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About this document

This guide discusses advanced topics related to the use of IBM® XL C/C++ for
Linux, V13.1.5, with a particular focus on program portability and optimization.
The guide provides both reference information and practical tips for getting the
most out of the compiler's capabilities through recommended programming
practices and compilation procedures.

Who should read this document
This document is addressed to programmers building complex applications, who
already have experience compiling with XL C/C++ and would like to take further
advantage of the compiler's capabilities for program optimization and tuning,
support for advanced programming language features, and add-on tools and
utilities.

How to use this document
This document uses a task-oriented approach to present the topics by concentrating
on a specific programming or compilation problem in each section. Each topic
contains extensive cross-references to the relevant sections of the reference guides
in the IBM XL C/C++ for Linux, V13.1.5 documentation set, which provides
detailed descriptions of compiler options, pragmas, and specific language
extensions.

How this document is organized
This guide includes the following chapters:
v Chapter 1, “Porting from 32-bit to 64-bit mode,” on page 1 discusses common

problems that arise when you port existing 32-bit applications to 64-bit mode,
and it provides recommendations for avoiding these problems.

v Chapter 2, “Using XL C/C++ with Fortran,” on page 5 discusses considerations
for calling Fortran code from XL C/C++ programs.

v Chapter 3, “Aligning data,” on page 11 discusses options available for
controlling the alignment of data in aggregates, such as structures and classes.

v Chapter 4, “Handling floating-point operations,” on page 17 discusses options
available for controlling how floating-point operations are handled by the
compiler.

v Chapter 5, “Constructing a library,” on page 21 discusses how to compile and
link static and shared libraries and how to specify the initialization order of
static objects in C++ programs.

v Chapter 6, “Optimizing your applications,” on page 25 discusses various options
provided by the compiler for optimizing your programs, and it provides
recommendations on how to use these options.

v Chapter 7, “Debugging optimized code,” on page 53 discusses the potential
usability problems of optimized programs and the options that can be used to
debug optimized code.

v Chapter 8, “Coding your application to improve performance,” on page 57
discusses recommended programming practices and coding techniques to
enhance program performance and compatibility with the compiler's
optimization capabilities.
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v Chapter 9, “Using the high performance libraries,” on page 79 discusses two
performance libraries that are shipped with XL C/C++: the Mathematical
Acceleration Subsystem (MASS), which contains tuned versions of standard
math library functions, and the Basic Linear Algebra Subprograms (BLAS),
which contains basic functions for matrix multiplication.

v Chapter 10, “Parallelizing your programs,” on page 95 provides an overview of
options offered by XL C/C++ for creating multi-threaded programs, including
OpenMP language constructs.

v Chapter 11, “Offloading computations to the NVIDIA GPUs,” on page 103
provides an overview of the methods to exploit the NVIDIA GPUs by using XL
C/C++.

v Chapter 12, “Vector element order toggling,” on page 107 discusses that if users
want to consistently use the instructions generated by vector built-in functions,
users need to make all existing Vector Multimedia Extension (VMX) and Vector
Scalar Extension (VSX) load and store built-in functions operate on the vectors in
registers in the same vector element order, either little-endian or big-endian
element order.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for Linux, V13.1.5 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:
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Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

C++14 begins
C++14

C++14

C++14 ends

The text describes a feature that is introduced into standard
C++ as part of C++14.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

GPU begins
GPU

GPU

GPU ends

The text describes the information that is relevant to offloading
computations to the NVIDIA GPUs.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
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The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
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v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for Linux, V13.1.5. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory, and in the root directory and subdirectories of the
installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for Linux, V13.1.5 Installation
Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSXVZZ_13.1.5/
com.ibm.compilers.linux.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036675.
The following files comprise the full set of XL C/C++ product information:

About this document ix
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Table 3. XL C/C++ PDF files

Document title PDF file name Description

IBM XL C/C++ for
Linux, V13.1.5
Installation Guide,
GC27-6540-04

install.pdf Contains information for installing XL
C/C++ and configuring your
environment for basic compilation and
program execution.

Getting Started with
IBM XL C/C++ for
Linux, V13.1.5,
GI13-2875-04

getstart.pdf Contains an introduction to the XL
C/C++ product, with information about
setting up and configuring your
environment, compiling and linking
programs, and troubleshooting
compilation errors.

IBM XL C/C++ for
Linux, V13.1.5 Compiler
Reference, SC27-6570-04

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in
functions.

IBM XL C/C++ for
Linux, V13.1.5 Language
Reference, SC27-6550-04

langref.pdf Contains information about language
extensions for portability and
conformance to nonproprietary
standards.

IBM XL C/C++ for
Linux, V13.1.5
Optimization and
Programming Guide,
SC27-6560-04

proguide.pdf Contains information about advanced
programming topics, such as
application porting, interlanguage calls
with Fortran code, library development,
application optimization, and the XL
C/C++ high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036675.

For more information about the compiler, see the XL compiler on Power®

community at http://ibm.biz/xl-power-compilers.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11.
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11.
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v Information Technology - Programming languages - C++, ISO/IEC 14882:2014, also
known as C++14 (Partial support).

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support), OpenMP

Application Program Interface Version 4.0 (partial support), and OpenMP Application
Program Interface Version 4.5 (partial support), available at http://
www.openmp.org

Other IBM information
v ESSL product documentation available at http://www.ibm.com/support/

knowledgecenter/SSFHY8/essl_welcome.html?lang=en

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_linux.
This page provides a portal with search capabilities to a large selection of
Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://ibm.biz/xlcpp-linux.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).
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Chapter 1. Porting from 32-bit to 64-bit mode

IBM XL C/C++ for Linux, V13.1.5 supports only 64-bit compilation mode, which
means you can use the XL C/C++ compiler to develop only 64-bit applications.

You might want to port existing 32-bit applications to the 64-bit IBM XL C/C++ for
Linux, V13.1.5. However, this can lead to a number of problems, mostly related to
the differences in C/C++ long and pointer data type sizes and alignment between
the two modes. The following table summarizes these differences.

Table 4. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the
header file <cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in
the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these
differences, as well as recommended programming practices to help you avoid
most of these issues:
v “Assigning long values”
v “Assigning pointers” on page 3
v “Aligning aggregate data” on page 4
v “Calling Fortran code” on page 4

For suggestions on improving performance in 64-bit mode, see "Optimize
operations in 64-bit mode".

Related information in the XL C/C++ Compiler Reference

Compile-time and link-time environment variables

Assigning long values
The limits of long type integers defined in the limits.h standard library header
file are shown in the following table.

Table 5. Constant limits of long integers in 64-bit mode

Symbolic constant Value Hexadecimal Decimal

LONG_MIN
(smallest signed
long)

–263 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX (largest
signed long)

263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

© Copyright IBM Corp. 1996, 2016 1



Table 5. Constant limits of long integers in 64-bit mode (continued)

Symbolic constant Value Hexadecimal Decimal

ULONG_MAX
(largest unsigned
long)

264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:
v Assigning a long value to a double variable can cause loss of accuracy.
v Assigning constant values to long variables can lead to unexpected results. This

issue is explored in more detail in “Assigning constant values to long variables.”
v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 3.
v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,
and it can result in truncation of significant digits, sign shifting, or unexpected
results, without warning. These operations can impact performance.

In situations where a long value can overflow when assigned to other variables or
passed to functions, you must observe the following guidelines:
v Avoid implicit type conversion by using explicit type casting to change types.
v Ensure that all functions that accept or return long types are properly

prototyped.
v Ensure that long type parameters can be accepted by the functions to which they

are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many
programs use hexadecimal or unsuffixed constants as "typeless" variables and rely
on a twos complement representation to truncate values that exceed the limits
permitted on a 32-bit system. As these large values are likely to be extended into a
64-bit long type in 64-bit mode, unexpected results can occur, generally at the
following boundary areas:
v constant > UINT_MAX
v constant < INT_MIN
v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following
table.

Table 6. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1
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Unsuffixed constants can lead to type ambiguities that can affect other parts of
your program, such as when the results of sizeof operations are assigned to
variables. For example, in 32-bit mode, the compiler types a number like
4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit
mode, this same number becomes a signed long and sizeof returns 8 bytes.
Similar problems occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for
unsigned long constants), LL (for long long constants), or ULL (for unsigned long
long constants) to explicitly type all constants that have the potential of affecting
assignment or expression evaluation in other parts of your program. In the
example cited in the preceding paragraph, suffixing the number as 4294967295U
forces the compiler to always recognize the constant as an unsigned int in 32-bit
or 64-bit mode. These suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
The examples in Table 7 show the effects of performing a bit-shift on long
constants using the following code segment:
long l=valueL<<1;

Table 7. Results of bit-shifting long values

Initial value Symbolic constant Value after bit shift by one bit

0x7FFFFFFFL INT_MAX 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The
implications of this are as follows:
v Exchanging pointers and int types causes segmentation faults.
v Passing pointers to a function expecting an int type results in truncation.
v Functions that return a pointer but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following
example.
In C, the following code is valid in 32-bit mode without a prototype:
a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit
mode, the compiler assumes the function returns an int, so a is silently truncated
and then sign-extended. Type casting the result does not prevent the truncation, as
the address of the memory allocated by calloc was already truncated during the
return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the
function as it is in the header file.

To avoid these types of problems, you can take the following measures:
v Prototype any functions that return a pointer, where possible by using the

appropriate header file.
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v Ensure that the type of parameter you are passing in a function, pointer or int,
call matches the type expected by the function being called.

v For applications that treat pointers as an integer type, use type long or unsigned
long.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in
both 32-bit and 64-bit modes. However, since long types and pointers change size
and alignment in 64-bit modes, the alignment of a structure's strictest member can
change, resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and
64-bit applications. Unions that attempt to share long and int types or overlay
pointers onto int types can change the alignment. In general, you need to check all
but the simplest structures for alignment and size dependencies.

Any aggregate data written to a file in one mode cannot be correctly read in the
other mode. Data exchanged with other languages has the similar problems.

For detailed information about aligning data structures, including structures that
contain bit fields, see Chapter 3, “Aligning data,” on page 11.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling
each other or sharing files. It is currently easier to modify data sizes and types on
the C and C++ sides than on the Fortran side of such applications. The following
table lists C and C++ types and the equivalent Fortran types in the different
modes.

Table 8. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

Related information:
Chapter 2, “Using XL C/C++ with Fortran,” on page 5
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Chapter 2. Using XL C/C++ with Fortran

With XL C/C++, you can call functions written in Fortran from your C and C++
programs. This section discusses some programming considerations for calling
Fortran code in the following areas:
v “Identifiers”
v “Corresponding data types” on page 6
v “Character and aggregate data” on page 8
v “Function calls and parameter passing” on page 8
v “Pointers to functions” on page 9

In topic “Sample program: C/C++ calling Fortran” on page 9, an example of a C
program that calls a Fortran subroutine is provided.

For more information about language interoperability, see the information about
the BIND attribute and the interoperability of procedures in the XL Fortran
Language Reference.
Related information:
“Calling Fortran code” on page 4

Identifiers
C++ functions callable from Fortran should be declared with extern "C" to avoid
name mangling. For details, see the appropriate section about options and
conventions for mixing Fortran with C/C++ code in the XL Fortran Optimization
and Programming Guide.

You need to follow these recommendations when writing C and C++ code to call
functions that are written in Fortran:
v Avoid using uppercase letters in identifiers. Although XL Fortran folds external

identifiers to lowercase by default, the Fortran compiler can be set to distinguish
external names by case.

v Avoid using long identifier names. The maximum number of significant
characters in XL Fortran identifiers is 2501.

Note:

1. The Fortran 90 and 95 language standards require identifiers to be no more
than 31 characters; the Fortran 2003 and the Fortran 2008 standards require
identifiers to be no more than 63 characters.

© Copyright IBM Corp. 1996, 2016 5



Corresponding data types
The following table shows the correspondence between the data types available in
C/C++ and Fortran. Several data types in C have no equivalent representation in
Fortran. Do not use them when you program for interlanguage calls.

Table 9. Correspondence of data types between C/C++ and Fortran

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

bool (C++) _Bool
(C)

LOGICAL*1 or
LOGICAL(1)

LOGICAL(C_BOOL)

char CHARACTER CHARACTER(C_CHAR)

signed char INTEGER*1 or
INTEGER(1)

INTEGER(C_SIGNED_CHAR)

unsigned char LOGICAL*1 or
LOGICAL(1)

signed short int INTEGER*2 or
INTEGER(2)

INTEGER(C_SHORT)

unsigned short
int

LOGICAL*2 or
LOGICAL(2)

int INTEGER*4 or
INTEGER(4)

INTEGER(C_INT)

unsigned int LOGICAL*4 or
LOGICAL(4)

signed long int INTEGER*8 or
INTEGER(8)

INTEGER(C_LONG)

unsigned long
int

INTEGER*8 or
INTEGER(8)

signed long long
int

INTEGER*8 or
INTEGER(8)

INTEGER(C_LONG_LONG)

unsigned long
long int

LOGICAL*8 or
LOGICAL(8)

size_t INTEGER*8 or
INTEGER(8)

INTEGER(C_SIZE_T)

intptr_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INTPTR_T)

intmax_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INTMAX_T)

int8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT8_T)

int16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT16_T)

int32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT32_T)

int64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT64_T)

int_least8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT_LEAST8_T )
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Table 9. Correspondence of data types between C/C++ and Fortran (continued)

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

int_least16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT_LEAST16_T)

int_least32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_LEAST32_T)

int_least64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_LEAST64_T)

int_fast8_t INTEGER, INTEGER*4,
or INTEGER(4)

INTEGER(C_INT_FAST8_T)

int_fast16_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST16_T)

int_fast32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST32_T)

int_fast64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_FAST64_T)

float REAL, REAL*4, or
REAL(4)

REAL(C_FLOAT)

double REAL*8, REAL(8), or
DOUBLE PRECISION

REAL(C_DOUBLE)

long double REAL*16 or REAL(16) REAL(C_LONG_DOUBLE )

float _Complex COMPLEX*4,
COMPLEX(4),
COMPLEX*8, or
COMPLEX(8)

COMPLEX(C_FLOAT_COMPLEX)

double
_Complex

COMPLEX*8,
COMPLEX(8),
COMPLEX*16, or
COMPLEX(16)

COMPLEX(C_DOUBLE_COMPLEX)

long double
_Complex

COMPLEX*16,
COMPLEX(16),
COMPLEX*32, or
COMPLEX(32)

COMPLEX(C_LONG_DOUBLE_COMPLEX)

struct or union derived type

enum INTEGER*4 or
INTEGER(4)

char[n] CHARACTER*n or
CHARACTER(n)

array pointer to
type, or type []

Dimensioned variable
(transposed)

pointer to
function

Functional parameter

struct with
-fpack-struct
(-qalign)

Sequence derived type

Related information in the XL C/C++ Compiler Reference

-fpack-struct (-qalign)
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Character and aggregate data
Most numeric data types have counterparts across C/C++ and Fortran. However,
character and aggregate data types require special treatment:
v C character strings are delimited by a '\0' character. In Fortran, all character

variables and expressions have a length that is determined at compile time.
Whenever Fortran passes a string argument to another routine, it appends a
hidden argument that provides the length of the string argument. This length
argument must be explicitly declared in C. The C code should not assume a null
terminator; the supplied or declared length should always be used.

v An n-element C/C++ array is indexed with 0...n-1, whereas an n-element
Fortran array is typically indexed with 1...n. In addition, Fortran supports
user-specified bounds while C/C++ does not.

v C stores array elements in row-major order (array elements in the same row
occupy adjacent memory locations). Fortran stores array elements in ascending
storage units in column-major order (array elements in the same column occupy
adjacent memory locations). The following table shows how a two-dimensional
array declared by A[3][2] in C and by A(3,2) in Fortran, is stored:

Table 10. Storage of a two-dimensional array

Storage unit C and C++ element name Fortran element name

Lowest A[0][0] A(1,1)

A[0][1] A(2,1)

A[1][0] A(3,1)

A[1][1] A(1,2)

A[2][0] A(2,2)

Highest A[2][1] A(3,2)

v In general, for a multidimensional array, if you list the elements of the array in
the order they are laid out in memory, a row-major array will be such that the
rightmost index varies fastest, while a column-major array will be such that the
leftmost index varies fastest.

Function calls and parameter passing
Functions must be prototyped equivalently in both C/C++ and Fortran.

In C and C++, by default, all function arguments are passed by value, and the
called function receives a copy of the value passed to it. In Fortran, by default,
arguments are passed by reference, and the called function receives the address of
the value passed to it. You can use the Fortran %VAL built-in function or the
VALUE attribute to pass by value. Refer to the XL Fortran Language Reference for
more information.

For call-by-reference (as in Fortran), the address of the parameter is passed in a
register. When passing parameters by reference, if you write C or C++ functions
that call a program written in Fortran, all arguments must be pointers, or scalars
with the address operator.

For more information about interlanguage calls to functions or routines, see the
information about interlanguage calls in the XL Fortran Optimization and
Programming Guide.
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Pointers to functions
A function pointer is a data type whose value is a function address. In Fortran, a
dummy argument that appears in an EXTERNAL statement is a function pointer.
Starting from the Fortran 2003 standard, Fortran variables of type C_FUNPTR are
interoperable with function pointers. Function pointers are supported in contexts
such as the target of a call statement or an actual argument of such a statement.

Sample program: C/C++ calling Fortran
The following example illustrates how program units written in different languages
can be combined to create a single program. It also demonstrates parameter
passing between C/C++ and Fortran subroutines with different data types as
arguments. The example includes the following source files:
v The main program source file: example.c
v The Fortran add function source file: add.f

Main program source file: example.c
#include <stdio.h>
extern double add(int *, double [], int *, double []);

double ar1[4]={1.0, 2.0, 3.0, 4.0};
double ar2[4]={5.0, 6.0, 7.0, 8.0};

main()
{
int x, y;
double z;

x = 3;
y = 3;

z = add(&x, ar1, &y, ar2); /* Call Fortran add routine */
/* Note: Fortran indexes arrays 1..n */
/* C indexes arrays 0..(n-1) */

printf("The sum of %1.0f and %1.0f is %2.0f \n",
ar1[x-1], ar2[y-1], z);
}

Fortran add function source file: add.f
REAL*8 FUNCTION ADD (A, B, C, D)
REAL*8 B,D
INTEGER*4 A,C
DIMENSION B(4), D(4)
ADD = B(A) + D(C)
RETURN
END

Compile the main program and Fortran add function source files as follows:
xlc -c example.c
xlf -c add.f

Link the object files from compile step to create executable add:
xlc -o add example.o add.o

Execute binary:
./add
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The output is as follows:
The sum of 3 and 7 is 10
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Chapter 3. Aligning data

XL C/C++ provides many mechanisms for specifying data alignment at the levels
of individual variables, members of aggregates, entire aggregates, and entire
compilation units. If you are porting applications between different platforms, or
between 32-bit and 64-bit modes, you need to take into account the differences
between alignment settings available in different environments, to prevent possible
data corruption and deterioration in performance. In particular, vector types have
special alignment requirements which, if not followed, can produce incorrect
results. For more information, see the AltiVec Technology Programming Interface
Manual.

XL C/C++ provides alignment modes and alignment modifiers for specifying data
alignment. Using alignment modes, you can set alignment defaults for all data
types for a compilation unit or subsection of a compilation unit by specifying a
predefined suboption.

Using alignment modifiers, you can set the alignment for specific variables or data
types within a compilation unit by specifying the exact number of bytes that
should be used for the alignment.

“Using alignment modes” discusses the default alignment modes for all data types
on different platforms and addressing models, the suboptions and pragmas that
you can use to change or override the defaults, and rules for the alignment modes
for simple variables, aggregates, and bit fields.

“Using alignment modifiers” on page 14 discusses the different specifiers, pragmas,
and attributes you can use in your source code to override the alignment mode
currently in effect, for specific variable declarations. It also provides the rules that
govern the precedence of alignment modes and modifiers during compilation.

Related information in the XL C/C++ Compiler Reference

-maltivec
Related external information

AltiVec Technology Programming Interface Manual, available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Using alignment modes
Each data type that is supported by XL C/C++ is aligned along byte boundaries
according to platform-specific default alignment modes. The default alignment
mode is linuxppc.

Each of the valid alignment modes is defined in Table 11, which provides the
alignment value, in bytes, for scalar variables of all data types.

Table 11. Alignment settings (values given in bytes)

Data type Storage

Alignment setting

linuxppc bit_packed

_Bool (C), bool (C++) 1 1 1

© Copyright IBM Corp. 1996, 2016 11

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf


Table 11. Alignment settings (values given in bytes) (continued)

Data type Storage

Alignment setting

linuxppc bit_packed

char, signed char, unsigned char 1 1 1

wchar_t 4 4 1

int, unsigned int 4 4 1

short int, unsigned short int 2 2 1

long int, unsigned long int 8 8 1

long long 8 8 1

float 4 4 1

double 8 8 1

long double 16 16 1

pointer 8 8 1

vector types 16 16 1

If you generate data with an application on one platform and read the data with
an application on another platform, it is recommended that you use the bit_packed
mode, which results in equivalent data alignment on all platforms.

Notes:

v Vectors in a bit-packed structure might not be correctly aligned unless you take
extra action to ensure their alignment.

v Vectors might suffer from alignment issues if they are accessed through
heap-allocated storage or through pointer arithmetic. For example, double
my_array[1000] __attribute__((__aligned__(16))) is 16-byte aligned while
my_array[1] is not. How my_array[i] is aligned is determined by the value of i.

“Alignment of aggregates” discusses the rules for the alignment of entire
aggregates and provides examples of aggregate layouts. “Alignment of bit-fields”
on page 13 discusses additional rules and considerations for the use and alignment
of bit fields and provides an example of bit-packed alignment.

Related information in the XL C/C++ Compiler Reference

-fpack-struct (-qalign)

Alignment of aggregates
The data contained in Table 11 on page 11 in “Using alignment modes” on page 11
apply to scalar variables, and variables that are members of aggregates such as
structures, unions, and classes. The following rules apply to aggregate variables,
namely structures, unions or classes, as a whole (in the absence of any modifiers):
v For all alignment modes, the size of an aggregate is the smallest multiple of its

alignment value that can encompass all of the members of the aggregate.
v C Empty aggregates are assigned a size of zero bytes. As a result, two

distinct variables might have the same address.
v C++ Empty aggregates are assigned a size of one byte. Note that static data

members do not participate in the alignment or size of an aggregate; therefore, a
structure or class containing only a single static data member has a size of one
byte.
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v For all alignment modes, the alignment of an aggregate is equal to the largest
alignment value of any of its members. With the exception of packed alignment
modes, members whose natural alignment is smaller than that of their
aggregate's alignment are padded with empty bytes.

v Aligned aggregates can be nested, and the alignment rules applicable to each
nested aggregate are determined by the alignment mode that is in effect when a
nested aggregate is declared.

Notes:

v C++ The C++ compiler might generate extra fields for classes that contain
base classes or virtual functions. Objects of these types might not conform to the
usual mappings for aggregates.

v The alignment of an aggregate must be the same in all compilation units. For
example, if the declaration of an aggregate is in a header file and you include
that header file into two distinct compilations units, choose the same alignment
mode for both compilations units.

For rules on the alignment of aggregates containing bit fields, see “Alignment of
bit-fields.”

Alignment of bit-fields
You can declare a bit-field as a C _Bool C , C++ bool, char, signed
char, unsigned char, short, unsigned short C++ , int, unsigned int, long,
unsigned long, C++ long long, or unsigned long long C++ data type. The
alignment of a bit-field depends on its base type and the compilation mode.

C The length of a bit-field cannot exceed the length of its base type. In
extended mode, you can use the sizeof operator on a bit-field. The sizeof
operator on a bit-field returns the size of the base type. C

C++ The length of a bit-field can exceed the length of its base type, but the
remaining bits are used to pad the field and do not actually store any value.

C++

However, alignment rules for aggregates containing bit-fields are different
depending on the alignment mode in effect. These rules are described below.

Rules for Linux PowerPC alignment
v Bit-fields are allocated from a bit-field container. The size of this container is

determined by the declared type of the bit-field. For example, a char bit-field
uses an 8-bit container, and an int bit-field uses 31 bits. The container must be
large enough to contain the bit-field because the bit-field will not be split across
containers.

v Containers are aligned in the aggregate as if they start on a natural boundary for
that type of container. Bit-fields are not necessarily allocated at the start of the
container.

v If a zero-length bit-field is the first member of an aggregate, it has no effect on
the alignment of the aggregate and is overlapped by the next data member. If a
zero-length bit-field is a non-first member of the aggregate, it pads to the next
alignment boundary determined by its base declared type but does not affect the
alignment of the aggregate.

v Unnamed bit-fields do not affect the alignment of the aggregate.
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Rules for bit-packed alignment
v Bit-fields have an alignment of one byte and are packed with no default padding

between bit-fields.
v A zero-length bit-field causes the next member to start at the next byte

boundary. If the zero-length bit-field is already at a byte boundary, the next
member starts at this boundary. A non-bit-field member that follows a bit-field is
aligned on the next byte boundary.

Using alignment modifiers
XL C/C++ also provides alignment modifiers, with which you can exercise even
finer-grained control over alignment, at the level of declaration or definition of
individual variables or aggregate members. Available modifiers are as follows:

#pragma pack(...)

Valid application
The entire aggregate (as a whole) immediately following the directive.

Effect Sets the maximum alignment of the members of the aggregate to which it
applies, to a specific number of bytes. Also allows a bit-field to cross a
container boundary. Used to reduce the effective alignment of the selected
aggregate.

Valid values

number
Is 1, 2, 4, 8, or 16. That is, structure members are aligned on
number-byte boundaries or on their natural alignment boundary,
whichever is less.

push When specified without a number, pushes whatever value is
currently in effect to the top of the packing "stack". When used
with a number, pushes that value to the top of the packing stack,
and sets the packing value to that of number for structures that
follow.

pop Removes the previous value added with #pragma pack.

empty brackets
Has the same functionality as pop.

__attribute__((aligned(n)))

Valid application
As a variable attribute, it applies to a single aggregate (as a whole), namely
a structure, union, or class, or it applies to an individual member of an
aggregate.1 As a type attribute, it applies to all aggregates declared of that
type. If it is applied to a typedef declaration, it applies to all instances of
that type.2

Effect Sets the minimum alignment of the specified variable or variables to a
specific number of bytes. Typically used to increase the effective alignment
of the selected variables.

Valid values
n must be a positive power of two, or NIL. NIL can be specified as
either __attribute__((aligned())) or __attribute__((aligned)); this is
the same as specifying the maximum system alignment (16 bytes on all
UNIX platforms).
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__attribute__((packed))

Valid application
As a variable attribute, it applies to simple variables or individual
members of an aggregate, namely a structure or class1. As a type attribute,
it applies to all members of all aggregates declared of that type.

Effect Sets the maximum alignment of the selected variable or variables, to which
it applies, to the smallest possible alignment value, namely one byte for a
variable and one bit for a bit field.

Notes:

1. In a comma-separated list of variables in a declaration, if the modifier is placed
at the beginning of the declaration, it applies to all the variables in the
declaration. Otherwise, it applies only to the variable immediately preceding it.

2. Depending on the placement of the modifier in the declaration of a struct, it
can apply to the definition of the type, and hence applies to all instances of that
type; or it can apply to only a single instance of the type. For details, see the
information about type attributes in the XL C/C++ Language Reference and the C

C++ and C++ C++

 
language standards.

Related information in the XL C/C++ Compiler Reference

#pragma pack
Related information in the XL C/C++ Language Reference

The aligned type attribute (IBM extension)

The packed type attribute (IBM extension)

Type attributes (IBM extension)

The aligned variable attribute (IBM extension)

The packed variable attribute (IBM extension)
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Chapter 4. Handling floating-point operations

The following sections provide reference information, portability considerations,
and suggested procedures for using compiler options to manage floating-point
operations:
v “Floating-point formats”
v “Handling multiply-and-add operations”
v “Compiling for strict IEEE conformance” on page 18
v “Handling floating-point constant folding and rounding” on page 18
v “Handling floating-point exceptions” on page 20

Floating-point formats
XL C/C++ supports the following binary floating-point formats:
v 32-bit single precision, with an approximate absolute normalized range of 0 and

10-38 to 1038 and with a precision of about 7 decimal digits
v 64-bit double precision, with an approximate absolute normalized range of 0 and

10-308 to 10308 and with a precision of about 16 decimal digits
v 128-bit extended precision, with slightly greater range than double-precision

values, and with a precision of about 32 decimal digits

The 128-bit extended precision format of XL C/C++ is different from the binary128
formats that are suggested by the IEEE standard. The IEEE standard suggests that
extended formats use more bits in the exponent for greater range and the fraction
for higher precision.

It is possible that special numbers, such as NaN, infinity, and negative zero, cannot
be represented by the 128-bit extended precision values. Arithmetic operations do
not necessarily propagate these numbers in extended precision.

Handling multiply-and-add operations
By default, the compiler generates a single non-IEEE 754 compatible
multiply-and-add instruction for binary floating-point expressions, such as a + b *
c, partly because one instruction is faster than two. Because no rounding occurs
between the multiply and add operations, this might also produce a more precise
result. However, the increased precision might lead to different results from those
obtained in other environments, and might cause x*y-x*y to produce a nonzero
result. To avoid these issues, you can suppress the generation of multiply-add
instructions by using the -qfloat=nomaf option.

Related information in the XL C/C++ Compiler Reference

-qfloat
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Compiling for strict IEEE conformance
By default, XL C/C++ follows most but not all of the rules in the IEEE standard. If
you compile with the -qnostrict option, which is enabled by default at
optimization level -O3 or higher, some IEEE floating-point rules are violated in
ways that can improve performance but might affect program correctness. To avoid
this issue and to compile for strict compliance with the IEEE standard, use the
following options:
v Use the -qfloat=nomaf compiler option.
v If the program changes the rounding mode at run time, use the -qfloat=rrm

option.
v If the data or program code contains signaling NaN values (NaNS), use any of

the following groups of options. (A signaling NaN is different from a quiet NaN;
you must explicitly code it into the program or data, or create it by using the
-qinitauto compiler option.)
– The -qfloat=nans and -qstrict=nans options
– The -qfloat=nans and -qstrict options

v If you compile with -O3, -O4, or -O5, include the option -qstrict after it. You can
also use the suboptions of -qstrict to refine the level of control for the
transformations performed by the optimizers.

Related information:
“Advanced optimization” on page 28

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-qinitauto

Handling floating-point constant folding and rounding
By default, the compiler replaces most operations involving constant operands
with their result at compile time. This process is known as constant folding.
Additional folding opportunities might occur with optimization or with the
-qnostrict option. The result of a floating-point operation folded at compile time
normally produces the same result as that obtained at execution time, except in the
following cases:
v The compile-time rounding mode is different from the execution-time rounding

mode. By default, both are round-to-nearest; however, if your program changes
the execution-time rounding mode, to avoid differing results, perform either of
the following operations:
– Change the compile-time rounding mode to match the execution-time mode,

by compiling with the appropriate -y option. For more information and an
example, see “Matching compile-time and runtime rounding modes” on page
19.

– Suppress folding by compiling with the -qfloat=nofold option.
v Expressions like a+b*c are partially or fully evaluated at compile time. The

results might be different from those produced at execution time, because b*c
might be rounded before being added to a, while the runtime multiply-add
instruction does not use any intermediate rounding. To avoid differing results,
perform either of the following operations:
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– Suppress the use of multiply-add instructions by compiling with the
-qfloat=nomaf option.

– Suppress folding by compiling with the -qfloat=nofold option.
v An operation produces an infinite, NaN, or underflow to zero result.

Compile-time folding prevents execution-time detection of an exception, even if
you compile with the -ftrapping-math (-qflttrap) option. To avoid missing these
exceptions, suppress folding with the -qfloat=nofold option.

Related information:
“Handling floating-point exceptions” on page 20

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-ftrapping-math (-qflttrap)

Matching compile-time and runtime rounding modes
The default rounding mode used at compile time and run time is round-to-nearest,
ties to even. If your program changes the rounding mode at run time, the results of
a floating-point calculation might be slightly different from those that are obtained
at compile time. The following example illustrates this:
#include <float.h>
#include <fenv.h>
#include <stdio.h>

int main ( )
{
volatile double one = 1.f, three = 3.f; /* volatiles are not folded */
double one_third;

one_third = 1. / 3.; /* folded */
printf ("1/3 with compile-time rounding = %.17f\n", one_third);

fesetround (FE_TOWARDZERO);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to zero = %.17f\n", one_third);

fesetround (FE_TONEAREST);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to nearest = %.17f\n", one_third);

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

fesetround (FE_DOWNWARD);
one_third = one / three; /* not folded */

printf ("1/3 with execution-time rounding to -infinity = %.17f\n", one_third);

return 0;
}

When compiled with the default options, this code produces the following results:
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1/3 with compile-time rounding = 0.33333333333333331
1/3 with execution-time rounding to zero = 0.33333333333333331
1/3 with execution-time rounding to nearest = 0.33333333333333331
1/3 with execution-time rounding to +infinity = 0.33333333333333337
1/3 with execution-time rounding to -infinity = 0.33333333333333331

Because the fourth computation changes the rounding mode to round-to-infinity,
the results are slightly different from the first computation, which is performed at
compile time, using round-to-nearest. If you do not use the -qfloat=nofold option
to suppress all compile-time folding of floating-point computations, it is
recommended that you use the -y compiler option with the appropriate suboption
to match compile-time and runtime rounding modes. In the previous example,
compiling with -yp (round-to-infinity) produces the following result for the first
computation:
1/3 with compile-time rounding = 0.33333333333333337

In general, if the rounding mode is changed to rounding to +infinity, -infinity, or
zero, it is recommended that you also use the -qfloat=rrm option.

Related information in the XL C/C++ Compiler Reference

-qfloat

-y

Handling floating-point exceptions
By default, invalid operations such as division by zero, division by infinity,
overflow, and underflow are ignored at run time. However, you can use the
-ftrapping-math (-qflttrap) option or call C or operating system functions to detect
these types of exceptions. If you enable floating-point traps without using the
-ftrapping-math (-qflttrap) option, use the -qfloat=fenv option.

In addition, you can add suitable support code to your program to make program
execution continue after an exception occurs and to modify the results of
operations causing exceptions.

Because, however, floating-point computations involving constants are usually
folded at compile time, the potential exceptions that would be produced at run
time might not occur. To ensure that the -ftrapping-math (-qflttrap) option traps
all runtime floating-point exceptions, you can use the -qfloat=nofold option to
suppress all compile-time folding.

Related information in the XL C/C++ Compiler Reference

-qfloat

-ftrapping-math (-qflttrap)
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Chapter 5. Constructing a library

You can include static and shared libraries in your C and C++ applications.

“Compiling and linking a library” describes how to compile your source files into
object files for inclusion in a library, how to link a library into the main program,
and how to link one library into another.

“Initializing static objects in libraries (C++)” on page 22 describes how to use
priorities to control the order of initialization of objects across multiple files in a
C++ application.

Compiling and linking a library
This section describes how to compile your source files into object files for
inclusion in a library, how to link a library into the main program, and how to link
one library into another.

Related information in the Getting Started with XL C/C++

Dynamic and static linking

Compiling a static library
To compile a static library, follow this procedure:
1. Compile each source file to get an object file. For example:

xlc -c test.c example.c

2. Use the ar command to add the generated object files to an archive library file.
For example:
ar -rv libex.a test.o example.o

Compiling a shared library
To compile a shared library, follow this procedure:
1. Compile your source files to get an object file. Note that in the case of

compiling a shared library, you must use the -fPIC (-qpic) compiler option. For
example:
xlc -fPIC -c foo.c

2. Use the -shared (-qmkshrobj) compiler option to create a shared object from
the generated object files. For example:
xlc -shared -o libfoo.so foo.o

Related information in the XL C/C++ Compiler Reference

-fPIC (-qpic)

-shared (-qmkshrobj)

Linking a library to an application
You can use the following command string to link a static or shared library to your
main program. For example:
xlc -o myprogram main.c -Ldirectory1:directory2 [-Rdirectory] -ltest
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At compile time, you instruct the linker to search for libtest.so in the first
directory specified by the -L option. If libtest.so is not found, the linker searches
for libtest.a. If neither file is found, the search continues with the next directory
specified by the -L option.

At run time, the runtime linker searches for libtest.so in the first directory
specified by the -R option. If libtest.so is not found, the search continues with
the next directory specified by the -R option. The path specified by the -R option
can be overridden at run time by the LD_LIBRARY_PATH environment variable.

For additional linkage options, including options that modify the default behavior,
see the operating system ld documentation .

Related information in the XL C/C++ Compiler Reference

-l

-L

-R

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:
xlc -shared -o mylib.so myfile.o -Ldirectory -Rdirectory -ltest

Related information in the XL C/C++ Compiler Reference

-shared (-qmkshrobj)

-R

-L

Initializing static objects in libraries (C++)
The C++ language definition specifies that all non-local objects with constructors
from all the files included in the program must be properly constructed before the
main function in a C++ program is executed.

You can assign a priority level number to objects and files within a single library
using the following approaches. The objects will be initialized at run time
according to the order of priority level. In addition, because modules are loaded
and objects are initialized differently on different platforms, you can choose an
approach that fits the platform better.

Set the priority level for an entire file
To use this approach, specify the -qpriority compiler option during
compilation. By default, all objects within a single file are assigned the
same priority level; they are initialized in the order in which they are
declared, and they are terminated in reverse declaration order.

Set the priority level for individual objects
To use this approach, use init_priority variable attributes in the source
files. The init_priority attribute can be applied to objects in any
declaration order. On Linux, the objects are initialized according to their
priority and terminated in reverse priority across compilation units.
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Priority numbers can range from 101 to 65535. The smallest priority number that
you can specify, 101, is initialized first. The largest priority number, 65535, is
initialized last. If you do not specify a priority level, the default priority is 65535.

Related information in the XL C/C++ Compiler Reference

-qpriority

-shared (-qmkshrobj)
Related information in the XL C/C++ Language Reference

The init_priority variable attribute
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Chapter 6. Optimizing your applications

The XL compilers enable development of high performance applications by
offering a comprehensive set of performance enhancing techniques that exploit the
multilayered PowerPC® architecture. These performance advantages depend on
good programming techniques, thorough testing and debugging, followed by
optimization and tuning.

Distinguishing between optimization and tuning
You can use optimization and tuning separately or in combination to increase the
performance of your application. Understanding the difference between them is the
first step in understanding how the different levels, settings, and techniques can
increase performance.

Optimization

Optimization is a compiler-driven process that searches for opportunities to
restructure your source code and give your application better overall performance
at run time, without significantly impacting development time. The XL compiler
optimization suite, which you control using compiler options and directives,
performs best on well-written source code that has already been through a
thorough debugging and testing process. These optimization transformations can
bring the following benefits:
v Reduce the number of instructions that your application executes to perform

critical operations.
v Restructure your object code to make optimal use of the PowerPC architecture.
v Improve memory subsystem usage.

Each basic optimization technique can result in a performance benefit, although
not all optimizations can benefit all applications. Consult the “Steps in the
optimization process” on page 26 for an overview of the common sequence of
steps that you can use to increase the performance of your application.

Tuning

Tuning is a user-driven process where you experiment with changes, for example
to source code or compiler options, to make the compiler better optimize your
program. While optimization applies general transformations designed to improve
the performance of any application in any supported environment, tuning offers
you opportunities to adjust specific characteristics or target execution environments
of your application to improve its performance. Even at low optimization levels,
tuning for your application and target architecture can have a positive impact on
performance. With proper tuning, the compiler can make the following
improvements:
v Select more efficient machine instructions.
v Generate instruction sequences that are more relevant to your application.
v Select from more focussed optimizations to improve your code.

For instructions, see “Tuning for your system architecture” on page 32.
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Steps in the optimization process
When you begin the optimization process, consider that not all optimization
techniques suit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that
optimization can provide.

Learning about and experimenting with different optimization techniques can help
you strike the right balance for your XL compiler applications while achieving the
best possible performance. Also, though it is unnecessary to hand-optimize your
code, compiler-friendly programming can be extremely beneficial to the
optimization process. Unusual constructs can obscure the characteristics of your
application and make performance optimization difficult. Use the steps in this
section as a guide for optimizing your application.
1. The Basic optimization step begins your optimization processes at levels 0 and

2.
2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3, 4, and 5.
3. The Using high-order loop analysis and transformations step can help you limit

loop execution time.
4. The Using interprocedural analysis step can optimize your entire application at

once.
5. The Using profile-directed feedback step focuses optimizations on specific

characteristics of your application.
6. The Debugging optimized code step can help you identify issues and problems

that can occur with optimized code.

Basic optimization
The XL compiler supports several levels of optimization, with each option level
building on the levels below through increasingly aggressive transformations and
consequently using more machine resources.

Ensure that your application compiles and executes properly at low optimization
levels before you try more aggressive optimizations. This topic discusses two
optimizations levels, listed with complementary options in Table 12. The table also
includes a column for compiler options that can have a performance benefit at that
optimization level for some applications.

Table 12. Basic optimizations

Optimization level
Additional options
implied by default

Complementary
options

Other options with
possible benefits

-O0 None -mcpu None

-O2 -qmaxmem=8192 -mcpu
-mtune

-qmaxmem=-1
-qhot=level=0

Optimizing at level 0
Benefits at level 0
v Provides minimal performance improvement with minimal impact on machine

resources
v Exposes some source code problems that can be helpful in the debugging

process
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Begin your optimization process at -O0, which the compiler already specifies by
default. This level performs basic analytical optimization by removing obviously
redundant code, and it can result in better compile time. It also ensures your code
is algorithmically correct so you can move forward to more complex optimizations.
-O0 also includes some redundant instruction elimination and constant folding.
The -qfloat=nofold option can be used to suppress folding floating-point
operations. Optimizing at this level accurately preserves all debugging information
and can expose problems in existing code, such as uninitialized variables and bad
casting.

Additionally, specifying -mcpu at this level targets your application for a particular
machine and can significantly improve performance by ensuring that your
application takes advantage of all applicable architectural benefits.

Note: For SMP programs, you need to add an additional option -qsmp=noopt.

For more information about tuning, see “Tuning for your system architecture” on
page 32.

Related information in the XL C/C++ Compiler Reference

-mcpu

Optimizing at level 2
Benefits at level 2
v Eliminates redundant code
v Performs basic loop optimization
v Structures code to take advantage of -mcpu and -mtune settings

After you successfully compile, execute, and debug your application using -O0,
recompiling at -O2 opens your application to a set of comprehensive low-level
transformations that apply to subprogram or compilation unit scopes and can
include some inlining. Optimizations at -O2 attain a relative balance between
increasing performance while limiting the impact on compilation time and system
resources. You can increase the memory available to some of the optimizations in
the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying
-qmaxmem=-1 allows the optimizer to use memory as needed without checking for
limits but does not change the transformations the optimizer applies to your
application at -O2.

C In C, compile with -qlibansi unless your application defines functions
with names identical to those of library functions. If you encounter problems with
-O2, consider using -qalias=noansi rather than turning off optimization.

Also, ensure that pointers in your C code follow these type restrictions:
v Generic pointers can be char* or void*.
v Mark all shared variables and pointers to shared variables volatile.

C

Starting to tune at O2

Choosing the right hardware architecture target or family of targets becomes even
more important at -O2 and higher. By targeting the proper hardware, the optimizer
can make the best use of the available hardware facilities. If you choose a family of
hardware targets, the -mtune option can direct the compiler to emit code that is
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consistent with the architecture choice and that can execute optimally on the
chosen tuning hardware target. With this option, you can compile for a general set
of targets and have the code run best on a particular target.

For details on the -mcpu and -mtune options, see “Tuning for your system
architecture” on page 32.

The -O2 option can perform a number of additional optimizations as follows:
v Common subexpression elimination: Eliminates redundant instructions
v Constant propagation: Evaluates constant expressions at compile time
v Dead code elimination: Eliminates instructions that a particular control flow

does not reach or that generate an unused result
v Dead store elimination: Eliminates unnecessary variable assignments
v Global register allocation: Globally assigns user variables to registers
v Value numbering: Simplifies algebraic expressions by eliminating redundant

computations
v Instruction scheduling for the target machine
v Loop unrolling and software pipelining
v Moving loop-invariant code out of loops
v Simplifying control flow
v Strength reduction and effective use of addressing modes
v Widening: Merges adjacent load/stores and other operations
v Pointer aliasing improvements to enhance other optimizations

Advanced optimization
Higher optimization levels can have a tremendous impact on performance, but
some trade-offs can occur in terms of code size, compile time, resource
requirements, and numeric or algorithmic precision.

After applying “Basic optimization” on page 26 and successfully compiling and
executing your application, you can apply more powerful optimization tools. The
XL compiler optimization portfolio includes many options for directing advanced
optimization, and the transformations that your application undergoes are largely
under your control. The discussion of each optimization level in Table 13 includes
information on the performance benefits and the possible trade-offs and
information on how you can help guide the optimizer to find the best solutions for
your application.

Table 13. Advanced optimizations

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

-mcpu
-mtune

-qpdf

-O4 -qnostrict
-qmaxmem=-1
-qhot
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

-mcpu
-mtune
-qcache

-qpdf
-qsmp=auto
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Table 13. Advanced optimizations (continued)

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O5 All of -O4
-qipa=level=2

-mcpu
-mtune
-qcache

-qpdf
-qsmp=auto

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -O3 -qhot

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent vector functions in the Mathematical Acceleration Subsystem
libraries (MASS), with the exceptions of functions vdnint, vdint, vcosisin,
vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4, and vpopcnt8. If the compiler
cannot vectorize, it automatically tries to call the equivalent MASS scalar functions.
For automatic vectorization or scalarization, the compiler uses versions of the
MASS functions contained in the system library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

Optimizing at level 3
Benefits at level 3
v In-depth memory access analysis
v Better loop scheduling
v High-order loop analysis and transformations (-qhot=level=0)
v Inlining of small procedures within a compilation unit by default
v Eliminating implicit compile-time memory usage limits

Specifying -O3 initiates more intense low-level transformations that remove many
of the limitations present at -O2. For instance, the optimizer no longer checks for
memory limits, by setting the default to -qmaxmem=-1. Additionally, optimizations
encompass larger program regions and attempt more in-depth analysis. Although
not all applications contain opportunities for the optimizer to provide a measurable
increase in performance, most applications can benefit from this type of analysis.

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time
and memory resources. Also, because -O3 implies -qnostrict, the optimizer can
alter certain floating-point semantics in your application to gain execution speed.
This typically involves precision trade-offs as follows:
v Reordering of floating-point computations
v Reordering or elimination of possible exceptions, such as division by zero or

overflow
v Using alternative calculations that might give slightly less precise results or not

handle infinities or NaNs in the same way
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You can still gain most of the -O3 benefits while preserving precise floating-point
semantics by specifying -qstrict. Compiling with -qstrict is necessary if you require
the same absolute precision in floating-point computational accuracy as you get
with -O0, -O2, or -qnoopt results. The option -qstrict=ieeefp also ensures
adherence to all IEEE semantics for floating-point operations. If your application is
sensitive to floating-point exceptions or the order of evaluation for floating-point
arithmetic, compiling with -qstrict, -qstrict=exceptions, or -qstrict=order helps to
ensure accurate results. You should also consider the impact of the
-qstrict=precision suboption group on floating-point computational accuracy. The
precision suboption group includes the individual suboptions: subnormals,
operationprecision, association, reductionorder, and library (described in the
-qstrict option in the XL C/C++ Compiler Reference).

Without -qstrict, the difference in computation for any one source-level operation
is very small in comparison to “Basic optimization” on page 26. Although a small
difference can be compounded if the operation is in a loop structure where the
difference becomes additive, most applications are not sensitive to the changes that
can occur in floating-point semantics.

For information about the -O level syntax, see "-O -qoptimize" in the XL C/C++
Compiler Reference .

An intermediate step: adding -qhot suboptions at level 3
At -O3, the optimization includes minimal -qhot loop transformations at level=0 to
increase performance. To further increase your performance benefit from -qhot,
increase the optimization aggressiveness by increasing the optimization level of
-qhot. Try specifying -qhot without any suboptions or -qhot=level=1.

For more information about -qhot, see “Using high-order loop analysis and
transformations” on page 33.

Conversely, if the application does not use loops processing arrays, which -qhot
improves, you can improve compile speed significantly, usually with minimal
performance loss by using -qnohot after -O3.

Optimizing at level 4
Benefits at level 4
v Propagation of global and argument values between compilation units
v Inlining code from one compilation unit to another
v Reorganization or elimination of global data structures
v An increase in the precision of aliasing analysis

Optimizing at -O4 builds on -O3 by triggering -qipa=level=1, which performs
interprocedural analysis (IPA), optimizing your entire application as a unit. This
option is particularly pertinent to applications that contain a large number of
frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation
and link steps of your application build as interprocedural analysis occurs in
stages at both compile time and link time.

Beyond -qipa, -O4 enables other optimization options:
v -qhot
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Enables more aggressive HOT transformations to optimize loop constructs and
array language.

v -qarch=auto and -qtune=auto

Optimizes your application to execute on a hardware architecture identical to
your build machine. If the architecture of your build machine is incompatible
with the execution environment of your application, you must specify a different
-qarch suboption after the -O4 option. This overrides -qtune=auto.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware
architecture. The auto suboption assumes that the cache configuration of your
build machine is identical to the configuration of your execution architecture.
Specifying a cache configuration can increase program performance, particularly
loop operations by blocking them to process only the amount of data that can fit
into the data cache at a time.
If you want to execute your application on a different machine, specify correct
cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can
significantly increase compilation time, especially at the link step.

The IPA process
1. At compile time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the
object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes
the entire application.

3. This analysis guides the optimizer on how to rewrite and restructure your
application and apply appropriate -O3 level optimizations.

The “Using interprocedural analysis” on page 36 section contains more information
about IPA including details on IPA suboptions.

Optimizing at level 5
Benefits at level 5
v Makes most aggressive optimizations available
v Makes full use of loop optimizations and interprocedural analysis

As the highest optimization level, -O5 includes all -O4 optimizations and deepens
whole program analysis by increasing the -qipa level to 2. Compiling with -O5
also increases how aggressively the optimizer pursues aliasing improvements.
Additionally, if your application contains a mix of C/C++ and Fortran code that
you compile using the XL compilers, you can increase performance by compiling
and linking your code with the -O5 option.

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any
other optimization levels, particularly if you include -O5 on the IPA link step.
Compile at -O5 as the final phase in your optimization process after successfully
compiling and executing your application at -O4.
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Tuning for your system architecture
You can instruct the compiler to generate code for optimal execution on a given
microprocessor or architecture family. By selecting appropriate target machine
options, you can optimize to suit the broadest possible selection of target
processors, a range of processors within a given family of processor architectures,
or a specific processor.

The following table lists the optimization options that affect individual aspects of
the target machine. Using a predefined optimization level sets default values for
these individual options.

Table 14. Target machine options

Option Behavior

-mcpu Selects a family of processor architectures for which instruction code
should be generated. This option restricts the instruction set generated to
a subset of that for the PowerPC architecture. See “Getting the most out
of target machine options” for more information about this option.

-mtune Biases optimization toward execution on a given microprocessor, without
implying anything about the instruction set architecture to be used as a
target. See “Getting the most out of target machine options” for more
information about this option.

-qcache Defines a specific cache or memory geometry. The defaults are
determined through the setting of -mtune. See “Getting the most out of
target machine options” for more information about this option.

Related information in the XL C/C++ Compiler Reference

-mcpu

-qipa

-qcache

Getting the most out of target machine options
Using the -mcpu (-qarch) option

Use the -mcpu (-qarch) compiler option to generate instructions that are optimized
for a specific machine architecture. For example, if you want to generate an object
code that contains instructions optimized for POWER8®, use -mcpu=pwr8. If your
application runs on the same machine on which you compile it, use the
-qarch=auto option, which automatically detects the specific architecture of the
compiling machine and generates code to take advantage of instructions available
only on that machine (or on a system that supports the equivalent processor
architecture). Otherwise, use the -mcpu (-qarch) option to specify the smallest
possible family of the machines that can run your code reasonably well.

Using the -mtune (-qtune) option

Use the -mtune (-qtune) compiler option to control the scheduling of instructions
that are optimized for your machine architecture. If you specify a particular
architecture with -mcpu (-qarch), -mtune (-qtune) automatically selects the
suboption that generates instruction sequences with the best performance for that
architecture.
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If you need to create a single binary file that runs on a range of PowerPC
hardware, you can use the -qtune=balanced option. With this option in effect,
optimization decisions made by the compiler are not targeted to a specific version
of hardware. Instead, tuning decisions try to include features that are generally
helpful across a broad range of hardware and avoid those optimizations that might
be harmful on some hardware.

Note: You must verify the performance of code compiled with the
-qtune=balanced option before distributing it.

The difference between -qtune=balanced and other -qtune suboptions including
-qtune=auto is as follows:
v With the -qtune=balanced option, the compiler generates instructions that

perform reasonably well across a range of Power hardware.
v With other suboptions, the compiler generates instructions that are optimized for

that specified versions of hardware architecture and might not perform well on
others.

Using -qcache options

If you decide to specify your own -qcache suboptions, use -qhot or -qsmp along
with it.

Related information in the XL C/C++ Compiler Reference

-qhot

-qcache

-mcpu

-mtune

Using high-order loop analysis and transformations
High-order transformations are optimizations that specifically improve the
performance of loops through techniques such as interchange, fusion, and
unrolling.

The goals of these loop optimizations include:
v Reducing the costs of memory access through the effective use of caches and

address translation look-aside buffers
v Overlapping computation and memory access through effective utilization of the

data prefetching capabilities provided by the hardware
v Improving the utilization of microprocessor resources through reordering and

balancing the usage of instructions with complementary resource requirements
v Generating SIMD vector instructions to offer better program performance when

-qsimd=auto is specified
v Generating calls to vector math library functions

To enable high-order loop analysis and transformations, use the -qhot option,
which implies an optimization level of -O2. The following table lists the suboptions
available for -qhot.
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Table 15. -qhot suboptions

Suboption Behavior

level=0 Instructs the compiler to perform a subset of high-order transformations
that enhance performance by improving data locality. This suboption
implies -qhot=novector and -qhot=noarraypad. This level is automatically
enabled if you compile with -O3.

level=1 This is the default suboption if you specify -qhot with no suboptions. This
level is also automatically enabled if you compile with -O4 or -O5. This is
equivalent to specifying -qhot=vector.

level=2 When used with -qsmp, instructs the compiler to perform the
transformations of -qhot=level=1 plus some additional transformation on
nested loops. The resulting loop analysis and transformations can lead to
more cache reuse and loop parallelization.

vector When specified with -qnostrict and -qignerrno, or -O3 or a higher
optimization level, instructs the compiler to transform some loops to use
the optimized versions of various math functions contained in the MASS
libraries, rather than use the system versions. The optimized versions make
different trade-offs with respect to accuracy and exception-handling versus
performance. This suboption is enabled by default if you specify -qhot with
no suboptions. Also, specifying -qhot=vector with -O3 implies
-qhot=level=1.

arraypad Instructs the compiler to pad any arrays where it infers there might be a
benefit and to pad by whatever amount it chooses.

Related information in the XL C/C++ Compiler Reference

-qhot

-qstrict

-qignerrno

-mcpu

-qsimd

Getting the most out of -qhot
Here are some suggestions for using -qhot:
v Try using -qhot along with -O3 for all of your code. It is designed to have a

neutral effect when no opportunities for transformation exist. However, it
increases compilation time and might have little benefit if the program has no
loop processing vectors or arrays. In this case, using -O3 -qnohot might be
better.

v If the runtime performance of your code can significantly benefit from automatic
inlining and memory locality optimizations, try using -O4 with -qhot=level=0 or
-qhot=novector.

v If you encounter unacceptably long compilation time (this can happen with
complex loop nests), try -qhot=level=0 or -qnohot.

v If your code size is unacceptably large, try reducing the inlining level or using
-qcompact along with -qhot.

v You can compile some source files with the -qhot option and some files without
the -qhot option, allowing the compiler to improve only the parts of your code
that need optimization.
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v Use -qreport along with -qhot to generate a loop transformation listing. The
listing file identifies how loops are transformed in a section marked LOOP
TRANSFORMATION SECTION. Use the listing information as feedback about how the
loops in your program are being transformed. Based on this information, you
might want to adjust your code so that the compiler can transform loops more
effectively. For example, you can use this section of the listing to identify
non-stride-one references that might prevent loop vectorization.

v Use -qreport along with -qhot or any optimization option that implies -qhot to
generate information about nested loops in the LOOP TRANSFORMATION SECTION of
the listing file. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, a message Assist thread for data prefetching was
generated is also displayed in this section of the report. To generate a list of
aggressive loop transformations and parallelizations performed on loop nests in
the LOOP TRANSFORMATION SECTION of the listing file, use -qhot=level=2 and
-qsmp together with -qreport.
Related information in the XL C/C++ Compiler Reference

-qcompact

-qhot

-qsimd

-qprefetch

-qstrict

Using shared-memory parallelism (SMP)
Most IBM pSeries machines are capable of shared-memory parallel processing. You
can compile with -qsmp to generate the threaded code needed to exploit this
capability. The -qsmp option implies the -qhot option and an optimization level of
-O2 or higher.

The following table lists the most commonly used suboptions. Descriptions and
syntax of all the suboptions are provided in -qsmp in the XL C/C++ Compiler
Reference. An overview of automatic parallelization, as well as of OpenMP
directives is provided in Chapter 10, “Parallelizing your programs,” on page 95.

Table 16. Commonly used -qsmp suboptions

suboption Behavior

auto Instructs the compiler to automatically generate parallel code where possible
without user assistance. Any SMP programming constructs in the source
code, including OpenMP directives, are also recognized. This is the default
setting if you do not specify any -qsmp suboptions, and it also implies the
opt suboption.

omp Parallelizes only program code that is explicitly annotated with OpenMP
directives. Note that -qsmp=omp is incompatible with -qsmp=auto.

opt Enables optimization of parallelized program code. The optimization is
equivalent to -O2 -qhot in the absence of other optimization options.

noopt Performs the smallest amount of optimization that is required to parallelize
the code. During development, it can be useful to turn off optimization to
facilitate debugging.

fine_tuning Other values for the suboption provide control over thread scheduling,
locking, and so on.
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Related information in the XL C/C++ Compiler Reference

-O, -qoptimize

-qsmp

-qhot

Getting the most out of -qsmp
Here are some suggestions for using the -qsmp option:
v Before using -qsmp with automatic parallelization, test your programs using

optimization and -qhot in a single-threaded manner.
v If you are compiling an OpenMP program and do not want automatic

parallelization, use -qsmp=omp:noauto.
v By default, the runtime environment uses all available processors. Do not set the

XLSMPOPTS=PARTHDS or OMP_NUM_THREADS environment variables
unless you want to use fewer than the number of available processors. You
might want to set the number of executing threads to a small number or to 1 to
ease debugging.

Note: The XLSMPOPTS=PARTHDS environment variable is deprecated.
v If you are using a dedicated machine or node, consider setting the SPINS and

YIELDS environment variables (suboptions of the XLSMPOPTS environment
variable) to 0. Doing so prevents the operating system from intervening in the
scheduling of threads across synchronization boundaries such as barriers.

v When debugging an OpenMP program, try using -qsmp=noopt (without -O) to
make the debugging information produced by the compiler more precise.
Related information in the XL C/C++ Compiler Reference

-qsmp

-qhot

Invoking the compiler

XLSMPOPTS

Environment variables for parallel processing

Using interprocedural analysis
Interprocedural analysis (IPA) enables the compiler to optimize across different
files (whole-program analysis), and it can result in significant performance
improvements.

You can specify interprocedural analysis on the compilation step only or on both
compilation and link steps in whole program mode. Whole program mode
expands the scope of optimization to an entire program unit, which can be an
executable or a shared object. As IPA can significantly increase compilation time,
you should limit using IPA to the final performance tuning stage of development.

You can enable IPA by specifying the -qipa option. The most commonly used
suboptions and their effects are described in the following table. The full set of
suboptions and syntax is described in the -qipa section of the XL C/C++ Compiler
Reference.
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The steps to use IPA are as follows:
1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that
increases compilation time and link time. You can reduce some compilation and
link overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compilation and the link steps of the
entire application, or as much of it as possible. Use suboptions to indicate
assumptions to be made about parts of the program not compiled with -qipa.

Table 17. Commonly used -qipa suboptions

Suboption Behavior

level=0 Program partitioning and simple interprocedural optimization, which
consists of:
v Automatic recognition of standard libraries.
v Localization of statically bound variables and procedures.
v Partitioning and layout of procedures according to their calling

relationships. (Procedures that call each other frequently are
located closer together in memory.)

v Expansion of scope for some optimizations, notably register
allocation.

level=1 Inlining and global data mapping. Specifically:
v Procedure inlining.
v Partitioning and layout of static data according to reference

affinity. (Data that is frequently referenced together will be located
closer together in memory.)

This is the default level if you do not specify any suboptions with
the -qipa option.

level=2 Global alias analysis, specialization, interprocedural data flow:
v Whole-program alias analysis. This level includes the

disambiguation of pointer dereferences and indirect function calls,
and the refinement of information about the side effects of a
function call.

v Intensive intraprocedural optimizations. This can take the form of
value numbering, code propagation and simplification, moving
code into conditions or out of loops, and elimination of
redundancy.

v Interprocedural constant propagation, dead code elimination,
pointer analysis, code motion across functions, and interprocedural
strength reduction.

v Procedure specialization (cloning).
v Whole program data reorganization.

inline=suboptions Provides precise control over function inlining.

fine_tuning Other values for -qipa provide the ability to specify the behavior of
library code, tune program partitioning, read commands from a file,
and so on.

Notes:

v XL C/C++ and XL Fortran provide backwards compatibility with IPA objects
that are created by earlier compiler versions. If IPA object files that are compiled
with newer versions of compilers are linked by an earlier version, errors occur
during the link step. For example, if IPA object file a.o is compiled by XL
C/C++, V13.1.3 and is to be linked with IPA object file b.o that is compiled by
XL Fortran, V15.1.0, then you must use a compiler whose version is XL C/C++,
V13.1.3 or later.
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v XL C/C++ and XL Fortran versions released at the same time produce matching
IPA level information and can be linked together. For example, the IPA level for
XL C/C++, V13.1.3 matches with the IPA for XL Fortran, V15.1.3. The following
table lists some matching XL C/C++ and XL Fortran releases:

Table 18. Compiler versions and release dates

Compiler version General availability (Release date)

XL C/C++ for Linux, V13.1.3

XL Fortran for Linux, V15.1.3

11-Dec-2015

XL C/C++ for Linux, V13.1.0

XL Fortran for Linux, V15.1.0

06-Jun-2014

XL C/C++ for Linux, V12.1.0

XL Fortran for Linux, V14.1.0

18-May-2012

For more information about the release dates of compiler products, see the
Support Lifecycle website at http://www-01.ibm.com/software/support/
lifecycle/index_x.html.
If your compiler version has two release dates on the Support Lifecycle web site,
determine the date based on your product ID.
Related information in the XL C/C++ Compiler Reference

-qipa

Getting the most from -qipa
It is not necessary to compile everything with -qipa, but try to apply it to as much
of your program as possible. Here are some suggestions:
v Specify the -qipa option on both the compile and the link steps of the entire

application. Although you can also use -qipa with libraries, shared objects, and
executable files, be sure to use -qipa to compile the main and exported
functions.

v When compiling and linking separately, use -qipa=noobject on the compile step
for faster compilation.

v When specifying optimization options in a makefile, use the compiler driver
(xlC) to link with all the compiler options on the link step included.

v As IPA can generate significantly larger object files than traditional compilations,
ensure that there is enough space in the /tmp directory (at least 200 MB). You
can use the TMPDIR environment variable to specify a directory with sufficient
free space.

v Try varying the level suboption if link time is too long. Compiling with
-qipa=level=0 can still be very beneficial for little additional link time.

v Use -qipa=list=long to generate a report of functions that were previously
inlined. If too few or too many functions are inlined, consider using
-finline-functions (-qinline) or -qnoinline. To control the inlining of specific
functions, use -qinline+function_name or -qinline-function_name.

v To generate data reorganization information in the listing file, specify the
optimization level -qipa=level=2 or -O5 together with -qreport. During the IPA
link pass, the data reorganization messages for program variable data will be
produced to the data reorganization section of the listing file with the label DATA
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REORGANIZATION SECTION. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array
coalescing.

Note: While IPA's interprocedural optimizations can significantly improve
performance of a program, they can also cause incorrect but previously functioning
programs to fail. Here are examples of programming practices that can work by
accident without aggressive optimization but are exposed with IPA:
v Relying on the allocation order or location of automatic variables, such as taking

the address of an automatic variable and then later comparing it with the
address of another local variable to determine the growth direction of a stack.
The C language does not guarantee where an automatic variable is allocated, or
its position relative to other automatic variables. Do not compile such a function
with IPA.

v Accessing a pointer that is either invalid or beyond an array's bounds. Because
IPA can reorganize global data structures, a wayward pointer that might have
previously modified unused memory might now conflict with user-allocated
storage.

v Dereferencing a pointer that has been cast to an incompatible type.
Related information in the XL C/C++ Compiler Reference

-finline-functions

-qlist

-qipa

Using profile-directed feedback
You can use profile-directed feedback (PDF) to tune the performance of your
application for a typical usage scenario. The compiler optimizes the application
based on an analysis of how often branches are taken and blocks of code are run.

Use the PDF process as one of the last steps of optimization before you put the
application into production. Optimization at all levels from -O2 up can benefit
from PDF. Other optimizations such as the -qipa option and optimization levels
-O4 and -O5 can also benefit from PDF process.

The following diagram illustrates the PDF process.

Figure 1. Profile-directed feedback
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To use the PDF process to optimize your application, follow these steps:
1. “Compiling with -qpdf1”
2. “Training with typical data sets” on page 41
3. “Recompiling or linking with -qpdf2” on page 44

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-O, -qoptimize

-qipa

Compiling with -qpdf1
Compile some or all of the source files in a program with the -qpdf1 option. This
step is called the PDF1 step.

Usage

You do not have to compile all of the files of the programs with the -qpdf1 option.
In a large application, you can concentrate on those areas of the code that can
benefit most from the optimization.

When you compile multiple programs with -qpdf1, you must ensure that the PDF
file that is to be generated in the PDF2 step has a different name for each program
because each PDF file can contain data for only one application. Otherwise, if the
PDF file names of multiple programs are the same, you can run the first
application in the PDF training step and write profile information into the PDF file
successfully. However, if you try to run the second application, an error is issued
to indicate that there is an existing incompatible PDF file and the program exits
with a nonzero return code.

PDF optimization must be done at least at the -O2 optimization level and is
recommended at -O4 and higher.

When you compile your program with -qpdf1, the -qipa=level=0 option is enabled
by default. When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf1 option at the link step but not at the compile step, the compiler
issues a warning message. The message indicates that you must recompile your
program to get all the profiling information.
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A PDF map file is generated at this step. You can use the showpdf command to
display part of the profiling information in text or XML format. If you do not need
to view the profiling information, specify the -qnoshowpdf option at this step so
that the PDF map file is not generated.

Example

You can compile the following source files with -qpdf1 at -O3.
xlc -qpdf1 -O3 file1.c file2.c file3.c

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-O, -qoptimize

showpdf

-qshowpdf

Training with typical data sets
Run the resulting application with typical data sets. This step is called the PDF
training step.

You can train the resulting application multiple times with different typical data
sets. The profiling information is accumulated into PDF files to provide a count of
how often branches are taken and blocks of code are run, based on the input data
used.

You can get PDF files in the following ways:
v Generate PDF files upon normal termination. For more information, see

“Generating PDF files upon normal termination” on page 42.
v Dump snapshot PDF profiling information to files during execution. For more

information, see “Dumping snapshot PDF profiling information during
execution” on page 42.

Usage

You should use typical data sets for the PDF training step. Otherwise, the analysis
of infrequently executed code paths might be distorted.

The PDF file is placed in the current working directory or the directory specified
by the PDFDIR environment variable. To override the default file path or name,
use the -qpdf1=pdfname or -qpdf1=defname option. If the PDFDIR environment
variable is set but the specified directory does not exist, the compiler issues a
warning message. To avoid wasting compile and run time, make sure that the
PDFDIR environment variable is set to an absolute path. Otherwise, you might run
the application from a wrong directory and the compiler cannot locate the profiling
information files. When it happens, the program might not be optimized correctly
or might be stopped by a segmentation fault. A segmentation fault might also
happen if you change the value of the PDFDIR environment variable and run the
application before the PDF process finishes.

If you have several PDF files, use the mergepdf command to combine these PDF
files into one PDF file.
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If you recompile your program with -qpdf1, the compiler removes the existing
PDF file or files whose names and locations are the same as the file or files that are
to be created in the training step before the compiler generates a new application.

Notes:

v You cannot mix PDF and PDF map files that are generated for different
programs. Further, you cannot mix PDF and PDF map files that are generated
from multiple compilation processes with different -qpdf1 settings for the same
program.

v You must use the same version and PTF level of the compiler to generate the
PDF file and the PDF map file.

v You cannot edit PDF files that are generated by the resulting application.
Otherwise, the performance or function of the generated executable application
might be affected.
Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-O, -qoptimize

mergepdf

Runtime environment variables

Generating PDF files upon normal termination
When you run an application that was generated in the PDF1 step and end the
application using normal methods, a standard PDF file is generated.

This PDF file is named .<output_name>_pdf by default, where <output_name> is the
name of the output file that was generated in the PDF1 step.

Normal termination methods include reaching the end of the execution for the
main function and calling the exit() function in libc (stdlib.h).

Related information

Using profile-directed feedback

-qpdf1, -qpdf2

Training with typical data sets

Dumping snapshot PDF profiling information during execution

Dumping snapshot PDF profiling information during execution

Before you begin

Compile some or all of the source files in a program with the -qpdf1 option.

About this task

In addition to getting PDF profiling information that is written to one or more PDF
files upon normal termination, you can dump PDF profiling information to one or
more PDF snapshot files during execution. This is especially useful when the
application is to be terminated abnormally, for example, when you end a process
by using SIGKILL or a system call exit(), _Exit(), or abort().
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Procedure
1. Define environment variable PDF_SIGNAL_TO_DUMP as a signal value that is

an integer in the range of SIGRTMIN and SIGRTMAX inclusive. This value is
read during program initialization.

2. Run the application that was generated in the PDF1 step.
3. Send the user-defined signal value as a trigger to dump PDF profiling

information to PDF snapshot files. You can send the user-defined signal value
multiple times for each process, and the corresponding PDF snapshot file is
overwritten each time. The running application processes continue running
until normal termination.

Results

A PDF snapshot file is created for each process with suffix _snapshot.<pid>, and it
is named .<output_name>_pdf_snapshot.<pid> by default, where <output_name> is
the name of the output file that is generated in the PDF1 step and <pid> is the ID
of the process.

If the application creates more than one process, equivalent number of PDF data
files are generated when each process receives the signal.

If multiple PDF snapshot files are generated, you must merge the PDF snapshot
files for multiple processes by using the mergepdf command before linking or
recompiling the program with -qpdf2.

If the application ends normally by executing exit handlers, a standard PDF file
named .<output_name>_pdf is also generated.

Example

In this example, program myprogram has a parent process and a child process. You
can dump snapshot PDF profiling information to files during execution and use
the merged PDF file to fine-tune the optimizations as follows:
1. Compile myprogram.c with -qpdf1 and name the executable file as myprogram.

xlc -O2 -qpdf1 -o myprogram myprogram.c

2. Define environment variable PDF_SIGNAL_TO_DUMP as 52, which is in the
range of SIGRTMIN and SIGRTMAX inclusive.
export PDF_SIGNAL_TO_DUMP=52

3. Run the compiled application.
./myprogram < sample.data &

The following process ID is displayed:
[138705] ./myprogram &

4. Send the user-defined signal 52 to dump PDF profiling information by using
the kill command.

Note: The kill command does not terminate the processes when the signal
value is recognized.
kill -s 52 138705

Because the application creates a parent process and a child process, both
processes receive the signal value. The following messages are displayed for
both processes:
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PDFRunTime: Caught user signal "52", dumping PDF data ... Done.
PDFRunTime: Caught user signal "52", dumping PDF data ... Done.

Two PDF snapshot files that are suffixed with process ID,
.myprogram_pdf_snapshot.138705 and .myprogram_pdf_snapshot.138706, are
created, where 138706 is a child process of 138705.

5. Merge PDF data for the two processes as .myprogram_pdf.
mergepdf .myprogram_pdf_snapshot.* -o .myprogram_pdf

6. Recompile myprogram.c by using the same compiler options as step 1, but
change -qpdf1 to -qpdf2. .myprogram_pdf is used to fine-tune the optimizations.
xlc -O2 -qpdf2 -o myprogram myprogram.c

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

mergepdf

Recompiling or linking with -qpdf2
Recompile or link your program by using the same compiler options as before, but
change -qpdf1 to -qpdf2. This step is called the PDF2 step.

If you want to optimize the entire application, you can do the PDF2 step at
executable level in the link step and create executable files for your programs. For
details, see “Executable level profile-directed feedback” on page 45.

In addition to optimizing entire application, you can do the PDF2 step at object
level in the compile time and create object files for your programs. This can be an
advantage for applications where patches or updates are distributed as object files
or libraries rather than as executables. In this case, you cannot enable
interprocedural analysis (IPA) optimizations. For details, see “Object level
profile-directed feedback” on page 46.

Usage

The accumulated profiling information is used to fine-tune the optimizations. The
resulting program contains no profiling overhead and runs at full speed. You must
ensure the PDF file that is fed into the PDF2 step is the one that is generated in the
PDF training step. For example, when the -qpdf1=pdfname=file_path option is
used during the PDF1 step, you must use the same -qpdf2=pdfname=file_path
option during the PDF2 step for the compiler to recognize the correct PDF file.
This rule also applies to the -qpdf[1|2]=exename and -qpdf[1|2]=defname
options.

You are highly recommended to use the same optimization level at all compilation
steps for a particular program. Otherwise, the PDF process cannot optimize your
program correctly and might even slow it down. All compiler settings that affect
optimization must be the same, including any supplied by configuration files.

You can modify your source code and use the -qpdf1 and -qpdf2 options to
compile your program. Old profiling information can still be preserved and used
during the second stage of the PDF process. The compiler issues a list of warnings
but the compilation does not stop. An information message is also issued with a
number in the range of 0 - 100 to indicate how outdated the old profiling
information is. If you have not changed your program between the -qpdf1 and
-qpdf2 phases, the number is 100, which means that all the profiling information
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can be used to optimize the program. If the number is 0, it means that the profiling
information is completely outdated, and the compiler cannot take advantage of any
information. When the number is less than 100, you can choose to recompile your
program with the -qpdf1 option and regenerate the profiling information.

If the compiler cannot read any PDF files in this step, the compiler issues error
message 1586-401 but continues the compilation.

If you want to erase the PDF information, use the cleanpdf command.
Related information in the XL C/C++ Compiler Reference

Using profile-directed feedback

-qpdf1, -qpdf2

-O, -qoptimize

-qreport

cleanpdf

Executable level profile-directed feedback
About this task

When you compile your program with -qpdf2, the -qipa=level=0 option is enabled
by default, so IPA and PDF optimization is done in the link step.

It is recommended that you use the -qpdf2 option to link the object files that are
created during the PDF1 step without recompiling your program. Using this
approach, you can save considerable compilation time and achieve the same
optimization result as if you had recompiled your program during the PDF2 step.

When option -O4, -O5, or any level of option -qipa is in effect, and you specify the
-qpdf1 or -qpdf2 option at the link step but not at the compile step, the compiler
issues a warning message. The message indicates that you must recompile your
program to get all the profiling information.

Examples
1. Set the PDFDIR environment variable

export PDFDIR=$HOME/project_dir

2. Compile most of the files with -qpdf1
xlc -qpdf1 -O3 -c file1.c file2.c file3.c

3. Compile the file that does not need optimization without -qpdf1
xlc -c file4.c

4. Link the PDF object files (file1.o, file2.o, and file3.o) with the non-PDF
object file (file4.o)
xlc -qpdf1 -O3 file1.o file2.o file3.o file4.o

5. Run the resulting application several times with different input data
./a.out < polar_orbit.data
./a.out < elliptical_orbit.data
./a.out < geosynchronous_orbit.data

6. Link all the object files into the final application with -qpdf2.
xlc -qpdf2 -O3 file1.o file2.o file3.o file4.o
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Instead of step 6 in this example, you can recompile your program with -qpdf2.
xlc -qpdf2 -O3 file1.c file2.c file3.c file4.c

Both recompiling and linking your program with -qpdf2 can use the accumulated
profiling information to fine-tune the optimizations.

Related information

Using profile-directed feedback

-qpdf1, -qpdf2

Recompiling or linking with -qpdf2

Object level profile-directed feedback

-O, -qoptimize

-qipa

Object level profile-directed feedback
About this task

In addition to optimizing entire executables, profile-directed feedback (PDF) can
also be applied to specific object files. This approach can be an advantage in
applications where patches or updates are distributed as object files or libraries
rather than as executables. Also, specific areas of functionality in your application
can be optimized without the process of relinking the entire application. In large
applications, you can save the time and trouble that otherwise need to be spent
relinking the application.

The process for using object level PDF is essentially the same as the executable
level PDF process but with a small change to the PDF2 step. For object level PDF,
compile your program by using the -qpdf1 option, run the resulting application
with representative data, compile the program again with the -qpdf2 option. You
need to specify -qnoipa with -qpdf2, which means you cannot use interprocedural
analysis (IPA) optimizations and object level PDF at the same time.

If you specify -qpdf2 -qnoipa, object level PDF optimization is done in the compile
step. You must take either one of the following actions to ensure that the compiler
can recognize the correct PDF file:
v In the PDF1 step, specify -qpdf1=defname to revert the PDF file name to ._pdf.

Thus, the compiler looks for ._pdf in the PDF2 step.
v In the PDF2 step, specify -qpdf2=pdfname=file_path, where file_path is the

path and name of the generated PDF file.

The following steps outline this process:
1. Compile your program by using the -qpdf1 option. For example:

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

In this example, the optimization level -O3 is used, which is a moderate level
of optimization.

2. Link the object files to get an instrumented executable:
xlc -O3 -qpdf1 file1.o file2.o file3.o

3. Run the instrumented executable with sample data that is representative of the
data you want to optimize for.
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a.out < sample_data

4. Compile the program again by using the -qpdf2 option. Specify the -qnoipa
option so that the linking step is skipped and PDF optimization is applied to
the object files rather than to the entire executable.
xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

The resulting output of this step are object files optimized for the sample data
processed by the original instrumented executable. In this example, the
optimized object files would be file1.o, file2.o, and file3.o. These object files can
be linked by using the system loader ld or by omitting the -c option in the
PDF2 step.
Related information

Using profile-directed feedback

-qpdf1, -qpdf2

Recompiling or linking with -qpdf2

Executable level profile-directed feedback

-O, -qoptimize

-qipa

Marking variables as local or imported
The compiler assumes that all variables in applications are imported, but the use of
-qdatalocal and -qdataimported can mark variables local or imported. The
compiler optimizes applications that are based on the specification of static or
dynamic binding for program variables.

-qdatalocal

Local variables are stored in a special segment of memory that is uniquely bound
to a program or shared library. Specify the -qdatalocal option to identify variables
to be treated as local to a compiled program or shared library. You can specify the
option with no parameters to indicate that all appropriate variables are local.
Alternatively, you can append a list of colon-separated names to the option to treat
only a subset of the program arguments as local.

When it can be, a variable that is marked as local is embedded directly into a
structure that is called the table of contents (TOC) instead of in a separate global
piece of memory. The prerequisite is that the variable's storage must be no more
than the pointer size for it to be embedded in the TOC. Usually, pointers to data
are stored in the TOC. The -qdatalocal option allows storage of data directly in
the TOC, hence reducing data accesses from two load instructions to one load
instruction.

-qdataimported

Imported variables are stored according to the default memory allocation scheme.
The -qdataimported option is the default data binding mechanism. Specifying the
option implies that the data is visible to other program or shared library that is
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linked. As a result, specifying variable names as arguments to the -qdataimported
option or compiling with the -qdataimported option without arguments in
isolation has no effect.

The -qdataimported option is useful when you use it in combination with
-qdatalocal. Because it is unlikely that you want to store all data in the TOC, the
-qdataimported option can override -qdatalocal for variables external to a
program or shared library. For example, the use of options -qdatalocal
-qdataimported=<variable> stores all global data in the TOC except for <variable>.

Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Getting the most out of -qdatalocal
You can see some examples that illustrate the use of the -qdatalocal option.

In the source for the following program file, A1 and A2 are global variables:
int A1;
int A2;
int main(){

A2=A1+1;
return A2;

}

Here is an excerpt of the listing file that is created if you specify -qlist without
-qdatalocal:

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=.A1(gr2,0)
5| 000004 lwz 80630000 1 L4A gr3=A1(gr3,0)
5| 000008 addi 38630001 1 AI gr3=gr3,1
5| 00000C lwz 80820008 1 L4A gr4=.A2(gr2,0)
5| 000010 stw 90640000 1 ST4A A2(gr4,0)=gr3

Here is an excerpt of the listing file that is created if you specify -qlist with
-qdatalocal:

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=A1(gr2,0)
5| 000004 addi 38630001 1 AI gr3=gr3,1
5| 000008 stw 90620008 1 ST4A A2(gr2,0)=gr3

When you specify -qdatalocal, the data is accessed by a single load instruction
because the A1 and A2 variables are embedded in the TOC. When you do not
specify -qdatalocal, A1 and A2 variables are accessed by two load instructions. In
this example, you can use -qdatalocal=A1:A2 to specify local variables
individually.

You can always see the section that begins with >>>>> OPTIONS SECTION <<<<< in
the .lst file that is created by -qlist to confirm the use of these options. For
example, you can view DATALOCAL=<variables> or DATALOCAL when the option is
specified.

Notes:

v On 64-bit Linux, TOC entries are pointer size. When you specify -qdatalocal
without arguments, the option is ignored for variables that are larger than the
pointer size. Conversely, data smaller than pointer size is word-aligned. See the
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following example of an objdump excerpt that shows when a char (r3) is
marked local. The offset between the byte and the next data (r4) is still 4 bytes.
The data is accessed by a load byte instruction instead of a regular load.
10000380: 88 62 00 20 lbz r3,32(r2)
10000384: 80 82 00 24 l r4,36(r2)
r2 (base address of the TOC), r3 (char), r4 (int)

v If you specify an unsuitable variable as a parameter to -qdatalocal, -qdatalocal
is ignored. Unsuitable variables can be data that exceeds pointer-size bytes or
variables that do not exist. When you specify -qdatalocal for a variable that is
not a TOC candidate, the default storage for that variable is set to
-qdataimported and the variable is not stored in the TOC.

v C++ You must use the mangled names when you specify local variables.
Otherwise, you might encounter an error message. C++

v Mark variables as local with care. If you specify -qdatalocal without any
arguments, expect all global variables to be candidates for TOC direct placement,
even those variables that are marked as external. Variables with static linkage do
not have the same issues.

v Since each TOC structure is unique to a module or shared library, the utility of
the -qdatalocal option is limited to data within that module or shared library.

v For programs with multiple modules, switching between multiple TOC
structures might dilute the speedup that is associated with this option.
Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Using compiler reports to diagnose optimization opportunities
You can use the -qlistfmt option to generate a compiler report in XML or HTML
format. It provides information about how your program is optimized. You can
also use the genhtml utility to convert an existing XML report to HTML format.
This information helps you understand your application codes and tune codes for
better performance.

The compiler report in XML format can be viewed in a browser that supports
XSLT. If you compile with the stylesheet suboption, for example,
-qlistfmt=xml=all:stylesheet=xlstyle.xsl, the report contains a link to a stylesheet
that renders the XML readable. By reading the report, you can detect opportunities
to further optimize your code. You can also create tools to parse this information.

By default, the name of the report is a.xml for XML format, and a.html for HTML
format. You can use the -qlistfmt=xml=filename or -qlistfmt=html=filename
option to override the default name.

Inline reports

If you compile with -finline-functions and one of -qlistfmt=xml=inlines,
-qlistfmt=html=inlines, -qlistfmt=xml, or -qlistfmt=html, the generated compiler
report includes a list of inline attempts during compilation. The report also
specifies the type of attempt and its outcome.

For each function that the compiler has attempted to inline, there is an indication
of whether the inline was successful. The report might contain any number of
reasons why a named function has not been successfully inlined. Some examples of
these reasons are as follows:
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v FunctionTooBig - The function is too big to be inlined.
v RecursiveCall - The function is not inlined because it is recursive.
v ProhibitedByUser - Inlining was not performed because of a user-specified

pragma or directive.
v CallerIsNoopt - No inlining was performed because the caller was compiled

without optimization.
v WeakAndNotExplicitlyInline - The calling function is weak and not marked as

inline.

For a complete list of the possible reasons, see the Inline optimization types
section of the XML schema help file named XMLContent.html in the
/opt/ibm/xlC/13.1.5/listings/ directory. The Japanese and Chinese versions of
the help file, XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html,
are included in this directory as well.

Loop transformations

If you compile with -qhot and one of -qlistfmt=xml=transforms,
-qlistfmt=html=transforms, -qlistfmt=xml or -qlistfmt=html, the generated
compiler report includes a list of the transformations performed on all loops in the
file during compilation. The report also lists the reasons why transformations were
not performed in some cases:
v Reasons why a loop cannot be automatically parallelized
v Reasons why a loop cannot be unrolled
v Reasons why SIMD vectorization failed

For a complete list of the possible transformation problems, see the Loop
transformation types section of the XML schema help file named XMLContent.html
in the /opt/ibm/xlC/13.1.5/listings/ directory.

Data reorganizations

If you compile with -qhot and one of -qlistfmt=xml=data, -qlistfmt=html=data,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes a list of
data reorganizations performed on the program during compilation. Here are some
examples of data reorganizations:
v Array splitting
v Array coalescing
v Array interleaving
v Array transposition
v Memory merge

For each of these reorganizations, the report contains details about the name of the
data, file names, line numbers, and the region names.

Profile-directed feedback reports

If you compile with -qpdf2 and one of -qlistfmt=xml=pdf, -qlistfmt=html=pdf,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes the
following information:
v Loop iteration counts
v Block and call counts

50 XL C/C++: Optimization and Programming Guide for Little Endian Distributions



v Cache misses (if compiled with -qpdf1=level=2)
Related information:

-qlistfmt

Parsing compiler reports with development tools
You can write tools to parse the compiler reports produced in XML format to help
you find opportunities to improve application performance.

The compiler includes an XML schema that you can use to create a tool to parse
the compiler reports and display aspects of your code that might represent
performance improvement opportunities. The schema, xllisting.xsd, is located in
the /opt/ibm/xlC/13.1.5/listings/ directory. This schema helps present the
information from the report in a tree structure.

You can also find a schema help file named XMLContent.html that helps you
understand the schema details. The Japanese and Chinese versions of the help file,
XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html, are in the
same directory.

Other optimization options
Options are available to control particular aspects of optimization. They are often
enabled as a group or given default values when you enable a more general
optimization option or level.

For more information about these options, see the heading for each option in the
XL C/C++ Compiler Reference.

Table 19. Selected compiler options for optimizing performance

Option Description

-qignerrno Allows the compiler to assume that errno is not modified by
library function calls, so that such calls can be optimized. Also
allows optimization of square root operations, by generating
inline code rather than calling a library function.

-qsmallstack Instructs the compiler to compact stack storage. Doing so
might increase heap usage, which might increase execution
time. However, it might be necessary for the program to run
or to be optimally multithreaded.

-finline-functions
(-qinline)

Controls inlining.

-funroll-loops (-qunroll),
-funroll-all-loops
(-qunroll=yes)

Independently controls loop unrolling. -funroll-all-loops is
implicitly activated under -O3.

C++

 
-fno-exceptions

(-qnoeh)

Informs the compiler that no C++ exceptions will be thrown
and that cleanup code can be omitted. If your program does
not throw any C++ exceptions, use this option to compact
your program by removing exception-handling code.
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Table 19. Selected compiler options for optimizing performance (continued)

Option Description

-qnounwind Informs the compiler that the stack will not be unwound
while any routine in this compilation is active. This option can
improve optimization of nonvolatile register saves and
restores. In C++, the -qnounwind option implies the
-fno-exceptions (-qnoeh) option. It should not be used if the
program uses setjmp/longjmp or any other form of exception
handling.

-qstrict Disables all transformations that change program semantics.
In general, compiling a correct program with -qstrict and any
levels of optimization produces the same results as without
optimization.

-qnostrict Allows the compiler to reorder floating-point calculations and
potentially excepting instructions. A potentially excepting
instruction is one that might raise an interrupt due to
erroneous execution (for example, floating-point overflow, a
memory access violation). -qnostrict is used by default for the
-O3 and higher optimization levels.

-qprefetch Inserts prefetch instructions in compiled code to improve code
performance. In situations where you are working with
applications that generate a high cache-miss rate, you can use
its suboption assistthread to generate prefetching assist
threads (for example, -qprefetch=assistthread). -qnoprefetch
is the default option.

Related information in the XL C/C++ Compiler Reference

-qignerrno

-qsmallstack

-finline-functions

-funroll-loops, -funroll-all-loops

-qinlglue

-fexceptions (-qeh) (C++ only)

-qunwind

-qstrict

-qprefetch
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Chapter 7. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization
can change the sequence of operations, add or remove code, change variable data
locations, and perform other transformations that make it difficult to associate the
generated code with the original source statements.

For example:

Data location issues
With an optimized program, it is not always certain where the most
current value for a variable is located. For example, a value in memory
might not be current if the most current value is being stored in a register.
Most debuggers cannot follow the removal of stores to a variable, and to
the debugger it appears as though that variable is never updated, or
possibly even never set. This contrasts with no optimization where all
values are flushed back to memory and debugging can be more effective
and usable.

Instruction scheduling issues
With an optimized program, the compiler might reorder instructions. That
is, instructions might not be executed in the order you would expect based
on the sequence of lines in the original source code. Also, the sequence of
instructions for a statement might not be contiguous. As you step through
the program with a debugger, the program might appear as if it is
returning to a previously executed line in the code (interleaving of
instructions).

Consolidating variable values
Optimizations can result in the removal and consolidation of variables. For
example, if a program has two expressions that assign the same value to
two different variables, the compiler might substitute a single variable.
This can inhibit debug usability because a variable that a programmer is
expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug
capabilities while also optimizing your program:

Debug non-optimized code first
Debug a non-optimized version of your program first, and then recompile
it with your desired optimization options. See “Debugging in the presence
of optimization” on page 55 for some compiler options that are useful in
this approach.

Use -g level 
Use the -g level suboption to control the amount of debugging information
made available. Increasing it improves debug capability but prevents some
optimizations. For more information, see -g.

Detecting errors in code
The compiler provides environment variables and options that help with detecting
errors in your source code.
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OMP_DISPLAY_ENV

Setting the OMP_DISPLAY_ENV environment variable instructs the OpenMP
runtime library to display the values of the internal control variables (ICVs)
associated with OpenMP environment variables and the OpenMP runtime library.
It also displays information about OpenMP version and build-specific information
about the runtime library. You can use the environment variable in the following
cases:
v When the runtime library is statically linked with an OpenMP program, use

OMP_DISPLAY_ENV=VERBOSE to check the version of the library that is used
during link time.

v When the runtime library is dynamically linked with an OpenMP program, use
OMP_DISPLAY_ENV=VERBOSE to check the library that is used at run time.

v Use OMP_DISPLAY_ENV=VERBOSE or OMP_DISPLAY_ENV=TRUE to check
the current setting of the runtime environment.

For more information on the environment variable, see OMP_DISPLAY_ENV in the
XL C/C++ Compiler Reference.

-qcheck=bounds

The -qcheck=bounds option performs runtime checking of addresses for
subscripting within an object of known size. The index is checked to ensure that it
will result in an address that lies within the bounds of the object's storage. A trap
will occur if the address does not lie within the bounds of the object. This
suboption has no effect on accesses to a variable length array.

-qcheck=stackclobber

The -qcheck=stackclobber option detects stack corruption of nonvolatile registers
in the save area in user programs. This type of corruption happens only if any of
the nonvolatile registers in the save area of the stack is modified.

-qcheck=unset

The -qcheck=unset option checks for automatic variables that are used before they
are set at run time.

The -qinitauto option initializes automatic variables. As a result, the -qinitauto
option hides uninitialized variables from the -qcheck=unset option.

Understanding different results in optimized programs
Here are some reasons why an optimized program might produce different results
from one that has not undergone the optimization process:
v Optimized code can fail if a program contains code that is not valid. The

optimization process relies on your application conforming to language
standards.

v If a program that works without optimization fails when you optimize, check
the cross-reference listing and the execution flow of the program for variables
that are used before they are initialized. Compile with the -qinitauto=hex_value
option to try to produce the incorrect results consistently. For example, using
-qinitauto=FF gives variables an initial value of "negative not a number"
(-NAN). Any operations on these variables will also result in NAN values. Other
bit patterns (hex_value) might yield different results and provide further clues as
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to what is going on. Programs with uninitialized variables can appear to work
properly when compiled without optimization because of the default
assumptions the compiler makes, but such programs might fail when you
optimize. Similarly, a program can appear to execute correctly after optimization,
but it fails at lower optimization levels or when it is run in a different
environment. You can also use the -qcheck=unset option to detect variables that
are not or might not be initialized.

v Referring to an automatic-storage variable by its address after the owning
function has gone out of scope leads to a reference to a memory location that
can be overwritten as other auto variables come into scope as new functions are
called.

Use with caution debugging techniques that rely on examining values in storage.
The compiler might have deleted or moved a common expression evaluation. It
might have assigned some variables to registers so that they do not appear in
storage at all.

Debugging in the presence of optimization
Debug and compile your program with your desired optimization options. Test the
optimized program before placing it into production. If the optimized code does
not produce the expected results, you can attempt to isolate the specific
optimization problems in a debugging session.

The following list presents options that provide specialized information, which can
be helpful during the debugging of optimized code:

-qlist Instructs the compiler to emit an object listing. The object listing includes
hex and pseudo-assembly representations of the generated instructions,
traceback tables, and text constants.

-qreport
Instructs the compiler to produce a report of the loop transformations it
performed, what inlining was done, and some other transformations. To
generate a listing file, you must specify the -qreport option with at least
one optimization option such as -qhot, -qsmp, -finline-functions
(-qinline), or -qsimd.

-qipa=list
Instructs the compiler to emit an object listing that provides information
for IPA optimization.

-qcheck
Generates code that performs certain types of runtime checking.

-qsmp=noopt
If you are debugging SMP code, -qsmp=noopt ensures that the compiler
performs only the minimum transformations necessary to parallelize your
code and preserves maximum debug capability.

-qkeepparm
Ensures that procedure parameters are stored on the stack even during
optimization. This can negatively impact execution performance. The
-qkeepparm option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values
on the stack.
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-qinitauto
Instructs the compiler to emit code that initializes all automatic variables to
a given value.

-g Generates debugging information to be used by a symbolic debugger. You
can use different -g levels to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.
Higher -g levels provide a more complete debug support, while lower
levels provide higher runtime performance. For details, see -g.
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Chapter 8. Coding your application to improve performance

Chapter 6, “Optimizing your applications,” on page 25 discusses the various
compiler options that the XL C/C++ compiler provides for optimizing your code
with minimal coding effort. If you want to take your application a step further to
complement and take the most advantage of compiler optimizations, the topics in
this section discuss C and C++ programming techniques that can improve
performance of your code.

Finding faster input/output techniques
There are a number of ways to improve your program's performance of input and
output:
v If your file I/O accesses do not exhibit locality (that is truly random access such

as in a database), implement your own buffering or caching mechanism on the
low-level I/O functions.

v If you do your own I/O buffering, make the buffer a multiple of 4KB, which is
the minimum size of a page.

v Use buffered I/O to handle text files.
v If you have to process an entire file, determine the size of the data to be read in,

allocate a single buffer to read it to, read the whole file into that buffer at once
using read, and then process the data in the buffer. This reduces disk I/O,
provided the file is not so big that excessive swapping will occur. Consider
using the mmap function to access the file.

Reducing function-call overhead
When you write a function or call a library function, consider the following
guidelines:
v Call a function directly, rather than using function pointers.
v Use const arguments in inlined functions whenever possible. Functions with

constant arguments provide more opportunities for optimization.
v Use the restrict keyword for pointers that can never point to the same

memory.
v Use #pragma disjoint within functions for pointers or reference parameters that

can never point to the same memory.
v Declare a nonmember function as static whenever possible. This can speed up

calls to the function and increase the likelihood that the function will be inlined.
v C++ Usually, you should not declare all your virtual functions inline. If all

virtual functions in a class are inline, the virtual function table and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

v C++ When declaring functions, use the const specifier whenever possible.
v C Fully prototype all functions. A full prototype gives the compiler and

optimizer complete information about the types of the parameters. As a result,
promotions from unwidened types to widened types are not required, and
parameters can be passed in appropriate registers.

v C Avoid using unprototyped variable argument functions.
v Design functions so that they have few parameters and the most frequently used

parameters are in the leftmost positions in the function prototype.
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v Avoid passing by value large structures or unions as function parameters or
returning a large structure or a union. Passing such aggregates requires the
compiler to copy and store many values. This is worse in C++ programs in
which class objects are passed by value because a constructor and destructor are
called when the function is called. Instead, pass or return a pointer to the
structure or union, or pass it by reference. Homogeneous structs, unions and
arrays that meet one of the following conditions can be efficiently passed as
value parameters or returned as function results:
– Contain only up to eight floating-point values of the same type where

complex is counted as two.
– Contain up to eight vector values or values processed in vector registers.

v Pass non-aggregate types such as int and short or small aggregates by value
rather than passing by reference, whenever possible.

v If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to the
other function.

v Use the built-in functions, which include string manipulation, floating-point, and
trigonometric functions, instead of coding your own. Intrinsic functions require
less overhead and are faster than a function call, and they often allow the
compiler to perform better optimization.

C++ Many functions from the C++ standard libraries are mapped to
optimized built-in functions by the compiler.

C Many functions from string.h and math.h are mapped to optimized
built-in functions by the compiler.

v Selectively mark your functions for inlining using the inline keyword. An
inlined function requires less overhead and is generally faster than a function
call. The best candidates for inlining are small functions that are called
frequently from a few places, or functions called with one or more compile-time
constant parameters, especially those that affect if, switch, or for statements.
You might also want to put these functions into header files, which allows
automatic inlining across file boundaries even at low optimization levels. Be sure
to inline all functions that only load or store a value, or use simple operators
such as comparison or arithmetic operators. Large functions and functions that
are called rarely are generally not good candidates for inlining. Neither are
medium size functions that are called from many places.

v Avoid breaking your program into too many small functions. If you must use
small functions, you can use the -qipa compiler option to automatically inline
such functions and use other techniques to optimize calls between functions.

v C++ Avoid virtual functions and virtual inheritance unless required for class
extensibility. These language features are costly in object space and function
invocation performance.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

#pragma disjoint

-qipa
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Managing memory efficiently (C++ only)
Because C++ objects are often allocated from the heap and have limited scope,
memory use affects performance more in C++ programs than it does in C
programs. For that reason, consider the following guidelines when you develop
C++ applications:
v In a structure, declare the largest aligned members first. Members of similar

alignment should be grouped together where possible.
v In a structure, place variables near each other if they are frequently used

together.
v Ensure that objects that are no longer needed are freed or otherwise made

available for reuse. One way to do this is to use an object manager. Each time you
create an instance of an object, pass the pointer to that object to the object
manager. The object manager maintains a list of these pointers. To access an
object, you can call an object manager member function to return the
information to you. The object manager can then manage memory usage and
object reuse.

v Storage pools are a good way of keeping track of used memory (and reclaiming
it) without having to resort to an object manager or reference counting. Do not
use storage pools for objects with non-trivial destructors, because in most
implementations the destructors cannot be run when the storage pool is cleared.

v Avoid copying large and complicated objects.
v Avoid performing a deep copy if you only need a shallow copy. For an object that

contains pointers to other objects, a shallow copy copies only the pointers and
not the objects to which they point. The result is two objects that point to the
same contained object. A deep copy, however, copies the pointers and the objects
they point to, as well as any pointers or objects that are contained within that
object, and so on. A deep copy must be performed in multithreaded
environments, because it reduces sharing and synchronization.

v Use virtual methods only when absolutely necessary.
v Use the "Resource Acquisition is Initialization" (RAII) pattern.
v Use shared_ptr and weak_ptr.

Optimizing variables
Consider the following guidelines:
v Use local variables, preferably automatic variables, as much as possible. The

compiler must make several worst-case assumptions about global variables. For
example, if a function uses external variables and also calls external functions,
the compiler assumes that every call to an external function could use and
change the value of every external variable. If you know that a global variable is
not read or affected by any function call and this variable is read several times
with function calls interspersed, copy the global variable to a local variable and
then use this local variable.

v If you must use global variables, use static variables with file scope rather than
external variables whenever possible. In a file with several related functions and
static variables, the optimizer can gather and use more information about how
the variables are affected.

v If you must use external variables, group external data into structures or arrays
whenever it makes sense to do so. All elements of an external structure use the
same base address. Do not group variables whose addresses are taken with
variables whose addresses are not taken.
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v Avoid taking the address of a variable. If you use a local variable as a temporary
variable and must take its address, avoid reusing the temporary variable for a
different purpose. Taking the address of a local variable can inhibit
optimizations that would otherwise be done on calculations involving that
variable.

v Use constants instead of variables where possible. The optimizer is able to do a
better job reducing runtime calculations by doing them at compile time instead.
For instance, if a loop body has a constant number of iterations, use constants in
the loop condition to improve optimization (for (i=0; i<4; i++) can be better
optimized than for (i=0; i<x; i++)). An enumeration declaration can be used
to declare a named constant for maintainability.

v Use register-sized integers (long data type) for scalars to avoid sign extension
instructions after each change. For large arrays of integers, consider using
one-byte or two-byte integers or bit fields.

v Use the smallest floating-point precision appropriate to your computation.
v An extern variables that must be shared within a shared library but need not be

accessed from outside the library must be declared with a visibility attribute or
an option that limits its visibility to the library. This allows it to be accessed
directly instead of via the TOC.
Related information in the XL C/C++ Compiler Reference

-qisolated_call

Manipulating strings efficiently
The handling of string operations can affect the performance of your program.
v When you store strings into allocated storage, align the start of the string on an

8-byte or 16-byte boundary.
v Keep track of the length of your strings. If you know the length of a string, you

can use mem functions instead of str functions. For example, memcpy is faster than
strcpy because it does not have to search for the end of the string.

v If you are certain that the source and target do not overlap, use memcpy instead
of memmove. This is because memcpy copies directly from the source to the
destination, while memmove might copy the source to a temporary location in
memory before copying to the destination, or it might copy in reverse order
depending on the length of the string.

v When manipulating strings using mem functions, faster code can be generated if
the count parameter is a constant rather than a variable. This is especially true
for small count values.

v Make string literals read-only, whenever possible. When the same string is used
multiple times, making it read-only improves certain optimization techniques,
reduces memory usage, and shortens compilation time. You can explicitly set
strings to read-only by using -qro (this is enabled by default C except
when compiling with cc C ) to avoid changing your source files.
Related information in the XL C/C++ Compiler Reference

-qro

Optimizing expressions and program logic
Consider the following guidelines:
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v If components of an expression are used in other expressions and they include
function calls or there are function calls between the uses, assign the duplicated
values to a local variable.

v Avoid forcing the compiler to convert numbers between integer and
floating-point internal representations. For example:
float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;
}

for (i = 0; i< 9; i++) { /* Multiple conversions needed */
array[i] = array[i]*i;
}

When you must use mixed-mode arithmetic, code the integer and floating-point
arithmetic in separate computations whenever possible.

v Do not use global variables as loop indices or bounds.
v Avoid goto statements that jump into the middle of loops. Such statements

inhibit certain optimizations.
v Improve the predictability of your code by making the fall-through path more

probable. Code such as:
if (error) {handle error} else {real code}

should be written as:
if (!error) {real code} else {error}

v If one or two cases of a switch statement are typically executed much more
frequently than other cases, break out those cases by handling them separately
before the switch statement. If possible, replace the switch statement by
checking whether the value is in range to be obtained from an array.

v C++ Use try blocks for exception handling only when necessary because
they can inhibit optimization.

v Keep array index expressions as simple as possible.

Optimizing operations in 64-bit mode
The ability to handle larger amounts of data directly in physical memory rather
than relying on disk I/O is perhaps the most significant performance benefit of
64-bit machines. However, some applications compiled in 32-bit mode perform
better than when they are recompiled in 64-bit mode. Some reasons for this
include:
v 64-bit programs are larger. The increase in program size places greater demands

on physical memory.
v 64-bit long division is more time-consuming than 32-bit integer division.
v 64-bit programs that use 32-bit signed integers as array indexes or loop counts

might require additional instructions to perform sign extension each time the
array is referenced or the loop count is incremented.

Some ways to compensate for the performance liabilities of 64-bit programs
include:
v Avoid performing mixed 32-bit and 64-bit operations. For example, adding a

32-bit data type to a 64-bit data type requires that the 32-bit be sign-extended to
clear or set the upper 32-bit of the register. This slows the computation.
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v Use long types instead of signed, unsigned, and plain int types for variables
that will be frequently accessed, such as loop counters and array indexes. Doing
so frees the compiler from having to truncate or sign-extend array references,
parameters during function calls, and function results during returns.

The C++ template model
In C++, you can use a template to declare a set of related following entities:
v Classes (including structures)
v Functions
v Static data members of template classes

Each compiler implements templates according to a model that determines the
meaning of a template at various stages of the translation of a program. In
particular, the compiler determines what the various constructs in a template mean
when the template is instantiated. Name lookup is an essential ingredient of the
compilation model.

Template instantiation is a process that generates types and functions from generic
template definitions. The concept of instantiation of C++ templates is fundamental
but also intricate because the definitions of entities generated by a template are no
longer limited to a single location in the source code. The location of the template,
the location where the template is used, and the locations where the template
arguments are defined all contribute to the meaning of the entity.

XL C/C++ supports Greedy instantiation. The compiler generates a template
instantiation in each compilation unit that uses it. The linker discards the
duplicates.

Related information in the XL C/C++ Compiler Reference

-qtmplinst (C++ only)

Using delegating constructors (C++11)
Before C++11, common initialization in multiple constructors of the same class
cannot be concentrated in one place in a robust and maintainable manner. Starting
from C++11, with the delegating constructors feature, you can concentrate common
initialization in one constructor, which can make the program more readable and
maintainable. Delegating constructors help reduce code size and collective size of
object files.

Syntactically, delegating constructors and target constructors present the same
interface as other constructors.

Consider the following points when you use the delegating constructors feature:
v Call the target constructor implementation in such a way that virtual bases,

direct nonvirtual bases, and class members are initialized by the target
constructor as appropriate.

v The feature has minimal impact on compile-time and runtime performance.
However, use of default arguments with an existing constructor is recommended
in place of a delegating constructor where possible. Without inlining and
interprocedural analysis, runtime performance might degrade because of
function call overhead and increased opacity.
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Using rvalue references (C++11)
In C++11, you can overload functions based on the value categories of arguments
and similarly have lvalueness detected by template argument deduction. You can
also have an rvalue bound to an rvalue reference and modify the rvalue through
the reference. This enables a programming technique with which you can reuse the
resources of expiring objects and therefore improve the performance of your
libraries, especially if you use generic code with class types, for example, template
data structures. Additionally, the value category can be considered when writing a
forwarding function.

Move semantics

When you want to optimize the use of temporary values, you can use a move
operation in what is known as destructive copying. Consider the following string
concatenation and assignment:
std::string a, b, c;
c = a + b;

In this program, the compiler first stores the result of a + b in an internal
temporary variable, that is, an rvalue.

The signature of a normal copy assignment operator is as follows:
string& operator = (const string&)

With this copy assignment operator, the assignment consists of the following steps:
1. Copy the temporary variable into c using a deep-copy operation.
2. Discard the temporary variable.

Deep copying the temporary variable into c is not efficient because the temporary
variable is discarded at the next step.

To avoid the needless duplication of the temporary variable, you can implement an
assignment operator that moves the variable instead of copying the variable. That
is, the argument of the operator is modified by the operation. A move operation is
faster because it is done through pointer manipulation, but it requires a reference
through which the source variable can be manipulated. However, a + b is a
temporary value, which is not easily differentiated from a const-qualified value in
C++ before C++11 for the purposes of overload resolution.

With rvalue references, you can create a move assignment operator as follows:
string& operator= (string&&)

With this move assignment operator, the memory allocated for the underlying
C-style string in the result of a + b is assigned to c. Therefore, it is not necessary
to allocate new memory to hold the underlying string in c and to copy the
contents to the new memory.

The following code can be an implementation of the string move assignment
operator:
string& string::operator=(string&& str)
{

// The named rvalue reference str acts like an lvalue
std::swap(_capacity, str._capacity);
std::swap(_length, str._length);
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// char* _str points to a character array and is a
// member variable of the string class
std::swap(_str, str._str);
return *this;

}

However, in this implementation, the memory originally held by the string being
assigned to is not freed until str is destroyed. The following implementation that
uses a local variable is more memory efficient:
string& string::operator=(string&& parm_str)
{

// The named rvalue reference parm_str acts like an lvalue
string sink_str;
std::swap(sink_str, parm_str);
std::swap(*this, sink_str);
return *this;

}

In a similar manner, the following program is a possible implementation of a
string concatenation operator:
string operator+(string&& a, const string& b)
{

return std::move(a+=b);
}

Note: The std::move function only casts the result of a+=b to an rvalue reference,
without moving anything. The return value is constructed using a move
constructor because the expression std::move(a+=b) is an rvalue. The relationship
between a move constructor and a copy constructor is analogous to the
relationship between a move assignment operator and a copy assignment operator.

Perfect forwarding

The std::forward function is a helper template, much like std::move. It returns a
reference to its function argument, with the resulting value category determined by
the template type argument. In an instantiation of a forwarding function template,
the value category of an argument is encoded as part of the deduced type for the
related template type parameter. The deduced type is passed to the std::forward
function.

The wrapper function in the following example is a forwarding function template
that forwards to the do_work function. Use std::forward in forwarding functions
on the calls to the target functions. The following example also uses the decltype
and trailing return type features to produce a forwarding function that forwards to
one of the do_work functions. Calling the wrapper function with any argument
results in a call to a do_work function if a suitable overload function exists. Extra
temporaries are not created and overload resolution on the forwarding call resolves
to the same overload as it would if the do_work function were called directly.
struct s1 *do_work(const int&); // #1
struct s2 *do_work(const double&); // #2
struct s3 *do_work(int&&); // #3
struct s4 *do_work(double&&); // #4
template <typename T> auto wrapper(T && a)->

decltype(do_work(std::forward<T>(*static_cast<typename std::remove_reference<T>
::type*>(0))))

{
return do_work(std::forward<T>(a));

}
template <typename T> void tPtr(T *t);
int main()
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{
int x;
double y;
tPtr<s1>(wrapper(x)); // calls #1
tPtr<s2>(wrapper(y)); // calls #2
tPtr<s3>(wrapper(0)); // calls #3
tPtr<s4>(wrapper(1.0)); // calls #4

}

Related information in the XL C/C++ Compiler Reference

-qlanglvl

Using visibility attributes (IBM extension)
Visibility attributes describe whether and how an entity that is defined in one
module can be referenced or used in other modules. Visibility attributes affect
entities with external linkage only, and they cannot increase the visibility of other
entities. By specifying visibility attributes for entities, you can export only the
entities that are necessary to shared libraries. With this feature, you can get the
following benefits:
v Decrease the size of shared libraries.
v Reduce the possibility of symbol collision.
v Allow more optimization for the compile and link phases.
v Improve the efficiency of dynamic linking.
v Within a shared library, allow direct access instead of via a TOC pointer.

Supported types of entities

C++

The compiler supports visibility attributes for the following entities:
v Function
v Variable
v Structure/union/class
v Enumeration
v Template
v Namespace

C++

C

The compiler supports visibility attributes for the following entities:
v Function
v Variable

Note: Data types in the C language do not have external linkage, so you cannot
specify visibility attributes for C data types.

C

Related information in the XL C/C++ Compiler Reference
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-fvisibility

-shared (-qmkshrobj)

#pragma GCC visibility push, #pragma GCC visibility pop
Related information in the XL C/C++ Language Reference

The visibility variable attribute (IBM extension)

The visibility function attribute (IBM extension)

The visibility type attribute (C++ only) (IBM extension)

The visibility namespace attribute (C++ only) (IBM extension)

Types of visibility attributes
The following table describes different visibility attributes.

Table 20. Visibility attributes

Attribute Description

default Indicates that external linkage entities have the default attribute in object
files. These entities are exported in shared libraries, and can be preempted.

protected Indicates that external linkage entities have the protected attribute in object
files. These entities are exported in shared libraries, but cannot be
preempted.

hidden Indicates that external linkage entities have the hidden attribute in object
files. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal Indicates that external linkage entities have the internal attribute in object
files. These entities are not exported in shared libraries, and their addresses
are not available to other modules in shared libraries.

Notes:

v In this release, the hidden and internal visibility attributes are the same. The addresses
of the entities that are specified with either of these visibility attributes can be referenced
indirectly through pointers.

Example: Differences among the default, protected, hidden, and internal visibility
attributes
//a.c
#include <stdio.h>
void __attribute__((visibility("default"))) func1(){

printf("func1 in the shared library");
}
void __attribute__((visibility("protected"))) func2(){

printf("func2 in the shared library");
}
void __attribute__((visibility("hidden"))) func3(){

printf("func3 in the shared library");
}
void __attribute__((visibility("internal"))) func4(){

printf("func4 in the shared library");
}

//a.h
extern void func1();
extern void func2();
extern void func3();
extern void func4();
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//b.c
#include "a.h"
void temp(){

func1();
func2();

}

//b.h
extern void temp();

//main.c
#include "a.h"
#include "b.h"

void func1(){
printf("func1 in b.c");

}
void func2(){

printf("func2 in b.c");
}
void main(){

temp();
// func3(); // error
// func4(); // error

}

You can use the following commands to create a shared library named libtest.so:
xlc -c -fPIC a.c b.c
xlc -shared -o libtest.so a.o b.o

Then, you can dynamically link libtest.so during run time by using the following
commands:
xlc main.c -L. -ltest -o main
./main

The output of the example is as follows:
func1 in b.c
func2 in the shared library

The visibility attribute of function func1() is default, so it is preempted by the
function with the same name in main.c. The visibility attribute of function func2()
is protected, so it cannot be preempted. The compiler always calls func2() that is
defined in the shared library libtest.so. The visibility attribute of function
func3() is hidden, so it is not exported in the shared library. The compiler issues a
link error to indicate that the definition of func3() cannot be found. The same
issue is with function func4() whose visibility attribute is internal.

Rules of visibility attributes
Priority of visibility attributes

The visibility attributes have a priority sequence, which is default < protected <
hidden < internal. You can see Example 3 and Example 9 for reference.

Rules of determining the visibility attributes

C

The visibility attribute of an entity is determined by the following rules:
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1. If the entity has an explicitly specified visibility attribute, the specified visibility
attribute takes effect.

2. Otherwise, if the entity has a pair of enclosing pragma directives, the visibility
attribute that is specified by the pragma directives takes effect.

3. Otherwise, the setting of the -fvisibility option takes effect.

C

C++

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.
2. Otherwise, if the entity is a template instantiation or specialization, and the

template has a visibility attribute, the visibility attribute of the entity is
propagated from that of the template. See Example 1.

3. Otherwise, if the entity has any of the following enclosing contexts, the
visibility attribute of this entity is propagated from that of the nearest context.
See Example 2. For the details of propagation rules, see “Propagation rules
(C++ only)” on page 73.
v Structure/class
v Enumeration
v Namespace
v Pragma directives

Restriction: Pragma directives do not affect the visibility attributes of class
members and template specializations.

4. Otherwise, the visibility attribute of the entity is determined by the following
visibility attribute settings. The visibility attribute that has the highest priority
is the actual visibility attribute of the entity. See Example 3. For the priority of
the visibility attributes, see Priority of visibility attributes.
v The setting of the -fvisibility option.
v The visibility attribute of the type of the entity, if the entity is a variable and

its type has a visibility attribute.
v The visibility attribute of the return type of the entity, if the entity is a

function and its return type has a visibility attribute.
v The visibility attributes of the parameter types of the entity, if the entity is a

function and its parameter types have visibility attributes.
v The visibility attributes of template arguments or template parameters of the

entity, if the entity is a template and its arguments or parameters have
visibility attributes.

Example 1

In the following example, template template<typename T, typename U> B{} has the
protected visibility attribute. The visibility attribute is propagated to those of
template specialization template<> class B<char, char>{}, partial specialization
template<typename T> class B<T, float>{}, and all the types of template
instantiations.
class __attribute__((visibility("internal"))) A{} vis_v_a; //internal

//protected
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template<typename T, typename U>
class __attribute__((visibility("protected"))) B{

public:
void func(){}

};

//protected
template<>
class B<char, char>{

public:
void func(){}

};

//protected
template<typename T>
class B<T, float>{

public:
void func(){}

};

B<int, int> a; //protected
B<A, int> b; //protected
B<char, char> c; //protected
B<int, float> d; //protected
B<A, float> e; //protected

int main(){
a.func();
b.func();
c.func();
d.func();
e.func();

}

Example 2

In the following example, the nearest enclosing context of function func() is class
B, so the visibility attribute of func() is propagated from that of class B, which is
hidden. The nearest enclosing context of class A is the pragma directives whose
setting is protected, so the visibility of class A is protected.
namespace __attribute__((visibility("internal"))) ns{
#pragma GCC visibility push(protected)

class A{
class __attribute__((visibility("hidden"))) B{

int func(){};
};

};
#pragma GCC visibility pop
};

Example 3

In the following example, the visibility attribute specified by the -fvisibility option
is protected. The type of variable vis_v_d is class CD, whose visibility attribute is
default. The visibility attribute that has a higher priority of these two attributes is
protected, so the actual visibility attribute of variable vis_v_d is protected. The
same rule applies to the determination of the visibility attributes of variables
vis_v_p, vis_v_h, and vis_v_i. For functions vis_f_fun1, vis_f_fun2, and
vis_f_fun3, their visibility attributes are determined by those of their parameter
types, return types, and the setting of the -fvisibility option. For template
functions vis_f_template1 and vis_f_template2, their visibility attributes are
determined by those of their template arguments, template parameters, function
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parameter types, return types, and the setting of the -fvisibility option. The
visibility attribute that has the highest priority takes effect.
//The -fvisibility=protected option is specified
class __attribute__((visibility("default"))) CD {} vis_v_d; //protected
class __attribute__((visibility("protected"))) CP {} vis_v_p; //protected
class __attribute__((visibility("hidden"))) CH {} vis_v_h; //hidden
class __attribute__((visibility("internal"))) CI {} vis_v_i; //internal

void vis_f_fun1(CH a, CP b, CD c, CI d) {} //internal
void vis_f_fun2(CD a) {} //protected
CH vis_f_fun3(CI a, CP b) {} //internal

template<class T, class U> T vis_f_template1(T t, U u){}
template<class T, int N> void vis_f_template2(T t, int i){}

int main(){
vis_f_template1<CD, CH>(vis_v_d, vis_v_p); //hidden
vis_f_template2<CD, 10)(vis_v_p, 10); // protected

}

C++

Rules and restrictions of using the visibility attributes

When you specify visibility attributes for entities, consider the following rules and
restrictions:
v You can specify visibility attributes only for entities that have external linkage.

The compiler issues a warning message when you set the visibility attribute for
entities with other linkages, and the specified visibility attribute is ignored. See
Example 4.

v You cannot specify different visibility attributes in the same declaration or
definition of an entity; otherwise, the compiler issues an error message. See
Example 5.

v If an entity has more than one declaration that is specified with different
visibility attributes, the visibility attribute of the entity is the first visibility
attribute that the compiler processes. See Example 6.

v You cannot specify visibility attributes in the typedef statements. See Example 7.
v C++ If type T has a visibility attribute, types T*, T&, and T&& have the same

visibility attribute with that of type T. See Example 8.
v C++ If a class and its enclosing classes do not have explicitly specified

visibilities and the visibility attribute of the class has a lower priority than those
of its nonstatic member types and its bases classes, the compiler issues a
warning message. See Example 9. For the priority of the visibility attributes, see
Priority of visibility attributes. C++

v C++ The visibility attribute of a namespace does not apply for the
namespace with the same name. See Example 10. C++

v C++ If you specify a visibility attribute for a global new or delete operator,
the compiler issues a warning message to ignore the visibility attribute unless
the visibility attribute is default. See Example 11. C++

Example 4

In this example, because m and i have internal linkage and j has no linkage, the
compiler ignores the visibility attributes of variables m, i, and j.
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static int m __attribute__((visibility("protected")));
int n __attribute__((visibility("protected")));

int main(){
int i __attribute__((visibility("protected")));
static int j __attribute__((visibility("protected)));

}

Example 5

In this example, the compiler issues an error message to indicate that you cannot
specify two different visibility attributes at the same time in the definition of
variable m.
//error
int m __attribute__((visibility("hidden"))) __attribute__((visibility("protected")));

Example 6

In this example, the first declaration of function fun() that the compiler processes
is extern void fun() __attribute__((visibility("hidden"))), so the visibility
attribute of fun() is hidden.
extern void fun() __attribute__((visibility("hidden")));
extern void fun() __attribute__((visibility("protected")));

int main(){
fun();

}

Example 7

In this example, the visibility attribute of variable vis_v_ti is default, which is not
affected by the setting in the typedef statement.
//The -fvisibility=default option is specified.
typedef int __attribute__((visibility("protected"))) INT;
INT vis_v_ti = 1;

C++

Example 8

In this example, the visibility attribute of class CP is protected, so the visibility
attribute of CP* and CP& is also protected.
class __attribute__((visibility("protected"))) CP {} vis_v_p;
class CP* vis_v_p_p = &vis_v_p; //protected
class CP& vis_v_lr_p = vis_v_p; //protected

Example 9

In this example, the compiler accepts the default visibility attribute of class
Derived1 because the visibility attribute is explicitly specified for class Derived1.
The compiler also accepts the protected visibility attribute of class Derived2
because the visibility attribute is propagated from that of the enclosing class A.
Class Derived3 does not have an explicitly specified visibility attribute or an
enclosing class, and its visibility attribute is default. The compiler issues a warning
message because the visibility attribute of class Derived3 has a lower priority than
those of its parent class Base and the nonstatic member function fun().
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//The -fvisibility=default option is specified.
//base class
struct __attribute__((visibility("hidden"))) Base{

int vis_f_fun(){
return 0;

}
};

//Ok
struct __attribute__((visibility("default"))) Derived1: public Base{

int vis_f_fun(){
return Base::vis_f_fun();

};
}vis_v_d;

//Ok
struct __attribute__((visibility("protected"))) A{

struct Derived2: public Base{
int vis_f_fun(){

__attribute__((visibility("protected")))
};

}
};

//Warning
struct Derived3: public Base{

//Warning
int fun() __attribute__((visibility("protected"))){};

};

Example 10

In this example, the visibility attribute of the definition of namespace X does not
apply to the extension of namespace X.
//The -fvisibility=default option is specified.
//namespace definition
namespace X __attribute__((visibility("protected"))){

int a; //protected
int b; //protected

}
//namespace extension
namespace X {

int c; //default
int d; //default

}
//equivalent to namespace X
namespace Y {

int __attribute__((visibility("protected"))) a; //protected
int __attribute__((visibility("protected"))) b; //protected
int c; //default
int d; //default

}

Example 11

In this example, the new and delete operators defined outside of class A are global
functions, so the explicitly specified hidden visibility attribute does not take effect.
The new and delete operations defined within class A are local ones, so you can
specify visibility attributes for them.
#include <stddef.h>
//default
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;

72 XL C/C++: Optimization and Programming Guide for Little Endian Distributions



};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

class A{
public:
//hidden
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

};

C++

Propagation rules (C++ only)

Visibility attributes can be propagated from one entity to other entities. The
following table lists all the cases for visibility propagation.

Table 21. Propagation of visibility attributes

Original
entity

Destination
entities Example

Namespace Named
namespaces that
are defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Namespace B has the hidden visibility attribute,
// which is propagated from namespace A.
namespace B{}
// The unnamed namespace does not have a visibility
// attribute.
namespace{}

}

Namespace Classes that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Class B has the hidden visibility attribute,
// which is propagated from namespace A.
class B;
// Object x has the hidden visibility attribute,
// which is propagated from namespace A.
class{} x;

}

Namespace Functions that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Function fun() has the hidden visibility
// attribute, which is propagated from namespace A.
void fun(){};

}

Namespace Objects that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Variable m has the hidden visibility attribute,
// which is propagated from namespace A.
int m;

}

Class Member classes class __attribute__((visibility("hidden"))) A{
// Class B has the hidden visibility attribute,
// which is propagated from class A.
class B{};

}
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Table 21. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Class Member
functions or static
member variables

class __attribute__((visibility("hidden"))) A{
// Function fun() has the hidden visibility
// attribute, which is propagated from class A.
void fun(){};
// Static variable m has the hidden visibility
// attribute, which is propagated from class A.
static int m;

}

Template Template
instantiations/
template
specifications/
template partial
specializations

template<typename T, typename U>
class __attribute__((visibility("hidden"))) A{

public:
void fun(){};

};

// Template instantiation class A<int, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
class A<int, char>{

public:
void fun(){};

};

// Template specification
// template<> class A<double, double> has the hidden
// visibility attribute, which is propagated
// from template class A(T,U).
template<> class A<double, double>{

public:
void fun(){};

};

// Template partial specification
// template<typename T> class A<T, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
template<typename T> class A<T, char>{

public:
void fun(){};

};

Template
argument/
parameter

Template
instantiations/
template
specifications/
template partial
specializations

template<typename T> void fun1(){}
template<typename T> void fun2(T){}

class M __attribute__((visibility("hidden"))){} m;

// Template instantiation fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
fun1<M>();

// Template instantiation fun2<M>(M) has the hidden
// visibility attribute, which is propagated from
// template parameter m.
fun2(m);

// Template specification fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
template<> void fun1<M>();
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Table 21. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Inline
function

Static local
variables

inline void __attribute__((visibility("hidden")))
fun(){
// Variable m has the hidden visibility attribute,
// which is propagated from inline function fun().
static int m = 4;

}

Type Entities of the
original type

class __attribute__((visibility("hidden"))) A {};

// Object x has the hidden visibility attribute,
// which is propagated from class A.
class A x;

Function
return
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun() has the hidden visibility attribute,
// which is propagated from function return type A.
A fun();

Function
parameter
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun(class A) has the hidden visibility
// attribute, which is propagated from function
// parameter type A.
void fun(class A);

Specifying visibility attributes using the -fvisibility option
You can use the -fvisibility option to globally set visibility attributes for external
linkage entities in your program. The entities have the visibility attribute that is
specified by the -fvisibility option if they do not get visibility attributes from
pragma directives, explicitly specified attributes, or propagation rules.

Specifying visibility attributes using pragma preprocessor
directives

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop preprocessor directives
throughout your source program.

The compiler supports nested visibility pragma preprocessor directives. If entities
are included in several pairs of the nested #pragma GCC visibility push and
#pragma GCC visibility pop directives, the nearest pair of directives takes effect.
See Example 1.

You must not specify the visibility pragma directives for header files. Otherwise,
your program might exhibit undefined behaviors. See Example 2.

C++ Visibility pragma directives #pragma GCC visibility push and #pragma
GCC visibility pop affect only namespace-scope declarations. Class members and
template specializations are not affected. See Example 3 and Example 4. C++

Examples

Example 1

In this example, the function and variables have the visibility attributes that are
specified by their nearest pairs of pragma preprocessor directives.
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#pragma GCC visibility push(default)
namespace ns
{

void vis_f_fun() {} //default
# pragma GCC visibility push(internal)

int vis_v_i; //internal
# pragma GCC visibility push(protected)

int vis_v_j; //protected
# pragma GCC visibility push(hidden)

int vis_v_k; //hidden
# pragma GCC visibility pop
# pragma GCC visibility pop
# pragma GCC visibility pop
}
#pragma GCC visibility pop

Example 2

In this example, the compiler issues a link error message to indicate that the
definition of the printf() library function cannot be found.
#pragma GCC visibility push(hidden)
#include <stdio.h>
#pragma GCC visibility pop

int main(){
printf("hello world!");
return 0;

}

C++

Example 3

In this example, the visibility attribute of class members vis_v_i and vis_f_fun()
is hidden. The visibility attribute is propagated from that of the class, but is not
affected by the pragma directives.
class __attribute__((visibility("hidden"))) A{
#pragma GCC visibility push(protected)

public:
static int vis_v_i;
void vis_f_fun() {}

#pragma GCC visibility pop
} vis_v_a;

Example 4

In this example, the visibility attribute of function vis_f_fun() is hidden. The
visibility attribute is propagated from that of the template specialization or partial
specialization, but is not affected by the pragma directives.
namespace ns{

#pragma GCC visibility push(hidden)
template <typename T, typename U> class TA{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(protected)
//The visibility attribute of the template specialization is hidden.
template <> class TA<char, char>{

public:
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void vis_f_fun(){}
};
#pragma GCC visibility pop

#pragma GCC visibility push(default)
//The visibility attribute of the template partial specialization is hidden.
template <typename T> class TA<T, long>{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

C++
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Chapter 9. Using the high performance libraries

IBM XL C/C++ for Linux, V13.1.5 is shipped with a set of libraries for
high-performance mathematical computing:
v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic functions that provide improved performance over the
corresponding standard system math library functions. MASS is described in
“Using the Mathematical Acceleration Subsystem (MASS) libraries.”

v The Basic Linear Algebra Subprograms (BLAS) are a set of routines that provide
matrix/vector multiplication functions tuned for PowerPC architectures. The
BLAS functions are described in “Using the Basic Linear Algebra Subprograms –
BLAS” on page 90.

Using the Mathematical Acceleration Subsystem (MASS) libraries
XL C/C++ is shipped with a set of Mathematical Acceleration Subsystem (MASS)
libraries for high-performance mathematical computing.

The MASS libraries consist of a library of scalar C/C++ functions described in
“Using the scalar library” on page 80, a set of vector libraries tuned for specific
architectures described in “Using the vector libraries” on page 82, and a set of
SIMD libraries tuned for specific architectures described in “Using the SIMD
libraries” on page 86. The functions contained in both scalar and vector libraries
are automatically called at certain levels of optimization, but you can also call
them explicitly in your programs. Note that accuracy and exception handling
might not be identical in MASS functions and system library functions.

The MASS functions must run with the default rounding mode and floating-point
exception trapping settings.

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -qhot -qignerrno -qstrict=nolibrary

v -qhot -O3

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent MASS vector functions (with the exceptions of functions
vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4,
vpopcnt8, vexp2, vexp2m1, vsexp2, vsexp2m1, vlog2, vlog21p, vslog2, and vslog21p).
If it cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions
of the MASS functions contained in the XLOPT library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

© Copyright IBM Corp. 1996, 2016 79



“Compiling and linking a program with MASS” on page 89 describes how to
compile and link a program that uses the MASS libraries, and how to selectively
use the MASS scalar library functions in conjunction with the regular system
libraries.

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the scalar library
The MASS scalar library libmass.a contains an accelerated set of frequently used
math intrinsic functions that provide improved performance over the
corresponding standard system library functions. The MASS scalar functions are
used when you explicitly link libmass.a.

If you want to explicitly call the MASS scalar functions, you can take the following
steps:
1. Provide the prototypes for the functions by including math.h and mass.h in

your source files.
2. Link the MASS scalar library with your application. For instructions, see

“Compiling and linking a program with MASS” on page 89.

The MASS scalar functions accept double-precision parameters and return a
double-precision result, or accept single-precision parameters and return a
single-precision result, except sincos which gives 2 double-precision results. They
are summarized in Table 22.

Table 22. MASS scalar functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acos acosf Returns the arccosine of
x

double acos (double x); float acosf (float x);

acosh acoshf Returns the hyperbolic
arccosine of x

double acosh (double x); float acoshf (float x);

anint Returns the rounded
integer value of x

float anint (float x);

asin asinf Returns the arcsine of x double asin (double x); float asinf (float x);

asinh asinhf Returns the hyperbolic
arcsine of x

double asinh (double x); float asinhf (float x);

atan2 atan2f Returns the arctangent
of x/y

double atan2 (double x,
double y);

float atan2f (float x, float y);

atan atanf Returns the arctangent
of x

double atan (double x); float atanf (float x);

atanh atanhf Returns the hyperbolic
arctangent of x

double atanh (double x); float atanhf (float x);

cbrt cbrtf Returns the cube root
of x

double cbrt (double x); float cbrtf (float x);

copysign copysignf Returns x with the sign
of y

double copysign (double
x,double y);

float copysignf (float x);

cos cosf Returns the cosine of x double cos (double x); float cosf (float x);
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Table 22. MASS scalar functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

cosh coshf Returns the hyperbolic
cosine of x

double cosh (double x); float coshf (float x);

cosisin Returns a complex
number with the real
part the cosine of x and
the imaginary part the
sine of x.

double_Complex cosisin
(double);

dnint Returns the nearest
integer to x (as a
double)

double dnint (double x);

erf erff Returns the error
function of x

double erf (double x); float erff (float x);

erfc erfcf Returns the
complementary error
function of x

double erfc (double x); float erfcf (float x);

exp expf Returns the exponential
function of x

double exp (double x); float expf (float x);

expm1 expm1f Returns (the
exponential function of
x) - 1

double expm1 (double x); float expm1f (float x);

hypot hypotf Returns the square root
of x2 + y2

double hypot (double x,
double y);

float hypotf (float x, float y);

lgamma lgammaf Returns the natural
logarithm of the
absolute value of the
Gamma function of x

double lgamma (double x); float lgammaf (float x);

log logf Returns the natural
logarithm of x

double log (double x); float logf (float x);

log10 log10f Returns the base 10
logarithm of x

double log10 (double x); float log10f (float x);

log1p log1pf Returns the natural
logarithm of (x + 1)

double log1p (double x); float log1pf (float x);

pow powf Returns x raised to the
power y

double pow (double x,
double y);

float powf (float x, float y);

rsqrt Returns the reciprocal
of the square root of x

double rsqrt (double x);

sin sinf Returns the sine of x double sin (double x); float sinf (float x);

sincos Sets *s to the sine of x
and *c to the cosine of
x

void sincos (double x,
double* s, double* c);

sinh sinhf Returns the hyperbolic
sine of x

double sinh (double x); float sinhf (float x);

sqrt Returns the square root
of x

double sqrt (double x);

tan tanf Returns the tangent of x double tan (double x); float tanf (float x);

tanh tanhf Returns the hyperbolic
tangent of x

double tanh (double x); float tanhf (float x);
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Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large
arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the ones in the libm.a
library, and they might handle edge cases differently (sqrt(Inf), for example).

v For accuracy comparisons with libm.a, see Product documentation (manuals) in
the Product support content section of the Mathematical Acceleration Subsystem
website.
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the vector libraries
If you want to explicitly call any of the MASS vector functions, you can do so by
including massv.h in your source files and linking your application with the
appropriate vector library. Information about linking is provided in “Compiling
and linking a program with MASS” on page 89.

The vector libraries shipped with XL C/C++ are listed below:

libmassv.a
The generic vector library that runs on any supported POWER® processor.
Unless your application requires this portability, use the appropriate
architecture-specific library below for maximum performance.

libmassvp8.a
Contains functions that are tuned for the POWER8 architecture.

The single-precision and double-precision floating-point functions contained in the
vector libraries are summarized in Table 23 on page 83. The integer functions
contained in the vector libraries are summarized in Table 24 on page 85. Note that
in C and C++ applications, only call by reference is supported, even for scalar
arguments.

With the exception of a few functions (described in the following paragraph), all of
the floating-point functions in the vector libraries accept three parameters:
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector output parameter
v A double-precision (for double-precision functions) or single-precision (for

single-precision functions) vector input parameter
v An integer vector-length parameter.

The functions are of the form
function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The
parameters y and x are assumed to be double-precision for functions with the
prefix v, and single-precision for functions with the prefix vs. As an example, the
following code outputs a vector y of length 500 whose elements are exp(x[i]),
where i=0,...,499:
#include <massv.h>

double x[500], y[500];
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int n;
n = 500;
...
vexp (y, x, &n);

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,
vsdiv, vssincos, vspow, and vsatan2) take four arguments. The functions vdiv,
vpow, and vatan2 take the arguments (z,x,y,n). The function vdiv outputs a vector z
whose elements are x[i]/y[i], where i=0,..,*n–1. The function vpow outputs a vector
z whose elements are x[i]y[i], where i=0,..,*n–1. The function vatan2 outputs a vector
z whose elements are atan(x[i]/y[i]), where i=0,..,*n–1. The function vsincos takes
the arguments (y,z,x,n), and outputs two vectors, y and z, whose elements are
sin(x[i]) and cos(x[i]), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the
function outputs a vector y of n __Complex elements of the form (cos(x[i]),sin(x[i])).

Table 23. MASS floating-point vector functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vacos vsacos Sets y[i] to the arc cosine
of x[i], for i=0,..,*n-1

void vacos (double y[],
double x[], int *n);

void vsacos (float y[], float
x[], int *n);

vacosh vsacosh Sets y[i] to the hyperbolic
arc cosine of x[i], for
i=0,..,*n-1

void vacosh (double y[],
double x[], int *n);

void vsacosh (float y[], float
x[], int *n);

vasin vsasin Sets y[i] to the arc sine of
x[i], for i=0,..,*n-1

void vasin (double y[],
double x[], int *n);

void vsasin (float y[], float
x[], int *n);

vasinh vsasinh Sets y[i] to the hyperbolic
arc sine of x[i], for
i=0,..,*n-1

void vasinh (double y[],
double x[], int *n);

void vsasinh (float y[], float
x[], int *n);

vatan2 vsatan2 Sets z[i] to the arc
tangent of x[i]/y[i], for
i=0,..,*n-1

void vatan2 (double z[],
double x[], double y[], int
*n);

void vsatan2 (float z[], float
x[], float y[], int *n);

vatanh vsatanh Sets y[i] to the hyperbolic
arc tangent of x[i], for
i=0,..,*n-1

void vatanh (double y[],
double x[], int *n);

void vsatanh (float y[], float
x[], int *n);

vcbrt vscbrt Sets y[i] to the cube root
of x[i], for i=0,..,*n-1

void vcbrt (double y[],
double x[], int *n);

void vscbrt (float y[], float
x[], int *n);

vcos vscos Sets y[i] to the cosine of
x[i], for i=0,..,*n-1

void vcos (double y[],
double x[], int *n);

void vscos (float y[], float
x[], int *n);

vcosh vscosh Sets y[i] to the hyperbolic
cosine of x[i], for
i=0,..,*n-1

void vcosh (double y[],
double x[], int *n);

void vscosh (float y[], float
x[], int *n);

vcosisin vscosisin Sets the real part of y[i]
to the cosine of x[i] and
the imaginary part of y[i]
to the sine of x[i], for
i=0,..,*n-1

void vcosisin (double
_Complex y[], double x[], int
*n);

void vscosisin (float
_Complex y[], float x[], int
*n);

vdint Sets y[i] to the integer
truncation of x[i], for
i=0,..,*n-1

void vdint (double y[],
double x[], int *n);
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Table 23. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vdiv vsdiv Sets z[i] to x[i]/y[i], for
i=0,..,*n–1

void vdiv (double z[],
double x[], double y[], int
*n);

void vsdiv (float z[], float
x[], float y[], int *n);

vdnint Sets y[i] to the nearest
integer to x[i], for
i=0,..,*n-1

void vdnint (double y[],
double x[], int *n);

verf vserf Sets y[i] to the error
function of x[i], for
i=0,..,*n-1

void verf (double y[], double
x[], int *n)

void vserf (float y[], float
x[], int *n)

verfc vserfc Sets y[i] to the
complementary error
function of x[i], for
i=0,..,*n-1

void verfc (double y[],
double x[], int *n)

void vserfc (float y[], float
x[], int *n)

vexp vsexp Sets y[i] to the
exponential function of
x[i], for i=0,..,*n-1

void vexp (double y[],
double x[], int *n);

void vsexp (float y[], float
x[], int *n);

vexp2 vsexp2 Sets y[i] to 2 raised to the
power of x[i], for
i=1,..,*n-1

void vexp2 (double y[],
double x[], int *n);

void vsexp2 (float y[], float
x[], int *n);

vexpm1 vsexpm1 Sets y[i] to (the
exponential function of
x[i])-1, for i=0,..,*n-1

void vexpm1 (double y[],
double x[], int *n);

void vsexpm1 (float y[],
float x[], int *n);

vexp2m1 vsexp2m1 Sets y[i] to (2 raised to
the power of x[i]) - 1, for
i=1,..,*n-1

void vexp2m1 (double y[],
double x[], int *n);

void vsexp2m1 (float y[],
float x[], int *n);

vhypot vshypot Sets z[i] to the square
root of the sum of the
squares of x[i] and y[i],
for i=0,..,*n-1

void vhypot (double z[],
double x[], double y[], int
*n);

void vshypot (float z[], float
x[], float y[], int *n);

vlog vslog Sets y[i] to the natural
logarithm of x[i], for
i=0,..,*n-1

void vlog (double y[],
double x[], int *n);

void vslog (float y[], float
x[], int *n);

vlog2 vslog2 Sets y[i] to the base-2
logarithm of x[i], for
i=1,..,*n-1

void vlog2 (double y[],
double x[], int *n);

void vslog2 (float y[], float
x[], int *n);

vlog10 vslog10 Sets y[i] to the base-10
logarithm of x[i], for
i=0,..,*n-1

void vlog10 (double y[],
double x[], int *n);

void vslog10 (float y[], float
x[], int *n);

vlog1p vslog1p Sets y[i] to the natural
logarithm of (x[i]+1), for
i=0,..,*n-1

void vlog1p (double y[],
double x[], int *n);

void vslog1p (float y[], float
x[], int *n);

vlog21p vslog21p Sets y[i] to the base-2
logarithm of (x[i]+1), for
i=1,..,*n-1

void vlog21p (double y[],
double x[], int *n);

void vslog21p (float y[],
float x[], int *n);

vpow vspow Sets z[i] to x[i] raised to
the power y[i], for
i=0,..,*n-1

void vpow (double z[],
double x[], double y[], int
*n);

void vspow (float z[], float
x[], float y[], int *n);

vqdrt vsqdrt Sets y[i] to the fourth
root of x[i], for i=0,..,*n-1

void vqdrt (double y[],
double x[], int *n);

void vsqdrt (float y[], float
x[], int *n);
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Table 23. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vrcbrt vsrcbrt Sets y[i] to the reciprocal
of the cube root of x[i],
for i=0,..,*n-1

void vrcbrt (double y[],
double x[], int *n);

void vsrcbrt (float y[], float
x[], int *n);

vrec vsrec Sets y[i] to the reciprocal
of x[i], for i=0,..,*n-1

void vrec (double y[],
double x[], int *n);

void vsrec (float y[], float
x[], int *n);

vrqdrt vsrqdrt Sets y[i] to the reciprocal
of the fourth root of x[i],
for i=0,..,*n-1

void vrqdrt (double y[],
double x[], int *n);

void vsrqdrt (float y[], float
x[], int *n);

vrsqrt vsrsqrt Sets y[i] to the reciprocal
of the square root of x[i],
for i=0,..,*n-1

void vrsqrt (double y[],
double x[], int *n);

void vsrsqrt (float y[], float
x[], int *n);

vsin vssin Sets y[i] to the sine of
x[i], for i=0,..,*n-1

void vsin (double y[],
double x[], int *n);

void vssin (float y[], float
x[], int *n);

vsincos vssincos Sets y[i] to the sine of
x[i] and z[i] to the
cosine of x[i], for
i=0,..,*n-1

void vsincos (double y[],
double z[], double x[], int
*n);

void vssincos (float y[],
float z[], float x[], int *n);

vsinh vssinh Sets y[i] to the hyperbolic
sine of x[i], for i=0,..,*n-1

void vsinh (double y[],
double x[], int *n);

void vssinh (float y[], float
x[], int *n);

vsqrt vssqrt Sets y[i] to the square
root of x[i], for i=0,..,*n-1

void vsqrt (double y[],
double x[], int *n);

void vssqrt (float y[], float
x[], int *n);

vtan vstan Sets y[i] to the tangent of
x[i], for i=0,..,*n-1

void vtan (double y[],
double x[], int *n);

void vstan (float y[], float
x[], int *n);

vtanh vstanh Sets y[i] to the hyperbolic
tangent of x[i], for
i=0,..,*n-1

void vtanh (double y[],
double x[], int *n);

void vstanh (float y[], float
x[], int *n);

Integer functions are of the form function_name (x[], *n), where x[] is a vector of
4-byte (for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integral or
floating-point), and *n is the vector length.

Table 24. MASS integer vector library functions

Function Description Prototype

vpopcnt4 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 32-bit objects.

unsigned int vpopcnt4 (void *x,
int *n)

vpopcnt8 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 64-bit objects.

unsigned int vpopcnt8 (void *x,
int *n)

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and
output vectors; that is, the two vectors do not overlap in memory. Another
common usage scenario is to call them with the same vector for both input and
output parameters (for example, vsin (y, y, &n)). Other kinds of overlap (where
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input and output vectors are neither disjoint nor identical) should be avoided,
since they might produce unexpected results:
v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, &n)):
The vectors x[0:n-1] and y[0:n-1] must be either disjoint or identical, or
unexpected results might be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,
x1, x2, &n)):
The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is,
y[0:n-1] and x1[0:n-1] must be either disjoint or identical; and y[0:n-1] and
x2[0:n-1] must be either disjoint or identical.

v For calls to vector functions that take two output vectors (for example, vsincos
(y1, y2, x, &n)):
The above restriction applies to both pairs of vectors y1,x and y2,x. That is,
y1[0:n-1] and x[0:n-1] must be either disjoint or identical; and y2[0:n-1] and
x[0:n-1] must be either disjoint or identical. Also, the vectors y1[0:n-1] and
y2[0:n-1] must be disjoint.

Alignment of input and output vectors

To get the best performance from the POWER8 vector libraries, align the input and
output vectors on 8-byte (or better, 16-byte) boundaries.

Consistency of MASS vector functions

All the functions in the MASS vector libraries are consistent, in the sense that a
given input value will always produce the same result, regardless of its position in
the vector, and regardless of the vector length.

Related information in the XL C/C++ Compiler Reference

-D
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the SIMD libraries
The MASS SIMD library libmass_simdp8.a contains a set of frequently used math
intrinsic functions that provide improved performance over the corresponding
standard system library functions. If you want to use the MASS SIMD functions,
you can do so as follows:
1. Provide the prototypes for the functions by including mass_simd.h in your

source files.
2. Link the MASS SIMD library libmass_simdp8.a with your application. For

instructions, see “Compiling and linking a program with MASS” on page 89.

The single-precision MASS SIMD functions accept single-precision arguments and
return single-precision results. Likewise, the double-precision MASS SIMD
functions accept double-precision arguments and return double-precision results.
They are summarized in Table 25 on page 87.
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Table 25. MASS SIMD functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acosd2 acosf4 Computes the arc
cosine of each element
of vx.

vector double acosd2 (vector
double vx);

vector float acosf4 (vector float
vx);

acoshd2 acoshf4 Computes the arc
hyperbolic cosine of
each element of vx.

vector double acoshd2 (vector
double vx);

vector float acoshf4 (vector float
vx);

asind2 asinf4 Computes the arc sine
of each element of vx.

vector double asind2 (vector
double vx);

vector float asinf4 (vector float
vx);

asinhd2 asinhf4 Computes the arc
hyperbolic sine of each
element of vx.

vector double asinhd2 (vector
double vx);

vector float asinhf4 (vector float
vx);

atand2 atanf4 Computes the arc
tangent of each element
of vx.

vector double atand2 (vector
double vx);

vector float atanf4 (vector float
vx);

atan2d2 atan2f4 Computes the arc
tangent of each element
of vx/vy.

vector double atan2d2 (vector
double vx, vector double vy);

vector float atan2f4 (vector float
vx, vector float vy);

atanhd2 atanhf4 Computes the arc
hyperbolic tangent of
each element of vx.

vector double atanhd2 (vector
double vx);

vector float atanhf4 (vector float
vx);

cbrtd2 cbrtf4 Computes the cube root
of each element of vx.

vector double cbrtd2 (vector
double vx);

vector float cbrtf4 (vector float
vx);

cosd2 cosf4 Computes the cosine of
each element of vx.

vector double cosd2 (vector
double vx);

vector float cosf4 (vector float
vx);

coshd2 coshf4 Computes the
hyperbolic cosine of
each element of vx.

vector double coshd2 (vector
double vx);

vector float coshf4 (vector float
vx);

cosisind2 cosisinf4 Computes the cosine
and sine of each
element of x, and stores
the results in y and z as
follows:

cosisind2 (x,y,z) sets
y and z to {cos(x1),
sin(x1)} and
{cos(x2), sin(x2)}
where x={x1,x2}.

cosisinf4 (x,y,z) sets
y and z to {cos(x1),
sin(x1), cos(x2),
sin(x2)} and
{cos(x3), sin(x3),
cos(x4), sin(x4)}
where x={x1,x2,x3,x4}.

void cosisind2 (vector double x,
vector double *y, vector double
*z)

void cosisinf4 (vector float x,
vector float *y, vector float *z)

divd2 divf4 Computes the quotient
vx/vy.

vector double divd2 (vector
double vx, vector double vy);

vector float divf4 (vector float
vx, vector float vy);
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Table 25. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

erfcd2 erfcf4 Computes the
complementary error
function of each
element of vx.

vector double erfcd2 (vector
double vx);

vector float erfcf4 (vector float
vx);

erfd2 erff4 Computes the error
function of each
element of vx.

vector double erfd2 (vector
double vx);

vector float erff4 (vector float
vx);

expd2 expf4 Computes the
exponential function of
each element of vx.

vector double expd2 (vector
double vx);

vector float expf4 (vector float
vx);

exp2d2 exp2f4 Computes 2 raised to
the power of each
element of vx.

vector double exp2d2 (vector
double vx);

vector float exp2f4 (vector float
vx);

expm1d2 expm1f4 Computes (the
exponential function of
each element of vx) - 1.

vector double expm1d2 (vector
double vx);

vector float expm1f4 (vector
float vx);

exp2m1d2 exp2m1f4 Computes (2 raised to
the power of each
element of vx) -1.

vector double exp2m1d2 (vector
double vx);

vector float exp2m1f4 (vector
float vx);

hypotd2 hypotf4 For each element of vx
and the corresponding
element of vy,
computes
sqrt(x*x+y*y).

vector double hypotd2 (vector
double vx, vector double vy);

vector float hypotf4 (vector float
vx, vector float vy);

lgammad2 lgammaf4 Computes the natural
logarithm of the
absolute value of the
Gamma function of
each element of vx .

vector double lgammad2 (vector
double vx);

vector float lgammaf4 (vector
float vx);

logd2 logf4 Computes the natural
logarithm of each
element of vx.

vector double logd2 (vector
double vx);

vector float logf4 (vector float
vx);

log2d2 log2f4 Computes the base-2
logarithm of each
element of vx.

vector double log2d2 (vector
double vx);

vector float log2f4 (vector float
vx);

log10d2 log10f4 Computes the base-10
logarithm of each
element of vx.

vector double log10d2 (vector
double vx);

vector float log10f4 (vector float
vx);

log1pd2 log1pf4 Computes the natural
logarithm of each
element of (vx +1).

vector double log1pd2 (vector
double vx);

vector float log1pf4 (vector float
vx);

log21pd2 log21pf4 Computes the base-2
logarithm of each
element of (vx +1).

vector double log21pd2 (vector
double vx);

vector float log21pf4 (vector
float vx);

powd2 powf4 Computes each element
of vx raised to the
power of the
corresponding element
of vy.

vector double powd2 (vector
double vx, vector double vy);

vector float powf4 (vector float
vx, vector float vy);
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Table 25. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

qdrtd2 qdrtf4 Computes the quad
root of each element of
vx.

vector double qdrtd2 (vector
double vx);

vector float qdrtf4 (vector float
vx);

rcbrtd2 rcbrtf4 Computes the
reciprocal of the cube
root of each element of
vx.

vector double rcbrtd2 (vector
double vx);

vector float rcbrtf4 (vector float
vx);

recipd2 recipf4 Computes the
reciprocal of each
element of vx.

vector double recipd2 (vector
double vx);

vector float recipf4 (vector float
vx);

rqdrtd2 rqdrtf4 Computes the
reciprocal of the quad
root of each element of
vx.

vector double rqdrtd2 (vector
double vx);

vector float rqdrtf4 (vector float
vx);

rsqrtd2 rsqrtf4 Computes the
reciprocal of the square
root of each element of
vx.

vector double rsqrtd2 (vector
double vx);

vector float rsqrtf4 (vector float
vx);

sincosd2 sincosf4 Computes the sine and
cosine of each element
of vx.

void sincosd2 (vector double vx,
vector double *vs, vector double
*vc);

void sincosf4 (vector float vx,
vector float *vs, vector float *vc);

sind2 sinf4 Computes the sine of
each element of vx.

vector double sind2 (vector
double vx);

vector float sinf4 (vector float
vx);

sinhd2 sinhf4 Computes the
hyperbolic sine of each
element of vx.

vector double sinhd2 (vector
double vx);

vector float sinhf4 (vector float
vx);

sqrtd2 sqrtf4 Computes the square
root of each element of
vx.

vector double sqrtd2 (vector
double vx);

vector float sqrtf4 (vector float
vx);

tand2 tanf4 Computes the tangent
of each element of vx.

vector double tand2 (vector
double vx);

vector float tanf4 (vector float
vx);

tanhd2 tanhf4 Computes the
hyperbolic tangent of
each element of vx.

vector double tanhd2 (vector
double vx);

vector float tanhf4 (vector float
vx);

Compiling and linking a program with MASS
To compile an application that calls the functions in the following MASS libraries,
specify the corresponding library names on the -l link option.

Table 26. The scalar, vector, and SIMD MASS library

MASS library Library name

Scalar library mass

Vector library massv or massvp8

SIMD library mass_simdp8

For example, if the MASS libraries are installed in the default directory, you can
use one of the following commands:
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Link object file progc with scalar library libmass.a and vector library libmassv.a 
xlc progc.c -o progc -lmass -lmassv

Link object file progc with SIMD library libmass_simdp8.a
xlc progc.c -o progc -lmass_simdp8

Using libmass.a with the math system library
If you want to use the libmass.a scalar library for some functions and the normal
math library libm.a for other functions, follow this procedure to compile and link
your program:
1. Use the ar command to extract the object files of the wanted functions from

libmass.a. For most functions, the object file name is the function name
followed by .s64.o.1 For example, to extract the object file for the tan function,
the command would be:
ar -x tan.s64.o libmass.a

2. Archive the extracted object files into another library:
ar -qv libfasttan.a tan.s64.o
ranlib libfasttan.a

3. Create the final executable using xlc, specifying -lfasttan instead of -lmass:
xlc sample.c -o sample -Ldir_containing_libfasttan -lfasttan

This links only the tan function from MASS (now in libfasttan.a) and the
remainder of the math functions from the standard system library.

Exceptions:

1. The sin and cos functions are both contained in the object file sincos.s64.o. The
cosisin and sincos functions are both contained in the object file cosisin.s64.o.

2. The XL C/C++ pow function is contained in the object file dxy.s64.o.

Note: The cos and sin functions will both be exported if either one is exported.
cosisin and sincos will both be exported if either one is exported.

Using the Basic Linear Algebra Subprograms – BLAS
Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with the XL
C/C++ compiler in the libxlopt library. The functions consist of the following:
v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product for a general matrix or its transpose
v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes

Because the BLAS routines are written in Fortran, all parameters are passed to
them by reference and all arrays are stored in column-major order.

Note: Some error-handling code has been removed from the BLAS functions in
libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” on page 91 describes the prototypes and parameters for
the XL C/C++ BLAS functions. The interfaces for these functions are similar to
those of the equivalent BLAS functions shipped in IBM's Engineering and Scientific
Subroutine Library (ESSL); for more information and examples of usage of these
functions, see Engineering and Scientific Subroutine Library Guide and Reference,
available at the Engineering and Scientific Subroutine Library (ESSL) and Parallel
ESSL web page.
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“Linking the libxlopt library” on page 93 describes how to link to the XL C/C++
libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax
The prototypes for the sgemv and dgemv functions are as follows:
void sgemv(const char *trans, int *m, int *n, float *alpha,

void *a, int *lda, void *x, int *incx,
float *beta, void *y, int *incy);

void dgemv(const char *trans, int *m, int *n, double *alpha,
void *a, int *lda, void *x, int *incx,
double *beta, void *y, int *incy);

The parameters are as follows:

trans
is a single character indicating the form of input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in computation

m represents:
v the number of rows in input matrix a
v the length of vector y, if ’N’ or ’n’ is used for the trans parameter
v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

The number of rows must be greater than or equal to zero, and less than the
leading dimension of matrix a (specified in lda)

n represents:
v the number of columns in input matrix a
v the length of vector x, if ’N’ or ’n’ is used for the trans parameter
v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix of float (for sgemv) or double (for dgemv) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. The leading dimension must be greater than or
equal to 1 and greater than or equal to the value specified in m.

x is the input vector of float (for sgemv) or double (for dgemv) values.

incx
is the stride for vector x. It can have any value.

beta
is the scaling constant for vector y

y is the output vector of float (for sgemv) or double (for dgemv) values.

incy
is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;
otherwise, the results are unpredictable.
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The prototypes for the sgemm and dgemm functions are as follows:
void sgemm(const char *transa, const char *transb,

int *l, int *n, int *m, float *alpha,
const void *a, int *lda, void *b, int *ldb,
float *beta, void *c, int *ldc);

void dgemm(const char *transa, const char *transb,
int *l, int *n, int *m, double *alpha,
const void *a, int *lda, void *b, int *ldb,
double *beta, void *c, int *ldc);

The parameters are as follows:

transa
is a single character indicating the form of input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in computation

transb
is a single character indicating the form of input matrix b, where:
v ’N’ or ’n’ indicates that b is to be used in computation
v ’T’ or ’t’ indicates that the transpose of b is to be used in computation

l represents the number of rows in output matrix c. The number of rows must
be greater than or equal to zero, and less than the leading dimension of c.

n represents the number of columns in output matrix c. The number of columns
must be greater than or equal to zero.

m represents:
v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter
v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:
v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter
v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix a of float (for sgemm) or double (for dgemm) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. If transa is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 1. If transa is specified as ’T’ or
’t’, the leading dimension must be greater than or equal to the value specified
in m.

b is the input matrix b of float (for sgemm) or double (for dgemm) values.

ldb
is the leading dimension of the array specified by b. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to the value specified in m. If transa is
specified as ’T’ or ’t’, the leading dimension must be greater than or equal to
the value specified in n.
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beta
is the scaling constant for matrix c

c is the output matrix c of float (for sgemm) or double (for dgemm) values.

ldc
is the leading dimension of the array specified by c. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 0 and greater than or equal to the
value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,
the results are unpredictable.

Linking the libxlopt library
By default, the libxlopt library is linked with any application that you compile
with the XL C/C++ compiler. However, if you are using a third-party BLAS library
but want to use the BLAS routines shipped with libxlopt, you must specify the
libxlopt library before any other BLAS library on the command line at link time.
For example, if your other BLAS library is called libblas.a, you would compile
your code with the following command:
xlc app.c -lxlopt -lblas

The compiler will call the sgemv, dgemv, sgemm, and dgemm functions from the
libxlopt library and all other BLAS functions in the libblas.a library.
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Chapter 10. Parallelizing your programs

The compiler offers you the following methods of implementing shared memory
program parallelization:
v Automatic parallelization of countable program loops, which are defined in

“Countable loops.” An overview of the compiler's automatic parallelization
capabilities is provided in “Enabling automatic parallelization” on page 97.

v Explicit parallelization of C and C++ program code using pragma directives
compliant to the OpenMP Application Program Interface specification. An
overview of the OpenMP directives is provided in “Using OpenMP directives”
on page 99.

All methods of automatic program parallelization and optimization are enabled
when the -qsmp option is in effect while the omp suboption is not. You can
parallelize only program code that is explicitly annotated with OpenMP directives
with the -qsmp=omp compiler option, but doing so disables automatic
parallelization.

Parallel regions of program code are executed by multiple threads, possibly
running on multiple processors. The number of threads created is determined by
environment variables and calls to library functions. Work is distributed among
available threads according to scheduling algorithms specified by the environment
variables. For any of the methods of parallelization, you can use the XLSMPOPTS
environment variable and its suboptions to control thread scheduling; for more
information about this environment variable, see XLSMPOPTS in the XL C/C++
Compiler Reference. If you are using OpenMP constructs, you can use the OpenMP
environment variables to control thread scheduling; for information about OpenMP
environment variables, see OpenMP environment variables for parallel processing in the
XL C/C++ Compiler Reference. For more information about OpenMP built-in
functions, see Built-in functions for parallel processing in the XL C/C++ Compiler
Reference.

For details about the OpenMP constructs, environment variables, and runtime
routines, refer to the OpenMP Application Program Interface Specification, available at
http://www.openmp.org.
Related information:
“Using shared-memory parallelism (SMP)” on page 35

Related information in the XL C/C++ Compiler Reference

XLSMPOPTS

OpenMP environment variables for parallel processing
Related external information

OpenMP Application Program Interface Language Specification, available at
http://www.openmp.org

Countable loops

Loops are considered to be countable if they take any of the following forms:
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Countable for loop syntax with single statement

►► for ( ; exit_condition ; increment_expression )
iteration_variable

►

► statement ►◄

Countable for loop syntax with statement block

►► for ( ; )
iteration_variable expression

►

► { increment_expression }
declaration_list statement_list statement_list

►◄

Countable while loop syntax

►► while ( exit_condition ) ►

► { increment_expression }
declaration_list statement_list

►◄

Countable do while loop syntax

►► do { increment_expression } while ( exit_condition )
declaration_list statement_list

►◄

The following definitions apply to these syntax diagrams:

iteration_variable
is a signed integer that has either automatic or register storage class, does not
have its address taken, and is not modified anywhere in the loop except in the
increment_expression.

exit_condition
takes the following form:

increment_variable <= expression
<
>=
>

where expression is a loop-invariant signed integer expression. expression cannot
reference external or static variables, pointers or pointer expressions, function
calls, or variables that have their address taken.

increment_expression
takes any of the following forms:
v ++iteration_variable

v --iteration_variable

v iteration_variable++
v iteration_variable--
v iteration_variable += increment

v iteration_variable -= increment

v iteration_variable = iteration_variable + increment

v iteration_variable = increment + iteration_variable
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v iteration_variable = iteration_variable - increment

where increment is a loop-invariant signed integer expression. The value of the
expression is known at run time and is not 0. increment cannot reference
external or static variables, pointers or pointer expressions, function calls, or
variables that have their address taken.

Enabling automatic parallelization
The compiler can automatically locate and parallelize all countable loops where
possible in your program code. A loop is considered to be countable if it has any
of the forms shown in “Countable loops” on page 95, and:
v There is no branching into or out of the loop.
v The increment_expression is not within a critical section.

In general, a countable loop is automatically parallelized only if all of the following
conditions are met:
v The order in which loop iterations start or end does not affect the results of the

program.
v The loop does not contain I/O operations.
v Floating point reductions inside the loop are not affected by round-off error,

unless the -qnostrict option is in effect.
v The -qnostrict_induction compiler option is in effect.
v The -qsmp=auto compiler option is in effect.

Data sharing attribute rules
The rules of data sharing attributes determine the attributes of variables that are
referenced in parallel and task directives, and worksharing regions.

Data sharing attribute rules for variables referenced in a
construct

The data sharing attributes of variables that are referenced in a construct can be
classified into the following categories:
v Predetermined data sharing attributes
v Explicitly determined data sharing attributes
v Implicitly determined data sharing attributes

Specifying a variable in a firstprivate, lastprivate, or reduction clause of an
enclosed construct initiates an implicit reference to the variable in the enclosing
construct. Such implicit references also follow the data sharing attribute rules.

Some variables and objects have predetermined data sharing attributes as follows:
v Variables that are specified in threadprivate directives are threadprivate.
v Variables with automatic storage duration that are declared in a scope inside the

construct are private.
v Objects with dynamic storage duration are shared.
v Static data members are shared.
v The loop iteration variables in the associated for loops of a for or parallel for

construct are private.
v Variables with const-qualified types are shared if they have no mutable member.
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v For variables with static storage duration, if they are declared in a scope inside
the construct, they are shared.

Variables with predetermined data sharing attributes cannot be specified in data
sharing attribute clauses. However, in the following situations, specifying a
predetermined variable in a data sharing attribute clause is allowed and overrides
the predetermined data sharing attributes of the variable.
v The loop iteration variables in the associated for loops of a for or parallel for

construct can be specified in a private or lastprivate clause.
v For variables with const-qualified type, if they have no mutable member, they

can be specified in a firstprivate clause.

Variables that meet the following conditions have explicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables are specified in a data sharing attribute clause on the construct.

Variables that meet all the following conditions have implicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables do not have predetermined data sharing attributes.
v The variables are not specified in a data sharing attribute clause on the

construct.

For variables that have implicitly determined data sharing attributes, the rules are
as follows:
v In a parallel or task construct, the data sharing attributes of the variables are

determined by the default clause, if present.
v In a parallel construct, if no default clause is present, the variables are shared.
v For constructs other than task, if no default clause is present, the variables

inherit their data sharing attributes from the enclosing context.
v In a task construct, if no default clause is present, variables that are determined

to be shared in the enclosing context by all implicit tasks bound to the current
team are shared.

v In a task construct, if no default clause is present, variables whose data sharing
attributes are not determined by the rules above are firstprivate.

Data sharing attribute rules for variables referenced in a region
but not in a construct

The data sharing attributes of variables that are referenced in a region, but not in a
construct, are determined as follows:
v If variables with static storage duration are declared in called routines in the

region, the variables are shared.
v Variables with const-qualified types are shared if they have no mutable member

and are declared in called routines.
v File-scope or namespace-scope variables referenced in called routines in the

region are shared unless they are specified in a threadprivate directive.
v Objects with dynamic storage duration are shared.
v Static data members are shared unless they are specified in a threadprivate

directive.
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v The formal arguments of called routines in the region that are passed by
reference inherit the data sharing attributes of the associated actual arguments.

v Other variables declared in called routines in the region are private.

Using OpenMP directives
OpenMP directives exploit shared memory parallelism by defining various types of
parallel regions. Parallel regions can include both iterative and non-iterative
segments of program code.

The purposes of the #pragma omp pragmas fall into these general categories:
1. Defines parallel regions in which work is done by threads in parallel (#pragma

omp parallel). Most of the OpenMP directives either statically or dynamically
bind to an enclosing parallel region.

2. Defines how work is distributed or shared across the threads in a parallel
region (#pragma omp sections, #pragma omp for, #pragma omp single,
#pragma omp task).

3. Controls synchronization among threads (#pragma omp atomic, #pragma omp
master, #pragma omp barrier, #pragma omp critical, #pragma omp flush,
#pragma omp ordered) .

4. Defines the scope of data visibility across parallel regions within the same
thread (#pragma omp threadprivate).

5. Controls synchronization (#pragma omp taskwait, #pragma omp barrier).
6. Controls data or computation that is on another computing device.

OpenMP directive syntax

►► ▼

,

#pragma omp pragma_name
clause

statement_block ►◄

Adding certain clauses to the #pragma omp pragmas can fine tune the behavior of
the parallel or work-sharing regions. For example, a num_threads clause can be
used to control a parallel region pragma.

The #pragma omp pragmas generally appear immediately before the section of
code to which they apply. The following example defines a parallel region in
which iterations of a for loop can run in parallel:
#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++)

...
}

This example defines a parallel region in which two or more non-iterative sections
of program code can run in parallel:
#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

structured_block_1
...
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#pragma omp section
structured_block_2

...
....

}
}

For a pragma-by-pragma description of the OpenMP directives, refer to Pragma
directives for parallel processing in the XL C/C++ Compiler Reference.

Related information in the XL C/C++ Compiler Reference

Pragma directives for parallel processing

OpenMP built-in functions

OpenMP environment variables for parallel processing

Shared and private variables in a parallel environment
Some OpenMP clauses let you specify visibility context for selected data variables.
A brief summary of data scope attribute clauses are listed below:

Data scope
attribute clause

Description

private The private clause declares the variables in the list to be private to
each thread in a team.

firstprivate The firstprivate clause provides a superset of the functionality
provided by the private clause. The private variable is initialized by
the original value of the variable when the parallel construct is
encountered.

lastprivate The lastprivate clause provides a superset of the functionality
provided by the private clause. The private variable is updated after
the end of the parallel construct.

shared The shared clause declares the variables in the list to be shared among
all the threads in a team. All threads within a team access the same
storage area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that
appear in the list, with a specified operator.

default The default clause allows the user to affect the data-sharing attribute
of the variables appeared in the parallel construct.

For more information, see the OpenMP directive descriptions in "Pragma directives
for parallel processing" in the XL C/C++ Compiler Reference. You can also refer to
the OpenMP Application Program Interface Language Specification, which is available
at http://www.openmp.org.

Related information in the XL C/C++ Compiler Reference

Pragma directives for parallel processing

100 XL C/C++: Optimization and Programming Guide for Little Endian Distributions

http://www.openmp.org


Reduction operations in parallelized loops
The compiler can recognize and properly handle most reduction operations in a
loop during both automatic and explicit parallelization. In particular, it can handle
reduction statements that have either of the following forms:

►► variable = variable + expression
-
*
^
|
&

►◄

►► variable += expression
-=
*=
^=
|=
&=

►◄

where:

variable
is an identifier designating an automatic or register variable that does not have
its address taken and is not referenced anywhere else in the loop, including all
loops that are nested. For example, in the following code, only S in the nested
loop is recognized as a reduction:
int i,j, S=0;
for (i= 0 ;i < N; i++) {

S = S+ i;
for (j=0;j< M; j++) {

S = S + j;
}

}

expression
is any valid expression.

OpenMP directives provide you with mechanisms to specify reduction variables
explicitly.
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Chapter 11. Offloading computations to the NVIDIA GPUs

The combination of the IBM POWER processors and the NVIDIA GPUs provides a
platform for heterogeneous high-performance computing that can run several
technical computing workloads efficiently. The computational capability is built on
top of massively parallel and multithreaded cores within the NVIDIA GPUs and
the IBM POWER processors. You can offload parallel operations within
applications, such as data analysis or high-performance computing workloads, to
GPUs.

System prerequisites

To compile and link programs that contain code to be offloaded to the NVIDIA
GPUs with IBM XL C/C++ for Linux, you must ensure the following operating
system, hardware, and software requirements are met.
v Use any IBM Power Systems™ server that has one or more NVIDIA GPUs

installed and is supported by your Linux operating system distribution and the
NVIDIA CUDA Toolkit.

v Use the supported little endian operating system.
v Install NVIDIA CUDA Toolkit 8.0.

For more information, see topic System prerequisites to offload computations to the
NVIDIA GPUs in the XL C/C++ Installation Guide.

Programming with supported OpenMP 4.5 device constructs

IBM XL C/C++ for Linux, V13.1.5 partially supports the OpenMP Application
Program Interface Version 4.5 specification. You can offload compute-intensive
parts of an application and associated data to the NVIDIA GPUs by using the
following supported device constructs.
v omp target data

v omp target enter data

v omp target exit data

v omp target

v omp target update

v omp declare target

v omp teams

v omp distribute

v omp distribute parallel for

For example, you can use the omp target directive to define a target region, which
is a block of computation that operates within a distinct data environment and is
intended to be offloaded onto a parallel computation device during execution. For
more information about the OpenMP directives, see topic Pragma directives for
parallel processing in the XL C/C++ Compiler Reference.

You can also use other OpenMP constructs with these OpenMP device constructs
to exert finer control on parallelization, such as the combined constructs that are
listed in topic Combined constructs in the XL C/C++ Compiler Reference.
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You must specify the -qoffload option to enable the support for offloading
OpenMP target regions to NVIDIA GPUs. For -qoffload to take effect, you must
also specify the -qsmp option to enable support for OpenMP target regions. For
more information, see topic -qoffload in the XL C/C++ Compiler Reference.

You can also use the XLSMPOPTS=target={mandatory | optional | disable}
environment variable to control which device to execute target regions on. For
more information, see topic XLSMPOPTS in the XL C/C++ Compiler Reference.

You can also use the supported runtime functions, for example, to query the target
environment or to manage device memory.

Table 27. Some useful OpenMP runtime functions for offloading computations to the NVIDIA
GPUs

To query the target environment To manage device memory

v omp_get_default_device

v omp_get_initial_device

v omp_get_num_devices

v omp_get_num_teams

v omp_get_team_num

v omp_is_initial_device

v omp_target_alloc

v omp_target_associate_ptr

v omp_target_disassociate_ptr

v omp_target_free

v omp_target_is_present

v omp_target_memcpy

For more information about OpenMP runtime functions, see topic OpenMP
runtime functions for parallel processing in the XL C/C++ Compiler Reference.

Using IBM XL C/C++ for Linux with NVCC

The NVIDIA CUDA C++ compiler (NVCC) from the NVIDIA CUDA Toolkit
partitions C/C++ source code into host and device portions. You can use IBM XL
C/C++ for Linux as the host compiler for the POWER processor with NVCC 7.5 or
8.0. For more information, see the NVIDIA CUDA on IBM POWER8: Technical
overview, software installation, and application development downloadable from
http://www.redbooks.ibm.com/redpapers/pdfs/redp5169.pdf.

Limitation caused by warp divergence and thread dependency
When the control path among two or more CUDA threads in the same warp
diverges, these CUDA threads are serialized. IBM XL C/C++ for Linux generates
one CUDA thread for each OpenMP thread. As a result, suppose thread A and B
are two OpenMP threads, the program might hang if the progress of thread A
depends on thread B performing some action, and if thread A executes first while
thread B stalls because of warp divergence.

Warp divergence occurs when two threads of the same warp diverge in their
execution due to a branch instruction, where one thread branches and the other
does not. This leads to serialization of the two threads by the CUDA hardware
until their execution path converges again.

The following two examples demonstrate the problem:

Example 1
int omp_get_thread_num();

int main() {
#pragma omp target
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{
int i = 0;
#pragma omp parallel
{

if (omp_get_thread_num() == 0) { // threadIdx.x 0 takes this path.
#pragma omp atomic
i++;

}
else { // The other threads take this path.
int local_i;
do {

#pragma omp atomic read
local_i = i;

} while (local_i == 0);
}

}
}

}

Example 2
int main() {

#pragma omp target
{
int i = 0;
#pragma omp parallel
#pragma omp sections
{

#pragma omp section // threadIdx.x 0 executes this section.
#pragma omp atomic
i++;

#pragma omp section // threadIdx.x 1 executes this section.
{
int local_i;
do {

#pragma omp atomic read
local_i = i;

} while (local_i == 0);
}

}
}

}
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Chapter 12. Vector element order toggling

To consistently use the instructions generated by vector built-in functions, users
need to make all existing Vector Multimedia Extension (VMX) and Vector Scalar
Extension (VSX) load and store built-in functions operate on the vectors in registers
in the same vector element order, either little endian or big endian element order.

Vector element order

The -qaltivec and -maltivec options affect the vector element order only in
registers when the vectors are operated by a specific set of functions. In registers,
the vector layout differs when the computer loads the vector in either big endian
element order or little endian element order.

Note: To use the built-in functions enabled by the -maltivec option, you must
explicitly code #include <altivec.h> in your program. Conversely, the -qaltivec
option implicitly includes the altivec.h header file.

Big endian element order
Vectors are laid out in vector registers from left to right, so that element 0
is the leftmost element in the register.

Little endian element order
Vectors are laid out in vector registers from right to left, so that element 0
is the rightmost element in the register.

For more information, see “Example: Vector layout in the memory and register” on
page 108.

Rules for vector element order toggling

The vector element order is toggled in registers by following these rules:
v Neither the -qaltivec option nor the -maltivec option affects the vector element

order in memory, where the vector elements are always stored in big endian
element order.
For example, in memory, neither the -qaltivec option nor the -maltivec option
affects the vector initialization. The vectors initialized by the union with the
non-vectors (such as arrays) are always in big endian element order in memory.
When the initialized vector is loaded to registers, the vector element order is
always reversed to little endian element order in registers even when
-qaltivec=be or -maltivec=be. However, if the vector loading is realized by
using the vector built-in function, the vector element order is arranged with
respect to the -qaltivec and -maltivec options.
The previous rules apply to the vector literals as well. The vector literals are
stored always in big endian element order in the memory. When the vector
literals are loaded to registers, the vector element order is always reversed to
little endian element order in registers.

v When -qaltivec=le or -maltivec=le is in effect, the behaviours of functions are
as follows:
– The VMX and VSX load built-in functions load vectors to registers in little

endian element order.
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– The VMX and VSX store built-in functions assume that the vectors to be
stored are in little endian element order in registers.

– The nonload and nonstore built-in functions assume that vectors are loaded in
registers in little endian element order.

v When -qaltivec=be or -maltivec=be is in effect, these functions operate on the
vectors in an opposite way of -qaltivec=le or -maltivec=le. The vectors in
registers are in big endian element order.

v Regardless of the -qaltivecor the -maltivec option, the vec_xl_be function
loads vectors to registers always in big endian element order and the vec_xst_be
function assumes that vectors to be stored are always in big endian element
order in registers.

For more information, see “Example: The vector built-in functions affected by the
-qaltivec option” on page 109 and “Example: The vector initialization by using the
union with arrays” on page 109.

Example: Vector layout in the memory and register

The following example gets the first element of vector va by calling the vec_extract
function. The function returning value is different based on the -qaltivec option
that determines whether vec_extract arranges the vector elements in big endian or
little endian element order.
int get_first_element(va)

{
vector signed int va;
printf("%i\n", vec_extract(va, 0));
//vec_extract is affected by the -qaltivec option
}

The following tables show the vector layout in the memory and the register.

Table 28. Vector layout in the memory

Vector element
value

E0 E1 E2 E3

v When -qaltivec=be, the vector elements are loaded to registers in big endian
element order and vector layout looks as follows.

Table 29. Vector layout in big endian element order

Vector element
number

0 1 2 3

Vector element
value

E0 E1 E2 E3

The elements of vector va are ordered from the first to last, and stored from the
left of registers. The get_first_element function gets the first element E0 from the
left of registers.

v When -qaltivec=le, the vector elements are loaded to registers in little endian
element order and vector layout looks as follows.

Table 30. Vector layout in little endian element order

Vector element
number

3 2 1 0

Vector element
value

E3 E2 E1 E0
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The elements of vector va are ordered from the last to first, and also stored from
the left of registers. The get_first_element function gets the first element E0 from
the right of registers.

Example: The vector built-in functions affected by the -qaltivec
option

The following program vec_xlw4.C shows that the vec_xlw4 function loads the
vector elements in registers in the order specified by the -qaltivec option.
int main()
{

vector signed int a4;
int c4[4] = {0,1,2,3};
a4 = vec_xlw4(0, c4);
//vec_xlw4 is affected by the -qaltivec option
printf("%i %i %i %i\n", a4[0], a4[1], a4[2], a4[3]);

}

v Compile the program with -qaltivec=be by running the following command:
xlC vec_xlw4.C -qaltivec=be

Ouput:
0 1 2 3

v Compile the program with -qaltivec=le by running the following command:
xlC vec_xlw4.C -qaltivec=le

Ouput:
0 1 2 3

Example: The vector initialization by using the union with arrays

The following program example vec_equiv.C contains the vectors initialization by
using the union with arrays. The vector loading is not affected by the -qaltivec
option and is loaded to registers always in little endian element order. Therefore,
the vector elements extracted by vec_extract function are different between
-qaltivec=be and -qaltivec=le .
int main()
{

union {
vector signed int a4;
int c4[4];

};

//In the memory, the vector initialization (by using the union)
//is not affected by the -qaltivec option and the vector is stored in
//big endian element order. Then, the initialized vector is loaded
//in registers by being reveresed to the little endian element order.

c4[0] = 0; c4[1] = 1; c4[2] = 2; c4[3] = 3;
for (int i=0;i<4;i++)
printf("%i ", vec_extract(a4,i));
//vect_extract is affected by the -qaltivec option

printf("\n");
}

v Compile the codes with -qaltivec=le by running the following command:
xlC vec_equiv.C -qaltivec=le

Ouput:
0 1 2 3

v Compile the program with -qaltivec=be by running the following command:
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xlC vec_equiv.C -qaltivec=be

Ouput:
3 2 1 0

The compilation result is different from that of compilation with -qaltivec=le.
Related information:

-qaltivec

Supported GCC options

Program migration from big endian systems
When migrating the programs that contain the Vector Multimedia Extension (VMX)
and Vector Scalar Extension (VSX) built-in functions from big endian systems, you
can use -qaltivec=be or -maltivec=be to minimize program changes, but you need
to pay attention in specific cases.

The following table shows what users need to pay attention when migrating code
from big endian systems by using -qaltivec=be or -maltivec=be.

Table 31. Attention when -qaltivec=be and -maltivec=be

Case Attention

If the existing program contains
only VMX load and store built-in
functions

Using -qaltivec=be or -maltivec=be may affect the
program performance; using -qaltivec=le or
-maltivec=le may affect the performance in different
ways.

If the existing program contains
only VSX load and store built-in
functions

In the existing programs, you can use the vec_xl and
vec_xst functions to replace the VSX load and store
built-in functions to maximally simplify the code
changes.

If the existing program contains
both VMX and VSX load and
store built-in functions

You need to pay attention to the differences of the
element order of vectors that are operated by the VMX
and VSX built-in functions in little endian systems.

If the existing program contains
the vector initialization by using
union with arrays

You need to use the vec_ld or vec_xl function to load
the vectors explicitly, instead of using the union with
arrays, or you can reverse the element order of the
array used for vector initialization.

Vector literals Based on the meaning and usage of vector literals, the
user must change the code properly.

Related information:

-qaltivec

Supported GCC options

Vector built-in functions
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Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for Linux.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
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websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
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platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2016.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

NVIDIA and CUDA are either registered trademarks or trademarks of NVIDIA
Corporation in the United States, other countries, or both.
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UNIX is a registered trademark of The Open Group in the United States and other
countries.
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