
IBM Software Group

®

WebSphere® Support Technical Exchange

Understanding Stuck Messages
(Addendum)

Paul O’Donnell and
Ty Shrake

IBM Software Group

WebSphere® Support Technical Exchange 2

Agenda

 Introduction
 Overview of Message Flow
 Message Producers and Consumers
 Message Driven Bean Basics
 MDB Transactionality
 How Message Driven Beans Work
 Resource Adapters
 Inside onMessage()
 Message Accumulation
 Identifying the Problem
 Resolving the Problem
 Javacores
 Message States
 Summary

IBM Software Group

WebSphere® Support Technical Exchange 3

Introduction

 Messages “stuck” on a destination is one of the most common

problems customers encounter in messaging systems. In most

cases this results in messaging stacking up or accumulating on a

destination and a failure to process business data. This presentation

will explain why message accumulation occurs and how to

troubleshoot this type of problem.

IBM Software Group

 When messages are stuck on a queue it is important to have a basic understanding of
message flow in your environment. In 99% of all cases the message flow is very similar
to the flow shown below:

WebSphere® Support Technical Exchange 4

Overview of Message Flow

JMS

Message

Producer
Send Consume

Message

Driven

Bean

JMS Provider EJB Container

Destination

Application Server

IBM Software Group

Message Producers and Consumers

 Messages are created in Producer applications. Once the message is created the

application sends the message to a destination. This process usually works fine and

is rarely problematic.

 Most problems with messages involve the message Consumer application, which is

supposed to ‘consume’ (remove) the message from the destination and process the

business data in the message. Most investigations into message ‘stuck’ on a

queue/destination should start with the Consumer application, not the Producer. In

Websphere Application Server message consumers are almost always Message

Driven Beans.

WebSphere® Support Technical Exchange 5

IBM Software Group

Message Driven Bean Basics

 When investigating messages that are stuck on a queue or are accumulating on a queue it helps

a great deal if you understand what Message Driven Beans are and how they work.

 A Message Driven Bean (MDB) is a special case of an Enterprise Driven Bean (EJB). There

are 3 types of EJBs: Session Beans, Entity Beans and Message Driven beans.

 Session Beans: Session beans are Java applications that service a single client. There are 2

kinds of Session beans: Stateless and Stateful.

 Entity Beans: An entity bean is simply a representation of a thing, such as a book or CD.

 Message Driven Bean: A Message Driven Bean (MDB) is a special case of EJB. It is usually a

fairly small application whose purpose is to receive (consume) messages from a messaging

system.

 Note: All EJBs run inside the EJB Container. The container manages each bean and ensures

the bean can access the services provided by the application server environment.

WebSphere® Support Technical Exchange 6

IBM Software Group

Message Driven Bean Basics

 An MDB is an application whose purpose is to receive (consume) messages from a

messaging system.

 Once the MDB consumes the message it will perform a small amount of work on the message

and then pass the message data to a larger application (like a Session bean that performs the

heavy duty work, such as storing the message data in a database, etc...) MDBs are specifically

designed to take the messaging load off of larger applications that are busy with business logic,

database updates, order confirmation, etc... And to simplify the coding of consumer applications.

 Important Features of MDBs:

 1. MDBs do not need any connection code to consume messages.

 2. All MDBs have a method named onMessage().

 3. MDBs run inside an EJB Container

WebSphere® Support Technical Exchange 7

IBM Software Group

Message Driven Bean Basics

 Most developers use Eclipse to create MDBs for WAS. Many times they use Rational Application

Developer (RAD), which includes Eclipse and WAS.

 When you create an MDB there are 2 basic parts:

 onMessage() method. This is the method (code) that will process the message that is passed to

the bean. Many times this code will call other beans.

 The Deployment Descriptor (DD). The DD is an XML file named ejb-jar.xml. This is the main

configuration file for the MDB and holds various properties and behaviors for the MDB.

 After you create your MDB you must deploy it (install it) into WAS. Once deployed the EJB

Container will use the ejb-jar.xml file to associate (bind) the MDB to the correct JMS resources.

WebSphere® Support Technical Exchange 8

IBM Software Group

MDB Transactionality

 The Deployment Descriptor of an MDB (ejb-jar.xml) holds important information about how the

bean behaves and what resources it will use. One of the items in the DD is the transactionality

the bean will use. There are 2 basic options:

1. Container Managed – This means that each message consumed by the MDB will be part of a

transaction created and managed by the EJB container. This is the best option to use.

2. Component or Bean Managed - This means that the MDB itself is responsible for any

transactions. This option should generally be avoided.

This is worth knowing because the State of a message on a destination is often determined by

these choices.

WebSphere® Support Technical Exchange 9

IBM Software Group

How Message Driven Beans Work

 When we talk about Message Driven Beans we often say that they “consume messages”. This

is true but the situation is a bit more complex than this.

 When discussing MDB message consumption we must break the process down into 3 parts:

The Destination, the Resource Adapter and the MDB. MDBs do not have any connection code

in them the way normal, standalone JMS applications do. Instead, a Resource Adapter

connects to a destination on behalf of the MDB. The Resource Adapter listens on the queue

for messages and, when a message arrives, it passes it to the MDB. When a message

arrives on a destination the Resource Adapter gets a copy of the message from the destination

and then calls the onMessage() method of the MDB. The onMessage() method takes a

Message object as an argument (onMessage(message)). In other words, the Resource Adapter

delivers the message to the MDB. So when we talk about MDB message consumption what

we are really talking about is message delivery to an MDB. More on Resource Adapters

later…

 As noted before, once the MDB has the message it usually extracts the data (payload) and then

passes the data to another bean for processing.

WebSphere® Support Technical Exchange 10

IBM Software Group

Resource Adapters
 A Resource Adapter (RA) is a program that connects to a JMS destination, listens for

messages arriving on that destination, and then passes the messages to the onMessage()

method of the MDB using that RA.

 The RA is configured by an Activation Specification (AS). The AS is just a configuration object

that tells the RA what destination to connect to and how to manage message delivery to the

MDB. The AS is stored in JNDI. When the Resource Adapter starts it reads the AS connection

information and uses that to actually connect to the destination.

WebSphere® Support Technical Exchange 11

Activation

Specification JNDI

JMS Provider

Destination

MDB

onMessage()

method

EJB Container

Resource Adapter

The Resource Adapter gets the Activation

Specification definition from JNDI and then uses that

to connect to the correct destination. The AS also

configures the message delivery options in the RA .

IBM Software Group

Inside onMessage()

 MDB’s that consume JMS messages have a method named onMessage() in their code. There

are other methods as well (beyond the scope of this education) but onMessage(0 is the only

method we are concerned with. The onMessage() method takes a Message object as its

argument, as follows:

 onMessage(your_msg)

 In the MDB code the basic onMessage() method looks like this:

public void onMessage(javax.jms.Message msg) {

 Your business code goes here…

} //end onMessage()

WebSphere® Support Technical Exchange 12

IBM Software Group

Inside onMessage()
 The code inside the onMessage() method processes the message data. In most cases the data

inside the message goes through a little processing and then other business objects (EJBs) are

called for additional processing. For example…

WebSphere® Support Technical Exchange 13

MDB

onMessage() {

 Your code

}

Database Database

EJB 1 EJB 2

MDB may call

directly into a

database and get a

result returned

MDB may call

into another EJB

Which calls into

another EJB

Which calls into a

database that returns a

result back up the

chain of calls

All of this code must execute

completely before the next

message can be delivered to

the MDB

IBM Software Group

Inside onMessage()

 It is crucial to understand that once the code inside of onMessage() is executing the thread the

MDB is running on is owned by that code. We are outside of SIB code at this point. When the

message data is passed from the MDB to a database or another EJB or anything else all of that

code must successfully execute and return (complete). Once all of that code completes then,

and only then, will the onMessage() method return (complete). It is not possible to deliver

another message to the MDB until onMessage() returns. If there are any problems anywhere in

the chain of code then onMessage() may not return. If onMessage does not return, or takes a

long time to return, then messages might accumulate on the destination the MDB consumes

messages from.

 Also note that if a problem occurs it may not be the MDB itself, it might be a problem in an

EJB that was called, or a database issue.

 As we’ll see later in this presentation, Javacores can reveal if an MDB is having trouble

processing a message.

WebSphere® Support Technical Exchange 14

IBM Software Group

Message Accumulation

 Now that we know that an MDB has messages delivered to it by a Resource Adapter. And we

also know that once the message is delivered to the MDB the MDB owns the message and the

thread and that all processing inside of onMessage(), and anywhere called from inside of

onMessage(), must complete before a new message can be delivered to the MDB. In a perfect

system each message that arrives on the destination will be instantly consumed by an MDB.

The message will be delivered to the MDB, the MDB will process the message and then return

control back to the EJB Container, allowing the next message to be delivered. This usually

happens in a matter of milliseconds.

 But what if messages start to accumulate or stack up on the queue? This is usually the first

hint to a customer that something isn’t working correctly. There are generally 2 causes of

message accumulation:

1. Message consumption by the MDB is slower than message production to the destination. In

other words, messages are sent to the destination faster than they can be removed by the

MDB. Alternatively the MDB may not be running at all.

2. The MDB is having trouble processing a message and is effectively stopped.

WebSphere® Support Technical Exchange 15

IBM Software Group

Identifying the Problem
 In order to determine which of these 2 conditions is happening you must first view the messages

on the destination. You can do this in the WAS Administration Console by navigating as follows:

 Service Integration > Buses > YOUR_BUS > Messaging engines >

YOUR_MESSAGING_ENGINE > Queue points > YOUR_QUEUE_POINT (Runtime tab) >

Messages

 Here you will find the list of messages currently on the queue (destination) you are interested in.

Ideally there should be zero or nearly zero messages on the destination. Notice there are several

columns displayed for each message. Message State is the most important column. The most

common states are:

 Available

 Removing

 Locked

 Unlocked

There are other states as well that will be discussed at the end of this presentation.

WebSphere® Support Technical Exchange 16

IBM Software Group

Identifying the Problem

 When you have messages stuck on a destination the most important things to observe are:

 The first message at the top of the queue

 The value in the State column

 The value in the Transaction ID column (blank or non-blank)

 JMS messaging is First In, First Out, (FIFO) which means that the message displayed at the top

of the message list is the next message to be consumed. In many cases this message will show

some non-Aveilable state while all other messages below it show Available. Focus on the top

message.

 The State column will show the current state of the message. Ideally this state should only last a

few milliseconds. When messages show the same state over a long period of time it indicates a

problem with the message consumer application (MDB).

 There may or may not be a transaction ID (some consumers are transacted, some are not). The

important point is that of a message is transacted and is stuck you may be able to manually roll

back the transaction. It is unlikely that you will be able to manually commit it.

WebSphere® Support Technical Exchange 17

IBM Software Group

Identifying the Problem

WebSphere® Support Technical Exchange 18

 In this example notice that the messages have a State of Available and there is no Transaction

ID. This means the messages are available to be delivered to an MDB. If the list of messages

changes over time then the message ARE being delivered. If the list does not change then it’s

likely there is a problem with the MDB itself.

IBM Software Group

Identifying the Problem

WebSphere® Support Technical Exchange 19

 If the list is constantly changing (messages are being delivered to an MDB) but the list continues

to grow in size (the total number of messages on the destination is increasing) then this

indicates that messages are arriving on the destination faster than they can be removed. This

can often be corrected by increasing the Maximum concurrent MDB invocations per

endpoint in the Activation Specification used by the MDB. The default value is 10.

 Note: Changing this value will require a restart of your messaging cluster.

 This means that up to 10 instances (copies) of the same MDB can run simultaneously. While 1

instance of the MDB is busy processing a message one another instances can consume the

next message. This can greatly increase the rate of message consumption. Each MDB instance

runs on a different thread. Using more than 1 MDB instance is sometimes called MDB

Throttling.

IBM Software Group

Identifying the Problem

WebSphere® Support Technical Exchange 20

 If the messages on the destination are not moving, in other words the same messages remain on

the queue for long periods of time, then either the MDB is not running or it is running but has

stopped processing messages.

1. If the MDB is not Started the messages will show a State of Available. The current status of

the MDB can be checked in the WAS Administration Console here:

Applications > Application types > Websphere enterprise applications > YOUR_MDB

Check the Application Status column. If the MDB is not Started try manually starting it from

this console panel.

2. If the MDB is Started then check the State of the messages on the destination.

IBM Software Group

Identifying the Problem

WebSphere® Support Technical Exchange 21

 Many times, when an MDB is Started but messages are not being consumed from the

destination, the list of messages will show at least 1 message in a Removing state and it will

have a Transaction ID, as follows:

 This means that the message is currently being removed from the destination under a transaction

that hasn’t completed. This often indicates a problem with the MDB.

IBM Software Group

Identifying the Problem

 Sometimes the list of messages will show at least 1 message in a Locked state with no

Transaction ID, as follows:

 This message is most likely being consumed by a non-transacted MDB. If this message stays

in this state for a long period the MDB is the most likely cause.

WebSphere® Support Technical Exchange 22

IBM Software Group

Resolving the Problem

 The following slides will discuss solving stuck messages in 6 common scenarios:

 Messages are Available but moving slowly

 Messages are Available and not moving

 Messages are in a Removing state with Transaction ID but moving slowly

 Messages are in a Removing state with Transaction ID but not moving

 Messages are in a Locked state with no Transaction ID but moving slowly

 Messages are in a Locked state with no Transaction ID but not moving

 Messages are in a Locked state with Transaction ID but moving slowly

 Messages are in an Unlocked state with no Transaction ID but not moving

WebSphere® Support Technical Exchange 23

IBM Software Group

Resolving the Problem

 Messages are Available but moving slowly:

Interpretation: Messages are being consumed by the MDB but at a slow rate.

Possible Solution:

 Try increasing Maximum MDB Concurrency (see slide 18)

 Check MDB performance by adding timestamps to the MDB source code or gather 3

Javacores at about 30 second intervals to see where the MDB is spending time.

WebSphere® Support Technical Exchange 24

IBM Software Group

Resolving the Problem

 Messages are Available and not moving:

Interpretation: The MDB may not be started.

Possible Solution:

 Check the state of your MDB and make sure it is in a Started state.

 Manually stop and restart your MDB

 If the procedure above does not work and the MDB is Stared, gather 3 Javacores against

the PID of the server hosting the MDB.

WebSphere® Support Technical Exchange 25

IBM Software Group

Resolving the Problem

 Messages are in a Removing state with Transaction ID but moving

slowly:

Interpretation: Messages are being consumed by the MDB but at a slow rate.

Possible Solution:

 Increase Maximum MDB Concurrency (see slide 18)

 Manually stop and restart the MDB

 Check MDB performance by adding timestamps to the MDB source code or gather 3

Javacores at about 30 second intervals to see where the MDB is spending time.

WebSphere® Support Technical Exchange 26

IBM Software Group

Resolving the Problem

 Messages are in a Removing state with Transaction ID but not moving:

 Interpretation: Messages are being consumed by the MDB but at a slow rate.

Possible Solution:

 Increase Maximum MDB Concurrency (see slide 18)

 Manually stop and restart the MDB

 Check the state of the transaction and try to manually complete the transaction by

navigating in the WAS Administration Console as follows:

 Servers > Server Types > WebSphere application servers > [Content

pane] server_name > [Container Settings] Container Services >

Transaction Service > Runtime > Manual transactions - Review

WebSphere® Support Technical Exchange 27

IBM Software Group

Resolving the Problem

To list the resources used by a transaction, click the transaction local ID in the list displayed.

 To act on one or more of the transactions listed, select the check boxes next to the transactions

that you want to act on, then use the buttons provided. You can either manually Commit or

Rollback the transaction.

 If the procedure above does not work gather 3 Javacores, at 1 minute intervals, against

the PID of the server hosting the MDB.

WebSphere® Support Technical Exchange 28

IBM Software Group

Resolving the Problem

 Messages are in a Locked state with no Transaction ID but moving

slowly:

 Interpretation: Messages are being consumed by the MDB but at a slow rate.

Possible Solution:

 Increase Maximum MDB Concurrency (see slide 18)

 Manually stop and restart the MDB

 If the procedures above do not work gather 3 Javacores against the PID of the server

hosting the MDB.

WebSphere® Support Technical Exchange 29

IBM Software Group

Resolving the Problem

 Messages are in a Locked state with no Transaction ID but not moving:

 Interpretation:

 The message has been passed to a consumer, and that consumer has not yet completed.

 The message has been passed to a consumer, and that consumer has completed but we

haven't tried to remove the message yet.

 The message has been passed over the network to a client application pre-emptively (up

to 1 per client with read-ahead disabled, and many more if read-ahead is enabled) - the

client has not yet consumed it.

Possible Solution:

 Increase Maximum MDB Concurrency (see slide 18)

 Manually stop and restart the MDB

 If the procedures above do not work gather 3 Javacores against the PID of the server

hosting the MDB.

 WebSphere® Support Technical Exchange 30

IBM Software Group

Resolving the Problem

 Messages are in a Locked state with Transaction ID but moving slowly:

 Interpretation:

 An application has consumed the message with a transaction, and is performing some

processing that is taking a long time to complete (or it may have deadlocked).

 A transaction has become in-doubt (one of the resources managers failed during the

prepare phase or between prepare and commit), and the transaction manager has not

been yet able to contact the messaging engine and tell it whether to commit/rollback the

transaction.

 Possible Solution:

 Increase Maximum MDB Concurrency (see slide 18)

 Manually stop and restart the MDB

 If the procedures above do not work gather 3 Javacores against the PID of the server

hosting the MDB.

WebSphere® Support Technical Exchange 31

IBM Software Group

Resolving the Problem

 Messages are in an UnLocked state with no Transaction ID but not

moving:

Interpretation:

 No thread is listening for messages on this destination.

 The match criteria of all the consumers for this destination do not match the message.

 All consumers for this destination are pointing at a different partition of the destination in a

WLM environment.

 All consumers are maxed out processing messages and can't accept new ones (this would

normally happened when we have a mix of locked and unlocked messages).

WebSphere® Support Technical Exchange 32

IBM Software Group

Resolving the Problem

Possible Solution:

 Make sure the Activation Specification for the MDB is configured correctly

 Increase Maximum MDB Concurrency (see slide 19)

 Manually stop and restart the MDB

 If the procedures above do not work gather 3 Javacores against the PID of the server

hosting the MDB.

WebSphere® Support Technical Exchange 33

IBM Software Group

Javacores

 In situations where messages are not moving off of a destination (customer often describe them

as being “stuck” on the queue) it is usually a good idea to gather Javacores. Javacores are a

‘snapshot’ of the Java Virtual Machine (JVM) that show what each thread in the JVM is doing.

For stuck messages Javacores should be gathered against the JVM running the MDB. A

sequence of 3 javacores, about 1 minute apart, should be gathered. On Unix systems the basic

command to gather a Javacore is:

 kill -3 PID

 More detailed instructions can be found here:

 Windows:

http://www-

01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGath

erDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=

WebSphere® Support Technical Exchange 34

http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21138203&loc=en_US&cs=utf-8&lang=

IBM Software Group

Javacores

 Solaris:

 http://www-

01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=M

ustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=

 AIX:

 http://www-

01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=M

ustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=

WebSphere® Support Technical Exchange 35

http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21115625&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=
http://www-01.ibm.com/support/docview.wss?rs=0&context=SSCMPB9&context=SSCMP9J&q1=MustGatherDocument&uid=swg21052641&loc=en_US&cs=utf-8&lang=

IBM Software Group

Javacores

 A good tool for reading Javacores is the IBM Thread and Monitor Dump Analyzer for Java. You

can find it here:

 https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?co

mmunityUuid=2245aa39-fa5c-4475-b891-14c205f7333c

 When you use this tool, and you suspect that an MDB may be hung or unresponsive, you will be

looking for a thread that has onMessage() in the call stack. The following example shows that

after a message is delivered to onMessage() the MDB becomes unresponsive because it is

waiting on a database. This is a typical example of why messages get stuck (and accumulate) on

a destination. If the MDB has to wait forever on the database no new messages can be delivered

to the bean. In the example the important highlights are in red. The slide after that will walk you

through the analysis of this call stack.

 The pattern you are looking for is this: A thread that shows the onMessage() method is stuck

in exactly the same spot in all 3 javacores. That almost always means the MDB is hung.

WebSphere® Support Technical Exchange 36

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=2245aa39-fa5c-4475-b891-14c205f7333c

IBM Software Group

"Default : 0" (TID:0x000000001A774400, sys_thread_t:0x0000000019544630, state:B, native ID:0x0000000000003566) prio=5

 22 at com/company3/common/jdbc/SimpleDataSource.popConnection(SimpleDataSource.java:566(Compiled Code)) < HANG

 21 at com/company3/common/jdbc/SimpleDataSource.getConnection(SimpleDataSource.java:222)

 20 at com/company3/sqlmap/ernie/transaction/jdbc/JdbcTransaction.init(JdbcTransaction.java:48)

 19 at com/company3/sqlmap/ernie/transaction/jdbc/JdbcTransaction.getConnection(JdbcTransaction.java:89(Compiled Code))

 18 at com/company3/sqlmap/ernie/mapping/statement/MappedStatement.executeQueryForObject(MappedStatement.java:120)

 17 at com/company3/sqlmap/ernie/impl/SqlMapExecutorDelegate.queryForObject(SqlMapExecutorDelegate.java:518)

 16 at com/company3/sqlmap/ernie/impl/SqlMapExecutorDelegate.queryForObject(SqlMapExecutorDelegate.java:493)

 15 at com/company3/sqlmap/ernie/impl/SqlMapSessionImpl.queryForObject(SqlMapSessionImpl.java:106)

 14 at com/company3/sqlmap/ernie/impl/SqlMapClientImpl.queryForObject(SqlMapClientImpl.java:82)

 13 at com/company1/foo/data/service/impl/company3/company2DataServiceImpl.upsertServiceRequestStatus(Bytecode PC:120)

 12 at com/company1/foo/services/messaging/tasks/company2/company2SrTask.refreshSR(Bytecode PC:127)

 11 at com/company1/foo/services/messaging/tasks/company2/company2SrTask.doWork(Bytecode PC:292)

 10 at com/company1/foo/services/messaging/service/XmlTextMessageService.onMessage(Bytecode PC:121)

 9 at com/company1/foo/services/messaging/ejb/TheConsumerBean.onMessage(Bytecode PC:108) <<< Enter onMessage() !!!

 8 at com/ibm/ejs/container/MessageEndpointHandler.invokeMdbMethod(MessageEndpointHandler.java:1014(Compiled Code))

 7 at com/ibm/ejs/container/MessageEndpointHandler.invoke(MessageEndpointHandler.java:747(Compiled Code))

 6 at $Proxy7.onMessage(Bytecode PC:18)

 5 at com/ibm/ws/sib/api/jmsra/impl/JmsJcaEndpointInvokerImpl.invokeEndpoint(JmsJcaEndpointInvokerImpl.java:201)

 4 at com/ibm/ws/sib/ra/inbound/impl/SibRaDispatcher.dispatch(SibRaDispatcher.java:768(Compiled Code))

 3 at com/ibm/ws/sib/ra/inbound/impl/SibRaSingleProcessListener$SibRaWork.run(SibRaSingleProcessListener.java:584)

 2 at com/ibm/ejs/j2c/work/WorkProxy.run(WorkProxy.java:419(Compiled Code))

 1 at com/ibm/ws/util/ThreadPool$Worker.run(ThreadPool.java:1473(Compiled Code))

 Read from bottom to top!

WebSphere® Support Technical Exchange 37

IBM Software Group

Javacore Analysis:

 We start from the bottom and read up:

 On line 4 notice the SibRaDispatcher. This is the SIB Resource Adapter.

 On line 6 we see the first mention of onMessage().

 On lines 7 and 8 we see the EJB Container prepare to call onMessage() of the customer MDB.

 On line 9 we see that onMessage() is called. The method is in a customer class (MDB) named

TheConsumerBean. We are now in customer code!

 Notice that from lines 10 to 13 the package name is “com/company1” and we are no longer in “com/ibm”

code. This means we are now in code from the company1 company (company1.com).

 Notice from lines 14-22 the package name is “com/company3”. This again is not IBM code.

 Notice that on line 19 “jdbc” appears in the call stack. JDBC stands for Java Database Connectivity.

This means the customer code is now connecting to a database.

 In line 22 the code is now in popConnection() , which is non-IBM code. This is where the hang occurs.

If at least one other javacore shows this same thread in the exact same code (if they show

exactly the same stack with popConnection() at the top), this MDB (TheConsumerBean) likely

isn’t consuming messages. The MDB is hung in popConnection() (at the top of the call stack). The

MDB is probably waiting for a response from the database, so interaction with the database, not the

MDB, is the real problem. The connection to the database should be investigated.

WebSphere® Support Technical Exchange 38

IBM Software Group

Message States

 The following is a list of ALL possible message states, although the states we have already

discussed are the most common. The most common states are in red.

 Available The message is available for consumption.

 Locked The message is currently unavailable. The message is in this state temporarily, possibly

because it is being consumed by a non-transacted consumer.

 Unlocked There is no message listener running. The match criteria of all the consumers for this

destination do not match the message. All consumers for this destination are pointing at a

different partition of the destination in a WLM environment. All consumers are maxed out

processing messages and can't accept new ones (this would normally happened when we have

a mix of locked and unlocked messages).

 Remote lock The message is currently locked to a consumer attached to another, remote,

messaging engine in the bus. The message will remain locked until the remote messaging

engine responds with a decision on the message. If the remote messaging engine is stopped, the

message will remain locked until the messaging engine is restarted. A corresponding message

request for a "known remote queue point" will identify the remote messaging engine that is

making the request.

WebSphere® Support Technical Exchange 39

IBM Software Group

Message States

 Removing The message is currently being removed under a transaction. The message will be in

this state until the transaction commits or rolls back. If this state persists, investigate the state of

the transaction identified by Transaction ID.

 Committing The message is currently being added under a transaction. The message will be in

this state until the transaction commits or rolls back. If this state persists, investigate the state of

the transaction identified by Transaction ID.

 Pending retry The message is currently unavailable before being eligible for a retry. This might

be because a message-driven bean is configured to delay failing message retries.

 Blocked This message is currently unavailable because the message point is blocked by the first

message on the queue. The first message has reached its maximum failed delivery limit but no

exception destination is configured. Identify the first message and resolve the problem that is

preventing it from being consumed.

WebSphere® Support Technical Exchange 40

IBM Software Group

Message States

 One additional, though rare, message state that you may see is Pending acknowledgement.

This state can occur on a Remote Publication Point when a message is sent between 2

Messaging Engines. This state means that the sending Messaging Engine is waiting on the

receiving Messaging Engine for acknowledgement that the message was received.

 If this state occurs make sure all messaging engines are Started and operating correctly. If

necessary you may be able to solve the problem by stopping and restarting the Messaging

Engines, one at a time, in the messaging cluster.

WebSphere® Support Technical Exchange 41

IBM Software Group

Summary

 This presentation is designed to help you understand and investigate why messages are stuck or

accumulating on a destination. A basic understanding of how MDBs work was presented,

including an overview of onMessage() and the importance of understanding what onMessage()

does. This was followed by a discussion of message states and how to interpret them.

 Lastly, Javacores and their importance was discussed, including an example that shows a typical

hung MDB scenario and how to interpret the call stack.

 It is hoped that this presentation will help you deal with stuck messages in the future!

WebSphere® Support Technical Exchange 42

IBM Software Group

WebSphere® Support Technical Exchange 43

Additional WebSphere Product Resources

 Discover the latest trends in WebSphere Technology and implementation, participate in
technically-focused briefings, webcasts and podcasts at:
http://www.ibm.com/developerworks/websphere/community/

 Learn about other upcoming webcasts, conferences and events:
http://www.ibm.com/software/websphere/events_1.html

 Join the Global WebSphere User Group Community: http://www.websphere.org

 Access key product show-me demos and tutorials by visiting IBM Education Assistant:
http://www.ibm.com/software/info/education/assistant

 View a Flash replay with step-by-step instructions for using the Electronic Service
Request (ESR) tool for submitting problems electronically:
http://www.ibm.com/software/websphere/support/d2w.html

 Sign up to receive weekly technical My support emails:
http://www.ibm.com/software/support/einfo.html

http://www.ibm.com/developerworks/websphere/community/
http://www.ibm.com/software/websphere/events_1.html
http://www.websphere.org/
http://www.ibm.com/software/info/education/assistant
http://www.ibm.com/software/websphere/support/d2w.html
http://www.ibm.com/software/support/einfo.html

IBM Software Group

WebSphere® Support Technical Exchange 44

Questions and Answers

