td>
<td>104</td>
<td>M10311</td>
<td>10563</td>
<td>1</td>
<td>CIB, OSX, OSM, CS5</td>
<td>FC, BSD, ICP, IOP, FCP, OSC, OSN, CIB</td>
<td>1:00 PM</td>
<td>08:29</td>
<td>2018-06-19</td>
<td>X-</td>
<td>5</td>
</tr>
<tr>
<td>2096-L11</td>
<td>103</td>
<td>M10311</td>
<td>10563</td>
<td>1</td>
<td>CIB, OSX, OSM, CS5</td>
<td>FC, BSD, ICP, IOP, FCP, OSC, OSN, CIB</td>
<td>1:00 PM</td>
<td>08:29</td>
<td>2018-06-19</td>
<td>X-</td>
<td>5</td>
</tr>
<tr>
<td>2096-L11</td>
<td>104</td>
<td>M10311</td>
<td>10563</td>
<td>1</td>
<td>CIB, OSX, OSM, CS5</td>
<td>FC, BSD, ICP, IOP, FCP, OSC, OSN, CIB</td>
<td>1:00 PM</td>
<td>08:29</td>
<td>2018-06-19</td>
<td>X-</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 314: Supported Hardware Report (Part 5 of 27)
<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>MDD SUPLEVEL I OCP SYSTEM</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHPID TYPES</th>
<th>WI</th>
<th>RI</th>
<th>DP</th>
<th>FCT</th>
<th>CHPID</th>
<th>CU</th>
<th>LCU</th>
<th>SUBCH</th>
<th>LPAR</th>
<th>CSS</th>
<th>SCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3904-M07</td>
<td>125 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M08</td>
<td>125 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M09</td>
<td>125 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3904-M01</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M02</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M03</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3904-M04</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M05</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3904-M06</td>
<td>113 MII0917 I OCP 3904</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 315: Supported Hardware Report (Part 6 of 27)

<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>MDD SUPLEVEL I OCP SYSTEM</th>
<th>SUPPORTED HARDWARE - PROCESSORS</th>
<th>SUPPORTED CHPID TYPES</th>
<th>WI</th>
<th>RI</th>
<th>DP</th>
<th>FCT</th>
<th>CHPID</th>
<th>CU</th>
<th>LCU</th>
<th>SUBCH</th>
<th>LPAR</th>
<th>CSS</th>
<th>SCHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3906-M01</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3906-M02</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3906-M03</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3906-M04</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3906-M05</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td>3906-M06</td>
<td>113 MII0917 I OCP 3906</td>
<td>FC,OSD,Os,IP,100,FCP,OS,CI B, CSX,OSM,CS5,CS5,CS5</td>
<td>Y Y Y Y 1536 8192 4096 65280 90 6 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 316: Supported Hardware Report (Part 7 of 27)
Figure 317: Supported Hardware Report (Part 8 of 27)

Figure 318: Supported Hardware Report (Part 9 of 27)
<table>
<thead>
<tr>
<th>TYPE-MODEL</th>
<th>UIM</th>
<th>U</th>
<th>PROTCL</th>
<th>DP</th>
<th>IO</th>
<th>SUPPORTED CHPID TYPES</th>
<th>ATTACHABLE DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>6244</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6243</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6242</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6241</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6140</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6135</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
<tr>
<td>6120</td>
<td>005 N</td>
<td>0</td>
<td>2</td>
<td>BY</td>
<td>CBY</td>
<td>308 N</td>
<td>IOC,EIO</td>
</tr>
</tbody>
</table>

Figure 319: Supported Hardware Report (Part 10 of 27)
### Figure 321: Supported Hardware Report (Part 12 of 27)

<table>
<thead>
<tr>
<th>CONTROL UNIT TYPE-MODEL</th>
<th>SUPPORTED HARDWARE - CONTROL UNITS (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3780-13</td>
<td>N</td>
</tr>
<tr>
<td>3851</td>
<td>-</td>
</tr>
<tr>
<td>3835</td>
<td>-</td>
</tr>
<tr>
<td>3831</td>
<td>-</td>
</tr>
<tr>
<td>3830-3</td>
<td>N</td>
</tr>
<tr>
<td>3830-2</td>
<td>N</td>
</tr>
<tr>
<td>3829</td>
<td>-</td>
</tr>
<tr>
<td>3827</td>
<td>-</td>
</tr>
<tr>
<td>3800-6</td>
<td>N</td>
</tr>
<tr>
<td>3800-1</td>
<td>Y</td>
</tr>
<tr>
<td>3737</td>
<td>-</td>
</tr>
<tr>
<td>3720</td>
<td>-</td>
</tr>
<tr>
<td>3705</td>
<td>-</td>
</tr>
<tr>
<td>3590</td>
<td>-</td>
</tr>
<tr>
<td>3505</td>
<td>-</td>
</tr>
<tr>
<td>3490-C1A</td>
<td>N</td>
</tr>
<tr>
<td>3490</td>
<td>-</td>
</tr>
<tr>
<td>3430</td>
<td>-</td>
</tr>
<tr>
<td>3423</td>
<td>-</td>
</tr>
<tr>
<td>3422</td>
<td>-</td>
</tr>
<tr>
<td>3300</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
<tr>
<td>3040</td>
<td>-</td>
</tr>
<tr>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>3401</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3422</td>
<td>-</td>
</tr>
<tr>
<td>3423</td>
<td>-</td>
</tr>
<tr>
<td>3424</td>
<td>-</td>
</tr>
<tr>
<td>3430</td>
<td>-</td>
</tr>
<tr>
<td>3460</td>
<td>-</td>
</tr>
<tr>
<td>3461</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3380</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
<tr>
<td>3040</td>
<td>-</td>
</tr>
<tr>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>3401</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3380</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
<tr>
<td>3040</td>
<td>-</td>
</tr>
<tr>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>3401</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3380</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
<tr>
<td>3040</td>
<td>-</td>
</tr>
<tr>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>3401</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3380</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
<tr>
<td>3040</td>
<td>-</td>
</tr>
<tr>
<td>3400</td>
<td>-</td>
</tr>
<tr>
<td>3401</td>
<td>-</td>
</tr>
<tr>
<td>3399</td>
<td>-</td>
</tr>
<tr>
<td>3389</td>
<td>-</td>
</tr>
<tr>
<td>3388-C2</td>
<td>N</td>
</tr>
<tr>
<td>3380</td>
<td>-</td>
</tr>
<tr>
<td>3262</td>
<td>-</td>
</tr>
<tr>
<td>3258</td>
<td>-</td>
</tr>
<tr>
<td>3174</td>
<td>-</td>
</tr>
<tr>
<td>3107</td>
<td>-</td>
</tr>
<tr>
<td>3105</td>
<td>-</td>
</tr>
<tr>
<td>3101</td>
<td>-</td>
</tr>
<tr>
<td>3080</td>
<td>-</td>
</tr>
<tr>
<td>3060</td>
<td>-</td>
</tr>
</tbody>
</table>
--CONTROL UNIT-TYPE-MODEL
MD
_____________ __
3880-23
Y
3880-3
N
3880-4
N
3886
3890
3895
3900
3935
3990
3990-1
N
3990-2
N
3990-3
N
3990-6
N
3995
3995-SDA
N
3995-151
N
3995-153
N
4000
4100
4245
4248
4370
5088-1
N
5088-2
Y
6098
6120
6135
6139
6140
6241
6242
6243
6244
6251
6252
6253
6254
6255
6256
6257
6258
6262
6310
6311
7171
7770-3
N
8232
9032
9032-3
N
9032-5
N
9033
9340
9341
9343
9343-1
N

-ATTACHMENT COUNTS-CHPMAX DEVMIN DEVMAX
______ ______ ______
64
64
64
2
2
2
64
256
64
256
2
2
256
96
96
1
1
16
32
192
1
64
64
64
1
1
1
1
256
16
64
64

SUPPORTED HARDWARE
-UNIT ADDRESSES-MIN MAX REC RANGE
___ ___ ___ _____
2 256 16
1
- 32
-

- CONTROL UNITS (2)
----LOGICAL ADDRESSING--LA MIN MAX MULTHOST MAXCU
__ ___ ___ ________ _____
N
N
N
N
N
N
N
N
Y
0
F
Y
N
Y
0
F
Y
Y
0
F
Y
Y
0
F
Y
N
N
Y
0
F
Y
Y
0
F
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
-

TIME: 09:58 DATE: 2018-06-19
--------LOGICAL PATH -------MAXPATH MINGRP SH MXESC MXFIC
_______ ______ __ _____ _____
8
8
16
8
16
8
128
8
Y
Y
64
64
2
2
64
64
64
64
-

PAGE XDCM

14

___
N
N
N
N
N
N
N
N
Y
N
Y
Y
Y
N
N
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y

Figure 323: Supported Hardware Report (Part 14 of 27)

KEY
--TYPE-MODEL
MD
ATTACHMENT CNT CHPMAX
DEVMIN
DEVMAX
UNIT ADDRESSES
MIN
MAX
REC
RANGE
LOGICAL ADDRESSING LA
MIN
MAX
MULTHOST
MAXCU
LOGICAL PATHS MAXPATH
MINGRP
SH
MXESC
MXFIC
DCM

-

SUPPORTED HARDWARE - CONTROL UNITS (2)
TIME: 09:58 DATE: 2018-06-19
KEY DESCRIPTION
--------------SUPPORTED CONTROL UNIT TYPE
IF Y, MODEL IS DEFAULT
MAXIMUM NUMBER OF CHANNEL PATHS THAT CAN BE CONNECTED TO C/U
MINIMUM NUMBER OF DEVICES THAT MUST BE CONNECTED TO C/U
MAXIMUM NUMBER OF DEVICES THAT CAN BE CONNECTED TO C/U
MINIMUM NUMBER OF UNIT ADDRESSES THAT MUST BE DEFINED TO C/U
MAXIMUM NUMBER OF UNIT ADDRESSES THAT CAN BE DEFINED TO C/U
RECOMMENDED NUMBER OF UNIT ADDRESSES
MAXIMUM NUMBER OF UNIT ADDRESS RANGES THAT CAN BE DEFINED TO C/U
IF Y, C/U SUPPORTS LOGICAL ADDRESSING (CUADD)
MINIMUM VALUE OF ALLOWED LOGICAL ADDRESS (CUADD)
MAXIMUM VALUE OF ALLOWED LOGICAL ADDRESS (CUADD)
IF Y, MULTIPLE HOSTS CAN CONNECT TO THE SAME LOGICAL ADDRESS (CUADD)
MAXIMUM NUMBER OF LOGICAL CONTROL UNITS SUPPORTED (CUADD)
MAXIMUM NUMBER OF LOGICAL PATHS SUPPORTED BY C/U
MINIMUM GROUP ATTACHMENT VALUE FOR LOGICAL PATHS
IF Y, ONLY SINGLE HOST CAN ATTACH TO CONTROL UNIT AT A TIME
MAXIMUM NUMBER OF LOGICAL PATHS PER ESCON PORT
MAXIMUM NUMBER OF LOGICAL PATHS PER FICON PORT
DYNAMIC CHPID MANAGEMENT SUPPORT

Y
N
-

-

CONTROL UNIT HAS THE CAPABILITY
CONTROL UNIT DOES NOT HAVE THE CAPABILITY
UIM DOES NOT DEFINE A VALUE OR VALUE IS NOT APPLICABLE

PAGE X-

15

Figure 324: Supported Hardware Report (Part 15 of 27)

Configuration reports 379


| Figure 325: Supported Hardware Report (Part 16 of 27) |
Figure 326: Supported Hardware Report (Part 17 of 27)
TYPE-MODEL
_____________
3705
3720
3725
3737
3745
3746
3767-1
3767-2
3791L
3800-1
3800-3
3800-6
3800-8
3812
3816
3820
3825
3827
3828
3829
3831
3835
3851
3886
3890
3895
3900
3935
3995
3995-SDA
3995-151
3995-153
4000
4100
4224
4245
4248
4250
4370
5080
5081
5210
6090
6091
6262
7171
7770-3
8232
83B3
9032
9032-3
9032-5
9033
9332-40
9332-42
9332-60
9332-62
9335-B1
9336-10
9336-20
9345
9348-1

UIM MVS VM
___ ___ __
023 Y
Y
023 Y
Y
023 Y
Y
014 Y
Y
023 Y
Y
023 Y
Y
024 Y
N
024 Y
N
027 Y
N
011 Y
Y
011 Y
Y
011 Y
Y
011 Y
Y
031 Y
Y
287 N
Y
022 Y
Y
271 N
Y
032 Y
Y
032 Y
Y
032 Y
Y
022 Y
Y
022 Y
Y
053 Y
Y
053 Y
Y
002 Y
Y
002 Y
Y
022 Y
Y
022 Y
N
031 Y
Y
012 Y
Y
012 Y
Y
031 Y
N
022 Y
Y
291 N
Y
291 N
Y
031 Y
Y
291 N
Y
291 N
Y
268 N
Y
027 Y
Y
023 Y
N
014 Y
Y
025 Y
N
051 Y
Y
051 Y
Y
051 Y
Y
051 Y
Y
258 N
Y
002 Y
Y
261 N
Y

MX
__
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

SUPPORTED HARDWARE - DEVICES
GR RL RH
RD TM ST ATTACHABLE TO CU
__ __ ____ __ __ __ ___________________________________________________________________________________
N
1 4095 1 Y N NOCHECK,3705
N
1 4095 1 Y N NOCHECK,3720
N
1 4095 1 Y N NOCHECK,3725
N
1 4095 1 N Y NOCHECK,3737
N
1 4095 1 Y N NOCHECK,OSN,3745,3746
N
1 4095 1 Y N NOCHECK
N
1 4095 1 Y Y NOCHECK,2701,3704,3705,3720,3725,3745,3746
N
1 4095 1 Y Y NOCHECK,2701,3704,3705,3720,3725,3745,3746
N
1 4095 1 Y N NOCHECK,3174,3272,3274,3704,3705,3720,3725,3745,3746,3791L,7171
N
1 4095 1 Y Y NOCHECK,3800-1
N
1 4095 1 Y Y NOCHECK,3800-3
N
1 4095 1 Y Y NOCHECK,3800-6
N
1 4095 1 Y Y NOCHECK,3800-8
N
1 4095 1 Y Y NOCHECK,3174,3272,3274,3791L,6120
N
1 4095 1 Y Y NOCHECK,3174,3272,3274,3791L,6120
N
1 4095 1 Y N NOCHECK,3820
N
1 4095 1 Y Y AFP1,NOCHECK,3825
N
1 4095 1 Y Y AFP1,NOCHECK,3827
N
1 4095 1 Y Y AFP1,NOCHECK,3828
N
1 4095 1 Y Y AFP1,NOCHECK,3829
N
1 4095 1 Y Y AFP1,NOCHECK,3831
N
1 4095 1 Y Y AFP1,NOCHECK,3835
N
1 4095 1 Y Y NOCHECK,3851
N
1 4095 1 Y Y NOCHECK,3886
N
1 4095 1 Y Y NOCHECK,3890
N
1 4095 1 Y Y NOCHECK,3895
N
1 4095 1 Y Y AFP1,NOCHECK,3900
N
1 4095 1 Y Y AFP1,NOCHECK,3935
Y
1
1 1 N Y NOCHECK,3995,3995-SDA
N
1 256 16 N Y NOCHECK,3995-SDA
N
1 4095 1 Y Y NOCHECK,3995-SDA,3995-151
N
1 4095 1 Y Y NOCHECK,3995-SDA,3995-153
N
1 4095 1 Y Y AFP1,NOCHECK,4000
N
1 4095 1 Y Y AFP1,NOCHECK,4100
N
1 4095 1 Y Y NOCHECK,3174,3272,3274,3791L,6120
N
1 4095 1 Y Y NOCHECK,4245,6120
N
1 4095 1 Y Y NOCHECK,4248
N
1 4095 1 Y Y NOCHECK,3174,3272,3274,3791L,6120
N
1 4095 1 Y Y AFP1,NOCHECK,4370
N
1 4095 1 Y Y NOCHECK,5088-1,5088-2,6098
N
1 4095 1 Y Y NOCHECK,5088-1,5088-2,6098
N
1 4095 1 Y Y NOCHECK,3174,3272,3274,3791L,6120
N
1 4095 1 Y Y NOCHECK,5088-1,5088-2,6098
N
1 4095 1 Y Y NOCHECK,5088-1,5088-2,6098
N
1 4095 1 Y Y NOCHECK,4248,6262
N
1 4095 1 Y N NOCHECK,7171
N
1 4095 1 Y N NOCHECK,7770-3
N
1 4095 32 N Y NOCHECK,8232
N
1 4095 1 Y Y NOCHECK,2701,3704,3705,3720,3725,3745,3746
N
1 4095 1 Y Y NOCHECK,9032
N
1 4095 1 Y Y NOCHECK,9032,9032-3
N
1 4095 1 Y Y NOCHECK,9032,9032-5
N
1 4095 1 Y Y NOCHECK,9033
N
1 4095 1 Y Y NOCHECK,6310
N
1 4095 1 Y Y NOCHECK,9340,9341,9343,9343-1
N
1 4095 1 Y Y NOCHECK,6311

Figure 327: Supported Hardware Report (Part 18 of 27)

KEY
--TYPE-MODEL
UIM
MVS
VM
MX
GR
RL
RH
RD
TM
ST
ATTACHABLE TO CU
Y
N

-

SUPPORTED HARDWARE - DEVICES
TIME: 09:58 DATE: 2018-06-19
KEY DESCRIPTION
--------------SUPPORTED DEVICE TYPE
INDEX OF UNIT INFORMATION MODULE SUPPORTING THIS DEVICE TYPE
DEVICE IS SUPPORTED FOR MVS DEFINITION
DEVICE TYPE IS SUPPORTED FOR VM DEFINITION
DEVICE IS A MULTI-EXPOSURE DEVICE OR A PARALLEL ACCESS VOLUME DEVICE
DEVICE IS A GROUP DEVICE
MINIMUM NUMBER OF DEVICES TO BE DEFINED
MAXIMUM NUMBER OF DEVICES TO BE DEFINED
DEFAULT NUMBER OF DEVICES TO BE DEFINED
DEFAULT TIMEOUT VALUE
DEFAULT STADET VALUE
LIST OF CONTROL UNIT TYPES TO WHICH DEVICE TYPE IS ATTACHABLE
DEVICE TYPE HAS THE CAPABILITY
CAPABILITY IS NOT AVAILABLE

Figure 328: Supported Hardware Report (Part 19 of 27)

382 z/OS: Hardware Configuration Definition User's Guide

PAGE X-

19


<table>
<thead>
<tr>
<th>Type-Model</th>
<th>UCM Generic</th>
<th>DPREF DYK ADC UCL IDP</th>
<th>Supported Hardware - MVS Devices</th>
<th>Supported Parameters (Values) / Features</th>
</tr>
</thead>
</table>
### Supported Hardware - MVS Devices

**Time:** 09:58  **Date:** 2018-06-19  **Page:** 22

<table>
<thead>
<tr>
<th>Type-Model</th>
<th>UIM Generic</th>
<th>DPREF 4031 UCB NIP</th>
<th>Supported Parameters (Values) / Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>3420-8</td>
<td>001 3420-8</td>
<td>1208</td>
<td>Y, Y, Y, N, Feature, Offline, Dynamic, LocAny / SHARABLE, 7-Track, 9-Track</td>
</tr>
<tr>
<td>3420-7</td>
<td>001 3420-7</td>
<td>1218</td>
<td>Y, Y, N, Feature, Offline, Dynamic, LocAny / SHARABLE, 7-Track, 9-Track</td>
</tr>
<tr>
<td>3420-1</td>
<td>001 3420-1</td>
<td>1208</td>
<td>Y, Y, Y, N, Feature, Offline, Dynamic, LocAny / SHARABLE, 7-Track, 9-Track</td>
</tr>
<tr>
<td>3420-2</td>
<td>001 3420-2</td>
<td>1218</td>
<td>Y, Y, N, Feature, Offline, Dynamic, LocAny / SHARABLE, 7-Track, 9-Track</td>
</tr>
</tbody>
</table>

#### Figure 331: Supported Hardware Report (Part 22 of 27)

#### Figure 332: Supported Hardware Report (Part 23 of 27)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B8EE</td>
<td>258 B8EE</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>BCTC</td>
<td>270 BCTC</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>B2C2</td>
<td>258 B2C2</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>BCTC</td>
<td>270 BCTC</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>270 CTC</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>CTC</td>
<td>270 CTC</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>DUMMY</td>
<td>256 DUMMY</td>
<td>N</td>
<td>(R)CLASS, LMT, TAP, TEMP, DISPLAY, RDR, MPT, PUN, SET(tfch), OFFLINE, UIRATE, EQID / DPS, RESERVE</td>
<td></td>
</tr>
<tr>
<td>FBSOC51</td>
<td>254 FBSOC51</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td>EMAIL, (R)FCM, (R)TR, (R)SW, (R)PATH, MDD, (R)RFile, (R)FTP,</td>
</tr>
<tr>
<td>FBSOC51</td>
<td>254 FBSOC51</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
<tr>
<td>HBS1sh</td>
<td>258 HBS1sh</td>
<td>N</td>
<td>OFFLINE, UIRATE, MDD, OFFLINE, UIRATE</td>
<td></td>
</tr>
<tr>
<td>HBS1sh</td>
<td>258 HBS1sh</td>
<td>N</td>
<td>OFFLINE, UIRATE, EQID</td>
<td></td>
</tr>
</tbody>
</table>

Figure 333: Supported Hardware Report (Part 24 of 27)
Figure 334: Supported Hardware Report (Part 25 of 27)
Configuration
Definition
User's Guide
Physical Configuration Information

Physical Device Types

Physical Device
3490-B20
3490-B40
Attachable to the following control units
3490-A10
3490-A20

Physical Device
(Integrated Tape Subsystem)
3490-C10
3490-C11
3490-C22

Physical Device
(Integrated Tape Subsystem inside a 3494)
3490-C1A
3490-C2A

Physical Device
3494 and 3495 are tape libraries containing automation, library manager, one or more tape control units, storage cells and tape cartridges. To prepare the IODF, no need to define 3494 and 3495 explicitly. However, need to indicate the tape devices as library tape devices by specifying LIBRARY=YES in the device definition.

Logical Configuration Rules

For Channel Subsystem
- Up to maximum 4 channel paths for A10, 8 for A20,
- Range of 16 unit addresses for control unit. Also accept a minimum of 2 addresses for integrated tape subsystem.

For Operating System
- LIBRARY=YES, if devices are installed in a system-managed IBM 3494 or IBM 3495 Tape Library.
- LIBRARY=YES or NO for BTLS managed library drives
- DYNAMIC=YES, if devices are dynamically reconfigured
- AUTOSWITCH=YES, if tape drives are dynamically switched between system (MVS/ESA 5.2.0)

Configuration Example

CHPID PATH=(22,27),TYPE=CNC

Software Prerequisites

Minimum version and release to operate the device in MVS/ESA environment:
- MVS/SP - JES2 3.1
- MVS/DFP 3.1

Minimum Product Levels
- DFSORT release 11 (release 12 for C1A,C2A)
- DEBP 3.4 (3.5 for CIA,C2A)
- DFHSM 2.6
- DFHSS 2.5

References
- MVS/ESA & MVS/ESA Support for 3490 Magnetic Tape Subsystem, GC28-1141
- IBM 3494E Planning and Migration Guide GC35-0219
- IBM 3490 Planning and Migration Guide GC35-0116

Notes
- For the latest information, contact your local IBM Marketing Representative.

Device number definition values: ADDRESS=(device number<number-of-devices>)
  device number: 1 - 4 hexadecimal number in the range 0000 - FFFF.
  number-of-devices: Number of sequential device numbers to be assigned to the devices.
  Minimum value: 1
  Default value: 1
  Maximum value: 4095

Channel Subsystem information:
- When attached to a parallel interface:
  I/O interface time out function default: TIMEOUT=YES
  Status verification facility default: STADET=YES

Figure 337: I/O Definition Reference (Part 1 of 5)

Figure 338: I/O Definition Reference (Part 2 of 5)
Unit address: UNITADD=xx

The unit address is a hexadecimal value from 00 to FF which must be specified in the unit address range of the control unit. Default unit address are the last 2 digits of the device number.

MVS configuration information:

Generic name: 3490 It may be modified dependent on the specified features.

Support of dynamic I/O reconfiguration: Yes
Support of device numbers greater than 0FFF: Yes
Support of UCBs above 16 MB storage: Yes

Required parameters: None.

Optional parameters:

OFFLINE Device considered online or offline at IPL
Default value: OFFLINE=NO

Specifies whether MVS is to consider the device online or offline at IPL.

Yes The device is considered offline at IPL.
No The device is considered online at IPL. (Default?)

If MVS needs the device during IPL, specify No.

DYNAMIC Device supports dynamic configuration

Specify yes to indicate that the device is to be eligible for Dynamic I/O Configuration.

LIBRARY Device supports auto tape library

Data type is YES or NO
Pre-selected: No

Specify YES to indicate that the device belongs to an automated tape library.

AUTOSWITCH Device is automatically switchable

Data type is YES or NO
Pre-selected: No

Specify YES to indicate that the device should be treated as an automatically switchable device

Supported features:

ALTCTRL Separate physical control unit path
Specify Yes to indicate that there is a separate physical control unit path to the device.

SHARABLE Device is Sharable between systems

Specify Yes to indicate that the 3803 two-channel switch is used for partitioning and that magnetic tape drives can be shared between two processors. Do not allocate or unload a shared tape drive.

If specify Yes for SHARABLE, HCD forces a value of Yes for the OFFLINE parameter, even if you specify No for OFFLINE.

COMPACT Compaction

Specify Yes to indicate that compaction is available for tape devices.

Compaction is a method of compressing and encoding data in order to reduce storage space.
Graphical configuration reports

This section contains one example for an LCU report. “Create or view graphical configuration reports” on page 228 describes how to produce this report.

LCU Report

The LCU report shows all logical control units for the designated processor. Each diagram shows one or more logical control units.

Figure 342: LCU report

IODF compare reports

The following figures show examples of IODF compare reports that can be produced by the IODF compare function of HCD. Not all possible reports are shown, and not all examples are shown completely. “HCD compare functions” on page 236 describes how to produce these reports.

For XMP processors, the processorID for the comparison is shown together with the channel subsystem in question, for example, XMP01.1

With all IODF reports where channel subsystems of XMP processors are involved, you can compare two channel subsystems.
You can also compare an SMP processor to a channel subsystem of an XMP processor. If this kind of comparison is limited by processor only, the SMP processor is compared to channel subsystem 0 of the XMP processor.

**Processor Compare Report**

<table>
<thead>
<tr>
<th>P2964</th>
<th>Actual Data</th>
<th>Old Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>65288</td>
<td>65288</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>same</td>
</tr>
</tbody>
</table>

Limited to New Processor Id: P2964 Old Processor Id: P2964
New IODF name: BOKA.IODF76.WORK.R111 Old IODF name: BOKA.IODF75.PROD.R111

**Channel Subsystem Compare Report**

<table>
<thead>
<tr>
<th>P2964 5</th>
<th>Actual Data</th>
<th>Old Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65008</td>
<td>65535</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>same</td>
</tr>
<tr>
<td></td>
<td>65535</td>
<td>65535</td>
<td>same</td>
</tr>
</tbody>
</table>

Limited to New Processor Id: P2964 Old Processor Id: P2964
New IODF name: BOKA.IODF76.WORK.R111 Old IODF name: BOKA.IODF75.PROD.R111

**Figure 343: Processor Compare Report**

**Figure 344: Channel Subsystem Compare Report**
The **PCIe Function Compare Report** shows the changes in the IDs and attributes of PCIe functions between processors of two IODFs.

### PCIe Function Compare Report

<table>
<thead>
<tr>
<th>PROC</th>
<th>FID</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3906V2</td>
<td>0017</td>
<td>Added</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td>Channel ID (CHID)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>Adapter port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127</td>
<td></td>
<td>Virtual Function ID (VF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new type port2</td>
<td></td>
<td>Function Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>undefined</td>
<td></td>
<td>UID parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>Function Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new type port2</td>
<td></td>
<td>Function Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Partition in Access List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; LP02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CF0F</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CF51</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CF52</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CO51</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CO52</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; CO59</td>
<td></td>
<td>Partition in Candidate List</td>
</tr>
<tr>
<td>P3906V2</td>
<td>0018</td>
<td>Added</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
<td>Channel ID (CHID)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Adapter port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZHYPERLINK</td>
<td></td>
<td>Function Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Virtual Function ID (VF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>00A4</td>
<td></td>
<td>UID parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Function Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Partition in Access List</td>
</tr>
</tbody>
</table>

### Partition Compare Report

<table>
<thead>
<tr>
<th>PROC</th>
<th>PART</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2964V3.0</td>
<td>LPB1</td>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Partition Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DS</td>
<td>same</td>
<td>Partition Usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Y</td>
<td>Partition UID flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test partition 01</td>
<td>same</td>
<td>Partition Description</td>
</tr>
</tbody>
</table>
Channel path compare report

### Figure 347: Channel Path Compare Report

**Note:** HCD allows devices to define identical device number and subchannelset information. Such devices can not be resolved as different devices within the Channel Path Compare Report and are marked with an asterisk (**`). If further information on these devices is necessary, refer to the according device reports.
### Control Unit Attachment Compare Report

<table>
<thead>
<tr>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FR3BLPAR 2000</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td>serial</td>
<td>same</td>
<td>Control Unit Attachment Type</td>
</tr>
<tr>
<td>5</td>
<td>same</td>
<td>Protocol</td>
</tr>
<tr>
<td>2</td>
<td>same</td>
<td>I/O Concurrency Level</td>
</tr>
<tr>
<td>1</td>
<td>same</td>
<td>Control Unit Address</td>
</tr>
<tr>
<td>80,256</td>
<td>same</td>
<td>Unit Address, Number of addresses</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
<tr>
<td><strong>FR3BLPAR 2000</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td>serial</td>
<td>same</td>
<td>Control Unit Attachment Type</td>
</tr>
<tr>
<td>5</td>
<td>same</td>
<td>Protocol</td>
</tr>
<tr>
<td>2</td>
<td>same</td>
<td>I/O Concurrency Level</td>
</tr>
<tr>
<td>1</td>
<td>same</td>
<td>Control Unit Address</td>
</tr>
<tr>
<td>80,256</td>
<td>same</td>
<td>Unit Address, Number of addresses</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
<tr>
<td>00,256</td>
<td>same</td>
<td>Number of Connected Managed Channel Paths</td>
</tr>
</tbody>
</table>

Figure 348: Control Unit Attachment Compare Report

### Device Attachment Compare Report

<table>
<thead>
<tr>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GOLDENE1.0 0080,8</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Subchannel Set ID</td>
</tr>
<tr>
<td>00</td>
<td>same</td>
<td>Unit Address</td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Illegal Status Detection Facility</td>
</tr>
<tr>
<td>No</td>
<td>same</td>
<td>Timeout Facility</td>
</tr>
<tr>
<td>undefined</td>
<td>same</td>
<td>Preferred Channel Path</td>
</tr>
<tr>
<td>&gt;&gt; GEC509FX</td>
<td>&gt;&gt; same</td>
<td>Partition in Explicit Device Candidate list</td>
</tr>
<tr>
<td>&gt;&gt; GEC509FX</td>
<td>&gt;&gt; same</td>
<td>Partition in Explicit Device Candidate list</td>
</tr>
<tr>
<td>&gt;&gt; GEC509FX</td>
<td>&gt;&gt; same</td>
<td>Partition in Explicit Device Candidate list</td>
</tr>
<tr>
<td><strong>GOLDENE1.0 0088,8</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Subchannel Set ID</td>
</tr>
<tr>
<td>08</td>
<td>same</td>
<td>Unit Address</td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Illegal Status Detection Facility</td>
</tr>
<tr>
<td>No</td>
<td>same</td>
<td>Timeout Facility</td>
</tr>
<tr>
<td>undefined</td>
<td>same</td>
<td>Preferred Channel Path</td>
</tr>
</tbody>
</table>

Figure 349: Device Attachment Compare Report

Configuration reports 395
Control Unit Compare Report

<table>
<thead>
<tr>
<th>CU</th>
<th>New IDDF</th>
<th>Old IDDF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B200</td>
<td>3990</td>
<td>same</td>
<td>Control Unit Type</td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>same</td>
<td>Control Unit Serial Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attached to Processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attached to Processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Compare Report

<table>
<thead>
<tr>
<th>Device, Range</th>
<th>New IDDF</th>
<th>Old IDDF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B180</td>
<td>9032</td>
<td>same</td>
<td>Device Type</td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>same</td>
<td>Serial Number</td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>same</td>
<td>Device Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VOLSER</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attached to Processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attached to Processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attached to Processor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connected to Control Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Limited to New Processor Id: LPARPROC Old Processor Id: LPARPROC</th>
</tr>
</thead>
</table>

Limited to New Partition Id: PART1 Old Partition Id: PART3

Device, Range | New IDDF | Old IDDF | Description |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B200,15</td>
<td>3390</td>
<td>same</td>
<td>Device Type</td>
</tr>
<tr>
<td></td>
<td>same</td>
<td>same</td>
<td>Serial Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Device Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VOLSERn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FPPR Usage</td>
</tr>
</tbody>
</table>

Limited to New Processor Id: LPARPROC Old Processor Id: LPARPROC

Limited to New Partition Id: PART1 Old Partition Id: PART3

Note: With z/OS V2R3, HCD no longer displays attached device information in the control unit compare report. This information has been removed to reduce the report size and make it more readable.

The information of device to control unit connection can still be found within the device configuration report. In order to get a quick overview of which devices are connected to a specific control unit, it is possible to use the filter function of the ISPF dialog: “Invoke option 1.5 (I/O device list), enter command ‘f’ or select the filter option ‘Set Filter’ and specify the desired control unit.”

Figure 351: Device Compare Report
### Switch Compare Report

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td>9032</td>
<td>same</td>
<td>same</td>
<td>Switch Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Switch Serial Number</td>
</tr>
<tr>
<td>&gt;&gt; 1000 1000</td>
<td>&gt;&gt; same</td>
<td>Switch Control unit, switch device</td>
<td></td>
</tr>
<tr>
<td>&gt;&gt; 1010 1010</td>
<td>&gt;&gt; same</td>
<td>Switch Control unit, switch device</td>
<td></td>
</tr>
</tbody>
</table>

**New IODF name:** HCI.IODF00  **Old IODF name:** HCI.IODF01

#### Figure 352: Switch Compare Report

### Switch Detail Compare Report

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>PORT</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>B0</td>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>installed</td>
<td>same</td>
<td>Port Installed Flag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>&gt;&gt; P2084.1 31</td>
<td>&gt;&gt; same</td>
<td>Attached to Processor, Channel Path</td>
</tr>
</tbody>
</table>

**Limited to New Switch Id:** 01  **Old Switch Id:** 01

#### Figure 353: Switch Detail Compare Report

### Switch Configuration Compare Report

The Switch Configuration Compare Report compares the switch configurations contained in the specified IODFs.

<table>
<thead>
<tr>
<th>SWITCH</th>
<th>SWCONFIG</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>BASIC</td>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROHIBIT</td>
<td>same</td>
<td>same</td>
<td>Switch Configuration Description</td>
</tr>
<tr>
<td></td>
<td>SW Building 01-125</td>
<td>ALLOW</td>
<td></td>
<td>SW Switch Configuration Description</td>
</tr>
</tbody>
</table>

**New IODF name:** HCI.IODF00  **Old IODF name:** HCI.IODF01

#### Figure 354: Switch Configuration Compare Report
Esoteric Compare Report

<table>
<thead>
<tr>
<th>New IODF name: REDDE.IODF00.COMP1</th>
<th>Old IODF name: REDDE.IODF00.COMP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited to New Operating System Id: OS1</td>
<td>Old Operating System Id: OS1</td>
</tr>
</tbody>
</table>

- **01 01 BOBO**: Deleted
  - No
  - Esoteric is VIO Eligible
  - Esoteric Token
  - Port of Prohibited Connection
  - Assigned Device, Range

- **01 01 HUGO**: Added
  - Yes
  - same
  - Esoteric is VIO Eligible
  - Esoteric Token
  - Assigned Device, Range

- **01 01 SYSDA**: Actual Data
  - Old Data
  - > 0200,64
  - > same
  - Assigned Device, Range

Figure 355: Switch Configuration Detail Compare Report

Figure 356: Esoteric Compare Report
### Operating System Compare Report

<table>
<thead>
<tr>
<th>OS Device, Range</th>
<th>New IODF name</th>
<th>Old IODF name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>New IODF</td>
<td>Old IODF</td>
<td>Description</td>
</tr>
<tr>
<td>OS1</td>
<td>0100</td>
<td>Actual Data</td>
<td>Old Data</td>
</tr>
<tr>
<td>9033</td>
<td>same</td>
<td>same</td>
<td>Name of Generic</td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Value(s) of Parameter DYNAMIC</td>
<td></td>
</tr>
<tr>
<td>5MCH</td>
<td>same</td>
<td>same</td>
<td>Value(s) of Parameter OFFLINE</td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Value(s) of Parameter DYNAMIC</td>
<td></td>
</tr>
<tr>
<td>OS1</td>
<td>0200,32</td>
<td>Actual Data</td>
<td>Old Data</td>
</tr>
<tr>
<td>3390</td>
<td>same</td>
<td>same</td>
<td>Name of Generic</td>
</tr>
<tr>
<td>No</td>
<td>*</td>
<td>same</td>
<td>Value(s) of Parameter OFFLINE</td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Value(s) of Parameter DYNAMIC</td>
<td></td>
</tr>
<tr>
<td>OS1</td>
<td>0101,4</td>
<td>Actual Data</td>
<td>Old Data</td>
</tr>
<tr>
<td>3390A</td>
<td>same</td>
<td>same</td>
<td>Name of Generic</td>
</tr>
<tr>
<td>3379</td>
<td>same</td>
<td>same</td>
<td>Name of Generic</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Subchannel Set ID</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>same</td>
<td>Value(s) of Parameter DYNAMIC</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

* indicates this value as default value (only shown when both sides exist)

Figure 358: OS Device Compare Report

**Note:** Device ranges in a subchannel set with a subchannel set ID > 0 are displayed in a 5-digit notation with the leading digit indicating the subchannel set ID. For example, a device range 1000, 64 located in subchannel set 1 is shown as 11000, 64. A device range 2000, 32 in subchannel set 0 is shown as 2000, 32.
### OS Console Compare Report

New IODF name: USER.IODF03.WORK
Old IODF name: HCD.IODF01.WORK

<table>
<thead>
<tr>
<th>OSCONFIG DEVICE</th>
<th>New IODF</th>
<th>Old IODF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPSYS01 0001</td>
<td>Actual Data</td>
<td>Old Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>Order Number</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OPSYS01 0002</td>
<td>Added</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>Order Number</td>
</tr>
</tbody>
</table>

#### CSS / OS Device Compare Report

IODF Name: SEL.IODF00.WORK1
Processor Id: PROC01
Css Id: 0
Partition Name: PART00
Operating System Configuration Id: MVS1

<table>
<thead>
<tr>
<th>Device, Range</th>
<th>CSS Device Type</th>
<th>OS Device Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A000,80</td>
<td>3390B</td>
<td>same</td>
</tr>
<tr>
<td>A050,176</td>
<td>3390A</td>
<td>same</td>
</tr>
<tr>
<td>A200,80</td>
<td>3390B</td>
<td>same</td>
</tr>
<tr>
<td>E210,16</td>
<td>3390</td>
<td>3380</td>
</tr>
<tr>
<td>E220,1000</td>
<td>3390</td>
<td>3390A</td>
</tr>
<tr>
<td>1017F,128</td>
<td></td>
<td>3390A</td>
</tr>
<tr>
<td>10220,64</td>
<td></td>
<td>3390A</td>
</tr>
<tr>
<td>10310,48</td>
<td></td>
<td>3390A</td>
</tr>
<tr>
<td>2F900</td>
<td>3390S</td>
<td>same</td>
</tr>
<tr>
<td>2F901</td>
<td>3390D</td>
<td>same</td>
</tr>
<tr>
<td>2F902</td>
<td>3390S</td>
<td>same</td>
</tr>
</tbody>
</table>

* Devices relate to the limiting LPAR via CHPIDs which have the limiting LPAR in the candidate list only.
- Devices relate to the limiting LPAR via CHPIDs but the device is excluded from the CSS with an explicit device candidate list.

#### Note
A device range in a subchannel set with a subchannel set ID > 0 is displayed in a 5-digit notation, with the leading digit indicating the subchannel set ID. For example, 10310, 48 denotes the devices 0310 with range 48 in subchannel set 1.
Appendix C. Problem determination for HCD

Overview

The information in this appendix is intended to help you diagnose problems that may arise with definitions that were created by the use of HCD. It explains:

- How to identify problems
- What diagnostic information and tools you can use
- How to search problem reporting data bases

Because HCD is part of z/OS, problems with HCD must generally be handled as explained in z/OS Problem Management.

Product Identifiers

- Module Prefix: CBD
- Component ID: 5695SC1XL

Identifying problems

Before you can begin to diagnose a system problem, you have to know what kind of problem you have.

The following table contains examples of symptoms you can use to determine a problem. Each symptom refers to a corresponding section for further problem diagnostic.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corresponding Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCD terminates abnormally</td>
<td>“HCD abnormal termination” on page 402.</td>
</tr>
<tr>
<td>Wait State during IPL</td>
<td>“Error during IPL (Wait State Codes)” on page 404.</td>
</tr>
<tr>
<td>A function key assignment does not match the functions that can be performed on the panel.</td>
<td>“Problems with panels and function key assignment” on page 405</td>
</tr>
<tr>
<td>Messages CBDA400I to CBDA420I are displayed</td>
<td>“Problems with help information provided by HCD” on page 405</td>
</tr>
<tr>
<td>Output of textual report is incorrect or incomplete</td>
<td>“Problems with output of HCD textual reports” on page 407</td>
</tr>
<tr>
<td>Output of graphical report is incorrect or incomplete</td>
<td>“Problems with output of HCD graphical reports” on page 407</td>
</tr>
<tr>
<td>Messages during initialization of HCD</td>
<td>“Problems during initialization of HCD” on page 409</td>
</tr>
<tr>
<td>A string like ?PARMnn? appears on the Define Device Parameters / Features panel</td>
<td>“Problems with UIMs” on page 410</td>
</tr>
<tr>
<td>A UIM is flagged in error on the Installed UIMs panel</td>
<td>“Problems with UIMs” on page 410</td>
</tr>
<tr>
<td>Messages during migration</td>
<td>“Resolving migration errors” on page 293</td>
</tr>
<tr>
<td>HCD does not display an error message when you make a mistake</td>
<td>“HCD internal problems” on page 411</td>
</tr>
</tbody>
</table>
Table 27: Symptoms of system problems (continued)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corresponding Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>An HCD generated IOCP input data set fails when using the IOCP program</td>
<td>“HCD internal problems” on page 411</td>
</tr>
<tr>
<td>Transmit configuration package action does not produce the expected results</td>
<td>“Problems with the Transmit Configuration Package action” on page 412</td>
</tr>
</tbody>
</table>

**HCD abnormal termination**

If HCD terminates abnormally, view the HCD message log that contains the termination message CBDA000I specifying the **system abend code** (also called **abend code**) and the **reason code** in the HCD message log.

Refer to the message descriptions shown in *z/OS and z/VM HCD Messages*. Take the action as described under "Programmer Response". If the message points to a probable logic error in one of the modules of HCD, develop a search argument for the problem-reporting data bases. If the search finds that the problem has been reported before, request the problem fix; if not, report the problem to IBM. For a list of additional information that should be provided, see the appropriate message explanation.

**Diagnosing system abend code '00F'**

If HCD terminates with system abend code '00F', this abend code is accompanied by a reason code, which refers to one of the HCD messages describing the reason of the failure. Note that you have to view the HCD message log for the system abend code and reason code. The reason code consists of eight digits and has the format 'mnnnllll' where:

**m**
- Is the prefix indicating the HCD message range:
  - 0: CBDAxxxx messages
  - 1: CBDBxxxx messages
  - 2: CBDCxxxx messages
  - 6: CBDGxxxx messages

**nnn**
- Is the message number within the HCD message range.

**llll**
- Is the message reason code describing in more detail the reason of the message.

The information provided by the abend code can be used as a quick reference into the message. For example, the reason code 00990106 means that:

- The message CBDA099I was issued.
- The message reason code is 0106.

The reason code 00150095 means that:

- The message CBDA015 was issued.
- The message reason code is 95.

Table 28 on page 403 and Table 29 on page 403 show what the search argument and the problem data could look like.
### Table 28: Search Argument

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB/S0hhh</td>
<td>System abend code</td>
<td>AB/S000F</td>
</tr>
<tr>
<td>PRCS/mnnnllll</td>
<td>Reason code</td>
<td>PRCS/00990106</td>
</tr>
<tr>
<td>MS/ccccnnns</td>
<td>Message identifier</td>
<td>MS/CBDA099I</td>
</tr>
</tbody>
</table>

### Table 29: Problem Data

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDA000 abend code and reason code</td>
<td>00F and 00990406</td>
</tr>
<tr>
<td>CBDA099 reason code</td>
<td>406</td>
</tr>
<tr>
<td>CBDA099 additional error information (content of HCDMLOG).</td>
<td></td>
</tr>
<tr>
<td>It is important that all information shown in HCDMLOG is recorded.</td>
<td></td>
</tr>
<tr>
<td>The ID of the panel where the error occurred</td>
<td>CBDPPRF0</td>
</tr>
<tr>
<td>Description of what type of action the user wanted to perform when the problem occurred</td>
<td>Add a Processor</td>
</tr>
<tr>
<td>The TRACE output data set (See “TRACE command” on page 419 for instructions how to produce an HCD trace output.)</td>
<td></td>
</tr>
</tbody>
</table>

### ISPF list file and abend panel

Additional information on errors may be recorded in the ISPF list file.

For abends, additional information may be displayed on the ISPF abend panel.

### Diagnosing system abend other than '00F'

If HCD terminates with an abend code other than '00F' (indicated in the terminating message), proceed as follows:

1. Look at the explanation of the abend code and any reason code that accompanies the abend code. Take the recommended actions.
2. Look for any messages that accompany the abend. Take the recommended actions.
3. Obtain the SYS1.LOGREC record. (Format the SYS1.LOGREC record using EREP.)
4. In SYS1.LOGREC find the SDWAVRA information which is as follows:
   - The CSECT (module) names found in the diagnostic stack.
     The CSECT names are separated by a blank. The SDWAVRA contains all CSECT names from the diagnostic stack as long as they fit into it. If the SDWAVRA is too small to contain all names, the premature end of the CSECT name trace is indicated by an asterisk.
   - The data from each diagnostic stack entry that is marked as VRA data.
     This is normally the input parameter list of the modules corresponding to the CSECT name trace.

Table 30 on page 404 and Table 31 on page 404 show what the search argument and the problem data associated with our example could look like.
### Table 30: Search Argument

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDS/CBDcccccc</td>
<td>CSECT name</td>
<td>RIDS/CBDMGHCP</td>
</tr>
<tr>
<td>AB/S0hhh</td>
<td>System abend code</td>
<td>AB/S0106</td>
</tr>
<tr>
<td>PRCS/mnnnlill</td>
<td>Reason code</td>
<td>PRCS/0000000B</td>
</tr>
<tr>
<td>MS/cccnns</td>
<td>Message identifier</td>
<td>MS/CSV011I</td>
</tr>
<tr>
<td>FLDS/SDWAVRA VALU/cccc</td>
<td>SDWAVRA contents</td>
<td></td>
</tr>
</tbody>
</table>

### Table 31: Problem Data

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS1.LOGREC error record</td>
<td></td>
</tr>
<tr>
<td>SDWAVRA information</td>
<td></td>
</tr>
<tr>
<td>Accompanying messages</td>
<td></td>
</tr>
<tr>
<td>Component ID and FMID</td>
<td></td>
</tr>
<tr>
<td>Linkage editor output</td>
<td></td>
</tr>
<tr>
<td>Description of what type of action the user wanted to perform when the problem occurred</td>
<td></td>
</tr>
<tr>
<td>The TRACE output data set</td>
<td></td>
</tr>
<tr>
<td>(See “TRACE command” on page 419 for instructions how to produce an HCD trace output.)</td>
<td></td>
</tr>
</tbody>
</table>

### Error during IPL (Wait State Codes)

IOS may issue wait state codes during IPL when using an IODF to perform an IPL. The wait state codes indicate that there is a problem, for example, with an IODF data set or with device specifications in the IODF or UIM. The reason codes with the wait state codes point to the cause of the problem. For information about the codes, refer to *z/OS MVS System Codes*.

Depending on the code that was issued, you have to use the arguments that apply to the specific situation listed in the box Table 32 on page 404. The same applies for submitting problem data.

Table 32 on page 404 and Table 33 on page 405 show what the search argument and the problem data could look like.

### Table 32: Search Argument

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS/D0hhhh</td>
<td>Wait state code</td>
<td>WS/D0083</td>
</tr>
<tr>
<td>PRCS/mnnnlill</td>
<td>Reason code</td>
<td>PRCS/00000002</td>
</tr>
<tr>
<td>MS/cccnns</td>
<td>Message identifier</td>
<td></td>
</tr>
<tr>
<td>PIDS/name of UIM</td>
<td>Program name</td>
<td>PIDS/CBDUS005</td>
</tr>
<tr>
<td>VALU/Cccccccccc (if applicable)</td>
<td>Message variable text</td>
<td></td>
</tr>
</tbody>
</table>
Table 33: Problem Data

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wait State Code</td>
<td>D0083</td>
</tr>
<tr>
<td>Reason Code</td>
<td>01</td>
</tr>
<tr>
<td>Accompanying message</td>
<td></td>
</tr>
<tr>
<td>UIM name (if available)</td>
<td>CBDUS005</td>
</tr>
<tr>
<td>Stand-alone dump</td>
<td></td>
</tr>
<tr>
<td>IODF dump</td>
<td></td>
</tr>
</tbody>
</table>

Problems with panels and function key assignment

If problems with panels or the assignment of function keys occur, ensure the following:

- Data set SYS1.SCBDTENU must be allocated to ISPTLIB and data set SYS1.SCBDPENU to ISPPLIB.
- SYS1.SCBDDLST must be allocated to SYSPROC
- SYS1.SCBDPENU, SYS1.SCBDMENU, and SYS1.SCBDTENU must be dynamically allocated when HCD has been started. Compare with LIBDEF definitions in CBDCHCD.

If the library allocation is correct, develop a search argument, and if no problem solution is found, report the problem. To display the panel identifier, use the ISPF command PANELID. The name of the function panel will be shown in the upper left corner of the panel.

Table 34 on page 405 and Table 35 on page 405 show what the search argument and the problem data could look like.

Table 34: Search Argument

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDS/CBDcccccc</td>
<td>Panel identifier</td>
<td>RIDS/CBDPHW10</td>
</tr>
</tbody>
</table>

Table 35: Problem Data

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
</table>
| Panel identifier and name of the panel where the error was detected. | CBDPHW10  
| Type of error found. | Define, Modify, or View Configuration Data |

Problems with help information provided by HCD

Messages that relate to problems with the HCD help facility have the identifiers CBDA400I to CBDA420I. Use the commands:

- HELPID to display the name of the help panel at the end of the command line. The name is displayed in the command line just before the scroll field. It can be used as search argument.
- HELPTTEST to display the help panel while in help mode. It allows you to review or test any help panel while in help mode. That is, it eliminates the need to create the appropriate situation if a review or test of a help panel is required.

This command can also be used to get the help information for a message. The help member for a message consists of the message ID minus the trailing severity indicator (such as "I"). For example, the
help member for message CBDA200I has the name CBDA200. Thus you may get an explanation for messages that are not yet listed in the messages documentation.

Problem with content, wording, mismatch

If problems with content, wording, or mismatches are encountered, obtain the help panel name by using the HELPID command. The help panel name is displayed at the end of the command line.

Table 36 on page 406 shows what the search argument could look like.

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIDS/CBDcccc</td>
<td>Help panel name</td>
<td>RIDS/CBDF403</td>
</tr>
<tr>
<td>RIDS/CBDcccc</td>
<td>Panel identifier</td>
<td>RIDS/CBDPDVF0</td>
</tr>
</tbody>
</table>

Problem shown by help messages CBDA400I or CBDA405I

If message CBDA400I or CBDA405I is issued, check:

1. The library concatenation for your HCD invocation.
2. That the help members are installed in the proper libraries (in SYS1.SCBDHENU).
3. That the help library is allocated either in LINKLST member or to ISPLLIB.

Problem shown by help messages other than CBDA400I and CBDA405I

If a message in the range CBDA400I to CBDA420I but other than CBDA400I and CBDA405I occurs, you have probably encountered a logic error in the dialog.

Table 37 on page 406 and Table 38 on page 406 show what the search argument and the problem data could look like.

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS/cccnnns</td>
<td>Message identifier</td>
<td>MS/CBDA404</td>
</tr>
<tr>
<td>RIDS/CBDcccc</td>
<td>Help panel name</td>
<td>RIDS/CBDF401</td>
</tr>
</tbody>
</table>

Table 38: Problem Data

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message identifier of the message that was issued. All additional information shown in the message, such as the name of the help panel or the reference phrase.</td>
<td>CBDA404</td>
</tr>
<tr>
<td>Panel identifier</td>
<td>CBDPDVF0</td>
</tr>
<tr>
<td>Help panel name</td>
<td>CBDF401</td>
</tr>
<tr>
<td>Description of the related field (in case of field help).</td>
<td>Action entry field</td>
</tr>
<tr>
<td>Name of the action choice (in case of action bar help).</td>
<td></td>
</tr>
</tbody>
</table>
Problems with output of HCD textual reports

Use this procedure if you find problems that relate to the HCD report facility.

1. Check the output of the report job for messages that provide additional information.
2. For incorrect or incomplete output:
   a. Compare the contents of the IODF with the output. For example, if the device features are not shown correctly in the OS device detail report, use the action View device definition on the I/O Device List to display the definitions of the device for which the report seems to be incorrect.
   b. If you find out that the definitions in the IODF are correct, but the report output is incorrect, report this problem to IBM.

Table 39 on page 407 shows what the problem data could look like.

Problems with output of HCD graphical reports

When you have any problems printing or viewing a graphical configuration report, read the following problem descriptions. If you have any other problem, report the problem to IBM.

Screen shows four dots

When displaying the configuration, the screen shows only four dots.

Check that the background and foreground color you specified in the HCD profile match. Choose a foreground color that is visible on the background color.

Incorrect DCF, GDF, or GML format in output data set

You can simply check, whether you have created the output format you have specified in the profile using the keyword GCR_FORMAT. Browse or edit the created data set.

**BookMaster** format looks like this:

```
:userdoc
.layout 1
.dr thick weight .4mm
.zh on
.sp 2
```

**DCF** format looks like this:

```
.df graph font X0GT20
.tr 31 AC BE BC 76 AB 30 BB 15 8F 77 CB 78 CC 80 EB 64 EC 6A FA 24 BF
```
GML format looks like this:

```
gdoc
df graph font X0GT20
tr 31 AC BE BC 76 AB 30 BB 15 8F 77 CB 78 CC 80 EB 64 EC 6A FA 24 BF
ll 240mm
dr thick weight .4mm
rh on
sp 2
```

If the output is not correct, make sure that:

- The HCD profile is allocated with ddname HCDPROF before invoking HCD.
- The profile contains the keywords GCR_FORMAT=DCF or GML and GCR_FONT with an appropriate font (for example, X0GT20 for 3820 printers).

For information on how to specify keywords in the HCD profile, refer to “Defining an HCD profile” on page 16.

**Illegible printout when using DCF or GML**

The output of a report data set contains correct DCF and GML format, but the printout is illegible.

Make sure that:

- A monospaced font (for example, X0GT20 for 3820 printers) is specified in the HCD profile using the keyword GCR_FONT.
- The specified font is installed on your printer.

**Output exceeds page boundary**

The printed output exceeds page boundary.

Make sure that:

- During printing you specified a parameter to print the report in landscape format, that is to rotate the printout by 90 degree.
- The parameter LAYOUT 1 was specified to use the full page for the report.

**Box characters are not correct**

When using DCF formatting, the box characters are not correct.

The graphical print facility uses special hex characters for the various box characters. These special characters are then translated to real box characters by means of the .tr command. If the selected font does not contain the box characters, you must either choose another font or modify the .tr command in the file generated by the graphical print facility. See the following table for information on which hex combinations HCD uses for the various box characters.

```
.tr 31 AC BE BC 76 AB 30 BB 15 8F 77 CB 78 CC 80 EB 64 EC 6A FA 24 BF
```

where
Table 40 on page 409 shows what the problem data could look like.

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of report that was to be created.</td>
<td>LCU report</td>
</tr>
<tr>
<td>The content of the IODF for which the report was</td>
<td></td>
</tr>
<tr>
<td>requested. Refer to “TRACE command” on page 419</td>
<td></td>
</tr>
<tr>
<td>to create an IODF dump.</td>
<td></td>
</tr>
</tbody>
</table>

Problems during initialization of HCD

If a problem occurs during initialization, HCD does one of the following:

- Issues a message and continues the initialization
- Terminates the initialization

Whether the initialization of HCD continues or terminates depends on the error that is encountered as explained in the following.

Initialization continues

If a UIM service routine encounters an error during initialization, HCD works without this UIM. HCD pops up messages on the user's terminal to inform the user that messages were written to the message log.

**Note:** If an error is encountered in a UIM and if SYSUDUMP is allocated, HCD does not continue. An HCD abend '00F' is forced to provide a dump at the point where the error was detected.

Use the option *List Installed UIMs* to display the panel "Installed UIMs". On this panel, the UIM is marked as in error. (Refer to “Query installed UIMs” on page 246.)

If you do not have access to any UIM, check if your UIMs are correctly installed. In the HCD profile you can specify the name and volume serial number of the library that contains the UIMs (see “Defining an HCD profile” on page 16). If you do not specify a name in the profile, SYS1.NUCLEUS is assumed as default names for the UIMs.

Initialization is terminated

The initialization is terminated either with an abend or with a message.

In case of an abend, the dialog:
• Pops up message CBDA040I on the user's terminal. The message informs the user that HCD has abnormally terminated.
• Puts message CBDA050I with abend code '00F' in the message log. The message also provides a reason code.
• Puts the message that is issued by a UIM service routine in the message log.

If an error is encountered in a UIM and if SYSUDUMP is allocated, an HCD abend '00F' is forced to provide a dump at the point where the error was detected.

**Message CBDA041I**

Means that HCD is not able to find the UIMs. If this message is issued during initialization using the "CIT" variable, make sure that the UIMs are installed in SYS1.NUCLEUS.

Table 41 on page 410 and Table 42 on page 410 show what the search argument and the problem data could look like.

<table>
<thead>
<tr>
<th>Search Argument</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS/cccnnns</td>
<td>Message identifier</td>
<td>MS/CBDA041I</td>
</tr>
<tr>
<td>PIDS/UIM name</td>
<td>UIM name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIM name</td>
<td></td>
</tr>
<tr>
<td>Message ID(s) and full message text</td>
<td>CBDA041I</td>
</tr>
<tr>
<td>TRACE output data set</td>
<td></td>
</tr>
<tr>
<td>Refer to “TRACE command” on page 419.</td>
<td></td>
</tr>
</tbody>
</table>

**Problems with UIMs**

For information on converting and testing UIMs, refer to *z/OS MVS Device Validation Support*.

The following explanations apply to UIMs provided by the installation and to UIMs provided by IBM.

**Messages during initialization of HCD**

Internal logic errors in UIMs are primarily found during the initialization of HCD. Refer to “Problems during initialization of HCD” on page 409 for information on how to proceed in case of initialization problems.

**UIM problems after initialization of HCD**

Internal logic errors in UIMs may also be discovered:

• During the definition of a device (as a string like ?PARMnn? on the Device Parameter Feature panel). Message CBDA381I indicates that you may have installed a back-level UIM.

• On the Installed UIMs panel when a UIM is flagged in error. In this case messages CBDA070I or CBDA096I may be issued. Message CBDA070I means that the UIM does not match the corresponding UDT. Message CBDA096I means an unresolvable conflict between a VM and MVS UIM.

You can use the message log, together with SYSUDUMP and HCDTRACE to find the error in the UIM that failed.
If the error relates to an installation-provided UIM, make appropriate corrections. For information on converting UIMs, refer to z/OS MVS Device Validation Support.

If the error relates to a UIM provided by IBM, report the problem.

Table 43 on page 411 and Table 44 on page 411 show what the search argument and the problem data could look like.

<table>
<thead>
<tr>
<th>Table 43: Search Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Search Argument</strong></td>
</tr>
<tr>
<td>MS/ccccnnns</td>
</tr>
<tr>
<td>PIDS/UIM name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 44: Problem Data</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Problem Data</strong></td>
</tr>
<tr>
<td>UIM name</td>
</tr>
<tr>
<td>Message ID(s) and full message text</td>
</tr>
<tr>
<td>Type of action the user wanted to perform</td>
</tr>
</tbody>
</table>

**HCD internal problems**

When you have one of the following error situations, you probably have detected an internal HCD error:

- HCD displays wrong messages or does not display a message at all when you made a mistake.
- An HCD generated IOCP input data set causes error messages when using the IOCP program.

Report problems like this to IBM.

Table 45 on page 411 and Table 46 on page 411 show what the search argument and the problem data could look like.

<table>
<thead>
<tr>
<th>Table 45: Search Argument</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Search Argument</strong></td>
</tr>
<tr>
<td>MS/ccccnnns</td>
</tr>
<tr>
<td>RIDS/CBDcccc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 46: Problem Data</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Problem Data</strong></td>
</tr>
<tr>
<td>Message ID(s)</td>
</tr>
<tr>
<td>Panel identifier</td>
</tr>
<tr>
<td>Type of action the user wanted to perform</td>
</tr>
</tbody>
</table>
Table 46: Problem Data (continued)

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of configuration</td>
<td></td>
</tr>
</tbody>
</table>

**Problems with the Transmit Configuration Package action**

If a problem occurs during the *Transmit configuration package* action, HCD may:

- Not start the action due to authorization problems
- Not submit the job
- Submit the job but not complete it

**Job steps of the Transmit Procedure**

*Transmit configuration package* builds a batch job with multiple steps. The step names are:

- **GO**
  Creates an IDCAMS CLUSTER for a temporary work IODF.

- **ALLOCT2**
  Creates an IDCAMS CLUSTER for a temporary production IODF.

- **INIT1**
  Initializes the temporary work IODF.

- **INIT2**
  Initializes the temporary production IODF.

- **BLDPR1**
  The processor configurations that are contained in the configuration package are built into a data set as control statements. The processor list is specified via DD name HCDCNTL. If a processor contains a CFS channel path that has a connection to a CF partition external to the configuration package, the processor containing the CF partition is also included in the output data set.

- **MIGRPR1**
  The generated processor configuration control statements are migrated into the temporary work IODF while preserving the processor tokens from the master IODF.

- **PRINTPR1**
  The MESSAGES and LISTING data set are deleted if no error occurred.

- **BLDOS1**
  All OS configurations included in the configuration package are built into a data set as control statements. The OS configuration list is specified via DD name HCDCNTL.

- **MIGROS1**
  The generated OS configuration control statements are migrated into the temporary work IODF.

- **PRINTOS1**
  The MESSAGES and LISTING data set are deleted if no error occurred.

- **BLDSW1**
  The switch configurations of all switches containing ports that are connected to either a channel path or control unit of the processors of the configuration package are built into a data set as control statements. The switch list is specified via DD name HCDCNTL.

- **MIGRSW1**
  The generated switch configuration control statements are migrated into the temporary work IODF.

- **PRINTSW1**
  The MESSAGES and LISTING data sets are deleted if no error occurred.

- **BPROD**
  A temporary production IODF is built from the temporary work IODF.
EXPOATT
The temporary production IODF is exported attended to the specified user/node ID.

EXPOUATT
The production IODF is exported unattended to the specified system.

DEL1
The temporary work IODF is deleted.

DEL2
The temporary production IODF is deleted.

Note: Stepname GO is used for HCDDECK, HCDMLOG, HCDLIB, HCDTRACE, and HCDPROF. Thus, the data sets are made available to the steps which require them.

Temporary data sets created by the Transmit Procedure
The transmit procedure creates the following data sets:

• hlq.IODFxx.zzzz (production IODF)
• hlq.IODFxx.XMIT.package.WORK (work IODF)
• hlq.IODFxx.XMIT.package.DECK (configuration decks)
• hlq.IODFxx.XMIT.package.MSGLOG (HCDMLOG)
• hlq.IODFxx.XMIT.package.sss.MESSAGES (HCDPRINT migration messages)
• hlq.IODFxx.XMIT.package.sss.LISTING (HCDASMP migration listing)

where:

<table>
<thead>
<tr>
<th>hlq</th>
<th>is the high level qualifier specified on the transmit panel or the HLQ parameter of the batch utility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>is the suffix of the target IODF name specified with the package</td>
</tr>
<tr>
<td>package</td>
<td>is the name of the configuration package to be transmitted</td>
</tr>
<tr>
<td>zzzz</td>
<td>are the qualifiers 3-n of the target IODF name</td>
</tr>
<tr>
<td>sss</td>
<td>qualify the migration type (PR1 for processor, OS1 for operating systems, SW1 for switch configurations)</td>
</tr>
</tbody>
</table>

After a successfully completed transmit action all these data sets, except the message log file, are deleted. The message log file is preserved until it is overwritten, when another transmit action using the same package name and IODF suffix is performed.

Apart from the production IODF, all redundant data sets remaining from a cancelled transmit action are identified by their common data set name qualifiers.

hlq.IODFxx.XMIT.package.

Authorization problems
Because the last sent date of the IODF from which the transmit action is performed is updated with the current date, you require write access to the accessed production IODF. Otherwise message CBDG247I is displayed.

You also need permission to write to the data sets with the qualifiers of the IODF to be created and transmitted.

Job is not submitted
If the work IODF or production IODF to be created temporarily exists already, it is not possible to start the transmit action. This may happen when a previous transmit job was cancelled, ended with an error or another transmit job is running which uses the same high level qualifier and target IODF name.
Depending on the source of the problem this may be resolved by deleting the existing temporary IODFs or by specifying a different high level qualifier for the target IODF.

**Job is not completed**
The transmit action generates a batch job. Check the HCD message log file to find out if the job was executed. It is shown as a sequence of HCD batch job steps ending with a successful export message. There are several possible causes if this is not the case:

- JCL errors: check the job output. To see all statements including the inline statements which are generated by the HCD dialog and submitted, issue

```plaintext
TRACE ON ID=JCL
```

and perform the transmit action. For an example of a trace refer to “Customization unsuccessful” on page 414.

- If the HCD message log file shows that a particular step failed, check the job output for potential allocation problems.

- If one of the migration steps failed, check the LISTING and MESSAGES data sets. (Refer to “Temporary data sets created by the Transmit Procedure” on page 413 for more information on the data sets created during the action.) Ensure that the same versions of UIMs are available for the Transmit configuration package action as for creation of the IODF.

The MESSAGES and LISTING data sets, as well as the generated decks, are deleted if no errors occurred. If you want to keep them, you can modify the conditional statements in procedure CBDJXMIT for the migrate steps. Do this by copying CBDJXMIT to a new procedure.

Proceed as follows, if you need to trace particular steps:

1. Define a profile including a TRACE statement.
2. Specify the stepname.HCDPROF DD with the profile name.
3. Allocate a trace data set name.
4. Specify GO.HCDTRACE DD with the name of the trace data set in order to use it for all steps to be traced or stepname.HCDTRACE to use the trace data set only for the single step.
5. To specify HCDDECK, HCDMLOG, HCDLIB, HCDTRACE, or HCDPROF use GO as the step name. The other steps refer to the definitions in the GO step. If you want to preserve a specific output data set, pre-allocate it to HCDDECK (see “Build I/O configuration data” on page 311).

**Customization unsuccessful**
This section describes points to be considered when customizing the transmit procedure.

The transmit procedure exploits the migration batch utility, which uses parsing macro CBDZPARS (residing in SYS1.MACLIB). If you want to use a different macro library, specify this as GO.HCDLIB

The dialog always generates and submits the following statements:

- All parameters for procedure CBDJXMIT
- The JOB card, JOBLIB and overwrite statements given by the user
- IDCAMS DEFINE CLUSTER and DELETE CLUSTER statements in steps GO, ALLOCT2, DEL1 and DEL2
- An HCDCNTL DD statement for at least one of BLDPR1, BLDSOS1 or BLDSW1 job steps, dependent on the package content
- The SYSTSIN for EXPOATT or EXPOUATT, depending on whether attended or unattended export is selected

The following is a sample trace showing the batch job built by a transmit action.

```
09:53:01  97-11-04  Trace started.
//XMIT   JOB (3243), 'OS390H1', MSGCLASS=X, CLASS=A, REGION=4M
//JOBLIB  DD DSN=SYS1.SCBDHENU, DISP=SHR
//XMT0    EXEC PROC=CBDJXMIT, PR=1, OS=1, SW=1,
```
Table 47 on page 415 shows what the problem data could look like.

<table>
<thead>
<tr>
<th>Problem Data</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job output</td>
<td>See example trace shown in section “Customization unsuccessful” on page 414.</td>
</tr>
<tr>
<td>Message log file</td>
<td></td>
</tr>
<tr>
<td>Trace of failing step</td>
<td></td>
</tr>
<tr>
<td>Deck for failing step</td>
<td></td>
</tr>
<tr>
<td>LISTING data set</td>
<td>See “Job steps of the Transmit Procedure” on page 412</td>
</tr>
<tr>
<td>MESSAGES data set</td>
<td>See “Temporary data sets created by the Transmit Procedure” on page 413</td>
</tr>
<tr>
<td>Submitted job (via TRACE ID=JCL)</td>
<td></td>
</tr>
<tr>
<td>Procedure used (if modified)</td>
<td></td>
</tr>
</tbody>
</table>
Diagnosis information and tools

The information and tools described in this section help you to diagnose system problems.

HCD messages

In case of an error, HCD issues messages. Depending on what you are currently doing, the messages are written:

- To the terminal as a single message
- To the terminal in a message list
- In a message log
- In a migration log
- In the output of a batch job

Terminal messages

User-errors, such as erroneous syntax entry and contextually wrong definitions, are handled by the dialog at the time of data entry. That is, the dialog displays messages at the terminal and the user can take corrective action immediately.

Some operations produce multiple messages. In this case, HCD displays a message list. You can save the displayed messages from the message list into the message log. See “Message lists” on page 53 on how to work with message lists.

Message log

Errors that are of low interest for the end user, such as incomplete UIMs during initialization, are only written to the message log. The message log is a data set that needs to be fix blocked with a LRECL of 133. The user will be informed about this when leaving the dialog or switching to another IODF. Only in critical situations (for example, when the message log is not available), will the messages be written into the ISPF list data set. If this, however, also fails, the message will be written into the operating system log.

To see a message in the message log, issue the SHOWMSG command or use the View message log pull-down choice from the Query action bar on any action list panel.

Migration log

HCD maintains a migration log that contains messages issued by the migration process. You can view this migration log through ISPF.

Table 48 on page 416 shows where you can find messages while working with HCD.

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>You Find the Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialog Mode</td>
<td>On the terminal In the message log</td>
</tr>
<tr>
<td>Batch mode</td>
<td>In the message log, that is the data set allocated with ddname HCDMLOG In the output (SYSPRINT) of the batch job ¹</td>
</tr>
<tr>
<td>Migration of input data sets</td>
<td>In the migration log, that is the data set allocated with ddname HCDPRINT</td>
</tr>
<tr>
<td>IPL</td>
<td>Trapped by IPL. A wait state code is issued.</td>
</tr>
</tbody>
</table>

¹ When running in batch mode, in the case of a failure, the HCD log is written to the ISPF list data set. If this, however, also fails, the message will be written into the operating system log.
HCD trace facility

The output of the HCD trace facility provides information to locate internal HCD problems. It helps the IBM program system representative to identify the cause of a failure.

Data Set

The trace records generated by HCD are recorded in the trace data set. The data set need to be fix blocked with a LRECL of 80. “Allocate the HCD trace data set for remote HCD sessions” on page 437 contains a sample on how to create such a dataset.

The trace data set must be preallocated with a ddname of HCDTRACE. If the trace data set is not allocated when HCD is invoked, no tracing takes place. The default CLIST that is provided with HCD allocates a trace data set with the name HCD.TRACE, prefixed by your user ID.

Trace records

The trace records show the control flow within the various HCD modules. Trace information is written into the trace data set:

- Whenever a module (CSECT) gets control.
  - In this case, the passed parameter list is recorded together with the name and description of the invoked module.
- Whenever a module (CSECT) returns to its calling routine.
  - The passed parameter list containing the return and reason codes is recorded.

When HCD is invoked, HCD overwrites the existing trace with the new trace data. If you want to retain the existing data, you have to make sure that the data is saved.

Figure 361 on page 418 is an example of a trace output. The following explains the records you see:

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:00:13</td>
<td>96-08-01</td>
<td>Trace started</td>
</tr>
</tbody>
</table>

The time stamp shows when the trace facility was started. This record is useful to identify the trace data sets when multiple traces are produced on the same day.

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSHCBDMSMSG</td>
<td>- Message Routine</td>
<td>96214 HCS6031</td>
</tr>
</tbody>
</table>

This line indicates that control has been passed to another module at a certain time. In this example, the module named CBDMSMSG with service level '96214 HCS6031' received control at 17:00:13.52 at storage address X'08472028'. The records also give a short description of what the module does, and the parameter list that is passed to the called module.

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDSMSG Message destination: Screen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This trace entry is written by the called module.

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPCBDMSMSG</td>
<td>- Message Routine</td>
<td>17001353</td>
</tr>
</tbody>
</table>

Indicates that control from the module named CBDMSMSG is returned to the calling routine at 17:00:13.53. Also, the passed parameter list is shown again, but now the parameter list contains the return/reason code indicating how successful the requested function was.

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17:01:24</td>
<td>96-08-01</td>
<td>Trace stopped</td>
</tr>
</tbody>
</table>

The last entry in the trace output is a time stamp that indicates end of tracing.
Figure 361: Example: Trace output

Figure 362 on page 418 is an extract of a trace output when an abend occurred. The following explains the record in the example.

**ESTAE**

The entries show information that was recorded by the HCD ESTAE routine. Entries under Diagnostic stack list the modules that were executing when the abnormal termination occurred, together with the service levels. The first entry names the module that ended abnormally; in this example, the module is CBDMYCCB. The entries also show the control flow between the various HCD modules and the load address of the module. In this example:

- Module CBDMYDCC called module CBDMYCCB loaded at 212E0EF8.
- Module CBDMGDIA called module CBDMYDCC loaded at A12D4000.
- Module CBDMGHCP called module CBDMGDIA loaded at A1846B50.

```
*           ESTAE                                                      *
*           System abend code  :  0C4                                      *
*           Reason code        :  00000011                                 *
*           HCD version        :  z/OS 2.3 HCD                             *
*           Diagnostic stack   :  CBDMYCCB   15238   HCS77B0    212E0EF8   *
*                                 CBDMYDCC   15237   HCS77B0    A12D4000   *
*                                 CBDMGDIA   15194   HCS77B0    A1846B50   *
*                                 CBDMGHCP   15197   HCS77B0    800695E0   *
*                                                                          *
*           Module name        :  CBDMGHCP                                 *
*           Entry point address:  000695E0                                 *
*           PSW                :  078D1000 A12FB2AE                        *
*                                                                          *
*    R0  00000030  R1  21AD3000  R2  21AD3194  R3  00002F10                *
*    R4  21305608  R5  21305608  R6  21306605  R7  212F81CF                *
*    R8  21306006  R9  21306006  R10  00000450  R11  21AD35E4              *
*    R12 A12FA1D0  R13  21305AD4  R14  21ADF060  R15  21856F10              *
```

Figure 362: Example: Trace output in case of Abend
Activating the trace

The trace can be activated either:

- Dynamically by using the TRACE command in the HCD dialog. The command is optional, and can be entered whenever a displayed panel has a command line. For information on the TRACE command, refer to “TRACE command” on page 419.

- By invoking HCD (for details see Chapter 13, “How to invoke HCD batch utility functions,” on page 299) with the TRACE option specified in the passed parameter string (this is done automatically by the entry in the CLIST).

```
//BWINJOB  JOB (3259,RZ-28),'BWIN',NOTIFY=BWIN,CLASS=A,
//             NOTIFY=BWIN,CLASS=A,
//             MSGCLASS=Q,MSGLEVEL=(1,1),REGION=4M
//REPORT1  EXEC PGM=CBDMGHCP,
//             PARM='TRACE,REPORT,CSMEN,PROC1,PAR1,MVS1,00'
//HCDTRACE DD   DSN=BWIN.HCD.TRACE,DISP=OLD
```

- By specifying the TRACE command in the HCD profile, for example,

```
TRACE  ON  RESET,HOM,V,R  LEVEL=255
```

The tracing stays active until either turned off by the TRACE command, or until HCD terminates.

TRACE command

The TRACE command activates and deactivates the HCD trace facility. The command allows you also to limit the detail of data written into the trace data set by requesting that only certain functions and details should be traced.

The TRACE command can be entered on any HCD panel showing a command line. The command can also be specified in the HCD profile data set. It is, however, not shown in the HCD Profile Options dialog.

For HCD to write the output to the trace data set, ON must be specified with at least one trace category (or you must have invoked HCD with the TRACE parameter, see “Activating the trace” on page 419). To view the trace output, you have to close the trace data set first. You can do this by either leaving HCD or by entering the command TRACE OFF, CLOSE.

The format of the command is as follows:

```
TRACE  ON  reset,trace-category
```

trace-category
Notes:
1. You may abbreviate some of the keywords. The characters you have to use are indicated by uppercase (you must then omit lowercase). For example RepService may be abbreviated as RS.
2. At least one parameter must be specified with TRace.

**ON**
Starts the trace facility.

**OFF**
Stops the trace facility.

**CLOSE**
Closes the trace data set.

**Note:** ON, OFF and CLOSE can not be used if the profile is allocated by the HCD dispatcher and used by HCM.

**reset**
Reset all currently active categories, LEVEL and ID. If not using RESET, HCD will remember the trace categories specified with previous trace commands and adds them up. If combined with trace categories, it should be specified before the categories, because the keywords and categories are evaluated in sequence. RESET at the end would clear the specified trace category.

**trace category**
Specifies the functional scope to be traced:
ALL
Traces for all categories except DEBug and RepService. To have a complete trace, use categories ALL, DEBug, RepService.

Batch
Trace all batch routine.

Command
Trace all command routines.

DEBug
Traces internal services (not included, when ALL is specified).

Dialog
Trace all dialog routines.

DYNamic
Trace all dynamic routines.

HOM
Trace all object management routines.

Migration
Trace all migration routines.

Repository
Trace all repository main routines.

RepService
Trace all repository service routines. (Not included, when ALL is specified).

Service
Trace all service routines.

UIM
Trace all UIM routines.

UIMService
Trace all UIM service routines.

Utility
Trace all utility routines.

Validation
Trace all validation routines.

Other
Trace all other not yet mentioned routines.

LEVEL=n
Assigns a level of detail to the functions to be traced, where n is a decimal number ranging from 0 to 255. If the option is omitted, the default level of 5 is assumed. The TRACE option described in “Input parameter string” on page 300 is equivalent to the command TRACE ON, ALL, LEVEL=255.

ID=IODF
Writes an IODF dump into the trace data set. This parameter cannot be specified in the HCD profile. If you have a consistent IODF, an output in the trace data set is only shown when you set LEVEL=128 or higher. Otherwise, an output is only shown if the IODF contains defects.

REPAIR
Removes detected errors in the work IODF and reports corrections in the trace data set. Before you use the REPAIR option, you must set the work IODF in update mode.

ID=JCL
Writes into the trace data set all statements generated when action Transmit configuration package is invoked from the HCD dialog.

ID=IOOPSOUT
Writes all responses of I/O Operations IHVAPI2 calls into the trace data set. These are the results of I/O Operations query requests.
ID=CLOG
Writes the contents of the change log file into the HCD trace data set. You should use this option together with LEVEL=8. This parameter cannot be specified in the HCD profile.

Trace command via HCD profile
• If HCD is started with the TRACE keyword, (for example, either started via HCM with the HCD Trace box selected in the HCM login dialog, or via the IBM Tivoli Directory Server for z/OS configuration file), initially all the trace categories will be traced. After the HCD profile has been read, however, the TRACE parameters there may modify the TRACE behavior.
• The TRACE parameters set in the HCD profile will also influence the TRACE behavior if you activate the tracing in HCM at a later time.
• The TRACE parameters set in the HCD profile will determine the contents of the trace for the rest of the session.
  − If you use the RESET option followed by trace categories cat1,cat2,...,catn, then only the categories cat1,cat2,...,catn will be considered. The RESET option must be the first option because the trace categories are additive (LEVEL is set to 0).
  − Specifying the keyword off will terminate the startup trace.
  − Specifying the keyword on will start the HCD trace (if not already started) and will invoke the trace parameters of the TRACE statement.
  − Specifying LEVEL=n will set the level of trace detail. If the LEVEL parameter is not set, then the trace will use the default level of 5.
• If no categories are set explicitly, then all trace categories will be active.

IODF dump
Use the ID=IODF parameter of the TRACE command to produce an IODF dump. This command goes through your IODF, checks it for corrupted data, and writes all records and defects into the trace data set. If you have a consistent IODF, you must set the LEVEL parameter to LEVEL=128 or higher to get an output. Otherwise, an output is only shown if the IODF contains defects.

If your IODF has defects, error message CBDA999I 'Defect(s) detected in IODF xxx' is displayed, and message CBDA099I is written into the message log data set. In addition, the trace data set records defects with the string 'Error:' followed by the reason. You can locate the reported defects by searching to that string in the trace data set.

If no defects are detected in the IODF, message CBDA126I 'TRACE command was accepted' is given.
If you cannot invoke HCD, and therefore, cannot use the TRACE command any longer, use a JCL stream for producing a dump. Figure 363 on page 423 is an example of the JCL stream for producing an IODF dump.
Make changes to the entries according to your installation requirements.
Repair an IODF

If your IODF contains defects, some of them can be repaired with the REPAIR option of the TRACE ID=IODF command.

First, your IODF must be set in update mode to correct defects. You can do this, for example, by changing a processor description field in your work IODF. A production IODF cannot be repaired.

To repair defects in your work IODF, add the REPAIR option to the TRACE ID=IODF command: TRACE ON,REPAIR,ID=IODF.

Each corrected defect is recorded in the trace data set with the string Defect has been corrected.

If a defect has been repaired, message CBDA998I, Defect(s) detected in IODF xxx. Repair action performed is issued. Repeat the TRACE ID=IODF command to check whether all defects could be corrected.

An IODF that has been enabled for multi-user access cannot be repaired. You first must disable it for multi-user access before it can be set into update mode and be repaired.

If defects in the IODF cannot be repaired via the REPAIR option, you may have to rebuild the IODF. You accomplish this task by exporting the configuration data from the IODF via dialog option 2.10 Build I/O configuration data. You can then migrate this data to a new IODF:

1. Export configuration types Processor, Operating System and Switch with configuration ID * into three different output data sets (see “Build I/O configuration data” on page 200). This will generate I/O configuration statements for all processor, operating system and switch configurations. You can set the profile option SHOW_CONFIG_ALL to YES to also generate configuration statements for unconnected control units and devices in addition to those for switches (see “Export/import additional configuration objects” on page 24).

2. Successively migrate the processor, OS configuration and switch data into a new IODF (see “Migrate I/O configuration statements” on page 302). You must use batch jobs for this purpose, since in dialog mode, HCD does not support the configuration ID *.

3. Verify - for example using compare reports - that the new IODF includes all data. If necessary, add any missing items manually.

4. Check that the IODF is free from defects.

MVS dumps and traces

To aid in diagnosing problems, z/OS automatically provides messages and error records, and on request dumps and traces. HCD uses those services to record errors. For information about:

- Dumps and traces, refer to z/OS MVS Diagnosis: Tools and Service Aids.
- Using the diagnostic information, refer to z/OS Problem Management.
**IPCS reports**

z/OS allows you to format dumps into diagnostic reports. To produce the reports, use the Interactive Problem Control System (IPCS).

For more information, refer to:
- z/OS MVS IPCS User's Guide
- z/OS MVS IPCS Commands
- z/OS MVS IPCS Customization

**Searching problem reporting data bases and reporting problems**

Search arguments are used to search problem reporting data bases. If the problem being diagnosed was already reported and the symptoms entered into the data base, the search will produce a match.

To perform a search, do the following:

1. Analyze the problem reporting data base and develop a search argument using the information provided in the boxes labeled Search Argument.
2. Complete the digits (such as ccc, nnn, hhh) according to the applicable conditions. For example, if the message CBDA099I was received, the developed search argument for message identifier would be: MS/CBDA099I. An example is shown in Table 28 on page 403.
3. Use the search arguments to search problem reporting data bases. If the search finds that the problem has been reported before, request a fix from IBM.

If the search is unsuccessful, report the problem to the IBM Support Center. Submit the information that is listed in the Problem Data tables. An example is shown in Table 29 on page 403.

For more detailed information on these steps, refer to z/OS Problem Management.

**Sending an IODF to a different location**

There may be situations, in which an IODF is to be transferred to a different location or system. Usually, the HCD Export/Import Utility can be used to transmit the IODF to the desired target destination. Sometimes, however, there are situations, where this may not be possible (e.g., a direct connection does not exist). The following steps describe a simple method in which you can transfer your IODF data from one z/OS host to any other z/OS host even if a direct transmission path not available.

1. Examine the size of the IODF, which is to be transferred. Check for the number of allocated 4K blocks in the HCD dialog: Maintain I/O definition files --> View I/O definition file information.
2. Use the HCD Export function, found under the HCD dialog Define, modify, or view configuration data, Export I/O definition file in the HCD dialog. Send the IODF to your own user ID; that is, to the user ID of the host on which you are currently working. HCD will export the IODF data as a sequential data set to your own user ID. If you specify an asterisk (*) for the target user ID and target node ID, the sequential data set is not transmitted but rather written directly to the data set user_EXPORTED.IODFnn.xxxx. In this case, you can skip step “4” on page 424.
3. Exit the HCD dialog.
4. Use the TSO RECEIVE command to retrieve the IODF data from your internal reader. Per default, you will get a sequential data set user_EXPORTED.IODFnn.xxxx. This data set has the record organization FB and LRECL=BLKSIZE=4096 and the number of blocks as mentioned under step “1” on page 424.
5. Download this data set to your workstation. It is important that you ensure that the download is in binary mode.
6. To save storage resources, you may consider compressing (zipping) the downloaded file on the workstation.
7. Now you can transfer the IODF to a different workstation/location. Once the IODF data has arrived at the target workstation, you have to uncompress (unzip) the file if it has been compressed for transportation.

8. On the target z/OS host pre-allocate a data set into which the IODF data is to be uploaded. It must be a sequential data set with FB, BLKSIZE=LRECL=4096 and the number of blocks must be the number of allocated blocks of the original IODF (see step “1” on page 424).

9. Upload the IODF data from the workstation to the z/OS host in binary mode into the pre-allocated sequential data set.

10. Use the HCD Import function, found under the HCD dialog Define, modify, or view configuration data, Import I/O definition file and specify the sequential data set to be imported into an IODF data set using the name of your choice.
Programming Interface information

The HCD object management services (HOM) provide an application programming interface for retrieving data from the IODF, such as switch data, device type, or control unit type. The programs requesting the services cannot run in APF-authorized state.

The mapping macros CBDZHRB, CBDZHIEX, CBDZHOEX, and CBDZHCEX (see “Data input and output areas” on page 428 and “Request block (HRB)” on page 429) are not available as source code. The macros are listed in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary), and must be coded by the application writer.

How to invoke the HOM services

Programs can invoke the services from the HCD routine CBDMGHOM. An application issuing a request must have its own copy of the CBDMGHOM routine dynamically loaded or linked. For every request, the application must use the same HRB address for each call to CBDMGHOM and must pass the parameters shown in Table 49 on page 427 using standard linkage conventions.

<table>
<thead>
<tr>
<th>Table 49: Used registers and passed parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Register</strong></td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Table 49: Used registers and passed parameters (continued)

<table>
<thead>
<tr>
<th>Register</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Address of five-word parameter list:</td>
</tr>
<tr>
<td></td>
<td>1. <strong>Address of request control block (HRB)</strong></td>
</tr>
<tr>
<td></td>
<td>4-byte field containing the address of the request block. The request block contains the function, the object to which the function is applied, and qualifiers, attributes, and parameters. See “Request block (HRB)” on page 429 for more details.</td>
</tr>
<tr>
<td></td>
<td>2. <strong>Address of (pointer to input data or zero)</strong></td>
</tr>
<tr>
<td></td>
<td>4-byte field containing the address of the address of the data input block if the request requires input. It is required on a HRB_SETUP request. See “Data input and output areas” on page 428 for more details.</td>
</tr>
<tr>
<td></td>
<td>3. <strong>Address of (length of input data or zero)</strong></td>
</tr>
<tr>
<td></td>
<td>4-byte field containing the address of the fullword fixed binary integer containing the length of the input data. It must correspond to the exact length of the data contained in the data-input block, that is, no trailing or intermediate blanks are allowed.</td>
</tr>
<tr>
<td></td>
<td>4. <strong>Address of (pointer to output data or zero)</strong></td>
</tr>
<tr>
<td></td>
<td>4-byte field containing the address of the address of the data output block if the request returned output. It is required on HRB_DGET and HRB_MGET requests to obtain the data and messages from the API. See “Data input and output areas” on page 428 for more details.</td>
</tr>
<tr>
<td></td>
<td>5. <strong>Address of (length of output data or zero)</strong></td>
</tr>
<tr>
<td></td>
<td>4-byte field containing the address of the fullword fixed binary integer containing the length of the output data.</td>
</tr>
<tr>
<td></td>
<td>The parameters must be coded in the order shown. Only the first parameter (address of request block) is mandatory. The others are optional and depend on the type of request, as shown in Table 51 on page 430. If you omit an optional parameter, you must specify a zero instead.</td>
</tr>
<tr>
<td>2-12</td>
<td>Undefined</td>
</tr>
<tr>
<td>13</td>
<td>Address of 18 word save area</td>
</tr>
<tr>
<td>14</td>
<td>Return address</td>
</tr>
<tr>
<td>15</td>
<td>Entry point address</td>
</tr>
</tbody>
</table>

**Note:** The service supports calls for both 24-bit and 31-bit addressing mode.

**Data input and output areas**

Data input and output areas must be contiguous areas of main storage allocated by the application in private storage and freed later on.

The areas have no header section, that is, the data starts at the first byte of the area and continues without gaps. The data contained in these areas are the interface records, which are described in the mapping macros CBBDZHOEX and CBDDZHIEX in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

For the GET request, the output area might contain the definition of multiple objects on return, whereas the input area normally contains only one object.

Issue a HRB_DGET function to get the provided output data. The size of the output data is returned by the previous GET request. The application is responsible to allocate the correct output size. If the data does not fit into the size allocated by the application for the output area, the data will be truncated.
Request block (HRB)

The HOM request block (HRB) you have to set up is described fully as mapping macro CBDZHRB in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary). Table 50 on page 429 summarizes the request block names and constants you can specify for the functions shown in Table 51 on page 430.

On input, this block contains the detailed request to the HOM services. On output, it contains the data requested, messages, return codes, and reason codes.

The field HRB_OBJECT with all its subfields describes the object that should be processed on the request to the API.

The object code HRB_OBJ_CODE must be coded for every request, because it identifies the class of objects that are subject of the actual request.

The constants and flags required to describe the objects are contained in CBDZHCSEX, which is documented in z/OS MVS Data Areas in the z/OS Internet library (www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zosInternetLibrary).

<table>
<thead>
<tr>
<th>Name</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRB_SDESC</td>
<td>HRB_SDESC_C</td>
<td>Request block storage descriptor. Required for all requests.</td>
</tr>
<tr>
<td>HRB_LENGTH</td>
<td></td>
<td>Length of the request block HRB.</td>
</tr>
<tr>
<td>HRB_USE_IODF</td>
<td></td>
<td>Name of the IODF to be used for the request.</td>
</tr>
<tr>
<td>HRB_FUNCTION</td>
<td>HRB_SETUP</td>
<td>Function code</td>
</tr>
<tr>
<td></td>
<td>HRB_OPEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_GET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_ACT_STATUS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_DGET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_MGET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_CLOSE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRB_TERMINATE</td>
<td></td>
</tr>
<tr>
<td>HRB_OBJ_CODE</td>
<td>HRB_HCD</td>
<td>Required for SETUP and TERMINATE.</td>
</tr>
<tr>
<td></td>
<td>HRB_IODF</td>
<td>Required for OPEN and CLOSE.</td>
</tr>
<tr>
<td></td>
<td>HRB_PROCESSOR</td>
<td>Required for processor.</td>
</tr>
<tr>
<td></td>
<td>HRB_CSS</td>
<td>Required for channel subsystem.</td>
</tr>
<tr>
<td></td>
<td>HRB_PCU</td>
<td>Required for physical control unit.</td>
</tr>
<tr>
<td></td>
<td>HRB_DEVICE</td>
<td>Required for device.</td>
</tr>
<tr>
<td></td>
<td>HRB_SWITCH</td>
<td>Required for switch.</td>
</tr>
<tr>
<td></td>
<td>HRB_CHANNEL</td>
<td>Required for channel path.</td>
</tr>
<tr>
<td></td>
<td>HRB_DATA</td>
<td>Required for DGET.</td>
</tr>
<tr>
<td></td>
<td>HRB_MESSAGE</td>
<td>Required for MGET.</td>
</tr>
<tr>
<td></td>
<td>HRB_IODF</td>
<td>Required for ACT_STATUS.</td>
</tr>
<tr>
<td>HRB_OBJ_NAME</td>
<td></td>
<td>May be used to specify the name and number of an object. For devices, the number includes the suffix.</td>
</tr>
</tbody>
</table>
Table 50: Summary of Request Block Names and Related Constants. (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Constants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRB_Q_CODE</td>
<td>HRB_PCU HRB_DEVICE HRB_SWITCH</td>
<td>May be used together with HRB_PROCESSOR to specify that the processor data is qualified by the control unit, device, or switch.</td>
</tr>
<tr>
<td></td>
<td>HRB_PROCESSOR</td>
<td>May be used together with HRB_CHANNEL to determine the kind of channel path data.</td>
</tr>
<tr>
<td>HRB_Q_NAME</td>
<td></td>
<td>May be used to specify the qualifier name and number for composite names.</td>
</tr>
<tr>
<td>HRB_Q_NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRB_REQ_MODE</td>
<td>HRB_MODE_ID</td>
<td>Gets objects starting with the ID specified. The ID of the object must be set in HRB_OBJ_NR or HRB_OBJ_NAME. The HRB_RANGE_VALUE must not be zero.</td>
</tr>
<tr>
<td></td>
<td>HRB_MODE_FIRST</td>
<td>Gets first object in the defined scope.</td>
</tr>
<tr>
<td></td>
<td>HRB_MODE_LAST</td>
<td>Gets last object in the defined scope.</td>
</tr>
<tr>
<td></td>
<td>HRB_MODE_ALL</td>
<td>Gets all objects in the defined scope.</td>
</tr>
<tr>
<td></td>
<td>HRB_MODE_CHAIN</td>
<td>Gets all objects within the chain defined by the given object, for example, all devices of a multi-exposure device.</td>
</tr>
<tr>
<td>HRB_RANGE_VALUE</td>
<td></td>
<td>May be used to specify the number and direction of objects to be processed (positive number = subsequent objects; negative number = preceding objects).</td>
</tr>
<tr>
<td>HRB_TRACE</td>
<td>HRB_YES</td>
<td>The request is traced. Make sure that the trace data set is allocated with a DD name of HCDTRACE.</td>
</tr>
<tr>
<td>HRB_RESULT</td>
<td></td>
<td>The subfields of HRB_RESULT contain the output of the request, such as the data requested, the size of the output data, or return codes.</td>
</tr>
</tbody>
</table>

Functions

The HCD application programming interface provides the functions described in Table 51 on page 430. The functions are listed as you need them while requesting data from the HCD HOM services. The constants you have to specify for HRB_FUNCTION and HRB_OBJ_CODE are included in the figure.

Table 51: Functions provided by the HOM services.

<table>
<thead>
<tr>
<th>Task</th>
<th>Fields in Request Block (HRB)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HRB_FUNCTION= HRB_OBJ_CODE=</td>
<td></td>
</tr>
<tr>
<td>1. Set up the connection to the HCD API</td>
<td></td>
<td>Establish the HCD environment by passing the setup function in the request block.</td>
</tr>
<tr>
<td>Setup connection</td>
<td>HRB_SETUP HRB_HCD</td>
<td>Establish the HCD environment by passing the setup function in the request block.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Input:</strong> HCD session interface (HSI) record.</td>
</tr>
<tr>
<td>2. Open the IODF</td>
<td>HRB_OPEN HRB_IODF</td>
<td>Open an IODF, for which you have read authority, by passing the HRB_OPEN function in the request block.</td>
</tr>
</tbody>
</table>
### Table 51: Functions provided by the HOM services. (continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Fields in Request Block (HRB)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>HRB_FUNCTION</strong>=</td>
<td><strong>HRB_OBJ_CODE</strong>=</td>
</tr>
<tr>
<td><strong>3. Request data for HCD objects</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Get Processor</td>
<td>HRB_GET</td>
<td>HRB_PROCESSOR</td>
</tr>
<tr>
<td>Get Channel Subsystem</td>
<td>HRB_GET</td>
<td>HRB_CSS</td>
</tr>
<tr>
<td>Get Channel Path</td>
<td>HRB_GET</td>
<td>HRB_CHANNEL</td>
</tr>
<tr>
<td>Get Switch</td>
<td>HRB_GET</td>
<td>HRB_SWITCH</td>
</tr>
<tr>
<td>Get Physical Control Unit</td>
<td>HRB_GET</td>
<td>HRB_PCU</td>
</tr>
<tr>
<td>Get Device</td>
<td>HRB_GET</td>
<td>HRB_DEVICE</td>
</tr>
<tr>
<td>Get Activation Status</td>
<td>HRB_ACT_STATUS</td>
<td>HRB_IODF</td>
</tr>
</tbody>
</table>

| **4. Get the data from the previous GET request** | | |
| **5. Close the IODF** | | |
| **6. Terminate the connection to the HCD API** | | |

#### Example

The example shows how to get a range of 20 devices, starting with ID X'414' and connected to control unit X'21'. The example is shown in pseudo-code because the actual syntax and declarations depend on the programming language used.

```plaintext
...
HRB_SDESC = HRB_SDESC_C
HRB_LENGTH = length-of-HRB
HRB_FUNCTION = HRB_SETUP
```
Return codes

On return, HRB_RETURN_CODE in the request block HRB contains the severity of an error:

- HRB_SEVERE indicates that processing has been terminated and a new setup is required. Issue HCD_MGET to retrieve the messages describing the error.
- HRB_SYNTAX indicates that the request was given to the API in an incorrect syntax and therefore, the request has not been processed.
- HRB_WARNING and HRB_ERROR are given for the remaining errors. Issue HCD_MGET to retrieve the messages describing the error.
- HRB_OK tells you that no problems occurred.

Reason codes

HRB_REASON_CODE in the request block HRB specifies the error in more detail.
Appendix E. Establishing the host communication

To communicate with HCD from an HCM client on your workstation, you must set up the host communication depending on your operating system:

- For information regarding z/OS, refer to “Setting up TCP/IP definitions for z/OS” on page 433.
- For information regarding z/VM, refer to information unit Setting up TCP/IP definitions for z/VM in z/OS and z/VM HCM User’s Guide.

The host communication is also used when communicating between different HCD systems, for example, for tasks like HMC-wide activation.

Setting up TCP/IP definitions for z/OS

To communicate with HCD from an HCM client or from another HCD program, a server program running on the host is required. The server program is a TCP/IP program that listens for incoming remote HCD requests on a specific TCP/IP port. These HCD requests are passed to HCD to be executed. The server program - called HCD agent - must be started before HCD requests are passed. The HCD agent (communicating with the HCD server) is started by a daemon program (HCD dispatcher) as soon as a remote HCD login request has been issued. This HCD dispatcher program must be started before the first remote HCD login request is issued.

The following picture provides an overview of the structure and illustrates the relations between the HCD client, HCD dispatcher, and the HCD agent.

![Diagram](image-url)

**Figure 364: Relationship between HCD client, HCD dispatcher, and HCD agent**

The HCD dispatcher listens on a specific TCP/IP port and waits for incoming remote HCD login requests. For each remote HCD login request 1, the HCD dispatcher checks the passed user ID and password for correctness. If user ID and password are correct, the HCD dispatcher looks for a free IP port. Then it starts an HCD agent program (HCD server program) which listens to remote HCD requests on that particular IP port 2. As soon as the HCD agent is started and ready 3, the HCD dispatcher passes the particular IP port to the HCD client 4. The HCD client then closes the session to the HCD dispatcher and...
starts a session to the started HCD agent using the passed IP port 5. As soon as the HCD client has
connected the HCD agent, the HCD dispatcher is free again to wait for other incoming remote HCD login
requests on its IP port. As soon as HCD terminates the HCD client server connection, the HCD agent is
terminated and the used port is freed again.

The advantage of having an HCD dispatcher which waits permanently on a specific port for incoming HCD
login requests is, that each remote HCD user performs a login request to a fixed port ID and does not have
to specify a particular job input to start the HCD server. This means, that all remote HCD users
automatically have the same setup, and that this has only to be done once. As the HCD dispatcher is
always running, all remote HCD users always use the same IP port for the login request.

The TCP/IP port for the remote HCD login requests is determined when the HCD dispatcher is started. If
during the start of the HCD dispatcher nothing special is specified, the default TCP/IP port number is
51107. This number is also the default port number which is used by HCD for a login request if no port is
specified.

The HCD dispatcher creates a job out of a skeleton and submits this job to start the HCD agent (for an
example of the job skeleton, see “Skeleton used to start the HCD agent” on page 435). After the HCD
agent has been started and is running, the HCD client communicates with the HCD agent. The HCD client
uses the same host name for the communication with the HCD agent as it has used for the login request
to the HCD dispatcher. Therefore, the HCD agent must run on a system with the same host name as the
HCD dispatcher. This fact might be especially important, if your system is within a parallel sysplex. In this
case, you can specify the system on which the agent must run in the provided skeleton.

You can start the HCD dispatcher in two ways:

• Starting the HCD dispatcher as a started task by using the procedure CBDQDISP provided in the library
  SYS1.PROCLIB. Consider to start the HCD dispatcher automatically after IPL of your z/OS system (for
  example, by using System Automation). See “Starting the HCD dispatcher as a started task” on page
  435 for an example on how to start the HCD dispatcher as a started task.

• Starting the HCD dispatcher by submitting a batch job. A sample of a job, which can be used to start the
  HCD dispatcher is provided as CBDQDISJ in 'SYS1.SAMPLIB'. Adapt this job, before you submit it.

If you do not want to accept the default port number, you can choose your own by changing the procedure
or the sample job to start the HCD dispatcher. Inform the remote HCD users of the TCP/IP port for the
login requests. The HCD client does not accept a port number 0 or port numbers higher than 65535.

Each HCD session needs its own dedicated server, and each active HCD server needs its own unique
TCP/IP port number. The HCD dispatcher looks for a free port number in a specific range. As a default, a
port number is chosen in the range of 10000 to 65535 for the server. It is possible to determine a
different range for the ports to be chosen for the HCD agent during start of the HCD dispatcher.

The user ID under which the HCD dispatcher is running, as well as the user IDs used for working with
remote HCD programs must have permission to use UNIX System Services. Note that superuser authority
is not required, but a home directory is to be provided for these user IDs. For example, you can use /u/
userid (where userid is your own user ID) as a home directory for the remote HCD user ID.

Depending on your general TCP/IP setup, it might be necessary that you include a DD statement for
SYSTCPD for the HCD dispatcher and the HCD agent.

**Controlling access to HCD services**

To access the HCD services remotely on z/OS, a user needs to log on to the HCD dispatcher. The log-on is
done with a user ID and password as defined to the external security manager, for example, IBM Security
Server RACF. The user must have the same access rights as for using HCD directly in the operating
system.

If the APPL class for the security product is active, a profile can be defined to allow only certain users to
log on to the HCD dispatcher. You can manage access to the HCD application by profile CBDSERVE in the
APPL class. Users who are allowed to use HCD need READ access to this profile. Sample definitions for user HCDUSER for RACF look like:

```plaintext
RDEFINE APPL CBDSERVE UACC(NONE)
PERMIT CBDSERVE CLASS(APPL) ID(HCDUSER) ACCESS(READ)
```

For details about protecting applications see *z/OS Security Server RACF Security Administrator’s Guide*.

**Skeleton used to start the HCD agent**

There is a sample of skeleton CBDQAJSK provided in SYS1.PROCLIB. The HCD dispatcher uses this sample job to build up a job, which is submitted to start the HCD agent.

You can adapt this skeleton according to your installation needs. You can specify accounting information in the job card of the skeleton, if your installation requires accounting information. If your installation requires accounting information, and there is no accounting information specified in the skeleton, each HCM user must provide this information in the EEQHCM.INI file. For all other substitutable parameters, the HCD dispatcher provides default values, for example, &SYSUID..HCD.PROFILE and &SYSUID..HCM.TRaCE as data set names for the HCD profile and the HCD trace data set for remote HCD sessions.

If you specify values for substitutable parameters, then these values are used and not the default values or values specified in the HCM user's EEQHCM.INI file, for example, an increased REGION size for the HCD agent.

Always check, whether you must adapt this skeleton for your environment regarding the JOBPARM SYSAFF parameter for JES2 or MAIN SYSTEM parameter for JES3. The job must be executed on the system with the system name specified during HCD client logging to the HCD dispatcher.

Furthermore, an HCM user can take this skeleton, make a copy of it, and specify values for personal needs. To use this private copy, the HCM user needs an entry in the EEQHCM.INI file to tell the HCD dispatcher not to use the default skeleton, but the user-specified skeleton.

**Starting the HCD dispatcher as a started task**

There is a procedure CBDQDISP provided in SYS1.PROCLIB, which you can use to start the HCD dispatcher as a started task.

You can create a new user ID or use an existing one to be associated with the task of the HCD dispatcher. This user ID has to have permission to use UNIX System Services.

After the procedure has been adapted to your installation needs, you can start it by using the start command. Start the HCD dispatcher always after the system has been IPLed. You can also start the HCD dispatcher automatically using System Automation for z/OS.

You can change the following parameters in the procedure:

**Job name**

The HCD dispatcher submits a job for each incoming remote HCD login request. As a default, the job name of this job starts with CBD. If you want the job names to start with something different than CBD, you can specify a different string for the beginning of the job name by setting the JNP variable. If you want the job name to contain the user ID of the remote HCD user, specify +U and the HCD dispatcher substitutes the +U with the requestor's user ID. You can also add a prefix to the user ID or append a string to the user ID. For example, a X+UY for a passed user ID BMGN would result in XBMGNY for the beginning of the job name. Note, the HCD dispatcher does not accept more than seven digits for the beginning of a job name. Strings longer than seven digits are truncated. The HCD dispatcher generates a job name using the JNP variable and fills it up to eight digits. If the JNP variable contains three digits, the job name is filled up to eight digits by using parts of the port address of the HCD dispatcher and parts of the port address of the HCD client, which are started. If the JNP variable does not have three digits, it is filled up to eight digits by using 0...9 and A...Z.
Logging information
For special cases (debugging or better control), the HCD dispatcher can write logging information into a data set. In this case, change the LOG variable.

Port
If there is any reason to use another port than 51107 on which the HCD dispatcher listens for incoming remote HCD login requests, you can specify your port by setting the PORT variable.

Skeleton
You can specify another skeleton to be used to start the HCD agent by changing the JSK variable.

Port range
It is possible to determine a different range for the ports chosen by the HCD dispatcher for communication with the HCD agent during start of the dispatcher. The port range used must be configured to be available and permitted to the HCD agent. Set the variables P0 and P1 to appropriate values. Note that ports bigger than 65535 are not allowed.

Creating a user ID
If you want to run the HCD dispatcher as a started task, you must create a user ID for it.

1. Create a user ID to be used as started task for the procedure CBDQDISP. This user ID must have permission for running UNIX System Services.
2. Define the user ID to be used for the started task procedure CBDQDISP.
3. Refresh RACF.

The following figure shows a sample job in which the user ID for the HCD dispatcher can also be used by the UNIX System Services. (Note that the specified home directory for the HCD dispatcher is the root directory in this example).

```
//ADDUSER EXEC PGM=IKJEFT01
//SYSIN DD *
AU CBDQDISP NAME('STARTED-T. M. GNIRSS') OWNER(STCGROUP) +
   DFLTGRP(STCGROUP) +
   OMVS(HOME(/) PROGRAM(/bin/sh) UID(4711))
/*
//DEFRACF EXEC PGM=IKJEFT01
//SYSIN DD *
RDEF STARTED CBDQDISP.* STDATA(USER(CBDQDISP) GROUP(STCGROUP))
/*
//REFRESH EXEC PGM=IKJEFT01
//SYSIN DD *
SETR REFRESH RACLIST(STARTED) GENCMD(*) GENERIC(*)
/*
```

Figure 365: Sample JCL for creating a user ID for UNIX System Services

Starting the HCD dispatcher as a batch job
You can either start the HCD dispatcher as a started task, or by submitting a batch job. For this purpose, you can use the sample job CBDQDISJ in SYS1.SAMPLIB and submit it after you have adapted it to your needs.

Stopping the HCD dispatcher
To stop the HCD dispatcher, use the cancel command. The stop command is not supported.

Define an HCD profile
HCM uses HCD on the host as its server. Thus you can define an HCD profile to tailor HCD supplied defaults and processing options to your installation needs. Using a profile is optional. The profile file data set must have the following characteristics:

- Be either a sequential or a member of a partitioned data set
Allocate the HCD trace data set for remote HCD sessions

Before you can start an HCD agent (HCD server) on the host, you must allocate a data set that is used by this HCD agent’s trace facility. This trace data set must have a different name than the standard HCD trace data set (which is called userid.HCD.TRACE), allowing you to use remote HCD programs concurrently. The recommended name for the HCD agent trace data set is userid.HCD.TRACE.

The following job can be used to allocate the trace data set.

```plaintext
//ALLOC   JOB (DE03141,,),'GNIRSS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1)
//
//STEP1    EXEC PGM=IEFBR14
//DUMMY    DD DSN=WAS.HCD.TRACE,
//         DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),
//         SPACE=(CYL,(5,20)),DISP=(NEW,CATLG),UNIT=SYSALLDA
//
```

Figure 366: Sample job for trace data set allocation

Verifying TCP/IP host communication

If you cannot establish a connection to the host, first check whether you specified the correct host name in the remote HCD login dialog. If the host name is correct, use the `ping` command to check the network accessibility. In a command prompt window, enter the following command:

```plaintext
ing <hostname>
```

where `<hostname>` is your remote HCD host name.

If the ping command reports an error, make sure you can reach your TCP/IP name server. Enter the following command:

```plaintext
ing <nameserver>
```

where `<nameserver>` is your name server’s IP address in dotted-decimal notation (for example, 9.164.182.32). If this ping command also reports an error, make sure that you specified the correct IP address for the name server (provided by your network administrator) in your Windows TCP/IP configuration notebook. If you specified the name server IP address correctly, contact your network administrator to verify that all your TCP/IP configuration parameters are correct (router IP address, subnet mask, your workstation’s IP address).

TCP/IP problem determination

If a user connects to HCD via HCM, HCM displays error messages if the TCP/IP connection fails. For information about error messages, refer to z/OS and z/VM HCM User’s Guide. You can also check for documentation updates in HCM Documentation under Product Updates provided on the HCD and HCM home page (www.ibm.com/systems/z/os/zos/features/hcm).

If you connect to HCD via another HCD instance, HCD displays an error message on the screen or in the HCD message log.

If you get messages that are not listed in z/OS and z/VM HCM User’s Guide or in z/OS and z/VM HCD Messages, inform IBM and provide the complete and exact message text (especially the internal description and the error stack information). If possible, make a screenshot of the message and provide information about the circumstances that caused the message.
Appendix F. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed email message to mhvrcfs@us.ibm.com.

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision use software products successfully. The accessibility features in z/OS can help users do the following tasks:

- Run assistive technology such as screen readers and screen magnifier software.
- Operate specific or equivalent features by using the keyboard.
- Customize display attributes such as color, contrast, and font size.

Consult assistive technologies

Assistive technology products such as screen readers function with the user interfaces found in z/OS. Consult the product information for the specific assistive technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface

You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes the default settings for the PF keys.

- z/OS TSO/E Primer
- z/OS TSO/E User's Guide
- z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or more syntax elements are always present together (or always absent together), they can appear on the same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that have the same dotted decimal number (for example, all the syntax elements that have the number 3.1) are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.
Certain words and symbols are used next to the dotted decimal numbers to add information about the syntax elements. Occasionally, these words and symbols might occur at the beginning of the element itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the format 3 \* FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* \* FILE indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the syntax just before the items they separate. These characters can appear on the same line as each item, or on a separate line with the same dotted decimal number as the relevant items. The line can also show another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax elements, the elements must be separated by a comma. If no separator is given, assume that you use a blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element  
The question mark (?) symbol indicates an optional syntax element. A dotted decimal number followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them. The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element  
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number followed by the ! symbol and a syntax element indicate that the syntax element is the default option for all syntax elements that share the same dotted decimal number. Only one of the syntax elements that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the default option KEEP is applied. A default option also applies to the next higher dotted decimal number. In this example, if the FILE keyword is omitted, the default FILE (KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable  
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A dotted decimal number followed by the * symbol indicates that this syntax element can be used zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data area, you know that you can include one data area, more than one data area, or no data area. If you hear the lines 3*, 3 HOST, 3 STATE, you know that you can include HOST, STATE, both together, or nothing.

Notes:
1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted decimal number, you can repeat that same item more than once.
2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal number, you can use more than one item from the list, but you cannot use the items more than once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.
3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

**+ indicates a syntax element that must be included**

The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal number followed by the + symbol indicates that the syntax element must be included one or more times. That is, it must be included at least once and can be repeated. For example, if you hear the line 6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the + symbol can repeat a particular item if it is the only item with that dotted decimal number. The + symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.
This information was developed for products and services that are offered in the USA or elsewhere. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

**Rights**

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

**IBM Online Privacy Statement**

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user, or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user’s name, email address, phone number, or other personally identifiable information for purposes of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

**Policy for unsupported hardware**

Various z/OS elements, such as DFSMS, JES2, JES3, and MVS™, contain code that supports specific hardware servers or devices. In some cases, this device-related element support remains in the product even after the hardware devices pass their announced End of Service date. z/OS may continue to service element code; however, it will not provide service related to unsupported hardware devices. Software problems related to these devices will not be accepted for service, and current service activity will cease if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be issued.
Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently change when service for particular servers or devices is withdrawn. Likewise, the levels of other software products supported on a particular release of z/OS are subject to the service support lifecycle of those products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and product documentation) can include references to hardware and software that is no longer supported.

- For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/software/support/systemsz/lifecycle)
- For information about currently-supported IBM hardware, contact your IBM representative.
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).
Programming interface information

This guide primarily documents information that is NOT intended to be used as a Programming Interface of Hardware Configuration Definition (HCD).

This information unit also documents intended Programming Interfaces that allow the customer to write programs to obtain the services of HCD. This information is identified where it occurs, either by an introductory statement to a topic or by the following marking:

[Programming Interface Information] [End Programming Interface Information]
This glossary defines technical terms and abbreviations used in the Hardware Configuration Definition (HCD) documentation.

**Activity log**
The activity log is a sequential data set with the name of the associated **IODF** and the suffix ACTLOG. Use the activity log to document all definitions you made to the current IODF using HCD.

**Base**
Base is the base device number of a **multiple exposure** device, which is accessible by more than one device number. You assign the first device number and the system generates the additional device numbers.

**Central processor complex (CPC)**
A physical collection of hardware that consists of central storage, one or more central processors, timers, and channels.

**CFReport**
When a machine is ordered, the output of the order process is a binary file that represents the physical description of the final machine. One of the components of that file is the type and physical location, including the Physical Channel Identifier (PCHID) value assigned to that location, of all the I/O features in the final machine. This file is called a CFReport.

**Change log**
The change log is a VSAM data set with the name of the associated **IODF** and the suffix CHLOG. It will be automatically created if change logging and automatic activity logging is active. A subset of its generated entries will then be used to create the activity log entries.

**Channel subsystem (CSS)**
A collection of subchannels that directs the flow of information between I/O devices and main storage. It uses one or more channel paths as the communication link in managing the flow of information to or from I/O devices. Within the CSS is one subchannel set and logical partitions. One subchannel from the set is provided for and dedicated to each I/O device accessible to the CSS. Logical partitions use subchannels to communicate with I/O devices. The maximum number of CSSs supported by a processor also depends on the processor type. If more than one CSS is supported by a processor, each CSS has a processor unique single hexadecimal digit CSS identifier (CSS ID).

**CHPID**
A logical processor contains a number of **CHPIDs**, or Channel Path IDs, which are the logical equivalent of channels in the physical processor. See also:

- *dedicated CHPID*
- *reconfigurable CHPID*
- *shared CHPID*
- *spanned CHPID*

**CHPID Mapping Tool**
The CHPID Mapping Tool aids the customer in developing a CHPID-to-PCHID relationship for XMP processors. It accepts an IOCP input file without PCHID values, allows the user to assign the logical CHPID values in the input to the PCHIDs available with his ordered machine, and returns an updated IOCP input file that contains the PCHID values.

**CIB**
Coupling over InfiniBand. A channel path type to exploit InfiniBand technology for coupling connections.

**CMT**
See **CHPID Mapping Tool**.
Coupling Facility (CF)
The hardware element that provides high-speed caching, list processing, and locking functions in a sysplex. To enable data sharing between a CF partition and the central processor complexes, special types of high-speed, CF channels are required to provide the connectivity. A receiving CF channel path, attached to a CF partition, is to be connected to a sending CF channel path, attached to a partition in which an operating system (OS) is running.

Coupling Facility Channel
A high bandwidth fiber optic channel that provides the high-speed connectivity required for data sharing between a coupling facility and the central processor complexes directly attached to it.

CSS
See channel subsystem.

Dedicated CHPID
A CHPID can be dedicated to one partition; only that partition can access I/O devices on this CHPID. All CHPID types can operate in DED (dedicated) mode.

D/R site OS configuration
HCD can automatically generate a D/R site OS configuration as a copy of the primary OS configuration. You need a D/R site OS configuration in a GDPS managed environment, where storage devices are mirrored over peer-to-peer remote copy (PPRC) connections in order to have a backup system defined for an emergency situation.

Dynamic reconfiguration
The ability to make changes to the channel subsystem and to the operating system while the system is running.

EDT
An EDT (eligible device table) is an installation-defined and named representation of the devices that are eligible for allocation. The EDT defines the esoteric and generic relationship of these devices. During IPL, the installation identifies the EDT that the operating system uses. After IPL, jobs can request device allocation from any of the esoteric device groups assigned to the selected EDT. An EDT is identified by a unique ID (two digits), and contains one or more esoterics and generics. Define at least one EDT for each operating system configuration.

Enterprise Systems Connection (ESCON)
A set of products and services that provides a dynamically connected environment using optical cables as a transmission medium.

ESCON Manager (ESCM)
A licensed program that provided host control to help manage connections that use ESCON Directors. The functionality has been incorporated into the I/O Operations component of System Automation for z/OS.

ESCON Multiple Image Facility (EMIF)
EMIF is now referred to as MIF. See below.

Esoteric
Esoteric (or esoteric device group) is an installation-defined and named grouping of I/O devices of usually the same device group. EDTs define the esoteric and generic relationship of these devices. The name you assign to an esoteric is used in the JCL DD statement. The job then allocates a device from that group instead of a specific device number or generic device group.

FICON
Fiber Connection Environment (FICON) is an improved optical fiber communication method offering channels with high data rate, high bandwidth, increased distance and a greater number of devices per control unit for S/390 systems. It can work together with, or replace ESCON links.

Generic
Generic (or generic device type) is an MVS-defined grouping of devices with similar characteristics. For example: the device types 3270-X, 3277-2, 3278-2, -2A, -3, -4, and 3279-2a, -2b, -2c, -3a, -3b belong to the same generic. Every generic has a generic name that is used for device allocation in the JCL DD statement. MVS interprets this name as “take any device in that group”. In an operating system configuration, each EDT has the same list of generics. This list can only vary by the preference values and VIO indicators that are assigned to the generics.
HCA
With Coupling over InfiniBand, a peer coupling link is emulated on a Host Communication Adapter (HCA). See also CIB.

HCPRIO data set
The data set containing a real I/O configuration of a VM system.

Hardware Management Console
A console used to monitor and control hardware such as the systems of a CPC.

IOCDS
An input/output configuration data set (IOCDS) contains different configuration definitions for the selected processor. Only one IOCDS is used at a time. The IOCDS contains I/O configuration data on the files associated with the processor controller on the host processor, as it is used by the channel subsystem. The CSS uses the configuration data to control I/O requests. The IOCDS is built from the production IODF.

I/O Cluster
An I/O cluster is a sysplex that owns a managed channel path for an LPAR processor configuration.

IOCP
An IOCP (I/O configuration program) is the hardware utility that defines the hardware I/O configuration to the channel subsystem. For this definition IOCP retrieves information from the IOCP input data set about the following: the channel paths in the processor complex, control units attached to the channel paths, and I/O devices assigned to the control unit. HCD users can build the IOCP input data set from a production IODF.

IODF
An IODF (input/output definition file) is a VSAM linear data set that contains I/O definition information. This information includes processor I/O definitions (formerly specified by IOCP input streams) and operating system I/O definitions (formerly specified by MVSCP input streams). A single IODF can contain several processor and several operating system I/O definitions. See also “Master IODF” on page 454.

I/O Operations
A component of System Automation for z/OS providing functionality formerly available with ESCON Manager.

Initial program load (IPL)
The process that loads the system programs from the auxiliary storage, checks the system hardware, and prepares the system for user operations.

LCSS
Logical channel subsystems. See also channel subsystem.

Local system name
When defining an XMP processor, you can specify an optional local CPC designator. If you do not specify a local system name, and a CPC name is given, the local system name defaults to the CPC name.

Logical control unit
A logical control unit (LCU) can be a single CU with or without attached devices or a group of one or more CUs that share devices. In a channel subsystem, a logical CU represents a set of CUs that physically or logically attach I/O devices in common. A logical CU is built from the information specified in the CU definitions. The physical CUs the device is attached to form part of a logical CU.

Logically partitioned (LPAR) mode
A central processor complex (CPC) power-on reset mode that enables use of the PR/SM feature and allows an operator to allocate CPC hardware resources (including central processors, central storage, expanded storage, and channel paths) among logical partitions. Contrast with basic mode.

Master configuration file (MCF)
The HCM master configuration file (MCF) is an HCM configuration stored on the host. It provides a central shared repository, allowing several HCD/HCM users to work on a single configuration cooperatively and safely.
Master IODF
A master IODF is a centrally kept IODF containing I/O definitions for several systems or even for a complete enterprise structure. Master IODFs help to maintain consistent I/O data within a system and can provide comprehensive reports. From the master IODF subset IODF may be generated to serve as production IODFs for particular systems within the structure.

MCF
See master configuration file.

Migration
Refers to activities that relate to the installation of a new version or release of a program to replace an earlier level. Completion of these activities ensures that the applications and resources on your system will function correctly at the new level.

Multiple Image Facility (MIF)
A facility that allows channels to be shared among PR/SM logical partitions in an ESCON or FICON environment.

Multiple exposure device
A multiple exposure device is allocated by a single device number, but accessed by several device numbers, whereby each device number represents one exposure. The device number by which the device is allocated is the base exposure; all other device numbers are called non-base exposures.

Multi-user access
Users can define the multi-user access attribute for IODFs so that multiple users can simultaneously update this IODF. An IODF is kept in exclusive update mode only for the duration of a single transaction. If the updates of the transaction are committed, another user may update the IODF without requiring the first user to release it. Though a user’s changes are not immediately refreshed in the views of the other users, each user has a consistent view of the data either from the initial access to the IODF or after each last update that he had applied to the IODF.

MVS system
An MVS image together with its associated hardware, which collectively are often referred to simply as a system, or MVS system.

MVSCP
MVSCP (MVS configuration program) is the program that defines the I/O configuration to MVS. For this definition, information about devices, EDTs, and NIP consoles is required.

NIP console
A NIP (nucleus initialization program) console is a device that NIP uses as a console to display system messages. To define a device as a NIP console, it must first be defined to the channel subsystem and the current operating system (OS) configuration.

PCHID
See physical channel identifier.

PCIe
See Peripheral Component Interconnect Express.

Peer coupling channel
A peer coupling channel is a coupling channel operating in peer mode, which means it can be used as a sender and receiver at the same time. It may be shared by several logical OS partitions (such as CF sender channels) and by a CF logical partition. In addition, peer channels provide more buffer sets and channel bandwidth than their counterparts. Peer channels are supported only on zSeries 900 servers and their successors.

Peripheral Component Interconnect Express (PCIe)
Native attached PCIe adapters provide software with a connection to many new functions. The hardware implementation consists of a fanout card that plugs into the CEC book. It uses a PCIe interface to connect to a switch card that is plugged into an I/O drawer. Each switch card controls a domain of eight I/O or PCIe cards.

Physical channel identifier (PCHID)
The physical address of a channel path in the hardware. Logical CHPIDs have corresponding physical channels. Real I/O hardware is attached to a processor via physical channels. Channels have a
physical channel identifier (PCHID) which determines the physical location of a channel in the processor. For XMP processors, the PCHIDs must be defined in the configuration. The PCHID is a three hexadecimal digit number and is assigned by the processor. One logical channel path (CHPID) provided by a channel subsystem may be associated with a physical channel (PCHID). There is no standard mapping between CHPIDs and PCHIDs. The CHPID Mapping Tool aids the customer in developing a CHPID-to-PCHID relationship. See also CHPID Mapping Tool.

**peer-to-peer remote copy**
Peer-to-peer remote copy (PPRC) connections are direct connections between DASD controller subsystems that provide a synchronous copy of a volume or disk for disaster recovery, device migration, and workload migration. These connections can be point-to-point from one DASD controller to another, or they may pass through switches, just as connections from CHPIDs to control units can.

**PPRC**
See peer-to-peer remote copy.

**Preference value**
Preference value is the value that is assigned to each generic. This value determines the sequence of allocation. The generics and the associated values are system-defined. The predefined order can be changed by means of the preference value.

**processor cluster**
A processor cluster is a configuration that consists of CPCs (central processor complexes), one or more Hardware Management Consoles, and may have one or more coupling facilities. The support elements that are attached to the CPCs are connected to a network. A Hardware Management Console connected to the same network allows the system operator to configure the CPCs, observe and control hardware operations, and perform software functions.

**Processor Resource/Systems Manager (PR/SM)**
The feature that allows the processor to use several OS images simultaneously and provides logical partitioning capability. See also LPAR.

**Production IODF**
The production IODF is used by MVS/IPL to build UCBs and EDTs. It is also used to build IOCDSs and IOCP input data sets. Several users can view a production IODF concurrently and make reports of it, but it cannot be modified. The production IODF that is used for IPL must be specified by a LOADxx member. The LOADxx member can reside either in SYS1.PARMLIB or SYSn.IPLPARM. If the LOADxx member resides in SYSn.IPLPARM, then SYSn.IPLPARM must reside on the IODF volume. If the LOADxx member resides in SYS1.PARMLIB, then SYS1.PARMLIB can reside on either the system residence (sysres) volume or the IODF volume.

**Reconfigurable CHPID**
A reconfigurable CHPID is an unshared CHPID that you can reconfigure offline from one partition, then online to another. That is, the CHPID can be reconfigured between logical partitions after a power-on reset. Only one partition can access I/O devices on this CHPID at a time. All CHPID types can operate in REC (reconfigurable) mode.

**Server Time Protocol link**
A coupling facility connection which will be used as a timing-only link, providing the Server Time Protocol (STP) function. The STP is a time synchronization feature, which is designed to provide the capability for multiple System z9 and zSeries servers to maintain time synchronization with each other. STP is designed to allow events occurring in different System z9 and zSeries servers to be properly sequenced in time.

**Shared CHPID**
A shared CHPID can be configured online to one or more partitions at the same time. One or more partitions can access I/O devices at the same time using this CHPID.

**SMP processor**
In this book, this term designates processors supporting a single channel subsystem. For SMP processors, the single channel subsystem is implicitly defined with the processor. This term is used in contrast to the term XMP processor, which designates processors supporting multiple logical channel subsystems.
SNA address
The system network architecture (SNA) address is a means to identify the support element of a CPC configured in a processor cluster. It consists of the network name (the network identifier of the LAN the support element of a CPC is connected to), and the system name (the identifier of the CPC within the network). In HCD, used as part of a processor definition for a CPC, the SNA address provides the association of a processor defined in the IODF with a CPC configured in a processor cluster.

Spanned CHPID
With XMP processors, supporting multiple logical channel subsystems, some types of channel paths can be shared across partitions from multiple logical channel subsystems. It is dependent on the processor support, which channel types can be defined as spanned. Such a channel path is called a spanned channel path.

A spanned channel path will be created with the same CHPID number in all channel subsystems that are using it. For example, if you have a processor MCSSPRO1 with channel subsystems 0 through 3, and you create CHPID 1A (type IQD, SPAN) and let it access partitions from CSS 0, 2, and 3, you will get this CHPID 1A in CSSs 0, 2, and 3, but not in CSS 1.

STP link
See Server Time Protocol link.

subchannel set
With a subchannel set you can define the placement of devices either relative to a channel subsystem or to an operating system. Depending on the processor type and the z/OS release, users can exploit additional subchannel sets in a channel subsystem.

This function relieves the constraint for the number of devices that can be accessed by an LPAR, because device numbers may be reused across all channel subsystems and subchannel sets. Depending on the machine implementation, the exploitation of the alternate subchannel sets is limited to certain device types.

Sysplex
A set of operating systems communicating and cooperating with each other through certain multisystem hardware components and software services to process customer workloads. See also MVS system.

UCB
Unit control block

UIM
UIMs (unit information modules) perform the device-dependent part of the operating system configuration definition. There is a UIM for each supported device or device group. Each UIM recognizes and processes the values coded for its device or device group. HCD routines load all UIMs, either IBM or customer supplied, into virtual storage and make calls to the UIMs:

• During initialization
• During processing of an Add device or Change device request
• During generation of a print report
• During IPL

Validated work IODF
A validated work IODF satisfies all validation rules for building production IODFs. It may lack physical channel identifiers (PCHIDs) for XMP processors. In cooperation with HCD and the CHPID Mapping Tool a validated work IODF is required to accept new or updated PCHIDs. From such a validated work IODF, an IOCP input deck suitable for the use with the CHPID Mapping Tool is generated. As soon as all PCHIDs are inserted or updated in the validated work IODF, the production IODF can be built.

VIO
VIO (virtual input/output) is the allocation of data sets that exist in paging storage only. Only DASDs are eligible for VIO. Data sets are allocated to a paging device instead of to a real device.
Virtual channel identifier (VCHID)

For internal channel paths there does not exist a physical correspondence to hardware, hence there does not exist a PCHID value. Instead, for internal reasons, a unique virtual channel ID (VCHID) is assigned during IML or after a dynamic ‘Add CHPID’ request.

Work IODF

The work IODF is used to update an I/O definition and reflects the most recent status of the hardware configuration. After you have completed the updates, you can use the work IODF to create a production IODF. While you can update a work IODF and generate reports from it, it cannot be used to build UCBs and EDTs, nor can it be used to generate an IOCDS, or an IOCP input data set.

WWPN Prediction Tool

The worldwide port name (WWPN) prediction tool assists you with pre-planning of your Storage Area Network (SAN) environment. It assigns world-wide port names to virtualized FCP ports for configuring SAN devices. This stand alone tool is designed to allow you to set up your SAN in advance, so that you can be up and running much faster once the server is installed.

XMP processor

In the S/390 context, this term designates processors that support multiple logical channel subsystems (LCSS). It is used in contrast to the term SMP processor, which designates processors of previous generations that support only one channel subsystem. In general, the different CSSs including their channel paths and logical partitions provided by an XMP processor operate independently from each other. Channel paths can be spanned over multiple logical channel subsystems on the same processor depending on the channel path type. See also SMP processor and channel subsystem.
Index

Special Characters
*HCD$ 196
*HDC$ 196
>peer-to-peer remote copy 121
>PPRC 121

Numerics
4-character model 195
8-character control unit 195

A
abend code
00F 402
other than 00F 403
abnormal termination 402
access authority 331
access list 97
access to HCD services 434
accessibility
contact IBM 439
features 439
action bar 47, 341
tion code 52, 102, 341
action list 51
action-to-action processing 51
actions on objects, migration enhancements 283
activate
IOCDS, batch 309
activate messages 209
activating
configuration dynamically 203
switch configuration 163
sysplex-wide 207
trace 419
activation actions available from CPC Image List 214
Activation steps
Activate Switch Configuration 164
active configuration
action code 'a' 218
action code 'c' 219
action code 'g' 220
active IODF, view 203
active switch 162
active sysplex member list 207
activity log
naming convention 28
Activity Log panel 44
activity logging
automatic 19, 44
browsing 240
HCD profile 19
printing 240
rules 45
volume serial number 19

Add Device
peer-to-peer remote copy 121
PPRC 121
adding
configuration package object 42
configuration packages 41
device to esoteric device list, migration 287
objects through migration 283
advantages of extended migration 259
agent 433
all-character readable token 195
ALLOC_SPACE 20
allocating output data sets
volume serial number 19
allow hardware deletes 205
alter access 332
alternate DD names 330
analyze errors
batch migration 259
dialog migration 258
HCD problems 401
API provided by HCD 427
application programming interface 427
assembler check, migration 258, 294
assembler statements 252
assembly listing 294
assigning devices to esoterics 72
assistive technologies 439
associated data sets 28
associated with processor and partition, migration 257
attended export 36
attribute group change 128
attended mode 167
AUTO_CHPID_EXCLUDE 169
AUTO_CHPID_INCLUDE 169
AUTO_MATCH_CU_DEVNUM 169
AUTO_SS_ALTERNATE 169
AUTO_SS_DEVNUM_SCHEME 169
AUTO_SUG_CU_RANGE 170
AUTO_SUG_DEV_RANGE 170
AUTO_SUG_DYN_CHPIDS 171
AUTO_SUG_LPGROUP 171
AUTO_SUG_OSGROUP 171
AUTO_SUG_STAT_CHPIDS 170
AUTO_SWAD_EXCLUDE 171
AUTO_SWAD_INCLUDE 171
auto-assign 113
autoconfiguration
overview 175
autoconfiguration operation mode
attended mode 167
fast-path mode 167
unattended mode 167
autoconfiguration policies
AUTO_CHPID_EXCLUDE 169
AUTO_CHPID_INCLUDE 169
AUTO_MATCH_CU_DEVNUM 169

459
autoconfiguration policies (continued)
  AUTO_SS_ALTERNATE 169
  AUTO_SS_DEVNUM_SCHEME 169
  AUTO_SUG_CU_RANGE 170
  AUTO_SUG_DEV_RANGE 170
  AUTO_SUG_DYN_CHPIDS 171
  AUTO_SUG_LPGROUP 171
  AUTO_SUG_OSGROUP 171
  AUTO_SUG_STAT_CHPIDS 171
  AUTO_SUG_STAT_CHPIDS 170
  AUTO_SWAD_EXCLUDE 171
  AUTO_SWAD_INCLUDE 171
  changing between controller discoveries 171
autoconfiguration policy 168
autoconfigured control units 175
autoconfigured I/O devices 175
automatic activity logging rules 45
automatic I/O configuration 167

B
back-level IODF 38
backup an IODF 33
base 451
base IODF 167
batch jobs
  generated by HCD 62
batch utility
  activate a production IODF 309
  build configuration data 311
  build CONFIGxx member 311
  build IOCDS or IOCP input data set 307
  build JES3 initialization stream checker data 311
  build production IODF 305
  build work IODF 306
  compare IODFs or CSS/OS reports 320
  copy IODF 313
  create graphical configuration reports 317
  description 299
  example for copy IODF 328
  example for migration 258
  EXEC procedures 26
  export IODF 326
  FCP device data 311
  functions 299
  import IODF 325
  initialize IODF 301
  input parameter string 300
  job steps during transmit procedure 412
  migrate an input data set 258, 302
  print configuration reports 314
  starting the dialog 300
  upgrade IODF 302
BCPii
  working with CPC images 217
BCTC 139
blocking ports 159
BookMaster 228
BOTTOM command 48
browse activity log 240
build
  CONFIGxx member, dialog 220
  CONFIGxx, batch 311
  FCP device data, batch 311
build (continued)
  HCPRI0 input data set, batch 310
  IOCDS, batch 307
  IOCDS, dialog 187
  IOCP input data set 195
  IOCP input data set, batch 307
  IOCP input data set, dialog 193
  JES3, batch 311
  OS configuration data set 200
  processor cluster IOCDSs, dialog 190
  production IODF, batch 259, 305
  production IODF, dialog 184
  work IODF, batch 306
build configuration statements 259

C
candidate list 98
cascade switching 145
cascaded FICON fabric 115
catalog
  considerations 336
  scan utility< 338
cataloged data set 337
CBDBCCHD 15, 16
CBDMGHOM routine 427
centralized navigation 64
CF channel path, migration enhancements 274
CF duplexing 9
CFReport 198, 451
chained switches 146, 155
change log
  naming convention 28
change log data set
  allocation space extension 20
change log file
  name 45
  size 45
CHANGE_LOG 19
changing
  channel path attributes, migration 287
  channel paths 107
  configuration packages 41
  consoles 134
  control unit and device attributes, migration 287
  control unit attachment parameters for multiple processors 117
  control units 116
  coupling facility connection 110
  CSS-related definitions for a group of devices 127
  device number 131
  devices 126
  DYNAMIC parameter for a group of devices 128
  EDT ID 70
  EDTs 70
  esoterics 72
  esoterics for a group of devices 127
  IODF attributes 35
  LOCANY parameter for a group of devices 128
  operating mode of channel paths 108
  operating system configuration 68
  OS configuration ID 68
  OS-related definitions for a group of devices 127
  partition name, migration 287
changing (continued)
  partitions 87
  ports from installed to uninstalled 157
  ports from occupied to not occupied 157
  processor 76
  processor ID 77
  processor type 76
  production IODF 33
  switch configuration ID 160
  switch configurations 150
  switch data 150
  switches 150
  to another IODF 33
  type of CF channel paths 108
  type of channel paths 108
  type/model of a group of devices 129
changing channel path ID 107
channel path
  access list 97
  aggregating 110
  candidate list 98
  changing 107
  CHPID statement 273
  compare report, example 394
  connectivity report, example 354
  defining 96
  deleting 112
  detail report, example 353
  migration enhancement 273
  operation mode 95
  spanned 103
  summary report, example 351
  working with 95
channel path ID
  changing 107
channel subsystem
  changing 85
  copy 82
  copying 84
  defining 81
  deleting 85
channel subsystem summary report, example 348
CHID 97
CHID function
  summary 350
CHLOG_EXTENSION 20
CHPID
  spanned 103
  CHPID Mapping Tool 197, 451
  CHPID report 228
  CHPID statement 273
  CIB channel
    over-defining 103
client
  HCD client 433
CLIST used by HCD 16
CNC channel 138
CNC side information 142
CNTLUNIT statement 277
coexistence considerations 46
color settings for graphical reports 22
combined input data sets 257
command
  syntax diagrams xxvii
command line 55
commands
  FIND 160
  GOTO 56
  HELPID 405
  HELPTEST 405
  how to use 55
  INSTRUCT 48
  LEFT 48
  LOCATE, graphical report 233
  PANELID 405
  PFSHOW 55
  REFRESH, graphical report 234
  RIGHT 48
  SAVE 233, 234
  SHOWIODF 35
  SHOWMSG 416
  SHOWMSG ACTIVATE 206
  TRACE 419
  TRACE, HCM 422
compare
  CONFIGxx members 222
  CSS/OS views, dialog 240
  IODFs or CSS/OS Reports, batch 320
  IODFs, dialog 236
compare reports
  channel path 394
  control unit 396
  control unit attachment 395
  CSS / OS device 400
  device 396
  device attachment 395
  esoteric 398
  Operating System Compare Report 399
  OS console 400
  OS device 399
  partition 393
  PCIe function 393
  processor 392
  switch 397
  switch configuration detail 398
  switch detail 397
compatibility 46
component ID 401
concatenation 13
configuration data
  activating dynamically 203
  consolidating 64
  define 63
  definition sequence 66
  delete 63
  modify 63
  process 183
  validation 3
configuration package
  add 42
  define 41
  delete 41, 42
  edit 41
  list 40, 42
  merge 42
  problem determination for transmit procedure 412
  replace 42
  transmit 42
configuration package (continued)
work with 40, 42
configuration report
build with batch 311
configuration reports
CF channel path connectivity report, example 354
channel path detail report, example 353
channel path summary report, example 351
channel subsystem reports, example 347
control unit detail report, example 356
control unit summary report, example 356
CSS report, description 225
CTC connection 226
CTC report, example 366
device detail report, example 358
device summary report, example 358
eligible device table report, example 363
examples 347
graphical configuration report 228
I/O definition reference 227
I/O definition reference, example 389
I/O path report 367
I/O path, description 226
IOCDS report, example 351
LCU report, example 391
MVS device detail report, example 363
MVS device report, example 362
NIP console report, example 364
operating system report, description 226
operating system report, example 362
operating system summary report, example 362
partition report, example 350
PCle Function Summary Report 348
print with batch 314
printing graphical reports 228
printing textual reports 227
problem determination 407
processor summary report, example 347
supported hardware report 369
supported hardware, description 227
Switch Configuration Compare Report 397
switch configuration detail report 361
switch configuration summary report, example 361
switch detail report, example 361
switch report, description 226
switch report, example 360
switch summary report 360
viewing graphical reports 228
VM console report, example 365
VM device detail report, example 365
VM device report, example 364
configuration status 209
CONFIGx member
build using dialog 220
build with batch 311
compare using dialog 222
connecting
another switch to a switch 155
channel path to switch 153
control unit to switch 154
coupling facility channel paths 104
connection table
DD name HCDCNTL 217
reachable system 212
connection table (continued)
record format 217
connections of switches, possibilities 145
console
changing 134
collection report, description 226
collection report, example 364
deleting 134
report, example 365
working with 133
consolidating configuration data 64
contact
z/OS 439
context menu 51
control unit
attachment compare report, example 395
attachment data to processor 114
changing 116
changing attachment parameters for multiple processors 117
CNTLUNIT statement 277
compare report, example 396
collection report, example 356
defining 112
deleting 119
disconnecting 118
migration enhancement 277
priming, serial number 118
supported by system 244
working with 112
control unit list 65
count unit model 250
control units
autoconfigured 175
Converged Ethernet (RoCE) 91
copying
IODF, batch example 328
IODF, batch utility function 313
IODF, with dialog 34
coupling facility
changing connection 110
connecting channel paths 104
disconnecting channel paths 106
overview 8
view information 138
coupling facility connection report 228
CPC (central processor complex) support in HCD 9
CPC (central processor complex)
specify name 75
CPC image
connection table 216
reachable system 212
CPC Image List
available activation actions 214
CPC images
BCPii 217
dynamic activation of I/O changes 211
operation status 211
prerequisites 217
RACF Facility Class profiles 332
support element (SE) 217
Create Work I/O Definition File panel 29
create work IODF from production IODF 33
creating
graphical configuration report, batch 317
IODF using batch 258
IODF using dialog 28
JES3 initialization stream checker data 199
new objects 63
cross operating system support 5
CSS
changing 85
copy 82
copying 84
defining 81
deleting 85
CSS (channel subsystem)
configuration report, description 225
configuration report, example 347
group change action 127
overview 1
CSS-related definitions for devices 122
CSS/operating system device compare report, example 400
CSS/OS report, compare with batch 320
CTC channel 138
CTC connection 140
CTC Connection List 139
CTC connection report
filter 142
incomplete definitions 141
print 143
report, example 366
with MIF 139
with shared channels 139
CTC Connection Report 226
CTC connection report
Select one or more CTC connections
and press the Enter key to display diagnostic
messages for the connections.
diagnostic messages 143
CTC connections
copy/repeat 83
update 83
CTC side information 141
CU report 228
CUADD, CTC connection 139
customizing HCD 13

D

D/R OS configuration 68
D/R site OS configurations 68
data entry dialog 48
data sets
allocation for migration 297
cataloged with esoteric name 337
combined 257
example 196
generated during transmit configuration package 413
migrate with batch 302
migration 249
migration using the dialog 256
relationship in HCD 6
data sets due to HCM requests
allocation space 20
data space 23
DCF 228
DCM 100
ddnames
alternate 330
default for migration 297
standard 329
dedicated connection 145, 159
dedicated operation mode 95
default connection 158
default switch matrix 160
defining
configuration packages 41
connections to switches 153
switch configurations 158
switches 148
defining RACF profiles 331
device
activate messages 209
attachment compare report, example 395
changing 126
changing CSS-related definitions for a group 127
changing DYNAMIC parameter 128
changing esoterics for a group 127
changing LOCANY parameter 128
changing number 131
changing OS-related definitions for a group 127
changing type/model of a group of devices 129
channel paths 112
compare report, example 396
compare, CSS/operating system 400
configuration package object 42
configuration packages 41
configuration report, description 226
console list, migration 287
consoles 134
control unit, migration 286
debuts 119
defining
119
defining a group in one step 122
defining CSS-related definitions 122
defining OS-related definitions 124
defining SS-related definitions 122
deleting 133
detail report, example 358
device from esoteric device list, migration 287
devices 133
disconnecting from operating system 131
EDTs 71
esoteric device list, migration 287
esoterics 74
identification 122
IODEVICE statement 279
IODF 34
migration enhancement 279
operating system configuration 69
partition, migration 286
partitions 90
priming, serial number 132
priming, volume serial number 132
processors 81
protection 336
restricting partition access 124
summary report, example 358
supported by system 245
device (continued)
  switch configuration 153
  switch-to-switch connection, migration 287
  switches 153
  switches, confirm 153
  working with 119
device candidate list
  empty 124
  null 124
device list 65
device serial number 122
device type group change 129
diagnostic information and tools 416
diagnostic message, CTC connection 143
diagnostic messages 366
dialog, usage 47
different IODF levels 46
disable write protection 190
disabled marker 157
disconnecting
  control units from a processor 118
  coupling facility channel path connections 106
  devices from operating system 131
  multiple control units from a processor 118
discovery
  scope 175
dispatcher 433
display active sysplex member list 207
display diagnostic message, CTC connection 143
display graphical reports 231
dualwrite option 187
dumps 422, 423
duplicate control unit 252
duplicate device 255
dynamic channel path management 100
dynamic connection 139, 145
dynamic connection ports 159
  DYNAMIC parameter 128
dynamic partition 87
dynamic reconfiguration management
  activation 203
  failure, sysplex-wide 209
  glossary definition 452
  hardware and software changes allowed 204
  identify device 122
  overview 3
  profile access 331
  rejection 206
  resource access 331
  software only changes allowed 206
  sysplex-wide 207
dynamic switch 145

EDT (continued)
  repeating 71
  working with 70
EDT statement 264
EMIF
  see MIF 452
enable write protection 190
ending HCD 16
enhanced migration 259
entry port, CTC connection 139
entry switch 145
environment for HCD 7
error message, CTC connection 141, 143
errors
  diagnosis 401
  during IPL 404
  during migration 258, 295
  during transmit procedure 412
ESCON 452
ESCON director, CTC connection 139
ESCON Manager 8, 452
ESCON Manager lock 164
esoteric compare report, example 398
esoterics
  changing 72
  defining 72
  deleting 74
  device group name 337
  keyword to allow mixed 20
  migration enhancement 264
  repeating 73
  token 264, 337
  token, migration 251
  UNITNAME statement 264
  working with 72
esoterics token 337
establishing coupling facility channel path connections 104
establishing dedicated connections 159
EXEC procedures 26
exit, function key 56
explicit device candidate list 89, 124
export
  IODF, batch 326
  IODF, dialog 36
EXPORTED_HLQ 20
extended IQD 101
extended migration
  IOCP input data set 195

F
fabric 145
Facility Class profiles
  for working with CPC images 332
failure, diagnosis 401
fast path 56
fast-path mode 167
FCP device data 200
FCP SAN configuration template file 200
FCTC 138
feedback xxxi
FICON
  cascade switching 145
  switch fabric 145
FICON Channel-to-Channel support 138
FICON devices  
   I/O Autoconfiguration 167
FICON switch  
   downgrading link address 116
   upgrading link address 115
FICON switches 145
   fields    
      editable 52
      input and output 49
      promptable 54
   filter CTC connection 142
   filter mode 61
   filtering a list 59
   FIND command 160
   font for graphical reports 21
   formatting type for graphical reports 21
   function keys
      actions 47
      add 63
      backward 48
      command 55
      Enter 56
      exit 56
      forward 48
      help 55
      how to use 55
      instruct 48
      jump 232
      left 48
      previous 56
      problem determination 405
      prompt 49
      reset 52
      right 48
      setting 24 keys on 15
      split 338
      zoom 232
FUNCTION statement 272

G

GDDM
   installation 13
   usage for reports 229
   generate switch matrix 160
   generic device type 452
   generics
      migration enhancement 265
      UNITNAME statement 265
GML 228
GOTÔ command 56
   graphical configuration report
      create with batch 317
      example 391
      font 21
      jumping to action lists 232
      LCU report, example 391
      limiting a graphical report 230
      prerequisites 228
      printing 228
      problem determination 407
      scaling factor 21
      viewing 228
   graphical navigation 64
   graphical representation 228
   group change action for control units 114
   group changes
      attribute group change for devices 128
      CSS group change for devices 127
      device type group change 129
      esoterics for a group of devices 127
      OS group change for devices 127

H

hardware and software changes allowed 204
   Hardware Management Console 9, 453
   hardware report 369
   hardware support 241
   HCA 102

HCD (Hardware Configuration Definition)
   abnormal termination 402
   and coupling facility 8
   and I/O Operations (ESCON Manager) 8
   customizing 13
   data sets relationship 6
   differences between HCD and MVSCP/IOCP 1
   ending 16
   environment 7
   installation considerations 13
   object management services 427
   overview 1
   overview of functions 4
   product identifier 401
   setting up 13
   starting 16
   HCD agent 433
   HCD client 433
   HCD dispatcher 433
   HCD profile
      standard keywords 17
   HCD Profile Options dialog 17
   HCD profile, define 436
   HCD services
      access 434
   HCDNTL
      DD name for connection table 217
   HCM change log data set
      allocation space extension 20
   HCM master configuration file 453
   HCM MCF
      volume serial number 19
   HCPRIO input data set
      build with batch 310
      build with dialog 200
      migration 254
      help
         how to get 55
      problem determination 405
      testing panels 405
   HELPID command 405
   HELPTEST command 405
   hiding parameter/feature definitions 131
   hierarchical navigation 64
   highlighting 49
   HLQ
      for exporting IODFs 20
initialize IODF from VSAM DIV file 301
input fields 49
input parameter string, batch utilities 300
input to stand-alone IOCP 194
Input/Output Subsystem 167
installation-static 251
installed port range 150
installed ports 157
installed UIMs 246
installing
GDDM 13
HCD 13
INSTRUCT command 48
instruction area 48
insufficient data set sizes 297
interface
batch utility functions 299
dialog 47
HCD object management services 427
Internal Shared Memory PCIe Adapter (ISM). 91
Internet Protocol
Version 6 433
introduction 1
invoking batch utility functions 299
IOCDS
build processor cluster IOCDSs 190
build with batch 307
build with dialog 187
report, example 351
token 190
use with HCD 5
write in preparation for processor upgrade 187
IOCONFIG statement 262
IOCP
build input data set with batch 307
build input data set with dialog 193
example 196
extended migration 195
migrating additional data sets 252
migrating input data sets 249
stand-alone 194
use with HCD 1
IODEVICE statement 279
IODF
activity log 45
available IODFs 50
change log 45
multi-user access status 50
V5 IODF 34, 39
validated work IODF 198
IODF (I/O definition file)
activity logging 29, 44
attributes 28
backup 33
build production IODF, batch 305
build production IODF, dialog 184
build work IODF, batch 306
change attributes 35
change during session 33
compare 236
compare reports, example 391
copy with batch 320
copy with batch 313
copy with dialog 34
IODF (I/O definition file) (continued)
  data space 23
  delete 34
  description 2, 27
  different levels 46
  dump 422
  export with batch 326
  export with dialog 36
  import with batch 325
  import with dialog 38
  initialize 301
  maintenance 34
  master 31
  multiple 30
  naming conventions 27
  objects managed in 5
  prefix 224
  release level compatibility 46
  repair 423
  sharing 30
  single 30
  space allocation 29
  specify 28
  subset 31
  suffix 224
  transfer to a different system or location 424
  upgrade with batch 302
  upgrade with dialog 38
  used at IPL 6
  used for last IPL 33
  view currently accessed one 35
  volume serial number 29
IODF checker 23, 185
IOS 167
IPL
  attribute list 192
  attribute management functions 9
  errors 404
  IODF processing 224
  manage attributes for processor cluster 192
  specify an IODF 224
    with MVSCP 4
  IPLADDR value 192
  IPLPARM value 192
  IPv6 433
  IQD channel
    IEDN access 101
    IQDX function 101
  IQD frame size 100
  IQDX 101
  ISPF considerations 338
  ISPF list file 403
  ISPF table 162
  ISPF, tailoring 15

J

JCL
  for creating a user ID for UNIX System Services 436
  JES3 initialization stream checker data 199
  JES3, build with batch 311
  job statement information 62
  jumping from graphical reports 64, 232

K

keyboard
  navigation 439
  PF keys 439
  shortcut keys 439
keywords
  I/O Autoconfiguration 169
  keywords in HCD profile 19

L

LCSS 74, 95, 453
LCU (logical control unit)
  report, example 391
  report, how to generate 228
LEFT command 48
legend, CTC report 366
library concatenation 13
limit CTC connection report 227
limiting a graphical report 230
link address 115
link address, CTC connection 139
lists
  action list 51
  configuration package list 40
  configuration package object list 42
  filtering 59
  I/O path list 202
  numbered selection lists 49
  selection methods 49
  unnumbered multiple selection lists 50
  unnumbered single selection lists 49
  working with 49
LOAD parameter 224
local system name 75, 453
LOCANY parameter 128
LOCATE command 48
LOCATE command, graphical report 233
logging 44
logical address 115
logical partition group 172
LP group 171, 172
LPAR (logical partitions)
  defining 85

M

maintain IODF 34
manage processor cluster IPL attributes 192
MAP _CUTYPE 22, 250
mapping of migrated data 252
master configuration file
  volume serial number 19
master IODF
  merge changes 42
matrix, generate switch 160
maximum frame size 100
MCF
  volume serial number 19
MCF data set
  allocation space extension 20
  naming convention 28
MCF_EXTENSION 20
message list 53, 293, 294
Message List
delete messages 53
explain messages 53
save messages 53
message list, CTC connection 143
message log 416
messages
overview 416
reason code 402
MIF
defining with HCD 95
MIF, CTC connection 139
Migrate IOC/P / MVSCP / HCPRIO Data dialog 256
migrate switch configuration 162
MIGRATE_EXTENDED 196
migration
additional input data sets 252
advantages 259
assembler check 258
batch utility 302
changing input data sets 249
conflicts 249
consideration 249
coupling facility updates 258
data set allocation 297
enhancements 259
errors 258
existing input data sets 249
existing switch configurations 162
extended migration 259
for combined IOC/P/MVSCP input data set 249
log 295
LPAR considerations 249
multiple IOC/P/MVSCP statement 249, 252
new parameters 259
overview 11
partial 283
preparation 249
prerequisites for extended migration 196
processing mode 257
protocol support for control units 250
return code 258
roadmap 11
sequence 249
solving errors 293
termination 258
using the HCD batch utility 258
using the HCD dialog 256
validation rules 250
migration log 416
Migration steps
Migrate Switch Configuration Data 162
minimum installed port range 266
mixed environment 200
mixed esoterics
profile keyword 20
module prefix 401
moving directly 56
multi-user access
abend 30
enforcing a refresh view on the IODF 134
multi-user access (continued)
release a lock 30
scenarios 134
multiple exposure device 454
multiple IODFs 30
multiple switch activation 164
MVS device report, example 362
MVS devices 369
MVSCP (multiple virtual system configuration program)
differences to HCD 1
migrating additional input data sets 254
migrating input data sets 249
use with HCD 1
N
naming convention of IODF 27
navigating through HCD 64
navigation
keyboard 439
navigation map 65
network name 75
next POR 222
NIP console
NIPCON statement 263
working with 133
NIP console report, example 364
NIPCON statement 263
null device candidate list 124
numbered selection lists 49
O
occupied indicator
PORT statement 267
operating mode
changing 108
how to use 95
operating requirements for HCD 7
Operating System Compare Report, example 399
operating system configuration
changing 68
defining 67
deleting 69
group change action 127
IOCONFIG statement 262
migration enhancement 262
repeating 69
report, description 226
reports, example 362
working with 67
operation mode
attended mode 167
unattended fast-path mode 167
operation status of CPC images 211
optional comment for SAVE command 235
options for text reports 21
OS configuration
D/R site OS configuration 68
OS configuration group 173
OS console compare report, example 400
OS device compare report, example 399
OS group 171, 173
OS group change action 127
OS parameters/features 281
OS report 226
OSD channel 102
output field 49
overview of HCD 1
overview, migration 11

P

panel
  flow of HCD options 341
  identifier 47, 405
  layout 47
  problem determination 405
  title 47
PANELID command 405
partial migration 283
partition
  changing 87
  compare report, example 393
  configuration report, example 350
  defining 86
  deleting 90
  dynamic I/O 87
  migration enhancement 271
  repeating 88
  RESOURCE statement 271
  transferring 88
  working with 85
partition access to CHPIIDs 205
partition usage 86
PassTicket
  for working with CPC images on z/VM 335
PassTickets
  for working with CPC images on z/OS 334
PAV alias device 123
PCHID 197, 455
PCIe xxxv
PCIE function
  FUNCTION statement 272
  migration enhancement 272
  PCIE Function Compare Report 393
  PCIE Function Summary Report 348
PCIE Function Compare Report 393
PCIE Function Summary Report 348
PCIE functions 91
peer coupling channel 454
peer-to-peer communication 138
peer-to-peer remote copy 455
Peripheral Component Interconnect Express xxxv
Peripheral Component Interconnect Express (PCIe) 91
PFSHOW command 55
physical channel identifier 197, 455
physical network ID 101
planning
  migration consideration 249
  migration, data set allocation 297
  your configuration 63
Point-to-point CTC connection 140
policy keywords
  autoconfiguration 169
POR (power-on reset) 3
POR, switch IOCDS 211, 223
port configuration 268
port list 156
port matrix 145, 158
port range 150
PORT statement 267
port, moving switch 152
PORTCF statement 268
ports, blocking 159
PPRC 455
PPRC usage
  in I/O Device List 120
PR/SM 8
pre-migration activities 249
preallocation 297
preference value 71, 455
preparing for migration 249
prerequisites
  working with CPC images 217
previous, function key 56
priming
  control unit serial number 118
  device data 132
  processor serial number 80
  switch port connection 155
  switch port name 155
  switch serial number 151
printing
  activity log 240
  compare reports 236
  configuration reports, batch 314
  CTC connection 143
  graphical configuration report 229
  graphical reports 231
  list panels 234
  problem determination 407
  textual configuration reports 225
problem determination
  abnormal termination 402
  diagnostic information and tools 416
  errors during IPL 404
  graphical reports 228, 407
  help information 405
  identifying problems 401
  initialization of HCD 409
  IODF dump 422
  panels and function keys 405
  repair an IODF 423
  system abend code '00F' 402
  system abend code other than '00F' 403
  textual reports 407
  trace facility 417
  transmit procedure 412
  UIMs 410
problem reporting data bases 424
process configuration data 183
processing mode, migration 257
processor
  changing 76
  changing type 76
  compare report, example 392
  configuration report, example 347
  defining 74
  deleting 81
  ID statement 269
processor (continued)
  migration enhancement 269
  priming, serial number 80
  repeating 78
  support level 75
  supported by system 241
  working with 74
processor cluster support 9
Processor Resource/Systems Manager
glossary definition 455
processor upgrade, write IOCDS 187
product identifier 401
production IODF
  build with batch 305
  build with dialog 184
  change 33
  format of 28
  how to specify 28
  replace during build production IODF 184
profile
  HCD 436
  profile for HCD 16
  profile keywords
    standard 17
  profile option
    mixed esoteric 20
  profile options 17
  programming interface for HCD 299
  promptable fields 54
  protected devices 336
  protocol support for control units, migration 250
Q
  query supported hardware 241
R
  RACF
    defining profiles 331
  RDMA 91
  re-migrate IOCP input data sets 196
  reachable system 212
  read access 332
  reason code 402
  receiving an IODF 38
  reconfigurable operation mode 95
  Recovery 219
  REFRESH command, graphical report 234
  refreshing a view on IODFs 134
  refreshing the active sysplex member list 208
  Regional Crypto Enablement (RCE). 91
  rejection of dynamic activation 206
  relationship of data sets 6
  release level compatibility 46
  Remote Direct Memory Access (RDMA) 91
  repair an IODF 423
  repeating
    action 64
    channel subsystem 82
    description 64
    EDTs 71
    esoterics 73
repeating (continued)
  operating system configuration 69
  partitions 88
  processors 78
  replacing
    during build production IODF 184
  replacing objects through migration 283
  reporting problems 424
  reports, text, options 21
  requirements
    for setting up HCD 13
    for using HCD 7
  migrating IOCP/MVSCP data 249
  reserved partition 87
  reset function key 52
  reset source configuration sysplex-wide 210
  RESOURCE statement 271
  restricting partition access for devices 124
  resume activation sysplex-wide 210
  return code, migration 258
  RIGHT command 48
  roadmap, migration 11
  RoCE 91
S
  save
    switch configuration 165
  SAVE command 233, 234
  SAVE command, CTC connection 143
  saved switch file 162
  scaling factor for graphical reports 21
  scenario
    multi-user access 134
  scrolling 48
  SCTC 139
  SE
  working with CPC images 217
  search order at IPL 224
  searching data bases 424
  security considerations 331, 336
  selection markers 51
  selection methods in lists 49
  sending an IODF 36
  sending to IBM
    reader comments xxxi
  sensing 10, 367
  sequence of migration 249
  sequence to define a configuration 66
  serial number
    control unit 118
    device 132
    processor 80
    switch 151
  serial number for device 122
  Server Time Protocol 455
  Server Time Protocol (STP) link 106
  setting up HCD 13
  severity of messages 143
  shared channels, CTC connection 139
  shared operation mode 95
  sharing IODFs 30, 46, 335
  shortcut keys 439
  showing parameter/feature definitions 131
SHOWIODF command 35
SHOWMSG ACTIVATE command 206
SHOWMSG command 416
single IODF 30
single point of control 4, 207
single point of failure xxxvii
single selection lists 49
single switch activation 164
SMP processor 455
SMP processors’
term definition 74
SMS considerations 338
SNA address 76
software only changes allowed 206
solving migration errors 293
space allocation 29
spanned channel paths 95
spanned operation mode 95
specifying
input data sets for migration 256
IODF, dialog 28
split screen 338
SPOF xxxvii, 203
SS (subchannel set) 123
SS-related definitions for devices 123
stand-alone CTC adapter 139
stand-alone IOCP 194
standard DD names 329
standard profile keywords 17
starting
HCD 16
migrating 256
the dialog, batch 300
status of configuration 209
STP 455
STP link 106
subchannel set
glossary definition 456
summary of changes xxxii–xxxiv
summary reports
CHID function 350
PCIe function 348
support element
working with CPC images 217
support level
online description 75
provided functions 75
supported hardware 241
supported hardware report 369
supported migration paths 11
surrogate user ID
for exporting IODFs 38
SWCONF statement 268
SWITCH (continued)
deleting 153
disabled marker 157
dynamic connection 145
dynamic switch 145
entry switch 145
graphical report 228
matrix, default 160
migrating 162
migration enhancement 266
moving ports 152
port matrix 145
port range 150
possible connections 145
priming, prerequisites 8
priming, serial number 151
report, example 360
supported by system 243
SWITCH statement 266
textual report, description 226
validation 148
working with 145
switch configuration
activating 163
changing 150
changing ID 160
compare report, example 398
defining 158
definition 145
deleting 161
generate matrix 160
migrating 162
migration enhancement 268
report, example 361
save 165
select other 157
SWCONF statement 268
Switch Configuration Compare Report 397
switch IOCDS for next POR 187, 190, 222
switch IOCDS for next POR, sysplex-wide 211, 223
SWITCH keyword 145
switch port
priming, name and connection 155
SWITCH statement 266
symptom table 401
syntax diagrams
how to read xxvii
SYS1.LOGREC record 403
SYS1.SAMPLIB 338
sysplex 207, 456
sysplex couple data set 208
sysplex member list 207
sysplex, support 10
system abend code
‘00F’ 402
other than ‘00F’ 403
system names 208

T
target IODF 167, 176
TCP/IP definitions
IPv6 433
termination
termination (continued)
of initialization 409
of migration 258
test an activation sysplex-wide 209
test help panel 405
textual configuration report, how to print 225
textual configuration reports, examples 347
timing-only link 106
title line 47
Tivoli System Automation
TSA xxxvii
token 195
token, esoteric 264
TOP command 48
TRACE command 419
TRACE command and HCM 422
TRACE command via HCD profile 422
trace data set 422
trace data set allocation 437
trace facility 417, 437
trademarks 447
transfer of IODF to another location or system 424
transferring partitions 88
transmit a configuration package
problem determination 412
TSA
Tivoli System Automation xxxvii
type of channel path, changing 108
typing over existing data 52
U
UIM
library name 20
list of installed ones 246
problem determination 410
use by HCD 8
unattended export 36
unattended fast-path mode 167
uninstalled ports 157
unit address range 115
UNITNAME statement, esoteric 264
UNITNAME statement, generic 265
unnumbered multiple selection lists 50
update access 332
update CTC connections 83
updating parts through migration 283
upgrade
IODF, batch 302
IODF, dialog 38
usage type 287
user authentication
export IODF
sending user ID and PW 37
using surrogat user ID 37
user interface
ISPF 439
TSO/E 439
utility functions, batch 299
V
V5 IODF 34, 39
validated work IODF 198, 456
validation
during build production IODF 184
during migration 258
rules for migration 250
switch configuration data 148
what HCD does 3
verify CTC connection 138
verify your definitions 229
verifying configuration
against local system 201
against remote system 201
verifying configuration, prerequisites 8
view graphically 229
View I/O Definition File Information panel 35
viewing
activity log 240
CF control unit and devices 138
configuration data 63
coupling facility information 138
currently accessed IODF 35
destination channel path definition 138
graphical reports 231
IODF used for last IPL 33, 203
logical control units 138
messages 209
next IODF processor 190
object definitions 137
source channel path definition 138
VIO (virtual input/output) 456
VM
build HCPRIO input data set, batch 310
build OS configuration data set 200
considerations 339
console report, example 365
device detail report, example 365
device report, example 364
load UIMs 21
migration considerations 251
VM guest, sysplex-wide activate 208
VOLSER, other data sets 19
volume serial number, IODF 29
VSAM data set, initialize 301
W
wait state 404
wildcard processing, example 61
work area 47
work IODF
build with batch 306
format of 27
how to specify 27
working with
channel path 95
consoles 133
control units 112
devices 119
EDTs 70
esoterics 72
generics 71
operating system configuration 67
partitions 85
processors 74
working with (continued)

switches 145
world-wide panel names generation 200
write IOCDS 187
write protection, enable and disable 190
WWPN Prediction Tool
  FCP SAN configuration template file 200

X

XMP processor 457
XMP processors
  term definition 74

Z

z/OS discovery and I/O Autoconfiguration
  zDAC xxxvii
zEDC-Express 91
zooming graphical reports 232