

IBM Enterprise2013 pST587 - Optimizing IBM Tivoli Storage Manager Performance on AIX Grover Davidson – grover@us.ibm.com

Enterprise2013

© 2013 IBM Corporation

Topics

- Tivoli Storage Manager (TSM)
- IBM ATape Device Driver
- Virtual Memory Manager (VMM)
- Memory Pages and Pinning
- Problem Determination
- Making Changes

Optimal TSM Performance

- TSM prior to version 6.1 uses a proprietary database.
- Starting with release 6.1, TSM uses a DB2 database.
- Essential configuration and tuning is required for:
 - AIX file system
 - –Disk subsystems for TSM database, recovery logs and storage pools
 - TSM domain policies (proper data layout)DB2
- •These are outside the scope of this document.

VMM and ATape

- Atape is the IBM Advanced Tape Driver.
- ATape reads/writes directly to hardware and virtual adapters.
- Because these buffers will be used with an adapter, the memory must be pinned. This applies to both physical and virtual adapters.
- Pinning is done by acquiring the SCB (VMM Segment Control Block) lock and then pinning 1 page. The lock is released after each page is pinned and acquired again.
- A typical TSM buffer size for a tape drive is 256K and the memory comes from TSM data space. The buffer pinned/unpinned on each IO call.
 - –Pinning 256K of memory on 4k pages requires 64 separate cycles of acquiring the SCB lock, pin the page, and release the SCB lock.
 - -If 64K pages are used, 4 cycles are required.
 - -If 16M pages are used, only 1 cycle is needed.

Page size support

Page size	Pages to address 256k of memory	Processor requirements
4K	64	Supported on all platforms
64K	4	Supported on Power5+/Power6/ Power7
16M	1	Supported on Power4 or higher

VMM Segment Locking and Memory Pinning

- When 2 processes are trying to pin pages, they are normally using 2 different segments for the process data segment and as a result for 2 processes there is no issue with VMM segment locking.
- Shared memory is the exception since the same segment can be used by more than 1 process.
- When several threads in a single process are pinning pages for buffers, the buffers are usually in the same memory segment.
- As a result, lock contention only occurs when multiple threads in a single process are pinning data.
- TSM processes are multithreaded and use one thread per tape device.

Pinning Memory

Pseudo code for pinning memory:

while	(pages to pin)	
do		
	lock VMM segment	
	pin page	
	unlock VMM segment	
done		

The amount of memory pinned on each pass is defined by the page size.

The lock/unlock on a per page basis is done to allow fair access for other threads to the VMM segment lock.

For a single thread, there is not real lock contention.

The time to acquire and release the VMM lock is not significant without lock contention.

2 Threads pinning memory

With 2 threads in the same process, we now have contention for the VMM lock.

Each thread will take turns waiting to acquire the lock while the other thread pins a page. As more threads perform this, the wait time gets longer.

2 threads pinning memory shows us the lock contention:

thread 1	thread 2
lock VMM segment	
pin page	wait on VMM segment lock
unlock VMM segment	
	Lock VMM segment
wait on VMM segment lock	Pin page
	Unlock VMM segment
lock VMM segment	
	wait on VMM segment lock

After the IO is completed by ATape the buffers also need to be unpinned using the same logic.

IBM

Data Collection

There are several types of data used for this analysis. The easiest way to collect what is needed is to run perfpmr: perfpmr.sh 600

vmstat data is located in the monitor.int file.

symon data is in 'symon.before' and 'symon.after' files.

splat data takes 2 commands to generate. First we merge sort the lock trace files with:

trcrpt –r –C all trace.raw.lock > trace.lock.tr

And then generate splat output:

splat –i trace.lock.tr –n trace.syms –da –p –o splat.out

If your system is NOT SMT capable, you should not use the '-p' flag above.

The formatted lock trace file is generated with:

trcrpt –*x* –*t trace.fmt* –*n trace.syms* –O *tid=on,cpu=on,PURR=on* –*o trace.lock.int* \ *trace.lock.tr*

perfpmr can be obtained from http://ftp.software.ibm.com/aix/tools/perftools/perfpmr.

Please download the correct version for your level of AIX EACH TIME YOU USE IT!

Perfpmr tool is updated frequently (sometimes daily) as changes are made to it.

How 4k pages look in vmstat

• vmstat will show a high %sys time even when the system is relatively idle:

kth	r		memory	page	faults				сри		
r 21 16 22 23 20 22 21	b 2 2 2 2 2 2 2 1	p 0 1 0 1 0 0 1	avm 1638632 1638622 1638766 1638783 1638881 1638888 1638878	fre fi 2317759 15364 2317928 16079 2317458 13969 2317416 15152 2317222 14857 2316928 13062 2317026 16012	fo 9 18 10 7 9 9 7	in 3940 4048 3629 4419 4074 4030 4698	sy cs 44120 26796 38769 27861 36405 25692 42391 30054 45549 27943 37084 26850 44032 31096	us sy 4 32 4 33 4 32 4 34 4 33 4 33 4 33 4 34	id wa 62 1 62 1 64 1 61 1 62 1 63 1 63 1	pc 2.22 2.24 2.16 2.31 2.25 2.23 2.33	eC 37.0 37.3 36.0 38.5 37.5 37.2 38.9
21 19 18	1 2 2	0 1	1638888 1638893 1638914	2316994 14750 2316895 14218 2316519 16080	19 4 9	4222 3809 4228	46657 28350 37162 26646 41577 29581	4 33 4 33 4 33	62 1 62 1 61 2	2 . 28 2 . 23 2 . 29	37.9 37.1 38.1

- Note that %sys is several times that of %usr. This indicates we are not doing much work on behalf of the application.
- These are 10 second intervals.
- Vmstat data is near the bottom of the monitor.int file collected by perfpmr.

What tprof shows

If tprof data is collected and reviewed, we see lots of system time in the application (user + shared) and the kernel time shows us the time is in locking routines:

Process	Freq ====	Total	Kernel	User	Shared	Other	Java ====
/usr/bin/dsmserv wait /usr/bin/dsmc /usr/java14/jre/bin/java 11 Total % For All Processes (KEF	137 24 6 25	81.31 10.48 7.35 0.20 91.03		5.45 0.00 0.09 0.00		0.00 0.00 0.00 0.03	0.00 0.00 0.00 0.00
Subroutine			90	Sour	ce		
<pre>.unlock_enable_mem h_cede_end_point h_put_tce_end_point pcs_glue .enable</pre>			8.0 4.3 2.9	8 64/1 4 hcal 6 hcal 4 vmvc 1 misc	ls.s ls.s s.s		

- The kernel time for dsmserv is 74.91% of the total 81.31% CPU time used.
- The 'unlock...' routine in the kernel shows that time is being spent in lock related code.

SPLAT (SPin Lock Analysis Tool) results

No one lock will stand out as an issue:

Т	Acc	lui-	Wa	it						
	У	sitions		or			Locks or	Perc	ent Holdt	ime
	р	or		Trans-			Passes	Real	Real	Comb
Lock Name, Class, or Address	е	Passes	Spins	form	%Miss	%Total	/ CSec	CPU	Elapse	Spin
* * * * * * * * * * * * * * * * * * * *	* *	******	*****	*****	* * * * * * *	*******	* * * * * * * * *	******	******	*******
F10007165096B6F8	D	28925	3314	0	10.2795	14.5338	69203.267	4.9881	8.4728	0.6213
F1000716509DDF08	D	59	10	0	14.4928	0.0296	141.158	4.2299	8.1282	0.3849
F1000716509DE388	D	75	17	1	18.4783	0.0377	179.438	5.8068	10.7485	0.3729
F1000716509E1A18	D	83	14	0	14.4330	0.0417	198.578	5.0160	9.3680	0.3403
F100071650963FB8	D	5330	1278	0	19.3402	2.6781	12752.063	0.9628	1.6130	0.2162
F1000716509E00C8	D	29	7	1	19.4444	0.0146	69.383	1.3904	2.8325	0.1054
F100060046ED8600	D	1727	60	0	3.3576	0.8678	4131.860	0.9865	1.6686	0.0571
F100060046ED8780	D	1985	52	0	2.5528	0.9974	4749.127	1.0927	1.8385	0.0554
F100060046ED8140	D	1525	49	0	3.1131	0.7663	3648.573	0.8073	1.3881	0.0425
F100060046ED8180	D	2381	78	0	3.1720	1.1964	5696.559	0.7070	1.1961	0.0293

No single lock has a high Combined Spin time. Spin time is a measurement of how long AIX spins continuously trying to acquire the lock.

SPLAT (Simple Performance Lock Analysis Tool) results

Checking the details of one of the locks listed will show locking occurred with interrupts disabled:

	Loc	k Activity	(mSecs)	- Int	erru	ıpts	Disab	led			
SIMPLE ++++++ LOCK w/ KRLOCK SPIN KRLOCK LOCK KRLOCK SPIN TRANSFORM	Count +++++ 28925 0 3314 0 0	++++++++ 0.0 0.0 0.0 0.0 0.0	nimum -+++++ +- 000125 000000 000125 000000 000000 000000	++++++++++++++++++++++++++++++++++++++	<pre>ximum ++++++ 004750 000000 007781 000000 000000 000000 000000 000000</pre>	+++++	Average ++++++++ 0.000721 0.000000 0.000783 0.000000 0.000000 0.000000	2	Total ++++++ 0.84871 0.00000 2.59684 0.00000 0.00000 0.00000	9 0 4 0 0	
Function Nar pin_seg_ .as_ge	rang		Miss Rate 10.33 6.71	Count	Iransf. Count 0 0	Count	CPU	ent Held Elaps AAAAAA 8.41 0.07	e Spin	Transf	
	qui- ions H 6045 1690 325 6045 6045 6045 1430 1300	Miss Spi Rate Cour 13.88 15.12 9.47 12.42 9.98 6.05 3.96 2.26	nt Coun	sf. Busy t Count 0 0 0 0 0 0 0 0 0 0 0 0	CE CP C C C C C C C C C C C C C C C C C		Held of apse Sp 1.73 0.55 0.11 1.75 1.75 1.74 0.44 0.40	2.99 2.68 2.57 2.48 2.42 1.21 0.84	sf. Pro ~~~ ~~~ 0.00 0.00 0.00 0.00 0.00 0.00 0	cessID ~~~~~ 1011752 1011752 1011752 1011752 1011752 1011752 1011752 1011752	Process Name dsmserv dsmserv dsmserv dsmserv dsmserv dsmserv dsmserv dsmserv

- And show the function acquiring the lock as a pin routine pin_seg_range in this case.
- Interrupts disabled means the thread will not go to sleep and wait for the lock. In kernel mode threads spin on the lock.

Formatted lock trace

Formatted lock trace will show this pattern of missed locks:

Thread ID	Action	Results
7069823	lock:	dlock lock addr=F10007165096B6F8
6860935	lock:	dmiss lock addr=F10007165096B6F8
7069823	unlock:	lock addr=F10007165096B6F8
6860935	lock:	dlock lock addr=F10007165096B6F8
7069823	lock:	dmiss lock addr=F10007165096B6F8
6860935	unlock:	lock addr=F10007165096B6F8 lock
7069823	lock:	dlock lock addr=F10007165096B6F8
6860935	lock:	dmiss lock addr=F10007165096B6F8
7069823	unlock:	lock addr=F10007165096B6F8 lock
6860935	lock:	dlock lock addr=F10007165096B6F8
7069823	lock:	dmiss lock addr=F10007165096B6F8
6860935	unlock:	lock addr=F10007165096B6F8 lock
7069823	lock:	dlock lock addr=F10007165096B6F8
6860935	lock:	dmiss lock addr=F10007165096B6F8
7069823	unlock:	lock addr=F10007165096B6F8 lock
6860935	lock:	dlock lock addr=F10007165096B6F8
7069823	lock:	dmiss lock addr=F10007165096B6F8
6860935	unlock:	lock addr=F10007165096B6F8 lock
7069823	lock:	dlock lock addr=F10007165096B6F8
6860935	lock:	dmiss lock addr=F10007165096B6F8
7069823	unlock:	lock addr=F10007165096B6F8 lock
6860935	lock:	dlock lock addr=F10007165096B6F8
7069823	lock:	dmiss lock addr=F10007165096B6F8
6860935	unlock:	lock addr=F10007165096B6F8 lock
7069823	lock:	dlock lock addr=F10007165096B6F8
6860935	lock:	dmiss lock addr=F10007165096B6F8

Lock is acquired									
Missed the lock and have to wait									
Lock is released									
Waiting thread gets lock									
Fist thread now misses the lock and waits									

Segment information from symon

Svmon -P 999626

Pid Command	Inuse	Pin	Pgsp		1al 64-	bit Mt	hrd	16MB
999626 dsmserv	264607	66591	0	261	710	Y	Y	Ν
PageSize I	Inuse P	in Pg:	sp V	'irtua	٦٦			
	6863 10	<u> </u>		19396				
m 64 KB	138	3	0	13				
Vsid Esid T	ype Descripti	on	PG	ize	Inuse	Pin	Pasn	Virtual
	ork text data		10	s	65536	0	1950	65536
	ork kernel se		vsid=0	_	16	16	Õ	16
	ork text data			S	62072		Ō	62072
	ork text data			S	49695	1	0	49695
	ork text data			S	10355	0	0	10355
38905 - w		-		S	4005	1006	0	4005
3a8777 10 c	lnt text data	BSS heap,		S	2355	0	-	-
		in lv:4106						
	ork shared li			m	133		0	133
	ork shared li			S	1786	0	0	1786
	ork shared li			S	192	0	0	192
	ork shared li			S	158	0 3	0	158
1a08b6 f00000002 w				m	5	3	0	5
	ork private l			S	51	0	0	51
	ork private l			S	33	0	0	33
	ork USLA heap			S	27	0	0	27
	ork private l			S	22	0	0	22
	ork applicati			S	18	0	0	18
	ork shared li		202	S	16	0	0	16
150028 9fffffff c	lnt USLA text	,/uev/nu2:2.	592	S	14	U	_	_

Note that most segments are using small pages (PSize=s). These are 4k pages. 'm' indicates 64k pages and 'L' is for 16MB pages. We do not want segments with multiple page sizes if possible.

SELECTING A PAGE SIZE

If you have a Power4 system, you can only use 16MB pages. 64KB pages are not available on this hardware.

64KB pages are managed by AIX, require actual pin/unpin operations, can be pushed out to paging space in an emergency.

16MB pages are explicitly created, pinned by design, and limited in the quantity. If TSM needs a 16MB page and they are marked a 'mandatory', TSM will fail with a memory error.

16MB pages can be marked as 'use if available but allow other pages if no 16MB pages are available'. This prevents TSM from failing due to a lack of 16MB pages.

64KB pages provide the best performance and maximum flexibility.

16MB pages provide maximum performance but at the price of flexability.

LDR_CNTRL environment variable

- Environment variable to control page sizes used by an application.
- Completely transparent to the application unless 16MB pages are depleted and mandatory.
- 3 Main options to consider:
 - -64K pages only
 - -16MB pages only
 - -16MB pages if available and 64KB pages otherwise
- Because we are optimizing the page sizes, we will also optimize the text, stack and data pages sizes to use 64KB pages.
 - -TEXTPSIZE=64K
 - Use 64KB pages for code.
 - -STACKPSIZĖ=64K
 - Use 64KB pages for the stack.
 - –DATAPSIZE=64K
 - Use 64KB pages for process heap/data.
 - -SHMPSIZE=64K
 - If shared memory is used, use 64KB pages. If LARGE_PAGE_DATA is set

Setting Large Page Usage

- Value name is LARGE_PAGE_DATA
- This is the KEY tunable to prevent lock contention while pinning/unpinning the pages.
- Value of M means mandatory.
 - The value of M makes large pages for heap and data segments mandatory. If the application allocates memory and there are no large pages left, malloc returns ENOMEM.
- Value of Y means use if available
 - Use large pages for data and heap if possible, but if none are available check other LDR_CNTRL variables for guidance and then fall back to default behavior.
 - TSM will not crash due to lack of 16MB pages.
- Do NOT specify DATAPSIZE if LARGE_PAGE_DATA is specified

Assembling LDR_CNTRL

- The first part is fixed (unless Power4 processor is being used):
 - LDR_CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@SHMPSIZE=64K
- Next, choose the option for 16MB pages. Y is the recommended values to prevent TSM crashes due to lack of 16MB pages:
 - LARGE_PAGE_DATA=Y
- Put it all together:

LDR_CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@SHMPSIZE=64K@LARGE_PAGE_DATA=Y

• OR

LDR_CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@SHMPSIZE=64K@DATAPSIZE=64K

- Do not set this in the /etc/environment file! Bad things will happen.
- Do not set this in the general TSM user environment! Bad things will happen.
- The correct place to put this setting is in the TSM startup script.

Determine how many large (16MB) pages we need

- 1. Let dsmserv or dsmsta process run for a week or longer.
- 2. Run 'svmon –P <PID>' and count the number of work segments with 'BSS heap'

	P 2687182 ommand dsmserv		Inu: 4264			in 136	Pgsp 60847
Vsid	Esid	Туре	Desci	riptio	on		PSize
1160816	14	work	text	data	BSS	heap	S
10f080f	12	work	text	data	BSS	heap	S
1110811	13	work	text	data	BSS	heap	S
10b04cb	11	work	text	data	BSS	heap	S
10f082f	15	work	text	data	BSS	heap	S
10c03ec	16	work	text	data	BSS	heap	S
10f0fef	17	work	text	data	BSS	heap	S
1100ef0	18	work	text	data	BSS	heap	S

- 3. The number of pages to start with is the number of segments * 16 + 32 extra pages. This will allow 16 pages for the kernel and some more for growth.
- 4. In this example, we have 8 segments * 16 pages/segment + 32 pages = 128 + 32 = 160 pages as our initial guess.

Configuring large pages

 Configure the number of large pages in AIX by running (assumes 0 large pages already configured):

```
vmo -p -o lgpg_regions=160 -o lgpg_size=16777216
bosboot –a
```

reboot

You should over configure and then reduce the configured pages based on actual usage.

The following messages in the TSM log indicate that you do not have enough large pages configured if 16MB pages are mandatory:

ANR9999D Memory allocation error.

ANR0358E Database initialization failed: sufficient memory is not available.

-Configure more large pages by increasing the lgpg_regions value.

Enabling TSM user to use large pages

If TSM is not running as root, enable the TSM user id to use large pages:

chuser capabilities=CAP_BYPASS_RAC_VMM,\ CAP_PROPAGATE,CAP_NUMA_ATTACH user_id

Where user_id is the user_id TSM is running under.

Without this chuser step, a non-root user will not be able to use large pages.

Failure to do this will prevent TSM from using 16MB pages.

Edit the TSM startup

Then modify the startup file (/usr/tivoli/tsm/server/bin/rc.adsmserv) and change:

dsmsta quiet

To:

LDR_CNTRL=TEXTPSIZE=64K@STACKPSIZE=64K@SHMPSIZE=64K@L ARGE_PAGE_DATA=M dsmsta quiet

NOTE: It may be dsmsta OR dsmserv depending on this being a TSM storage agent or the TSM server.

Restart the server using the startup file!

Verifying things worked

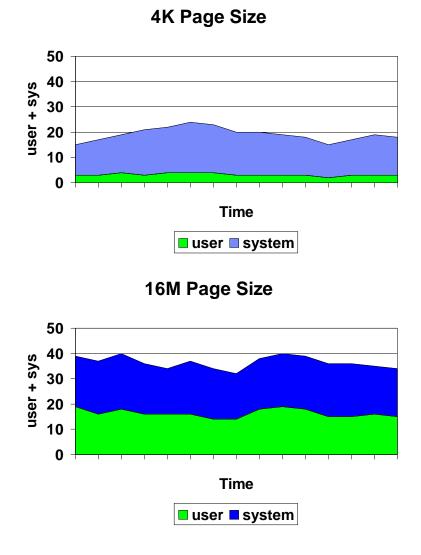
Run 'svmon –P' on the new TSM server process:

Pid 2978016		nd Inuse ta 89962	Pin 76492	Pgsp 0	Virtual 89960	64-bit N	Mthrd Y	16M M			
s Á KB	42 1012	Pin Pgsp 12 0 172 0 18 0	Virtual 40 1012 18								
Vsid 0 ad70ad	0 d		nel segme		g_vsid=0) code_seg			16	Pgsp 0 0	Virtual 16 893	
fff8e6	3	work worl	king stor	age	_	L	2	2	0	2	
1eb19f2 a0a2b9 43925a df415 1486151 89709a		work prod work clnt /dev	king stor cess priv	ate 980		m m s s s	78 37 40 1	0 0 1 12 0	0 0 0 -	78 37 4 40 -	

Note that ESID 3 is now a large segment (PSize=L).

- ALL large segments are added into the Large page counts above including the kernel!
- Ignore any kernel segments listed here.

Case Study of 4k pages vs 16M pages vmstat data


■ 4K pages ■ 16						6M	pag	ges	
u		УY	id	wa		us	sy	id	wa
	3 1	4	64	18		19	20	30	31
	3 1	4	65	18		16	21	30	33
	4 1	.5	61	21		18	22	30	30
	3 1	8	58	21		16	20	34	30
	4 1	.8	56	23		16	18	33	33
	4 2	0	54	22		16	21	33	31
	4 1	9	54	22		14	20	35	31
	3 1	7	59	22		14	18	39	29
	3 1		59	21		18	20	33	29
	3 1	6	62	19		19	21	29	31
	3 1	5	63	18		18	21	29	32
	2 1	3	65	20		15	21	30	34
		4	63	20		15	21	32	33
	-	6	62	19^{-1}		16	$19^{$	35	30
	-	5	63	19		15	19	31	35

Note that although the system time is high in both cases, the user time is x greater with 16MB pages. This shows more real application work is being done.

Comparison of CPU utilization

Please note on the charts that although system time (in blue) is about the same in each of the 2 examples, the user time (in green) is significantly more when using 16MB pages. This clearly shows that the application is able to do more real work. This is the key to improving performance.

IBM

Tprof data with 16M pages

4K page size		16M page size			
Subroutine	00	Subroutine	00		
========	=====	========	=====		
h_cede_end_point	42.91	h_cede_end_point	40.81		
.waitproc_find_run_queue	31.43	.waitproc_find_run_queue	29.07		
.waitproc	14.40	.waitproc	13.86		
.unlock_enable_mem	2.81	.unlock_enable_mem	2.07		
h_put_tce_end_point	1.01	h_put_tce_end_point	1.50		
.umem_move	0.51	.enable	0.44		
.disable_lock	0.31	.umem_move	0.39		
.enable	0.30	.trchook64	0.27		

The small reduction in lock time may seem insignificant, but it has a significant affect on delays in TSM.

IBM

4K page size

1	6M	page	size

	Locks or			Locks or	
	Passes	Comb		Passes	Comb
Lock Name, Class, or Address	/ CSec	Spin	Lock Name, Class, or Address	/ CSec	Spin
* * * * * * * * * * * * * * * * * * * *	*******	******	********	* * * * * * * *	******
F1000F26E0023548	3489.768	0.5757	F1000500002A6580	4641.372	0.0917
F1000500007B8980	8331.833	0.0701	F1000500002D6B40	4416.202	0.0893
F100050000061840	7052.326	0.0637	F1000A0001620288	507.605	0.0085
F1000A000173C288	318.401	0.0428	F1000A1800831178	5046.713	0.0083
F10001004B608380	477.743	0.0149	F1000A1800833178	5078.881	0.0081
F1000A0001734288	275.124	0.0126	F1000F26980B36F8	23.330	0.0080
F100010049C3E380	413.388	0.0082	F10005000015DAA8	4906.026	0.0080
F1000A2000851178	2645.290	0.0033	F1000A000168C288	312.481	0.0066
F1000A2000853178	2742.524	0.0021	F1000A2000853178	3781.589	0.0053
F1000A2027E20288	55.081	0.0013	00000003B5F208	393.783	0.0053

Here we see that 16MB pages get more locks/passes per second and that the average spin times are much lower than when 4K pages are used.

Splat data – Hot functions

16M page size

	Acqui-	Miss	Spin
Function Name	sitions	Rate	Count
~~~~~	~~~~~~	~~~~~	~~~~~
.tcp_input0	11623	11.96	1579
.soereceive	12598	10.10	1416
.in_pcbhashlookup3	11623	6.40	795
.tcp_output	1912	8.87	186
.sosbwait	926	15.89	175
.soereceive	2734	5.10	147
.tcp_slowtimo	1	0.00	0
.tcp_fasttimo	3	0.00	0

	Process	Spin	Miss	Acqui-	
	Name	Count	Rate	sitions	ThreadID
~~~~	~~~~~~	~~~~~	~~~~~	~~~~~~	~~~~~~
	java	4	20.00	16	13762919
	dsmserv	1924	8.95	19565	26148947
		4	20.00	16	26017919
		6	16.67	30	24772947
	dsmserv	3	17.65	14	7995651
	dsmserv	2	11.11	16	9371683
	rm	8	11.76	60	10748371
	smitty	5	21.74	18	24183189
	dsmserv	7	17.07	34	18219479
	dsmserv	2	10.00	18	15925517

The function experiencing lock contention is not the pin routines and we now see that dsmserv is not the only process taking the lock. This is because 16M pages are already pinned and there is not lock contention to pin them.

4K page size

Miss Spin

Acqui-

		negu.	L 1/11	55	OPIN	
Function	Name	sitio	ns Ra	te	Count	
~~~~~~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~ ~	~~~ ~~~	~ ^ ^	~~~~	^
.pi	n_seg_range	e 75	968 25	.18	2556	9
	.xlpin	n 60	040 9	.51	63	5
	.as_get1	h 1	578 12	.58	22	7
	Acqui-	Miss	Spin	Pro	ocess	
ThreadID	sitions	Rate	Count	Nar	ne	
~~~~~~~	~~~~~~	~~~~~	~~~~~	~~~	~~~~~	~~~~
19661287	23465	32.47	11281	dsr	nserv	
16974095	23465	33.32	11727	dsr	nserv	
24052019	5590	13.49	872	dsr	nserv	
25231547	2860	9.84	312	dsr	nserv	
19661039	5525	8.63	522	dsr	nserv	
24379413	13325	6.39	910	dsr	nserv	
17039783	2925	4.91	151	dsr	nserv	
7667765	3504	10.70	420	dsr	nserv	
21037269	2927	7.46	236	dsr	nserv	

IBM

svmon data

4K pag	je size	16M page size			
Pid Command Virtu	al <mark>16MB</mark>	Pid Command Virtual 16MB			
2687182 dsmserv 4560	48 <mark>N</mark> 2	753002 dsmserv 503117 Y			
PageSize Virtua	al	PageSize Virtual			
s 4 KB 4525	12	s 4 KB 12941			
m 64 KB 22	21	m 64 KB 428			
L 16 MB	0	L 16 MB 118			

Note that we see 16M pages change from 'N' (not used) to 'Y'. M would indicates that the application has made 16M page usage Mandatory.

We also see that because 16M pages are in use there is corresponding reduction in 4k pages. This is what is expected.

Svmon page size changes

	4K page size			16M page si	ze	
Vsid	Esid Type	PSize	Vsid	Esid	Туре	PSize
1160816	14 work	S	830bc3	16	work	L
10f080f	12 work	S	8b050b	11	work	L
1110811	13 work	S	910b11	14	work	L
10b04cb	11 work	S	8a0dea	17	work	L
10f082f	15 work	S	900b10	13	work	L
10c03ec	16 work	S	8f0b0f	12	work	L
10f0fef	17 work	S	920b12	15	work	${ m L}$
1100ef0	18 work	S	9f6f7f	18	work	L

Note that the page size has changed from 4K pages(s) to 16M pages(L).

Data movement & CPU usage

 4k pages - 5 seconds long - 2 readers, 5 writers

IOs Thread ID

- 630 16974095
- 96 17039783
- 435 19661039
- 609 19661287
- 562 24052019
- 321 24379413
- 130 25231547
- Each IO is 256K in size.
- Data moved = 2783 * 256K / 5sec = 139MB/sec

- 16MB pages 2.7 seconds long 2 readers, 7 writers
- 855 17564041
- 202 19857621
- 840 21430571
- 205 22217143
- 822 22610359
- 154 24051857
- 87 24248823
- 130 27459717
- 788 6815957
- Each IO is 256K in size.
- Data moved = 4083 * 256k /2.7sec = 378MB/sec

Feedback from Customers who have implemented this change

- Overall CPU consumption for a given task is reduced.
- Since less time is spent spinning on locks, more real work gets done an processor utilization goes up.
- A number of TSM library operations are significantly faster (seconds instead of minutes).
- The number of tape drives that can be driven concurrently is increased.

Notes of Caution

- 16M pages are NOT pageable.
 - Using them incorrectly may drive your system out of memory and result in BAD things including a system crash.
 - First set LARGE_PAGE_DATA=Y to use 16MB pages when possible and 64KB if no 16MB pages are available.
 - Use 64K pages alone if 16M pages become a problem.
- Be sure to monitor the number of pages allocated and actually in use with the 'svmon –G' command.
- These changes will have less impact on systems with a smaller number of tape drives.

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA, WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.