
IBM XL Fortran for Linux, V15.1.5

Getting Started with CUDA Fortran
programming using XL Fortran
for Little Endian Distributions
Version 15.1.5

GI13-3562-01

IBM

IBM XL Fortran for Linux, V15.1.5

Getting Started with CUDA Fortran
programming using XL Fortran
for Little Endian Distributions
Version 15.1.5

GI13-3562-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 23.

First edition

This edition applies to IBM XL Fortran for Linux, V15.1.5 (Program 5765-J10; 5725-C75) and to all subsequent
releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition
for the level of the product.

© Copyright IBM Corporation 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
IBM XL Fortran information ix
Technical support x
How to send your comments x

Chapter 1. Overview of CUDA Fortran
supported by XL Fortran 1

Chapter 2. System prerequisites to
compile CUDA Fortran programs 3

Chapter 3. Compiler flow 5

Chapter 4. Compiling CUDA Fortran
programs. 11
Passing options to the CUDA Toolkit 11

Linking to libraries in the CUDA Toolkit 12
Including object files not compiled with CUDA
Fortran support 12
Specific compiler options and macros. 13

Compiler options for CUDA Fortran compilation 13
Predefined macros for CUDA Fortran support . . 19

Chapter 5. Reference and limitations
for CUDA Fortran support 21

Notices 23
Trademarks 25

Index 27

© Copyright IBM Corp. 2016 iii

iv XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

About this document

This document is intended for Fortran developers who use XL Fortran to develop
CUDA Fortran programs to exploit NVIDIA GPU on OpenPOWER systems.

This document contains detailed information about the CUDA Fortran support that
is provided in XL Fortran, including the compiler flow for CUDA Fortran
programs, compilation commands, useful compiler options and macros, supported
CUDA Fortran features, and limitations.

For general information about XL Fortran, refer to the resources that are listed in
“IBM XL Fortran information” on page ix.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM® XL
Fortran for Linux, V15.1.5 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

© Copyright IBM Corp. 2016 v

Qualifying elements (icons and bracket separators)

In descriptions of programming models, this information uses icons to delineate
segments of text as follows:

Table 2. Qualifying elements

Icon Meaning

CUDA Fortran

CUDA Fortran

The text describes CUDA Fortran, the CUDA Fortran support
provided by IBM XL Fortran, or both.

GPU

GPU

The text describes the information that is relevant to offloading
computations to the NVIDIA GPUs.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

vi XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

About this document vii

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

►►
(1)

EXAMPLE char_constant a
b c

d

▼

,

e name_list ►◄

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

viii XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL Fortran for Linux, V15.1.5. It is located by default in the XL Fortran directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Linux, V15.1.5 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036672.
The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

Document title PDF file name Description

IBM XL Fortran for
Linux, V15.1.5
Installation Guide,
GC27-6580-04

install.pdf Contains information for installing XL
Fortran and configuring your
environment for basic compilation and
program execution.

Getting Started with
IBM XL Fortran for
Linux, V15.1.5,
SC27-6620-04

getstart.pdf Contains an introduction to the XL
Fortran product, with information
about setting up and configuring your
environment, compiling and linking
programs, and troubleshooting
compilation errors.

IBM XL Fortran for
Linux, V15.1.5 Compiler
Reference, SC27-6610-04

compiler.pdf Contains information about the various
compiler options and environment
variables.

IBM XL Fortran for
Linux, V15.1.5 Language
Reference, SC27-6590-04

langref.pdf Contains information about the Fortran
programming language as supported
by IBM, including language extensions
for portability and conformance to
nonproprietary standards, compiler
directives and intrinsic procedures.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSAT4T_15.1.5/com.ibm.compilers.linux.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672

Table 3. XL Fortran PDF files (continued)

Document title PDF file name Description

IBM XL Fortran for
Linux, V15.1.5
Optimization and
Programming Guide,
SC27-6600-04

proguide.pdf Contains information on advanced
programming topics, such as
application porting, interlanguage calls,
floating-point operations, input/output,
application optimization and
parallelization, and the XL Fortran
high-performance libraries.

Getting Started with
CUDA Fortran
programming using IBM
XL Fortran for Linux,
V15.1.5, GI13-3562-01

getstart_cudaf.pdf Contains detailed information about the
CUDA Fortran support that is provided
in XL Fortran, including the compiler
flow for CUDA Fortran programs,
compilation commands, useful compiler
options and macros, supported CUDA
Fortran features, and limitations.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036672.

For more information about the compiler, see the XL compiler on Power®

community at http://ibm.biz/xl-power-compilers.

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/product/rational/
xl_fortran_for_linux. This page provides a portal with search capabilities to a large
selection of Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://ibm.biz/xlfortran-linux.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

x XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://www.ibm.com/support/docview.wss?uid=swg27036672
http://ibm.biz/xl-power-compilers
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_linux
http://ibm.biz/xlfortran-linux

Chapter 1. Overview of CUDA Fortran supported by XL
Fortran

CUDA is a parallel programming model and software environment to exploit the
NVIDIA GPUs. It provides programmers with a set of instructions that enables
GPU acceleration for data-parallel computations. You can increase computing
performance of many applications by using CUDA directly or by linking to
GPU-accelerated libraries.

IBM XL Fortran for Linux, V15.1.5 supports the CUDA Fortran programming
model, which is a subset of the CUDA constructs to exploit the NVIDIA GPUs. You
can use the commonly used subset of CUDA Fortran that is provided by IBM XL
Fortran for Linux, V15.1.5 to offload computations to the NVIDIA GPUs.

© Copyright IBM Corp. 2016 1

2 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Chapter 2. System prerequisites to compile CUDA Fortran
programs

To compile CUDA Fortran programs with IBM XL Fortran for Linux, V15.1.5, you
must ensure that your hardware, operating system, and software meet these
requirements.

Hardware requirements

You can use any IBM Power Systems™ server that has one or more NVIDIA GPUs
installed and is supported by your Linux operating system distribution and
NVIDIA CUDA Toolkit. For example, you can use IBM POWER® System S822LC
for high performance computing or IBM POWER System S824L. For a complete list
of the IBM Power Systems servers, see http://www.ibm.com/systems/power/
hardware/.

Supported platforms

You can use the following little endian operating systems supported by the IBM
Power Systems servers and NVIDIA CUDA Toolkit 8.0:
v Red Hat Enterprise Linux 7.3 (RHEL 7.3)
v Ubuntu 16.04.1

Software requirements
v NVIDIA CUDA Toolkit 8.0, which you can download from https://

developer.nvidia.com/cuda-downloads

Note: To install the CUDA Toolkit, use the Package Manager installation. The
Runfile installation is currently not supported on Power processors. For
instructions about Package Manager installation, see the NVIDIA CUDA
Installation Guide for Linux (http://docs.nvidia.com/cuda/cuda-installation-
guide-linux/index.html).

© Copyright IBM Corp. 2016 3

http://www.ibm.com/systems/power/hardware/
http://www.ibm.com/systems/power/hardware/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

4 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Chapter 3. Compiler flow

You can customize the compilation and linking process after understanding the
compiler flow. For CUDA Fortran programs, XL Fortran splits host and device
code at the intermediate language level rather than the source level.

The compilation process

When CUDA Fortran support is enabled, the compilation process is as follows:
1. Source files, which might contain host code, device code, or both, are processed

into the XL intermediate language (W-Code) by the Fortran Frontend (xlfentry)
and Transformer (xlfhot).

2. If -O3, -qhot, or -qsmp=omp is in effect, the W-Code is optimized by the
High-Level Optimizer (ipa).

3. The W-Code is split into a host W-Code stream and a device W-Code stream by
the W-Code intermediate language splitter (partitioner).
v Host code processing

The host W-Code stream is processed into an object file by the Low-Level
Optimizer (xlfcode).

v Device code processing
a. The device W-Code stream is converted to NVVM intermediate

representation (NVVM-IR) by the W-Code to LLVM-IR Translator
(wc2llvm).

b. The NVVM-IR is converted to PTX (NVIDIA's low-level Parallel Thread
eXecution) instructions by the NVVM-IR to PTX translator (llvm2ptx).

c. The PTX instructions are assembled into a device object (cubin) by the
PTX assembler (ptxas).

d. The device object is embedded into an object file by the fatbinary tool
from the CUDA Toolkit.

4. The object files for the host and device code are combined into a single object
file by the host linker (ld).

The following diagram shows the compilation process for CUDA Fortran
programs.

© Copyright IBM Corp. 2016 5

The following diagram describes the compilation process for device W-code in
detail.

Host W Code-

Optimized XL

intermediate

language W Code(-)

Device W Code-

An object file

Split by W Code

intermediate language

splitter partitioner

-

()

An object file with

embedded device

object

Optimized by

Low Level Optimizer

(xlfcode

-

)

Optimized by

High Level

Optimizer ipa

-

()

Combined by host

linker ld()

O3 qhot or

qsmp omp

is in effect

, - ,

=

XL intermediate

language W Code(-)

Processed by Fortran

Frontend xlfentry and

Transformer xlfhot

()

()

A CUDA Fortran

source file

An object file

Y N

Expanded

workflow is in

the following

diagram

For host code For device code

From this point on the compiler flow

is specific to CUDA Fortran

,

.

Figure 1. Compilation process for CUDA Fortran programs

6 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

The linking process

When CUDA Fortran support is enabled, the linking process is as follows:
1. Embedded device code in the object files is linked into an executable device

object by the device linker (nvcc -dlink) from the CUDA Toolkit.
2. The object files and the executable device object are linked into an executable

ELF program by the host linker.
3. XL Fortran libraries for the host and the device and several libraries from the

CUDA Toolkit are automatically passed to the device and host linkers.

Libraries specified using the -L or -l option are passed to both the device linker
and the host linker.

The following diagram shows the linking process for CUDA Fortran programs.

NVVM intermediate

representation

(NVVM IR-)

Converted by W Code

to LLVM IR Translator

(wc2llvm

-

-

)

Device W Code-

PTX instructions

Coverted by NVVM IR

to PTX translator

(llvm2ptx

-

)

A device object file

(cubin)

Assembled by PTX

assembler ptxas()

An object file with

embedded device

object

Processed by

fatbinary tool

Figure 2. Compilation process for device W-code

Chapter 3. Compiler flow 7

Abbreviation reference

The following abbreviations and full names are provided for your quick retrieval.

Table 4. Abbreviation of compiler components

Abbreviation Component

ipa The High-Level Optimizer

ld The host linker

llvm2ptx The NVVM-IR to PTX translator

partitioner The W-Code intermediate language splitter

ptxas The PTX assembler

nvcc -dlink The device linker

wc2llvm The W-Code to LLVM-IR Translator

xlfentry The Fortran Frontend

xlfhot The Fortran Transformer

xlfcode The Low-Level Optimizer

Table 5. Abbreviation of output and input

Abbreviation Output/input

cubin The device object

An executable

device object

Linked by device

linker nvcc dlink(-)

An executable ELF

file

Linked by host

linker

Object files with embedded device code

Libraries specified by using L

and l options are passed both

to the device linker and the host

linker

-

-

.

Figure 3. Linking process for CUDA Fortran programs

8 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Table 5. Abbreviation of output and input (continued)

Abbreviation Output/input

NVVM-IR The NVVM intermediate representation

PTX Parallel Thread eXecution

W-Code The XL intermediate language

Chapter 3. Compiler flow 9

10 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Chapter 4. Compiling CUDA Fortran programs

You can use one of the following methods to enable CUDA Fortran support:
v Use the xlcuf invocation command to compile any Fortran source files.

Specifying xlcuf is equivalent to specifying xlf2008_r and the -qcuda option.
v Use the xlf_r invocation command to compile source files with the .cuf or .CUF

suffixes. The xlf_r invocation command recognizes .cuf and .CUF files as CUDA
Fortran files and enables CUDA Fortran support automatically.

v Use any threadsafe invocation command, such as xlf95_r, and specify the -qcuda
option to compile any Fortran source files.

Files with the .cuf or .CUF file extensions are recognized as Fortran source files.
The preprocessor is called on .CUF files before compilation.

Examples

You can use any of the following commands to compile a CUDA Fortran program:
xlcuf myprogram_1.f

xlf_r myprogram_2.cuf

xlf2008_r -qcuda myprogram_3.f

Passing options to the CUDA Toolkit
You can change the optimization level of device code or control the strictness of
floating-point computation by passing options to the CUDA Toolkit components
that are invoked by the compiler.

Passing NVVM options

►►
(1)

-Xllvm2ptx -nvvm-compile-options = NVVM_option
-Wx ,

►◄

Notes:

1 You must insert one space after -Xllvm2ptx.

You can find the NVVM-IR to PTX translator options in the libNVVM API section
in the CUDA Toolkit documentation at http://docs.nvidia.com/cuda/libnvvm-
api/group__compilation.html under nvvmCompileProgram. The most commonly
used options are as follows:
v -opt1

v -ftz

v -prec-sqrt

v -prec-div

v -fma

Note: 1. The default optimization level used by the NVVM backend is -opt=3.

© Copyright IBM Corp. 2016 11

http://docs.nvidia.com/cuda/libnvvm-api/group__compilation.html
http://docs.nvidia.com/cuda/libnvvm-api/group__compilation.html

To enable fast math on the device, set ftz to 1, prec-sqrt to 0, prec-div to 0, and
fma to 1 with either of the following equivalent option settings:
v -Wx,-nvvm-compile-options=-ftz=1,-nvvm-compile-options=-prec-sqrt=0,\

-nvvm-compile-options=-prec-div=0,-nvvm-compile-options=-fma=1
v -qxflag=device_fast_math

Passing ptxas options

►►
(1)

-Xptxas ptxas_option
-W@ ,

►◄

Notes:

1 You must insert one space after -Xptxas.

The default optimization level used by the PTX assembler is -O3.

You can get a list of the PTX assembler options by running ptxas from the CUDA
Toolkit with -h.

Examples

To disable optimization of device code, you can pass options to the NVVM-IR to
PTX translator and the PTX assembler by using either of the following commands:
xlcuf mycudaprogram.cuf -Xllvm2ptx -nvvm-compile-options=opt=0 -Xptxas -O0

xlcuf mycudaprogram.cuf -Wx,-nvvm-compile-options=opt=0 -W@,-O0

where -nvvm-compile-options=opt=0 is a NVVM-IR to PTX translator option, and
-O0 is a PTX assembler option.

Linking to libraries in the CUDA Toolkit
When CUDA Fortran support is enabled, the compiler automatically links in the
following libraries from the CUDA Toolkit:
v libcudadevrt.a

v libcudart.so

v libcuda.so

v libdevice.*.bc if your program contains device code

If you use CUDA Fortran modules, you must link in the supporting library
explicitly. For example, if program my_cublas_program.cuf uses the cublas module,
you must link the object file of my_cublas_program.cuf with the cublas library as
follows:
xlcuf my_cublas_program.o -lcublas

Including object files not compiled with CUDA Fortran support
Your program can contain a mix of object files that are compiled with and without
CUDA Fortran support. However, you must compile the object file containing the
PROGRAM compilation unit with CUDA Fortran support so that the CUDA
Fortran support provided by XL Fortran can be initialized.

If your program uses a main() function written in C, you can add a call to the
following function to initialize the CUDA Fortran support provided by XL Fortran:

12 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

void __xlcuf_init();

You must place the call before any CUDA Runtime API calls in your program.

Specific compiler options and macros
These compiler options and macros are useful for CUDA Fortran programs.

Compiler options for CUDA Fortran compilation
With these options, you can customize the compilation of CUDA Fortran programs.

Table 6. Summary of CUDA Fortran specific compiler options and suboptions

Option or
suboptions

Category Purpose

The -qcuda option Language element
control

Enables the compiler support for CUDA
Fortran.

The -qcudaerr
option

Error checking and
debugging

Controls whether the compiler automatically
inserts error checking code for CUDA API
calls.

The -qpath
suboptions

Compiler
customization

Specifies substitute path names for XL Fortran
components.

The -W suboptions Compiler
customization

Passes one or more options to a specific
compiler component.The -X suboptions

-qcuda (CUDA Fortran)
Category

Language element control

@PROCESS

None.

Purpose

Enables the compiler support for CUDA Fortran.

Syntax

►► -q cuda
nocuda

►◄

Defaults
v -qcuda is the default setting for the xlcuf invocation command, and -qnocuda is

the default setting for other invocation commands.
v When you use xlf_r to invoke the compiler, -qcuda is the default setting for .cuf

and .CUF files, and -qnocuda is the default setting for other file extensions.

Usage

You can specify -qcuda only with invocation commands that have the _r suffix;
these commands ensure threadsafe compilation.

Chapter 4. Compiling CUDA Fortran programs 13

-qcuda can be used with optimization levels -O2, -O3, and -Ofast.

-qcuda can be used with -qsmp=omp but not any other suboptions of -qsmp. If
-qsmp=omp is specified, only host code can contain OpenMP parallelization.

-qcuda cannot be used with -O4, -O5, -qipa, -qpdf1, -qpdf2, or -qrealsize=8.

Examples

You can use any of the following commands to compile a CUDA Fortran program:
xlf_r mycudaprogram1.cuf

xlf95_r -qcuda mycudaprogram2.f

xlcuf mycudaprogram3.f

xlcuf mycudaprogram4.cuf

-qcudaerr (CUDA Fortran)
Category

Error checking and debugging

Purpose

Controls whether the compiler automatically inserts error checking code for CUDA
API calls.

Syntax

Option:

►►
stmts

-q cudaerr all
none

►◄

@PROCESS:

@PROCESS CUDAERR(STMTS | ALL | NONE)

Defaults

-qcudaerr=stmts

Parameters

stmts Instructs the compiler to insert error checking code for the following items:
v CUDA Runtime API calls that are made in Fortran statements such as

ALLOCATE, CALL, and assignment
v Synchronization points such as calls to the cudaDeviceSynchronize API

function

all Instructs the compiler to insert error checking code for all CUDA Runtime
API calls, including explicit calls in your program.

none Instructs the compiler not to insert error checking code for any CUDA
Runtime API call.

14 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Usage

If the inserted error checking code detects a failed CUDA Runtime API call, the
compiler issues an error message, which contains the following information:
v The name of the CUDA Runtime API function that failed
v Error code
v Explanation returned by the cudaGetErrorString API function

The inserted error checking code does not clear the detected CUDA errors. The
-qcudaerr option does not affect user-written error checking code.

To make the compiler exit the program when CUDA Runtime API errors are
detected, you can disable runtime error recovery by either of the following ways:
v Call the setrteopts subroutine with err_recovery=no.
v Set the XLFRTEOPTS environment variable as follows:

export XLFRTEOPTS=err_recovery=no

Examples

The example program, out_of_bounds.cuf, is as follows.
INTEGER, DEVICE, ALLOCATABLE :: device_arr(:)
INTEGER :: host_arr(10)
ALLOCATE(device_arr(5))
device_arr = host_arr
END

Compile it with xlcuf and run the executable file. The compiler issues the
following message:
"out_of_bounds.cuf", line 4: 1525-244 API function cudaMemcpy
failed with error code 11: invalid argument.

Because out_of_bounds.cuf contains assignment between a host array and a
nonconformable device array, the assignment is translated into a cudaMemcpy API
call. However, the API call fails because the CUDA runtime detects that device_arr
is too small. Because -qcudaerr=stmts is in effect by default, the compiler checks
the result of cudaMemcpy and displays a message containing the CUDA Runtime
API error code and explanation.

-qpath
Category

Compiler customization

Purpose

Specifies substitute path names for XL Fortran components such as the assembler,
C preprocessor, and linker.

You can use this option if you want to keep multiple levels of some or all of the
XL Fortran components and have the option of specifying which one you want to
use.

Chapter 4. Compiling CUDA Fortran programs 15

Syntax

►► ▼-q path = @ : directory_path
a
b
c
d
F
h
I
l
n
s
w
x
z

►◄

Defaults

By default, the compiler uses the paths for compiler components defined in the
configuration file.

Parameters

directory_path
The path to the directory where the complier components are located.It must
be an existing directory. It can be relative or absolute.

The following table shows the correspondence between -qpath parameters and the
component names:

Parameter Description Component name

GPU @ The PTX assembler ptxas

a The assembler as

b The low-level optimizer xlfcode

c The compiler front end xlfentry

d The disassembler dis

F The C preprocessor cpp

h The array language
optimizer

xlfhot

I (uppercase i) The high-level optimizer,
compile step

ipa

l (lowercase L) The linker ld

GPU

n The NVIDIA C compiler,

which is used as a device
linker

nvcc

GPU

s The XL intermediate

language (W-Code) splitter
partitioner

GPU

w The XL intermediate

language (W-Code) to
NVVM-IR translator

wc2llvm

16 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Parameter Description Component name

GPU x The NVVM-IR to PTX
translator

llvm2ptx

z The binder bolt

Usage

The -qpath option overrides the -F, -t, and -B options.

Examples

To compile myprogram.f using a substitute compiler front end and linker from
/fix/FE/ and the remaining compiler components from default locations, enter the
command:
xlf myprogram.f -qpath=cl:/fix/FE

To compile myprogram.f using a substitute compiler front end from /fix/FE, a
substitute linker from the current directory, and the remaining compiler
components from default locations, enter the command:
xlf95 myprogram.f -qpath=c:/fix/FE -qpath=l:.

-W, -X
Category

Compiler customization

@PROCESS

None.

Purpose

Passes one or more options to a component that is executed during compilation.

Syntax

►► ▼ ▼-W @ , option
a
b
c
d
F
h
I
L
l
n
s
w
x
z

►◄

Chapter 4. Compiling CUDA Fortran programs 17

►►
(1)

-X assembler option
preprocessor
linker
partitioner
wc2llvm
llvm2ptx
ptxas
nvcc

►◄

Notes:

1 You must insert at least one space before option.

Parameters

The following table shows the correspondence between -X and -W parameters and
the component names:

Parameter of -W Parameter of -X Description Component name

GPU @ ptxas The PTX assembler ptxas

a assembler The assembler as

b The low-level
optimizer

xlfcode

c The compiler front
end

xlfentry

d The disassembler dis

F preprocessor The C preprocessor cpp

h The array language
optimizer

xlfhot

I (uppercase i) The high-level
optimizer, compile
step

ipa

L The high-level
optimizer, link step

ipa

l (lowercase L) linker The linker ld

GPU

n nvcc The NVIDIA C

compiler, which is
used as a device
linker

nvcc

GPU

s partitioner The XL intermediate

language (W-Code)
splitter

partitioner

GPU

w wc2llvm The XL intermediate

language (W-Code)
to NVVM-IR
translator

wc2llvm

GPU

x llvm2ptx The NVVM-IR to

PTX translator
llvm2ptx

z The binder bolt

18 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

option
Any option that is valid for the component to which it is being passed.

Notes: GPU

v You can find the NVVM-IR to PTX translator options in the libNVVM API
section in the CUDA Toolkit documentation at http://docs.nvidia.com/
cuda/libnvvm-api/group__compilation.html under nvvmCompileProgram.

v You can get a list of the PTX assembler options by running ptxas from the
CUDA Toolkit with -h.

GPU

Usage

If you need to include a character that is special to the shell in the option string,
precede the character with a backslash. For example, if you use the -W or -X
option in the configuration file, you can use the escape sequence backslash comma
(\,) to represent a comma in the parameter string. In the string following the -W
option, use a comma as the separator for each option, and do not include any
spaces.

You do not need the -W or -X option to pass most options to the linker ld;
unrecognized command-line options, except -q options, are passed to the linker
automatically. Only linker options that have the same letters as compiler options,
such as -v or -S, strictly require -W or -X.

Predefined macros for CUDA Fortran support
When CUDA Fortran support is enabled, these preprocessor macros are
predefined.

Table 7. Predefined macros for CUDA Fortran support

Macro Value

_CUDA 1

_CUBLAS_V2 1

__CUDA_API_VERSION 8000

Chapter 4. Compiling CUDA Fortran programs 19

http://docs.nvidia.com/cuda/libnvvm-api/group__compilation.html
http://docs.nvidia.com/cuda/libnvvm-api/group__compilation.html

20 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Chapter 5. Reference and limitations for CUDA Fortran
support

IBM XL Fortran for Linux, V15.1.5 supports a commonly used subset of CUDA
Fortran. For more information about the language extensions introduced by CUDA
Fortran, see the CUDA Fortran Programming Guide and Reference manual
downloadable from http://www.pgroup.com/doc/pgicudaforug.pdf.

The following CUDA Fortran features are not supported in IBM XL Fortran for
Linux, V15.1.5:
v Calling reduction intrinsic functions, such as sum, maxval, and minval, on the

host with device actual arguments
v Conditional sentinels for CUDA Fortran (!@CUF)
v CUF kernel directives
v Data transfer using the following CUDA Runtime APIs:

– cudaMemcpyFromSymbol
– cudaMemcpyFromSymbolAsync
– cudaMemcpyToSymbol
– cudaMemcpyToSymbolAsync
– cudaMemset

Note: You can use assignment, cudaMemcpy, or cudaMemcpyAsync instead. XL
Fortran allows device global and constant module variables to appear as
arguments to cudaMemcpy and cudaMemcpyAsync.

v Data transfer using the following CUDA Runtime APIs:
– cudaMalloc3D when the first argument is a rank 3 allocatable array
– cudaMemcpyPeer
– cudaMemcpyPeerAsync
– cudaMemcpy2D
– cudaMemcpy2DAsync
– cudaMemcpy3DAsync
– cudaMemset2D

v Debug support

Note: You can get basic line level debugging by compiling with -g -qfullpath.
v Dynamic parallelism
v PRINT and WRITE statements in device code
v Procedure definitions or interfaces that have the attributes(host, device)

prefix

Note: To work around this, make a copy of the procedure, and give one copy
the attributes(host) prefix and the other copy the attributes(device) prefix.
You must not defined the two procedures in the same compilation unit.

v Pointers with the texture attribute

Note: The compiler automatically utilizes the texture cache for passing dummy
arguments when appropriate.

© Copyright IBM Corp. 2016 21

http://www.pgroup.com/doc/pgicudaforug.pdf

v Shuffle intrinsics
v The curand module

The following limitations apply to IBM XL Fortran for Linux, V15.1.5:
v You can use CUDA Fortran with IBM XL Fortran for Linux, V15.1.5 only if the

CUDA Toolkit 8.0 is installed and the compiler is configured with the location of
the toolkit.
– If you install the compiler after you install the toolkit, the compiler detects

the location of the toolkit and no action is required.
– If you install the toolkit after you install the compiler, reconfigure the

compiler as described in Configuring IBM XL Fortran for Linux in the XL
Fortran Installation Guide.

Note: To install the CUDA Toolkit, use the Package Manager installation. The
Runfile installation is currently not supported on Power processors. For
instructions about Package Manager installation, see the NVIDIA CUDA
Installation Guide for Linux (http://docs.nvidia.com/cuda/cuda-installation-
guide-linux/index.html).

v IBM XL Fortran for Linux, V15.1.5 automatically detects the GPU architecture at
compiler configuration time. The GPU architecture is encoded into the compiler
configuration file. No compiler options are provided to target other GPU
architectures.

v Programs that use dynamic shared memory might fail due to an issue in the
CUDA Toolkit 8.0. The compiler issues the following message:
Bitcasts between pointers of different address spaces is not legal.
Use AddrSpaceCast instead.

To work around this issue, compile the affected file with the -Xllvm2ptx
-nvvm-compile-options=-opt=0 option.

22 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL Fortran for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2016 23

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

24 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2016.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Notices 25

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

NVIDIA and CUDA are either registered trademarks or trademarks of NVIDIA
Corporation in the United States, other countries, or both.

26 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

Index

C
compilation

CUDA Fortran programs 11
process 5

compiler
components 5

CUDA Fortran reference 21

H
hardware requirements

CUDA Fortran 3

L
limitations 21
linking

process 5

O
operating system requirements

CUDA Fortran 3
options

compiler 13
CUDA Toolkit components 11

overview
CUDA Fortran 1

P
predefined macros 19
process

compilation 5
linking 5

R
requirements

hardware 3
operating systems 3
software 3

S
software requirements

CUDA Fortran 3

U
unsupported CUDA Fortran features 21

© Copyright IBM Corp. 2016 27

28 XL Fortran: Getting Started with CUDA Fortran programming using XL Fortran for Little Endian Distributions

IBM®

Product Number: 5765-J10; 5725-C75

Printed in USA

GI13-3562-01

	Contents
	About this document
	Conventions
	IBM XL Fortran information
	Technical support
	How to send your comments

	Chapter 1. Overview of CUDA Fortran supported by XL Fortran
	Chapter 2. System prerequisites to compile CUDA Fortran programs
	Chapter 3. Compiler flow
	Chapter 4. Compiling CUDA Fortran programs
	Passing options to the CUDA Toolkit
	Linking to libraries in the CUDA Toolkit
	Including object files not compiled with CUDA Fortran support
	Specific compiler options and macros
	Compiler options for CUDA Fortran compilation
	-qcuda (CUDA Fortran)
	-qcudaerr (CUDA Fortran)
	-qpath
	-W, -X

	Predefined macros for CUDA Fortran support

	Chapter 5. Reference and limitations for CUDA Fortran support
	Notices
	Trademarks

	Index
	C
	H
	L
	O
	P
	R
	S
	U

