|||
“I"

I
1T
dlll

Iin
@

WebSphere Process Server V6

FDL2BPEL Conversion

Version 6.1

Migration of WebSphere MQ Workflow source artifacts to WebSphere Process Server

Third Edition (February 2008)

This book is edited by International Business Machines Corporation, USA
© Copyright International Business Machines Corporation 2004, 2008

The text is subject to alteration.
Published by:

IBM Deutschland Entwicklung GmbH
Department 1892

Schoenaicher Strasse 220

71032 Boeblingen

Related Publications

IBM WebSphere Process Server

e Version 6.1 Information Center at
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rimx/index.jsp

e Kurt Lind, "Authorization and staff resolution in Business Process Choreographer: Part 1:
Understanding the concepts and components of staff resolution" (available at
http://www.ibm.com/developerworks/websphere/techjournal/0710 1ind/0710 lind.html)

e Kurt Lind, "Authorization and staff resolution in Business Process Choreographer: Part 2:
Understanding the programming model for staff resolution” (available at
http://www.ibm.com/developerworks/websphere/techjournal/0711 1ind/0711 lind.html)

¢ More links to related WPS publications at:
http://www.ibm.com/developerworks/websphere/zones/was/wpc.html

IBM WebSphere MQ Workflow

e IBM WebSphere MQ Workflow: Concepts and Architecture, Version 3.6, SH12-6285

e IBM WebSphere MQ Workflow: Getting Started with Buildtime, Version 3.6, SH12-6286
e IBM WebSphere MQ Workflow: Programming Guide, Version 3.6, SH12-6291

e IBM WebSphere MQ Workflow: Administration Guide, Version 3.6, SH12-6289

BPEL

e Business Process Execution Language for Web Services Version 1.1 (available at
http://www.ibm.com/developerworks/library/specification/ws-bpel/)

e Web Services Business Process Execution Language Version 2.0 (available at
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html)

Trademarks

The following terms are trademarks of the IBM Corporation in the United States, other coun-
tries, or both:

e IBM
e WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

CONTENTS
T 11 = 9
L= 10 (== 11
Y o] o1 oA 1o o T 12
What is NeW With Version 6.17 ... s s s s s ssmssssassnas 13
Initial WID process view without fully expanded structured activities 13
Support of data type variablesoooociiiiiiiiii i 13
Support document/literal wrapped WSDL interfaces............ccccceviviiiiiiiieeniiee e, 13
Support for shorter variable NAMEeS..............cociiiiiii 13
Support for activity eXpiration............c..ccciiiiiiiii 14
Option to not create predefined data members as part of variables............................ 14
Staff assigNMeENt POLICIES..........coooiiiiiii e s 14
Mapping of the WMQWF property AUTONOMYccccoiiiiiiiiiiiiieeee e 14
Mapping of the WMQWF property Execution mode.................cccccooeevciiiiieiiiienncencnanenn. 14
Improved error rePOrtiNgo e e 14
Continue ON Error Setting..........cooo i s 15
CHAPTER 1: INTRODUCTION........coeiiiiiiinmmeninnssnssss s snsssss s s s smsss s s 16
Subject of this dOCUMENT........ceeiieirr e 16
Who are the readers that will most benefit from this document?ccocvicniicnniiennnee 16
Migrating with or Without @ tOOI? ... e e e 16
Are the migrated models t00 COMPIEX?coiccirrrmrrrsrrrssnrsssr s rsssesrssss s sms s ssmessssssssmssssans 16
FDL2BPEL USQQ€ MOAESceiiiiimrrisissmmnrssssnnnnsisssmmsssssssssssssssssssssssmmssssssssss s nnsssmssssssssnnssssssnnns 18
What the FDL2BPEL Conversion Tool cannot do fOr YOU........ccuurmremrnsersmssssssssssssssansns 18
Some best practice hints ..o ——————— 18
Mapping rUleS (OVEIVIEW)ciiiiisceeriiissmnnsisssnnsnsissmmssssssssssssssssssssssssmsssssssnss s nnsssnssssssssnnssssssnnes 18
CHAPTER 2: USING THE FDL2BPEL CONVERSION TOOLccoccuerrrnne 20
Exporting a WMQWF model from WMQWF Buildtimeccccouvmrvimrnmnssmnennsesnssssesnsaesnnens 20
Using as WID Migration Wizard.........c..ccmirmmrmnsmmsssmnsmnse s s s sssssssss s sssssssssnsssnses 21
Using as command line t00l........ccoiiiiiiiimniin s s s s nnns 25
INSTallation e e s 26
PLOTEQUISTEES - vttteeeeeeee et e ettt et e ettt e e e e e e e e e et ettt e e e e e s s a e s eeeeeeeeeeessaannbbeeeeeeeeeeeeaan 26
Preparing the "fd12bpel” command filecccoiiiiiii i 26
How to translate WMQWF models into BPC models...............coooiiiiiiiiiiiee, 27
Running the FDL2BPEL Conversion Toolccoiiuiiiiiiiii i 27
Importing the artifacts iNt0 WDcciiiiiiiiiiiiiiiiie e e e e e 29
CHAPTER 3: UNDERSTANDING THE GENERATED FILES.........cccccceunue.. 32
INtrOAUCTION ... ettt et e e e e e ne e e e e e e s e e e e neens 32

TRE XSD Il ... e e e 32

LI =T A I - S 33
The BPEL FIleS......c e e e 33
The BPELEX FIleS......coiii et e e 33
The TEL fIleS ...t e e 33
The COMPONENT fil@S oottt e e e 33
ThE IMPORT fIleS ...ttt e et e e eee e eme e e eneeeeneeeenes 33
TRE JAVA FIlES ... e e 34
TRE MON Il ...t e e 34
CHAPTER 4: MIGRATION MAPPING RULES.........ccoocmrrrriirnmmnrsnnssnnanees 35
Mapping of FDL names to BPEL.......... s 35
INtrodUCTION ... e e 35
Name mapping rules indetail ... 35
FDL to XSD MappPing FUIESceeeurrsemirenrssmssssrssrssssssssssssssssssssssss s sasssssssas sssssasssnsmsssmsssas snsnane 36
Mapping FDL "STRUCTURE" to a "Business Object”coooi i, 36
Mapping an FDL data container to an XML schema definition.......................ccccoie. 39
Mapping the data exchanged with @ UPESccoooi i 41
FDL to WSDL MappPing FUIESccccvemirsmissrssstrsssrssssssasssssssssssssssss s sasssssssassssssssssnsmsssmsssas snssane
Generation of partner link type definitions...............cccooo i
Mapping FDL PROCESS to a partner link type..................
Mapping FDL SERVER to a BPEL partner link type
Mapping FDL container data to WSDL message definitionsc.ccccoccvvere. 45
Mapping FDL interaction interfaces to WSDL port types..........cccoccceeiviiiniiiiiiee i, 46
Mapping FDL PROCESS t0 @ POIt LYPE ...t iuuuueeieieeeeeeeeiiiiitie e ee e e e s eseseeeeeeee e e e e s snnneeeeeeeee s 46
Mapping FDL PROGRAM 0 @ POI LYPEuuuuuereeeeeeeeeeeiiiiitieeereeeeeeessssseeeeeeaeeesssmnnneeeeeeeesens 47
Mapping FDL SERVER to a port type for a UPES ...ttt 50
FDL to BPEL MappPing FUIES......ccccciiiiimriiisemssnsssssss s sssss s ssssmms s sssssss s ssssssssssssssmssssnssassssnssanes 51
Mapping FDL PROCESS t0 BPEL ... 51
Process property "business TeleVANL"cooiiiiiiiiiiiiiie e 52
PrOCESS AULOMOIMLYeoiiiiiiiii it s e e e s s s ae s s e e e e e s ssn e e e e s nnne s 53
PrOCESS CALEZOTY ..vttttieeeieeeiiittte et ee e e e e e e ettt e e e e e e e ee s et e eeee e e e e e s s abae et e eeeeeaeeeasaanbbbeeeeeeeeeeas 53
Partner TNKS ...eeoiieeeiie e e e 54
Mapping FDL data container to BPEL.............oooiiiiiiiiii e 54
Queriable global data cONIAINEToeeeeeiiiiiiiiiiiieeee e 55
Mapping the FDL workflow to BPEL..........ccoiiiiiiiiiiii e 57
Mapping WMQWF activities t0 BPEL...............cccooiiiiiii e 60
Mapping FDL PROGRAM_ACTIVITY t0 BPELcocviiiiiiiieeeeee e 60
Activity clasSification FULESooooioueeeeiiiei e 60
EMPLY QCHVILY ..ottt e e e e e e e e e e e e e e s 62
Service invocation activity (UPES ACHIVILY)............cooouiiiiiiiiiieiieiee e 62
SEASF ACHVILY ...t e e e e e e e et e e s e e e e 66
Activity property ""business relevant''..................cccccccoiiiiiiiiiiiiii e 67
Mapping FDL BLOCK t0 BPEL.........ccooiiiiiiiiiii e 67
Mapping FDL PROCESS_ACTIVITY t0 BPEL.....cccoiiiiiiiiiiiiiieiiieee e 68
Static SUDProcess INVOCALION......................oceeeiuueeiieeeiie et 68
Late binding of SUDPFOCESS MAMESc.ooeeiiiuiiiiiiiiee ettt 69
Mapping WMQWF control flow t0 BPEL................cociiiiiiiie e 71
Transition CONAILIONSuveieiieieie et e e ee e s e e e e sarere e e sennne s 71
STAt COMAIIOMS ...ttt eeteeee e et ee ettt e et e e e s sbee e e e e ean b e e e s sasbn e e e e ann e e e eenrreeenaas 72
EXIt CONAITIONSueutveeeeeeeee e ee e e e e e e s s s e e e e e e e e s s s e e e e e e e e e e nnnnneeeeee e e s s snnnnnnneeeeenean 73
ACHVILY @XPITALION 11 eetetteteiiitiiee et ee e e e e e e ettt e e e e e e e e e et eeee e e e e s s s abaee et eeeeeaeeeasaanbbbeeeeeeeeeeas 75
Mapping FDL data flow t0 BPELcooooiiiiiiee e 77
Mapping WMQWF staff assignment criteria to TEL people assignment criteria............. 85
INTFOAUCTION ... e et sr e 85
Mapping limitationsoooi i e 85

Using default people assigNment CIILETTauuureerieeerriiiiiieieeee e e e e s s eeeee e e e e s eeeeeeeeas 85

Distinction between "UPES activities" and "staff activities"ccceeeieeiieeeiiieiiieieeeeeeereeeeeeeens 86
Migration of staff assignment definitions to be inheritedccieiiiieiiiiiiiie e 86
Mapping of staff assignment criteria...............ccooiiiiii i 86
NOTIFICAtION ... e 87
SUBSHIRUTION ... e 90
Mapping FDL to Service Component ArchiteCtureccocemrinnrcninnnnnmnnsssnsssssssssenns 90
SCA COMPONENTS. ..ottt sttt st b e st et eae e sr e e r e s e e esee e e e e neeas 91
ST 0 W [T To T o (- PRSP 92
Data BINAING tYPE...cceii i 92
Endpoint CONfIGUIALIONouiiiiii i 94
Preferred Interaction SEYLEooiiuiiiiiiiiiii e e 96
CHAPTER 5: WMQWF UPES MIGRATION DETAILS.......ccccccimirniinnnennnnns 97
CHAPTER 6: OPTIMIZING THE MIGRATED BUSINESS MODEL............... 98
Optimizing BPEL process models.........cccciiiinimimnsnninesssssesss s sssssssssssssssssssssses 98
Removing redundant Java shippets and BPEL variables..........ccccececnniiicnninnsnnnnssnnnnnns 100

APPENDIX 1: MIGRATION COVERAGE LISTED BY FDL SYNTAX

EXPRESSIONS........cc et s as s s s mmns s s 104
LT (0T 1T T o o 104
L 0TI T U o= 104
[T=T o] F= =T To T ¥ { o o 104
LI o 1o [T 1 105
£33 253 (=] o o PP 105
TOPOLOZYSELING ... e e e e 106
DefaultPrOCESSSEIINGcoii ittt 107

F N 170) 110)11 PP PP PPPPPR 108
Default ACHVIEYSEUNZ. .. ottt ie ettt e e e e e e s e e e e e e e e s s aabbeeeeeeeeeeeas 109

£ =Y =Y 109
SEIVEISEUINEG ..eteeeeieeeii ittt e e ettt e e e e s et e e e ee e e e e s s s bbb e e eeeeeeeeeeeaaaanbbbeeeeeeeesaannanne 110

L8 52 A 103 1173 PP PP PPPRPP 111

g o Yoy 1 oo =T 11 o 111
Data StHUCTUNE ..o e 112

o e T | - 1 1 o PSSR 113
PROCESS ... e e 114
PrOCESSSEUNG ...evvteeeiiieeis ittt e ettt e e e e e e e e e e e e e e s s aaae et ee e e e e e e e s s aannbbeeeeeeeeeeaas 114
GlobAICONTAINETSELHINEZ ...ueeeeeeeieeeeee ettt e e e e e e et e e e e e e e s s e et e e e e e e e e s s anbbbeeeeeeeeeeeas 115
ProcessStaff ASSiZNMENtSEING ...ceeeieiiiiiiuirieiiieie e e et e e e e e e eeeeeeeas 115
ExplicitProcessStaff ASsignmentSEtting.........ceuveeeiriiriiiiiiiiieieeee e e e e e e e 116

(0] 11 1 T PP PP TP PPPPPP 116

. V7 13 TSRS 117
ProgramACHVILYcooueeieee e et 117
ProgramACHVItYySEHINGcovveeiee i e 118
PrOCESSACHIVITY ...ttt et 119
ProcesSACHVItYSENGooiieiieie it e 119

= Yo 120
BIOCKSELING ...ttt 120
ACHVITYSEHING ...t 121
ACtiVItyEXtENSIONSEHING ..cei it 122

ActivityStaffASSignmMentSettingcooi i 122

EXpliCitStaffASSIGNMENT ... e e 123
OFGASSIGNMENT ...ttt rae e e s 124
NOLITICATION e 124
EXPHCINOLIfICAtION ...t s 125
EXPIFALION ... e 125
CONIPOLFIOW ...ttt e e e e e e ettt e e e e e e s s e neeeeeas 126
DAIAFIOW ..o et e et e et e e e et eeeee et et e e n e e e e e e ean 126
PrOCESS CALEZOTY 1.uutteeeeiuiieeie ettt ee et ee e s sttt e e e e bt et e e s saseeee s eane e e e e nbbee e s e anne e e e e anbeeeessanreeeeeannneas 127
(707314 15 (o) s TR UPRPUPP PP 128
CONAILION ...ttt e e e e e ettt e e e e e s e enneeeeeas 128
CoMMON VAHADIES ..o e 129
B0 01 53 5 Lo T 129
APPENDIX 2: MIGRATION HINTS. ... ssss s snnnnes 130
FDL SOUKCE fil@ ..ueeeeiiiieeeiii e mn s s s s s s e 130
FDL with codepage different from system codepage..................ccooriiiiiiiiii e, 130
Migration of early FDL VEISIONSc.coiiiiiiiiiiiiiie e 130
FDL processing @CtiONS e 130
Problem deteCtionoo e s 131
Graphical business process editorccmurirrernsemnsrnsnnr s ——————— 131
Migration of WMQWF Buildtime tool set definitions not supported 131
Graphical layout information..................cco i 131
ACTIVILY ICONS ..o ettt e bt e e s ee s s aneeeeeene 132
Data and control CONNECLOr NAMESooiiiiiiie e e 132
L0031 T I {1 132
Activity start and eXit MOde.............ociiiiii 132
ACTIVILY STALESooiieiii e e e 133
References to binary data in conditionscccco i, 133
072 = T o 133
Prompting for data at process start..............ccccooiiiiii i, 133
Initial process iNnput data ... 133
Global container database settings............ccoccuiii i 134
Predefined data members...............oo e 134
SUbProcess INVOCALIONcoiiiiiiiiici et 134
DAt@ @rFAYSooiiiiiie i 135
Staff assignment and notificationccciicinnnnc s ——— 137
WMQWEF staff repoSIitOry...........cooiiiiiiiiiiiieiee e 137
[\ {1 o 11 o o SRS 137
Notification MOde ... e 137
Notification POLICY ..o 138
Notification from container ... 138
Process Notification ... 138
Staff assignment by process category............coooieiiiiiicic 138
Staff assignment from input container.................cccoooiiiiiien 138
Staff assignment criteria
Staff assignment and notification criteria assigned to process activities 139
Program eXeCULION SEIVETccucurrseeisesissmisssrsssnssssssassssssssssssssssssssasssssssassssssss s sasssnsssas snsss 139
User-defined program execution server (UPES)cccocoiiiiiinii e, 139
XML message types supported by WPS UPES invocationcccocccoeniiiiennnis 140
Program execution unit taken from container..................ccocooiiiiiii i, 140
Model description and documentation fields..........cccccommiiiiiininiccs s 140
Data description and documentationccccoccciii i 140
Data member description and documentationccoccooiiii 140

Process category description and documentation..................cccoooociiiiii e, 141

Process execution and monitoring........ccccuimiiimiiiminn s s 141
SYSTEM NEIWOKK.......c.eiiiiiii et et 141
Properties inherited from domain or systemccccooiiiiii 141
AUdit SEHINGS ... e 141
Process autonomy MOdes ... 141
Program execution properties........... ... 142
System properties assigned to process activitiesccccceeiiiiiiiii e, 142

11 o Yo L= B T o1 U T 142
FDL ProgramACHVITY ... e e 142

WOIKFIOW CHENT ..o s s e e 143
ESTH] o] o] g B (o To] £= PR 143
Workitem refresh POLICY ..o e 144
Policy for how to deal with finished workitems...................cccccciiiiii i, 144

Policy for how to deal with finished process instances................ccccooiiiiniiinien. 144

Figures

Figure 1: Topology preservation POICY (1)ooori e 17
Figure 2: Topology preservation POICY (2).....ccuiueeeeeiiiiie et e e 17
Figure 3: Exporting a WMQWF model from WMQWF Buildtimeccceriiiiiiiniieciiieeies 20
Figure 4: Running FDL2BPEL as WID Migration Wizard (1)cccccooioiiriie e 21
Figure 5: Running FDL2BPEL as WID Migration Wizard (2) ... 22
Figure 6: Running FDL2BPEL as WID Migration Wizard (3)ccccveriiieeeeiiiene e 22
Figure 7: Running FDL2BPEL as WID Migration Wizard (4)cccceeeeieeeeiiiiine e 23
Figure 8: Running FDL2BPEL as WID Migration Wizard (5)ccccveeeuieieeiiiiene e 24
Figure 9: Running FDL2BPEL as WID Migration Wizard (6)ccceeecuveeeriiiiieeeiiiieeeseiieeene 25
Figure 10: Running FDL2BPEL as WID Migration Wizard (7)cccceeeuveeeriiieiee e eeeiieeenne 25
Figure 11: Looking up WID installation direCtories...........coocieeiiiiiiiieeieeee e 27
Figure 12: Running FDL2BPEL from the command liN€.........cccoccueiiiiiiiien i 29
Figure 13: Creating a new business integration module.............ccceviiiiiiiiniiiie e 30
Figure 14: Importing FDL2BPEL generated files (1).....ccoovroeinieiienie e 30
Figure 15: Importing FDL2BPEL generated files (2)......ccoccvveeinieiienie e 31
Figure 16: Sample FDL data StrUCIUIEueeiiiiiie e 36
Figure 17: WID Business Object EItOrooiiiiiiiii et 38
Figure 18: Hierarchical FDL data StruCtUreo 38
Figure 19: Hierarchically structured Business ObjJectcceoiriieiiiicee i 39
Figure 20: FDL data CONTAINEToo e 40
Figure 21: Mapping FDL data container to Business ObjecCtcoccevciiiiiciicii e 41
Figure 22: UPES input message as Business ObJect.........c.cceviiiiiiiiiceeic i 43
Figure 23: UPES output message as Business ObJecCtcccoviieiiiiceeic i 44
Figure 24: Process INEIrfacCeccoiii it 46
Figure 25: Program requires these data StruCturescccoceevieiie i e 47
Figure 26: Interface with Single Operationc..cooi i 48
Figure 27: Program can handle any data StruCtures...........ccceoeriienieiceesie e 48
Figure 28: Interface with multiple Operationscccoviv i 49
Figure 29: Asynchronous execution of UPES...........ccooi i 50
Figure 30: UPES INTEIACE ...cciiiiiee ittt e e e eree e e 50
Figure 31: Opening the business pProcess €ditOrciviiiieeiiiiiii e 51
Figure 32: Mapping process ProPerties (1) ...eeuu i eeee i eeiiiee e sieee e seee e e seee e e s e e e e 51
Figure 33: Mapping process ProPErtieS (2)oicueeeeiiuiiieeiiiieeesiiieeeestieeeesieee e s sseeeaesareeae e 52
Figure 34: Mapping process PropPerties (3)uiueeeriiiiieiiiiiee e siiee e e seee e e s e s ereeee e 52
Figure 35: Mapping proCess ProPErtiES (4)oiuueeeeiiiuiiieeiitiiee e sieee e et eeseee e s seee e e s sreeee e 53
Figure 36: ProCess Cat@goOrycueiiiiiiieiiiiiee ittt ettt et e e s e e e see e e e s ebeeee e e 53
FIgure 37: Partner INKSooii ettt e e e s e e e s ebeeae e 54
Figure 38: Mapping FDL data containers to BPEL variables.............cccooiiiiiiiiiiice 55
Figure 39: Mapping Global Container to business objectcoccviviiiiiiiiiiiie e 56
Figure 40: Mapping FDL data structure to BPEL query properties........cccceveeeiiiiiiiieniciieenns 57
Figure 41: Mapping the workflow Structure (1).......cooooiiiiiiiiiee e 58
Figure 42: Mapping the workflow Structure (2)..........ccoeevveerieinieiee e 58
Figure 43: Mapping the workflow Structure (3)........cccvveiiiiriiiiiee e 60
Figure 44: Assumed "staff aCtiVity".........coooiiiiiii e 61
Figure 45: Activity classification rule: "empty activity".........c.coooriiii i 62
Figure 46: Activity classification rule: "service invocation activity”..........ccccccecvrciievnnieiienens 63
Figure 47: Encoding the UPES iNPULcooiiiiiieee e 64
Figure 48: Decoding the UPES OULPUL.........coiiiiiiiiiiee e 64
Figure 49: Setting the UPES CONEXLccuiiiiiiieceeeee e s 65
Figure 50: Classification rule "staff aCtivity"cooeiii i 66
Figure 51: WID human task @AitOrcciiiiiiieiieeeeee e 67
Figure 52: Mapping activity property "business relevant”ccccviioeiie e 67
Figure 53: Mapping an FDL block t0 BPEL.........ccviiiiiiiiie e 68
Figure 54: Mapping an FDL subprocess call t0 BPELc..coooiiiiiiiiiiiiieeceee e 68
Figure 55: Subprocess iNVOKE PrOPEItIESccciiueiieiiiiiiie et e e 69
Figure 56: Process from CONLAINETcciiiiiiieiie ettt 69
Figure 57: Late-bound subproCess iNVOCALIONccoiuiiiiiiiiiiee e 70
Figure 58: Assigning the SUDProCESS NAME.........uiiiiiiiiiie it 71
Figure 59: Mapping a transition condition expression 10 BPELccccovviiiiiiiiiiiencciieees 72

10

Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:

Mapping a start condition expression 10 BPELcccoiiiiiiiiiniieeee e 73
Mapping an exit condition expression t0 BPEL...........ccccciiiiiiiniinicceeee e 75
ACHIVILY @XPIFATION ...eeii i 76
BPEL representation of FDL activity "Get customer name"..........cccccveevvveeneiieenn. 77
Translated exit condition of FDL activity "Get customer name”...........ccccccceeeennneen. 77
BPEL representation of FDL activity "Check customer data”ccccoecvveeeiinieennn. 77
Translated transition condition refering to activity "Check customer data"............. 77
T - 1 - I [1 78
BPEL representation of FDL data flow (1)ooeviiiiiniiiiieeeee e 78
BPEL representation of FDL data flow (2)ccoocueeiriiiiiiiiiiiee e 79
Mapping FDL data mapping to a Java Snippetcccooooreiiiiiiiiice e, 80
First and second notification of an FDL acCtivitycccoeeiieniincinii e, 88
Mapping first notification to an escalation step of a human taskccccccceeeeen. 89
Mapping second notification to an escalation step of a human task...................... 89
FDL process "NiCe JOUINEY" e 90
FDL subprocess "BOOK Car”cociecieririee ittt 91
WID assembly diagram VIEWooiiiiii e 91
A deliberately omitted wire in the assembly diagram..............ccccooiiiii e 92
How BPC communicates with @ UPES ..., 92
MQ JMS binding of an SCA iMPOrtooociiiiiii e 93
Java class implementing the data binding ... 94
Queue manager in WMQWF BUIldEME.........cceiiiiiiiieeee e 94
Queue manager in the WID assembly editor (properties VIeW)ccccevvevrceerennne. 95
Request queue in the WID assembly editor (properties VIiew)cccovcveeeeeiiienennnns 95
Response queue in the WID assembly editor (properties View)cccceeveceeeeennnes 95
Preferred interaction style of UPES interfacecccooveeiiiinciii e, 96
Simple chain of FDL aCtVItI®Scccuviiiiiiiiee e e 98
BPEL activity chain with redundant structured activities..........ccccovceieiicieee e 99
BPEL activity chain without redundant structured activities............ccccoecveeerinnenn. 100
FDL data connector with "_STRUCT to _STRUCT" mappingccccceevevveeerrvnennn. 101
BPEL process with redundant Java Snippetcccocvrvirieeniniee e 102
Improved BPEL process with shared variablecccooiiiiiiiieiieeee 103
Mapping data array with interrupted indeX orderccccceveieeeeiiciie e, 135
Snippet "Act1_OUT - Act2_IN" contains array mappingccccceeeeveeeeeineereennnnne 136
User interaction is not translated t0 BPEL ..o 143
Inserting "Human Task" activities for manual activity start and exit...................... 143

11

Tables
Table 1: Mapping rules (OVEIVIEW)ooo e 19
Table 2: FDL2BPEL command liN€ OPtioNScouviiiiiiiiiiiiie e 28
Table 3: Files generated by FDL2BPELcc..uiiiiiiiiiie et 32
Table 4: Mapping basic FDL data types ..o 37
Table 5: Activity ClassifiCation FUIES...........coveiiieiiiieee e e e 61
Table 6: UPES CONteXt data.......c..oo i 65
Table 7: Mapping an exit condition expression t0 BPELccccciiiiiiii e 74
Table 8: Semantic rules of "Merge” OPerationccccoviciii e 82
Table 9: Example 1 ("Merge" operation with two or more inbound data connectors).............. 82
Table 10: Example 2 ("Merge" operation with inbound data connector leading to an input

container with default ValUES)ooueiii i 82
Table 11: Example 3 ("Merge" operation with inbound data connector and data loop

(o0 1o =[]) [PPSR 83
Table 12: Example 4 (Combining examples 1 — 3) ..o e 83
Table 13: Example 5 (UPES or PEA activity ("staff activity") with default output data and/or

default data CONNECION)eiiiiee e e ee e 83
Table 14: Example 6 (Process activity with default output data and/or default data connector)

.. 84
Table 15: Example 7 (Block activity with default output data and/or default data connector) . 84
Table 16: Comparing staff/people assignment criteria (WMQWF vs. TEL)ccccoeiiiveiiennnen. 85
Table 17: Mapping WMQWF staff assignment criteria to TEL default people assignment

(o] 11 (Y5 - S 87
Table 18: Substitution MapPPING FUIEScooiiiiii e e e 90
Table 19: Queue NAMING CONVENTIONScocuiiiriieiiieie ettt 96

Table 20: UPES €XECULION MOTEccueuiieiiiietiiceessees s ee e e e e e e e e e e e eeeeeeeeeeeeeeeeeesbeaesaesbansnnnnannsas 96

12

Abbreviations

API
BFM
BPC
BPEL
BPEL4WS
FDL
HTM
ID
JAR
JDK
JMS
LDAP
MQ
MQMD
PEA
PES
RFH2
SCA
SCDL
SOA
TEL
UPES
wID
WMQWF
WPS
WSDL
XML
XPath
XSD

Application Programming Interface
Business Flow Manager

Business Process Choreographer
Business Process Execution Language
Business Process Execution Language for Web Services
Flow Definition Language

Human Task Manager

Identifier

Java Archive

Java Development Kit

Java Messaging Service

Lightweight Directory Access Protocol
Message Queuing

MQ Message Descriptor

Program Execution Agent

Program Execution Server

Rules and Formatting Header 2
Service Component Architecture
Service Component Definition Language
Service-Oriented Architecture

Task Execution Language

User-defined Process Execution Server
WebSphere Integration Developer
WebSphere MQ Workflow

WebSphere Process Server

Web Service Definition Language
Extended Markup Language

XML Path Language

XML Schema Definition

13

What is new with Version 6.17?

Initial WID process view without fully expanded structured activi-
ties

Unlike in WMQWF Buildtime, the business process editor in the former versions of WID ex-
panded every BPEL structured activity1 by default. As a consequence, you could not compare
the topological structure® of the original Flow Definition Language (FDL) process with the
structure of the corresponding BPEL process. Now, the initial view of the business process
editor shows the BPEL process with collapsed structured activities. This feature offers an
improved usability of the business process editor:

1. When opening a business process model for the first time, only the first level of a hi-
erarchical organized process model is expanded by default. All contained structured
activities are shown as collapsed node icons.

2. Similar to WMQWF Buildtime, you can discover the hierarchical structure of your
process by stepwise expanding the collapsed nodes. Each step will expand just the
next layer of the model hierarchy.

3. The last view that you see being displayed in the graphical model editor will be pre-
served, if you save the process in the editor.

Support of data type variables

Former versions of the FDL2BPEL Conversion Tool mapped WMQWF data containers to
BPEL variables that were marked as interface variables. This migration policy established
challenges when you wanted to rework the migrated model by optimizing the model structure
and by eliminating BPEL variables. Now, FDL2BPEL generates data type variables by default.
As a consequence, the BPEL variables lose their strong coupling to the "interfaces" and can
be removed or reassigned to another BPEL activity, if needed.

Support document/literal wrapped WSDL interfaces

This version of the FDL2BPEL Conversion Tool introduces the document/literal wrapped inter-
faces to the FDL to WSDL mapping rules. These are the technical characteristics of the
document/literal wrapped interface:

e The input message has a single part.
e The partis an element.
e The element has the same name as the operation.

e The element's complex type has no attributes.

Among other advantages the document/literal wrapped pattern makes the generated WSDL
files WS-l compliant. For more details see the article "Which style of WSDL should | use" by
Russel Butek at http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/.

Support for shorter variable names

All BPEL variable names generated by the FDL2BPEL Conversion Tool consist of the con-
catenation of the name of the process or of an activity and a name suffix that indicates the
role of an input or output container.® Since FDL activity names only need to be unique within

! BPEL activities such as "Scope", "Parallel Activities", "Sequence”, and "While Loop".

% See "topology preservation policy" in section "Are the migrated models too complex?" on
page 16.

® See "Mapping FDL data container to BPEL" on page 54.

14

the scope of a process (or block), previous versions have used a name prefix that helped to
avoid name clashes by using qualified names. The long name prefix consisted of a sequence
of FDL process and activity names that reflected the position of the migrated data container in
the model hierarchy. The FDL2BPEL ConverS|on Tool now resolves any name clashes imme-
diately and generates short but unique names.*

Support for activity expiration

Source artifact migration from WMQWF to WPS was limited with respect to using activity state
expressions in exit or transition conditions.” The documentation of FDL2BPEL Conversion
Tool V6.0.2 explained how to overcome the limitation by adding fault handlers to the respec-
tive BPEL activities. The current version adds such fault handlers automatically.®

Option to not create predefined data members as part of variables

The command line version of the previous FDL2BPEL ConverS|on Tool already had a pa-
rameter —pn ("Do not create predefined data members")’ that offered you the option to
exclude predefined members of WMQWF data containers from being migrated to BPEL. Now
this option is also available as a corresponding check box "Create predefined data members"
that you can deselect, if you want to get rid of predefined data members in BPEL variables.

Staff assignment policies
The FDL2BPEL Conversion Tool V6.1 supports the new human task feature part|C|pant sup-
port. It migrates the following staff assignment policies that are newly introduced in V6. 18

e Prefer not absent users

e Assign substitute if user is absent

Mapping of the WMQWF property Autonomy

The FDL2BPEL Conversion Tool maps value "control" of the FDL process autonomy flag to
the correspondlng BPEL autonomy value "peer". In all other cases, the BPEL autonomy flag is
set to "child".®

Mapping of the WMQWF property Execution mode

In case of a UPES activity the FDL property execution mode (with the selectable values "syn-
chronous" o asynchronous) is mapped to the corresponding SCA Import property "Preferred
interaction style".'

Improved error reporting

Though the current version of FDL2BPEL Conversion is still expecting a syntactically and
semantically correct FDL input file, the tool now supports a limited validation for complete-
ness. That is, the tool scans the FDL for indispensable definitions of subprocesses, data
structures, programs, and UPES servers. If the tool encounters severe errors, it reports them
with a message and does not start the migration operation itself. If there are no errors, the

* See "Mapping of FDL names to BPEL" on page 35.
® See "Activity states" on page 133.
® See "Activity expiration” on page 75.

’ Note that the options -pi and -pn cannot be used together (see "Running the FDL2BPEL
Conversion Tool" on page 27).

8 See "Substitution" on page 90.
® See "Autonomy" on page 108.

"% See "Preferred interaction style" on page 96.

15

WID Migration Wizard will create a module. Most errors and warnings locate the problem in
the FDL by a line number.

Continue On Error setting

The "Continue on Error" setting determines how the process should proceed when a fault (on
either an Invoke or Snippet activity) is not caught on the enclosing scope, or handled through
a local fault handler. The FDL2BPEL Conversion Tool disables the "Continue on Error" set-
ting. Accordingly, each failing activity without a fault handler is put into the stopped state, and
a work item for the process administrator(s) is created so that the problem can be repaired.
This corresponds to the behavior of WMQWF business processes.

16

Chapter 1: Introduction

Subject of this document

This document describes how to use the FDL2BPEL Conversion Tool Version 6.1. The tool
converts FDL definitions of business process models exported from the Buildtime component
of IBM® WebSphere® MQ Workflow Version 3.6.0 (WMQWF) into corresponding BPEL defi-
nitions of business process models which you can import into IBM WebSphere Integration
Developer (WID). It generates XML artifacts that you need to deploy and execute these proc-
esses with Business Process Choreographer (BPC) of IBM WebSphere Process Server
Version 6.1 (WPS). The generated XML definition files include XML schema definitions for
data flow objects, WSDL, BPEL, TEL, and SCDL definitions of SCA components and imports.

Who are the readers that will most benefit from this docu-
ment?

This documentation is limited to the technical concepts of the FDL2BPEL Conversion Tool
that you need to be familiar with in order to understand its working, how to use it, and how to
benefit from its capabilities. You should have expert level knowledge about WebSphere MQ
Workflow concepts and at least solid knowledge about Web services concepts and Business
Process Choreographer. This document does not provide advice for planning the migration
from an in-production WMQWF system to a WPS system. However, reading this document
and getting somewhat familiar with the FDL2BPEL Conversion Tool is a good preparation
before starting the planning phase.

Migrating with or without a tool?

A fundamental decision, that you must make, is to choose between a semi-automatic migra-
tion supported by this tool and a manual migration by developing new BPEL business process
models "from scratch". The term "semi-automatic" means that you cannot expect the migrated
business process models to deploy and execute without some manual reworking. There are
some possible reasons for this:

e The generated artifacts might be suboptimal because you detect redundant process
network nodes and BPEL variables that you should eliminate to achieve better per-
formance.

e The generated BPEL business process(es) will be incomplete if not all FDL attributes
could be translated due to limitations of the tool or insurmountable differences of
model concepts and programming model.

Nevertheless, you can expect that using the FDL2BPEL Conversion Tool and manually re-
working the migrated business process models will be less expensive and less error-prone
than doing the migration without the tool. You will experience that it is a complex task to mi-
grate the overall model structure, but getting the manual translation of data and control flow
right can be cumbersome and boring!

Are the migrated models too complex?

The generated BPEL business process models look more complex than the model graphs
that you are familiar with when using WMQWF Buildtime. Here are some simple reasons for
this:

e BPEL does not know data connectors. The FDL2BPEL Conversion Tool translates
FDL data connectors into "Snippet" activities. "’

e BPEL does not know the concept of an activity data input/output container with default
value settings. The FDL2BPEL Conversion Tool translates each data input/output

" See "Mapping FDL data flow to BPEL" on page 77.

17

container into corresponding BPEL variables and the setting of default values into an
"Assign" activity with name "Set the data default values"."

e Some implicit data and control flow semantics of FDL must be modeled explicitly with
BPEL. For instance, the business processes migrated to BPEL will contain extra
structured activities, such as "Sequence”, "Parallel Activities" (aka "Flow"), and "While
!_“oop" activity nodes that are required to ensure the proper flow of data and control."

In conclusion, your impression of increased complexity seems to be confirmed. However, the
mapping rules of the FDL2BPEL Conversion Tool follow a fundamental topology preserva-
tion policy. That is, despite the addition of extra activities, the structure of the migrated
process models is not changed. This helps you when validating the correctness of process
model migration and in gaining confidence in the new model’s appearance.

Example:

= Actl
[% Initialize human task input

2 Actl

-
[# Act1_OUT - Act2_IN [# Act1_OUT - Act3_IN
7 Actl I]I] b
P = ecomes
/ N

» A\

Figure 1: Topology preservation policy (1)

As you see, the FDL activity "Act1" becomes a BPEL activity "Act1", which is embedded in
another "Sequence" activity (also named "Act1"). The "Sequence" activity serves as a kind of
wrapper for the translation of the activity itself (here: "Human Task"). The two snippets repre-
sent the original outbound data connectors of the FDL activity "Act1". To verify that the
original topology of activity nodes and control connectors is preserved in the BPEL process
model, collapse all these wrappers (BPEL "Sequence" activities) by clicking on the "-" symbol

2 Actl
below the "Sequence" icon = . Now you should see that the migrated business process
contains the same number and sequence of activities:

=

E[En Eln%j :«ctz :«ct3
Act2 Act3

Figure 2: Topology preservation policy (2)

'2 See "Mapping FDL data container to BPEL" on page 54.
'3 See "Mapping the FDL workflow to BPEL" on page 57.

'* See "Exit conditions" on page 73.

18

FDL2BPEL usage modes

The FDL2BPEL Conversion Tool Version 6.1 is available in two modes:
1. Command line tool (see page 25).
2. WID Migration Wizard (see page 21).

Both modes of the FDL2BPEL Conversion Tool require a semantically complete FDL defini-
tion of a process model that you export from WMQWF Buildtime with the option "Export
deep". Using the "Export deep" option ensures that all necessary data, program, and sub-
process specifications are included. Make sure that any user-defined process execution
server (UPES) definitions that are referenced in your WMQWF process model are also se-
lected when you export the FDL file from WMQWF Buildtime.

What the FDL2BPEL Conversion Tool cannot do for you

The FDL2BPEL Conversion Tool does not cover the migration of the following:

WMQWEF runtime instances

WMQWF program applications that are invoked by a WMQWF Program Execution
Agent (PEA) or WMQWF Process Execution Server (PES for z/OS®)

WMQWF network hierarchy

WMQWEF staff

Program applications that use a WMQWF API

WMQWF auditing

In addition, the tool may not work properly with FDL input files that have a version ID prior to
V3R6 (see the limitation "Migration of early FDL versions" on page 130).

Some best practice hints

The scope and completeness of the mapping depends on how far you adhere to the following
"best practices" guidelines for migration:

e Make sure that all FDL program activities are associated with a UPES, if they are not pure
"staff" activities.

e Make sure that all staff assignments for WMQWF program activities are compliant with
the BPC Task Execution Language (TEL) default "people assignment criteria".'®

e Prefer short and simple names in order to improve the readability of migrated process
models. Note that some valid FDL names may be illegal BPEL names. The FDL2BPEL
Conversion Tool automatically converts problematic FDL names to valid BPEL names.

The FDL2BPEL Conversion Tool produces syntactically correct BPEL constructs, even for
non-migratable FDL constructs (PEA or PES program activities, some dynamic staff assign-
ments etc.), which need manual adaption to executable BPEL artifacts.

Mapping rules (overview)
Table 1 outlines the mapping rules:

'* See "Mapping WMQWF staff assignment criteria to TEL people assignment criteria" on
page 85

Table 1: Mapping rules (overview)

19

WMQWF Process Model Construct

BPEL with Extensions Construct™

Process

Process with execution mode: longRunning (BPEL

Default data settings

extension)
o Partner links for inbound and outbound interfaces of
2 process
g Program activity Invoke activity
& Process activity Invoke activity
Empty activity Empty activity
Block Parallel activities (also called flow activity)
Start condition of activity Join condition of activity
Exit condition of activity While activity (enclosing the actual activity)
> Control connector Link, source element of activity, target element of
o activity
T8 Transition condition (of control connec- Transition condition (assigned to source element)
© | tor)
"E‘ Staff assignment of activity Human task activity (BPEL extension using assigned
8 TEL task definition)
Notification Escalation (BPEL extension using assigned TEL task
definition)
Expiration for activity Expiration for invoke activity (BPEL extension)
Source and sink Variables for process input and process output
Receive activity and reply activity
Input / output container of activity Variables for specification of input/output of invoke
g activity
T Data connector Snippet (activity with inline Java code that copies
o data from a source BPEL variable to a target BPEL
3 variable)

Assign activity (assigns default data as literal values
to a BPEL variable)

Global data container

Variable

After the WID import you should review and, if necessary, modify the generated files. In case
of errors, warning or information messages, you will find comment annotations in the gener-
ated WSDL and BPEL files. Additional effort may be necessary to either make a successful
migration possible or to complete the migration task.

Ideally, make your first migration experiences with small projects. The FDL2BPEL Conversion
Tool will simplify the conversion of your FDL process models into BPEL process models, but
you should be aware that FDL and BPEL cannot be mapped one-to-one because of differ-
ences between the programming models. The semantic scopes of FDL and BPEL share an
area of intersection, but they do not overlap completely.

'® Note that FDL2BPEL translates to a BPEL specification that is based on the BPEL4AWS
V1.1 standard (cp. http://www.ibm.com/developerworks/library/specification/ws-bpel/) and IBM
extensions (for instance Java Snippets).

20

Chapter 2: Using the FDL2BPEL Conversion Tool

Exporting a WMQWF model from WMQWF Buildtime

To create an FDL file, perform the following:

1. Export the WMQWF process model from WMQWF Buildtime with the option "Export
deep" (see Figure 3). This ensures that the export includes all referenced objects. For in-
stance, the exported FDL file will also contain the definitions of subprocesses, if your
selected process model contains "process activities". This way, you only need to select
the top-level process model and the referenced UPES definitions (see below) to export.

2. Your FDL must also contain the definitions of any user-defined program execution server
(UPES) that is associated with any program activity in your FDL process. You must se-

lect a UPES definition explicitl

"Export deep" is not sufficient for this purpose.).

for_export from WMQWEF Buildtime (The option

Note that any FDL processing actions, such as REPLACE, UPDATE, and DELETE will be
ignored.”” " Also note that the FDL2BPEL Conversion Tool expects a syntactically correct
and complete FDL input file.' If the tool encounters severe errors, it will report them without

starting the migration operation.

—Export selection Export format
(" Export all ohiects of same type @ FOL
(® Exportsingle ohjects HTHL

Export flacs

v Exportdeep

—Show objects

Process models

—Export information

[in default status

& Assess Risk

eof CreditFiequest
EXPIRE_CONTAINERT
FCL_Import_2_1
Insurance

i Jawva Services

v updated

|_ marked for deletion

'in guestion' (not sure
= whether these ohjects
existin the runtime
database or nof)

#-{E] Mo categary assigned
EA Staff
---@ Fersons
=-g2 Roles
-8 Organizations
| #-@ Levels
7 Metwork

HI Y S

Befresh

o |

\/ lfthe ohjectis
selected for Export,

its icon will look like

Select a node for Export
with the left mouse buttan
and the SHIFT key.

Deselect a node with the
right mouse button and the
SHIFT key.

=l &

Cancel |

Apply | el

Figure 3: Exporting a WMQWF model from WMQWF Buildtime

' FDL files exported from WBI Modeler should be imported into WMQWF Buildtime before.

'8 See "FDL processing actions" on page 130.

'¥ See "Problem detection” on page 131.

21

Using as WID Migration Wizard

By importing a WMQWF business process model exported from WMQWF Buildtime® the WID
Migration Wizard converts the FDL definitions into corresponding WPS artifacts. The gener-
ated files comprise XML schema definitions for business objects, WSDL definitions, BPEL,
SCA import and component definitions, and TEL definitions (see "Understanding the gener-
ated files" on page 32). The files are automatically moved into a newly generated Business
Integration module.

To use the WID Migration wizard, perform the following:

1. Prepare the WMQWF business process(es) you want to migrate by creating an FDL file (cp.
"Exporting a WMQWF model from WMQWF Buildtime" on page 20).

2. Start the WID.

3. InWID, invoke the wizard by selecting File > Import... > Business Integration > WebSphere
MQ Workflow FDL File

x

Select
~

=]

Select an import source:

| type filter text

[#-= General

El (= Business Integration

P WebSphere InterChange Server JAR File
WebSphere M) Waorkflow FDL File
WebSphere Studio Application Developer Integration Edition Service Proje
¢+ (Z) wsDL/Interface
H-= cvs

E-(EIB

-G J2EE

E> Plug-in Development
E> Profiling and Logging
E-{= SIP

(= Team

(2= Test

- Web

F-(Z=- Web services -
4| |

|»

(?) = Back I Mext = I Fimish | Cancel |

Figure 4: Running FDL2BPEL as WID Migration Wizard (1)

You can also open the WID Migration Wizard from the WID Welcome page by clicking on
the Returning Users icon to open the Returning Users page. Note that you can return to
the Welcome page by clicking on Help > Welcome.

%% See "Exporting a WMQWF model from WMQWF Buildtime" on page 20.

=lof |

1+ Business Integration - IBM WebSphere Integration Developer 6.1 - D:\wid-61 Workspaces\FVT
File Edit Mavigate Search Project Data Run Window Help

- ielcome x N e ==

[Integration Developer Go to the Business D%

. Integration perspective
Q ol @

Get Started Samples / Tutorials Returning Users Web Resources

RETURNING USERS

Learn about what is new and learn how to migrate existing projects

,./\\ New and Improved Tools

<K /_ Product Enhancements
Wha NEW \f Specific editor and wizard additions and < __;.
{ improvements ‘\/ General product improvements
Migration.....

(./\-\) WebSphere Family Interoperability ,/\'\:_ Performance

<z g .

A4 Interoperability with other WebSphere products ‘\/ Performance improvements

" |

Figure 5: Running FDL2BPEL as WID Migration Wizard (2)

Click Migration on the left of the Returning Users page to open the Migration page:

=lol x|

=

4+ Business Integration - IBM WebSphere Integration Developer 6.1 - D:\wid-61-Workspaces\FVT
File Edit Navigate Search Project Data Run Window Help

- iciome > N RS

[Pe o Integration Developer Go fo the Business. u%

. Integration perspective -
Q S

Get Started Samples / Tutorials Returning Users Web Resources

RETURNING USERS

Learn about what is new, find resources, and learn how to migrate existing projects

E | Migrate a WebSphere MQ Workflow
=| process

Launch the FlowMark Definition Language (FDL)
migration wizard

What's New .“$ Migration Guide
0.0/ Learn how to migrate your applications to
WebSphere Integration Developer V6.1

52 titgrate-an-Integration Edition-5:1-service

. 2 &5 project
Migrate a WebSphere ICS repository Launch the WebSphere Studio Application
Launch the WebSphere InterChange Server (ICS) Developer Integration Edition service project
migration wizard

migration wizard

;$ ~ Migrate WebSphere Adapters

©.0] Leam how to migrate applications using previous
adapter levels

0 |

Figure 6: Running FDL2BPEL as WID Migration Wizard (3)

From the Migration page, select the option "Migrate a WebSphere MQ Workflow process".

23

4. The WID Migration Wizard opens. Either enter the absolute path and name of the FDL file into
the Source selection field or find the FDL file by clicking Browse... and navigating to the file.'
Enter the module name in the Module name field, and then click Next >.

4+ Migration il
WebSphere MQ Workflow FDL File Migration

Select an FDL source file and choose a module name GD
Source selection: | D:\CreditRequest.fdl Browse |

Module name: | Credit

< Back | Next > | Finish I Cancel |

Figure 7: Running FDL2BPEL as WID Migration Wizard (4)

5. The "Migration Options" page opens. Here you can accept the migration defaults or change
the options. If you prefer to have the name conversion from FDL to BPEL under your own con-
trol, select the "Treat name conflicts as errors" check box.?? Otherwise, FDL2BPEL will solve
any name conflicts automatically. If you have no need for using predefined data members, de-
select option "Create predefined data members".2® The "Initialize predefined data members"
check box adds extra nodes to the process to initialize predefined data members®. Moreover,
you can overwrite the target namespaces for XM Schema®, WSDL?, and BPEL?’ definitions.

#! This step corresponds to entering the -i argument if you start the FDL2BPEL Conversion
Tool from the command line.

%2 This check box corresponds to the -fc option if you start the FDL2BPEL Conversion Tool
from the command line.

% This check box corresponds to the -pn option if you start the FDL2BPEL Conversion Tool
from the command line.

? This check box corresponds to the -pi option if you start the FDL2BPEL Conversion Tool
from the command line.

®® This entry field corresponds to the -tx argument if you start the FDL2BPEL Conversion Tool
from the command line.

?® This entry field corresponds to the -tw argument if you start the FDL2BPEL Conversion
Tool from the command line.

% This entry field corresponds to the -tb argument if you start the FDL2BPEL Conversion Tool
from the command line.

24

4= Migration x|
WebSphere MQ Workflow Migration Options G>

You can accept the defaults

[~ Treat name confiicts as errors

Hint:Because there are different syntax rules, migration might change
FDL names, possibly causing the new names to conflict with existing FDL
names. If you do not select this box, name conflicts are automatically
resolved. If you prefer to resolve name conflicts yourself, select this box.
Then the name confiicts wil be identified as error messages on the
Migration Result page, and you wil see the Migration Result page after
you click Finish.

[v Create predefined data members

Hint: In WebSphere MQ Workflow, predefined data members exist for al
data containers. These data members can be used in the process model
and in this case they need to be created. If you do not want to use this
predefined data in the process model, you can avoid unnecessary
overhead by clearing this box.

[Initialize predefined data members
Hint: If you select this box, extra nodes are added to the process to
initialize the predefined data members _ACTIVITY and
_PROCESS_MODEL.

Target namespaces:
XML schema namespace: | http:/vww.ibm.com/xmins/prod/websphere/mawf/s

WSDL namespace: | http:/www.ibm.com/xmins/prod/websphere/magwf/v

BPEL namespace: | http:/www.ibm.com/xmins/prod/websphere/mawf/t

Restore defaultsl

(7 i <Back | [t = | Einish I Cancel |

Figure 8: Running FDL2BPEL as WID Migration Wizard (5)

Click Finish.

1. If the migration produces no errors, warnings, or informational messages, the wizard
window will close. Otherwise, a Migration Results window appears containing the
messages, as shown below:

25

4= migration Results N ~|o] x|

Migrated source: | D:\FDL2BPEL_TEST\Credit_Request\CreditRequest.fdl

Select a migration result message from the following list to display its full description in the Message Descripti

| Message
& CWWBMO160W: CreditRequest.fdl{107:9): To avoid a name clash, the process name "CreditReques...
CWWBMOD39W: CreditRequest.fdi{107 et segq.): The FDL attribute "valid from" was missing in proc..
CVWWBMOO20W: CreditRequest.fdi(107 et seqq.): No BPEL mapping is available for FDL option "Kee...
CVWWBMOOZ1W: CreditRequest.fdl(117 et seqq.): Cannot decide whether program activity "Accept...
CVWWBMOO21W: CreditRequest.fdi(127 et segq.): Cannot decide whether program activity "Assess...
CVWWBMO021W: CreditRequest.fdi(137 et segq.): Cannot decide whether program activity "Collect...
CWWBMO021W': CreditRequest.fdi(147 et seqq.): Cannot decide whether program activity "Reject...
CVWWBMO021W': CreditRequest.fdi(157 et seqq.): Cannot decide whether program activity "Reques...
CVWWBMOO75W: CreditRequest.fdi(107 et segq.): There is no data connector in process "CreditReq...

B e

Message Description:

CVWWBMOO39W: CreditRequest.fdi(107 et seqq.): The FDL attribute "valid from" was missing in :]
process "CreditRequest” (dummy value created).

|-
Generate ToDo's Save as .. oK |

Figure 9: Running FDL2BPEL as WID Migration Wizard (6)

In the Migration Results window, you can see the migration messages that were
generated during the migration process. By selecting a message from the upper Mes-
sage list, you can display the complete information about that message in the lower
"Message Description" window. To keep all messages for future reference, click the
Generate ToDo's button to create a list of "ToDo" tasks in the task view, and/or click
the Save as... button to save the messages as a text file in the file system. Finally,
click OK.

2. If not already done, change to the WID Business Integration perspective. After having
finished the above steps without error messages listed in the Migration Results win-
dow?® you will find a new module in the Business Integration tree view with the name
that you entered in step 4:

4+ Business Integration - IBM WebSphere Integration Developer
Fle Edit Mavigate Search Project Run Window Help

IC3 = JEl~ & |~ | &[G~
E}[E'Eqév:'lfq

EREY Credit
112 Ordering
#-1= Travelbooking

Figure 10: Running FDL2BPEL as WID Migration Wizard (7)

Using as command line tool

As an example, this chapter explains how you can prepare a command file for Microsoft Win-
dows® that allows you to invoke the FDL2BPEL Conversion Tool from the command line.

%8 Warnings are allowed.

26

Compared with the WID Migration Wizard, the command line version has, despite its minor
usability, the advantage that it delivers detailed information about the migration progress. For
example, other than the WID Migration Wizard, it reports the renaming of FDL objects (see
"Mapping of FDL names to BPEL" on page 35). Maybe you prefer to have more control on the
renaming of FDL names that are incompatible with BPEL and decide to perform the renaming
in WMQWF Buildtime or in the exported FDL file. This way, you can run the migration several
times until you have the expected result and run it before you import the generated files® into
WID.

Installation

Prerequisites
e |BM WebSphere Integration Developer 6.1 (in order to rework or improve the mi-
grated processes)

e IBM WebSphere Process Server, version 6.1 (in order to deploy and execute the mi-
grated processes)

Preparing the "fdl2bpel' command file

Running the FDL2BPEL Conversion Tool from the command line requires a classpath setting
that includes the following JAR files:

fdl2bpelcore_6.1.0
CommonMigrationinterface_6.1.0
core_6.1.0

common_6.1.0

For this, create a new command file with name "fdI2bpel.bat". Edit the command file, and in-
sert the following code:

@echo off

setlocal

@set WID_DIR=<WID installation directory>

@set WID_SHARED_DIR=<WID shared directory>

@set WSTOOLSPLUGINS=%WID_SHARED_DIR%\plugins

@set JDK_HOME=%WID_DIR%\dk\jre\bin

@set FDL2BPELCORE=%WSTOOLSPLUGINS%\com.ibm.bpe.fdl2bpelcore_<version nbr>.jar

@set MIGRATIONINTERFACE=%WSTOOLSPLUGINS%\com.ibm.wbiserver.migration.CommonMigrationInterface_<version nbr>.jar
@set BPECORE=%WSTOOLSPLUGINS%\com.ibm.bpc.core_<version nbr>.jar

@set BPECOMMON=%WSTOOLSPLUGINS%\com.ibm.bpc.common_<version nbr>.jar

@set FDL2BPELCLASSPATH=%FDL2BPELCORE%;%MIGRATIONINTERFACE%;%BPECORE%;%BPECOMMON%
@echo on

"%JDK_HOME%\java" -classpath "%FDL2BPELCLASSPATH%" com.ibm.bpe.fdI2bpel.converter.FDL2BPELConverter %*
@echo off

@endlocal

Change the "WID_DIR" and "WID_SHARED_DIR" variable according to your local environ-
ment. Examples:

e WID_DIR=C:\Program Files\IBM\WID61
¢ WID_SHARED_DIR=C:\Program Files\IBM\SDP70SHARED
You can find these directories in you WID product configuration:

%% See "Chapter 3: Understanding the generated files" on page 32.

27

1. Click on Help -> Software Updates -> Manage Configuration.

2. Look up the two directories in the tree view of the left-hand side (see Figure 11).

&% Product Configuration - o] x|
File
%= [& | =]
= €8 1BM WebSphere Integration Developer 6.1 . -
” - [E——— C:\Program Files\IBM\WID61
RS C-\Program Files\IBM\SDP70Shared Instal Location

Available Tasks
Disable

You can enable or disable an entire install location. Disabling a location is
equivalent to disabling every feature in it.

Add an Extension Location

Locate and add an extension location to the current configuration. An
extension location contains features and plugins previously installed.

Show Properties
View the properties of the install location.

C:\Program Files\IBM\WID&1

Figure 11: Looking up WID installation directories

At last, search for the referenced Jar files in the plugins directory (referenced by variable
WSTOOLSPLUGINS) and change the version numbers accordingly. For example,
"com.ibm.bpe.fdI2bpelcore_<version nbr>.jar" becomes
"com.ibm.bpe.fdI2bpelcore_6.1.0.200711081700.jar".

How to translate WMQWF models into BPC models

To use the FDL2BPEL Conversion Tool from the command line, first prepare the WMQWF
business process(es) you want to migrate by creating an FDL file (see "Exporting a WMQWF
model from WMQWF Buildtime" on page 20).

Running the FDL2BPEL Conversion Tool

The FDL2BPEL Conversion Tool has the following command line options:

28

Table 2: FDL2BPEL command line options

Command
line option

Command line
argument

Explanation

-hor?

Displays the help information.

<file name>

Name of the FDL input file.

-od

<directory name>

Location of the directory that all files generated by the FDL2BPEL Con-
version Tool will be written to.
Default: Directory location of the input file

_oedU

<project name>

Name of the WID module which you want to import the generated files
into to review and generate deploy code.

This parameter is required if your FDL input file contains the definition of
a process with sub-process invocations (process activities).

-fc

<Boolean>

Treat name conflicts as errors.
Because FDL and BPEL have different syntax rules, the FDL2BPEL
Conversion Tool might change FDL names to match the BPEL syntax
rules. To avoid different FDL names being converted to the same BPEL
name, the tool can add a suffix to the name.
e true

Report an error in case of a possible name conflict.
o false (default)

Append a name suffix in order to solve a name conflict.

31

_pl

<Boolean>

Initialize predefined data members.

e true
Create "assign" activities that initialize the predefined data mem-
bers " _ACTIVITY" and "_PROCESS_MODEL".

o false (default)
Do not initialize the predefined data members

31

_pn

<Boolean>

Do not create predefined data members in BPEL.

e true
Create XML schema definitions for the translated data containers
without predefined data members.

o false (default)
Create XML schema definitions for the translated data containers
such that they include predefined data members.

<namespace URI>

Target namespace URI for the generated XML schema file with default:
"http://www.ibm.com/xmins/prod/websphere/mgwf/schema/"

<namespace URI>

Target namespace URI for the generated WSDL file with default:
"http://www.ibm.com/xmlIns/prod/websphere/mqwf/wsdl/"

<namespace URI>

Target namespace URI for the generated BPEL file(s) with default:
"http://www.ibm.com/xmins/prod/websphere/mqwf/bpel/"

<version>

Version of IBM WebSphere Process Server. Allowed values are "v51"%
"v60"*, "v602", "v61" (default).

Enter, for example, "fdl2bpel -i CreditRequest.fdl" to run the migration of a WMQWF busi-
ness process that you previously exported to a file "CreditRequest.fdl":

% Versions "v51" and "v60" only (cp. option "-v")

% Note that the options "-pi" and "-pn" cannot be used together.

% No longer recommended.

29

D: \FDL2BPEL_TEST\Credit_Request>fdi2bpel -i CreditRequest.fd]l

D:\FDL2BPEL_TEST\Credit_Request>" WBIX\00739.04\java\bin\java" -classpath "D:\BPC\Migration\FDL2BPEL-Converter\Td
com. ibm.wbiserver.migration.CommonMigrationInterface. jar; \BPC\Migration\FDL2BPEL-Converter\Tools\Version6.1l\bpecd
[CWWBMOO66I: FDL2BPEL converter version 6.1.
[CWWBMOOO7I: Reading FDL input file "D:\FDL2BPEL_TEST\Credit_Request\CreditRequest.fdl".
[CWWBMO173I: CreditRequest.fdl1(12:18): Converting the structure name “"Default Data structure in FDL to the structu
[CWWBMOOS6I: CreditRequest.fd1(107:9): The FDL name "CreditRequest"” cannot be used because credthequest is a resq
[CWWBMO160W: CreditRequest.fdl1(107:9): To avoid a name clash, the process name "CreditRequest” in FDL is converted
ICWWBMOO16I: Writing output file "D:\FDL2BPEL_TEST\Credit_Request\CreditRequest.xsd".
[CWWBMOO16I: Writing output file " 2 . \ i equest\CreditRequest.wsdl".
ICWWBMOO39W: CreditRequest.fdl(107 et seqq.): The FDL attribute id from" was missing in process "CreditRequest”

: CreditRequest.fd]1(107 et seqq.): No BPEL mappi is available for FDL option "Keep finished processes

: Writing output file "CreditRequestOl_AcceptCredit.itel”

: Writing output file “CreditRequestOl_AssessRisk.itel".

: Writing output file "CreditRequest0l_CollectCreditInformation.itel”.

: Writing output file "CreditRequestOl_RejectCredit.itel”.

: Writing output file "CreditRequestOl_RequestApproval.itel™.

: CreditRequest.fdl (117 et seqq.}: cannot decide whether program activity "AcceptCredit” should be mapped
tivity" ("human task (staff) activity" assumed).
CWWBMOO21W: CreditRequest.fdl(127 et seqq.): Cannot decide whether program activity "AssessRisk" should be mapped

' assumed).

ICWWBMOO021W: credthequest fd1(137 et seqq.): cannot decide whether program activity "cCollectcCreditInformation” sho
nvocation activity” ("human task (staff) activity" assumed).
CWWBMOO21W: CreditRequest.fdl (147 et seqq.): Cannot decide whether program activity "RejectCredit” should be mapped

CWWBMOO”IW Credthequest fd1(157 et seq qq.): cannot decide whether program activity "RequestApproval” should be maf
activity” ("human task (staff) activity” assumed).
1 CreditRequest. fd1(lo/ et seqq.): There is no data connector in process “CreditRequest" that collects tt
: Writing output file "CreditRequest0l_bpel.mon"
: Writing output file FDL2BPEL_TEST\Credit. Request\cred1tRequestOl.bpe1”.
: Writing output file FDLZBPEL_TEST\Credit_Request\CreditRequestOl.bpe1ex”.
: writing output file "CreditRequestOl.component™.
CWWBMOOOS5I: Exit with return code 2.

D:\FDL2BPEL_TEST\Credit_Request>_

Figure 12: Running FDL2BPEL from the command line

You can find more details on the generated files in "Chapter 3: Understanding the generated
files" on page 32.

The FDL2BPEL Conversion Tool has the following return codes:

0 Processing finished successfully without errors or warnings.
2 Processing finished successfully and warnings occurred.
4 Errors occurred.

Importing the artifacts into WID

To import the generated files into WID, perform the following:

1. Start the WID.

2. Open the "Business Integratlon perspective, and create a new module by clicking:
File -> New -> Module®

3. Enter the desired module name, and click Finish.

%3 For versions "v51" and "v60" only:

Make sure that the module name you enter is the same that you specified when you ran the
FDL2BPEL converter (command line tool parameter -oe).

4+ Business Integration - IBM WebSphere Integration Developer 6.1 - D:\wid-61-
File Edit Mavigate Search FProject Data Run Window Help

TRl = e e =l FE R b L R [e B i
mwﬂmlmum&s‘ il

@EB’E@\E!%V|

x|
Module .|

Create a new business integration module. A module is a project that is used for D
development, version management, organizing resources, and deploying to the

Module Name: I CreditRequest
[+ Use defautt location
Location; | D:/wid-61-Workspaces/FVT/CreditRequest Browse. . |

[~ ©Open module assembly diagram

Business integration modules can be deployed and run on WebSphere Process Server.
They can contain many types of components, such as business processes, assembled
together for the purpose of business integration.

&)

s @ Finsh | Cancel |

Figure 13: Creating a new business integration module

Select the created module, and click: File -> Import... -> General -> File system ->
Next >.

4+ Business Integration - IBM WebSphere Integration Developer 6.1 - D: \wid-61-Wol
Fle Edit Mavigate Search Project Data Run Window Help

Ioi=Eo e~ g la- 8@ -]t o~

|
Physical Resourm| =0 |
<

e R
= = NiceJourney
R n
i ki port x|
(s De|
¢ gy Select W
~ & Dal Import resources from the local file system into an existing project.
@ Inty
L-ds Mal
Select an import source:
| type fiter text
=& General -
i~ Archive File
-5 Breakpoints
-1 Existing Projects into Workspace
-t Existing RAD 6.x Data Definition Project
[} File System
«-IE, Preferences
#-(= Business Integration
B-(= CVS
B E1B
- 12EE
#-= Plug-in Development
& Profiing and Logging LI
Select worl
€ vaids 7) < Back I Next = I Firist | Cancel |

Figure 14: Importing FDL2BPEL generated files (1)

31

5. Browse for the source directory that contains the files that were generated by the
FDL2BPEL Conversion Tool. Check the listed directory on the left side. Uncheck
those files on the right side that may not belong to the files generated by the
FDL2BPEL Conversion Tool (for example, the FDL file). Then click Finish.

4+ Business Integration - IBM WebSphere Integration Developer 6.1 - D:\wid-61-Workspaces)\|

File Edit Mavigate Search Project Data Run Window Help

=

&~ @ |a~]8 @2~

|@ |t =i vt

% Physical Resources| =0

EEIERIEE

B (= CreditRequest

- CEET————]
L

& File system —_—

& Import resources from the local file system.

@ -4
&

From directory: I D:\FDL2BPEL_TEST\Credit_Request

j Browse...

[F]i= Credit_Request

 JNEEEEEE

|| CreditRequest.fdl

® CreditRequest.wsdl

[C] CreditRequest.xsd

aj CreditRequestd1_AcceptCredit.itel

aj CreditRequestdl_AssessRisk.itel

|| CreditRequest01_bpel.mon

;ﬂ CreditRequestdl_CollectCreditinformati
aj CreditRequestll_RejectCredit.itel

7] CreditRequesto1 Requesmuuriuval.\tilj
»

-

Filter Types... | Select All Deselect All |

Into folder: | CreditRequest

Browse...

Option:
[~ overwrite existing resources without warning

G Build £ | ¢ Create complete folder structure

Select 1 (@ Create selected folders only

cCy
@y

[

2 < Back |

[Ext =

| Finish I

Cancel |

Manual

Figure 15: Importing FDL2BPEL generated files (2)

6. Wait for the WID "Building workspace" progress indicator to reach 100%, which
means you have successfully created the project module.

J Buiding workspace: (27%)

mm <

32

Chapter 3: Understanding the generated files

Introduction

The FDL2BPEL Conversion Tool generates the following file types:

Table 3: Files generated by FDL2BPEL

Generated . . .
file type File naming File content
XSD <FDL file name>.xsd XML schema definitions of FDL data structures
WSDL <FDL file name>.wsdl Interface, binding, and address information of Web
services
BPEL <FDL process name>.bpel XML description of a single business process model
using the BPEL standard and the IBM BPEL exten-
sion definitions
BPELEX** *® <FDL process name>.bpelex | Partial XML description of the graphical layout of a
single business process model
TEL™ <FDL activity names.itel XML description of tasks for people participating in
the execution of a business process
COMPONENT®" | <FDL process XML description of an SCA process component
name>.component
IMPORT®’ <system name>_<server XML description of an SCA MQ JMS Import (re-
name>.import quired for a UPES invocation)
JAVA®’ <FDL data structure name> Data binding for SCA MQ JMS Import (required for
~UPES_OUT _MSG a UPES invocation)
_DataBindinglmpl.java
MON® <FDL process Definitions for monitoring events
name>_bpel.mon
The XSD file

For each FDL file, the FDL2BPEL Conversion Tool generates a single XSD file. The XML
schema definitions represent the FDL data structures in the FDL file.

The XSD file also contains XML schema definitions for the input or output data containers of
the FDL constructs PROCESS, PROGRAM, BLOCK, PROGRAM_ACTIVITY, or
PROCESS_ACTIVITY. Note that a data container consists of the data members of a related
FDL STRUCTURE definition and additional predefined data members.

For business processes that do not exploit the predefined data members, the user can sup-
press their generation using the command line option -pn ("do not generate predefined data
members")* or uncheck the Migration Wizard option "Create predefined data members"*.

The XML Schema definitions are imported into the generated WSDL file.

* The generated BPELEX files contain the required XML definitions that control the status
"collapsed" of the BPEL structured activities.

% Previous versions of FDL2BPEL generated also a BPELEX file with a different content (see
the documentation for V5.1 and V6.0).

% Version "v60" or later.

% Version "v602" or later.

% Version "v61" only.

% See "Running the FDL2BPEL Conversion Tool" on page 27.
“% See "Using as WID Migration Wizard" on page 21.

33

The WSDL file

A WSDL (Web Services Definition Language) file describes Web services in a common XML
grammar. The FDL2BPEL Conversion Tool generates a single WSDL file that contains the
following data, which is derived from the FDL file content:

¢ Data type information for all message requests and message responses
¢ Interface information describing all publicly available functions
e Binding information about the transport protocol to be used

e Address information for locating the specified services

The BPEL files

For each PROCESS construct found in the FDL input file, the FDL2BPEL Conversion Tool
generates a single BPEL file that has the same name as the process. BPEL is used in BPC to
describe business process behavior based on Web services. The language is defined as the
"Business Process Execution Language for Web Services Specification, Version 1.1"
(BPEL4WS*). Business Flow Manager (BFM) also includes extensions to the BPEL language
for constructs, such as people-based activities, which are not defined in BPEL. For details,
refer to the BPEL specification and the Business Flow Manager documentation.

The BPELEX files

For each process definition, a BPELEX file is generated that contains a subset of the graphi-
cal layout definitions.*”® In particular, the file contains control information about the initial
"collapsed” status of BPEL structured activities.*®

The TEL files

For each activity definition that translates to a BPEL "staff activity" (cp. section "Mapping FDL
PROGRAM_ACTIVITY to BPEL"), a TEL file is generated. In WebSphere Process Server
Version 6.1, the Business Process Choreographer consists of two components: BPC Busi-
ness Flow Manager (BFM) and BPC Human Task Manager (HTM). The BFM implements the
business process navigation capabilities available in previous releases of Business Process
Choreographer, but without the human task capabilities. BPEL is used to specify the process
navigation tasks. The HTM provides the human task capabilities for Business Process Chore-
ographer. The Task Execution Language (TEL) is the corresponding XML specification
language used for this purpose.

The COMPONENT files

The FDL2BPEL Conversion Tool generates an SCA component for each process definition
found in the FDL file.

The IMPORT files

For each FDL user-defined program execution server (UPES) definition that is referenced by
an FDL program activity so that it translates to a "Service invocation activity"**, an SCA import
file is generated. These files contain the SCA definitions for SCA imports to invoke a UPES
service using an MQ JMS binding.

*!'In this documentation BPEL4WS Version 1.1 with IBM extension elements is referred to as
"BPEL".

“2 WID automatically adds other layout definitions to the generated BPELEX file(s).
“® See "Initial WID process view without fully expanded structured activities" on page 13.
* See "Activity classification rules" on page 60.

34

The JAVA files

Java files are generated for the data binding of the SCA MQ JMS import for each inbound
message received from a UPES, thereby setting the message type and message type name-
space.

The MON file

This file contains the definitions of business events for monitoring purposes, similar to the
audit settings in WMQWF. Currently, migrating WMQWF audit event definitions to WPS is not
supported. The generated .mon file just disables all event monitoring.

35

Chapter 4: Migration mapping rules
Mapping of FDL names to BPEL

Introduction

With the conversion of a WebSphere MQ Workflow process to WebSphere Process Server
names must be checked against the syntax rules in BPEL and converted if necessary. Names
of the following FDL objects are processed:

o FDL file

e Activities

e Processes

e Programs

e Servers

¢ Connectors

e People

¢ Organizations

¢ Roles

e Data structures

¢ Data structure members
For all these names the approach is the same and consists of two steps:

1. Convert the FDL name to a BPEL-compliant name, for example, by removing blanks
or characters which are not allowed in BPEL names.

2. Check if this new BPEL-compliant name is already in use for another FDL concept
which might cause a name conflict in the BPEL process model. If this is the case, the
BPEL-compliant name is modified by appending a suitable number such that the
name conflict is avoided.

Keep in mind that this naming conversion algorithm can have unwanted side-effects. For ex-
ample, if you redesign your FDL process, due to a different order in the FDL file, names could
be converted differently compared to a previous run of the migration tool.

This problem can be avoided if in the FDL processes you use only BPEL-compliant names.
For this, consider the option -x of the WebSphere MQ Workflow runtime export and import
utility (fmcibie). See the documentation "IBM WebSphere MQ Workflow Getting Started with
Buildtime" for more information.

Name mapping rules in detail

1. Activity names are truncated if necessary so that they are not longer than 64 bytes as
UTF-8 string.

For all names, blanks are removed.

For all names, "(" and ")" are replaced by "_".

If an activity name, member name, process name, program name, or data structure
name starts with a digit, then the character "N" is prefixed before the name.

5. Member name and data structure names are converted to valid Java identifier names.
If the first character of the name is not an allowed first character of a Java identifier
but an allowed character of a Java identifier, the name is prefixed with a letter "N".

36

Then, all characters of the name which are not allowed characters in a Java identifier
are replaced by an "_". In addition, the first character of the name is made uppercase.

6. If a member name or data structure name is "Class", then this name is replaced by a
generated name.

7. File names and activity names are checked if they contain non-migratable special
characters outside of the following set: a-z, A-Z, 0-9, -, ., _, ~. Non-migratable charac-
ters are replaced by " _".

FDL to XSD mapping rules

Mapping FDL "STRUCTURE" to a "Business Object"

An FDL data structure definition consists of a sequence of data members that are specified as
pairs of member names and data types. For example:

= Reservation - Data structure properties 2l x|

General | Diocumentation |

Data structures that are used in global data containers cannot contain members
that represent an array or another deta structure.

MNarme
|Reservation
Description
| -
w
< ¥
Data members
MName Tvpe Array size | = |
CompanyMame “ariahle length string
FromDateTime “ariahle length string
FromLocation Yariahle length string +g
ToDateTime “ariahle length string
Tolocation “ariahle length string
ReservationMo Yariahle length string =
Comrment “ariahle length string 3 a
Success Yariahle length string
(0]:4 Cancel | Al | Eeset | Help |
|E~‘«‘ Object locked by user IDVADKMIN |§ Database storage maode

Figure 16: Sample FDL data structure

If you export such a data structure definition into an FDL file you get the external FDL format:

STRUCTURE 'Reservation'
'CompanyName': STRING;
'FromDateTime': STRING;
'FromLocation': STRING;
'ToDateTime': STRING;
'"ToLocation": STRING;
'ReservationNo': STRING;
'Comment": STRINGI3];
'Success': STRING;

END 'Reservation’

37

The FDL2BPEL Conversion Tool translates that FDL data structure definition into a corre-

sponding XML Schema definition like this:

<complexType name="Reservation">
<sequence...>

<element name="CompanyName" type="xsd:string" minOccurs="0"/>

<element name="FromDateTime" type="xsd:string" minOccurs="0"/>

<element name="FromLocation" type="xsd:string" minOccurs="0"/>

<element name="ToDateTime" type="xsd:string" minOccurs="0"/>

<element name="ToLocation" type="xsd:string" minOccurs="0"/>

<element name="ReservationNo" type="xsd:string" minOccurs="0"/>

<element name="Comment" type="xsd:string" minOccurs="0" maxOccurs="3"/>
<element name="Success" type="xsd:string" minOccurs="0"/>

</sequence>
</complexType>

The basic FDL data types map onto the XML schema type system, as follows:

Table 4: Mapping basic FDL data types

FDL data type XML schema data type
STRING xsd:string

LONG xsd:long

FLOAT xsd:double

BINARY xsd:base64Binary

Elements are specified with a minimum occurrence of zero because WMQWF allows data

structure members to be ‘not set’.

(Sparse) arrays, which is the only collection type sug)ported by WMQWF, are mapped to ele-
ments with the corresponding maximum cardinality.*

The WID business object editor allows you to display the above XML schema definition in a

more intuitive graphical mode:

*® See "Data arrays" on page 135.

38

~Business object PO BRI | =

- 1
(2] Reservation

CompanyName string
FromDateTime string
FromLocation string
ToDateTime string
Tolocation string
ReservationMo string
Comment string []
Success string

i

Z

Figure 17: WID Business Object Editor

Naturally, an FDL data structure can be hierarchically organized, that is, a data structure
member may refer to another data structure by its type:

= HotelReservation - Data structure properties ﬂil

General | Documentation |

Data structures that are used in global data containers cannot contain memhbers
that represent an array or another data structure.

Hame

IHuteIReseNatiun

Description
| -
-
<] :
Data members
MName | Type | Array size | =] |
Fesersation Diata structure
Hatel “ariahle length string
City “ariahle length string +g
Country “ariahle length string
Ok Cancel | Apply | Beset | Help |
|E3‘ COhject locked by user 1D ADRINMN |§ Database storage mode

Figure 18: Hierarchical FDL data structure

39

The external FDL format shows the name of the referenced "Reservation" data structure as
the type of the corresponding member of "HotelReservation™:

STRUCTURE 'HotelReservation'
'Reservation': 'Reservation’;
Hotel: STRING;

City: STRING;
Country: STRING;
END 'HotelReservation'

Here is the corresponding XML schema definition generated by the FDL2BPEL Conversion
Tool:

<complexType name="HotelReservation">
<sequence...>
<element name="Reservation" type="mqwf:Reservation" minOccurs="0"/>
<element name="Hotel" type="xsd:string" minOccurs="0"/>
<element name="City" type="xsd:string" minOccurs="0"/>
<element name="Country" type="xsd:string" minOccurs="0"/>
</sequence>
</complexType>

The WID Business Object editor indicates the "element of" relationship between "HotelReser-
vation" and "Reservation" with an arrow:

M HotelReservation X

~Business object &8+ & |

r 1
[ZJ HotelReservation = [Z] Reservation

i] []
Reservation Reservation CompanyMName string
Hotel string FromDateTime string
City string FromLocation string
Country string ToDateTime string

L 7 I v]

Figure 19: Hierarchically structured Business Object

Mapping an FDL data container to an XML schema definition

Data that is passed between activities in an FDL process consist of an aggregation of a user-
defined data structure and predefined data members. Such data aggregation is called a "data
container". For instance, the "HotelReservation" that is used as the data input or output of an
activity becomes part of a data container, as follows:

40

Member [Type
= Program
-_RC LONG
- _PROCESS STRING
--_PROCESS_MODEL STRING
- _ACTIVITY STRING
- _PROCESS_INFO
- Role STRING
- Qrganization STRING
- ProcessAdministrator STRING
- Duration LONG
= _ACTIVITY_INFO
- Priority LONG
- MembersOfRoles STRING
- CoordinatorCfRole STRING
- Qrganization STRING
- OrganizationType LONG
- LowerLevel LONG
- UpperlLevel LONG
- People STRING
- PersonToMNotify STRING
- Duration LONG
- Duration2 LONG
=-_STRUCT HotelReservation
& Reservation Reservation
- CompanyMame STRING
- FromDateTime STRING
- FromLocation STRING
- ToDateTime STRING
- TolLocation STRING
- ReservationNo STRING
- Comment STRING(3)
- Success STRING
- Hotel STRING
- City STRING
- Country STRING

Figure 20: FDL data container

A data container does not need to be defined explicitly in the FDL file. However, if you want to
use the predefined data members in the converted process model, the data container must be
considered by the FDL2BPEL Conversion Tool.

For instance, the above data container with the embedded data structure "HotelReservation”
is mapped to the following XML schema definition:

<complexType name="HotelReservation_MT">
<sequence...>
<element name="_RC" type="xsd:long" minOccurs="0"/>
<element name="_PROCESS" type="xsd:string" minOccurs="0"/>
<element name="_PROCESS_MODEL" type="xsd:string" minOccurs="0"/>
<element name="_ACTIVITY" type="xsd:string" minOccurs="0"/>
<element name="_PROCESS_INFO" type="mqwf:_PROCESS_INFO">
<element name="_ACTIVITY_INFO" type="mqwf:_ACTIVITY_INFO"/>
<element name="_STRUCT" type="mqwf: HotelReservation"/>
</sequence>
</complexType>

The predefined data members " PROCESS_INFO" and "_ACTIVITY_INFQO" refer to other
predefined data structures which must also be mapped to XML schema definitions:

41

<complexType name="_PROCESS_INFO">
<sequence...>
<element name="Role" type="xsd:string" minOccurs="0"/>
<element name="Organization" type="xsd:string" minOccurs="0"/>
<element name="ProcessAdministrator" type="xsd:string" minOccurs="0"/>
<element name="Duration" type="xsd:long" minOccurs="0"/>
</sequence>
</complexType>

<complexType name="_ACTIVITY_INFO">
<sequence...>
<element name="Priority" type="xsd:long" minOccurs="0"/>
<element name="MembersOfRoles" type="xsd:string" minOccurs="0"/>
<element name="CoordinatorOfRole" type="xsd:string" minOccurs="0"/>
<element name="Organization" type="xsd:string" minOccurs="0"/>
<element name="OrganizationType" type="xsd:long" minOccurs="0"/>
<element name="LowerLevel" type="xsd:long" minOccurs="0"/>
<element name="UpperLevel" type="xsd:long" minOccurs="0"/>
<element name="People" type="xsd:string" minOccurs="0"/>
<element name="PersonToNotify" type="xsd:string" minOccurs="0"/>
<element name="Duration" type="xsd:long" minOccurs="0"/>
<element name="Duration2" type="xsd:long" minOccurs="0"/>
</sequence>
</complexType>

The WID Business Object editor renders the migrated data container in a graphical view:

~Business object a8t 4 |

1) HotelReservation_MT = (2 _PROCESS_INFO
I ! [] = [HotelReservation

_RC long Role string
_PROCESS string Organization string Reservation Reservation
_PROCESS_MODEL string ProcessAdministrator string Hotel string
_ACTIVITY string Duration long City string
_PROCESS_INFO _PROCESS_INFO L ‘ Country string

_ACTIVITY INFO _ACTIVITY_INFO
=[5 _ACTIVITY_INFO

_STRUCT HotelReservation e
Priority long

[| MembersOfRoles string
CoordinatorOfRole string
Organization string

Figure 21: Mapping FDL data container to Business Object

You can suppress the generation of predefined data members by using the command line
option -pn ("do not generate predefined data members")*® or by unchecking the Migration
Wizard option "Create predefined data members"’. Note that this option will not completely
remove the generation of the above data structures "_PROCESS_INFO" and
"_ACTIVITY_INFO" because those are still needed as members of data structure
"_MESSAGE_CONTEXT" (see section "Mapping the data exchanged with a UPES").

Mapping the data exchanged with a UPES

WMQWEF supports the notion of a UPES, which makes it possible to send program invocation
request messages in XML format to a user-defined MQ Workflow queue (see the documenta-
tion "IBM WebSphere MQ Workflow Programming Guide"). The FDL2BPEL Conversion Tool
supports reusing a UPES in a business process that you converted to BPEL. A UPES re-
quires the specification of another message type that can be passed as input to or output from

“® See "Running the FDL2BPEL Conversion Tool" on page 27.
* See "Using as WID Migration Wizard" on page 21.

42

a corresponding "UPES Web service" in a WPS environment. This UPES message type con-
sists of "container" data and "context" data. The "container" data consists of the original
container data. The "context" data requires the generation of another XML schema definition
in the XSD file:

<complexType name="_MESSAGE_CONTEXT">
<sequence...>
<element name="_RC" type="xsd:long" minOccurs="0"/>
<element name="_PROCESS" type="xsd:string" minOccurs="0"/>
<element name="_PROCESS_MODEL" type="xsd:string" minOccurs="0"/>
<element name="_ACTIVITY" type="xsd:string" minOccurs="0"/>
<element name="_PROCESS_INFO" type="mqwf:_PROCESS_INFO" minOccurs="0"/>
<element name="_ACTIVITY_INFO" type="mqwf:_ACTIVITY_INFO" minOccurs="0"/>
<element name="ResponseRequired" type="xsd:string" minOccurs="0"/>
<element name="UserContext" type="xsd:string" minOccurs="0"/>
<element name="KeepName" type="xsd:string" minOccurs="0"/>
<element name="ActImplCorrelID" type="xsd:string" minOccurs="0"/>
<element name="Starter" type="xsd:string" minOccurs="0"/>
<element name="ProgramName" type="xsd:string" minOccurs="0"/>
<element name="MessageType" type="xsd:string" minOccurs="0"/>
<element name="0Origin" type="xsd:string" minOccurs="0"/>
<element name="ProclInstID" type="xsd:string" minOccurs="0"/>
<element name="ProclInstParentName" type="xsd:string" minOccurs="0"/>
<element name="ProcInstTopLevelName" type="xsd:string" minOccurs="0"/>
<element name="ProcInstDescription" type="xsd:string" minOccurs="0"/>
<element name="ProclnstState" type="xsd:string" minOccurs="0"/>
<element name="LastStateChangeTime" type="xsd:string" minOccurs="0"/>
<element name="LastModificationTime" type="xsd:string" minOccurs="0"/>
<element name="ProcTemplID" type="xsd:string" minOccurs="0"/>
<element name="ProcTemplValidFromDate" type="xsd:string" minOccurs="0"/>
<element name="Icon" type="xsd:string" minOccurs="0"/>
<element name="Category" type="xsd:string" minOccurs="0"/>
<element name="ProcInstSuspensionTime" type="xsd:string" minOccurs="0"/>
<element name="ProcInstSuspensionExpirationTime" type="xsd:string" minOccurs="0"/>
<element name="Rc" type="xsd:long" minOccurs="0"/>
<element name="MessageText" type="xsd:string" minOccurs="0"/>
<element name="ProcTemplName" type="xsd:string" minOccurs="0"/>
<element name="ProcInstName" type="xsd:string" minOccurs="0"/>
<element name="ProgramRC" type="xsd:long" minOccurs="0"/>
<element name="ExternalProcessContext" type="xsd:string" minOccurs="0"/>
</sequence>
</c0mplexType>48

The migration tool creates the messages that represent FDL container data as well as a
"wrapper" containing the data itself and the context (see above).

Here is an example of how a message called "NJ_billCustomerinput” would be displayed by a
text editor and by the WID Business Object editor:

“® Note: The element "ImplementationData" and its sub elements, which WMQWF supports
for WMQWF XML message type "Activitylmplinvoke" is not supported and therefore is not
part of the generated _ MESSAGE_CONTEXT structure (cp. limitation "XML message types"
on page 140).

43

UPES input message:

<complexType name="NJ_billCustomerInput_UPES_IN_MT">
<sequence...>
<element name="MessageContext" type="mqwf:_MESSAGE_CONTEXT"/>
<element name="MessageContainer" type="mqwf:NJ_billCustomerInput"/>
<element name="MessageDefaultContainer" type="mqw{:NJ_billCustomerInput"/>
</sequence>
</complexType>

M N]_billCustomerInput UPES_IN_MT X

~Business object &+ + | =

- al
(2 NJ_bilCustomerInput_UPES_IN_MT = [0 _MESSAGE_CONTEXT

1 | [
MessageContext _MESSAGE_CONTEXT _RC long
MessageContainer NI_billCustomerInput _PROCESS string
MessageDefaultContainer NI_billCustomerInput _PROCESS_MODEL string

_ACTIVITY string
! 7R [=

= [2J NI_bilCustomerInput

CardType string
ProcessPaymentRequest ProcessPaymentRequest

Figure 22: UPES input message as Business Object

UPES output message:

<complexType name="NJ_billCustomerIlnput UPES_OUT_MT">
<sequence...>
<element name="MessageContext" type="mqwf:_MESSAGE_CONTEXT"/>
<element name="MessageContainer" type="mqw{:NJ_billCustomerInput"/>
</sequence>
</complexType>

44

M NJ_billCustomerInput_UPES_QUT_MT X

~Business object o %+ L |
r A
[ZJ NJ_bilCustomerInput_UPES_OUT_MT = [0 _MESSAGE_CONTEXT
I] [
MessageContext _MESSAGE_CONTEXT _RC long
MessageContainer NJ_bilCustomerInput _PROCESS string
_PROCESS_MODEL string
_ACTIVITY string
A Z8 ' =

= [2J NI_bilCustomerInput
I]
CardType string

ProcessPaymentRequest ProcessPaymentRequest

Figure 23: UPES output message as Business Object

FDL to WSDL mapping rules

In the BPEL model, interactions of a business process with the ‘outside world’ (as the caller
and as the called) are based on Web services, which are described in WSDL.

Generation of partner link type definitions

A BPEL partner link type is introduced as an extension element in the generated WSDL file. It
characterizes the conversational relationship between two services by defining the "roles"
played by each of the services in the conversation. It also specifies the "port type" (or "inter-
face") provided by each service to receive messages within the context of the conversation.
For more detalils, refer to the BPEL specification.

Migrating a MQ Workflow process requires that two categories of partner link types are gen-
erated:

e Partner link type that represents a business process

e Partner link type that represents a UPES as a Web service

Mapping FDL PROCESS to a partner link type

For each FDL PROCESS construct in the FDL input file, the FDL2BPEL Conversion Tool
creates a partner link definition. For example®:

<!-- Partner link type for process "Nice_Journey" -->
<plnk:partnerLinkType name="Nice_Journey_PLT">
<plnk:role name="Nice_Journey_Role">
<plnk:portType name="wsdl1:Nice_Journey_PT"/>
</plnk:role>
</plnk:partnerLinkType>

The "plnk:portType" element refers to a "port type" definition that describes the interaction
protocol (interface) of the respective role.

If the "Nice_Journey" process has a subprocess "NJ_BookCar" then a second partner link
type is added:

** Note that there is no graphic view of a partner link type in WID available, this is because
you never need to create or modify a partner link type manually.

45

<!-- Partner link type for process "NJ_BookCar" -->
<plnk:partnerLinkType name="NJ_BookCar_PLT">
<plnk:role name="NJ_BookCar_Role">
<plnk:portType name="wsdl1:NJ_BookCar_PT"/>
</plnk:role>
</plnk:partnerLinkType>

Mapping FDL SERVER to a BPEL partner link type

For every FDL SERVER definition that represents a UPES the FDL2BPEL Conversion Tool
creates a partner link type. For example:

<!-- Partner link type for program "NJ_BookHotel" -->
<plnk:partnerLinkType name="NJ_BookHotel _PLT">
<plnk:role name="NJ_BookHotel_Role">
<plnk:portType name="wsdl1:NJ_BookHotel _PT"/>
</plnk:role>
</plnk:partnerLinkType>

Mapping FDL container data to WSDL message definitions

A WSDL "message" definition represents a business object that is used in a business process
as a message. For instance, a business object that is input to an activity is used as a "mes-
sage" to request some kind of service. The business object returned from the activity as its
output data represents the corresponding response "message”. A WSDL message definition
consists of a name attribute and zero or more message "part" elements.

The FDL2BPEL Conversion Tool creates messages that represent FDL container data® hav-
ing only a single "part" element. For example:

<!-- Request message of program activity "ReserveFlight" -->
<message name="ReserveFlight_Request MSG">

<part name="Part1" element="wsdl1:ReserveFlight"/>
</message>

The type attribute of the "part" element refers to an XML schema element definition (here:
"ReserveFlight") in the "types" section of the WSDL. This one, in turn, refers to an XML
schema definition of the respective FDL data container (here: "makeReservation_MT") that
you find in the generated XSD file:

% See "Mapping an FDL data container to an XML schema definition" on page 39.

46

<types>
<xsd:schema targetNamespace="http://www.ibm.com/xmlns/prod/websphere/mqwf/wsdl/">
<xsd:import schemal.ocation="NiceJourney.xsd"
namespace="http://www.ibm.com/xmlns/prod/websphere/mqwf/schema/"/>
<!l--#%k XML .Schema elements *** -->

<!-- XMLSchema element belonging to request message of program activity "ReserveFlight" -->
<xsd:element name="ReserveFlight">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="inputl" type="mqwf:makeReservation_MT"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>
</types>

The FDL2BPEL Conversion Tool also generates a special message element with the name
"ActivityStatus_ MSG". It is used to map FDL exit conditions to the "condition" attribute of a
BPEL <while> activity (cp. section "Exit conditions" on page 73):

<message name="ActivityStatus_MSG">
<part name="Part1" type="xsd:string"/>
</message>

Mapping FDL interaction interfaces to WSDL port types

The WSDL "portType" element combines multiple message elements to form a complete one-
way or a request-response operation. A WSDL "portType" element can define multiple opera-
tions.

Mapping FDL PROCESS to a port type

The FDL2BPEL Conversion Tool maps the interface of an FDL PROCESS construct to a
"portType" element with a single request/response operation. For example:

<!-- Port type for process "Travelbooking" -->
<portType name="Travelbooking PT">
<operation name="Travelbooking">
<input name="Travelbooking_Request" message="wsdll: Travelbooking_Request_MSG"/>
<output name="Travelbooking_Response" message="wsdll: Travelbooking Response_MSG"/>
</operation>
</portType>

The WID Interface editor provides the following graphical view of the same port type:

€3 Travelbooking PT X

~Operations bl R

Operations and their parameters

| Name Type
+ 4 Travelbooking
L1 Input(s) inputl TravelRequest_MT
B Qutput(s) outputl TravelRequest_MT

Figure 24: Process interface

Mapping FDL. PROGRAM to a port type

WMQWEF describes the conversational relationship or interaction of a business process with
another application service by the abstract notion of a "PROGRAM". The mapping to a port
type depends on which data a program can handle:

47

If the program property "Program requires these data structures" is enabled, the generated
port type will usually have a single "operation" element.

Input

Output

—Data structures

" Program can handle any data structures

(@ Program requires these data structures

[Inherited
[Inherited

|7 Inherited

[Inherited

v Inherited

—Inherited fram Systerm

|7 Prograrm can run unattended

@@ CollectCreditData - Program properties 2| x|
General | Date| 05390 | 0872 | Al | HP-Ux| Solaris | Windaws 9x| windows NT]
IPersunInfU % +8
[Creditinfa ¥ | o2
v Input container access
v Output container access
— Execution user
| Agent Starter
— Execution mode
@ Normal " Safe
[~ Trustmode
0K | Cancel | Aprly Eeset Help

|E;~ Ohiject locked by user 1D ADMIN

|§ Database storage mode

Figure 25: Program requires these data structures

For instance, a program "NCollectCreditData" translates to a port type "NCollectCreditData

_PT", as follows:
WSDL source code:

<!-- Port type for program "NCollectCreditData" -->
<portType name="NCollectCreditData_PT">
<!-- Operation used in activity "CollectCreditInformation" -->
<operation name="CollectCreditInformation">
<input name="CollectCreditInformation_Request" message="wsdl1:CollectCreditInformation_Request_ MSG"/>
<output name="CollectCreditInformation_Response" message="wsdl1:CollectCreditInformation_Response_MSG"/>

</operation>
</portType>

48

WID interface editor:

€3 NCollectCreditData_PT X

~Operations g & PP E

Operations and their parameters

| Name Type
v CollectCreditInformation
B Input(s) inputl PersonInfo_MT
2 Qutput(s) outputl CreditInfo_MT

Figure 26: Interface with single operation

If the program property "Program can handle any data structures" is enabled for a program
"Prog1", the number of "operation" elements in the generated port type depends on the num-
ber of FDL PROGRAM_ACTIVITY constructs that specify program "Prog1".

&8 Prog1 - Program properties

General

| 05390 | 082 | Al | HP-Ux| Solaris | Windows x| Windows NT]

21x

—Data structures

® Program can handle any data structures

(" Program requires these data structures

Input IDefﬁuIt Data Structure & &2
Output IDeiauIt Diata Structure S &2
H Program can run unattended
—Inherited from Systemn
[+ Inherited [Input cantainer ascess
¥ Inherited] Output container access
[Inherited —Execufion user
(] Agent Starter
v Inherited —Exscution moce
 Harmal Safe
|7 Inherited l_ Trust mode
OK | Cancel | Apply | Eeset Help
|E:: Ohject locked by user ID ADMIN |§ Database storage mode

Figure 27: Program can handle any data structures

For instance, if activities "Act1", Act2", "Act3" specify program "Prog1", the FDL2BPEL Con-
version Tool will generate a port type with three operations:

WSDL source code:

<!-- Port type for program "Progl" -->

<portType name="Progl_PT">

<!-- Operation used in activity "Actl" -->

<operation name="Act1">
<input name="Actl_Request" message="wsdll: Actl_Request _MSG"/>
<output name="Actl_Response" message="wsdl1: Actl_Response_MSG"/>

</operation>

<!-- Operation used in activity "Act2" -->

<operation name="Act2">
<input name="Act2_Request" message="wsdl1: Act2_Request _MSG"/>
<output name="Act2_Response" message="wsdl1: Act2_Response_MSG"/>

</operation>

<!-- Operation used in activity "Act3" -->

<operation name="Act3">
<input name="Act3_Request" message="wsdl1: Act2_Request _MSG"/>
<output name="Act3_Response" message="wsdl1: Act3_Response_MSG"/>

</operation>
</portType>

WID interface editor:

49

0 ProgL T x N
~Operations b & |
Operations and their parameters
| Name Type

v actl
&1 Input(s) inputl TravelRequest_DS_MT
2 Output(s) outputl TravelRequest_DS_MT
vifact2
&1 Input(s) inputl TravelRequest_DS_MT
2 Output(s) outputl TravelRequest_DS_MT
v act3
&1 Input(s) inputl TravelRequest_DS_MT
[& Output(s) outputl TravelRequest_DS_MT

Figure 28: Interface with multiple operations

The above <operation...> elements of a port type may occur without an <output...> element
(which, in WSDL terminology, denotes a one-way operation). This means that it is an "asyn-
chronous" operation where the control flow continues after sending the input message without
waiting for an output message. "Asynchronous" operations are generated for "UPES" activities
defined as "asynchronous" in WMQWF Buildtime. Example:

50

ED Validate - Program activity properties <Proces

staf2 | Nofificaon | Control
General ~ Execuion | st | Exit |

— Execution Unit

[T User program execution agent

Program execution server

® Server IUPES‘I.FMCSYS.FMCGRP

{~ Erom container I

—Mode

{~ Synchronous

Figure 29: Asynchronous execution of UPES

Mapping FDL SERVER to a port type for a UPES

As described in the section "Mapping the data exchanged with a UPES" on page 41, a UPES
requires special message types that can be exchanged with a corresponding "UPES Web
service". Another WSDL port type definition is used to describe the interface. For example:

WSDL source code:

<!-- Port type for server "FLIGHT" of system "FMCSYS" -->
<portType name="FMCSYS_FLIGHT_PT">
<!-- Operation used in activity "ReserveFlight" -->
<operation name="ReserveFlight UPES">
<input name="ReserveFlight_Request_UPES" message="wsdll:ReserveFlight_Request_UPES_MSG"/>
<output name="ReserveFlight_Response_UPES" message="wsdl1:ReserveFlight_Response_UPES_MSG"/>
<fault name="faultl" message="wsdl1:ReserveFlight_Fault UPES_MSG"/>
</operation>
</portType>

WID interface editor:

0. csvs_rucrr_r1 x

~Operations gg g,} |

Operations and their parameters

| Name Type
v % ReserveFlight_UPES
B1 Input(s) inputl makeReservation_makeReservationResponse_UPES_IN_MT
& Qutput(s) outputl makeReservationResponse_UPES_OUT_MT
[% Fault faultl makeReservationResponse_UPES_OUT_MT

Figure 30: UPES interface

The port type shown above contains an operation of type "request-response”, which is re-
quired for a "synchronous" UPES invocation. Note that the "request-response" operation now
has another "fault" element that is needed for any exception returned from the UPES. You
must decide how to respond to a "fault message" in your business logic. For example, you
can add a "fault handler" to the generated BPEL process. Because FDL has no concept for a
"fault handler", the FDL2BPEL Conversion Tool cannot automatically derive this from the FDL
input file.

51

FDL to BPEL mapping rules

Mapping FDL PROCESS to BPEL

An FDL process is mapped to a corresponding BPEL process: For each "PROCESS" found in
the FDL file, the FDL2BPEL Conversion Tool creates a separate file with the extension
".bpel". The file name is the same as the process name. If necessary, the process name is
converted to a valid BPEL name.

The BPEL file contains <process> as the root element. Here is an example of the correspond-
ing properties that are generated:

BPEL source code:

<bpws:process ... name="Nice_Journey" wpc:displayName=" Nice_Journey" ... >
You can review these properties in WID as follows:

1. Open the BPEL process in the Business Integration view with the business process
editor:

4= Business Integration - IBM WebSphere Integration Developer 6.1 - D:\wid-61-Work|
Fle Edit Navigate Search Project Data Run Window Help

Imi &~ @@~ |8 |@&F |a~]@] 0t~ G-
. Physical Resources| =0
EHecd BER”T

=-1= CreditRequest

[Seal NiceJourney

E-55) Assembly Diagram

----- s Dependencies

£ & Business Logic

©- & Processes
2 NJ_Boo New ¢

- & Data Types tpe

M- @ Interfaces Open With *| = # Business Process Editor

..... o5 Mappmg Show Files U Text Editor
|¥] XML Editor
Mark as Favorites
_ |=| System Editor
= E0Dy =/ In-Place Editor
! Paslte Default Editor
Figure 31: Opening the business process editor
2. Select the Description page of the Properties view:
Problems| Servers|
|
Description 2 Process - Nice_Journey
Details Mame:* Nice_Journey
S Display Name: Nice_Journey

Figure 32: Mapping process properties (1)

Further examples of process properties are:”

*" Note that the prefix "wpc" denotes IBM proposed BPEL extensions.

52

BPEL source code:

<bpws:process ...
wpc:executionMode="longRunning" ...
expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116" ...
wpc:ignoreMissingData="yes" ...
wpc:autonomy="child" ...

suppressjoinFailure="yes" ... >

Find these properties on the pages Details and Join Behavior of the Properties view:

WID business process editor:

mM’mb\emﬂ Servers‘
Description “ Process - Nice_Journey
fe Expression language: XPath 1.0 E‘
Server
Query language: XPath 1.0
Administration E‘
Java Imports Process is long-running
Join Behavior Automatically delete the process after completion: | No E‘
Imports Ignore missing data
Environment Compensation sphere:) Supports & Required
EventMontor | Autonomy: O Peer ® Chid
- Global Event Settings | [Z] Select date (UTC) when the process becomes vald
- |valdfrom: Jan [+] / [o1 [+ / [2005 =
00 . [o4 - [os

Figure 33: Mapping process properties (2)

Mroblems | Servers |

Description 2 Process - Nice_Journey

Details Suppress Join Faiure: @® ves O No
Server

Administration
Java Imports

Join Behavior

Figure 34: Mapping process properties (3)

The next sections explain some of the properties in more detail.

Process property ''business relevant''

If the FDL process has property "AUDIT_FILTER_DB" or property "AUDIT_FILTER_MQ", the
FDL2BPEL Conversion Tool sets the "businessRelevant" property of the generated BPEL
process to "yes". Otherwise, the "businessRelevant" property is set to "no" (unchecked):

BPEL source code:

<bpws:process ... wpc:businessRelevant="no" ... >

53

WID business process editor:

Problems| Servers|

Description % Process - Nice_Journey
Detais Enable persistence and queries of business-relevant data
Server

Figure 35: Mapping process properties (4)

Process autonomy
In WMQWF Buildtime you can select the option control for process autonomy on the process
settings page Control. It has the following meaning:

If the process runs as a subprocess of another one, then terminate, suspend, and
resume requests for activity and process instances from the parent process will be
ignored. This includes terminate requests for activity instances and suspend or termi-
nate requests for process instances.

The FDL2BPEL Conversion Tool maps the process autonomy flag control to the correspond-
ing BPEL autonomy flag peer. In all other cases, the BPEL autonomy flag is set to child.*?

Process category
The category that you assigned to your WMQWF model maps to a BPEL extension element
"wpc:customProperty".

BPEL source code:

<wpc:customProperty name="Category">
<wpc:value>Travel</wpc:value>
< /wpc:customProperty>

You find property "Category” on page Environment of the WID Properties view:

WID business process editor:

m\Problems| Servers|

Description 2 Process - Nice_Journey
Details Custom Properties:

Join Behavior

! — Name Value

mpo Cateqory....; Travel

Server

Administration

Java Imports

Environment

Figure 36: Process Category

%2 See limitation "Process autonomy modes" on page 141.

54

Partner links

The services that a business process uses are modeled in BPEL as partner links. Each part-
ner link is characterized by a partner link type. The following BPEL code outlines partner links
that are generated for a process "Nice_Journey" which has a subprocess "NJ_BookCar". The
process "Nice_Journey" has some UPES activities which invoke the servers
"FMCSYS_FLIGHT", "FMCSYS_DUMMY01", "FMCSYS_UPES1", and "FMCSYS_UPES2":

BPEL source code:

<bpws:partnerLinks>

<!-- Partner link used to invoke process "Nice_Journey" -->

<bpws:partnerLink name="Nice_Journey_PL"
partnerLinkType="wsdl1:Nice_Journey PLT"
myRole="Nice_Journey_Role"/>

<!-- Partner link used to invoke process "NJ_BookCar" -->

<bpws:partnerLink name="NJ_BookCar_PL"
partnerLinkType="wsdl1:NJ_BookCar_PLT"
partnerRole="NJ_BookCar_Role">

<wpc:processResolver processTemplateName="NJ_BookCar"/>

</bpws:partnerLink>

<!-- Partner link used to invoke server "DUMMYO01" -->

<bpws:partnerLink name="FMCSYS_DUMMYO01_PL"
partnerLinkType="wsdl1:FMCSYS_DUMMYO01_PLT"
partnerRole="FMCSYS_DUMMYO01_Role"/>

<!-- Partner link used to invoke server "FLIGHT" -->

<bpws:partnerLink name="FMCSYS_FLIGHT_PL"
partnerLinkType="wsdl1:FMCSYS_FLIGHT_PLT"
partnerRole="FMCSYS_FLIGHT_Role"/>

<!-- Partner link used to invoke server "UPES1" -->

<bpws:partnerLink name="FMCSYS_UPES1_PL"
partnerLinkType="wsdl1:FMCSYS_UPES1_PLT"
partnerRole="FMCSYS_UPES1_Role"/>

<!-- Partner link used to invoke server "UPES2" -->

<bpws:partnerLink name="FMCSYS_UPES2_PL"
partnerLinkType="wsdl1:FMCSYS_UPES2_PLT"
partnerRole="FMCSYS_UPES2_Role"/>

</bpws:partnerLinks>

The WID BPEL editor displays the partner links as follows:

WID business process editor:

2 Nice_Journey
fio Interface Partners
Nice_Journey_PL
&# Reference Partners
N1_BookCar_PL
FLIGHT_PL
NCOOP_PL
UPES1_PL
UPES2_PL

Figure 37: Partner links

Mapping FDL data container to BPEL

BPEL does not have the concept of a "data container" as it is known in WMQWF. Instead,
BPEL provides "variables" to hold messages that constitute the state of a business process.
Accordingly, the FDL2BPEL Conversion Tool generates BPEL variables as a representation
of data containers. That is, the data input and output of the process as well as the data input
and output of each contained activity maps onto a corresponding pair of BPEL variables. A
variable name consists of the concatenation of the name of the process or activity and a name

55

suffix that indicates the role of an input or output container. The following example shows the
generated BPEL variables that are required for a simple process that contains three activities:

BPEL source code:

<bpws:variables>

<!-- Data input variable of process "SimpleProcessWDF" -->

<bpws:variable name="SimpleProcessWDF_IN" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data output variable of process "SimpleProcessWDF" -->

<bpws:variable name="SimpleProcessWDF_OUT" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data input variable of program activity "Actl" -->

<bpws:variable name="Actl_IN" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data output variable of program activity "Actl" -->

<bpws:variable name="Actl_OUT" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data input variable of program activity "Act2" -->

<bpws:variable name="Act2_IN" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data output variable of program activity "Act2" -->

<bpws:variable name="Act2_OUT" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data input variable of program activity "Act3" -->

<bpws:variable name="Act3_IN" type="mqwf:TravelRequest_DS_MT"/>

<!-- Data output variable of program activity "Act3" -->

<bpws:variable name="Act3_OUT" type="mqwf:TravelRequest_DS_MT"/>
</bpws:variables>

WID business process editor:

| 2 SimpleProcesswDF |

fo Interface Partners W R
* SimpleProcessWDF_PL

&# Reference Partners W R

@ Variables = R

SimpleProcessWDF_IN
SimpleProcessWDF_CUT
Actl_IN
Actl_OoUT
Act2_IN
Act2_OouT
Act3_IN
Act3_OUT
(G Correlation Sets %

@ Correlation Properties PR

Figure 38: Mapping FDL data containers to BPEL variables

Queriable global data container

In WMQWF you can specify a special data container, called "global data container", which
you can refer to in queries (in addition to references to the predefined properties of the entities
exposed by the query API). In BPEL, you can assign "query properties" to a BPEL variable in
order to have a similar concept. When the FDL2BPEL Conversion Tool encounters the defini-
tion of a global container in the FDL, it maps it onto a BPEL variable with the name
"GLOBAL_CONTAINER".

Here is an example that shows how an FDL global container with a related data structure
"customer Info" is mapped onto a corresponding BPEL variable:

56

FDL specification of global data container:
STRUCTURE 'customer Info'
'Family name': STRING;
‘Company': STRING;
'City": STRING;
'Street’: STRING;
'Phone': STRING;
END 'customer Info'
PROCESS 'MyProcess' ('Customer’, 'Customer')
GLOBAL_CONTAINER RELATED_STRUCTURE 'customer Info'
TABLE_NAME "GC_MY_TABLE"
INDEX INDEX_NAME "GC_MY_INDEX"
RELATED_STRUCTURE_MEMBER 'Family name'

BPEL source code:

<!-- "Global Container" variable -->
<bpws:variable name="GLOBAL_CONTAINER" type="mqwf:CustomerInfo_ GC_MT">
<wpc:queryProperties>
<wpc:queryProperty name="Familyname" type="xsd:string">
<wpc:query><![CDATA[_STRUCT/Familyname]]></wpc:query>
</wpc:queryProperty>
<wpc:queryProperty name="Company" type="xsd:string">
<wpc:query><![CDATA[_STRUCT/Company]]></wpc:query>
</wpc:queryProperty>
<wpc:queryProperty name="City" type="xsd:string">
<wpc:query><![CDATA[_STRUCT/City]]></wpc:query>
</wpc:queryProperty>
<wpc:queryProperty name="Street" type="xsd:string">
<wpc:query><![CDATA[_STRUCT/Street]|></wpc:query>
</wpc:queryProperty>
<wpc:queryProperty name="Phone" type="xsd:string">
<wpc:query><![CDATA[_STRUCT/Phone]|></wpc:query>
</wpc:queryProperty>
</wpc:queryProperties>
</bpws:variable>

WID business object editor:

2 GlobalContainer

~Business object & 4 4 |
- al
[C] CustomerInfo_GC = [0 CustomerInfo
{ | [|
_STRUCT CustomerInfo Familyname string
Company string
City string
Street string
L 7, [i]

Figure 39: Mapping Global Container to business object

57

WID Properties view of BPEL variable "GLOBAL CONTAINER":

Mroblems| Serve-rs|

Description ® Variable - GLOBAL_CONTAINER
Server Query Properties:
uery Properties
| £y
vent Monitor ‘Familyname
Company
City
Street
Phone

Figure 40: Mapping FDL data structure to BPEL query properties

Mapping the FDL workflow to BPEL

The following BPEL activity framework outlines the general structure that is used by the
FDL2BPEL Conversion Tool to represent every FDL workflow®:

BPEL source code:

<sequence...>
<!-- Receive the input data of process "processname"” -->
<receive name="Receive_the_process_input">
<wpc:output>
<wpc:parameter variable="processname_IN" name="input1"/>
</wpc:output>
</receive>
<!-- Implementation of process "processname" -->
<flow name="Execute_activities_contained_in_process"
wpc:displayName="Execute activities contained in process'">

</flow>
<!-- Send the output data of process "processname" -->
<reply name="Return_the_process_output ">
<wpc:input>
<wpc:parameter variable="processname_OUT" name="outputl"/>
</wpc:input>
</reply>
</sequence>

%% See also "Optimizing BPEL process models" on page 98

58

BPEL business process editor:

w

=/ Receive the process input

1| Execute activities contained in process
+

2| Return the process output

@®

2 processname
f@ Interface Partners
¥ processname_PL
¥ Reference Partners
& Variables
processname_IN
processname_CUT
(@ Correlation Sets
@ Correlation Properties

Figure 41: Mapping the workflow structure (1)

The process input data is "received" by a <receive...> activity in variable "processname_IN".
The process result data is provided in the variable "processname_OUT" and returned to the
service requester by a <reply> activity. The following <flow...> activity ("Execute activities
contained in process") contains the activity network of the workflow. A <sequence...> activity

ensures the appropriate execution order of this procedure.

£0t2

At

Figure 42: Mapping the workflow structure (2)

The following BPEL code outlines the internals of the <flow...> that represents the above FDL
activity network consisting of three FDL activities (example without data flow):

59

<!-- Implementation of process "SimpleProcess" -->

<flow >

<!—
Links that implement the internal control flow
of process "SimpleProcess"

-->

<links>
<link name="Actl-to-Act2"/>
<link name="Actl-to-Act3"/>

</links>

<!-- Activity "Act]" -->
<invoke name="Act1">
<sources>
<source linkName="Act1-to-Act2"/>
<source linkName="Act1-to-Act3"/>
</sources>

</invoke>

<!-- Activity "Act2" -->
<invoke name="Act2">
<targets>
<target linkName="Act1-to-Act2"/>
</targets>

</invoke>

<!-- Activity "Act3" -->
<invoke name="Act3">
<targets>
<target linkName="Act1-to-Act3"/>
</targets>

</invoke>

</flow>

Note that, in contrast to the FDL notation, BPEL <link...> elements have no attributes that
specify the source and target activities. BPEL <link...> elements always carry names that are
referenced by <source...> and <target...> child elements of the activities that are involved in
the control flow.

The figure below shows the graphical representation of the above flow in the WID BPEL editor
when all initially collapsed activities are expanded:

60

| Receive the process input

1| Execute activities contained in process

5 Actl

[% Inftialize human task input

@ Actl
A 1 A
Al b o R
= Act2 = Act3
[% Inftialize human task input [% Initialize human task input
%@ Act2 P Act3

| Return the process output

®
Figure 43: Mapping the workflow structure (3)

The FDL program activities "Act1", "Act2", and "Act3" are mapped to corresponding BPEL
<invoke...> activities that are encapsulated in BPEL <sequence...> structured activities. In the
above sample process without data flow, the <sequence...> activities and the "Initialize human
task input" snippets are not actually necessary. However, in more complex models the <se-
quence...> construct acts as a necessary wrapper that ensures the proper order of data flow
and execution.

Mapping WMQWF activities to BPEL

The FDL2BPEL Conversion Tool maps activities to BPEL <invoke...> activities. The <in-
voke...> construct allows the business process to invoke a request-response (synchronous) or
a one-way (asynchronous) operation on a portType offered by a partner.

Mapping FDL. PROGRAM_ACTIVITY to BPEL

BPEL and the extensions defined by IBM do not allow an exact representation of an FDL pro-
gram activity (see migration limitation "FDL ProgramActivity" on page 142). For instance, FDL
lets you describe the assignment of staff and a program in a single program activity. The cur-
rent BPEL specification has no equivalent definition for this. That is why the FDL2BPEL
Conversion Tool applies a set of activity classification rules that control the mapping of FDL

program activities in categories "empty activity", "service invocation activity", and "staff activ-
ity".

Activity classification rules

The following rules apply (in the order listed) for mapping FDL program activities to BPEL
activities:

61

Table 5: Activity classification rules

Activity type™* Mapping rule

A program activity maps to an "empty activity" if

1. the activity implementation is a program with the name
"FMCINTERNALNOOP",

2. the execution mode is asynchronous55 (see the proper-
ties notebook page "Execution"), and

1. "Empty activity"

3. the input and output data structures are the same.

A program activity maps to a "service invocation activity", if
it is associated to a user-defined program execution server
(UPES). That is, you specified a program execution server
on page "Execution" of the program activity properties note-
book.

"Service invocation
activity"

A program activity maps to a "staff activity" if

1. its start type is "manual" (see the properties notebook

3.| "Staff activity" page "Start"), and

2. the property "Program activities can be checked out"
indicates that it can be checked out from the runtime da-
tabase (see the properties notebook page "Control").

If none of the above rules match, you receive a warning and the activity will be assumed to be
a "staff activity™:

4= Migration Results _|o|x|

Migrated source: | D:\FDL2BPEL_TEST\TEST\MQWF_SimpleProcessWDF.fdl

Select a migration result message from the following list to display its full description in the Message Description box.

& CWWBMOD21W: Cannot decide whether program activity "Act2" should be mapped to a BPEL "empty activity”, "staff a...
& CWWBMO021W: Cannot decide whether program activity "Act3" should be mapped to a BPEL "empty activity”, "staff a...

Message Description:

CWWEBMOD21W: Cannot decide whether program activity "Act1" should be mapped to a BPEL "empty activity”, "staff :l
lactivity”, or "service invocation activity” ("staff activity” assumed).

Generate ToDo's Save as ... 0K |

Figure 44: Assumed "staff activity"

> Note that the activity types listed here are FDL2BPEL internal notions and do not necessar-
ily match the terms that you encounter when modeling a business process using the
WebSphere Integration Developer.

% Because you cannot specify asynchronous mode without defining an execution server, you
can do so by entering a "dummy" server name.

62

Empty activity

Here is an example of the FDL activity settings and the mapping to BPEL of an "empty activ-
ity":

| MyEmptyActivity - Progrd E= MyEmptyActivity - Program ac \
Sz | Netiic Staff2 Noification
General | Execuion | Genaral Exacumn | sten

Execution Unit

Name My ErmptyActi,

I~ Dser pragram execution age

Description

Program exacution server——

© Server

& From cantainer [dummy

e N MyEmptyActivity

Synchronous —
ﬂ mgm"‘ & Asynehanous g
Execution mode = II || MyEmptyActivity
Program =

"asynchronous"
"FMCINTERNALNOOP"

[HH1

BB MyEmptyActivity - Program activity properties <

Swfiz | Motficaion | Contol
General | Execuon | Stet | Exit Data.

Dt Sl ey

—
Input Detault Data Structure] \

Cutput [Detault Data Structure -
—

Input = Output J

Figure 45: Activity classification rule: "empty activity"

BPEL source code:

<empty name="EmptyActivity"/>

Service invocation activity (UPES activity)

The following example shows the BPEL translation of an FDL PROGRAM_ACTIVITY that was
classified as a "service invocation activity". As the service |s related to a user-defined program
execution server (UPES), it is also called a "UPES activity":

% See also chapter "WMQWF UPES migration" on page 97.

63

= MyUPESAcivity
=]
E2 MyUPESActivity - Program activity properties <Proci x| Lﬁ Encode UPES in put
Staff 2 | Matification I Control I Docurnentation I
General Exacution | Start | Exit | Data | Tools | Staff1 I_é- Set UPES context
[~ Execution Unit II
I~ User program execution agert e
P ™ — & MyUPESActivity
’.iSEr\/Er [MYUPES FMCEVE FMCGRP /ll ﬂ
© EroME o — — [# Decode UPES output
- Mod =
' Synchronous
 Asynchronous
" " HH
UPES" specified J

Figure 46: Activity classification rule: "service invocation activity"

BPEL source code:

<bpws:invoke name="MyUPESActivity"
operation="MyUPESActivity_UPES"
portType="wsdl1:FMCSYS_MYUPES_PT"
partnerLink="FMCSYS_MYUPES_PL"
wpc:continueOnError="no"
wpc:displayName="MyUPES Activity"
wpc:businessRelevant="no">
<wpc:input>
<wpc:parameter variable="MyUPESActivity_UPES_IN" name="input1"/>
</wpc:input>
<wpc:output>
<wpc:parameter variable="MyUPESActivity_UPES_OUT" name="outputl"/>
</wpc:output>
</bpws:invoke>

The input/output parameter elements refer to BPEL variables that contain the data that is
passed to and from the BPEL invoke activity. As already mentioned in section "Mapping the
data exchanged with a UPES" on page 41, the input and output data for a UPES invocation
requires another message structure that consists of "container" and "context" data. This
means that the "standard" message must be mapped to a UPES compliant structure before
you can invoke the "UPES Web service". Correspondingly, the output message received from
a UPES must be mapped back onto the "standard" message structure. In order to perform this
conversion task, each "service invocation activity" is assigned another pair of input and output
BPEL variables. For example, an activity "MyUPESActivity" is assigned two BPEL variables,
"MyUPESActivity IN" and "MyUPESActivity OUT", which are used for the "standard" mes-
sage structure, and another two BPEL variables, "MyUPESActivity UPES_IN" and
"MyUPESActivity UPES_OUT", which are used for the "UPES" message structure.

As explained in the section "Mapping FDL data flow to BPEL" on page 77, a snippet ("Encode
UPES input") is used to map a "standard" message with input business data from the variable
"MyUPESACctivity IN" to the variable "MyUPESActivity UPES_IN" that holds the "UPES" input
message, which consists of business data and context information (see the following figure).

64

BPEL Variable with

>

input business data J

£ MyUPESActivity

= o]
ﬂL_sg__ Encode UPES input,

l# Set UPES context <

& MyUPESActivity

Decode UPES output

Figure 47: Encoding the UPES input

UPES input with:

sBusiness data

_ "Context info

Another snippet ("Decode UPES output") is required to perform the mapping from the "UPES"
output message contained in the BPEL variable "MyUPESActivity UPES_OUT" to the BPEL
variable "MyUPESActivity OUT":

-

,[::q \
\ [# Decode UPES crutpLE v

MyUPESActivity

(% Encode UPES input

[# Set UPES context

& MyUPESActivity

— N
— -~

-~

e R

Figure 48: Decoding the UPES output

Note that the graphical representation may also show a snippet "Encode UPES output de-
faults" (not shown here), which maps the data default values of the BPEL variable
"MyUPESACctivity_OUT" to the variable "MyUPESActivity_UPES_IN". This snippet is required,
if there are any initial values for the activity output container which should be part of the Pro-
gramOutputDataDefaults XML element of the UPES message.

The snippet "Set UPES context" adds context data to the UPES message:

65

MyUPESActivity

(% Encode UPES input

— T E——

- -~
” [===, ~
\ | l® Set UPES context)

~ -

o i —

& MyUPESActivity

(% Decode UPES output

Figure 49: Setting the UPES context

The snippet "Set UPES context" initializes the following elements of the XML message that
the UPES will receive:

Table 6: UPES context data

_PROCESS The process instance name
ResponseRequired Yes' for synchronous execution mode
‘no’ for asynchronous execution mode

ActimplCorrellD The correlation identifier

Starter The starter of the process instance
ProcTemplID The process template identifier
ProgramName The program name

For more information about using snippets to map data flow, refer to the section "Mapping
FDL data flow to BPEL" on page 77.

66

Staff activity

EE MyStaffActivity - Program activity properties <Process MyPi il
Staff2 | Motification Control | Documentation |
General I Execution Start Exit I Data | Tools I Staff1 I
oy,
Start
¢ & Manua, ‘
-

Start type = "Manual”

&= MyStaffActivity - Program activity properties <Process MyPi ﬁl
General I Execution | Start I Exit | Data I Tools I Staff 1 |
Staff 2 | Notficyfigae — wm— Conieel * Documertation |

r Inherited ‘7 Program activifies can be checked Uul)
=y e =

q|

)

Figure 50: Classification rule "staff activity"

BPEL source code:

<!-- Invoke program activity "MyStaffActivity" -->

<bpws:invoke name="MyStaffActivity"
operation="MyStaffActivity"
portType="wsdll:dummy_PT"
partnerLink="null"
wpc:continueOnError="no"
wpc:displayName="MyStaffActivity"
wpc:businessRelevant="no">

W
MyStaffActivity
=

(L]

7 MyStaffActivity
=

<!-- Staff assignment (to-do task) for activity "MyStaffActivity" -->

<wpc:task name="staff:MyStaffActivity_ PTASK"/>

<wpc:input>

<wpc:parameter variable="MyStaffActivity_IN" name="input1"/>

</wpc:input>
<wpc:output>

<wpc:parameter variable="MyStaffActivity_ OUT" name="output1"/>

</wpc:output>
</bpws:invoke>

A "staff activity" is rendered as an extension of the existing BPEL <invoke...> activity by add-
ing the child element <wpc:task...>. The "task" element’s name attribute refers to a TEL file
that contains the description of a "to-do task". In particular, the task TEL definition consists of
"people assignment criteria" that represent the rules for assigning work items to people at
runtime (see "Mapping WMQWF staff assignment criteria to TEL people assignment criteria"

on page 85):

67

TEL source code:

<tel:staffSettings>
<tel:potential Owner>
<tel:verb>

<!-- FDL staff query "People" -->

<tel:name>Users by user ID</tel:name>

<tel:parameter id="UserID">HARTMANN/GERMANY/IBM</tel:parameter>
<tel:parameter id="AlternativeID1">SCHMIDT/GERMANY/IBM</tel:parameter>
<tel:parameter id="AlternativeID2">ENGLER/GERMANY/IBM</tel:parameter>

</tel:verb>
</tel:potentialOwner>
</tel:staffSettings>

4 MyStaffActivity PTASK X

+To-do Task B

| Name | MyStaffActivity_PTASK | | Display Name

rService Interface

~People Assignment (Receiver) o=
2 Potential Owners | Users by user ID
UserID * HARTMANM/GERMANY/IBM
AlternativelD1 SCHMIDT/GERMANY,/IBM
AlternativelD2 ENGLER/GERMANY/IBM

Figure 51: WID human task editor

Activity property "'business relevant'

The FDL2BPEL Conversion Tool sets the "business relevant" property of the generated BPEL
"invoce" activity to "yes", if the FDL activity has property "AUDIT_FILTER_DB" or property
"AUDIT_FILTER_MQ". Otherwise, the "business relevant" property is set to "no".

Problems | Servers |

Description

& Invoke - ReserveFlight

Details

Transactional Behavior: ¢ Commit Before & Commit After O Participates O Requires Qwn

Server

Administration

[cContinue On Error

Compensation

Enable persistence and queries of business-relevant data

Figure 52: Mapping activity property "business relevant”

Mapping FDL BLOCK to BPEL

An FDL block activity allows process decomposition by encapsulating underlying activities,
and simplifying the visual process model by replacing the underlying sequence of logic with a
single block activity. This maps nicely to a BPEL "Parallel Activities" node. The figure below
shows the mapping of an FDL block that contains a simple flow of three activities:

68

WebSphere MQ Workflow Business Process Choreographer
% [E] MyBlockActivity
MyBlockActivity
m NN
E MyBlockActivity
N I][" becomes > =
1EARE ¥
1 / A |
! 1
1
i i . 1
LB oo c !

Figure 53: Mapping an FDL block to BPEL

An FDL block allows repeated activities to be modeled so that block enclosed activities are
executed at least once, and will loop until an exit condition is true. The migration tool trans-
lates an exit condition into a BPEL <while...> activity (see "Exit conditions" on page 73 for
further details).

Mapping FDL PROCESS_ACTIVITY to BPEL

Static subprocess invocation

FDL allows the nesting of processes by embedding subprocess calls. A subprocess is actually
a normal FDL process that is invoked within another process. Again this invocation mecha-
nism maps nicely into the BPEL service invocation framework, where each BPEL process is
just another service, and hence can also be nested. Thereby an FDL subprocess invocation is
translated into an <invoke...> activity that is assigned to a partner link. This is illustrated in the
figure below:

WebSphere MQ Workflow Business Process Choreographer

(] |"]| becomes & MyProcessActivity

MyProcessActivity

Figure 54: Mapping an FDL subprocess call to BPEL

The following figure shows the invoke implementation properties sheet:

m\l_’mhlems| Servers|

& Invoke - Process

Description

[Details Partner:* | [Travelbooking_PL

Server

Administration Interface:* | Travelbooking_PT

ST Operation:* | Travelbooking I~
TeTEIiaT Use Data Type Variables

Expiration Name | Variable

Environment 21 Input(s) |inputl | Process_IN

Event Monitor L Qutput(s) | outputl | Process_SP_OUT |...

Figure 55: Subprocess invoke properties

Late binding of subprocess names

FDL allows you to specify the name of the process template to use for a subprocess in a con-
tainer data member. Rather than having a fixed value, this container value can be modified on

behalf of the process execution. For example:

In BPEL, the corresponding mechanism is to use an assign activity that modifies the partner
link data. Thus, the FDL setting "Process from container" is mapped onto an additional as-

sign activity with the following mapping specification.

Assume that in an FDL process activity "BookCar" that allows for a late-bound process, proc-
ess names "BookCompanyA", "BookCompanyB", "BookCompanyC", etc. exist with the
process name taken from the input data field "preferredRentalCarCompany" (see figure be-

low):

The corresponding BPEL diagram shows that the <assign> activity that binds the subprocess
name can be inserted into a <sequence...> structured activity just before the "BookCar" <in-

voke...> activity:

BookCar - Process activity properties <Process Late il
Notification Control I Documentation |
General | St | Ext | Das | Tools | Sl | Stz
lcon
Name
Bl s
Description
|
L]
—Process
(" Process I !l .}r
@ From container |preferredFiema\CarCcmpany
— Systam
(& Local system
0K I Cancel | Anpaly. | Eeset | Help
|E: Object locked by user D ADMIN E Diagram storage mode

Figure 56: Process from container

70

s

BookCar
=]

= Assign subprocess name
<& BookCar
[Merge subprocess output

[% BookCar_OUT - Late_bound_subprocess_invocation_QUT
Fl
Figure 57: Late-bound subprocess invocation

BPEL source code:

<bpws:partnerLink name="Late_bound_subprocess_invocation_BookCar_PL"
partnerLink Type="wsdl1:Late_bound_subprocess_invocation_BookCar_PLT"
partnerRole="Late_bound_subprocess_invocation_BookCar_Role"/>

<!-- Assign late-bound subprocess name for process activity "BookCar" -->
<bpws:assign name="gen0024" wpc:displayName="Assign subprocess name'">
<bpws:copy>
<bpws:from>
<bpws:expression expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116">
wpc:getServiceRefForProcessTemplate(
"%BookCar_INW_STRUCT/preferredRentalCarCompany%",
"http://www.ibm.com/xmlns/prod/websphere/mqwf/wsdl/",
"BookCar_PL")
</bpws:expression>
</bpws:from>
<bpws:to partnerLink="BookCar_PL"/>
</bpws:assign>

<!-- Invoke process activity "BookCar" -->
<bpws:invoke name="BookCar"
operation="BookCar"
portType="wsdl1:BookCar_PT"
partnerLink="BookCar_PL"
wpc:continueOnError="no"
wpc:displayName="BookCar"
wpc:businessRelevant="no">
<wpc:input>
<wpc:parameter variable="BookCar_IN" name="input1"/>
</wpc:input>
<wpc:output>
<wpc:parameter variable="BookCar_SP_OUT" name="outputl"/>
</wpc:output>
</bpws:invoke>

71

WID BPEL editor with properties view of assign activity:

4 — Palette —
NEoe
|2 Basic Actions
<§> Invake

=

= structures

(o] Scope

= TerminateProcess = SendEmailAck
+ Y

7 N
= BookCar = ReserveFlight = ReserveHotel
= + ¥

L3

. .
= Assign subprocess name

Details
Server
Environment
Event Monitor
* Global Event Settings

-

(% Faults i & BookCar
] Properties 3 thlems| Servers|

Description = Assign - Assign subprocess name

Assign From

wpc:getserviceRefForProcessTemplate("%BookCar_IN_STRUCT/preferredRentalCarCompany%", "http://www.lbm.com/xmins,

Figure 58: Assigning the subprocess name

Mapping WMQWEF control flow to BPEL

In "Mapping the FDL workflow to BPEL" on page 57, you already learned about the usage of
<link> elements which are used to convert FDL control connectors. <link> elements represent
the static structure of synchronization dependencies between activities. This section explains
how the dynamic synchronization dependencies specified by conditions and activity events
like expiration and notification are converted to BPEL by the FDL2BPEL Conversion Tool.

Transition conditions

A transition condition is a logical expression that describes when control is transferred from
the source activity to the target activity of a control connector. An FDL transition condition is
mapped to an equivalent BPEL element <transitionCondition> that is added as a child of the
<source> element of the activity. The following example shows the FDL specification of a
transition condition and the corresponding translation to BPEL:

FDL source code:

CONTROL

FROM 'B_CheckCreditCard' TO 'C_ReserveFlight'
WHEN "(CreditCard.CardSuccess= ""ok™"

OR _RC=1

OR CreditCard.CardSuccess= ""YES"")
AND FlightReservation.Reservation.CompanyName<> ""None™ "

72

BPEL source code:

<source linkName="B_CheckCreditCard-to-C_ReserveFlight">
<transitionCondition
expressionLanguage="http://www.w3.org/TR/1999/REC-xpath-19991116">
(

(getVariableData("Travelbooking_B_CheckCreditCard_OUT",
"_STRUCT/CreditCard/CardSuccess")
="ok")

or (getVariableData("Travelbooking_B_CheckCreditCard_OUT",
"_RC")
=1)
)
or (getVariableData("Travelbooking_B_CheckCreditCard_OUT",
"_STRUCT/CreditCard/CardSuccess")
="YES")
)
and (getVariableData("Travelbooking_B_CheckCreditCard_OUT",
"_STRUCT/FlightReservation/Reservation/CompanyName")
!="None")
)
</transitionCondition>
</source>

WID BPEL editor with properties view of link connector:

- e

(X Faults 4 & B_CheckCreditCard

97 Compensate o. o. i o o.

1% Throw ¥ = =~ —¢ & e

;4> 5 C_ReserveFlight = D_ReserveHotel = ReserveRentalCar = H_ContactCustomer
!Z Rethrow = = 5 5

[E Terminate 1 |

=1 Properties 23 Prohlems| Servers|

Description 2 Link - B_CheckCreditCard-to-C_ReserveFlight

Details Expression language: | XPath 1.0 =]

((((bpws:getVariableData("B_CheckCreditCard_OUT", "_STRUCT/CreditCard/CardSuccess") = "ok") or (
bpws:getVariableData("B_CheckCreditCard_QUT", "_RC") = 1}) or (bpws:getVariableData("B_CheckCreditCard_QUT",
"_STRUCT/CreditCard/CardSuccess") = "YES")) and (bpws:getVariableData("B_CheckCreditCard_OUT",
"_STRUCT/FlightReservation/Reservation/CompanyName") = "None"))

Figure 59: Mapping a transition condition expression to BPEL

Start conditions

WMQWEF applies the concept of a start condition to specify requirements about concurrent
control flow paths that reach an activity. A start condition may have the values:

e At least one incoming connector true (logical OR)
e Allincoming connectors true (logical AND)

At runtime, the MQ Workflow flow engine evaluates the transition conditions for the activity’s
incoming connectors. If the start condition is true:

e [fitis a manual activity, it is put on to the worklist of the designated staff.

e [fitis an automatic activity, it is started.

73

The corresponding construct in BPEL is a join condition. BPEL actually allows arbitrarily com-
plex Boolean expressions for the join condition. In converting from FDL to BPEL, it is sufficient
to use the conditions "any" and "all". The following BPEL code fragment shows how a start
condition with the value "All incoming connectors true" is translated into the "built-in" condition
value "all":

BPEL source code:

<!-- Activity "C" -->
<bpws:sequence name="gen0006" wpc:displayName="C">
<bpws:targets>
<bpws:joinCondition expressionLanguage="http://www.ibm.com/xmlns/...">
<wpc:all/>
</bpws:joinCondition>
<bpws:target linkName="A-to-C"/>
<bpws:target linkName="B-to-C"/>
</bpws:targets>

WID BPEL editor with details view of start condition:

: Sequence

@ Chr.)lr:ev = A = B
T T

% Faults . .

1} Compensate U

!% Throw = C

0= =
12 Rethrow

[E Terminate | : t ;

E Properties 22 Prohlems| Ser\rers|

Description = Sequence - C

——— Expression language: | Simple E

Join Behavior

, Condition: Al

Figure 60: Mapping a start condition expression to BPEL

Exit conditions

The exit condition for a WMQWF activity is a logical expression that must evaluate to "true",
for the activity to end. The evaluation result "false" causes the activity to be repeated. The exit
condition is therefore an implicit representation of a control flow loop, which would otherwise
be forbidden, if you modeled it explicitly in the workflow model.

BPEL does not have the concept of an exit condition. The only way to create a semantically
equivalent representation is to use a structured activity of type "While loop", which supports
looping on a specified iterative activity. The iterative activity is performed while the given Boo-
lean condition evaluates to true. Here is a BPEL syntax outline of a While Loop activity:

74

BPEL source code:

<while>
<condition
expressionLanguage="http://www.w3.0org/TR/1999/REC-xpath-19991116">
... XPath expression comes here ...
</condition>
activity
</while>

Note that the FDL2BPEL mapping logic has to consider the following semantic differences
between FDL exit conditions and BPEL while conditions:

Table 7: Mapping an exit condition expression to BPEL

FDL exit condition BPEL while condition
...must evaluate to "true", in order to exit the | ...must evaluate to "false", in order to exit
loop iteration. the loop iteration.
... is evaluated after the activity is executed. | ... is evaluated before the activity is exe-
cuted.

The FDL2BPEL Conversion Tool compensates for the differences, as follows:
1. Inverts (negates) the truth value that results from an FDL activity exit condition.

2. Uses an auxiliary BPEL "activity-status" variable to enforce at least one iteration cycle
of the while loop.

For example, given an FDL exit condition OrderStatus<>"postponed":

FDL source code:

EXIT WHEN "OrderData.OrderStatus<>""postponed""

The pseudocode for the equivalent while condition is:
NOT(Activity-Status = "started") OR NOT(OrderStatus<>"postponed")

If you initialize the BPEL Activity-Status variable with a value other than "started" (such as
"NOT SET") the iterative activity inside the while construct will be performed at least once.
The FDL2BPEL Conversion Tool generates "assign” activities that initialize and reset the ac-
tivity status variables. The following BPEL code provides an example of a generated BPEL
while condition using an XPath expression:

BPEL source code:

<bpws:while name="gen0011" wpc:displayName="while">
<bpws:condition expressionLanguage="http://www.w3.0org/TR/1999/REC-xpath-19991116">
not((bpws:getVariableData("InternalOrdering_BlockEnterandApprove_OUT",
"_STRUCT/OrderData/OrderStatus") != "postponed"))
or not(bpws:getVariableData("InternalOrdering_BlockEnterandApprove_ST", "ActivityStatus") = "started")
</bpws:condition>

</bpws:while>

75

WID BPEL editor:

_® *InternalOrdering X

U
£ Basic Actions
& Tnvoke
= Assign =
s = Reset BlockEnterandApprove_ST
& Receive Choice
2| Reply - g
@ Wait iz while

Empty Action =

?? Human Task
Lizicniepet = Set BlockEnterandApprove_ST to started
[+ Structures

ol Scope

£ Parallel Activities
= Sequence

& Choice
R | Execute activities contained in block
| cyclic Flow e

(¥ Faults o

{7 Compensate [# BlockEnterandApprove QUT - BlockEnterandApprove IN
1% Throw

12 Rethrow
(8 Terminate

BlockEnter and Approve

[& BlockEnterandApprove_IN - EnterOrder_IN "

2| Distribute the activity output data
[+

Ly o

£ Properties 52 Problems‘ Servers‘

Description) While Loop - while
Detals Expression language: | XPath 1.0 =l

Server

Event Monitor

not((bpws:getVariableData("BlockEnterandApprove_OUT", "_STRUCT/OrderData/OrderStatus™) != "postponed”)) or
not(bpws:getVariableData("BlockEnterandApprove_ST") = "started")

Figure 61: Mapping an exit condition expression to BPEL

Activity expiration

Activity expiration can be referred to in FDL conditions and is therefore a crucial task for mi-
gration from WebSphere MQ Workflow. Figure 62 shows a simple example that illustrates

how exit and transition conditions can use the expiration event of activity "Get customer
name".

76

| STATE() = _EXP

=

S
.
|
_STATE() = _EXFIRED E[?] Check customer data

|
|
|
|
|
|
+ _STATE() <= _EXPIRED |
»
Handle expiration - Serve customer
P !

—_— —
_— L~
— e
—_ —

— —

har S o

Figure 62: Activity expiration

In FDL you can specify expiration settings on a program activity that triggers the state "ex-
pired" on that node, which later on can be used in transition conditions. As the FDL2BPEL
Conversion Tool uses "XPath" for the migrated condition expressions, you cannot directly
refer to the corresponding "timeout" state in a BPEL process. That is why the FDL2BPEL
Conversion Tool maps activity expiration in the following way:

1. Add a "Scope" activity and a "Sequence" activity to the "invoke" activity, if there is no exit
condition.
2. Handle the "timeout" exception by adding a fault handler to:

® the new "Scope" activity, if there is no exit condition
e the "While Loop" activity, if there is an exit condition

3. Add an "Assign" activity to the fault handler which sets the "activity status" BPEL variable
to the "expired" state (Note that the "activity status" variable is already introduced to map
the "do until" semantics of an FDL block onto a BPEL "While Loop" activity).

4. Modify the translation of FDL conditions such that the "activity status" BPEL variable is
queried in case of a "_state()" expression found in an FDL condition.

5. Example: the FDL transition condition "_STATE() = _EXPIRED" of some activity "Act1"
becomes the BPEL link condition:

bpws:getVariableData("Act1_ST") = "expired"

Figure 63 to Figure 66 show the translation of activities with and without an exit condition:

77

= Get customer name

= Set Getcustomername_ST to

[E

bd

i timeout
() while

= 5et Getcustomername_ST to expired

= Set Getcustomername_ST to started
|_;<'; Initizlize human task input

& Get customer name

£ | Distribute the activity output data

¥

Figure 63: BPEL representation of FDL activity "Get customer nhame”

= While Loop - while
Expression language: E

not({ { bpws:getVariableData("Getcustomername_ST") = "expired”) or not(not(bpws:getVariableData("Getcustomername_0OUT",
"_STRUCT/Mame"} } } }) or not(bpws:getVariableData("Getcustomername_ST") = "started")

Figure 64: Translated exit condition of FDL activity "Get customer name"

© Check customer data

[E

2]
i timeout
|# Initislize human task input

= 5et Checkcustomerdata_ST to expired
& Check customer data

[# Checkcustomerdata_OUT - Servecustomer_IN

Figure 65: BPEL representation of FDL activity "Check customer data

2 Link - Checkcustomerdata-to-Servecustomer

Expression language: | XPath 1.0 E

|(bpws:getVariableData("Checkcustomerdata_5T") 1= "expired")

Figure 66: Translated transition condition refering to activity "Check customer data"

Mapping FDL data flow to BPEL

Unlike in FDL, you cannot use the concept of a data connector in BPEL. BPEL handles data
by copying data from one variable to another using "Assign" activities or Java snippets. BPEL
"Assign" activities contains <copy> instructions as child elements that are used to translate
FDL data mapping instructions. In a similar way, you can also use Java snippets as an

78

equivalent translation of FDL data mappings. In most cases, the FDL2BPEL Conversion Tool
uses Java snippets, because the BPEL "Assign" activities do not have the same semantics of
data mapping that you have in WMQWF.

The figure below shows a simple process in the diagram view of WMQWF Buildtime. It con-
tains an activity "Act1" that passes data to the other activities "Act2" and "Act3":

Figure 67: FDL data flow

Figure 68 shows part of the corresponding BPEL diagram view of the WID business process
editor. _
L

= Sequence

| Receive the process input
= Set the data default values

[% SimpleProcessWDF_IN - Actl_IN

Actl
¥
N LU
Act2 5 Act3
+ +

‘2| Return the process output

@
Figure 68: BPEL representation of FDL data flow (1)

79

The icons for activities "Act1", "Act2", and "Act3" indicate collapsed BPEL structured activities
of type "Sequence". For each FDL activity, the FDL2BPEL Conversion Tool generates a
BPEL "Sequence" activity as a wrapper that consists of the corresponding translation of the
activity itself (usually a BPEL "Invoke" activity) and other BPEL "Assign" activities and Java
snippets that represent the data flow. The purpose of the "Sequence" construct is to ensure
the correct execution order of data flow. In adition, using a "Sequence" activity as a wrapper
helps to preserve the topology of the original WMQWF process model, which makes it is eas-
ier to verify the correctness of the migration.

The following figure shows the view of the same business process, but with an expanded
"Sequence" activity generated for activity "Act1", which was classified as a "staff activity" (see
"Activity classification rules" on page 60) and was therefore translated to a "human task™:

= Sequence

%/ Receive the process input
= Set the data default values

[SimpleProcessWDF_IN - Act1_IN

5 ACtl

2 Actl
[% Act1_ouT - Act2_IN [# Act1_ouT - Act3_IN
N : : U
= Act?2 = Act3
+ +

2| Return the process output

@
Figure 69: BPEL representation of FDL data flow (2)

Starting from top of the diagram, the "Assign" activitg titled "Set the data default values" initial-
izes any default values for the process output data® and/or the data input and output of the
activities contained in process "SimpleProcessWDF". The Java snippet ("SimpleProc-
essWDF_IN - Act1_IN") represents the translated data connector from the FDL "SOURCE" to
the first activity "Act1" in the flow. The expanded BPEL "Sequence" for activity "Act1" contains

%" See limitation "Initial process input data" on page 133.

80

a Java snippet that initializes the input BPEL variable of "Act1", preventing a "variable not set"
exception if the inbound data flow is empty. Another "Parallel Activities" construct following the
"Invoke" activity "Act1" consists of two Java snippets that are used as a translation for the
outbound data connectors passing data to activities "Act2" and "Act3".

Consider an example mapping single data members:

FDL source code:

DATA
FROM 'Act1' TO 'Act2’
MAP 'Customer_DS.FirstName' TO 'Customer_DS.FirstName'
MAP 'Customer_DS.LastName' TO 'Customer_DS.LastName'

The corresponding implementation of this FDL data connector is a BPEL snippet with the
name "Act1_OUT - Act2_IN":

BPEL editor (properties view of activity "Act1 OUT — Act2 IN"):

® Variables =R
L] Execute activities contained in process ST FEEEEE
— SimpleProcessWDF_
Actl_IN
Actl_ouT
= Actl Act2_IN
- Act2_OuT
R 1 > Ad3N
[# Initialize human task input Act3_OUT
& Correlation Sets & %
3? Actl @ Correlation Pr... & %
| Distribute the activity output data :
i H -
[Actl OUT - Act2 IN [Actl OUT - Act3 IN
\slSeNers‘ ¥ =a
[Snippet - Act1_OUT - Act2_IN
Q Visual @ Java
Act2_IN = com.ibm.bpe.interop.WMQWFHelper.merge (Actl OUT, " STRUCT/Customer DS/FirstName", Act2 IN, "_STRI
Act2_IN = com.ibm.bpe.interop.WMQWFHelper.merge (Actl_OUT, "_STRU Customer_DS/LastName", Act2_IN, "_3
if (Act2 IN == null) {
com.ibm.websphere.bo.BOFactory boFactory = (com.ibm.websphere.bo.BOFactory) com.ibm.websphere.sca.Servi
Act2_ IN = boFactory.createByType (getVariableType ("Act2 IN")):
}

Figure 70: Mapping FDL data mapping to a Java shippet

The snippet contains the following Java instructions:

81

Act2_IN = com.ibm.bpe.interop.WMQWFHelper.merge (
SimpleProcessWDF_Actl_OUT,
" STRUCT/Customer_DS/FirstName",
Act2_1IN,
" _STRUCT/Customer_DS/FirstName",
getVariableType ("Act2_IN"));
Act2_IN = com.ibm.bpe.interop.WMQOWFHelper . .merge (
Actl_OUT,
" STRUCT/Customer_DS/LastName",
Act2_1IN,
" STRUCT/Customer_DS/LastName",
getVariableType ("Act2_IN"));
if (Act2_IN == null) {
com.ibm.websphere.bo.BOFactory boFactory =
(com.ibm.websphere.bo.BOFactory)
com.ibm.websphere.sca.ServiceManager.INSTANCE. locateService (
"com/ibm/websphere/bo/BOFactory") ;
Act2_IN = com.ibm.websphere.bo.boFactory.createByType (
getVariableType ("Act2_IN"));

This Java code consists of two steps:

1. Perform the data mapping using an API called "WMQWFHelper.merge()" (highlighted
in bold letters).

2. Initialize the target BPEL variable to prevent a "variable not set" exception, which
would occur if the data mapping instructions refer to empty data members.

It is necessary to use the "WMQWFHelper.merge()" API to achieve the same data mapping
semantics as in WMQWEF. The "merge" API belongs to the "com.ibm.bpe.interop" package
and has the following syntax:

public static DataObject // target BPEL variable

merge(DataObject source,
String sourcePath,
DataObject target,
String targetPath,
Type targetType)

The APl is called "merge", because it does not just "overwrite

/I source BPEL variable

/I XPath expression of source data member
// target BPEL variable

/I XPath expression of target data member
/I type of target BPEL variable

"% the content of the target

BPEL variable, but merges any preset data member of the target BPEL variable with new data
values that are copied from the source BPEL variable. Table 8 summarizes the semantics of

the "merge" operation:

*% Note that BPEL "Assign" activities behave like that. If data merging is not required, such as
for setting default values, the FDL2BPEL Conversion Tool only uses "Assign" activities.

82

Table 8: Semantic rules of "merge" operation

Source data member Target data member
Old value New value Old value New value
valueA valueA valueB valueA
valueA valueA <not set> valueA
<not set> <not set> valueB valueB
<not set> <not set> <not set> <not set>
Notes:

e The above rules for merging data apply to elementary data types as well as to com-
plex data types.

e Only data members that are specified by the XPath expression are changed. "Sibling"
data members that belong to the same target BPEL variable will not be changed.

e |f the target data member is changed according to the rules in the table, any "unset”
ancestor data object in the hierarchy of a complex data object will be initialized before
the "merge" operation is performed.

The following examples illustrate the data flow patterns of "data merging" and "data overwrit-

ing":

Table 9: Example 1 ("Merge" operation with two or more inbound data connectors)

WMQWEF process BPEL process
LY LY
A / B
\ / lm A_OUT-C_IN L@ B_OUT-C_IN
=22 E
m +!
C

Data is merged according to the principle "Last writer wins": If activity "B" executes after activ-
ity "A", then the input of "C" will be first set with the output data from "A" (snippet "A_OUT —
C_IN" on the right). Subsequently, the output of "B" (snippet "B_OUT — C_IN" on the right) will
update the input of "C" according to the semantic rules of the "merge" API.

Table 10: Example 2 ("Merge" operation with inbound data connector leading to an
input container with default values)

The data from the inbound data connector updates the default values of the activity input,
such that the inbound data connector "wins".

83

Table 11: Example 3 ("Merge" operation with inbound data connector and data loop
connector)

WMQWEF process BPEL process
'.'_|I A
A [A_OUT-B_IN
| L]
| 2
I e e |
p— [# Initialize human task input
B [2E2 |
m [u]
—— | ' B
e
[# B_OUT-B_IN

The input of activity "B" receives first data from the output of activity "A" (the snippet "A_OUT
—B_IN"). Subsequently, activity "B" is executed and the output of "B" updates its own input
data using the data loop connector (snippet "B_OUT — B_IN").

Table 12: Example 4 (Combining examples 1 — 3)

The data is "merged" in the following sequence:
1. The activity input is set with default values.
2. The values from inbound data connector(s) update the activity input.

3. The activity output updates the activity input resulting from step 2.

Table 13: Example 5 (UPES or PEA® activity ("staff activity") with default output data
and/or default data connector)

In this case, no data "merging" takes place. The activity result overwrites any preset data val-
ues in the output data container (in BPEL, the output variable).

® APEAis a Program Execution Agent, which invokes a local program application. Migrating
"PEA" activities is not supported (see limitation "FDL ProgramActivity" on page 142). The
FDL2BPEL Conversion Tool translates them to an "assumed staff activity" (see "Activity clas-
sification rules" on page 60).

84

Table 14: Example 6 (Process activity with default output data and/or default data con-
nector)

WMQWEF process BPEL process

B A

[# A IN-A OUT

/|
| | #a
(|
[% Merge subprocess output

—— [a_oUuT-C_IN
G X L

] _l
\

¥

C

First, the input of activity "A" updates the output of activity "A" using the default data connector
(in BPEL, the snippet "A_IN — A_OUT"). Then, the result of the subprocess invocation of activ-
ity "A" updates the contents of its output container (in BPEL, the output variable "A_OUT").

In the BPEL model the last "merging" step is performed in an additional snippet "Merge sub-
process output": The output of the subprocess is sent to an "auxiliary" BPEL variable
"A_SP_OUT" and the snippet uses APl "WMQWFHelper.merge()" to update the data in
"A_OUT" with the data in variable "A_SP_OUT".

Table 15: Example 7 (Block activity with default output data and/or default data connec-
tor)

WMQWEF process BPEL process

E A

. | [A_IN-A_OUT
A Distribute the block input data

? Execute activities contained in block

5 [# A oUT-B_IN
C i
7

+

B

Similar to example 6, the input data of activity "A" updates the output data using the default
data connector (in BPEL, the snippet "A_IN — A_OUT"). Then the input of "A" is distributed to
the start activities inside block "A" (see the flow activity "Distribute the block input data, which
contains respective snippets). Finally, the result of the block activity "A" updates the contents
of its output container.

85

Mapping WMQWEF staff assignment criteria to TEL people as-

signment criteria

Introduction

WMQWEF staff assignment criteria cannot be consistently mapped to corresponding TEL
peope assignment criteria because of differences between the modelling constructs. The fol-
lowing differences require a compromise solution:

Table 16: Comparing staff/people assignment criteria (WMQWF vs. TEL)

WMQWEF staff assignment criteria

TEL people assignment criteria

Except for block activities, staff assignment criteria
can be assigned to any activity type.

e People assignment criteria can only be as-
signed to "staff activities".

e "Staff activities" exclusively model the interac-
tion with a user

e "Staff activities" cannot model the invocation
of a program or service.

Staff assignment criteria can be inherited. For
example: Program activities without specific staff
assignments may inherit staff assignment criteria
from the process properties "Staff" page.

TEL people assignment criteria cannot be inher-
ited from another context.

Staff assignments can result from combining mul-
tiple staff assignment criteria. Examples:

e On the "Staff 2" page of the activity properties
you can simultaneously specify staff assign-
ments "Members of roles" and "Organization".
At runtime, staff resolution results from a un-
ion set of assignment criteria.

e There is an "Include process assignment”
radio button on the "Control" page of the activ-
ity. If this option is selected, the organization
and role settings for the process model are
part of the final staff assignment of the activ-

ity.

TEL staff resolution always results from a single
people assignment criterion.

WMQWF lets you specify staff assignment poli-
cies. Examples:

e Prefer not absent users.

e Assign substitute if user is absent.
e Include members only.

e Include reporting managers.

¢ Include child organizations.

"Include reporting managers" cannot be mapped
to TEL.

WMQWEF lets you specify "Level" related staff
assignment criteria.

"Level" is an unknown concept in TEL.

Mapping limitations

Using default people assignment criteria

Because of the differences listed in the above comparison, modelling staff assignment criteria
with the TEL default "people assignment criteria" currently cannot achieve all possible
WMQWEF runtime staff resolution behaviors. The FDL2BPEL Conversion Tool offers a transla-
tion of WMQWF staff assignment criteria to TEL "default people assignment criteria" as
specified in the "VerbSet.xml". You can map more complex staff assignment criteria by speci-

86

fying customized TEL people assignment criteria. For instance, you can add a new definition
of people assignment criteria that models the combination of two defaults "people assignment
criteria". Nevertheless, be aware of the limited staff query inheritance capabilities of TEL and
that a BPEL process model cannot be customized to achieve combined people assignment
criteria or staff resolution strategies.

Distinction between ""UPES activities'' and ''staff activities'"

It is assumed that WMQWF "UPES" activities (program activities that are associated with a
user-defined program execution server) are best mapped to non-interactive "invoke" activities
that have a "partnerLink" assigned. The FDL2BPEL Conversion Tool maps all other WMQWF
program activities to "empty activities" or "staff activities" according to the activity classification
rules (see "Activity classification rules" on page 60). "Staff activities" are translated to BPEL
"to-do tasks" with the "partnerLink" attribute set to "null", as described in the IBM BPEL exten-
sions specification.

Migration of staff assignment definitions to be inherited

WebSphere Process Server does not have equivalent rules of inheritance for model proper-
ties like WebSphere MQ Workflow. In particular, migrating properties that your process
inherits from domain or system definitions is not supported by the FDL2BPEL Conversion
Tool, because its migration scope is limited to business processes, which should not depend
on system migration aspects. The FDL2BPEL Conversion Tool translates the capability of
WMQWF to inherit staff assignment definitions from the process settings at runtime into a sort
of static inheritance at migration time:

Assume that your WMQWF process has an FDL "program activity" that fulfills the following
conditions:

1. default staff assignment (for example, "all people")

2. mapping to BPEL will be a "staff activity" according to the "activity classification rules”
(cp. page 60)
3. staff assignment "inherited" is selected

Then the FDL2BPEL Conversion Tool looks up the staff definition in process settings and
maps those to equivalent TEL people assignment criteria for the activity (see "Mapping of staff
assignment criteria" below).

Mapping of staff assignment criteria

Table 17 shows the mapping between WMQWF staff assignment criteria and TEL default
people assignment criteria:

87

Table 17: Mapping WMQWF staff assignment criteria to TEL default people assignment

criteria

WMQWEF staff
assighment criteria

TEL people assignment criteria

All people

<tel:name>Everybody</tel:name>

Staff from predefined
members

No mapping available

People®

<tel:name>Users by user ID</tel:name>

<tel:parameter id="User|D">name or %XPath expression%</tel:parameter>
<tel:parameter id="AlternativelD1">name or %XPath expression%</tel:parameter>
<tel:parameter id="AlternativelD2">name or %XPath expression%</tel:parameter>

Process administrator

<tel:name>Users by user ID</tel:name>
<tel:parameter id="UserID">

name or %XPath expression% or %wf:process administrators%
</tel:parameter>

Process starter

<tel:name>Users by user ID</tel:name>
<tel:parameter id="UserlD">%wf:process.starter%</tel:parameter>

Manager of process
starter

<tel:name>Manager of Employee by user ID</tel:name>
<tel:parameter id="EmployeeUserID"> %wf:process.starter%</tel:parameter>

Starter of activity

<tel:name>Users by user ID</tel:name>
<tel:parameter id="UserlD">%wf:activity(Name).owner%</tel:parameter>

Manager of starter of
activity

<tel:name>Manager of Employee by user ID</tel:name>
<tel:parameter id="EmployeeUserID"> %wf:activity(name).owner%</tel:parameter>

Exclude starter of
activity

No mapping available

Members of roles®

<tel:name>Group Members</tel:name>

<tel:parameter id="GroupName">name or %XPath expression%</tel:parameter>
<tel:parameter id="IncludeSubGroups">false</tel:parameter>

<tel:parameter id="AlternativeGroupName1">name or %XPath expres-
sion%-</tel:parameter>

<tel:parameter id="AlternativeGroupName2">name or %XPath expres-
sion%-</tel:parameter>

Coordinator of role

No mapping available

Organization (strategy
"include members
only")

<tel:name> Group Members</tel:name>
<tel:parameter id=" GroupName">name</tel:parameter>
<tel:parameter id= IncludeSubGroups >false</tel:parameter>

Organization (strategy
"include reporting
managers")

No mapping available

Organization (strategy
"include child organi-
zations")

<tel:name> Group Members</tel:name>
<tel:parameter id=" GroupName">name</tel:parameter>
<tel:parameter id= IncludeSubGroups >true</tel:parameter>

Manager of organiza-
tion

No mapping available

Notification

In MQ Workflow, the process modeler can specify a period of time in which an activity must
finish. A designated person receives a notification work item if the activity is not completed in
the specified time. If the notification is not completed within the specified time, a second notifi-
cation may be given to the process administrator.

The FDL2BPEL Conversion Tool maps activity notification to an escalation for a human task
in WebSphere Process Server. Note that you cannot migrate the notification of an activity that
is translated to an activity type other than "staff activity", according to the FDL2BPEL activity
classification rules (cp. section "Activity classification rules" on page 60). If you have specified

% Restricted to the first three items from the people list field.

¢ Restricted to the first three items from the role list field.

88

a second notification for an activity of your WMQWF model, the FDL2BPEL Conversion Tool
will translate it to an "escalation chain".

As an example, Figure 71 below shows how you can specify in WMQWEF Buildtime a person
to notify of a delay, if the activity is not completed within three days. A second notification will
be sent to the process administrator if the activity is still open after two more days.

B AssessRisk - Program activity properties <Process Cre i]
General | Execution | Start | Exit | Data | Tools | Staff 1
Staff2 Notification | Control | Documentation

[~ Notification from predefined members;

—Person to notify of delay
{~ Mone {~ Process administrator

(& Manager (" Coordinator

" Person I E e

¢~ From container I

— Duration of activity

(& Duration |3 day(s) bEF

(" From container I

Dwration of making decision

(" No second notification

(& Duration |2 day(s) bEF

(" From container I

oK I Cancel | Apply | Reset Help

|E:- Object locked by user 1D ADMIN E Diagram storage mode

Figure 71: First and second notification of an FDL activity

The next two figures (Figure 72 and Figure 73) show how the first and second notifications are
reflected in the WID human task editor as the members of an escalation chain:

~To-do Task B
[Name | AssessRisk_PTASK

| ‘ Display Name <Not Applicable>

»Service Interface

~People (Receiver) L4
‘ 2 Potential Owners | Users by user ID
‘ | UserlD * %%owf:activity(CollectCreditInformation).owner%o
~User Interface + XK
[% User Interface
~Escalation f=Nr=]
= i} o
Ready Claimed Subtask started

= Notification1
= Notfication2

= Properties &2 Problem5| Server5|

Description = Escalation
M. f Emplo? by D
i iteria: | Manager of Employee by user

Assign People People assignment criteria: | g ployee Dy
Environment Assigns the manager of an employee, given its user ID.

Supported by sample XSLT fies for:

- Virtual Member Manager

- LDAP

MNal | Value

EmployeeUserID = %owf:activity(AssessRisk).owner%

Figure 72: Mapping first notification to an escalation step of a human task

~To-do Task =]
[Name [AssessRisk_PTASK

‘ | Display Name <Not Applicable>

»Service Interface

~People (Receiver) g XK
| O Potential Owners ‘ Users by user ID
| ‘ | UserlD * %%wf:activity(CollectCreditinformation).owner%
~User Interface %+ ¥
[*Zuser nterface
~Escalation 2 &2
S Sl &
Ready Claimed Subtask started

|
= Notification1
= Notification2

= Properties 3

Description
Details

Assign People

Froblem5| Server5|

= Escalation

People assignment criteria: | Users by user ID

Environment

Assigns users, given their user ID.
Supported by sample XSLT files for:
- Virtual Member Manager

- LDAP

- User Registry

- System

Name | Value

UserID * %wf: process.administrators%
AlternativelD1

AlternativelD2

Figure 73: Mapping second notification to an escalation step of a human task

89

90

Substitution

MQWF supports substitution by automatically transferring work items to another person when
the person to whom an activity was originally assigned is declared as absent.

The FDL2BPEL Conversion Tool migrates the definitions for substitutes from WMQWF to
WPS according to the following mapping rules for staff assignment policies:

Table 18: Substitution mapping rules

WMQWEF Staff assignment control flag

TEL task property

Prefer not absent users

substitutionPolicy="SelectUserlfPresent"

Assign substitute if user absent

substitutionPolicy="SubstituteUserlfAbsent"

Mapping FDL to Service Component Architecture

WebSphere Business Process Choreographer supports the Service Component Architecture
(SCA). Accordingly, the FDL2BPEL Conversion Tool generates "service component” and
"service import" artifacts as files with the extensions ".component" and ".import". They contain
XML code that conforms to the "Service Component Definition Language" (SCDL). Web-
Sphere Integration Developer provides an "Assembly editor" that displays a graphical view of
your business application in terms of SCA.

For example, the following figures show the WMQWF Buildtime diagrams of a "Nice Journey"
WMQWEF business process that contains a main process "Nice_Journey" and a subprocess
"NJ_BookCar". Note that each of the program activities is implemented by a UPES according
to the "Migration Best Practices" recommendations:

Nice_Journey - Process diagram

L S e ﬁailReservalion\D/ = A
M N —
b S // —
A A

=] =
$ = .

Figure 74: FDL process "Nice Journey"

91

NJ_BookCar - Process diagre - o] x|
A
[7
| \
| \
P ABCCarRental >(7éc:arnenta| hisl
I /]
AR 4
« e 4

Figure 75: FDL subprocess "Book Car"

The next figure shows the same processes after they have been migrated and imported into
WID in the "assembly diagram" view. The processes now "implement" the SCA components
"Nice_Journey" and "NJ_BookCar", which in turn are "wired" to several "service import" icons
that "implement" the necessary UPES applications:

®© ¥ NOOP

@ 2 NJ_BookCar ii

@© ¥ UPES2

1.1

1.1

@ & Nice_Journey .1

1.1

© ¥ UPESL

@ %¥ FLIGHT

Figure 76: WID assembly diagram view

For more information about the content of the generated files, refer to the corresponding SCA
literature in the WebSphere Information Center.

SCA Components

For each process definition in the FDL file, the FDL2BPEL Conversion Tool generates a sin-
gle SCA component artifact that is implemented by a corresponding BPEL business process.
For example, in the above assembly editor diagram view, the icons for the components "Nice-
Journey" and "NJ_BookCar".

As previously mentioned in "Mapping FDL PROCESS_ACTIVITY to BPEL" on page 68, the
FDL2BPEL Conversion Tool supports subprocess invocation by process template names
(static or late bound), which conforms to the WMQWF runtime behaviour. This means that an
explicit "wiring" between a subprocess "reference" hot spot of a "parent"” SCA component and
the "interface" hot spot of the respective subprocess SCA component is not needed in the

92

assembly diagram. Note: Do not try to add a supposed missing wire! For example: in the
assembly diagram below (Figure 77) you should not add a wire from the unwired WSDL refer-

ence hot spot of component "Nice_Journey" to the interface hot spot of component
"NJ_BookCar".

® %2 FMCSYS_DUMMYO1

&

i1 @ % FMCSYS_FLIGHT

@ 2 Nice_Journey .1

1.1

i @ %2 FMCSYS_UPES1

@ 2 NJ_BookCar k.1 @ %2 FMCSYS_UPES2

Figure 77: A deliberately omitted wire in the assembly diagram

SCA Imports

For each server definition in the FDL file, the FDL2BPEL Conversion Tool generates a single
SCA import artifact, if and only if it is referred to in some FDL program activity definition. For
example, the icons for the SCA imports "FMCSYS_DUMMY01", "FMCSYS_FLIGHT",
"FMCSYS_UPES1", and "FMCSYS_UPES2" in the above assembly editor diagram view.

Data binding type

The "MQ JMS data binding" performs the transformation of data that is passed between a
WPS business process executed by the WebSphere Business Process Choreographer and
an MQ JMS messaging system. As mentioned in "Mapping the data exchanged with a UPES"
on page 41, the communication with a UPES requires business objects that conform to a
dedicated message type. These objects are serialized as an outbound XML text message

type "Activitylmplinvoke'® and deserialized from XML text message types "Activitylmplin-

vokeResponse", according to the conventions of the WMQWF XML message interface (see
"Part 5. The XML message interface" in IBM WebSphere MQ Workflow "Programming Guide"
Version 3.6).

Activitylmplinvoke

ActivitylmplinvokeResponse

r

Translate data objects -
to / from XML

XML Message

Figure 78: How BPC communicates with a UPES

62 See limitation "XML message types" on page 140.

93

The FDL2BPEL Conversion Tool generates an MQJMS data binding (SCA "import") with an
appropriate data binding type (serialization type).

The following XML code illustrates one of the above SCA imports ("FMCSYS_Flight"). The

"data binding" type of the "makeReservationResponse" message is emphasized with under-
lined letters:

XML source code of assembly diagram:

<?xml version="1.0" encoding="UTF-8"?>
<scdl:import
xmlns:scdl="http://www.ibm.com/xmlns/prod/websphere/scdl/6.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:mqjms="http://www.ibm.com/xmlns/prod/websphere/scdl/mqjms/6.0.0"
xmlns:ns1="http://www.ibm.com/xmlns/prod/websphere/mqwf/wsdl/"
xmlns:wsdl="http://www.ibm.com/xmIns/prod/websphere/scdl/wsdl/6.0.0"
name="FMCSYS_FLIGHT"
displayName ="FMCSYS_FLIGHT">
<interfaces>
<interface xsi:type="wsdl: WSDLPortType" portType="ns 1:FMCSYS_FLIGHT_PT" preferredInteractionStyle="async">
<method name="ReserveFlight UPES"/>
</interface>
</interfaces>
<esbBinding xsi:type="mqjms:MQIJMSImportBinding" responseCorrelationScheme="RequestMsgIDToCorrelID">
<outboundConnection>
<mqConfiguration>
<queueManager>FMCQM</queueManager>
</mqConfiguration>
</outboundConnection>
<responseListener/>
<send type="javax.jms.Queue" targetClient="JMS">
<baseName>JMS_FLIGHT</baseName>
</send>
<receive type="javax.jms.Queue" targetClient="JMS">
<baseName>JMS_FLIGHT_REPLY</baseName>
</receive>
<methodBinding
method="ReserveFlight UPES"
inDataBindingType="com.ibm.workflow.sca.jms.data. ReserveFlight Response UPES MSG DataBindingImpl"
outDataBindingType="com.ibm.workflow.sca.jms.data.ReserveFlight Response UPES MSG DataBindinglmpl"

/>
</esbBinding>
</scdl:import>

When the "FMCSYS_FLIGHT" SCA import is selected in the WID assembly editor you see the
same data binding type on the Binding page of the properties view:

[problms| servers [T e,
Description ~ || 5% Import: FLIGHT (MQ JMS Binding)
Details = Bound Methods
Bnding | @ Nice_Journey_ReserveFight_UPES_S_OP QNS Headeriopeites ‘
S JMS type:
- End-point configuration Ui
- Method bindings JMs correlation 1D: [
m IMS delivery mode: ‘ Persistent
- Message Configuration
02 “origuaten | JMS priority: ‘4
“ Summary

Custom Headers

Name | Type | Value

Method binding description:

Hide Advanced <<

Input data binding format

Serialization type: | User Supplied E‘

Input data binding class name: |com.|bm.workﬂaw.sca.]m5.data.MakeReservatmResponse_uPES_OuT_M

Output data binding format

Serialization type: | User Supplied E‘

Output data binding class name: |com.|bm.workﬂaw.sca.]m5.data.MakeReservatmResponse_uPES_OuT_M

Figure 79: MQ JMS binding of an SCA import

94

The source code of the corresponding "user supplied" Java class "MakeReservationRe-
sponse_UPES_OUT_MSG_DataBindinglmpl" is also generated by the FDL2BPEL
Conversion Tool:

=101 %]

Bj D:\FDL2BPEL_TEST\Nicelourney_with_UPES\com\ibm\workflow\sca\jms\data\MakeReservationR

Ve

* Generated by FDL2BPEL converter on wed jun 21 10:29:14 CEST 2006
= from FDL file "NiceJourney with UPES. fdl"

*

*/

package com.ibm.workflow.sca.jms.data;
public class MakeReservationResponse_UPES_OUT_MSG_DataBindingImpl extends WMQWFUpesDataBinding {
private static final long serialversionUID = 1L;

public MakeReservationResponse_UPES_OUT_MSG DataBindingImpl() {

super();

this. setDataType("'MakeReservationResponse UPES_OUT_MT");

this. setDataTypeNameSpace("'http://www. ibm. com/xmlns /prod/websphere/mqwf/schema/");
¥

Figure 80: Java class implementing the data binding

The translation from the received XML representation of the received "MakeReservationRe-
sponse" message and the corresponding Java object for the "MakeReservationResponse"
business object is done by the class "WMQWFUpesDataBinding", from which the class "Mak-
eReservationResponse_ UPES_OUT_MSG_DataBindinglmpl" is derived (note the "extends"
keyword).

Because the "WMQWFUpesDataBinding" needs to know the translation target data type,
"MakeReservationResponse_ UPES_OUT_MSG_DataBindinglmpl" serves as a helper class
to provide this piece of information.

Endpoint configuration

To be able to communicate with a UPES you also need to specify the messaging queues and
a queue manager. The queue manager name is taken from the FDL server definition.

20

General Message Queuing | Documentation |

—Message queuing system

@ MOSeries

Cueue Mame
[FUGHT

Cueue Manager Narme
[FrCam

—hessage format
[

oK | Cancel | Apply | Beset Help

|E:: Ohject locked by user ID ADMIMN |§ Database storage mode

Figure 81: Queue manager in WMQWF Buildtime

Problems i Properties X

Description %% Import: FLIGHT (MQ JMS Binding)
Details Request Response|
Binding % Connection Factory Properties

[* End-point configuration
- Method bindings Select property view option:
Q) spedfy JNDI name for pre-configured messaging provider resource

* Security attributes
* Message Configuration

® spedfy properties for configuring new messaging provider resource

© Summary

Transport: [BINDINGS

[use default queue manager name

(Queue manager name: | FMCQM

Figure 82: Queue manager in the WID assembly editor (properties view)

Problems i Properties X

—Dl’iptbﬂ 2% Import: FLIGHT (MQ IJMS Binding)
Details Requestl Response‘
Bim:lmg— {i} Connection Factory Properties

- End-point configuration ~ Send Destination Properties

- Method bindings
* Security attributes Select property view option:
O Specify INDI name for pre-configured messaging provider resource

~ * Message Configuration |
o E e @ Spec roperties for configuring new messaging provider resource
Summary P prop guring ging p
Type: javax.jms.Queue
Base name: * | IMS_FLIGHT
Base queue manager name:
CCSID:
Target client type: Ms

Digit Enceding Properties
[use native encoding

Integer encoding: \ Normal

Decimal encoding: ‘ Normal

Floating point encoding: \IEEEworma\

Ll

Figure 83: Request queue in the WID assembly editor (properties view)

Problems i Properties X

Descrpton || i Import: FLIGHT (MQ JMS Binding)
Detais Request I Response}
Bndng | Connection Factory Properties

- End-point configuration » Listener Port Properties

 Method bindings Receive Destination Properties

* Security attributes
* Message Configuration | Select property view option:
* Summary ¢ Spedfy JNDI name for pre-configured messaging provider resource

® Specify properties for configuring new messaging provider resource

Type: javax.jms.Queue
Base name: # | IMS_FLIGHT_REPLY
CCsID:

Target client type: IMS

Digit Encoding Properties
[use native encoding

Integer encoding: [Normal

Decimal encoding: | Normal

Floating point encoding: |1EEEN0I’ma|

Ll

Figure 84: Response queue in the WID assembly editor (properties view)

96

Note that the queue names are generated according to the following convention:

Table 19: Queue naming conventions

Queue type Message format Base name Example
XML <FDL queue name> "FLIGHT"
Request queue
JMS-compliant XML JMS_<FDL queue name> "JMS_FLIGHT"
XML <FDL queue name>_REPLY "FLIGHT_REPLY"

Response queue

JMS-compliant XML

JMS_<FDL queue name>_REPLY

"JMS_FLIGHT_REPLY"

Preferred interaction style

On the Execution page of the settings notebook of a WMQWF "program activity" you can se-
lect the UPES execution mode, as follows:

Table 20: UPES execution mode

. FDL property .

Execution mode "SYNCHRONIZATION" Explanation
If selected, IBM WebSphere MQ Workflow waits for a response. The
activity is started and receives the status running. The status is set to

Synchronous NESTED executed, when IBM WebSphere MQ Workflow is notified that the

activity has finished.
If selected, IBM WebSphere MQ Workflow continues without waiting.

Asynchronous CHAINED The activity runs asynchronous. It is started and, at the same time,
the activity receives the status finished.

The FDL "SYNCHRONIZATION" property is mapped to the corresponding SCA import prop-
erty "Preferred interaction style". In order to validate the property setting in WID, open the
assembly diagram, select the respective "Import" of your UPES. On the "Properties" pane,
click on the Details page, and select the only "interface" that is visible below the root of the
"Interfaces" tree view. On the right side, make sure that the Details page which shows the
value of property "Preferred interaction style" is visible (see Figure 85 below).

L= Favorites

|.—> Components

171, Untyped Comp...
42 Human Task
%’.Ja\ra

£ Process

E- Rule Group

L State Machine

-

@ 2 NI_BookCar_with_UPES 1.1

i

1.1

@ 2 Nice_Journey_with_UPES .1

.1

.2

® %2 FMCSYS_UPES2

@© ¥ FMCSYS_DUMMY01
©

© %2 FMCSYS_FLIGHT

* End-point configuration

* Method bindings

* Security attributes

* Message configuration

* Summary

L—- Outbound Adap... © &% FMCSYS_UPESL
L= Inbound Adapters;
m\F’roblems| Servers|
Description ' i Import: FMCSYS_FLIGHT (MQ JMS Binding)
[Details = @ Interfaces Details] Quarrﬁers| Event Monlor|
Binding P FMCSYS_FLIGHT_PT Properties of Interface FMCSYS_FLIGHT_PT

Interface: FMCSYS_FLIGHT_PT

Preferred interaction style:
Description:

Name
ReserveFlight_UPES

Operations:

Figure 85: Preferred interaction style of UPES interface

97

Chapter 5: WMQWF UPES migration details

Both XML-based and JMS-compliant XML-based UPES applications are supported. You can
reuse UPES applications without code modifications that use only the following WMQWF
message types:

e Activitylmplinvoke
e ActivitylmplinvokeResponse

UPES applications that use or depend on other WMQWF message types, such as "Activ-
ityExpired" or "TerminateProgram" need some reworking, because these messages are not
supported in WPS.

During UPES migration you should check whether there are UPES applications that process
messages which contain platform dependant "implementation data" (Note that WPS process
will send "Activitylmplinvoke" messages without the element "ImplementationData").

For every UPES application that you want to reuse in a migrated WMQWF process, take into
account that the MQJMS support in WebSphere Process Server has a message correlation
mechanism that is different from the message correlation mechanism of a WMQWF server:

e A WMQWEF server correlates response messages by means of the WMQWF correla-
tion id inside the message payload. The "message id" and "correlation id" fields in the
WebSphere MQ message descriptor (MQMD) are not used.

e WebSphere Process Server uses the MQMD fields "message id" and "correlation id"
as described in the WebSphere MQ documentation and ignores the respective fields
in the message payload.

To ensure correct message correlation, you might have to change your UPES application, as
follows.

e "XML"based UPES applications must copy the content of "message id" field from the
MQMD of the request message into the "correlation id" field of the MQMD of the re-
sponse message.

e JMS-compliant XML-based UPES applications: Copy the "message id" from the re-
quest message into the "correlation id" field of the RFH2 header of the response
message.

We recommend using the WMQWF UPES Framework V3.6 SP4. The UPES Framework han-
dles the complete communication effort in the required way.

In most cases, you must create a new response queue for each UPES application because,
other than in a WMQWF environment, the UPES response message is not sent back to the
WMQWEF execution server (that is the EXEXMLINPUTQ queue)“.

® Make sure that your UPES application does not send the response message to the
EXEXMLINPUTQ queue any time. The target queue information of the UPES response mes-
sage is contained in the header of the UPES request message and must be taken from there.

98

Chapter 6: Optimizing the migrated business model

Optimizing BPEL process models

The generated BPEL files do not always represent the most compact translation of a given
WMQWEF process.

The FDL2BPEL Conversion Tool applies a translation pattern that preserves the original
process topology. The advantage of this approach is that it makes it easier for you to become
familiar with the generated BPEL process, because you can use the diagrams of the original
FDL process model as a reference map. The drawback of this approach is that it will some-
times result in suboptimal solutions.

For example, simple FDL activity chains are translated to BPEL processes with redundant
structured activities, like "Sequence" and "Parallel Activities".

Another example is a data connector that passes data unchanged from one activity to another
one are sometimes better mapped to a shared BPEL variable where the FDL2BPEL Conver-
sion Tool generates two BPEL variables and a snippet activity that does the data mapping.

You might want to rework a generated BPEL model in order to optimize it. For instance, you
can remove redundant structured activities.

Consider the following WMQWEF process with a simple chain of activities:

Acknowledge order creation

Figure 86: Simple chain of FDL activities

The FDL2BPEL Conversion Tool translates this into the following BPEL process:

—

= Sequence

=]
& Receive the process input

(& OrderProcessing_IN - Getcustomerdata_IN

= Get custorner data

=

[#% Inftialize human task input
& Get customer data

[# Getcustomerdata_OUT - Createorder IN

=

e

+ Create order

[#% Inftialize human task input
2 Create order

[& Createorder OUT - Acknowledgeordercreation_IN

N
= Acknowledge order creation

[# Initialize human task input
7 Acknowledge order creation

(& Acknowledgeordercreation_OUT - OrderProcessing_OUT

=

%] Return the process output

1=t

@

Figure 87: BPEL activity chain with redundant structured activities

99

Removing the redundant structured activities would result in the following equivalent BPEL

process:

100

= Sequence

% | Receive the process input

OrderProcessing_IN - Getcustomerdata_IN
[# Initialize human task input
" (et customer data
[# Getcustomerdata_QUT - Createorder IN
[% Initialize human task input

= Create order

% Createorder_OUT - Acknowledgeordercreation_IN
[# Initialize human task input
% Acknowledge order creation
(% Acknowledgeordercreation_OUT - OrderProcessing_OUT

@] Return the process output

®

Figure 88: BPEL activity chain without redundant structured activities

Removing redundant Java snippets and BPEL variables

The FDL2BPEL Conversion Tool sometimes generates redundant snippets and BPEL vari-
ables.

The FDL2BPEL Conversion Tool uses an extensive set of generic mapping rules that some-
times lead to suboptimal solutions. For instance, a data connector that passes the content of
an activity output container "as is" to the input of another activity would be most easily
mapped to a single BPEL variable that is shared by the two activities as the output variable
and the input variable respectively. Instead of this you will find in the migrated BPEL model
two generated BPEL variables and a snippet that copies the data from the output variable to
the input variable.

In this case, you should manually modify the BPEL model in the WID business process editor,
such that it uses the preferred "shared" BPEL variables.

101

FDL example:

- = 3 e
/” T - T T
i) M

Actl Act2
Act1 - Act2 - Data connector <Process Shared BPEL variables>

2
Origin Data Structure |Target Data Structure
Member Type Default Member [Type Mapping Default
= Act2
LONG B _PROCE
STRING [_ACTIVI
_I| STRING - _STRUC| customer Infc|Actl:_STRUCT
: STRING
- _PROCESS_I
B _ACTIVITY_I
#-_STRUCT |customer Info
Data Mapping [Actt:_STRUCT] i |

(0] 4 I Cancel | feta] e Beset | Help |

E Diagram storage mode

|E:; Dbjectlocked by user 1D ADMIMN

4

Figure 89: FDL data connector with "_STRUCT to _STRUCT" mapping

Figure 90 shows how FDL2BPEL Conversion Tool translates the data connector to BPEL by
inserting Java snippet "Act1_OUT — Act2_IN". The snippet is redundant, because it copies
data without any change from BPEL variable "Act1_OUT" to variable "Act2_IN":

102

- M & MyProcess

® fio Interface Part... & %
¥ MyProcess_PL

&% Reference Par... & %

[MyProcess_IN - Act1_IN T e

@] Receive the process input

.)) MyProcess_IN
1| Execute activities contained in process
= MyProcess OUT

Actl_IN
: ,C_\ctl Actl_OouT
Act2_IN
[% Inftialize human task input Act2_OUT

& Correlation Sets = %

Actl
[Correlation Pr... & &

[# Actl_OUT - Act2_IN

#Hp GO

2| Return the process output

®©

Problems| Servers|

‘% Snippet - Act1_OUT - Act2_IN

O Visual @ Java

e

Bct2 IN = com.ibm.bpe.interop.WMQWFHelper.merge (Rctl OU
if (Act2 IN == null)} {
com. ibm.websphere.bo.BOFactory boFactory = (com.ibm
Bct2 IN = boFactory.createByType (getVariableType ("A

}
Figure 90: BPEL process with redundant Java snippet

You can improve the performance of the generated BPEL process, as follows (see Figure 91):

1. Remove the redundant structured activities.

2. Remove Java snippet "Act1_OUT — Act2_IN".

3. Remove BPEL variable "Act1_OUT".

4. Assign BPEL variable "Act2_IN" to the output of activity "Act1".

il

®
| Receive the process input
[% MyProcess_IN - Act1_IN
[% Initialize human task input

:.%9 Act1
[% Initialize human task input
@ Act2
[# Act2_OUT - MyProcess_ouUT

@] Return the process output

®

2 MyProcess
fw Interface Part... & &
* MyProcess_PL

% Reference Par... == &
& \/ariables R

MyProcess_IN
MyProcess OUT
Actl_IN

ActZ_IN
Act2_ouT

& Correlation Sets & &
& Correlation Pr... & &

Problems| Ser\rers|

Human Task - Act1

The Staff Action is implemented by a Human Task.

Human Tas

Actl PTASK

Use Data Type Variables

Name | Variable

&1 Input(s)

inputl |Actl_IN |...

% Output(s)

outputl | Act2_IN |...

Figure 91:

Improved BPEL process with shared variable

103

104

Appendix 1: Migration coverage listed by FDL syntax
expressions

Introduction

Not all constructs that you can specify in FDL can be mapped in a one-to-one fashion to a
corresponding BPEL construct due to the differences in the programming models. Appropriate
warnings in the output of the FDL2BPEL Conversion Tool are provided as XML comments in
the generated artifacts (such as the files with the extension ".bpel"). These warnings inform
you about constructs that are not migrated in a one-to-one fashion. This chapter and the fol-
lowing®® help you to identify limitations that might impact your WMQWF source artifact
migration.

FDL source file

V3R
FM_RELEASE V3R dlevel
V3R
V3R
V3RZ
LEL
V2R1
VZRZ

VZR l ‘

w—LODEPAGE—Codepog
Declarationfction
Deletedction

< b
< = o '
froe ; - K3
26lo |2 |5
28 2 | %5 2
ToO| 0 o= O
o=l o Q@ € o
B 84 88 52
23| 235 28 5%
(:I,) | .E =S _d:, E © 0
cu| 39 =3 2§ o
oa | 29| o3 2 o)
S0 g8 T ag «
S| x2 pE ® 5 =
23| 58 59 50 8
f EL|=E 08 25 o
FDL syntax expression
CODEPAGE Codepage x>
FM_RELEASE VnRn ModeLevel X%
DeclarationAction 104
DeleteAction &
DeclarationAction

Topology |
Processhoée] ing '—

Staff |7
Tool 5e |7

® See "Appendix 2: Migration hints" on page 130.
¢ See "FDL with codepage different from system codepage" on page 130.
% See "Migration of early FDL versions" on page 130.

¢ See "FDL processing actions" on page 130.

105

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of proc-

ess model migration

Not applicable, no work-
around possible

See page

CREATE

REPLACE

UPDATE

x| | >
I

Topology

ProcessModeling

111

Staff

X69

ToolSet

70

Topology

Domain |

SystemGrI*oup |7

System
Server
Programbxecutionfgent r—

QueueManager Ii

FDL syntax expression”

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

ess model migration

Not applicable, no work-
around possible

Domain

SystemGroup

x | > | Outside the scope of proc-

System

Server

ProgramExecutionAgent

QueueManager

System

re—SYSTEM—Objec fShort.ﬂ."crme—" SystemSetting I—

—'| TopologySetting I—

—END
I—ijec tSJJo:‘fNameJ

% See "FDL processing actions" on page 130.
% See "WMQWF staff repository" on page 137.

7% See "Migration of WMQWF Buildtime tool set definitions not supported” on page 131.

" See "System network" on page 141.

106

£ 2]

£ = 1<)]

= = = 3

25| o |2 |5

BG|ls |o§ =

o @ o= o

o2 @ Qo € o

a < o O = n—

a8 D-%‘ 28 o2

] _ 23 o E |0

cw| 39 €9 29 o

Sal 8- 98 55 ©

58 3 2¢g 8¢ 2

3| 58 59 58 8
FDL syntax expression” Se|SEOo Z5 0
SYSTEM ObjectShortName X
SystemSetting X
TopologySetting
TopologySetting

»+——OPERATION—(OperationSetting

—SESSION——SessionSetting

-SERVER—Defaul tServerSetting

-PROGRAM_EXECUTION_AGENT—Defaul tProgramfxecutionAgentSett ingJ—

—PROCESS—Defaul tProcessSetting

HACTIVITY—Defaul tActivitySetting

HPROGRAM—De faul tProgramSetting

L IMPORT——Defaul tImportSetting

72 See "System network" on page 141.

107

Outside the scope of proc-

Migration supported with
ess model migration

FDL2BPEL Conversion
Not applicable, no work-
around possible

Workaround possible with
See page

manual rework

FDL syntax expression™

OPERATION OperationSetting

SESSION SessionSetting

SERVER DefaultServerSetting

XX | X [x

PROGRAM_EXECUTION_AGENT DefaultProgramExecutionAgentSetting

PROCESS DefaultProcessSetting 107

ACTIVITY DefaultActivitySetting 109

PROGRAM DefaultProgramSetting

x

IMPORT DefaultimportSetting X

DefaultProcessSetting
(1)
NO————— UDIT_TO_DB—l
b FULL. AUDIT_TO MO -
I:EUNDENS ED—
FILTER—

RUN
—NOTIFICATION_MODE HOLD_—l—
PULL:
-REFRESH_POLICY P‘USHj—

EVER

—KEEP_WORKITEMS T imePEl—
EVER—J_l_
—KEEP_PROCESSES TimePerio

L Au tonomy—AUTONOMY:

Notes:

1 Instead of specifying AUDIT_TO_DB or AUDIT_TO_MQ, you can use AUDIT,
which was a valid option in previous versions of MQ Workflow. With the
AUDIT option, you define AUDIT_TO_DB. For details, refer to the IBM
WebSphere MQ Workflow: Administration Guide.

"® See "Properties inherited from domain or system" on page 141.

108

Migration supported with
FDL2BPEL Conversion

FDL syntax expression

Outside the scope of proc-
ess model migration
Not applicable, no work-

Workaround possible with
around possible

manual rework

See page

x

NO (AUDIT_TO_DB | AUDIT_TO_MQ | AUDIT)

(FULL | CONDENSED | FILTER) (AUDIT_TO_DB | AUDIT_TO_MQ | AUDIT)

x

NOTIFICATION_MODE RUN

x

NOTIFICATION_MODE HOLD

REFRESH_POLICY PULL X

REFRESH_POLICY PUSH

KEEP_WORKITEMS (NEVER | TimePeriod)

KEEP_PROCESSES (NEVER | TimePeriod) X

TimePeriod

129

Autonomy AUTONOMY

108

Autonomy

NGO
FULL

STAFF
OTIFICATION—
DMINISTRAT ION—
ONTROL———

Migration supported with
FDL2BPEL Conversion

Outside the scope of proc-
ess model migration
Not applicable, no work-

Workaround possible with
around possible

manual rework

See page

FDL syntax expression™
NO

x

FULL

STAFF

NOTIFICATION

ADMINISTRATION

XX [X [x

CONTROL X

7 See "Audit settings" on page 141.
7® See "Notification mode" on page 137.
"® See "Workitem refresh policy” on page 144.

" See "Policy for how to deal with finished workitems" on page 144.

"8 See "Policy for how to deal with finished process instances" on page 144.

" See "Process autonomy modes" on page 141.

DefaultA ctivitySetting

"H_—L—/I_(HECKOUT_POSSIBELE
NO
—L—_I—INCLUDE_PROEESS_ASSIGNMENT—
D0 NOT-
—L—_I—PREFER_LOCAL_USERSi
DO NOT-
—L—J—PREFER_NON_ABSENT_USERS—
DO NOT-
[Nﬂj
SUBSTITUTION

ﬁ—NDTI FICATION_SUBSTITUTION——m"
ND

MO
J———I—DUF’LICATE_NCITIFI[ZATIONi

—AUDIT_FILTER_DB—AuditEvents
—AUDIT_FILTER_MO—AuditEvents

109

FDL syntax expression

gration supported with

9 FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of proc-
ess model migration

Not applicable, no work-
around possible

See page

(NO) CHECKOUT_POSSIBLE

od

= | Mi

INCLUDE_PROCESS_ASSIGNMENT

x
“

DO NOT INCLUDE_PROCESS_ASSIGNMENT

x

PREFER_LOCAL USERS

DO NOT PREFER_LOCAL_USERS

x

(DO NOT) PREFER_NON_ABSENT_USERS

x

(NO) SUBSTITUTION

NOTIFICATION_SUBSTITUTION

NO NOTIFICATION_SUBSTITUTION

DUPLICATE_NOTIFICATION

NO DUPLICATE_NOTIFICATION

AUDIT_FILTER DB AuditEvents

AUDIT_FILTER_MQ AuditEvents

Server

(1)
»»=—SERV ER—Dbjec:Shor:Name——' ServerSetting

END

[
I—ij ectSh orz.ﬂ.l'ameJ

% Serves as indicator for a "staff activity" (See "Activity classification rules" on page 60).

8 See "Staff assignment criteria" on page 139.
8 See "Notification policy" on page 138.

% See "Audit settings" on page 141.

110

-= |]
£ |2 |8 |.
S < = s =
o o “— °
88|l=2 | °5 =
2 09 3
52| 4 2w € o
a < o ~ o = no—
°'8 o s 28 o2
25/ 28 2§ |3
cw| 39 €9 29 o
6a| 89X 239 8% o
=m0 g8 Bl 2T ®
S| 3 5 E @5 2
23|55 59 5° %
- S
FDL syntax expression Su|SEOo Z5 0
SERVER ObjectShortName x>
ServerSetting 110
ServerSetting
ELATED GROUP—Object Shortham =
ELATED_SYSTEM—ObjectShortNam
ESCRIPTION—Description
OCUMENTATION—Documentation
TYPE CLEANUP_SERVER
EXECUTION_SERVER
SCHEDULING SERVER
PROGRAH_EKECUTIUN_SER'JER—II ProgramexecutionServerContext IJ—
USEF!_DEFINED_PF!(JGRP.M_E?llEI:UTI[JN_SER\JER—|J UPESContext L
o
2 | E
s |£ |8 |5
§g| 2 |5 | £
ol o -]
88|22 (o |2
0| @ [o
o2 7] <3 c o
oa€| 9«| 96 N
8&o| axX| 28| &
50 S| 2%| =2
» 'E S| 25 ®©
cw 39 E = 2 ()
oa | 92| 0o E| B2 ©
T2 £S5/ 23| 23| &
N x (]
= »c| 25| O 3 @
——5g 20 ; £ 3282 g8
FDL syntax expression = Qe el @

RELATED_GROUP ObjectShortName

x

RELATED_SYSTEM ObjectShortName

x

DESCRIPTION Description

DOCUMENTATION Documentation

TYPE CLEANUP_SERVER

TYPE EXECUTION_SERVER

TYPE SCHEDULING_SERVER

TYPE PROGRAM_EXECUTION_SERVER ProgramExecutionServerContext

XX XX [X X

TYPE USER_DEFINED_PROGRAM_EXECUTION_SERVER UPESContext

111

8 See "User-defined program execution server (UPES)" on page 139.

UPESContext

ML e
| (1)
»=——MESSAGE_FORMAT S XML -

—MOSYSTEM MQSERIES
HPHYSICAL_QUEUE_MAME—MQSeriesObjectNome—
—OUEUE_MANAGER_NAME—MQSeriesObjeciName—

(2)

S—I
—VERSION I—Integer
(3)

E—I
—RELEASE rI

nteger

(4)
—LEUELﬁnfeger I

Notes:
1 This means that you use a [MS-compliant XML format.

2 Default is set only if the FDL file contains a version number prior to Version
3 Release 3.

[#¥]

Default is set only if the FDL file contains a release number prior to Version 3
Release 3.

4 Default is set only if the FDL file contains a level number prior to Version 3

Release 3.
T
4 | S
< 8 o
E_|3 |8 | ¢
25|l |2 |3
Bo | = o 3
T2 | &, 2
25| 8¢/ 88|l o
SO gf| 2% &
w_,| c3| 25| ®
cw| 32| £2 £ ®
oa | 2_-| 0oE| 22| @
@ s S T= o2 &
o N x 3 [7] (] T ‘» °'
o= ‘6 g - 'g - 0| ©
- =0 3 So| @
FDL syntax expression SL | SE|CE|z2/ 0
MESSAGE_FORMAT XML X
MESSAGE_FORMAT JMS_ XML X
MQSYSTEM MQSERIES X
PHYSICAL_QUEUE_NAME MQSeriesObjectName X
QUEUE_MANAGER_NAME MQSeriesObjectName
VERSION (3] Integer)
RELEASE (2| Integer) X
LEVEL (2] Integer)
ProcessModeling
> Data structur >
Program————
Process

Process category—
Conditions——

112

e
4 | S
= 8 o
£_|% |2 |
55|35 |2 |3
3|2 |5 |2
co| @] (]
cz2| @ Q| €
8| oyl 96| =
ol | ax| = 2
3°| 28| 28 7
cm| SB|£2 & | o
on | S—| o E| 22| ©
0| 8| BD=| 28| ©
S X 3| 7 O T o
52| 55| 58| 58| 3
FDL syntax expression® SL | 3E|OCE| 22| 0
Data structure 112
Program 113
Process 114
Process category 127
Conditions 128

Data structure

wr—STRUCTURE—Ob jectNome

¥
I—l StructureSetting ’J

|

>

END
(1) I—Objec :Ncr.m-eJ
MemberDeclaration '—

StructureSetting:

ESCRIPTION—Description

]

OCUMENTATION—Doc umen tafionJ

MemberDeclaration:

F—

-

|—Hembern'arne——: Type }
_I ! I—I SizeOfArray 'J I—I MemberSetting 'J

% See "User-defined program execution server (UPES)" on page 139.

% See "XML message types" on page 140.

113

e
8 | S
< 8 e
5 = (o] «©
§g|2 |58 | 2
-2 2 Y °
TBo|l 3 o H
£0| @ o o
5z 8. 85 &
So| a¥| 08| &
o | 25|
¢=l'n 2 S| o [©
o| S8| £2 &
cw 32| el =0 @
oa | 8—-| 0oE| 22| @
= m 8 T=| o0 ®
S| x3 58 op| =
23|55 58 52| 8
o s
FDL syntax expression SL | SE|CE|Z22/ 0
ObjectName X
StructureSetting x°
MemberDeclaration X
Program
—i—fefoult dote structure— —Defoult dota structure—)
b —PROGRE N jec N on T ProgromSet ting—— P!arfo.m(errr'@J—. W
I—Defr.'u!f dota structivre—) e foult dota strocture—
) | 1) ' (2) '
ta stroctor Dota structur
I—aujecr.\'arwJ
°
8 | 5
< 8 (3
< = o @
S c E s =
oo u= o
B | = o H
£0| @ [o
22| 8. 85 &
& o Q_-E o 9 d)-
n=| =
S5O | 5 © ©| 2o
wn, | €3 @2 5 8
cw 3 Q E = .2 Q
o €| S o
o | 22— o 2 O
= M c S| T=| Q0| ®
© N ¥ 3 D Q T o
o3| 5§ 58 8% 2
FDL syntax expression ScL|ZE|O0E 22|
PROGRAM ObjectName
Default data structure X
Data structure 112
ProgramSetting X
PlatformSetting X

8 See "Data description and documentation" on page 140.
8 See "Data member description and documentation” on page 140.

% See "Program execution properties” on page 142.

114

Process

»»=—PROCESS—Processihom

I—(—.Defaui'f data structure—,—Defoult date structure—)
>

efoult data structure—, efoult data structure—,
L r

Lm o | |_D @ |
to structure——— oto structure———
A || |

DefaultProcesss
DefaultActivitysetting I—

] |

ProcessSetting li |—| ProcessStaffAssignmentSetting |J
tting T

> | END
|—| ProcesseraphicsSetting |J |—| Construct |J LGDJ‘ecrNameJ

Migration supported with
FDL2BPEL Conversion

FDL syntax expression

Not applicable, no workaround

Outside the scope of process
possible

Workaround possible with
model migration

manual rework

PROCESS ProcessName

x

Default data structure

x

Data structure

ProcessSetting

DefaultProcessSetting

DefaultActivitySetting

ProcessStaffAssignmentSetting

ProcessGraphicSetting

Construct

ProcessSetting

we——ESCRIPTION—Descriptior

FOOCUMENTATION—Decumentat ion
HYALID FROI TimeStamp }
CATEGORY—00 fec tiam

—LD—_I—PRI’JMPT_A T_PROCESS_START-
0—NOT-

—IHPUT_CUHTAIHEH—' ContainerInitial |

—DUTPUT_CDHTAINER—I ContainerInitial i

L GLOBAL_CONTAINER—RELATED STRUCTURE—Objectlame |

|—| GlobalContainerSetting lJ

% See "Graphical layout information” on page 131.

115

FDL syntax expression

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
FDL2BPEL Conversion
Workaround possible with
model migration

manual rework

See page

DESCRIPTION Description

x

DOCUMENTATION Documentation

VALID FROM TimeStamp

x| X

CATEGORY ObjectName

x
<

PROMPT_AT_PROCESS_START

x

DO NOT PROMPT_AT PROCESS_START

INPUT_CONTAINER Containerlnitial

OUTPUT_CONTAINER Containerlnitial

GLOBAL_CONTAINER RELATED_STRUCTURE ObjectName

GlobalContainerSetting

115

GlobalContainerSetting

10_QUERIES

TABLE_NAME—Tab [eNam

INDEX—"' IndexSetting |
0NTAINER_INITIALS—| ContainerInitial -

FDL syntax expression®

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
model migration

FDL2BPEL Conversion
Workaround possible with

manual rework

See page

NO_QUERIES

TABLE_NAME TableName

x [X

INDEX IndexSetting

x

CONTAINER_INITIALS Containerlnitial

ProcessStaffAssignmentSetting

ATA—FROM—INPUT_CONTAINER

T ExplicitProcessStaffAssignmentSetting

" See "Staff assignment by process category" on page 138.

% See "Prompting for data at process start" on page 133.
% See "Initial process input data" on page 133.

% See "Global container database settings" on page 134.

116

FDL syntax expression

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
model migration

FDL2BPEL Conversion
Workaround possible with

manual rework

See page

DATA FROM INPUT_CONTAINER

g
o

x

ExplicitProcessStaffAssignmentSetting

—_

ExplicitProcessStaffAssignmentSetting

OTIFICATION—AFTER TAKEN_FROM—Dot tedNam

Timeln ter‘val‘g
REANTZATION TAKEN_FROM—Dot tedName
bjectNaJ
OLE TAKEN_FROM—Dot tedName
bject.ﬂ.l'crme—l

PROCESS_ADMINISTRATOR TAKEN_FROM—Dot tedﬁame_—l—
FPe rsonName

FDL syntax expression®

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
FDL2BPEL Conversion
Workaround possible with
manual rework

model migration

See page

NOTIFICATION AFTER TAKEN_FROM DottedName

NOTIFICATION AFTER Timelnterval

x [X

ORGANIZATION TAKEN_FROM DottedName

ORGANIZATION ObjectName

ROLE TAKEN_FROM DottedName

ROLE ObjectName

PROCESS_ADMINISTRATOR TAKEN_FROM DottedName

PROCESS_ADMINISTRATOR PersonName

XXX |X|X[X

Construct

Activity |

ControlFlow

DataFlow '—

% See "Staff assignment from input container" on page 138.

% See "Process notification” on page 138.

117

ControlFlow
DataFlow

Activity
Programictivity L >

Processfctivity

Block |7

ProgramActivity

ProcessActivity
Block 120

ProgramActivity

w—PROGRAM ACTIVITY—Act ivityName: J END——
ActivitySetting
ActivityExtensionSetting
DefaultActivitySetting ':

ProgramhctivitySetting

I—)Ict ivi tyﬂmeJ

118

e}
8 | S
s 8 o
£_13 |8 |¢&
25 0 |2 |3
ge|lz2 |9 |3
co| @] (]
22 8.| 85| &
26| a¥| 08| &
35 22| o8| 8§
2d S| 9 8
oa | 95| o E| B2
=M g8 B—=| o8
S| x2| 58| 0
o2 | 55| =8| =9
o7 sP|=E|8€E| 28
FDL syntax expression i &
PROGRAM_ACTIVITY ActivityName X
ActivitySettin
ActivityExtensionSetting
DefaultActivitySetting
ProgramActivitySetting
ProgramActivitySetting
|—PROGRAM—ObjectName >
(1) (3) |
PRUGRAM_EKECUTION_UNIT4E]| FullyQualifiedServerName | i
AKEN_FRUM—DoffedName—ll
(2)
SYNCHRONIZATION CHAINED
|—NESTE
Notes:

1 The keyword PROGRAM_EXECUTION_SERVER can still be used instead of
FROGRAM_EXECUTION_UNIT. However, for new definitions, use only
PROGRAM_EXECUTION_UNIT, because the old keyword is only valid as an
interim solution for this release. The type of server can be a
PROGERAM_EXECUTION_SERVER or a
USER_DEFINED _PROGRAM_EXECUTION_SERVER.

2 If Asynchronous was specified on the Execution page of the Program activity
properties, this appears as CHAINED in the FDL file. If Synchronous was
specified on the Execution page of the Program activity properties, this
appears as NESTED in the FDL file.

3 If the following conditions apply, the activity is an empty activity:

* SYNCHRONIZATION CHAINED is specified. In the Buildtime user
interface, this is Asynchronous Mode.

+ PROGRAM FMCINTERNALNOOF is specified and this program is
defined.

+ The activity is started automatically.

+ Input and output data structures are the same.

During run time, if an empty activity is started, a program is not called to
execute the activity and it is immediately completed. If a data default
connector is defined for the activity, the specified mappings are executed
from the activity input container to the activity output container.

% See "FDL ProgramActivity" on page 142.

119

e
2 |5
s 8 (S
£ £ |2 | £
25|l |2 |3
gelz2 |9 |2
co| @] (]
gz | 8. 85| S
So| a¥| 08| &
35|22 28| 8
cm| S o £2 & o
oo 9_| 0o El 22| O
= m 8 ©T—= o0 ®
S| 22| 58| 8| 2
o2 | 58/ 58| 53| 8
- =0 3 So| @
FDL syntax expression SL | SE|CE|Z22/ 0
PROGRAM ObjectName X
PROGRAM_EXECUTION_UNIT FullyQualifiedServerName X
PROGRAM_EXECUTION_UNIT TAKEN_FROM DottedName X
SYNCHRONIZATION CHAINED X
SYNCHRONIZATION NESTED
ProcessActivity
»»—PROCESS_ACTIVITY—Act ivityName— END >

ActivitySetting
ActivityExtensionSetting

DefaultActivitySetting
ProcesshActivitySetting

i I—AcfivinyameJ h

e
4 | S
s | & |8
£_|% |2 | g
55|13 |8 |3
= ® | 38 o H
£o|®])
sz| & Sc| =
86| ¥l g2 g
29|28 e8| 8
cm| S8 £2 8 | o
2k 25/ 2E a2 o
5355 28 54| 3
FDL syntax expression® SL|SE|OCElZ2l 0
PROCESS_ACTIVITY ActivityName X
ActivitySetting 121
ActivityExtensionSetting 122
DefaultActivitySetting 109
ProcessActivitySettin 119

ProcessActivitySetting
(1)

|—PRDC ESS bjectﬁamﬁ—SYSTE bjectShortNam—'
TAKEN_FROM—Dot tedName TAKEN_FROM—Dot tedName

Notes:

1 This is the name of a process.

% See "Program execution unit taken from container" on page 140.

% See "Staff assignment and notification criteria assigned to process activities" on page 139.

120

e
8 |5
- = 8 o
= S E g
5512 |5 |3
39|38 |8 |2
co| @]]
HEMEEE
S| a¥| 08| &
39| 28| 2§ 8
cm| S8 £8 8 | o
oa | 8-l o€l 52 B
T8 85| 83| 28| 8
S| =c| 25| 28
- o 2 Om| S0 © g $
FDL syntax expression SL | 3E|OCE| 22| 0
PROCESS ObjectName X
PROCESS TAKEN_FROM DottedName X
SYSTEM ObjectShortName X
SYSTEM TAKEN_FROM DottedName X
Block
we—BLOCK—ActivityNome—— = i Const ruct |——END—»
ActivitySetting
BlockSetting '—
I—Acfa'vz'ry.ﬂ.fameJ
°
g | E
s 8 (3
£E_|% |8 | §
5512 |8 |3
3o |3 (B |3
co| @] <]
o 2 (7] Q. c =
eS| Qx| 86| ¢
g0 x| 9=| &
SO | 5 9 © 2
wn,| €2 25| ®
cw =] 9 E -9 .2 Q
ga | 2= o £ 22 o
T2 &85 g ° %-a o
= - O - o -
_ Sn| 88| 50| 58| 38
FDL syntax expression Sc|SE|O0E 220
BLOCK ActivityName X
ActivitySetting 121
BlockSetting 120
Construct 116
BlockSetting
START—WHEN T_LEAST _ONE—

CONNECTOR: TRUE:
LL—CCINHECTORS—,

EXIT—WHEN—Condition

LScreenPos i fz’onJ

SOURCE—Containerlayout
SINE—Lontainerlayout
WINDOW—Hindowlayout

1% See "System properties assigned to process activities" on page 142.

121

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

START WHEN AT_LEAST_ONE CNNECTOR TRUE

START WHEN ALL CNNECTORS TRUE

X [X

EXIT WHEN Condition

ScreenPosition

1071

SOURCE

SINK

ContainerLayout

107

WINDOW WindowLayout

X [X

ActivitySetting
—(—Defoult dota structure—,—Defoult doto structure—)

I—Defau!f data structure— —Default dota structure—

_(]
| (1) (2)
ta structure—— L fata structure——
—INPUT_CONTAINER—ContainerInitial

HOUTPUT_CONTAINER—Contatnerinitiol

L 1CON—Object ShortNam

| LAYOUT—Symbol Layout:
F-NAME_POSITION—ScreenPosition

L DESCRIPTION—Description

L DOCUMENTATION—Documentat ion

Notes:

1 The first data structure that you specify is the input data structure.

2 The second data structure that you specify is the output data structure.

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

Default data structure

Data structure

INPUT_CONTAINER Containerlnitial

OUTPUT_CONTAINER Containerinitial

XXX [x

ICON ObjectShortName

107

LAYOUT SymbolLayout

1071

NAME_POSITION ScreenPosition

107
X

DESCRIPTION Description

DOCUMENTATION Documentation

%' See "Graphical layout information” on page 131.

122

ActivityExtensionSetting

(1)

»+——SUPPORT_TOOL——0bjectNom

—EXIT AUTOMATIC

—START: UTOMATIC HEN T_LEAST_ONE—CONNECTOR TRUE—
NU;”{L——I_N LL—EUNNECTORSJ

I—MANUAL—I LNHEN—Condz'tz'on

I—l ScreenPosition 'J

HPRIORITY Integer
—EDEFINED_IN—INPUT_CONTAINER
TAKEN_FROI Dottedlame

—DUNE_B‘E—I ActivityStaffAssignmentSetting |

e |
Notification i
Expiration i

Notes:

1 This is the name of a program.

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

SUPPORT_TOOL ObjectName

x|
d
N

START AUTOMATIC

START MANUAL

START ... WHEN AT_LEAST_ONE CONNECTOR TRUE

START ... WHEN ALL CONNECTORS TRUE

EXIT AUTOMATIC

EXIT MANUAL

EXIT ... WHEN Condition

Condition

128

ScreenPosition

PRIORITY Integer

PRIORITY DEFINED_IN INPUT_CONTAINER

x

PRIORITY TAKEN_FROM DottedName

DONE_BY ActivityStaffAssignmentSetting

122

Notification

124

Expiration

125

ActivityStaffAssignmentSetting

STAFF—DEFINED IN—INPUT_CONTAINER:

A

ExplicitStaffAssignment i

192 See "Support tools" on page 143.

193 See "Activity start and exit mode" on page 132.

1% See "Graphical layout information” on page 131.

123

e
4 | S
s 8 (S
£_13 |2 |¢&
5|0 |2 | 3%
3e|ls |5 |2
co| @] (]
5z 8. 85 &
So| a¥| 08| &
39|22 28| 3
cm| S3£2 8 | o
on | 9S—| o E| 22| ©
EmM| ¢8| T—=| o8| @
(LY X 3| = @ G o
= | »c| £ - 0)
. 28 g ® 39 ©00| o
FDL syntax expression =l =E[oEl=alv
STAFF DEFINED _IN INPUT_CONTAINER X'
ExplicitStaffAssignment 123

ExplicitStaffAssignment

—ALL
»_iPERSU TA KEN_FRUM—DIO ttedName.
ersonNam
COORDINATOR—OF—ROLE TAKEN _FROM—Dot t edNam
b.}'ectﬁcrme—l
HMANAGER—OF—ORGANTZATIO! TAKEN_FROM—Dot te dlNam
b,ject.ﬂfcrme—l

—MEMBER—OF—IRULE TA KEN_FROM—JDottedNO'me

b jectNam

biectNa
HLEVEL—LevelAssignment

HORGANTZATIO TAKEN_FRUM—DotfedName_—,—l Orghssignment |7

I—. ‘e Leve!.ﬂssignmean

STARTER_OF_ACTIVITY—FullyQualifieddctivityName

AGER—OF—
EXCLUDE——
—PROCESS_ADMINISTRATOR

(1)

PROCESS_STARTER
L vanager—or—]

195 See "Staff assignment from input container" on page 138.

124

FDL syntax expression'™

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
FDL2BPEL Conversion
Workaround possible with
model migration

manual rework

See page

ALL

x

PERSON TAKEN_FROM DottedName

x

PERSON PersonName

x

COORDINATOR OF ROLE TAKEN_FROM DottedName

COORDINATOR OF ROLE ObjectName

MANAGER OF ORGANIZATION TAKEN_FROM DottedName

MANAGER OF ORGANIZATION ObjectName

XX [X [x

MEMBER OF ROLE TAKEN_FROM DottedName

MEMBER OF ROLE ObjectName

ORGANIZATION TAKEN_FROM

ORGANIZATION ObjectName

X [X [X | X

" OrgAssignment

124

LEVEL LevelAssignment

MANAGER OF STARTER_OF ACTIVITY FullyQualifiedActivityName

EXCLUDE STARTER_OF_ACTIVITY FullyQualifiedActivityName

PROCESS_ADMINISTRATOR

PROCESS_STARTER

x

MANAGER OF PROCESS_STARTER

OrgAssignment

I—INCLUDE_CHILD_ORGAN IZATIONS—
|

I:;NC LUDE_REPORTING_MANAGERS—
EMBERS_ONLY.

FDL syntax expression

Not applicable, no workaround

Outside the scope of process
possible

Migration supported with
model migration

FDL2BPEL Conversion
Workaround possible with

manual rework

See page

INCLUDE_CHILD_ORGANIZATIONS

x

INCLUDE_REPORTING_MANAGERS

MEMBERS_ONLY

x

Notification

ExplicitNotification | J
EFINED_IN—INPUT_CONTAJNER

1% See "Staff assignment criteria” on page 139.

125

e
8 |5
£ 8 o
£_|% |8 | &
'§ c o =
3 % = S g
£0| @ g o
ez g ec| =
86| a¥| 82| o
S5O0 | v @ ©| o
oo c2 25 8
cuw 3 2 == = @
oa | 9_| 0o E| 22| O
= m «e8% T= o9 8
N 2| 53 cSa| &
S— 23| 568 59| 58| 8
FDL syntax expression' SL | SE|CE|Z22/ 0
ExplicitNotification 125
DEFINED_IN INPUT _CONTAINER X"
ExplicitNotification
»»—NOTIFICATION—T! PROCESS_ADMINISTRATOR AFTER: >
NAGER
OORDINATOR
ersonNaeme——]
TAKEN_FROM—Dot tedName—
Timelnterval 5
TAKEN_FROM—{ot tedNam
L i |
I—SECUND_NOTIFICATION—AFTER TEmeIntervcrE—J—l
TAKEN _FROM—Dot tedName
e
8 |5
£ 3 o
£E_ |5 |8 | ¢
25| |2 |3
292 38 o s
€0 @ Q (]
HE PR
SR)
7 Olg 2 o8| 8
cm| S8/ £2 8 |,
oa | 9_| 0o E| 22| O
= m «e8 T= o9 8
N 2| 53 cSa| &
_ 2a| 58| 58| 5 3 3
FDL syntax expression SL | SE|OCE| 22/ 0
NOTIFICATION TO PROCESS_ADMINISTRATOR X
NOTIFICATION TO MANAGER X
NOTIFICATION TO COORDINATOR X'
NOTIFICATION TO PersonName X
NOTIFICATION TO TAKEN_FROM X
NOTIFICATION ... AFTER Timelnterval X
NOTIFICATION ... AFTER TAKEN_FROM DottedName X'
SECOND_NOTIFICATION AFTER Timelnterval X
SECOND_NOTIFICATION AFTER TAKEN_FROM DottedName X'
Expiration
»+—EXPIRATION—AFTER——TAKEN FROM—Dot tedNam -

Timefntervcri!4|

197 See "Notification" on page 137.
"% See "Notification from container” on page 138.

1% See "Staff assignment criteria” on page 139.

126

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

EXPIRATION AFTER TAKEN_FROM DottedName

x

EXPIRATION AFTER Timelnterval

x

ControlFlow

»=—CONTROL

| ControlSetting i
I—NAME—S ymbo ENameJ

ControlSetting:

|— HEN—Condi tion B T
ScreenPosition

THERWISE

—’_—H_l—Acfiva' nymne—ETU—_I—Activi tyiVame—
FRO - =

HLAYOUT—BendPoints
—DESCRIPTION—Description

>

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

CONTROL

x

NAME SymbolName

g

WHEN Condition

OTHERWISE

FROM? ActivityName (TO | ->) ActivityName

LAYOUT BendPoints

T
X

DESCRIPTION Description

DataFlow

"% See "Data and control connector" on page 132.

""" See "Graphical layout information” on page 131.

»—DATA z i DataflowSetting i
I—NAH E—Symbo i'.'.f'.fm'JeJ

DataflowSetting:
|_

ctivityName.

]

RO QURCE:

Integer

LOOP—ActivityName.

ActivityName.
LI:EI ME-
LoeaL_covTAINER Linteger

DEFAULT—Activ i tyNam

I DataStructureHemberame |—ETU:|—| DataStructureMemberiame
I-_M-LP:I I -

HLAYOUT—BendPoint

1|

L ESCRIPTION—Description

127

o
8 5
< 8 o
£E_|% | ¢ |
25|l |2 |%
Ba|l [3
£Oo0| @] o
2z| 8, 8g| &
26| a¥| 08| &
5O | 5 ©]
wn, | €3 25| ®
cw =2 Q £ -9 .2 Q
ea | S=| oE|l 22 o
SR &S g © %a o
| - PLiuel -0
. 2a § sl S0 58| 3
FDL syntax expression 2L | SEOE| 28/ o
DATA X
NAME SymbolName m
FROM? (ActivityName | SOURCE Integer?) (TO | ->) (ActivityName | SINK X
Integer? | GLOBAL_CONTAINER Integer?)
LOOP ActivityName X
DEFAULT ActivityName X
MAP? DataStructureMemberName (TO | ->) DataStructureMemberName X
LAYOUT BendPoints X
DESCRIPTION Description X
Process category
»»—PROCESS_CATEGORY—ObjectName: END- -

I—‘ ProcessCategorySetting 'J

-
I—ij ec If.ﬂ."::r.'neJ

ProcessCategorySetting:

»a

|—EEESERIPTION—Descriptior
OCUMENTATION—Documentatio

"2 See "Data and control connector" on page 132.

13 See "Graphical layout information” on page 131.

128

e}
2 |5
< 8 o
= =
Zc| % | § |2
(<] () o o
3e|s |3 |2
co| @] (]
sz| 8._| 85| ¢
80| a¥| 82|
29/ 28 o8| 2
c d g o 5 2 o @
o | 95| o E| 32| o
£0| 55| 85| 82| &
- = [7])
— 23| 58| 58| 58| 8
FDL syntax expression SL|SE|OE| 22| 0
PROCESS_CATEGORY ObjectName X

DESCRIPTION Description

x

DOCUMENTATION Description

x

Conditions

Condition

»—' Boolean expression i

Boolean expression

-

—Hoolean expression—AND—Boolean expression

HHoolean expression—0OR—PBoolean expression
—NOT—S8oolean expression

(1)
—String expression—Comparison operator————String expression—
HNumeric expression—Comparison operator—Numeric expressionr—]
(2)
Hinary expression—Comparison operator——EBinary expression—
Integer expression

(3)
HContainerMember—IS—NULL

(4)
HContainerMember—NOT—NULL

|-State express ion—I:—_I—Sta te expression
=

—(—>Boolean expression—)

Notes:

1

Le¥]

Strings are compared character by character based on the value of their ASCII

character codes.
The valid comparison operators are = and <> only.

Use this operator for querying whether a container member is not set.

Use this operator for querying whether a container member is set.

"% See "Process category description and documentation” on page 141.

1% See "Staff assignment by process category" on page 138.

129

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

possible

See page

Boolean expression (AND | OR) Boolean expression

NOT Boolean expression

String expression Comparison operator String expression

Numeric expression Comparison operator Numeric expression

Binary expression Comparison operator Binary expression

Integer expression

Container member IS NULL

Container member NOT NULL

XX XXX [X|X|Xx

State expression (= | <>) State expression

o

Common variables

TimePeriod

Timelnterval
EFORE'-J'ER
{EYER——

FDL syntax expression

Migration supported with
FDL2BPEL Conversion

Workaround possible with

manual rework

Outside the scope of process

model migration

Not applicable, no workaround

™ possible

See page

Timelnterval

FOREVER

NEVER

1% See "Activity states" on page 133.
117

See "Policy for how to deal with finished process instances" on page 144.

130

Appendix 2: Migration hints

Due to differences in technology and programming model you cannot always expect a seam-
less migration of your WMQWF processes to Business Process Choreographer. The following
sections help you to learn about known migration limitations and what actions you can take to
overcome them.

FDL source file

FDL with codepage different from system codepage

Description
It is not possible to migrate an FDL file with another codepage than the system codepage.''®

Hint

Take care that the computer where you have created the FDL file (exported from WMQWF
Buildtime) has the same installed codepage as the computer were you run the migration. You
could also convert the FDL file to the required system codepage. For example, this can be
done with some text editors where you can specify the codepage when reading and writing
files.

Migration of early FDL versions
Description

Migratiﬁ)g can fail with FDL input files containing a version ID prior to "FM_RELEASE
V3R6".

Explanation

The FDL2BPEL Conversion Tool is based on version "V3R6". In particular, the
"FM_RELEASE" keyword that you find in the FDL source code is ignored. Older FDL files
might contain deprecated syntactical scripts that are not expected by the initial FDL parsing
step.

Hint

It is still worth making a trial migration with an older FDL file, because not every FDL file will
be subject to version dependent differences in the syntax. But, if the FDL2BPEL Conversion
Tool fails, you need to run a version upgrade of your FDL file using WMQWF Buildtime with
V3.6 or later before you run the FDL to BPEL migration again.

FDL processing actions

Description

The FDL2BPEL conversion tool treats the actions "CREATE", "REPLACE", and "UPDATE"
the same way and expects the complete FDL definition of the respective modeling object
whenever it encounters one of these three keywords. FDL definitions preceded by “DELETE”
are ignored. '8 ""?

Explanation

Declaration and delete actions are used as instructions on how to deal with the model con-
structs encountered in the FDL file that you import to the WMQWF runtime database. For
instance, you might want to replace previously stored "person" definitions. Note that the
FDL2BPEL Conversion Tool is not aware of the database system that will store the final BPEL

"8 See "FDL source file" on page 104.

"9 See "DeclarationAction” on page 104.

131

process models. That is why it handles the declaration and delete actions as explained in the
following hint:

Hint

1. FDL constructs with or without declaration actions ("CREATE", "REPLACE", and
"UPDATE") are treated the same way and migrated according to the documented map-
ping rules. That is why you should take care that FDL definitions preceded by "REPLACE"
or "UPDATE" are self-contained and complete.

2. FDL constructs with preceding "DELETE" action are ignored and not migrated.

Problem detection
Description

The FDL2BPEL Conversion Tool expects a syntactical and semantically correct input file. The
error reporting capabilities of this tool are restricted. Despite that the tool performs some sim-
ple consistency checks and makes you aware if indispensable FDL definitions are missing (for
example, required subprocesses, data structures, programs, and UPES server definitions).
Migration problems are reported as error and warning messages that may not always give you
enough context information to locate the source of the problem easily (for example "lllegal
data path expression").

Explanation

While the FDL2BPEL Conversion Tool generates the target constructs the context of a prob-
lem situation is sometimes unknown, such that the appropriate information is not available to
give a helpful explanation. But the error message is always inserted as a comment annotation
at the appropriate location in the generated (BPEL, WSDL, and so on) file where the problem
occurred.

Hint

In such cases, it is helpful to locate the same message in the generated files using a source
editor (usually the files with extension "*.bpel"). For instance, the above message "lllegal data
path expression" may be found in a condition expression which refers to an undefined data
member in the input variable of an activity.

In case of unexpected FDL parsing error messages which are not clear, import and translate
the FDL to a WMQWF Runtime database. The FDL import tool "fmcibie" will check the FDL
definitions and report errors, warnings, and informational messages on a much more detailed
level.

Graphical business process editor

Migration of WMQWF Buildtime tool set definitions not supported
Description
You cannot migrate a customized WMQWF Buildtime tool set.

Explanation

With WMQWF Buildtime, you can have a modeling tool bar with customized icons. There is no
equivalent feature available in WebSphere Integration Developer (WID).

120

Graphical layout information
Description

The FDL2BPEL Conversion Tool does not m|grate any graphical layout properties of a
WMQWF business process.'?' 122 123 1241

'20 See "DeclarationAction” on page 104.

2! See "Process" on page 114.

132

Explanation

Layout information describes, for instance, the position of an activity node in the diagram view
of WMQWF Buildtime. The graphical business process editor of WID has an "auto-layout"
function for the automatic alignment of the nodes of "parallel activities". BPEL processes mi-
grated from WMQWF will therefore look similar but not exactly the same as in the diagram
view of WMQWF Buildtime.

Activity icons
Description

The FI?ZIEZBPEL Conversion Tool does not migrate user-defined icons assigned to activity
nodes.

Data and control connector names
Description

Names assiagned to data or control connectors of a WMQWF process model cannot be mi-
grated.'®” 2

Control flow

Activity start and exit mode
Description

The FDL2BPEL Conversion Tool ignores the FDL activity start and exit modes "manual" and
"automatic”.'*

Explanation

The start and exit modes are ignored, except for the "activity classification rules" which require
the start mode to be "manual" in the case of a "staff activity"."®

Hint

This means that FDL program activities with manual start mode and selected option "Can be
checked out" will smoothly map to "human task" activities in BPEL. On the other hand, bear in
mind that, if an FDL program activity has an automatic start mode, WMQWF runtime randomly
selects a user as "activity starter" from the set of staff members resulting from staff resolution.
Note that there is no equivalent behavior in WPS. Except for "human task" activities, all other
BPEL activities start and finish automatically. In order to have a similar behavior like a manual
activity start/exit you might insert "inline human tasks" that precede/follow the respective
BPEL "Invoke" activity."®’

122 See "BlockSetting" on page 120.
'23 See "ActivitySetting” on page 121.
124 See "ControlFlow" on page 126.

125 See "DataFlow" on page 126.

126 See "ActivitySetting" on page 121.

'27 See "ControlFlow" on page 126.

128 See "DataFlow" on page 126.

129 See "ActivityExtensionSetting" on page 122.
130 See "Activity classification rules" on page 60.

131

See "FDL ProgramActivity" on page 142.

133

Activity states
Description:

References to activity states " Finished", "_ForceFinished", and "_Skipped" in a condition
expression are not supported.

Explanation

Other than in WMQWF, WebSphere Process Server does not distinguish between states "fin-
ished" and "forcefinished". Hence, there is no need to refer to these states in an exit or
transition condition, because the activity state will always be "finished" as soon as it can be
referred to in a condition. If you want to refer to states "finished" or "skipped" of remote activi-
ties you must replace the corresponding conditions by equivalent Java expressions, because
the generated XPath conditions do not support the required API calls.

Hint

But the migration of references to state "_Expired" in condition expressions is supported (see
"Activity expiration" on page 75).

References to binary data in conditions
Description:

The FDL2BPEL Conversion Tool cannot migrate condition expressions that refer to binary
data.

Hint

This limitation should be of minor importance, because binary data are intended for scanned
or image data that would be rarely referred to in a condition expression.

Data flow

Prompting for data at process start
Description

The FDL2BPEL Conversion Tool ignores the process setting "Force prompt for data at proc-
ess start".'®

Explanation

A BPEL process does not offer an equivalent setting. The BPC explorer will always prompt
you for process input data.

Initial process input data
Description

The s?:ging of initial data values for the process input container cannot be migrated to
BPEL.

Explanation

The FDL2BPEL Conversion Tool maps the setting of initial container data values to a BPEL
"Assign" activity that is executed right after the "Receive" activity. This "Assign" activity cannot
set the initial process input data, because it would overwrite the process input data previously
assigned by the "Receive" activity.'*®

Hint

You can write a Java snippet which sets initial data values for such data members that did not
get a value while performing the "receive" activity that started the process.

'32 See "ProcessSetting" on page 114.
133 See "Mapping FDL data flow to BPEL" on page 77.

134

Global container database settings
Description

The FDL2BPEL Conversion Tool does not migrate database settings for a global data con-
tainer."®* '3 Unsupported global container database settings comprise:

e no queries

e table name

e index settings
Explanation
Database settings for a WMQWF global data container have the following meaning.
No queries:

If selected, no queries are generated at runtime, although the global container is used for the
process. This means that the global container data is available in the audit trail and you can
also use the container API.

Table name:

You can define a name for the WMQWF database table. This may help you to reduce data-
base resources by sharing the table among multiple process models.

Index settings:
To optimize performance of your WMQWF database, you can define index settings.

Note that WPS stores "query properties” in a single table for all process instances. You can-
not customize this table with settings such as "table name" or "index settings" like in WMQWF.

Predefined data members

Description

BPEL does not support predefined data that is equivalent to the FDL predefined data mem-
bers.

Explanation

BPEL has no equivalent concept of a "data container" that consists of user-defined data
members and predefined data members. However, the FDL2BPEL Conversion Tool converts
FDL data structures to corresponding message types that include the predefined data mem-
bers like "_RC" and "_ACTIVITY_INFO.

Hint

You can run the FDL2BPEL Conversion Tool with option -pi that requests the initialization of
the predefined data members _ACTIVITY and _PROCESS_MODEL. Option -pn disables the
generation of predefined members if you do not need them.'*®

Subprocess invocation
Description

The input/output data for an FDL process activity and input/output data for any subprocesses
must be identical before you can convert to BPEL.

For example, this is the situation if you have an FDL file with a process activity "My_Activity"
that invokes a subprocess "My_Process" with a data structure that is inconsistent with this
rule. After migrating the FDL, the WebSphere Integration Developer will display an error mes-
sage like the following one:

134 See "GlobalContainerSetting" on page 115.
'35 See "Queriable global data container" on page 55.

'3 This option is only available in the commandline mode.

135

"The messageType of the variable ‘My_Activity IN' and the input element of operation
‘My_Process OP' must be the same (activity 'My_Activity')."”

Explanation

Unlike in FDL, the BPEL specification does not allow a "subset" or "superset" relationship
between data passed from one process to another.

Hint

If you need such a combination you must either modify the FDL model before migration or
insert snippets with data mapping instructions to the BPEL model for after migration.

Data arrays

Description:

WPS cannot execute Java snippets that assign data values to array elements in non-
ascending or interrupted index order.

Explanation:

The following example illustrates how the FDL2BPEL Conversion Tool translates an FDL data
connector with data mappings of two array elements to a Java snippet:

WMQW Buildtime:

/___ﬂ«__* IS
%%

Act1 Act2
Actl - Act2 - Data connector <Process DataMapping_with_arrays> 2] x|
Origin Data Structure Target Data Structure
Member Type Member [Type Mapping
LONG
STRING
STRING purchaseOrde
STRING (5)
Orderltem |Actl:OrderItems(0)
:] OrderTtem
=-_STRUCT purchaseOrder Orderltem [Actl:OrderItems(2)
E| OrderItems Orderltem(5) OrderItem
N OrderTtems(0) OrderTtem OrderItem
OrderItems(1) OrderItem STRING
OrderItems(2) OrderTtem
OrderItems(3) Orderltem
OrderItems(4) OrderTtem
----- OrderDate STRING

Diata bapping I _El
oK | Cancel | Ay Beszet | Help |

|E:: Ohject locked by user D ADMIN E Diagram starage mode v

Figure 92: Mapping data array with interrupted index order

136

FDL source code:
DATA
FROM 'Act1' TO 'Act2'
MAP 'Orderltems(0)' TO 'Orderltems(0)'
MAP 'Orderltems(2)' TO 'Orderltems(2)'

WID process editor:

R
| Receive the process input

[# DataMapping_with_arrays_IN - Actl_IN

L] Execute activities contained in process

= Actl

[% Inftialize human task input
P Act1

[& Actl_OUT - Act2_IN

&
L
Act2
¥

<=/ Return the process output

@®

Figure 93: Snippet "Act1_OUT - Act2_IN" contains array mapping

Java code (in snippet "Act1 OUT — Act2 IN"):

Act2_IN = com.ibm.bpe.interop.WMQWFHelper.merge (
Actl_OUT, "_STRUCT/OrderItems[1]",
Act2_1IN, "_STRUCT/OrderItems[1]",
getVariableType ("Act2_IN"));
Act2_IN = com.ibm.bpe.interop.WMQWFHelper.merge (
Actl_OUT, "_STRUCT/OrderItems[3]",
Act2_IN, "_STRUCT/OrderItems[3]",
getVariableType ("Act2_IN"));

At WPS runtime, this mapping will return an exception, because the mapping of the data array
elements leaves element "_STRUCT/Orderltems[2]""*” unset.

The reason is that the XPath expression " STRUCT/Orderltems[3]" is equivalent to
" STRUCT/Orderltems[position() = 3]" and can only be interpreted as an array expression if
all data elements with position() < 3 exist.'®

'37 Note that FDL expression "Orderltems(1)" corresponds to XPath expression
"_STRUCT/Orderltems[2]".

137

Hint:

Check your WMQWF business model before migrating and ensure that all array mappings are
in ascending and uninterrupted index order beginning with FDL index 1.

Staff assignment and notification

WMQWEF staff repository

Description

The FDL2BPEL Conversion Tool ignores any staff definitions that may be contained in your
FDL file (for example, "Person", "Role", "Organization"”, and "Level" definitions). *°
Explanation

The target artifacts of the FDL2BPEL Conversion Tool cannot carry definitions that you might
exploit for migrating your WMQWF staff repository.

Hint

If your target repository is Lightweight Directory Access Protocol gLDAP), you can use the
WMQWF LDAP bridge for the migration of WMQWF staff repository.'*°

Notification
Description

Note that you cannot migrate the notification of an activity that is translated to an activity type
other than "staff activity", according to the "activity classification rules (cp. section "Activity
classification rules" on page 60)."*' ™2

Notification mode

Description

The FDL2BPEL Conversion Tool does not support the migration of notification mode set-
tings.mz 143 144

Explanation

The WMQWF setting of a notification mode affects the behavior of the expiration and notifica-
tion timer if the process or an activity is in state "suspended":

e HOLD: The timers are stopped during the suspension time.

e RUN: The timers continue to run during the suspension time

Note that the FDL2BPEL Conversion maps WMQWF notification to an escalation for a human
task in WebSphere Process Server."® There is no escalation mode available that is equiva-
lent to "HOLD". If the task instance is suspended, the escalation timer keeps running.

'3 Note that position() returns values > 0, only.
139 See "DeclarationAction” on page 104.

"% See "MQ Workflow LDAP Bridge" on page 31 in IBM WebSphere MQ Workflow "Admini-
stration Guide", Version 3.6, SH12-6289

! See "ExplicitProcessStaffAssignmentSetting” on page 116.
'*2 See "Notification" on page 124.

%% See "DefaultProcessSetting" on page 107.
'*4 See "ExplicitNotification” on page 125.

'*> See "Notification” on page 87.

138

Notification policy
Description

The FDL2BPEL Conversion Tool does not support the migration of notification policy settings
"Assigp%substitute for notification if user is absent” and "Send second notification to same
user".

Explanation
There are no equivalent notification policies available in WebSphere Process Server.

Notification from container
Description

The FDL2BPEL Conversion Tool does not support the migration of dynamically assigned noti-
fication settings in the input container.’

Process notification
Description

WMQWEF can be set up to notify a person if a specified maximum duration of a process in-
stance is exceeded. The FDL2BPEL Conversion Tool does not support the migration of
notification settings on the process level."®

Explanation
There is no equivalent notification function available in WPS.

Staff assignment by process category
Description

The FDL2BPEL Conversion Tool supports migrating the process category property. However,
other than WMQWF, WPS does not support staff assignment by process category.'*® '*°

Hint
Possible migration solution:

1. Introduce a new role (group) that corresponds to the FDL process category.
2. Users previously authorized for the category must be reassigned to the new role

(group).

Specify that "invocation task" or "administration task" that you define for the migrated process
refers to the new "category" role (group).

Staff assignment from input container

Description

You cannot mizgrate staff assignments taken from the predefined data members in the input
container.’' °

%6 See "DefaultActivitySetting” on page 109.

%7 See "Notification" on page 87.

'8 See "ExplicitProcessStaffAssignmentSetting" on page 116.
'*? See "ProcessSetting"” on page 114.

%0 See "Process category" on page 127.

5! See "ProcessStaffAssignmentSetting” on page 115.

192 See "ActivityStaffAssignmentSetting" on page 122.

139

Staff assignment criteria

Description

The FDL2BPEL Conversion Tool cannot map all staff assignment criteria that you specified
for a WMQWF process or program activities that are contained in it.'>® '%* '%°

Explanation

WMQWF and the BPC Human Task Manager support different user registry systems and the
staff query languages. Table 17 in section "Mapping WMQWF staff assignment criteria to TEL
people assignment criteria", on page 85, lists the supported and unsupported mappings be-
tween WMQWF staff assignment criteria and TEL default people assignment criteria. There
you find, for instance, that you cannot automatically migrate staff assignment criteria that im-
plement the "Four eyes principle" ("exclude starter of activity").

Hint

For complex query logic, you might have to replace some of the generated people assignment
criteria with user-defined people assignment criteria.

Staff assignment and notification criteria assigned to process ac-
tivities
Description

The FDL2BPEL Conversion Tool ignores all staff assignment and notification criteria that you
assigned to a process activity.'*®

Explanation

In WPS, you cannot specify either staff assignment or notification criteria for BPEL activities
that invoke another process.

Program execution server

User-defined program execution server (UPES)
Description

The FDL2BPEL Conversion Tool does not migrate FDL server definitions, except for user-
defined program execution server (UPES)."" '

Explanation

The FDL2BPEL Conversion Tool does not migrate an FDL server definition, if the type is other
than "USER_DEFINED_PROGRAM_EXECUTION_SERVER". For more details, see
"WMQWF UPES migration details" on page 97.

Hints

If your WMQWF process model includes activities that communicate with a UPES, make sure
that you select all referenced UPES definitions when you export the process model from
WebSphere WMQWF Buildtime.

158 See "DefaultActivitySetting" on page 109.
154 See "ExplicitStaffAssignment” on page 123.
%% See "OrgAssignment” on page 124.

196 See "ProcessActivity" on page 119.

%7 See "Server" on page 109.

%% See "UPESContext" on page 111.

140

During UPES migration you should check whether there are UPES applications that process
messages which contain platform dependant "implementation data" (Note that WPS process
will send "Activitylmplinvoke" messages without the element "ImplementationData").

XML message types supported by WPS UPES invocation

Description

The FDL2BPEL Conversion Tool migrates WMQWF program activities that invoke a UPES,
provided that the UPES application does not depend on XML message types other than: 157

e Activitylmplinvoke Message received by a UPES

e ActivitylmplinvokeResponse | Message returned by a UPES

Explanation

Note that other XML message types, such as "ActivityExpired" or "TerminateProgram”, are not
supported by the WMQWF data binding of WPS. This means that in the case of an activity
expiration or the termination of a process instance a migrated UPES will not get notified via an
XML message. For more details, see chapter "WMQWF UPES migration details" on page 97.

Hint

Ensure that the "ActivitylmplinvokeResponse" messages returned by your UPES application
always adhere to a correct syntax. Other than with WMQWF, you cannot expect that illegal
messages are reported by means of "GeneralError" response from the WPS server.

Moreover, ensure that no UPES application depends on implementation or platform data ele-
ments of the XML messages, which are not supported.

Program execution unit taken from container

Description

The FDL2BPEL Conversion Tool does not migrate an FDL server definition that is dynamically
referred to in the input container.

Model description and documentation fields

Data description and documentation

Description

The FDL2BPEL Conversion Tool does not migrate the data structure properties "description”
and "documentation"."®®

Explanation
WPS has no "description" field that is equivalent to WMQWF.
Hint

Proposed solution: Concatenate WMQWF "description" and "documentation” (with inserted
"titles" or "prefixes") and copy them to WPS "documentation".

Data member description and documentation
Description

The FDL2BPEL Conversion Tool does not migrate the data member properties "description”
and "documentation”.

'*% See "Data structure" on page 112.

141

Process category description and documentation
Description

The FDL2BPEL Conversion Tool does not migrate a description and documentation that you
assigned to a process category.'®

Process execution and monitoring

System network

Description

Migration is limited to the conversion of WMQWF business process to WPS business process.
Network topology setting information (except for "UPES" definitions) is ignored.”51
Explanation

MQ Workflow has a hierarchical structure to manage its networks. For example, the "domain”
is the highest level in the hierarchy and can only contain one "system group". Each system
group is made up of one or more "systems". Due to the different architecture, a migration of
the WMQWF system network to WPS is not possible. Instead, set up WPS in a way that
meets best your needs.

Properties inherited from domain or system

Description

You cannot migrate properties that your business process inherits from the domain or the
system to which it belongs.'®

Audit settings
Description

The migration of audit event definitions and settings of the WMQWF auditing system is not
supported.'®® %

Hint

WebSphere Process Server offers a monitoring system. However, you must add the respec-
tive settings to your migrated business processes in a separate step.

Note that the FDL2BPEL Conversion Tool uses the FDL properties "AUDIT_FILTER_DB" and

"AUDIT_FILTER_DB" as criteria to set the "business relevant" property in BPEL to "yes"."®® "%

Process autonomy modes
Description

You E:Ga7nnot migrate process autonomy modes "full", "staff", "notification", and "administra-
tion".

'%% See "Process category” on page 127.
'8! See "Topology" on page 105.
182 See "TopologySetting" on page 106.

183 See "DefaultProcessSetting” on page 107.

%4 See "DefaultActivitySetting" on page 109.

1%% See "Process property "business relevant™ on page 52.

'%6 See "Activity property "business relevant
167

on page 67.
See "Autonomy" on page 108.

142

Explanation

WebSphere Process Server has no equivalent concept for the process autonomy modes
"full", "staff", "notification", and "administration".

Hint
The FDL2BPEL Conversion Tool maps other autonomy settings, such that if the AUTONOMY

definition in the FDL is "CONTROL", then the BPEL autonomy flag is set to "peer". In all other
cases, it is set to "child".'®®

Program execution properties

Description

The FDL2BPEL Conversion Tool does not migrate the program execution properties of an
FDL program definition."®®

Explanation

The FDL2BPEL Conversion Tool uses FDL program definitions to generate corresponding
interface definitions (WSDL "port types"'’®) for BPEL activities. The program execution proper-
ties have no equivalent usage, because WPS supports Service-Oriented Architecture, which
is based on the concept of a "Web service" that serves as an abstraction from program execu-
tion details.

System properties assigned to process activities
Description

The FDL2BPEL Conversion Tool ignores FDL properties of a process activity that determine
on which system a subprocess should run."”

Model accuracy

FDL ProgramActivity
Description

BPEL has no equivalent activity type with a similar semantic as the FDL "program activity"
construct.

Explanation

BPEL does not permit the combination of the invocation of a program application with the
assignment of a work item to a user. The FDL concept of a "program activity" means that the
"program execution agent" (PEA) executes the application on the workstation of the user who
claimed the respective workitem. With BPEL you cannot specify the location of the program
execution as the location of the user.'”

Hint

You can modify the generated BPEL files and insert additional "to-do tasks" or "invoke" activi-
ties according to your requirements. You can also insert additional synchronization points with
user interaction. For example, inserting a "to-do task" that precedes an "invoke" activity so
that the user can decide when the corresponding service is executed.

Example

'%8 See "Process" on page 114.

'%% See "Program" on page 113.

170 See "Mapping FDL PROGRAM to a port type" on page 47.
' See "ProcessActivitySetting" on page 119.

'"2 See "ProgramActivity" on page 117.

143

Assume that the FDL2BPEL Conversion Tool performed the following translation of a UPES
activity:

N
= ReserveFlight

[# Encode UPES input

mEo| [% Set UPES context
(0]
ReserveFlight

becomes :
& ReserveFlight

[% Decode UPES output

User interaction: [# ReserveFlight_OUT - Nice_Journey_OUT

User initiates the start -
and/or the exit of the
"ReserveFlight"” activity.

No user interaction at all.

Figure 94: User interaction is not translated to BPEL

You can add "Human Task" activities that let you control the UPES invocation using a manual
start and exit:

= ReserveFlight

% Start_ReserveFlight
[% Encode UPES input
B [% Set UPES context

]

ReserveFlight

becomes

& ReserveFlight
[% Decode UPES output

User interaction: % Exit_ReserveFight

User initiates the start and/or the
exit of the "ReserveFlight" activity.

[% ReserveFlight_OUT - Nice_Journey_OUT

Similar user interaction as in WMQWF

Figure 95: Inserting "Human Task" activities for manual activity start and exit

Workflow client

Support tools

Description

WMQWF permits the assignment of one or more additional programs (support tools) to pro-
gram or process activities that can be started at runtime to help complete the current

144

workitem. The FDL2BPEL Conversion Tool ignores the support tools specified in the FDL
input file. 7% 17

Explanation
WebSphere Process Server has no concept that is equivalent to a support tool.

Workitem refresh policy
Description
The FDL2BPEL Conversion Tool does not support the migration of a refresh policy. '7°

Explanation

The WMQWEF refresh policy specifies how workitem lists are updated:

e PULL: In the client, a workitem list is only updated if the worklist is refreshed.

e PUSH: When used with the ActiveX client or Windows Runtime client, a worklist may
be defined in "push" mode. In this case, workitem changes are sent to the client with-
out a refresh initiated by the client. For all other clients, this option is not available.

Not that the refreshing behavior of the BPC explorer is equivalent to the "PULL"-policy.

Policy for how to deal with finished workitems

Description

The FDL2BPEL Conversion Tool does not support the WMQWF policy for how to deal with
finished workitems. '7°

Policy for how to deal with finished process instances
Description

The FDL2BPEL Conversion Tool does not support the specification of a time period for the
policy for how long finished process instances should be kept.'” 7

Hint

The FDL2BPEL Conversion Tool supports the settings "never" and "forever".

'"3 See "DeclarationAction" on page 104.
174 See "ActivityExtensionSetting" on page 122.
'75 See "DefaultProcessSetting" on page 107.

'7® See "TimePeriod" on page 129.

