

WebSphere Process Server 7.0

Customizing HTML-Dojo Forms for

Human Tasks in Business Space

Michael Friess, Thomas Rossmann, Andreas Schön

IBM Development Lab Böblingen, Germany

August 2010

© IBM Corporation, 2010

Customizing HTML/Dojo Forms for Human Tasks in Business Space

2

Disclaimer

This document is subject to change without notification and will not comprehensively

cover issues encountered in any customer situation.

The information contained in this document has not been submitted to any formal IBM

test and is distributed AS IS.

For updates or newer releases please contact the authors.

About the authors

This document was written by the WebSphere Business Process Management (BPM)

team in Böblingen. The authors are:

Michael Friess

Senior Software Engineer

IBM Software Group, Application and Integration Middleware Software

WebSphere BPM Architecture, User Interface Clients

Thomas Rossmann

Software Developer

IBM Software Group, Application and Integration Middleware Software

WebSphere BPM Development, Human Task Editor and Client Generation

Andreas Schön

Software Developer

IBM Software Group, Application and Integration Middleware Software

 WebSphere BPM Development, BPM Clients

We would like to thank the WebSphere Business Process Management team for their

contributions to this document.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

3

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies. A

current list of IBM trademarks is available on the Web at “Copyright and trademark

information” at www.ibm.com/legal/copytrade.shtml.

 Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Customizing HTML/Dojo Forms for Human Tasks in Business Space

4

Customizing HTML/Dojo Forms for Human Tasks in Business Space

5

Table of Contents

1. Abstract ... 7

2. Introduction ... 8

3. HTML-Dojo forms ... 9

3.1 Structure of the generated HTML file ... 9

3.2 Display mode.. 10

3.3 Cascading style sheet information ... 12

3.4 Input fields .. 14

3.5 Mapping form values to business objects .. 20

4. Common customization tasks .. 21

4.1 Changing the labels and the order of generated fields ... 21

4.2 Hiding generated fields ... 22

4.3 Prepopulating the output message .. 22

4.4 Using other style sheets .. 23

4.5 Integrating custom logic ... 24

4.6 Providing event handlers .. 27

4.7 Initializing field values ... 28

4.8 Calling a REST service .. 29

4.9 Localizing HTML-Dojo forms .. 29

5. Performance Recommendations .. 31

5.1 Design Guidelines for Processes and Tasks .. 31

5.2 Infrastructure considerations ... 31

5.3 Important fixes ... 31

6. References ... 32

Customizing HTML/Dojo Forms for Human Tasks in Business Space

6

Customizing HTML/Dojo Forms for Human Tasks in Business Space

7

1. Abstract

WebSphere® Process Server includes Business Space powered by WebSphere, which

provides an integrated user experience for business users. The Human Task Management

widgets allow business users and managers to interact with business processes and

human tasks.

The Task Information widget is used to initiate services, create, work on, view or check

human tasks. The widget uses a task form specification that is associated with a human

task for rendering the form and its content.

The user interface generators in WebSphere Integration Developer can be used to

generate task forms based on either HTML with Dojo Toolkit or Lotus™ Forms. User

interface developers often need to customize the generated HTML-Dojo forms for

specific customer scenarios.

This paper describes various aspects of the generated HTML-Dojo form, such as its

structure, how input and output messages are displayed, the embedded Cascading Style

Sheets (CSS) information, and how input fields are handled. It then goes on to describe

some typical ways in which you can customize the generated form, such as using

alternative style sheets, integrating JavaScript™ code and custom widgets, and providing

event handlers.

The paper concludes with a chapter about performance recommendations.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

8

2. Introduction

WebSphere® Process Server includes Business Space powered by WebSphere, which

provides an integrated user experience for business users across the IBM® WebSphere

Business Process Management portfolio.

Business Space is a browser-based, graphical user interface based on widgets, which

allows business users to interact with content and functions from different sources. They

can create, share, and use business spaces that are composed of widgets and organized in

pages.

WebSphere Process Server includes the Human Task Management widgets. These

widgets allow business users and managers to interact with business processes and

human tasks. They can be easily configured and combined with other widgets to create

powerful business spaces.

Users initiate services and processes, create, work on, view, or check human tasks and

initiated services using the Task Information widget. It renders the task form and

provides information about the task, such as the priority, owner, status, and related tasks.

Human tasks are used to model human interaction in business processes. There are three

kinds of human tasks:

 To-do tasks represent work for people that is initiated by a service invocation.

 Invocation tasks allow a user to initiate a service or process.

 Collaboration tasks allow the collaboration between people in a structured and

controlled way.

A human task is modeled as a service component that implements a task done by a

person. The interface of a human task is described using Web Service Definition

Language (WSDL) with a single operation. The operation can have an input message, an

output message, or both. These messages represent the content that the user can interact

with.

 WebSphere Integration Developer provides user interface (UI) generators to generate

task forms for a specific client type. Task forms for use in Business Space can be

generated based on HTML with the Dojo Toolkit, or Lotus Forms technology. The Task

Information Widget renders the generated form so that users can work with the human

task.

This paper covers the concepts of HTML-Dojo forms and how the generated form can

be customized.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

9

3. HTML-Dojo forms

An HTML-Dojo form is implemented as an HTML form with Dojo widgets for the

input fields. “Dojo Toolkit is an open source modular JavaScript library (or more

specifically JavaScript toolkit) designed to ease the rapid development of cross-platform,

JavaScript/Ajax-based applications and web sites” [1]. See the Dojo Toolkit web site for

more information [2].

In WebSphere Integration Developer, the UI generator for HTML-Dojo pages for use in

Business Space generates a task form for a human task as an HTML file. The URL for

the HTML file representing the task form is specified in the user interface settings for

client type “Dojo” of the human task.

3.1 Structure of the generated HTML file

The main parts of the file are:

 Cascading Style Sheet (CSS) definitions in the <style> element

 A <div> element with a unique class identifier for the generated file

 A single, nested <form> element that encapsulates the actual form

<html>

<div class=“HTM_Taskname_id_version“>

</div>

</html>

<form class=“view“>

</form>

<div class=“inputMessage“>

 fields for the input message

</div>

<div class=“outputMessage“>

 fields for the output message

</div>

<style>

 CSS defintion

</style>

Customizing HTML/Dojo Forms for Human Tasks in Business Space

10

 Two <div> elements within the <form> element that contain the fields for the

input and output messages of the human task. The messages are identified by the

inputMessage and outputMessage class names.

3.2 Display mode

The class attribute of the <form> element defines the mode in which the form is

displayed. The default is the view mode. The form element for the task form is realized

by the dijit.form.Form widget.

The Task Information widget displays a task form in one of the following modes

depending on the context in which the form is used:

 init mode

This mode is used when a user fills out the form to initiate a service, process, or task

(invocation and collaboration tasks).

Only the input message part of the form is displayed so that the data can be entered

to start the task:

 edit mode

This mode is used when a user works on, or edits a task (to-do or collaboration

tasks).

Both the input message and output message parts of the form are shown. The input

message part is displayed in read-only mode. The output message part can be edited

so that the user can enter the data to complete the task:

Form:

Input message

Visible

Output message

Hidden

Customizing HTML/Dojo Forms for Human Tasks in Business Space

11

If the interfaces of the input message and the output message have the same business

object type and not a simple type, in the generated HTML form the input message

part is hidden, the output message part is displayed, and the fields are filled with the

corresponding values from the input message.

When the input and output messages do not have the same business object type, you

can customize the generated task form so that the output message is filled with the

values from the input message. See section 4.3 for more information on how to

customize the form in this way.

 view mode

This mode is used when a user views the current task information (invocation, to-do,

and collaboration tasks).

Form:

Input message

hidden

Output message

Visible

Form:

Input message

Visible and read only

Output message

Visible

Customizing HTML/Dojo Forms for Human Tasks in Business Space

12

Both the input message and the output message parts of the form are shown. All the

fields are read only:

3.3 Cascading style sheet information

The class attribute of the <div> element of the form specifies a unique CSS class for

the generated task form.

<div class="HTM_CheckOrder_1556404392_7_0_0_v20091121_0200">

 <form dojoType="dijit.form.Form" class="view" action="">

 ...

 </form>

</div>

The name of the class is composed as follows:

• A static part 'HTM'

• The name of the human task, for example, 'CheckOrder'

• A unique identifier for the task, for example, '1556404392'

• The version of WebSphere Integration Developer used for generating the form, for

example, '7_0_0'

• The build number of WebSphere Integration Developer used for generating the form,

for example, ' v20091121_0200'

When the form is displayed in the Task Information widget, the layout is determined by

the style definitions for the elements of the HTML-Dojo form. The following code

sample shows part of the generated style definitions.

<style type="text/css">

 /**

Form:

Input message

Visible and read only

Output message

Visible and read only

Customizing HTML/Dojo Forms for Human Tasks in Business Space

13

 * General

 */

 .HTM_CheckOrder_1556404392_7_0_0_v20091121_0200 .fieldInput {

 width: 150px;

 text-align: left;

 display: inline;

 }

 .HTM_CheckOrder_1556404392_7_0_0_v20091121_0200 .fieldLabel {

 width: 150px;

 text-align: left;

 float:left;

 }

…

</style>

The CSS selectors of the style definitions correspond to the classes defined on the

HTML elements of the form. The unique identifier is used as part of the selector in the

style definitions so that they only apply to the HTML file where they are defined.

The following table describes the CSS styles defined in the header of the HTML file.

CSS style / scope Description

.fieldInput The style for an input field

.fieldLabel The style for the label of an input field

.arrayTemplate
The style for the template element of an

array

.arrayLabelFont The style for the label for array elements

span.addButton The style for the Add button, or the Add

link of an array

span.removeButton The style for the Remove button, or the

Remove link of an array

div.array_header_left The style used for the left part of an array

header or an array element

div.array_header_right The style used for the right part of an

array header or an array element

div.fieldContainer The style for a container of an input field

and its corresponding label

div.businessObject The style for a business object that is not

an array

div.arrayBO The style for the complete array area

Customizing HTML/Dojo Forms for Human Tasks in Business Space

14

CSS style / scope Description

div.arrayHeader The style for the array header area

.arrayHeaderContainer The style for the container of an array

header

img.collapseStyle The style for the image which controls the

collapsing and expanding of an array

div.caseFolder The style for a case folder

.init div.inputMessage Determines the visibility of the input

message when a task is created

.init div.outputMessage Determines the visibility of the output

message when a task is created

.edit div.inputMessage Determines the visibility of the input

message when a task is worked on

.edit div.outputMessage Determines the visibility of the output

message when a task is worked on

.view div.inputMessage Determines the visibility of the input

message when a task is only viewed

.view div.outputMessage Determines the visibility of the output

message when a task is only viewed

span.requiredMarker The style of the asterisk that marks a

required field

.fieldInput

.requiredBackgroundColor

Defines the background color of the

required fields. To disable the background

color, set 'background: none'

3.4 Input fields

 The most important components of a form are the input fields. The Task Information

widget allows several human tasks to be open simultaneously, which means that multiple

instances of the same task form can be open. Therefore the generated input fields have

an ID attribute that contains the HTMUniqueWidgetID special marker. This marker is

replaced at runtime with a unique value for each task instance1:

<input

id=”http___Test_ShipPublicTransportationTicketProcessInterfaceoperation1Request

_input5_HTMUniqueWidgetID”

dojoType=”...”

… />

1 Custom widgets also need to use this marker in their IDs to ensure unique IDs across the whole page.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

15

Note that this marker is replaced only in the HTML file of the form, and not in the

related artifacts, for example, JavaScript code. This behavior can be leveraged, for

example, to reference an input field in a custom event handler.

In addition, the task ID of the opened task is also provided by the {HTMTaskId}

special marker, which is replaced at runtime if the task ID has already been established.2

The input message and output message are based on the interface of the corresponding

Web interface. The message type can be either a simple type or a business object type. A

business object type can comprise simple types, other business object types, array types,

and case folders.

3.4.1 Simple types

A form contains an input field for each simple type element that is part of the message

type. The fields are <div> elements with a CSS class of fieldContainer, a

<label> element for the input field, and a <div> element for the <input> element.

The following example shows the structure of an input field:

<div class="fieldContainer">

 <label class="fieldLabel"

 for="http___OrderSolution__HTMUniqueWidgetID">

 ArticleDescription

 </label>

 <div class="fieldInput">

 <input type="text"

 name="/order/Order[]/ArticleDescription"

 value=""

 sdoPosition="0"

 dojoType="dijit.form.ValidationTextBox"

 regExp=".*"

 id="http___OrderSolution__HTMUniqueWidgetID"

 sdoMessageType="input"

 sdoPrepopulation=""

 required="false"

 class="fieldInput"/>

 </div>

</div>

The values for the for attribute of the label and the id attribute of the input field must

be the same so that the label can be correlated with the input field3. The CSS classes

fieldContainer, fieldLabel, and fieldInput are used as the CSS style

selectors for the style definitions. An input field has the following attributes:

2 For example, if a task is about to be created and started, it does not yet have a task ID.

3 The values are truncated in the code sample for readability.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

16

• type

Specifies the HTML type of the input element.

• value

Specifies the value of the input element.

• name

Contains an XPath-like expression. It is used to write and read the XML document of

the message.

• sdoPosition

Specifies the position of the corresponding XML element as part of an XSD

construct, such as a sequence. This attribute is required to create a valid XML

document and must not be modified.

• dojoType

Specifies the Dojo widget used for the entry field.

• regExp

Specifies a regular expression for the validation of the entry field as defined by the

Dojo dijit.form.ValidationTextBox widget.

• sdoMessageType

Specifies whether the field is part of the input message or the output message

• sdoPrepopulation

Holds an XPath-like expression that references the input message that is used to

prepopulate the input field in the output message.

• required

Specifies whether the entry field must be provided to submit the task form. This

Boolean attribute is generated for all the elements that are required by the XML

schema of the business object in order to create a valid XML document. This attribute

cannot be removed.

3.4.2 Business objects

A business object can contain simple types, single business objects, and arrays. If the type
of the input or output message is a business object, a <div> element with a
businessObject class is created. This element contains an <h3> element that serves
as a header for the business object and the fields for the message as shown in the
following code sample:

<div class="businessObject" sdoMinOccurence="1" name="/order" sdoMaxOccurence="1"

sdoPosition="0">

<h3 class="input">order</h3>

…

</div>

The attributes for input fields for business objects are the same as those for simple types.

In addition, the following attributes are also generated for the division element:

• sdoMinOccurence

Defines the minimum number of occurrences of the business object.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

17

• sdoMaxOccurence

Defines the maximum number of occurrences of the business object.

This representation is generated only for a required business object, that is, the

sdoMinOccurence and sdoMaxOccurence attributes both have the value of 1. This

is always true if the business object is at the top level of the data structure. In all other

cases, the business object is represented as an array.

3.4.3 Arrays

A schema definition can allow multiple occurrences of an element of the same simple

type or business object. These are represented as arrays. For example, the Order

property is an array of OrderItem objects:

The array representation provides a mechanism to add and remove elements and

includes a template with the representation of the nested elements.

An array is represented by a <div> element with the arrayBO CSS class attribute:

<div name="/order/Order[]"

 class="arrayBO"

 dojoType="bpc.forms.FormArrayContainer"

 sdoMessageType="input"

 sdoMinOccurence="0"

 sdoMaxOccurence="-1"

 sdoPosition="0">

An array has the following attributes:

 name

Indicates an array by the square brackets of the last element, for example,

Order[]).

Customizing HTML/Dojo Forms for Human Tasks in Business Space

18

 dojoType

Set to the bpc.forms.FormArrayContainer class. This class is part of

the Task Information widget and provides the rendering for arrays.

 sdoMessageType

Indicates whether the array is part of the input message or output message of the

human task.

 sdoMinOccurence

Defines the minimum number of occurrences of the element.

 sdoMaxOccurence

Defines the maximum number of occurrences of the element. The value of -1

indicates that there is no upper limit, this is equivalent to “unbounded” in an

XML schema.

 sdoPosition

Defines the position in the parent data structure.

The <div> element representing the array contains two <div> elements; one for the

header of the array and one for the content template of the array.

 Array header

The following code sample shows an example of an array header.

<div class="arrayHeaderContainer" dojoAttachPoint="arrayHeaderContainer">

 <div class="arrayHeader">

 <span class="arrayLabelFont"

 dojoAttachPoint="arrayHeaderLabel">

 Order

 <div class="array_header_right">

 Add

 </div>

 </div>

</div>

The <div> element with the arrayHeaderContainer style class contains an

image for collapsing and expanding the array, and the actual header containing

the name of the business object, for example, “Order”. The header also includes

the add action to add a new element at the end of the array. The

dojoAttachPoint attributes are required by the ArrayContainer widget.

 Content template

The following code sample shows an example of a content template for an array:

<div dojoAttachPoint="ArrayTemplate" class="arrayTemplate">

 <div class="arrayHeaderContainer">

 <div class="array_header_left">

Customizing HTML/Dojo Forms for Human Tasks in Business Space

19

 Order

 </div>

 <div class="array_header_right">

 Remove

 </div>

 </div>

 <div class="fieldContainer">

 <label class="fieldLabel" for="http___input0_HTMUniqueWidgetID">

 ArticleDescription

 </label>

 <div class="fieldInput">

 <input type="text" name="/order/Order[]/ArticleDescription"

 value="" sdoPosition="0"

 dojoType="dijit.form.ValidationTextBox" regExp=".*"

 id="http____input0_HTMUniqueWidgetID"

 sdoMessageType="input" sdoPrepopulation=""

 required="false" class="fieldInput"/>

 </div>

 </div>

 <!-- more array template elements -->

</div>

The <div> element with the arrayTemplate style class holds the template

information that the Task Information widget uses to create new elements. It is

not visible itself, but is used as template for inserting new array elements.

The content template has a header part as a <div> element with the

arrayHeaderContainer style class. The header consists of a left part with the

name of the business object as the header label, and a right part with an action to

remove the array element. Then all the data fields follow. These fields can be

simple types, business objects, or other arrays.

The value of the name attribute for a nested data element includes the XPath-like

expression of the array it is contained in, for example:

order/order[]/ArticleDescription

The Task Information widget inserts a new array element by copying the

“arrayTemplate” <div> element, inserting the array index into the name

attribute, and making this new element visible.

Note: an optional business object is displayed like an array of this business object

type with a sdoMinOccurence of 0 and a sdoMaxOccurence of 1.

3.4.4 Case folder

The case handling support in WebSphere Process Server includes a collaboration scope

and predefined data types for case folders. To use these predefined data types and the

Customizing HTML/Dojo Forms for Human Tasks in Business Space

20

interfaces for the collaboration scope, you must enable the resources for the

collaboration scope in the dependency editor in WebSphere Integration Developer.

The Task Information widget provides specific handling for case folders. This is realized

through the com.ibm.bpc.widget.editor.form.CaseFolderContainer

Dojo widget. The generated HTML for the predefined case folder type sets the

dojoType attribute accordingly. The following code sample shows an example of an

input field for a case folder:

<div name="/input1/attachment[]"

 class="arrayBO_input"

 userId="{HTMUserId}"

 dojoType="com.ibm.bpc.widget.editor.form.CaseFolderContainer"

 sdoMessageType="input"

 sdoPrepopulation=""

 sdoMinOccurence="0"

 sdoMaxOccurence="-1">

</div>

3.5 Mapping form values to business objects

 The Task Information widget maps the form values to XML documents of the input

and output message. It reads the form values from the XML document of the input and

output message. It also constructs the XML document for the input (init mode) or

output (edit mode) message from the form content.

The name attribute is used like an XPath expression to read the data from the XML

document. The name and sdoPosition attributes are used to construct the respective

elements in the XML document. For example, an address business object is defined with

the city, zip code, and street attributes. The generated form contains three <input>

elements with the following name and sdoPosition attributes:

<input name=”/address/city” sdoPosition=”2”/>

<input name=”/address/zipcode” sdoPosition=”3”/>

<input name=”/address/street” sdoPosition=”1”/>

A user now enters “1234 Main Street”, “New York”, “11000” for the various input

fields. The Task Information widget uses the name and sdoPosition attributes and

the values of the input fields to generate the XML fragment:

<address>

 <street>1234 Main Street</street>

 <city>New York</city>

 <zipcode>11000</zipcode>

</address>

Customizing HTML/Dojo Forms for Human Tasks in Business Space

21

4. Common customization tasks

While the customization needs for specific scenarios can vary, there are some typical

ways in which you can customize the generated forms.

4.1 Changing the labels and the order of generated fields

Every input field in the input and the output message is wrapped in a <div> element

with the fieldContainer class, which contains the label for the field and the input

control.

<div class="fieldContainer">

 <label class="fieldLabel” for="..._input0_...">

 firstName

 </label>

 <div class="fieldInput">

 <input id="..._input0_..." class="fieldInput" sdoPosition=”0” … />

 </div>

</div>

You can directly change the label, but you must not change, or remove the attributes of

the input field. For example, the sdoPosition attribute is needed to construct the

message with this element in the correct order in the containing sequence.

You can also rearrange the input fields in the form by rearranging the field containers.

Field containers are embedded in the <div> element of the corresponding input or

output message as described in section 3.1 Structure of the generated HTML file. The

field containers are used to construct the input and output message.

<form dojoType=”dijit.form.Form” class=”view” ...>

 <div class=”inputMessage”>

 <!-- Only rearrange within this div -->

 </div>

 <div class=”outputMessage>

 <!-- Only rearrange within this div -->

 </div>

</form>

Make sure you do not change the overall structure of the document and only rearrange

field containers within the blocks for the input message or output message.

In addition, fields can be part of a business object hierarchy or an array, which means

that the field containers are nested in <div> elements with the businessObject or

arrayTemplate class, for example:

<div class="businessObject" name="/input1/customer" … >

 <!-- Only rearrange within this div -->

</div>

The field container must remain within the same <div> element of the business object

or the array.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

22

4.2 Hiding generated fields

The task form provides input controls for the various fields of the input message and the

output message. Depending on the mode of operation these controls are shown, hidden,

or disabled.

To hide an input field, add a style definition that hides the field container. For example:

<div class="fieldContainer" style=”display: none”>

 <label class="fieldLabel"

 for="http___OrderSolution__HTMUniqueWidgetID">

 ArticleDescription

 </label>

 <div class="fieldInput">

 <input type="text" … />

 </div>

</div>

Alternatively, you can use a CSS style class:

<div class="fieldContainer inputArticleDescriptionField">

 …

</div>

The style class allows you to hide the field depending on the display mode. For example,

to hide the field only when starting the task, you would create a CSS selector that refers

to the init mode:

.HTM_CheckOrder_1556404392_7_0_0_v20091121_0200 .init .inputArticleDescriptionField {

 display: none

}

4.3 Prepopulating the output message

To initially set a field in the output message to the value of a field in the input message,

you can instruct the Task Information widget to prepopulate the field.

When the input and output messages have the same type, all the fields in the output

message in the generated HTML-Dojo form are set for prepopulation. The CSS styles

are defined so that the input message is hidden in the edit mode.

In the following example, selectors are used to define the visual attributes of input and

output messages. The selector comprises a reference to the CSS class for the mode of

operation (.edit in the example), and a reference to the input or output message.

/**

* CSS Styles for editing a task. Since the input message equals the

* output message, only the output message is shown.

*/

.HTM_ArrayTask_1985205702_7_0_0_v20091130_1326 .edit div.inputMessage {

 visibility: collapse;

Customizing HTML/Dojo Forms for Human Tasks in Business Space

23

 display:none;

}

.HTM_ArrayTask_1985205702_7_0_0_v20091130_1326 .edit div.outputMessage {

}

If the input and output message types do not match, there might still be properties that

are used in both the input and the output messages. To enable prepopulation for this

case, set the sdoPrepopulation attribute of the input field in the output message to

the XPath expression used for the name attribute of the corresponding input field in the

input message. For example:

<form dojoType=”dijit.form.Form” class=”edit” ...>

 <div class=”inputMessage”>

 <input name="/input1/a/int" sdoMessageType="input" … />

 </div>

 <div class=”outputMessage>

 <!-- Field in the output message that refers to a field in the input

 message through the sdoPrepopulation attribute.

 -->

 <input name="/output1/b/int" sdoMessageType="output"

 sdoPrepopulation="/input1/a/int" … />

 </div>

</form>

Make sure that the types of the elements in the input and output messages are the same.

4.4 Using other style sheets

You can include a different style sheet by adding either a link element in the <head>

section, or an @import instruction in the <style> element of the generated form:

<head>

 …

 <!-- link tag in head section -->

 <link rel="stylesheet" href="style.css" TYPE="text/css" ></link>

 ...

 <style type="text/css">

 <!-- alternatively you may add @import instructions into the style section -->

 @import "style.css";

 ...

 </style>

</head>

You typically locate the style sheets together with the HTML file for the task form and

use a relative URL to refer to the style sheet.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

24

4.5 Integrating custom logic

Customizing the task form often involves implementing custom logic, for example, as

simple JavaScript functions, reusing other Dojo widgets, or providing custom Dojo

widgets.

4.5.1 Integrating custom JavaScript functions

You must put custom JavaScript functions in a Dojo module. JavaScript code that is

placed in a script element within the form is ignored.

A Dojo module is a JavaScript file with the same name as the module name and located

in a directory that matches the package name. For example, the definition of the

following Dojo module should be stored in a form.js file in the company directory:

dojo.provide("company.form");

// The Task Information widget does not set the char-set attribute.

// Therefore the script is processed in the encoding of the Business Space which is

utf-8

//

// Calculate the number of the next year.

//

company.form.setDojoComponentToNextYear = function(id) {

 var comp = dijit.byId(id);

 var year = (new Date()).getFullYear() + 1;

 if (comp != null) {

 comp.attr("value",year);

 }

}

A Dojo module always starts with a dojo.provide statement that declares the name

of the module. For more information on the Dojo Toolkit, see the Dojo documentation

([2]).

To include a Dojo module in an HTML-Dojo form, add a script element that defines the

location of the package, and the name of the module. Be aware that the script element is

parsed and only dojo.registerModulePath and dojo.require statements are

recognized.

<script type="text/javascript">

 dojo.registerModulePath("company","company");

 dojo.require("company.form");

 </script>

The Task Information widget supports only relative paths. It therefore converts the path

in the dojo.registerModulePath(package,path) statement so that it is

relative to the location of the task form. Note that dojo.registerModulePath in

the Dojo Toolkit converts a relative path so that it is relative to the location of the dojo.js

file.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

25

The script tag in the example ensures that the company.form module is loaded by the

OrderTicket.html form. Therefore the following file structure is required:

4.5.2 Reusing other widgets from the Dojo Toolkit

The generated task form implements input fields using either widgets from the Dojo

Toolkit or widgets provided with the Task Information widget. The dojoType attribute

identifies the Dojo widget that is used for the input field as shown in the following

example:

<form dojoType="dijit.form.Form" class="view" action="">

 <div class=”inputMessage”>

 …

 <!-- example of an input element in the form -->

 <input type="text" name="/input1/year" dojoType="dijit.form.NumberTextBox".../>

 </div>

 <div class=”outputMessage”>

 …

 </div>

Customizing HTML/Dojo Forms for Human Tasks in Business Space

26

</form>

You can replace the implementation with other widgets from the dijit.form package

of the Dojo Toolkit by adding a dojo.require statement for the Dojo widget module,

for example:

<script type="text/javascript">

 dojo.require("dijit.form.NumberSpinner");

</script>

Set the dojoType attribute of the input field to the Dojo widget name:

<input type="text" name="/input1/year" dojoType="dijit.form.NumberSpinner".../>

You can add additional attributes as defined by the Dojo widget.

4.5.3 Using custom Dojo widgets

In general, you derive your custom Dojo widget from the widget in the generated form

that you intend to replace. This ensures that the interaction between the input widget and

the Task Information Widget works as expected. For example, if the widget implements

an isValid method, this method is used to validate the input from the widget and

enable the Submit button only if all the fields are valid.

You need to provide a module that contains your custom Dojo widget. For example, you

create a custom widget, company.MyValidationTextBox, which extends the

dijit.form.ValidationTextBox widget that it replaces. Your custom widget must

be in the MyValidationTextBox.js file of the company directory. The following

code sample shows how you might implement this example:

<script type="text/javascript">

 dojo.registerModulePath("company","company");

 dojo.require("company.MyValidationTextBox");

</script>

dojo.provide("company.MyValidationTextBox");

dojo.require("dijit.form.ValidationTextBox");

dojo.declare("company.MyValidationTextBox",dijit.form.ValidationTextBox,

{

 startup: function() {

 this.inherited(arguments);

 var year = (new Date()).getFullYear() + 1;

 this.attr("value",year);

 }

});

Customizing HTML/Dojo Forms for Human Tasks in Business Space

27

4.6 Providing event handlers

Event handlers are an essential aspect of developing user interfaces with JavaScript. They

are functions that are invoked when a particular event occurs.

4.6.1 Defining a startup handler

The form element for the task form is implemented using the dijit.form.Form

widget. When the form is opened, the widget triggers a startup event after it and all its

children are instantiated. You can use this event to run initialization logic in a similar way

to the onload event for the window in an HTML/JavaScript page.

Use a script element of type dojo/connect to declare a Dojo event handler:

<form dojoType="dijit.form.Form" class="view" action="">

 <script type="dojo/connect" event="startup">

 dijit.byId('http___Test_ShipPublicTransportationTicket

 ProcessInterfaceoperation1Request_input5_HTMUniqueWidgetID').attr('value',

 (new Date()).getFullYear() + 1);

 </script>

…

</form>

Because the event handler is specified declaratively, the ID provided in the dijit.byId

call is unique and it references the input field in the same task form instance.4

Another way to locate widgets is to provide a unique CSS class for the element

containing the widget, and use the dojo.query method within a given scope.

4.6.2 Using an event handler for input fields

You define an event handler for an input field declaratively. However, you cannot define

an event handler declaratively on an HTML input element5:

<input type="text" name="/input1/endPoint" dojoType="dijit.form.ValidationTextBox"

.../>

To define a Dojo event handler, replace the <input> element by a <div> element as

shown in the following example:

<div type="text" name="/input1/endPoint" dojoType="dijit.form.ValidationTextBox"...>

 <!-- The following event handler will be called when field loses the focus -->

 <script type="dojo/connect" event="onBlur">

 <!-- Only the unique widget id is provided that allows to

 refer to all other widgets in this instance of the form.

 This way the amount of logic in the form is kept to a minimum.

 -->

 company.form.updateProductCode("HTMUniqueWidgetID");

4 See 3.4 for more information about the HTMUniqueWidgetID marker.

5 A Dojo event handler can only be defined in the markup of elements that support an innerHTML

property, which is not the case for the input element.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

28

 </script>

 </div>

Dojo replaces the <div> element during the parsing of the form.

As explained in section 4.5.1 on using JavaScript code, the called method must be part of

the Dojo module that is registered in a <script> element. If other fields are updated, it

is important to provide the unique ID of the current task (See 3.4).

The following code sample shows an example of a method that is part of a Dojo module:

company.form.updateProductCode = function(htmUniqueWidgetId) {

 var compartmentWidget = …;

 var yearWidget =...;

 var startingPointWidget =...;

 var endPointWidget = dijit.byId("http___Test_ShipPublicTransportationTicket

 ProcessInterfaceoperation1Request_input7_" + htmUniqueWidgetId);

 var productCodeWidget =...;

 // Set the computed value on the productCodeWidget.

 productCodeWidget.attr("value",

 yearWidget.attr("value") +

 "#" +

 compartmentWidget.attr("value") +

 "#" +

 startingPointWidget.attr("value") +

 "#" +

 endPointWidget.attr("value"));

}

4.7 Initializing field values

Often form fields must be set to an initial value. The initial value can be static or

calculated dynamically.

4.7.1 Static initialization

You can set the value attribute on the input element to its initial value.

<input type="text" name="/input1/date" value="2010-10-31"

dojoType="dijit.form.DateTextBox" … />

Make sure that the format of the literal that is set to the value attribute complies with

the programming model of the component that you are using. For example, for an

xsd:date field, a dijit.form.DateTextBox widget is used that expects the value

according to ISO 8601 / RFC 3339.[3] [7]

4.7.2 Dynamic initialization

The initial value of a form field might need to be determined when the form is opened,

for example, to set a date field to the current date.

You can use a startup handler to implement the dynamic initialization as shown in 4.6.1

Defining a startup handler.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

29

When the calculation is more complex, you might want to implement the initialization in

a separate function, and call the function in the event handler as shown in the following

example:

<form dojoType="dijit.form.Form" class="view" action="">

 <script type="dojo/connect" event="startup">

 company.form.setDojoComponentToNextYear('http___Test_ShipPublicTransportationTi

cketProcessInterfaceoperation1Request_input5_HTMUniqueWidgetID');

 </script>

…

</form>

In this example, the Dojo event handler (type=”dojo/connect”) calls the

setDojoComponentToNextYear function that is defined in the company.form

module.

company.form.setDojoComponentToNextYear = function(id) {

 var comp = dijit.byId(id);

 var year = (new Date()).getFullYear() + 1;

 if (comp != null) {

 comp.attr("value",year);

 }

}

The function looks up the Dojo component, and sets the value to the next year. Note

that the dijit ID is passed as an argument, and the literal is used only in the HTML file of

the task form to make sure that the HTMUniqueWidgetID is properly replaced.

4.8 Calling a REST service

You can call a REST service by using the dojo.xhrGet functionality (See the Dojo

documentation for more details [2]). If the host of the REST service is different to the

host of the Business Space, the call needs to be directed to the Business Space proxy

using the following URL:

/mum/proxy/http/<host>:<port>/...

where /mum is the context root of the Business Space, and /proxy is the context path

setting in the proxy-config.xml file.

Be aware that you might want to restrict access to the proxy in a production environment

using:

<profile>\BusinessSpace\<node>\<server>\mm.runtime.prof\config

\proxy-config.xml

For more information about using the proxy especially in more complex environments,

see [6].

4.9 Localizing HTML-Dojo forms

The Task Information Widget retrieves the HTML-Dojo form using an AJAX call for

the URL that was set in WebSphere Integration Developer as the user interface setting

Customizing HTML/Dojo Forms for Human Tasks in Business Space

30

for the Dojo client type. Therefore the form can also be served using a servlet or a

JavaServerPage so that you can check the locale, and serve the correct localized version.

Customizing HTML/Dojo Forms for Human Tasks in Business Space

31

5. Performance Recommendations

Most performance problems with HTML-Dojo forms are due to the size of the HTML-

Dojo forms. These problems can be avoided by designing your processes and tasks with

that in mind.

The infrastructure is also an important factor. For example, there are huge differences in

the performance between browsers that have been designed for Rich Internet

Applications (RIA) and older versions which have been released before the advent of

Rich Internet Applications. (See [8], [9],[10])

5.1 Design Guidelines for Processes and Tasks

The size of the HTML-Dojo forms depends mainly on the complexity of the interface of

a human task. You can greatly reduce the complexity of a human task by splitting the

single human task into a page flow of multiple human tasks. In addition to that a page

flow may also help users to better understand the process. (See [9])

5.2 Infrastructure considerations

You should consider to use the most recent version of your favorite browser that is

supported by Business Space. For example, Internet Explorer 8 which has been released

in 2009 is much better than Internet Explorer 6 whose first version has been released in

2001. Today Rich Internet Applications like Business Space that heavily use JavaScript

are common place while at the start of the decade such application did not yet exist. (For

more details see [8])

5.3 Important fixes

The internal processing of the HTML-Dojo forms has been improved with all service

packs. As of this writing service pack 7.0.0.3 is the latest service pack and includes

important performance improvements.

For example, APAR IZ87329 greatly improves the performance for processing the input

and output messages in the Task Information widget. Furthermore, it provides the ability

to disable displaying the task input message which reduces the form’s size resulting in

better response times. (For more details see [9])

Customizing HTML/Dojo Forms for Human Tasks in Business Space

32

6. References

1. “Dojo Toolkit”. Wikipedia. 2010-06-10.

http://en.wikipedia.org/wiki/Dojo_Toolkit.

2. Dojo toolkit. The Dojo Foundation. http://www.dojotoolkit.org/

3. “ISO 8601: 2004”. International Organization for Standardization. 2008-03-18.

http://www.iso.org/iso/catalogue_detail?csnumber=40874

4. “Customizing HTML-Dojo forms for Business Space”. Klaus Schaefers, Marius

Kreis. 2009-04-09.

http://www.ibm.com/developerworks/websphere/techjournal/0810_kreis/081

0_kreis.html

5. Business Space Information Center. International Business Machines

Corporation.

http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topic=

/com.ibm.bspace.ic.main.doc/welcome/bspace_welcome.html

6. ”Configuring the HTTP proxy for AJAX applications: Mashup Center 2.0”.

International Business Machines Corporation. 2009-12-31. http://www-

10.lotus.com/ldd/mashupswiki.nsf/dx/Configuring_the_HTTP_proxy_for_AJA

X_applications__Mashup_Center_2.0

7. http://www.dojotoolkit.org/reference-

guide/dijit/form/DateTextBox.html#standard-date-format

8. Scalability and Performance of Business Space and Human Task Management

Widgets in WebSphere Process Server v7.

http://www-304.ibm.com/support/docview.wss?uid=swg27020684

9. Slow rendering of complex HTML+Dojo human task forms in Task Information

widget (Business Space)

http://www-01.ibm.com/support/docview.wss?uid=swg21468931

10. JavaScript benchmark results for several browser

http://ie.microsoft.com/testdrive/benchmarks/sunspider/default.html

http://www.dojotoolkit.org/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topic=/com.ibm.bspace.ic.main.doc/welcome/bspace_welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/index.jsp?topic=/com.ibm.bspace.ic.main.doc/welcome/bspace_welcome.html
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Configuring_the_HTTP_proxy_for_AJAX_applications__Mashup_Center_2.0
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Configuring_the_HTTP_proxy_for_AJAX_applications__Mashup_Center_2.0
http://www-10.lotus.com/ldd/mashupswiki.nsf/dx/Configuring_the_HTTP_proxy_for_AJAX_applications__Mashup_Center_2.0
http://www.dojotoolkit.org/reference-guide/dijit/form/DateTextBox.html#standard-date-format
http://www.dojotoolkit.org/reference-guide/dijit/form/DateTextBox.html#standard-date-format
http://www-304.ibm.com/support/docview.wss?uid=swg27020684
http://www-01.ibm.com/support/docview.wss?uid=swg21468931

