The Data Science Process

Pulong Lin
Big Data University Leader & Data Scientist
IBM
pulong@ca.ibm.com
“Every day, we create 2.5 quintillion bytes of data — so much that 90% of the data in the world today has been created in the last two years alone.”
Data science

The interest in data science

• Solve problems and answer questions using data
• Goal to improve future outcomes

What is the data science process?
CRISP-DM Methodology diagram

- Business Understanding
- Analytic Approach
- Data Requirements
- Data Collection
- Data Understanding
- Evaluation
- Deployment
- Feedback
- Modeling
- Data Preparation

Cross Industry Standard Process for Data Mining
Every project begins with **business understanding**.

- Project objective?
- Business sponsors play the most critical role
- What are we trying to do – what is the goal?
- How do you define “success” and how can you measure it?
1. Business understanding

Traffic:

Problem: Traffic congestion wastes time and money

Clear question: How can we optimize traffic light duration using data on traffic patterns, weather, and pedestrian traffic?

Measurable outcomes:
- % decrease in commute time
- % decrease in length/duration of traffic jams
2. Analytic Approach

• Express problem in context of statistical and machine learning techniques
 • Regression:
 • “Predicting revenue in the next quarter?”
 • Classification:
 • “Does this patient have cancer A, cancer B, or are they healthy?”
 • Clustering:
 • “Are there groups of users that seem to behave similarly to each other?”
 • Recommendation/Personalization:
 • “How can I target discounts to specific customers?”
 • Outlier Detection
Statistical / machine learning technique(s)

• Linear regression
• Logistic regression
• Clustering
 • K-means
 • Hierarchical
 • Density-based
• Classification Trees
• Random Forests
• Neural networks
• Text mining (natural language processing)
• Principal component analysis
• Support Vector Machines
• Hidden Markov Models
• ...
The chosen analytic approach determines the **data requirements**.
- Content, formats, representations

Initial data collection is performed.
- Available Data?
- Obtain data?
- Revise data requirements or collect more data?

Then **data understanding** is gained.
- Initial insights about data
- Descriptive statistics and visualization
- Additional data collection to fill gaps, if needed
#1 What can you tell me about this data?
#2 What can you tell me about this data?
#3 What can you tell me about this data?
#4 What can you tell me about this data?
Importance of Visualization

Same properties:
mean(x) = 9
mean(y) = 7.5
y = 3.00 + 0.500x
corr(x,y) = 0.816

Anscombe's Quartet
CRISP-DM Methodology diagram
Data preparation

- **Data preparation** encompasses all activities to construct and clean the data set.
 - Data cleaning
 - Missing or invalid values
 - Eliminating duplicate rows
 - Formatting properly
 - Combining multiple data sources
 - Transforming data
 - Feature engineering
 - Text analysis
- Accelerate data preparation by automating common steps
- Arguably the most time-consuming step
- “80% of the entire DS process is in data cleaning and preparation”
Modeling

- **Modeling:**
 - Developing predictive or descriptive models
 - May try using multiple algorithms

- Highly iterative process
Example: Clustering

Group similar cuisines together into k number of clusters.
Example: Clustering

Group similar cuisines together into k number of clusters.
Example: Clustering

- **Cluster A**
 - Age: 18, Sex: M, BMI: 23, Exercise: Frequent, Hobbies: Golf, ...
 - Age: 28, Sex: M, BMI: 23, Exercise: Normal, Hobbies: Softball, ...
 - Age: 15, Sex: M, BMI: 22, Exercise: Frequent, Hobbies: Golf, ...

- **Cluster B**
 - Age: 45, Sex: F, BMI: 28, Exercise: Frequent, Hobbies: Baseball, ...
 - Age: 30, Sex: F, BMI: 25, Exercise: Normal, Hobbies: Golf, ...

- **Cluster C**
 - Age: 83, Sex: F, BMI: 25, Exercise: Sedentary, Hobbies: Gymnastics, ...

Model
Example: Classification

[Age: 32, Sex: M, BMI: 23, Exercise: Frequent, ... , Condition: Disorder 1]

[Age: 45, Sex: F, BMI: 28, Exercise: Frequent, ... , Condition: Healthy]

[Age: 63, Sex: F, BMI: 21, Exercise: Sedentary, ... , Condition: Disorder 2]

[Age: 48, Sex: M, BMI: 23, Exercise: Sedentary, ... , Condition: ________]
Model evaluation

- Model **evaluation** is performed during model development and before model deployment.
 - Understand the model’s quality
 - Ensure that it properly addresses the business problem

- Diagnostic measures
 - Suitable to the modeling technique used
 - Training/Testing set
 - Refine model as needed

- Statistical significance tests
Deployment and feedback

- Once finalized, the model is **deployed** into a production environment.
 - May start in a limited / test environment
 - Involves other roles:
 - Solution owner
 - Marketing
 - Application developers
 - IT administration

- Getting **Feedback**:
 - How well did the model perform?
 - Iterative process for model refinement and redeployment
 - A/B testing

Big Data University:
- Inactive -> Active
CRISP-DM Methodology diagram
“All models are wrong but some are useful” – George Box, Statistician
Suicides by hanging, strangulation and suffocation
Variable #503 correlates with Suicides by hanging, strangulation and suffocation
Variable #503 correlates with Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

Data sources: U.S. Office of Management and Budget and Centers for Disease Control & Prevention
US spending on science, space, and technology correlates with Suicides by hanging, strangulation and suffocation

Correlation: 99.79% (r=0.99789126)

Data sources: U.S. Office of Management and Budget and Centers for Disease Control & Prevention

tylervigen.com
Learning More About Data Science

Where can you learn more about data science?
WHAT IS DATA SCIENCE? (2:37)

WHAT IS DATA SCIENCE?

Polong Lin successfully completed, received a passing grade, and was awarded a Big Data University Certificate of Completion in Data Science 101.

NOVEMBER 9, 2016 | DS0101EN CERTIFICATE
BIG DATA UNIVERSITY
Data Science Methodology

In this course you'll learn how data science is practiced from start to end. This course is a must-know for aspiring data scientists as it provides the strategic framework to all data science problems.

Enroll

ABOUT THIS COURSE
Learn how data scientists think!

- Learn the major steps involved in tackling a data science problem.
- Learn the major steps involved in practicing data science, with interesting real-world examples at each step: from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment.

COURSE SYLLABUS

- Lesson 1: Introduction to Data Science Methodology
- Lesson 2: Business Understanding
- Lesson 3: Analytic Approach
- Lesson 4: Data Compilation
- Lesson 5: Data Preparation
- Lesson 6: Data Modeling
- Lesson 7: Model Evaluation
- Lesson 8: Model Deployment and Feedback

GENERAL INFORMATION

- This course is free.
Free courses!

- Data Science
- Big Data
- Data Engineering

Earn badges!

Learn anytime!

For your organizations

- We can create dedicated portals for your employees to gain skills in data science