
Tivoli Netcool Supports
Guide to

Production Triggers
by

Jim Hutchinson
Document release: 2.0

Supports Guide to Production Triggers

Table of Contents
1Introduction...2

1.1Overview..2
1.2Concepts..2
1.2.1Naming...2
1.2.2New Tables...2
1.2.3SQL statements..3

2Connection Management...4

2.1Object Server Connection Overview...4
2.2Object Server Connection Issues..4
2.3Example Triggers..5
2.3.1nc_rogue_clients..5
2.3.2nc_drop_unknown_connections...5
2.3.3nc_drop_all_unknown_connections...5

3Temporal Trigger Management...6

3.1Temporal Trigger Monitoring...6
3.1.1Design Overview..7
3.1.2Temporal Trigger Monitor Example Design..8

4Monitoring Dynamic Tables...9

4.1Adding a custom table...9

5Historical Gateway Resynchronisation..10

6Trigger Installation...11

6.1Overview..11
6.2Systems management triggers..12

IBM Copyright 2014 1

Supports Guide to Production Triggers

1 Introduction

1.1 Overview

This document was written to highlight the types of custom triggers that are required to support a production object
server. There are two main groups of triggers discussed;

 Object Server Connection Management

 Temporal Trigger Management

 Monitoring Dynamic Tables

 Historical Gateway Resynchronisation

The triggers provided in the SQL scripts are examples triggers. It is expected that the Netcool/OMNIbus systems
administrator will customise the triggers to meet the systems specific requirements.

1.2 Concepts

1.2.1 Naming

Trigger naming is important and if planned will improve system administration. Trigger names should contain unique
prefixes, so that custom triggers are easy to distinguish from other triggers. It is best to create custom SQL files for
use with nco_dbinit, with prefixes added to the standard triggers and procedures, to aid identification. Customisation
is therefore made apparent which is useful when upgrading or when triggers/procedures need to be migrated
between systems using nco_confpack. If unique prefix identifiers are used in the trigger/procedure names, sorting
triggers in nco_config [Administrator] using their name allows them to be identified as customised triggers, or
belonging to a specific trigger group without trigger group sorting.

e.g.

v721_generic_clear – Netcool/OMNIbus v7.2.1 Generic Clear trigger
v721_primary – Primary Object Server only trigger group
my_generic_clear – Custom Generic Clear trigger
my_triggers – Customised trigger group
test_event_suppression – Test event suppression trigger
test_triggers – Test trigger group

1.2.2 New Tables

New tables should be held within a new database, so that they are easily distinguishable from the default tables.

Any new table names should be descriptive.

All new tables that have data insert statements used against them need to have a table specific deduplication
trigger.

IBM Copyright 2014 2

Supports Guide to Production Triggers
1.2.3 SQL statements

Though comments can be made in triggers, these need to be terse as there is a limitation on the number of
characters stored within triggers. Therefore keeping comments to a minimum whilst making the SQL statements
readable is the best method to ensure triggers are maintainable. There is a comment/description field that can be
used to supplement trigger in-line annotations.

The SQL code should be concise. The ‘where’ clause should be used to filter data, such that the data being acted
upon is the smallest possible sub-set of the data within the object server.

The use of local variables should be kept to a minimum. Variables require initialisation at the start of the SQL
statements, as well as when the data is being specifically set.

For temporal triggers, it is important to choose timing values that are staggered, using odd and prime numbers
around the precise periodicity will achieve better performance than all the triggers running at the same periodicity or
periodicities that are factors of each other.

Triggers must never be recursive and should not act upon large portions of the object server’s data.

Selected data should be minimised as the temporary space used to hold this data is limited and is not presently
expandable. This is because the object server is designed to be light weight. Processing large text fields takes a lot
more time than integer key fields, such as Serial. Using ‘via Identifier’ is useful, although only performance effective
where Identifier is a light weight value, rather than a large string, which uses up temporary storage. The object
server reports ‘No Space’ when the temporary storage limit is reached, which results in object server failure.

IBM Copyright 2014 3

Supports Guide to Production Triggers

2 Connection Management

2.1 Object Server Connection Overview

The Object Server is limited to the number of connections it allows through the operating system and property
MaxConnections. There is also a hard coded default of 512 connections allowed, for object servers before
Netcool/OMNIbus 7.3.0. For UNIX the number of open files should be set to at least twice the value of the
MaxConnections property (e.g. 1024). The open files size is best set as powers of two;

e.g. 1024, 2048, 4096 etc.

and defined in the ‘nco’ start-up script;

e.g.
vi /etc/init.d/nco
#! /bin/sh
ulimit –n 2048
:wq

2.2 Object Server Connection Issues

There are various reasons why connections can become a problem for an object server. These range from security,
through to an excessive usage of the systems resources. Typically desktop clients may become a problem in a
system using the multi-tier Architecture, due to the limitation of the number of allowed connections. This means that
there is a requirement to manage which clients are allowed to connect to a production object server.

Additionally, in a mixed end-user environment, specific object servers may be allocated to specific users, resulting
in the need to ensure only machines that are allowed to connect to an object server can connect.

The two main types of trigger used to handle connections are signal and temporal. The signal trigger can
disconnect a client immediately, while a temporal trigger is periodic, allowing the client connection to be closed
within a given maximum time period. The trigger type is used, depends upon the security requirements of the
system.

IBM Copyright 2014 4

Supports Guide to Production Triggers

2.3 Example Triggers

The example connection management triggers use the trigger group nc_production_triggers. Along with the
tables nc_triggers.allowed_applications and nc_triggers.allowed_hosts. These tables are used to
hold the allowed ‘AppName’ and ‘HostName’ fields, whose column values are found within the catalog.connections
table, while the allowed connection is connected to the object server. The field strings are defined by the connecting
client’s and may vary from client to client. Therefore it is important to ensure that the correct syntax is used (FQDN,
hostname, etc.).

2.3.1 nc_rogue_clients

The nc_rogue_clients trigger uses the statistics gathered by the object server to deem that a client should be
disconnected. Using the data available in the catalog.profiles table, the trigger disconnects clients whose
PeriodSQLTime exceeds 20 cycles. This is effectively 33% of the cpu resources available to the object server.
Additional clauses can be added to allow other clients such as ‘GATEWAY’s to use more resources as required.

2.3.2 nc_drop_unknown_connections

The nc_drop_unknown_connections trigger is a temporal trigger that disconnects clients based in tables that
define which client connections are allowed to connect to the object server. Any client connection that is not defined
within these tables is disconnected.

2.3.3 nc_drop_all_unknown_connections

The nc_drop_all_unknown_connections is a signal trigger that checks to see if the client attempting to connect
to the object server is allowed. It uses the same tables as the nc_drop_unknown_connections trigger, and is a
more aggressive replacement for this temporal trigger. In the event of the allowed tables becoming corrupted, the
object server would need to be restarted with all the triggers inactive, so that the system could be repaired.

IBM Copyright 2014 5

Supports Guide to Production Triggers

3 Temporal Trigger Management

3.1 Temporal Trigger Monitoring

Temporal triggers can overload a system when an unexpected number of events are seen in the object server, or in
the table being acted upon. There are many ways to ensure that this situation is avoided and dealt with.

One way is to prevent the temporal trigger from being run if it is already running;

Through the use of a wrapper trigger, it is possible to load a system to maximum capacity without causing it to fail
completely. Although, the system is processing at its maximum load, it should remain usable enough to allow the
situation to be monitored and administered until the temporal triggers revert to their normal loads.

IBM Copyright 2014 6

Supports Guide to Production Triggers
3.1.1 Design Overview

Consider three temporal triggers, that are normally timed to run outside each others runtimes. Should one trigger
exceed its normal runtime, it affects other triggers, and potentially its own next run. When this occurs the system
reaches a state whereby it may become unrecoverable, or unusable without deactivating the affected trigger[s].

If the triggers are monitored, and prevented from being run if they have yet to complete their task, the system is
kept within its limitations.

This temporal trigger monitoring model can be extended to deal with triggers as groups, though this is not dealt with
in the example SQL provided within this text. Such configuration would check to see if a group of triggers had
completed their task, allowing dependent triggers to be managed.

IBM Copyright 2014 7

trigger#1

trigger#3

trigger#1

trigger#3

trigger#1

trigger#2

trigger#3

trigger#1

trigger#2

trigger#3

trigger#1

trigger#3

trigger#1

trigger#3

trigger#2

trigger#2

trigger#1

trigger#2

trigger#3

trigger#2

Supports Guide to Production Triggers

3.1.2 Temporal Trigger Monitor Example Design

The example provided uses a table called nc_triggers.monitor to store the list of temporal triggers using the
wrapper trigger code. This table is populated at start-up using another trigger which the system administrator must
maintain called nc_trigger_system_startup. In the example the table is populate with the name of the template
wrapper trigger nc_generic_clear.

The table is populated using insert statements;
e.g.
insert into nc_triggers.monitor values ('nc_generic_clear', false);

The wrapper trigger nc_generic_clear then checks the nc_triggers.monitor table to see if the trigger is
already active. With active being defined through the Boolean field Active. If the trigger is not active, the trigger sets
the Active flag to ‘true’ and continues to process the rest of the trigger code, until this is completed. After which point
the trigger sets the Active field back to ‘false’. Therefore allowing the trigger to run on the next invocation. If the
trigger is still defined as Active when the trigger is run next, then the trigger is exited.

IBM Copyright 2014 8

Supports Guide to Production Triggers

4 Monitoring Dynamic Tables
Within the default object server there are four main dynamic tables;

• alerts.status
• alerts.journal
• alerts.details
• master.stats

These tables are managed using ‘clean’ triggers that can be disabled. If this occurs there is a risk that the volume of
data will result in an object server outage. It is possible to be alerted of this situation using a set of monitor triggers
and a row count table that defines the maximum row count for each table.

The default settings for the tables are;
• alerts.status < 50k
• alerts.journal < 100k
• alerts.details = 0
• master.stats < 1k

The default action is to insert a critical event into alerts.status. Other actions can be added to the table specific
trigger as required.

4.1 Adding a custom table
If custom tables need to be monitored;

1. Add a definition of the custom table to the table nc_rowcount_triggers.dynamic_tables;

 TableName ‘custom.mytable’
 TimeStamp 1289831823
 MaxRowCount 100000
 RowCount 0

2. Create [copy] a new temporal trigger to monitor the table with the syntax nc_rowcount_<tablename> in the
nc_rowcount_triggers trigger group.

3. Modify the nc_rowcount_mytable trigger as required

IBM Copyright 2014 9

Supports Guide to Production Triggers

5 Historical Gateway Resynchronisation

Historical gateways can cause a sudden increase in load on the object server during Synchronisation on start-up. In
addition there is a risk that events are lost whilst the historical gateway is down, if a historical gateway filter is used.
In order to workaround these issues it is possible to set the gateways filter flag to a value that prevents any
synchronisation on start-up. Once the historical gateway is running, blocks of events are forwarded to the historical
database through the setting of the gateways filter flag.

IBM Copyright 2014 10

Supports Guide to Production Triggers

6 Trigger Installation

6.1 Overview

The triggers discussed in this document are provided as working examples.

System management triggers [triggers_r#]

These can be applied to a default object server created using nco_dbinit and applied using nco_config or nco_sql. It
includes a set of SQL files and a README.txt file describing how to apply and use the files provided.

IBM Copyright 2014 11

Supports Guide to Production Triggers

6.2 Systems management triggers

 Determine the hosts you require to access the object server;

e.g. Connect the require clients to the object server and use users to determine the correct syntax

 Update the rogue_client_tools.sql script to reflect these requirements, before applying the triggers;
unzip triggers_r1_0.zip
cd triggers_r1_0
vi rogue_client_tools.sql
-- standard hosts to allow
insert into nc_triggers.allowed_hosts values ('a-host', true);
insert into nc_triggers.allowed_hosts values ('a-host.domainname.com', true);
insert into nc_triggers.allowed_hosts values ('b-host', true);
insert into nc_triggers.allowed_hosts values ('b-host.domainname.com', true);
go
-- standard applications to allow
insert into nc_triggers.allowed_applications values ('Administrator', true);
insert into nc_triggers.allowed_applications values ('isql', true);
insert into nc_triggers.allowed_applications values ('GATEWAY', true);
go
:wq

cat temporal_trigger_monitor.sql | \
nco_sql –server NCOMS –user root –password ‘’

cat rogue_client_tools.sql | \
nco_sql –server NCOMS –user root –password ‘’

 The trigger groups are installed disabled, as is the nc_drop_unknown_connections trigger. These need to
be enabled after first visually checking the installation using nco_config, as required

 To fallback, start the object server without the triggers running use the –autoenabled option, and disable the
triggers or edit the control tables as required

nco_objserv –name NCOMS –autoenabled FALSE

 To remove the examples use the remove_triggers.sql script
cat rogue_remove_triggers.sql | \

nco_sql –server NCOMS –user root –password ‘’

IBM Copyright 2014 12

	1 Introduction
	1.1 Overview
	1.2 Concepts
	1.2.1 Naming
	1.2.2 New Tables
	1.2.3 SQL statements

	2 Connection Management
	2.1 Object Server Connection Overview
	2.2 Object Server Connection Issues
	2.3 Example Triggers
	2.3.1 nc_rogue_clients
	2.3.2 nc_drop_unknown_connections
	2.3.3 nc_drop_all_unknown_connections

	3 Temporal Trigger Management
	3.1 Temporal Trigger Monitoring
	3.1.1 Design Overview
	3.1.2 Temporal Trigger Monitor Example Design

	4 Monitoring Dynamic Tables
	4.1 Adding a custom table

	5 Historical Gateway Resynchronisation
	6 Trigger Installation
	6.1 Overview
	6.2 Systems management triggers

