
IBM XL C/C++ for AIX, V13.1.3

Optimization and Programming Guide
Version 13.1.3

SC27-4261-02

IBM

IBM XL C/C++ for AIX, V13.1.3

Optimization and Programming Guide
Version 13.1.3

SC27-4261-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 187.

First edition

This edition applies to IBM XL C/C++ for AIX, V13.1.3 (Program 5765-J07; 5725-C72) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document vii
Who should read this document vii
How to use this document vii
How this document is organized vii
Conventions viii
Related information xii

IBM XL C/C++ information xii
Standards and specifications xiii
Other IBM information xiv
Other information xiv

Technical support xiv
How to send your comments xiv

Chapter 1. Using 32-bit and 64-bit
modes 1
Assigning long values 2

Assigning constant values to long variables . . . 2
Bit-shifting long values 3

Assigning pointers 3
Aligning aggregate data 4
Calling Fortran code 4

Chapter 2. Using XL C/C++ with Fortran 7
Identifiers 7
Corresponding data types 8
Character and aggregate data 10
Function calls and parameter passing 11
Pointers to functions 11
Sample program: C/C++ calling Fortran. 11

Chapter 3. Aligning data 13
Using alignment modes 13

Alignment of aggregates 15
Alignment of bit-fields. 18

Using alignment modifiers 19

Chapter 4. Handling floating-point
operations 23
Floating-point formats 23
Handling multiply-and-add operations 24
Compiling for strict IEEE conformance 24
Handling floating-point constant folding and
rounding 25

Matching compile-time and runtime rounding
modes 25
Rounding modes and standard library functions 26

Handling floating-point exceptions 27
Compiling a decimal floating-point program . . . 28

Chapter 5. Using memory heaps. . . . 29
Managing memory with multiple heaps 29

Functions for managing user-created heaps . . . 30
Creating a heap 31
Expanding a heap 32

Using a heap 33
Getting information about a heap 34
Closing and destroying a heap 34
Changing the default heap used in a program . . 35
Compiling and linking a program with
user-created heaps 35
Example of a user heap with regular memory . . 35

Debugging memory heaps 36
Functions for checking memory heaps 37
Functions for debugging memory heaps 37
Using memory allocation fill patterns. 39
Skipping heap checking 39
Using stack traces 40

Chapter 6. Constructing a library . . . 41
Compiling and linking a library 41

Compiling a static library. 41
Compiling a shared library 41
Exporting symbols with the CreateExportList
utility 44
Linking a library to an application. 44
Linking a shared library to another shared library 45

Initializing static objects in libraries (C++) 45
Assigning priorities to objects 45
Order of object initialization across libraries . . 47

Dynamically loading a shared library. 50
Loading and initializing a module with the
loadAndInit function 50
Terminating and unloading a module with the
terminateAndUnload function 52

Chapter 7. Replacing operator new and
operator delete in applications that use
shared libraries (C++) 53

Chapter 8. Using the C++ utilities . . . 55
Demangling compiled C++ names 55

Demangling compiled C++ names with c++filt 55
Demangling compiled C++ names with the
demangle class library 56

Creating a shared library with the
makeC++SharedLib utility 58
Linking with the linkxlC utility 60

Chapter 9. Optimizing your applications 61
Distinguishing between optimization and tuning . . 61
Steps in the optimization process 62
Basic optimization 62

Optimizing at level 0 62
Optimizing at level 2 63

Advanced optimization 64
Optimizing at level 3 65
An intermediate step: adding -qhot suboptions at
level 3 66

© Copyright IBM Corp. 1996, 2015 iii

Optimizing at level 4 66
Optimizing at level 5 67

Tuning for your system architecture 68
Getting the most out of target machine options 69

Using high-order loop analysis and transformations 70
Getting the most out of -qhot 71

Using shared-memory parallelism (SMP) 72
Getting the most out of -qsmp 73

Using interprocedural analysis 74
Getting the most from -qipa 76

Using profile-directed feedback 77
Viewing profiling information with showpdf . . 80
Object level profile-directed feedback 83

Handling table of contents (TOC) overflow 84
Options for reducing the number of global
symbols 85
Options for enlarging the TOC access range . . 85
Performance considerations of handling TOC
overflow 86

Marking variables as local or imported 87
Getting the most out of -qdatalocal 88

Using compiler reports to diagnose optimization
opportunities 89

Parsing compiler reports with development tools 91
Other optimization options 91

Chapter 10. Debugging optimized code 95
Detecting errors in code 96
Understanding different results in optimized
programs 97
Debugging in the presence of optimization 98
Using -qoptdebug to help debug optimized
programs 99

Chapter 11. Coding your application
to improve performance. 103
Finding faster input/output techniques. 103
Reducing function-call overhead 103
Managing memory efficiently (C++ only) 105
Optimizing variables 105
Manipulating strings efficiently 106
Optimizing expressions and program logic . . . 107
Optimizing operations in 64-bit mode 107
Tracing functions in your code 108
Using C++ templates 112

Using the -qtempinc compiler option 114
Using the -qtemplateregistry compiler option 116
Using explicit instantiation declarations (C++11) 117

Using delegating constructors (C++11) 118
Using rvalue references (C++11) 119
Using visibility attributes (IBM extension) 122

Types of visibility attributes 123
Rules of visibility attributes 125
Propagation rules (C++ only) 131
Specifying visibility attributes using the
-qvisibility option 133
Specifying visibility attributes using pragma
preprocessor directives 133

Chapter 12. Using the high
performance libraries 137
Using the Mathematical Acceleration Subsystem
(MASS) libraries 137

Using the scalar library 138
Using the vector libraries 140
Using the SIMD libraries 146
Compiling and linking a program with MASS 149

Using the Basic Linear Algebra Subprograms –
BLAS 150

BLAS function syntax 150
Linking the libxlopt library 152

Chapter 13. Parallelizing your
programs 155
Countable loops 156
Enabling automatic parallelization 157
Using IBM SMP directives (C only) 157
Data sharing attribute rules. 158
Using OpenMP directives 160
Shared and private variables in a parallel
environment. 161
Reduction operations in parallelized loops. . . . 163

Chapter 14. Selecting the standard
allocation method to suit performance
(C++) 165

Chapter 15. Ensuring thread safety
(C++) 167
Ensuring thread safety of template objects 167
Ensuring thread safety of stream objects 167

Chapter 16. Memory debug library
functions 169
Memory allocation debug functions 169

_debug_calloc — Allocate and initialize memory 169
_debug_free — Free allocated memory 170
_debug_heapmin — Free unused memory in the
default heap. 171
_debug_malloc — Allocate memory 173
_debug_ucalloc — Reserve and initialize
memory from a user-created heap 174
_debug_uheapmin — Free unused memory in a
user-created heap 175
_debug_umalloc — Reserve memory blocks
from a user-created heap 176
_debug_realloc — Reallocate memory block . . 177

String handling debug functions 178
_debug_memcpy — Copy bytes 178
_debug_memset — Set bytes to value 180
_debug_strcat — Concatenate strings 181
_debug_strcpy — Copy strings 182
_debug_strncat — Concatenate strings 183
_debug_strncpy — Copy strings 184

Notices 187
Trademarks 189

iv XL C/C++: Optimization and Programming Guide

Index 191

Contents v

vi XL C/C++: Optimization and Programming Guide

About this document

This guide discusses advanced topics related to the use of IBM® XL C/C++ for
AIX®, V13.1.3, with a particular focus on program portability and optimization.
The guide provides both reference information and practical tips for getting the
most out of the compiler's capabilities through recommended programming
practices and compilation procedures.

Who should read this document
This document is addressed to programmers building complex applications, who
already have experience compiling with XL C/C++ and would like to take further
advantage of the compiler's capabilities for program optimization and tuning,
support for advanced programming language features, and add-on tools and
utilities.

How to use this document
This document uses a task-oriented approach to present the topics by concentrating
on a specific programming or compilation problem in each section. Each topic
contains extensive cross-references to the relevant sections of the reference guides
in the IBM XL C/C++ for AIX, V13.1.3 documentation set, which provides detailed
descriptions of compiler options, pragmas, and specific language extensions.

How this document is organized
This guide includes the following chapters:
v Chapter 1, “Using 32-bit and 64-bit modes,” on page 1 discusses common

problems that arise when you port existing 32-bit applications to 64-bit mode,
and it provides recommendations for avoiding these problems.

v Chapter 2, “Using XL C/C++ with Fortran,” on page 7 discusses considerations
for calling Fortran code from XL C/C++ programs.

v Chapter 3, “Aligning data,” on page 13 discusses options available for
controlling the alignment of data in aggregates, such as structures and classes.

v Chapter 4, “Handling floating-point operations,” on page 23 discusses options
available for controlling how floating-point operations are handled by the
compiler.

v Chapter 5, “Using memory heaps,” on page 29 discusses compiler library
functions for heap memory management, including using custom memory heaps
and validating and debugging heap memory.

v Chapter 6, “Constructing a library,” on page 41 discusses how to compile and
link static and shared libraries and how to specify the initialization order of
static objects in C++ programs.

v Chapter 7, “Replacing operator new and operator delete in applications that use
shared libraries (C++),” on page 53 discusses how to use a user-defined operator
new() and operator delete() for the shared libraries.

v Chapter 8, “Using the C++ utilities,” on page 55 discusses some additional
utilities shipped with XL C/C++, for demangling compiled symbol names,
creating shared libraries, and linking C++ modules.

© Copyright IBM Corp. 1996, 2015 vii

v Chapter 9, “Optimizing your applications,” on page 61 discusses various options
provided by the compiler for optimizing your programs, and it provides
recommendations on how to use these options.

v Chapter 10, “Debugging optimized code,” on page 95 discusses the potential
usability problems of optimized programs and the options that can be used to
debug optimized code.

v Chapter 11, “Coding your application to improve performance,” on page 103
discusses recommended programming practices and coding techniques to
enhance program performance and compatibility with the compiler's
optimization capabilities.

v Chapter 12, “Using the high performance libraries,” on page 137 discusses two
performance libraries that are shipped with XL C/C++: the Mathematical
Acceleration Subsystem (MASS), which contains tuned versions of standard
math library functions, and the Basic Linear Algebra Subprograms (BLAS),
which contains basic functions for matrix multiplication.

v Chapter 13, “Parallelizing your programs,” on page 155 provides an overview of
options offered by XL C/C++ for creating multi-threaded programs, including
IBM SMP and OpenMP language constructs.

v Chapter 14, “Selecting the standard allocation method to suit performance
(C++),” on page 165 discusses how to select the allocation method used by the
standard allocator of the C++ Standard Library to suit the performance needs of
the application.

v Chapter 15, “Ensuring thread safety (C++),” on page 167 discusses thread-safety
issues related to C++ class libraries, including input/output streams, and
standard templates.

v Chapter 16, “Memory debug library functions,” on page 169 provides a reference
listing and examples of all compiler debug memory library functions.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
C/C++ for AIX, V13.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc and xlC
(xlc++), along with several other
compiler invocation commands to
support various C/C++ language
levels and compilation environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

viii XL C/C++: Optimization and Programming Guide

Qualifying elements (icons)

Most features described in this information apply to both C and C++ languages. In
descriptions of language elements where a feature is exclusive to one language, or
where functionality differs between languages, this information uses icons to
delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

C only begins
C

C

C only ends

The text describes a feature that is supported in the C language
only; or describes behavior that is specific to the C language.

C++ only begins
C++

C++

C++ only ends

The text describes a feature that is supported in the C++
language only; or describes behavior that is specific to the C++
language.

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

C++11 begins
C++11

C++11

C++11 ends

The text describes a feature that is introduced into standard
C++ as part of C++11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C/C++ syntax. This section
helps you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.

About this document ix

Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.

x XL C/C++: Optimization and Programming Guide

►►
(1) (2) (3) (4) (5) (9) (10)

pragma comment (compiler)
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

►◄

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be

About this document xi

performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C/C++:

IBM XL C/C++ information
XL C/C++ provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C/C++ for AIX, V13.1.3. It is located by default in the XL C/C++ directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C/C++ directory and in the root directory of the installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C/C++ for AIX, V13.1.3 Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/
com.ibm.compilers.aix.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036618.
The following files comprise the full set of XL C/C++ product information:

Table 3. XL C/C++ PDF files

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V13.1.3 Installation Guide,
SC27-4258-02

install.pdf Contains information for installing XL C/C++
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C/C++ for AIX,
V13.1.3, SC27-4257-02

getstart.pdf Contains an introduction to the XL C/C++
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C/C++ for AIX,
V13.1.3 Compiler Reference,
SC27-4259-02

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C/C++ for AIX,
V13.1.3 Language Reference,
SC27-4260-02

langref.pdf Contains information about the C and C++
programming languages, as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards.

xii XL C/C++: Optimization and Programming Guide

http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH3R_13.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618

Table 3. XL C/C++ PDF files (continued)

Document title
PDF file
name Description

IBM XL C/C++ for AIX,
V13.1.3 Optimization and
Programming Guide,
SC27-4261-02

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C/C++
high-performance libraries.

Standard C++ Library
Reference, SC27-4262-02

standlib.pdf Contains reference information about the
standard C++ runtime libraries and headers.

C/C++ Legacy Class
Libraries Reference,
SC09-7652-00

legacy.pdf Contains reference information about the USL
I/O Stream Library and the Complex
Mathematics Library.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C/C++, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036618.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C/C++ is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11. (Partial support)
v Information Technology - Programming languages - C++, ISO/IEC 14882:1998, also

known as C++98.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2003, also

known as C++03.
v Information Technology - Programming languages - C++, ISO/IEC 14882:2011, also

known as C++11 (Partial support).
v Draft Technical Report on C++ Library Extensions, ISO/IEC DTR 19768. This draft

technical report has been submitted to the C++ standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/
n1836.pdf.

v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification
for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This

About this document xiii

http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036618
http://www.ibm.com/support/docview.wss?uid=swg27036618
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1836.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

draft technical report has been submitted to the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1176.pdf.

v Decimal Types for C++: Draft 4 http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n1977.html

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support), and OpenMP

Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm,
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6

– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

– AIX National Language Support Guide and Reference

– AIX General Programming Concepts: Writing and Debugging Programs

– AIX Assembler Language Reference

Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C/C++ Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix.
This page provides a portal with search capabilities to a large selection of
Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL C/C++, visit the product information site at
http://www.ibm.com/software/products/us/en/xlcpp-aix.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
C/C++ information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C/C++, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xiv XL C/C++: Optimization and Programming Guide

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1977.html
http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://gcc.gnu.org/onlinedocs
http://www.ibm.com/support/entry/portal/product/rational/xl_c/c++_for_aix
http://www.ibm.com/software/products/us/en/xlcpp-aix

Chapter 1. Using 32-bit and 64-bit modes

You can use the XL C/C++ compiler to develop either 32-bit or 64-bit applications.
To do so, specify -q32 or -q64, respectively, during compilation. Alternatively, you
can set the OBJECT_MODE environment variable to 32 or 64 at compile time. If
both OBJECT_MODE and -q32/-q64 are specified, -q32/-q64 takes precedence.

However, porting existing applications from 32-bit to 64-bit mode can lead to a
number of problems, mostly related to the differences in C/C++ long and pointer
data type sizes and alignment between the two modes. The following table
summarizes these differences.

Table 4. Size and alignment of data types in 32-bit and 64-bit modes

Data type 32-bit mode 64-bit mode

Size Alignment Size Alignment

long, signed long,
unsigned long

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

pointer 4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

size_t (defined in the
header file <cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

ptrdiff_t (defined in
the header file
<cstddef>)

4 bytes 4-byte boundaries 8 bytes 8-byte boundaries

The following sections discuss some of the common pitfalls implied by these
differences, as well as recommended programming practices to help you avoid
most of these issues:
v “Assigning long values” on page 2
v “Assigning pointers” on page 3
v “Aligning aggregate data” on page 4
v “Calling Fortran code” on page 4

When compiling in 32-bit or 64-bit mode, you can use the -qwarn64 option to help
diagnose some issues related to porting applications. In either mode, the compiler
immediately issues a warning if undesirable results, such as truncation or data
loss, will occur when the program is executed.

For suggestions on improving performance in 64-bit mode, see "Optimize
operations in 64-bit mode".

Related information in the XL C/C++ Compiler Reference

-q32, -q64

-qwarn64

Compile-time and link-time environment variables

© Copyright IBM Corp. 1996, 2015 1

Assigning long values
The limits of long type integers that are defined in the limits.h standard library
header file are different in 32-bit and 64-bit modes, as shown in the following
table.

Table 5. Constant limits of long integers in 32-bit and 64-bit modes

Symbolic
constant

Mode Value Hexadecimal Decimal

LONG_MIN
(smallest
signed long)

32-bit –(231) 0x80000000L –2,147,483,648

64-bit –(263) 0x8000000000000000L –9,223,372,036,854,775,808

LONG_MAX
(largest signed
long)

32-bit 231–1 0x7FFFFFFFL 2,147,483,647

64-bit 263–1 0x7FFFFFFFFFFFFFFFL 9,223,372,036,854,775,807

ULONG_MAX
(largest
unsigned long)

32-bit 232–1 0xFFFFFFFFUL 4,294,967,295

64-bit 264–1 0xFFFFFFFFFFFFFFFFUL 18,446,744,073,709,551,615

These differences have the following implications:
v Assigning a long value to a double variable can cause loss of accuracy.
v Assigning constant values to long variables can lead to unexpected results. This

issue is explored in more detail in “Assigning constant values to long variables.”
v Bit-shifting long values will produce different results, as described in

“Bit-shifting long values” on page 3.
v Using int and long types interchangeably in expressions will lead to implicit

conversion through promotions, demotions, assignments, and argument passing,
and it can result in truncation of significant digits, sign shifting, or unexpected
results, without warning. These operations can impact performance.

In situations where a long value can overflow when assigned to other variables or
passed to functions, you must observe the following guidelines:
v Avoid implicit type conversion by using explicit type casting to change types.
v Ensure that all functions that accept or return long types are properly

prototyped.
v Ensure that long type parameters can be accepted by the functions to which they

are being passed.

Assigning constant values to long variables
Although type identification of constants follows explicit rules in C and C++, many
programs use hexadecimal or unsuffixed constants as "typeless" variables and rely
on a twos complement representation to truncate values that exceed the limits
permitted on a 32-bit system. As these large values are likely to be extended into a
64-bit long type in 64-bit mode, unexpected results can occur, generally at the
following boundary areas:
v constant > UINT_MAX
v constant < INT_MIN
v constant > INT_MAX

Some examples of unexpected boundary side effects are listed in the following
table.

2 XL C/C++: Optimization and Programming Guide

Table 6. Unexpected boundary results of constants assigned to long types

Constant assigned to long Equivalent value 32-bit mode 64-bit mode

–2,147,483,649 INT_MIN–1 +2,147,483,647 –2,147,483,649

+2,147,483,648 INT_MAX+1 –2,147,483,648 +2,147,483,648

+4,294,967,726 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFF UINT_MAX –1 +4,294,967,295

0x100000000 UINT_MAX+1 0 +4,294,967,296

0xFFFFFFFFFFFFFFFF ULONG_MAX –1 –1

Unsuffixed constants can lead to type ambiguities that can affect other parts of
your program, such as when the results of sizeof operations are assigned to
variables. For example, in 32-bit mode, the compiler types a number like
4294967295 (UINT_MAX) as an unsigned long and sizeof returns 4 bytes. In 64-bit
mode, this same number becomes a signed long and sizeof returns 8 bytes.
Similar problems occur when the compiler passes constants directly to functions.

You can avoid these problems by using the suffixes L (for long constants), UL (for
unsigned long constants), LL (for long long constants), or ULL (for unsigned long
long constants) to explicitly type all constants that have the potential of affecting
assignment or expression evaluation in other parts of your program. In the
example cited in the preceding paragraph, suffixing the number as 4294967295U
forces the compiler to always recognize the constant as an unsigned int in 32-bit
or 64-bit mode. These suffixes can also be applied to hexadecimal constants.

Bit-shifting long values
Left-bit-shifting long values produces different results in 32-bit and 64-bit modes.
The examples in Table 7 show the effects of performing a bit-shift on long
constants using the following code segment:
long l=valueL<<1;

Table 7. Results of bit-shifting long values

Initial value Symbolic
constant

Value after bit shift by one bit

32-bit mode 64-bit mode

0x7FFFFFFFL INT_MAX 0xFFFFFFFE 0x00000000FFFFFFFE

0x80000000L INT_MIN 0x00000000 0x0000000100000000

0xFFFFFFFFL UINT_MAX 0xFFFFFFFE 0x00000001FFFFFFFE

In 32-bit mode, 0xFFFFFFFE is negative. In 64-bit mode, 0x00000000FFFFFFFE and
0x00000001FFFFFFFE are both positive.

Assigning pointers
In 64-bit mode, pointers and int types are no longer of the same size. The
implications of this are as follows:
v Exchanging pointers and int types causes segmentation faults.
v Passing pointers to a function expecting an int type results in truncation.
v Functions that return a pointer but are not explicitly prototyped as such, return

an int instead and truncate the resulting pointer, as illustrated in the following
example.

Chapter 1. Using 32-bit and 64-bit modes 3

In C, the following code is valid in 32-bit mode without a prototype:
a=(char*) calloc(25);

Without a function prototype for calloc, when the same code is compiled in 64-bit
mode, the compiler assumes the function returns an int, so a is silently truncated
and then sign-extended. Type casting the result does not prevent the truncation, as
the address of the memory allocated by calloc was already truncated during the
return. In this example, the best solution is to include the header file, stdlib.h,
which contains the prototype for calloc. An alternative solution is to prototype the
function as it is in the header file.

To avoid these types of problems, you can take the following measures:
v Prototype any functions that return a pointer, where possible by using the

appropriate header file.
v Ensure that the type of parameter you are passing in a function, pointer or int,

call matches the type expected by the function being called.
v For applications that treat pointers as an integer type, use type long or unsigned

long in either 32-bit or 64-bit mode.
v Use the -qwarn64 option to get warning messages in the listing file about

potential problems.

Aligning aggregate data
Normally, structures are aligned according to the most strictly aligned member in
both 32-bit and 64-bit modes. However, since long types and pointers change size
and alignment in 64-bit modes, the alignment of a structure's strictest member can
change, resulting in changes to the alignment of the structure itself.

Structures that contain pointers or long types cannot be shared between 32-bit and
64-bit applications. Unions that attempt to share long and int types or overlay
pointers onto int types can change the alignment. In general, you need to check all
but the simplest structures for alignment and size dependencies.

In 64-bit mode, member values in a structure passed by value to a va_arg
argument might not be accessed properly if the size of the structure is not a
multiple of 8-bytes.

Any aggregate data written to a file in one mode cannot be correctly read in the
other mode. Data exchanged with other languages has the similar problems.

For detailed information about aligning data structures, including structures that
contain bit fields, see Chapter 3, “Aligning data,” on page 13.

Calling Fortran code
A significant number of applications use C, C++, and Fortran together by calling
each other or sharing files. It is currently easier to modify data sizes and types on
the C and C++ sides than on the Fortran side of such applications. The following
table lists C and C++ types and the equivalent Fortran types in the different
modes.

4 XL C/C++: Optimization and Programming Guide

Table 8. Equivalent C/C++ and Fortran data types

C/C++ type Fortran type

32-bit 64-bit

signed int INTEGER INTEGER

signed long INTEGER INTEGER*8

unsigned long LOGICAL LOGICAL*8

pointer INTEGER INTEGER*8

integer POINTER (8 bytes)

Related information:
Chapter 2, “Using XL C/C++ with Fortran,” on page 7

Chapter 1. Using 32-bit and 64-bit modes 5

6 XL C/C++: Optimization and Programming Guide

Chapter 2. Using XL C/C++ with Fortran

With XL C/C++, you can call functions written in Fortran from your C and C++
programs. This section discusses some programming considerations for calling
Fortran code in the following areas:
v “Identifiers”
v “Corresponding data types” on page 8
v “Character and aggregate data” on page 10
v “Function calls and parameter passing” on page 11
v “Pointers to functions” on page 11

In topic “Sample program: C/C++ calling Fortran” on page 11, an example of a C
program that calls a Fortran subroutine is provided.

For more information about language interoperability, see the information about
the BIND attribute and the interoperability of procedures in the XL Fortran
Language Reference.
Related information:
“Calling Fortran code” on page 4

Identifiers
C++ functions callable from Fortran should be declared with extern "C" to avoid
name mangling. For details, see the appropriate section about options and
conventions for mixing Fortran with C/C++ code in the XL Fortran Optimization
and Programming Guide.

You need to follow these recommendations when writing C and C++ code to call
functions that are written in Fortran:
v Avoid using uppercase letters in identifiers. Although XL Fortran folds external

identifiers to lowercase by default, the Fortran compiler can be set to distinguish
external names by case.

v Avoid using long identifier names. The maximum number of significant
characters in XL Fortran identifiers is 2501.

Note:

1. The Fortran 90 and 95 language standards require identifiers to be no more
than 31 characters; the Fortran 2003 and the Fortran 2008 standards require
identifiers to be no more than 63 characters.

© Copyright IBM Corp. 1996, 2015 7

Corresponding data types
The following table shows the correspondence between the data types available in
C/C++ and Fortran. Several data types in C have no equivalent representation in
Fortran. Do not use them when you program for interlanguage calls.

Table 9. Correspondence of data types between C/C++ and Fortran

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

bool (C++) _Bool
(C)

LOGICAL*1 or
LOGICAL(1)

LOGICAL(C_BOOL)

char CHARACTER CHARACTER(C_CHAR)

signed char INTEGER*1 or
INTEGER(1)

INTEGER(C_SIGNED_CHAR)

unsigned char LOGICAL*1 or
LOGICAL(1)

signed short int INTEGER*2 or
INTEGER(2)

INTEGER(C_SHORT)

unsigned short
int

LOGICAL*2 or
LOGICAL(2)

int INTEGER*4 or
INTEGER(4)

INTEGER(C_INT)

unsigned int LOGICAL*4 or
LOGICAL(4)

signed long int INTEGER*4 or
INTEGER(4) (with -q32),
INTEGER*8 or
INTEGER(8) (with -q64)

INTEGER(C_LONG)

unsigned long
int

LOGICAL*4 or
LOGICAL(4) (with -q32),
INTEGER*8 or
INTEGER(8) (with -q64)

signed long long
int

INTEGER*8 or
INTEGER(8)

INTEGER(C_LONG_LONG)

unsigned long
long int

LOGICAL*8 or
LOGICAL(8)

size_t INTEGER*4 or
INTEGER(4) (with -q32),
INTEGER*8 or
INTEGER(8) (with -q64)

INTEGER(C_SIZE_T)

intptr_t INTEGER*4 or
INTEGER(4) (with -q32),
INTEGER*8 or
INTEGER(8) (with -q64)

INTEGER(C_INTPTR_T)

intmax_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INTMAX_T)

int8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT8_T)

int16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT16_T)

8 XL C/C++: Optimization and Programming Guide

Table 9. Correspondence of data types between C/C++ and Fortran (continued)

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

int32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT32_T)

int64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT64_T)

int_least8_t INTEGER*1 or
INTEGER(1)

INTEGER(C_INT_LEAST8_T)

int_least16_t INTEGER*2 or
INTEGER(2)

INTEGER(C_INT_LEAST16_T)

int_least32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_LEAST32_T)

int_least64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_LEAST64_T)

int_fast8_t INTEGER, INTEGER*4,
or INTEGER(4)

INTEGER(C_INT_FAST8_T)

int_fast16_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST16_T)

int_fast32_t INTEGER*4 or
INTEGER(4)

INTEGER(C_INT_FAST32_T)

int_fast64_t INTEGER*8 or
INTEGER(8)

INTEGER(C_INT_FAST64_T)

float REAL, REAL*4, or
REAL(4)

REAL(C_FLOAT)

double REAL*8, REAL(8), or
DOUBLE PRECISION

REAL(C_DOUBLE)

long double
(default)

REAL*8, REAL(8), or
DOUBLE PRECISION

REAL(C_LONG_DOUBLE)

long double
(with
-qlongdouble or
-qldbl128)

REAL*16 or REAL(16) REAL(C_LONG_DOUBLE)

float _Complex COMPLEX*4,
COMPLEX(4),
COMPLEX*8, or
COMPLEX(8)

COMPLEX(C_FLOAT_COMPLEX)

double
_Complex

COMPLEX*8,
COMPLEX(8),
COMPLEX*16, or
COMPLEX(16)

COMPLEX(C_DOUBLE_COMPLEX)

long double
_Complex
(default)

COMPLEX*16,
COMPLEX(16),
COMPLEX*32, or
COMPLEX(32)

COMPLEX(C_LONG_DOUBLE_COMPLEX)

long double
_Complex (with
-qlongdouble or
-qldbl128)

COMPLEX*16,
COMPLEX(16),
COMPLEX*32, or
COMPLEX(32)

COMPLEX(C_LONG_DOUBLE_COMPLEX)

struct or union derived type

Chapter 2. Using XL C/C++ with Fortran 9

Table 9. Correspondence of data types between C/C++ and Fortran (continued)

C and C++ data
types

Fortran data types

Types
Types with kind type parameters from the
ISO_C_BINDING module

enum INTEGER*4 or
INTEGER(4)

char[n] CHARACTER*n or
CHARACTER(n)

array pointer to
type, or type []

Dimensioned variable
(transposed)

pointer to
function

Functional parameter

struct with
-qalign=packed

Sequence derived type

Related information in the XL C/C++ Compiler Reference

-qldbl128, -qlongdouble

-qalign

Character and aggregate data
Most numeric data types have counterparts across C/C++ and Fortran. However,
character and aggregate data types require special treatment:
v C character strings are delimited by a '\0' character. In Fortran, all character

variables and expressions have a length that is determined at compile time.
Whenever Fortran passes a string argument to another routine, it appends a
hidden argument that provides the length of the string argument. This length
argument must be explicitly declared in C. The C code should not assume a null
terminator; the supplied or declared length should always be used.

v An n-element C/C++ array is indexed with 0...n-1, whereas an n-element
Fortran array is typically indexed with 1...n. In addition, Fortran supports
user-specified bounds while C/C++ does not.

v C stores array elements in row-major order (array elements in the same row
occupy adjacent memory locations). Fortran stores array elements in ascending
storage units in column-major order (array elements in the same column occupy
adjacent memory locations). The following table shows how a two-dimensional
array declared by A[3][2] in C and by A(3,2) in Fortran, is stored:

Table 10. Storage of a two-dimensional array

Storage unit C and C++ element name Fortran element name

Lowest A[0][0] A(1,1)

A[0][1] A(2,1)

A[1][0] A(3,1)

A[1][1] A(1,2)

A[2][0] A(2,2)

Highest A[2][1] A(3,2)

10 XL C/C++: Optimization and Programming Guide

v In general, for a multidimensional array, if you list the elements of the array in
the order they are laid out in memory, a row-major array will be such that the
rightmost index varies fastest, while a column-major array will be such that the
leftmost index varies fastest.

Function calls and parameter passing
Functions must be prototyped equivalently in both C/C++ and Fortran.

In C and C++, by default, all function arguments are passed by value, and the
called function receives a copy of the value passed to it. In Fortran, by default,
arguments are passed by reference, and the called function receives the address of
the value passed to it. You can use the Fortran %VAL built-in function or the
VALUE attribute to pass by value. Refer to the XL Fortran Language Reference for
more information.

For call-by-reference (as in Fortran), the address of the parameter is passed in a
register. When passing parameters by reference, if you write C or C++ functions
that call a program written in Fortran, all arguments must be pointers, or scalars
with the address operator.

For more information about interlanguage calls to functions or routines, see the
information about interlanguage calls in the XL Fortran Optimization and
Programming Guide.

Pointers to functions
A function pointer is a data type whose value is a function address. In Fortran, a
dummy argument that appears in an EXTERNAL statement is a function pointer.
Starting from the Fortran 2003 standard, Fortran variables of type C_FUNPTR are
interoperable with function pointers. Function pointers are supported in contexts
such as the target of a call statement or an actual argument of such a statement.

Sample program: C/C++ calling Fortran
The following example illustrates how program units written in different languages
can be combined to create a single program. It also demonstrates parameter
passing between C/C++ and Fortran subroutines with different data types as
arguments. The example includes the following source files:
v The main program source file: example.c
v The Fortran add function source file: add.f

Main program source file: example.c
#include <stdio.h>
extern double add(int *, double [], int *, double []);

double ar1[4]={1.0, 2.0, 3.0, 4.0};
double ar2[4]={5.0, 6.0, 7.0, 8.0};

main()
{
int x, y;
double z;

x = 3;
y = 3;

Chapter 2. Using XL C/C++ with Fortran 11

z = add(&x, ar1, &y, ar2); /* Call Fortran add routine */
/* Note: Fortran indexes arrays 1..n */
/* C indexes arrays 0..(n-1) */

printf("The sum of %1.0f and %1.0f is %2.0f \n",
ar1[x-1], ar2[y-1], z);
}

Fortran add function source file: add.h
REAL*8 FUNCTION ADD (A, B, C, D)
REAL*8 B,D
INTEGER*4 A,C
DIMENSION B(4), D(4)
ADD = B(A) + D(C)
RETURN
END

Compile the main program and Fortran add function source files as follows:
xlc -c example.c
xlf -c add.f

Link the object files from compile step to create executable add:
xlc -o add example.o add.o

Execute binary:
./add

The output is as follows:
The sum of 3 and 7 is 10

12 XL C/C++: Optimization and Programming Guide

Chapter 3. Aligning data

XL C/C++ provides many mechanisms for specifying data alignment at the levels
of individual variables, members of aggregates, entire aggregates, and entire
compilation units. If you are porting applications between different platforms, or
between 32-bit and 64-bit modes, you need to take into account the differences
between alignment settings available in different environments, to prevent possible
data corruption and deterioration in performance. In particular, vector types have
special alignment requirements which, if not followed, can produce incorrect
results. For more information, see the AltiVec Technology Programming Interface
Manual.

XL C/C++ provides alignment modes and alignment modifiers for specifying data
alignment. Using alignment modes, you can set alignment defaults for all data
types for a compilation unit or subsection of a compilation unit by specifying a
predefined suboption.

Using alignment modifiers, you can set the alignment for specific variables or data
types within a compilation unit by specifying the exact number of bytes that
should be used for the alignment.

“Using alignment modes” discusses the default alignment modes for all data types
on different platforms and addressing models, the suboptions and pragmas that
you can use to change or override the defaults, and rules for the alignment modes
for simple variables, aggregates, and bit fields. This section also provides examples
of aggregate layouts based on different alignment modes.

“Using alignment modifiers” on page 19 discusses the different specifiers, pragmas,
and attributes you can use in your source code to override the alignment mode
currently in effect, for specific variable declarations. It also provides the rules that
govern the precedence of alignment modes and modifiers during compilation.

Related information in the XL C/C++ Compiler Reference

-qaltivec
Related external information

AltiVec Technology Programming Interface Manual, available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

Using alignment modes
Each data type that is supported by XL C/C++ is aligned along byte boundaries
according to platform-specific default alignment modes. On AIX, the default
alignment mode is power or full, which are equivalent.

You can change the default alignment mode as follows:
v Set the alignment mode for all variables in a single file or multiple files during

compilation.
To use this approach, you specify the -qalign compiler option during
compilation, with one of the suboptions listed in Table 11 on page 14.

v Set the alignment mode for all variables in a section of source code.

© Copyright IBM Corp. 1996, 2015 13

http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf

To use this approach, you specify the #pragma align or #pragma options align
directives in the source files, with one of the suboptions listed in Table 11. Each
directive changes the alignment mode in effect for all variables that follow the
directive until another directive is encountered, or until the end of the
compilation unit.

Each of the valid alignment modes is defined in Table 11, which provides the
alignment value, in bytes, for scalar variables of all data types. Where there are
differences between 32-bit and 64-bit modes, these are indicated. Also, where there
are differences between the first (scalar) member of an aggregate and subsequent
members of the aggregate, these are indicated.

Table 11. Alignment settings (values given in bytes)

Data type Storage

Alignment setting

natural power, full
mac68k,
twobyte3 bit_packed2 packed2

_Bool (C), bool (C++) (32-bit
mode)

1 1 1 1 1 1

_Bool (C), bool (C++) (64-bit
mode)

1 1 1 not
supported

1 1

char, signed char, unsigned
char

1 1 1 1 1 1

wchar_t (32-bit mode) 2 2 2 2 1 1

wchar_t (64-bit mode) 4 4 4 not
supported

1 1

int, unsigned int 4 4 4 2 1 1

short int, unsigned short int 2 2 2 2 1 1

long int, unsigned long int
(32-bit mode)

4 4 4 2 1 1

long int, unsigned long int
(64-bit mode)

8 8 8 not
supported

1 1

_Decimal32 4 4 4 2 1 1

_Decimal64 8 8 8 2 1 1

_Decimal128 16 16 16 2 1 1

long long 8 8 8 2 1 1

float 4 4 4 2 1 1

double 8 8 see note1 2 1 1

long double 8 8 see note1 2 1 1

long double with -qldbl128 16 16 see note1 2 1 1

pointer (32-bit mode) 4 4 4 2 1 1

pointer (64-bit mode) 8 8 8 not
supported

1 1

vector types 16 16 16 16 1 1

14 XL C/C++: Optimization and Programming Guide

Table 11. Alignment settings (values given in bytes) (continued)

Data type Storage

Alignment setting

natural power, full
mac68k,
twobyte3 bit_packed2 packed2

Notes:

1. In aggregates, the first member of this data type is aligned according to its natural alignment value; subsequent
members of the aggregate are aligned on 4-byte boundaries.

2. The packed alignment will not pack bit-field members at the bit level; use the bit_packed alignment if you want
to pack bit fields at the bit level.

3. For mac68k alignment, if the aggregate does not contain a vector member, the alignment is 2 bytes. If an
aggregate contains a vector member, then the alignment is the largest alignment of all of its members.

If you are working with aggregates containing double, long long, or long double
data types, use the natural mode for highest performance, as each member of the
aggregate is aligned according to its natural alignment value. If you generate data
with an application on one platform and read the data with an application on
another platform, it is recommended that you use the bit_packed mode, which
results in equivalent data alignment on all platforms.

Notes:

v Vectors in a bit-packed structure might not be correctly aligned unless you take
extra action to ensure their alignment.

v Vectors might suffer from alignment issues if they are accessed through
heap-allocated storage or through pointer arithmetic. For example, double
my_array[1000] __attribute__((__aligned__(16))) is 16-byte aligned while
my_array[1] is not. How my_array[i] is aligned is determined by the value of i.

“Alignment of aggregates” discusses the rules for the alignment of entire
aggregates and provides examples of aggregate layouts. “Alignment of bit-fields”
on page 18 discusses additional rules and considerations for the use and alignment
of bit fields and provides an example of bit-packed alignment.

Related information in the XL C/C++ Compiler Reference

-qalign

-qldbl128, -qlongdouble

#pragma options

Alignment of aggregates
The data contained in Table 11 on page 14 in “Using alignment modes” on page 13
apply to scalar variables, and variables that are members of aggregates such as
structures, unions, and classes. The following rules apply to aggregate variables,
namely structures, unions or classes, as a whole (in the absence of any modifiers):
v For all alignment modes, the size of an aggregate is the smallest multiple of its

alignment value that can encompass all of the members of the aggregate.

v C Empty aggregates are assigned a size of zero bytes. As a result, two
distinct variables might have the same address.

v C++ Empty aggregates are assigned a size of one byte. Note that static data
members do not participate in the alignment or size of an aggregate; therefore, a
structure or class containing only a single static data member has a size of one
byte.

Chapter 3. Aligning data 15

v For all alignment modes except mac68k, the alignment of an aggregate is equal
to the largest alignment value of any of its members. With the exception of
packed alignment modes, members whose natural alignment is smaller than that
of their aggregate's alignment are padded with empty bytes.

v For mac68k alignment, if the aggregate does not contain a vector member, the
alignment is 2 bytes. If an aggregate contains a vector member, then the
alignment is the largest alignment of all of its members.

v Aligned aggregates can be nested, and the alignment rules applicable to each
nested aggregate are determined by the alignment mode that is in effect when a
nested aggregate is declared.

The following table shows some examples of the size of an aggregate according to
alignment mode.

Table 12. Alignment and aggregate size

Example

Size of aggregate

-qalign=power -qalign=natural -qalign=packed

struct Struct1 {
double a1;
char a2;

};

16 bytes (The member
with the largest
alignment requirement
is a1; therefore, a2 is
padded with 7 bytes.)

16 bytes (The member
with the largest
alignment requirement is
a1; therefore, a2 is
padded with 7 bytes.)

9 bytes (Each
member is packed to
its natural alignment;
no padding is
added.)

struct Struct2 {
char buf[15];
};

15 bytes 15 bytes 15 bytes

struct Struct3 {
char c1;
double c2;
};

12 bytes (The member
with the largest
alignment requirement
is c2; however, because
it is a double and is not
the first member, the
4-byte alignment rule
applies. c1 is padded
with 3 bytes.)

16 bytes (The member
with the largest
alignment requirement is
c2; therefore, c1 is
padded with 7 bytes.)

9 bytes (Each
member is packed to
its natural alignment;
no padding is
added.)

Notes:

v C++ The C++ compiler might generate extra fields for classes that contain
base classes or virtual functions. Objects of these types might not conform to the
usual mappings for aggregates.

v The alignment of an aggregate must be the same in all compilation units. For
example, if the declaration of an aggregate is in a header file and you include
that header file into two distinct compilations units, choose the same alignment
mode for both compilations units.

For rules on the alignment of aggregates containing bit fields, see “Alignment of
bit-fields” on page 18.

Alignment examples
The following examples use these symbols to show padding and boundaries:

p = padding

| = halfword (2-byte) boundary

16 XL C/C++: Optimization and Programming Guide

: = byte boundary

Mac68K example
#pragma options align=mac68k
struct B {

char a;
double b;
};

#pragma options align=reset

The size of B is 10 bytes. The alignment of B is 2 bytes. The layout of B is as
follows:
|a:p|b:b|b:b|b:b|b:b|

Packed example
#pragma options align=bit_packed
struct {

char a;
double b;

} B;
#pragma options align=reset

The size of B is 9 bytes. The layout of B is as follows:
|a:b|b:b|b:b|b:b|b:

Nested aggregate example
#pragma options align=mac68k
struct A {

char a;
#pragma options align=power
struct B {

int b;
char c;
} B1; // <-- B1 laid out using power alignment rules

#pragma options align=reset // <-- has no effect on A or B,
but on subsequent structs

char d;
};
#pragma options align=reset

The size of A is 12 bytes. The alignment of A is 2 bytes. The layout of A is as
follows:
|a:p|b:b|b:b|c:p|p:p|d:p|

C++ derived class example

In 32-bit mode:
#pragma options align=natural

class A {
double _a;
} sa;

class C : public A {
public:

virtual void f() {}
private:

char* name;
} sc;

Chapter 3. Aligning data 17

The size of sc is 24 bytes. The alignment of sc is 8 bytes. The layout of sc is as
follows:
|a:a|a:a|a:a|a:a|f:f|f:f|p:p|p:p|n:n|n:n|p:p|p:p|

Alignment of bit-fields
You can declare a bit-field as a C _Bool C , C++ bool, char, signed
char, unsigned char, short, unsigned short C++ , int, unsigned int, long,
unsigned long, C++ long long, or unsigned long long C++ data type. The
alignment of a bit-field depends on its base type and the compilation mode (32-bit
or 64-bit).

C In the C language, you can specify bit-fields as char or short instead of
int, but XL C/C++ maps them as if they were unsigned int. The length of a
bit-field cannot exceed the length of its base type. In extended mode, you can use
the sizeof operator on a bit-field. The sizeof operator on a bit-field returns the
size of the base type. C

C++ The length of a bit-field can exceed the length of its base type, but the
remaining bits are used to pad the field and do not actually store any value.

C++

However, alignment rules for aggregates containing bit-fields are different
depending on the alignment mode in effect. These rules are described below.

Rules for natural alignment
v A zero-length bit-field pads to the next alignment boundary of its base declared

type. This causes the next member to begin on a 4-byte boundary for all types
except long in 64-bit mode, which moves the next member to the next 8-byte
boundary. Padding does not occur if the previous member's memory layout
ended on the appropriate boundary.

v C An aggregate that contains only zero-length bit-fields has a length of 0
bytes and an alignment of 4 bytes. C

v C++ An aggregate that contains only zero-length bit-fields has a length of 4
or 8 bytes, depending on the declared type of the bit-field and the compilation
mode (32-bit or 64-bit). C++

Rules for power alignment
v Aggregates containing bit-fields are 4-byte (word) aligned.
v Bit-fields are packed into the current word. If a bit-field would cross a word

boundary, it starts at the next word boundary.
v A bit-field of length zero causes the bit-field that immediately follows it to be

aligned at the next word boundary, or 8 bytes, depending on the declared type
and the compilation mode. If the zero-length bit-field is at a word boundary, the
next bit-field starts at this boundary.

v C An aggregate that contains only zero-length bit-fields has a length of 0
bytes. C

v C++ An aggregate that contains only zero-length bit-fields has the length of
1 byte. C++

Rules for Mac68K alignment
v Bit-fields are packed into a word and are aligned on a 2-byte boundary.

18 XL C/C++: Optimization and Programming Guide

v Bit-fields that would cross a word boundary are moved to the next halfword
boundary even if they are already starting on a halfword boundary. (The
bit-field can still end up crossing a word boundary.)

v A bit-field of length zero forces the next member (even if it is not a bit-field) to
start at the next halfword boundary even if the zero-length bit-field is currently
at a halfword boundary.

v An aggregate containing nothing but zero-length bit-fields has a length, in bytes,
of two times the number of zerolength bit-fields.

v For unions, there is one special case: unions whose largest element is a bit-field
of length 16 or less have a size of 2 bytes. If the length of the bit-field is greater
than 16, the size of the union is 4 bytes.

Rules for bit-packed alignment
v Bit-fields have an alignment of one byte and are packed with no default padding

between bit-fields.
v A zero-length bit-field causes the next member to start at the next byte

boundary. If the zero-length bit-field is already at a byte boundary, the next
member starts at this boundary. A non-bit-field member that follows a bit-field is
aligned on the next byte boundary.

Example of bit-packed alignment
#pragma options align=bit_packed
struct {

int a : 8;
int b : 10;
int c : 12;
int d : 4;
int e : 3;
int : 0;
int f : 1;
char g;
} A;

pragma options align=reset

The size of A is 7 bytes. The alignment of A is 1 byte. The layout of A is:

Member name Byte offset Bit offset

a 0 0

b 1 0

c 2 2

d 3 6

e 4 2

f 5 0

g 6 0

Using alignment modifiers
XL C/C++ also provides alignment modifiers, with which you can exercise even
finer-grained control over alignment, at the level of declaration or definition of
individual variables or aggregate members. Available modifiers are as follows:

#pragma pack(...)

Chapter 3. Aligning data 19

Valid application:
The entire aggregate (as a whole) immediately following the directive.
Note: on AIX #pragma pack does not apply to bit-field union members.

Effect: Sets the maximum alignment of the members of the aggregate to which it
applies, to a specific number of bytes. Also allows a bit-field to cross a
container boundary. Used to reduce the effective alignment of the selected
aggregate.

Valid values:

v number: where number is 1, 2, 4, 8, or 16. That is, structure members are
aligned on number-byte boundaries or on their natural alignment
boundary, whichever is less.

v nopack: disables packing.
v pop: removes the previous value added with #pragma pack.
v empty brackets: has the same functionality as pop.

__attribute__((aligned(n)))

Valid application:
As a variable attribute, it applies to a single aggregate (as a whole), namely
a structure, union, or class, or it applies to an individual member of an
aggregate.1 As a type attribute, it applies to all aggregates declared of that
type. If it is applied to a typedef declaration, it applies to all instances of
that type.2

Effect:
Sets the minimum alignment of the specified variable or variables to a
specific number of bytes. Typically used to increase the effective alignment
of the selected variables.

Valid values:
n must be a positive power of two, or NIL. NIL can be specified as
either __attribute__((aligned())) or __attribute__((aligned)); this is
the same as specifying the maximum system alignment (16 bytes on all
UNIX platforms).

__attribute__((packed))

Valid application:
As a variable attribute, it applies to simple variables or individual
members of an aggregate, namely a structure or class1. As a type attribute,
it applies to all members of all aggregates declared of that type.

Effect: Sets the maximum alignment of the selected variable or variables, to which
it applies, to the smallest possible alignment value, namely one byte for a
variable and one bit for a bit field.

__align(n)

Effect: Sets the minimum alignment of the variable or aggregate to which it
applies to a specific number of bytes; also might effectively increase the
amount of storage occupied by the variable. Used to increase the effective
alignment of the selected variables.

Valid application:
Applies to simple static (or global) variables or to aggregates as a whole,
rather than to individual members of aggregates, unless these are also
aggregates.

20 XL C/C++: Optimization and Programming Guide

Valid values:
n must be a positive power of 2. XL C/C++ also allows you to specify a
value greater than the system maximum.

Notes:

1. In a comma-separated list of variables in a declaration, if the modifier is placed
at the beginning of the declaration, it applies to all the variables in the
declaration. Otherwise, it applies only to the variable immediately preceding it.

2. Depending on the placement of the modifier in the declaration of a struct, it
can apply to the definition of the type, and hence applies to all instances of that
type; or it can apply to only a single instance of the type. For details, see the
information about type attributes in the XL C/C++ Language Reference.
Related information in the XL C/C++ Compiler Reference

#pragma pack
Related information in the XL C/C++ Language Reference

The aligned type attribute (IBM extension)

The packed type attribute (IBM extension)

The __align type qualifier (IBM extension)

Type attributes (IBM extension)

The aligned variable attribute (IBM extension)

The packed variable attribute (IBM extension)

Chapter 3. Aligning data 21

22 XL C/C++: Optimization and Programming Guide

Chapter 4. Handling floating-point operations

The following sections provide reference information, portability considerations,
and suggested procedures for using compiler options to manage floating-point
operations:
v “Floating-point formats”
v “Handling multiply-and-add operations” on page 24
v “Compiling for strict IEEE conformance” on page 24
v “Handling floating-point constant folding and rounding” on page 25
v “Handling floating-point exceptions” on page 27

Floating-point formats
XL C/C++ supports the following binary floating-point formats:
v 32-bit single precision, with an approximate absolute normalized range of 0 and

10-38 to 1038 and with a precision of about 7 decimal digits
v 64-bit double precision, with an approximate absolute normalized range of 0 and

10-308 to 10308 and with a precision of about 16 decimal digits
v 128-bit extended precision, with slightly greater range than double-precision

values, and with a precision of about 32 decimal digits

Note that the long double type might represent either double-precision or
extended-precision values, depending on the setting of the -qldbl128 compiler
option.

Beginning in V9.0, on selected hardware and operating system levels, the compiler
also supports the following decimal floating-point formats:
v 32-bit single precision, with an approximate range of 10-101 to 1090 and precision

of 7 decimal digits
v 64-bit double precision, with an approximate range of 10-398 to 10369 and

precision of 16 decimal digits
v 128-bit extended precision, with an approximate range of 10-6176 to 106111, and

with a precision of 34 decimal digits

The 128-bit extended precision format of XL C/C++ is different from the binary128
formats that are suggested by the IEEE standard. The IEEE standard suggests that
extended formats use more bits in the exponent for greater range and the fraction
for higher precision.

It is possible that special numbers, such as NaN, infinity, and negative zero, cannot
be represented by the 128-bit extended precision values. Arithmetic operations do
not necessarily propagate these numbers in extended precision.

Related information in the XL C/C++ Compiler Reference

-qldbl128, -qlongdouble

© Copyright IBM Corp. 1996, 2015 23

Handling multiply-and-add operations
By default, the compiler generates a single non-IEEE 754 compatible
multiply-and-add instruction for binary floating-point expressions, such as a + b *
c, partly because one instruction is faster than two. Because no rounding occurs
between the multiply and add operations, this might also produce a more precise
result. However, the increased precision might lead to different results from those
obtained in other environments, and might cause x*y-x*y to produce a nonzero
result. To avoid these issues, you can suppress the generation of multiply-add
instructions by using the -qfloat=nomaf option.

Note: Decimal floating-point does not use multiply-add instructions
Related information in the XL C/C++ Compiler Reference

-qfloat

Compiling for strict IEEE conformance
By default, XL C/C++ follows most but not all of the rules in the IEEE standard. If
you compile with the -qnostrict option, which is enabled by default at
optimization level -O3 or higher, some IEEE floating-point rules are violated in
ways that can improve performance but might affect program correctness. To avoid
this issue and to compile for strict compliance with the IEEE standard, use the
following options:
v Use the -qfloat=nomaf compiler option.
v If the program changes the rounding mode at run time, use the -qfloat=rrm

option.
v If the data or program code contains signaling NaN values (NaNS), use any of

the following groups of options. (A signaling NaN is different from a quiet NaN;
you must explicitly code it into the program or data, or create it by using the
-qinitauto compiler option.)
– The -qfloat=nans and -qstrict=nans options
– The -qfloat=nans and -qstrict options

v If you compile with -O3, -O4, or -O5, include the option -qstrict after it. You can
also use the suboptions of -qstrict to refine the level of control for the
transformations performed by the optimizers.

v If you use AIX operating system functions to enable hardware trapping on
floating-point exceptions, use the -qfloat=fenv option to tell the optimizer that
traps can occur.

Related information:
“Advanced optimization” on page 64

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-qinitauto

24 XL C/C++: Optimization and Programming Guide

Handling floating-point constant folding and rounding
By default, the compiler replaces most operations involving constant operands
with their result at compile time. This process is known as constant folding.
Additional folding opportunities might occur with optimization or with the
-qnostrict option. The result of a floating-point operation folded at compile time
normally produces the same result as that obtained at execution time, except in the
following cases:
v The compile-time rounding mode is different from the execution-time rounding

mode. By default, both are round-to-nearest; however, if your program changes
the execution-time rounding mode, to avoid differing results, perform either of
the following operations:
– Change the compile-time rounding mode to match the execution-time mode,

by compiling with the appropriate -y option. For more information and an
example, see “Matching compile-time and runtime rounding modes.”

– Suppress folding by compiling with the -qfloat=nofold option.
v Expressions like a+b*c are partially or fully evaluated at compile time. The

results might be different from those produced at execution time, because b*c
might be rounded before being added to a, while the runtime multiply-add
instruction does not use any intermediate rounding. To avoid differing results,
perform either of the following operations:
– Suppress the use of multiply-add instructions by compiling with the

-qfloat=nomaf option.
– Suppress folding by compiling with the -qfloat=nofold option.

v An operation produces an infinite, NaN, or underflow to zero result.
Compile-time folding prevents execution-time detection of an exception, even if
you compile with the -qflttrap option. To avoid missing these exceptions,
suppress folding with the -qfloat=nofold option.

Related information:
“Handling floating-point exceptions” on page 27

Related information in the XL C/C++ Compiler Reference

-qfloat

-qstrict

-qflttrap

Matching compile-time and runtime rounding modes
The default rounding mode used at compile time and run time is round-to-nearest,
ties to even. If your program changes the rounding mode at run time, the results of
a floating-point calculation might be slightly different from those that are obtained
at compile time. The following example illustrates this:1

#include <float.h>
#include <fenv.h>
#include <stdio.h>

int main ()
{
volatile double one = 1.f, three = 3.f; /* volatiles are not folded */
double one_third;

one_third = 1. / 3.; /* folded */
printf ("1/3 with compile-time rounding = %.17f\n", one_third);

Chapter 4. Handling floating-point operations 25

fesetround (FE_TOWARDZERO);
one_third = one / three; /* not folded */
fesetround (FE_TONEAREST);2

printf ("1/3 with execution-time rounding to zero = %.17f\n", one_third);

fesetround (FE_TONEAREST);
one_third = one / three; /* not folded */
fesetround (FE_TONEAREST);2

printf ("1/3 with execution-time rounding to nearest = %.17f\n", one_third);

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */
fesetround (FE_TONEAREST);2

printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

fesetround (FE_DOWNWARD);
one_third = one / three; /* not folded */
fesetround (FE_TONEAREST);2

printf ("1/3 with execution-time rounding to -infinity = %.17f\n", one_third);

return 0;
}

Notes:

1. On AIX, this example must be linked with the system math library, libm, to
obtain the functions and macros declared in the fenv.h header file.

2. See “Rounding modes and standard library functions” for an explanation of the
resetting of the round mode before the call to printf.

When compiled with the default options, this code produces the following results:
1/3 with compile-time rounding = 0.33333333333333331
1/3 with execution-time rounding to zero = 0.33333333333333331
1/3 with execution-time rounding to nearest = 0.33333333333333331
1/3 with execution-time rounding to +infinity = 0.33333333333333337
1/3 with execution-time rounding to -infinity = 0.33333333333333331

Because the fourth computation changes the rounding mode to round-to-infinity,
the results are slightly different from the first computation, which is performed at
compile time, using round-to-nearest. If you do not use the -qfloat=nofold option
to suppress all compile-time folding of floating-point computations, it is
recommended that you use the -y compiler option with the appropriate suboption
to match compile-time and runtime rounding modes. In the previous example,
compiling with -yp (round-to-infinity) produces the following result for the first
computation:
1/3 with compile-time rounding = 0.33333333333333337

In general, if the rounding mode is changed to rounding to +infinity, -infinity, zero,
or any decimal floating-point only rounding mode, it is recommended that you
also use the -qfloat=rrm option.

Related information in the XL C/C++ Compiler Reference

-qfloat

-y

Rounding modes and standard library functions
On AIX, C and C++ input/output and conversion functions apply the rounding
mode in effect to the values that are input or output by the function. These

26 XL C/C++: Optimization and Programming Guide

functions include printf, scanf, atof, and ftoa, as well as the C++ input and
output operators (>> and <<) on objects like cin and cout.

For example, if the current rounding mode is round-to-infinity, the printf function
will apply that rounding mode to the floating-point digit string value it prints, in
addition to the rounding that was already performed on a calculation. The
following example illustrates this:
#include <float.h>
#include <fenv.h>
#include <stdio.h>

int main()
{
volatile double one = 1.f, three = 3.f; /* volatiles are not folded*/
double one_third;

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */
printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

fesetround (FE_UPWARD);
one_third = one / three; /* not folded */
fesetround (FE_TONEAREST);
printf ("1/3 with execution-time rounding to +infinity = %.17f\n", one_third);

return 0;
}

When compiled with the default options, this code produces the following results:
1/3 with execution-time rounding to +infinity = 0.33333333333333338
1/3 with execution-time rounding to -infinity = 0.33333333333333337

In the first calculation, the value returned is rounded upward to
0.33333333333333337, but the printf function rounds this value upward again, to
print out 0.33333333333333338. The solution to this problem, which is used in the
second calculation, is to reset the rounding mode to round-to-nearest just before
the call to the library function is made.

Handling floating-point exceptions
By default, invalid operations such as division by zero, division by infinity,
overflow, and underflow are ignored at run time. However, you can use the
-qflttrap option or call C or operating system functions to detect these types of
exceptions. If you enable floating-point traps without using the -qflttrap option,
use the -qfloat=fenv option.

In addition, you can add suitable support code to your program to make program
execution continue after an exception occurs and to modify the results of
operations causing exceptions.

Because, however, floating-point computations involving constants are usually
folded at compile time, the potential exceptions that would be produced at run
time might not occur. To ensure that the -qflttrap option traps all runtime
floating-point exceptions, you can use the -qfloat=nofold option to suppress all
compile-time folding.

If you use the AIX operating system functions to enable hardware trapping on
floating-point exceptions, use the -qfloat=fenv option to inform the compiler that
exceptions might occur.

Chapter 4. Handling floating-point operations 27

Related information in the XL C/C++ Compiler Reference

-qfloat

-qflttrap

Compiling a decimal floating-point program
If you are using decimal floating-point formats in your programs, use the -qdfp
option and define the __STDC_WANT_DEC_FP__ macro when you compile them.

For example, to compile dfp_hello.c, use the following compiler invocation:
xlc dfp_hello.c -qdfp -qarch=pwr7 -D__STDC_WANT_DEC_FP__

#include <stdio.h>
#include <float.h>
int main() {

printf("Hello DFP World\n");
printf("DEC32_MAX = %Hf\n",DEC32_MAX);
float f = 12.34df;
printf("12.34df as a float = %f\n",f);

}

Besides defining the __STDC_WANT_DEC_FP__ macro on the command line, you
can also define this macro in your source files using the #define directive.

Related information in the XL C/C++ Compiler Reference

-qdfp

-D

28 XL C/C++: Optimization and Programming Guide

Chapter 5. Using memory heaps

In addition to the memory management functions defined by ANSI, XL C/C++
provides enhanced versions of memory management functions that can help you
improve program performance and debug your programs. With these functions,
you can perform the following tasks:
v Allocate memory from multiple, custom-defined pools of memory, known as

user-created heaps.
v Debug memory problems in the default runtime heap.
v Debug memory problems in user-created heaps.

All the versions of the memory management functions actually work in the same
way. They differ only in the heap from which they allocate, and in whether they
save information to help you debug memory problems. The memory allocated by
all of these functions is suitably aligned for storing any type of object.

“Managing memory with multiple heaps” discusses the advantages of using
multiple, user-created heaps; summarizes the functions available to manage
user-created heaps; provides procedures for creating, expanding, using, and
destroying user-defined heaps; and provides examples of programs that create user
heaps using both regular and shared memory.

“Debugging memory heaps” on page 36 discusses the functions available for
checking and debugging the default and user-created heaps.

Managing memory with multiple heaps
You can use XL C/C++ to create and manipulate your own memory heaps, either
in place of or in addition to the default XL C/C++ runtime heap.

You can create heaps of regular memory or shared memory, and you can have any
number of heaps of any type. The only limit is the space available on your
operating system (the memory and swapper size of your system minus the
memory required by other running applications). You can also change the default
runtime heap to a heap that you have created.

Using your own heaps is optional, and your applications can work well using the
default memory management provided (and used by) the XL C/C++ runtime
library. However, using multiple heaps can be more efficient and can help you
improve your program's performance and reduce wasted memory for a number of
reasons:
v When you allocate from a single heap, you can end up with memory blocks on

different pages of memory. For example, you might have a linked list that
allocates memory each time you add a node to the list. If you allocate memory
for other data in between adding nodes, the memory blocks for the nodes could
end up on many different pages. To access the data in the list, the system might
have to swap many pages, which can significantly slow your program.
With multiple heaps, you can specify the heap from which you want to allocate.
For example, you might create a heap specifically for a linked list. The list's
memory blocks and the data they contain would remain close together on fewer
pages, which reduces the amount of swapping required.

© Copyright IBM Corp. 1996, 2015 29

v In multithreaded applications, only one thread can access the heap at a time to
ensure memory is safely allocated and freed. For example, if thread 1 is
allocating memory, and thread 2 has a call to free, thread 2 must wait until
thread 1 has finished its allocation before it can access the heap. Again, this can
slow down performance, especially if your program does a lot of memory
operations.
If you create a separate heap for each thread, you can allocate from them
concurrently, eliminating both the waiting period and the overhead required to
serialize access to the heap.

v With a single heap, you must explicitly free each block that you allocate. If you
have a linked list that allocates memory for each node, you have to traverse the
entire list and free each block individually, which can take some time.
If you create a separate heap only for that linked list, you can destroy it with a
single call and free all the memory at once.

v When you have only one heap, all components share it (including the XL C/C++
runtime library, vendor libraries, and your own code). If one component
corrupts the heap, another component might fail. You might have trouble
discovering the cause of the problem and where the heap was damaged.
With multiple heaps, you can create a separate heap for each component, so if
one damages the heap (for example, by using a freed pointer), the others can
continue unaffected. You also know where to look to correct the problem.

Functions for managing user-created heaps
The libhu.a library provides a set of functions with which you can manage
user-created heaps. These functions are all prefixed by _u (for "user" heaps), and
they are declared in the header file umalloc.h. The following table summarizes the
functions available for creating and managing user-defined heaps.

Table 13. Functions for managing memory heaps

Default heap
function

Corresponding
user-created heap
function

Description

n/a _ucreate Creates a heap. Described in “Creating a heap” on
page 31.

n/a _uopen Opens a heap for use by a process. Described in
“Using a heap” on page 33.

n/a _ustats Provides information about a heap. Described in
“Getting information about a heap” on page 34.

n/a _uaddmem Adds memory blocks to a heap. Described in
“Expanding a heap” on page 32.

n/a _uclose Closes a heap from further use by a process.
Described in “Closing and destroying a heap” on
page 34.

n/a _udestroy Destroys a heap. Described in “Closing and
destroying a heap” on page 34.

calloc _ucalloc Allocates and initializes memory from a heap you
have created. Described in “Using a heap” on
page 33.

malloc _umalloc Allocates memory from a heap you have created.
Described in “Using a heap” on page 33.

_heapmin _uheapmin Returns unused memory to the system. Described
in “Closing and destroying a heap” on page 34.

30 XL C/C++: Optimization and Programming Guide

Table 13. Functions for managing memory heaps (continued)

Default heap
function

Corresponding
user-created heap
function

Description

n/a _udefault Changes the default runtime heap to a
user-created heap. Described in “Changing the
default heap used in a program” on page 35.

Note: There are no user-created heap versions of realloc or free. These standard
functions always determine the heap from which memory is allocated, and can be
used with both user-created and default memory heaps.

Creating a heap
You can create a fixed-size heap, or a dynamically-sized heap. With a fixed-size
heap, the initial block of memory must be large enough to satisfy all allocation
requests made to it. With a dynamically-sized heap, the heap can expand and
contract as your program needs demand.

Creating a fixed-size heap

When you create a fixed-size heap, you first allocate a block of memory large
enough to hold the heap and to hold internal information required to manage the
heap, and you assign it a handle. For example:
Heap_t fixedHeap; /* this is the "heap handle" */
/* get memory for internal info plus 5000 bytes for the heap */
static char block[_HEAP_MIN_SIZE + 5000];

The internal information requires a minimum set of bytes, specified by the
_HEAP_MIN_SIZE macro (defined in umalloc.h). You can add the amount of
memory your program requires to this value to determine the size of the block you
need to get. When the block is fully allocated, further allocation requests to the
heap will fail.

After you have allocated a block of memory, you create the heap with _ucreate,
and specify the type of memory for the heap, regular or shared. For example:
fixedHeap = _ucreate(block, (_HEAP_MIN_SIZE+5000), /* block to use */

!_BLOCK_CLEAN, /* memory is not set to 0 */
_HEAP_REGULAR, /* regular memory */
NULL, NULL); /* functions for expanding and shrinking

a dynamically-sized heap */

The !_BLOCK_CLEAN parameter indicates that the memory in the block has not
been initialized to 0. If it were set to 0 (for example, by memset), you would specify
_BLOCK_CLEAN. The calloc and _ucalloc functions use this information to
improve their efficiency; if the memory is already initialized to 0, they do not need
to initialize it.

The fourth parameter indicates the type of memory the heap contains: regular
(_HEAP_REGULAR) or shared (_HEAP_SHARED).

Use _HEAP_REGULAR for regular memory. Most programs use regular memory.
This is the type provided by the default run-time heap. Use _HEAP_SHARED for
shared memory. Heaps of shared memory can be shared between processes or
applications.

Chapter 5. Using memory heaps 31

For a fixed-size heap, the last two parameters are always NULL.

Creating a dynamically-sized heap

With the XL C/C++ default heap, when not enough storage is available to fulfill a
malloc request, the runtime environment gets additional storage from the system.
Similarly, when you minimize the heap with _heapmin or when your program
ends, the runtime environment returns the memory to the operating system.

When you create an expandable heap, you provide your own functions to do this
work, which you can name however you choose. You specify pointers to these
functions as the last two parameters to _ucreate (instead of the NULL pointers
you use to create a fixed-size heap). For example:
Heap_t growHeap;
static char block[_HEAP_MIN_SIZE]; /* get block */

growHeap = _ucreate(block, _HEAP_MIN_SIZE, /* starting block */
!_BLOCK_CLEAN, /* memory not set to 0 */
_HEAP_REGULAR, /* regular memory */
expandHeap, /* function to expand heap */
shrinkHeap); /* function to shrink heap */

Note: You can use the same expand and shrink functions for more than one heap,
as long as the heaps use the same type of memory and your functions are not
written specifically for one heap.

Expanding a heap
To increase the size of a heap, you add blocks of memory to it by doing the
following:
v For fixed-size or dynamically-sized heaps, call the _uaddmem function.
v For dynamically-sized heaps only, write a function that expands the heap, and

that can be called automatically by the system if necessary, whenever you
allocate memory from the heap.

Adding blocks of memory to a heap

You can add blocks of memory to a fixed-size or dynamically-sized heap with
_uaddmem. This can be useful if you have a large amount of memory that is
allocated conditionally. Like the starting block, you must first allocate memory for
a block of memory. This block will be added to the current heap, so make sure the
block you add is of the same type of memory as the heap to which you are adding
it. For example, to add 64K to fixedHeap:
static char newblock[65536];

_uaddmem(fixedHeap, /* heap to add to */
newblock, 65536, /* block to add */
_BLOCK_CLEAN); /* sets memory to 0 */

Note: For every block of memory you add, a small number of bytes from it are
used to store internal information. To reduce the total amount of overhead, it is
better to add a few large blocks of memory than many small blocks.

Writing a heap-expanding function

When you call _umalloc (or a similar function) for a dynamically-sized heap,
_umalloc tries to allocate the memory from the initial block you provided to

32 XL C/C++: Optimization and Programming Guide

_ucreate. If not enough memory is there, it then calls the heap-expanding function
you specified as a parameter to _ucreate. Your function then gets more memory
from the operating system and adds it to the heap. It is up to you how you do
this.

Your function must have the following prototype:
void *(*functionName)(Heap_t uh, size_t *size, int *clean);

Where
v functionName identifies the function (you can name it however you want).
v uh is the heap to be expanded.
v size is the size of the allocation request passed by _umalloc.

You probably want to return enough memory at a time to satisfy several
allocations; otherwise, every subsequent allocation has to call your heap-expanding
function, reducing your program's execution speed. Make sure that you update the
size parameter if you return more than the size requested.

Your function must also set the clean parameter to either _BLOCK_CLEAN, to indicate
the memory has been set to 0 or !_BLOCK_CLEAN, to indicate that the memory has
not been initialized.

The following fragment shows an example of a heap-expanding function:
static void *expandHeap(Heap_t uh, size_t *length, int *clean)
{

char *newblock;
/* round the size up to a multiple of 64K */
*length = (*length / 65536) * 65536 + 65536;

clean = _BLOCK_CLEAN; / mark the block as "clean" */
return(newblock); /* return new memory block */

}

Using a heap
After you have created a heap, you can open it for use by calling _uopen:
_uopen(fixedHeap);

This opens the heap for that particular process; if the heap is shared, each process
that uses the heap needs its own call to _uopen.

You can then allocate and free memory from your own heap just as you would
from the default heap. To allocate memory, use _ucalloc or _umalloc. These
functions work just like calloc and malloc, except you specify the heap to use as
well as the size of block that you want. For example, to allocate 1000 bytes from
fixedHeap:
void *up;
up = _umalloc(fixedHeap, 1000);

To reallocate and free memory, use the regular realloc and free functions. Both of
these functions always check the heap from which the memory was allocated, so
you do not need to specify the heap to use. For example, the realloc and free
calls in the following code fragment look exactly the same for both the default
heap and your heap:
void *p, *up;
p = malloc(1000); /* allocate 1000 bytes from default heap */
up = _umalloc(fixedHeap, 1000); /* allocate 1000 from fixedHeap */

Chapter 5. Using memory heaps 33

realloc(p, 2000); /* reallocate from default heap */
realloc(up, 100); /* reallocate from fixedHeap */

free(p); /* free memory back to default heap */
free(up); /* free memory back to fixedHeap */

When you call any heap function, make sure the heap you specify is valid. If the
heap is not valid, the behavior of the heap functions is undefined.

Getting information about a heap
You can determine the heap from which any object was allocated by calling _mheap.
You can also get information about the heap itself by calling _ustats, which gives
you the following information:
v The amount of memory the heap holds (excluding memory used for overhead)
v The amount of memory currently allocated from the heap
v The type of memory in the heap
v The size of the largest contiguous piece of memory available from the heap

Closing and destroying a heap
When a process has finished using the heap, close it with _uclose. After you have
closed the heap in a process, that process can no longer allocate memory from or
return memory to that heap. If other processes share the heap, they can still use it
until you close it in each of them. Performing operations on a heap after you have
closed it causes undefined behavior.

To destroy a heap, do the following:
v For a fixed-size heap, call _udestroy. If blocks of memory are still allocated

somewhere, you can force the destruction. Destroying a heap removes it entirely
even if it was shared by other processes. Again, performing operations on a
heap after you have destroyed it causes undefined behavior.

v For a dynamically-sized heap, call _uheapmin to coalesce the heap (return all
blocks in the heap that are totally free to the system), or _udestroy to destroy it.
Both of these functions call your heap-shrinking function. (See the following
section.)

After you destroy a heap, it is up to you to return the memory for the heap (the
initial block of memory you supplied to _ucreate and any other blocks added by
_uaddmem) to the system.

Writing the heap-shrinking function

When you call _uheapmin or _udestroy to coalesce or destroy a dynamically-sized
heap, these functions call your heap-shrinking function to return the memory to
the system. It is up to you how you implement this function.

Your function must have the following prototype:
void (*functionName)(Heap_t uh, void *block, size_t size);

Where
v functionName identifies the function (you can name it however you want).
v uh identifies the heap to be shrunk.

34 XL C/C++: Optimization and Programming Guide

The pointer block and its size are passed to your function by _uheapmin or
_udestroy. Your function must return the memory pointed to by block to the
system. For example:
static void shrinkHeap(Heap_t uh, void *block, size_t size)
{

free(block);
return;

}

Changing the default heap used in a program
The regular memory management functions (malloc and so on) always use the
current default heap for that thread. The initial default heap for all XL C/C++
applications is the runtime heap provided by XL C/C++. However, you can make
your own heap the default by calling _udefault. Then all calls to the regular
memory management functions allocate memory from your heap instead of the
default runtime heap.

The default heap changes only for the thread where you call _udefault. You can
use a different default heap for each thread of your program if you choose. This is
useful when you want a component (such as a vendor library) to use a heap other
than the XL C/C++ default heap, but you cannot actually alter the source code to
use heap-specific calls. For example, if you set the default heap to a shared heap
and then call a library function that calls malloc, the library allocates storage in
shared memory.

Because _udefault returns the current default heap, you can save the return value
and later use it to restore the default heap you replaced. You can also change the
default back to the XL C/C++ default runtime heap by calling _udefault and
specifying the _RUNTIME_HEAP macro (defined in umalloc.h). You can also use
this macro with any of the heap-specific functions to explicitly allocate from the
default runtime heap.

Compiling and linking a program with user-created heaps
To compile an application that calls any of the user-created heap functions
(prefixed by _u), specify hu on the -l linker option. For example, if the libhu.a
library is installed in the default directory, you could specify:
xlc progc.c -o progf -lhu

Example of a user heap with regular memory

The following program shows how you might create and use a heap that uses
regular memory.
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>

static void *get_fn(Heap_t usrheap, size_t *length, int *clean)
{

void *p;
/* Round up to the next chunk size */
*length = ((*length) / 65536) * 65536 + 65536;
*clean = _BLOCK_CLEAN;
p = calloc(*length,1);
return (p);

}

static void release_fn(Heap_t usrheap, void *p, size_t size)

Chapter 5. Using memory heaps 35

{
free(p);
return;

}

int main(void)
{

void *initial_block;
long rc;
Heap_t myheap;
char *ptr;
int initial_sz;

/* Get initial area to start heap */
initial_sz = 65536;
initial_block = malloc(initial_sz);
if(initial_block == NULL) return (1);

/* create a user heap */
myheap = _ucreate(initial_block, initial_sz, _BLOCK_CLEAN,

_HEAP_REGULAR, get_fn, release_fn);
if (myheap == NULL) return(2);

/* allocate from user heap and cause it to grow */
ptr = _umalloc(myheap, 100000);
_ufree(ptr);

/* destroy user heap */
if (_udestroy(myheap, _FORCE)) return(3);

/* return initial block used to create heap */

free(initial_block);
return 0;

}

Debugging memory heaps
XL C/C++ provides two sets of functions for debugging memory problems:
v Heap-checking functions similar to those provided by other compilers.

(Described in “Functions for checking memory heaps” on page 37.)
v Debug versions of all memory management functions. (Described in “Functions

for debugging memory heaps” on page 37.)

Both sets of debugging functions have their benefits and drawbacks. The one you
choose to use depends on your program, your problems, and your preference.

The heap-checking functions perform more general checks on the heap at specific
points in your program. You have greater control over where the checks occur. The
heap-checking functions also provide compatibility with other compilers that offer
these functions. You only have to rebuild the modules that contain the
heap-checking calls. However, you have to change your source code to include
these calls, which you will probably want to remove in your final code. Also, the
heap-checking functions only tell you whether the heap is consistent; they do not
provide the details as the debug memory management functions do.

On the other hand, the debug memory management functions provide detailed
information about all allocation requests you make with them in your program.
You do not need to change any code to use the debug versions; you need only
specify the -qheapdebug option.

36 XL C/C++: Optimization and Programming Guide

A recommended approach is to add calls to heap-checking functions in places you
suspect possible memory problems. If the heap turns out to be corrupted, you can
rebuild with -qheapdebug.

Regardless of which debugging functions you choose, your program requires
additional memory to maintain internal information for these functions. If you are
using fixed-size heaps, you might have to increase the heap size in order to use the
debugging functions.
Related information:
Chapter 16, “Memory debug library functions,” on page 169

Related information in the XL C/C++ Compiler Reference

-qheapdebug

Functions for checking memory heaps
The header file umalloc.h declares a set of functions for validating user-created
heaps. These functions are not controlled by any compiler option, so you can use
them in your program at any time. Regular versions of these functions, without the
_u prefix, are also available for checking the default heap. The heap-checking
functions are summarized in the following table.

Table 14. Functions for checking memory heaps

Default heap
function

User-created heap
function

Description

_heapchk _uheapchk Checks the entire heap for minimal consistency.

_heapset _uheapset Checks the free memory in the heap for minimal
consistency, and sets the free memory in the heap to a
value you specify.

_heap_walk _uheap_walk Traverses the heap and provides information about
each allocated or freed object to a callback function
that you provide.

To compile an application that calls the user-created heap functions, see
“Compiling and linking a program with user-created heaps” on page 35.

Functions for debugging memory heaps
Debug versions are available for both regular memory management functions and
user-defined heap memory management functions. Each debug version performs
the same function as its non-debug counterpart, and you can use them for any
type of heap, including shared memory. Each call you make to a debug function
also automatically checks the heap by calling _heap_check (described below), and
provides information, including file name and line number, that you can use to
debug memory problems. The names of the user-defined debug versions are
prefixed by _debug_u (for example, _debug_umalloc), and they are defined in
umalloc.h.

For a complete list and details about all of the debug memory management
functions, see Chapter 16, “Memory debug library functions,” on page 169.

Table 15. Functions for debugging memory heaps

Default heap function Corresponding user-created heap function

_debug_calloc _debug_ucalloc

Chapter 5. Using memory heaps 37

Table 15. Functions for debugging memory heaps (continued)

Default heap function Corresponding user-created heap function

_debug_malloc _debug_umalloc

_debug_heapmin _debug_uheapmin

_debug_realloc n/a

_debug_free n/a

To use these debug versions, you can do either of the following:
v In your source code, prefix any of the default or user-defined-heap memory

management functions with _debug_.
v If you do not want to make changes to the source code, simply compile with the

-qheapdebug option. This option maps all calls to memory management
functions to their debug version counterparts. To prevent a call from being
mapped, parenthesize the function name.

To compile an application that calls the user-created heap functions, see
“Compiling and linking a program with user-created heaps” on page 35.

Notes:

1. When the -qheapdebug option is specified, code is generated to pre-initialize the
local variables for all functions. This makes it much more likely that
uninitialized local variables will be found during the normal debug cycle rather
than much later (usually when the code is optimized).

2. Do not use the -brtl option with -qheapdebug.
3. You should place a #pragma strings (readonly) directive at the top of each

source file that will call debug functions, or in a common header file that each
includes. This directive is not essential, but it ensures that the file name passed
to the debug functions cannot be overwritten, and that only one copy of the file
name string is included in the object module.

Additional functions for debugging memory heaps

Three additional debug memory management functions do not have regular
counterparts. They are summarized in the following table.

Table 16. Additional functions for debugging memory heaps

Default heap function Corresponding
user-created heap function

Description

_dump_allocated _udump_allocated Prints information to stderr about
each memory block currently
allocated by the debug functions.

_dump_allocated_delta _udump_allocated_delta Prints information to file descriptor 2
about each memory block allocated
by the debug functions since the last
call to _dump_allocated or
_dump_allocated_delta.

_heap_check _uheap_check Checks all memory blocks allocated
or freed by the debug functions to
make sure that no overwriting has
occurred outside the bounds of
allocated blocks or in a free memory
block.

38 XL C/C++: Optimization and Programming Guide

The _heap_check function is automatically called by the debug functions; you can
also call this function explicitly. You can then use _dump_allocated or
_dump_allocated_delta to display information about currently allocated memory
blocks. You must explicitly call these functions.
Related information:
Chapter 16, “Memory debug library functions,” on page 169

Related information in the XL C/C++ Compiler Reference

-brtl

-qheapdebug

-qro / #pragma strings

Using memory allocation fill patterns
Some debug functions set all the memory they allocate to a specified fill pattern.
This lets you easily locate areas in memory that your program uses.

The debug_malloc, debug_realloc, and debug_umalloc functions set allocated
memory to a default repeating 0xAA fill pattern. To enable this fill pattern, export
the HD_FILL environment variable.

Skipping heap checking
Each debug function calls _heap_check (or _uheap_check) to check the heap.
Although this is useful, it can also increase your program's memory requirements
and decrease its execution speed.

To reduce the overhead of checking the heap on every debug memory
management function, you can use the HD_SKIP environment variable to control
how often the functions check the heap. You will not need to do this for most of
your applications unless the application is extremely memory intensive.

Set HD_SKIP like any other environment variable. The syntax for HD_SKIP is:
set HD_SKIP=increment,[start]

where:

increment
Specifies the number of debug function calls to skip between performing
heap checks.

start Specifies the number debug function calls to skip before starting heap
checks.

Note: The comma separating the parameters is optional.

For example, if you specify:
set HD_SKIP=10

then every tenth debug memory function call performs a heap check. If you
specify:
set HD_SKIP=5,100

Chapter 5. Using memory heaps 39

then after 100 debug memory function calls, only every fifth call performs a heap
check.

When you use the start parameter to start skipping heap checks, you are trading
off heap checks that are done implicitly against program execution speed. You
should therefore start with a small increment (like 5) and slowly increase until the
application is usable.

Using stack traces
Stack contents are traced for each allocated memory object. If the contents of an
object's stack change, the traced contents are dumped.

The trace size is controlled by the HD_STACK environment variable. If this
variable is not set, the compiler assumes a stack size of 10. To disable stack tracing,
set the HD_STACK environment variable to 0.

40 XL C/C++: Optimization and Programming Guide

Chapter 6. Constructing a library

You can include static and shared libraries in your C and C++ applications.

“Compiling and linking a library” describes how to compile your source files into
object files for inclusion in a library, how to link a library into the main program,
and how to link one library into another.

“Initializing static objects in libraries (C++)” on page 45 describes how to use
priorities to control the order of initialization of objects across multiple files in a
C++ application.

“Dynamically loading a shared library” on page 50 describes two functions you
can use in your application code to load, initialize, unload, and terminate a C++
shared library at run time.
Related information:

Objects and libraries

Compiling and linking a library
This section describes how to compile your source files into object files for
inclusion in a library, how to link a library into the main program, and how to link
one library into another.
Related information:

Diagnosing link-time errors
Related information in the Getting Started with XL C/C++

Dynamic and static linking

Compiling a static library
To compile a static (unshared) library, follow this procedure:
1. Compile each source file to get an object file. For example:

xlc -c test.c example.c

2. Use the ar command to add the generated object files to an archive library file.
For example:
ar -rv libex.a test.o example.o

Compiling a shared library
For use with dynamic linking

To compile a shared library that uses dynamic linking:
1. Compile each source file into an object file, with no linking. For example:

xlc -c test1.c -o test1.o

2. Optional: Create an export file listing the global symbols to be exported, by
doing one of the following:
v Use the CreateExportList utility, described in “Exporting symbols with the

CreateExportList utility” on page 44.

© Copyright IBM Corp. 1996, 2015 41

http://www.redbooks.ibm.com/redbooks/SG245674/2-2-2.htm
http://www.redbooks.ibm.com/redbooks/SG245674/6-3.htm

v Use the -qexpfile compiler option with the -qmkshrobj option. The -qexpfile
option saves all exported symbols from a list of given object files in a
designated file. For example:
xlc -qmkshrobj -qexpfile=exportlist test1.o test2.o

v Manually create an export file using a text editor. You can edit an export file
to include or exclude global symbols from the target shared library.

3. Use the -qmkshrobj option to create a shared library from the generated object
files.
v If you created an export file in step 2, use the -bE linker option to use your

global symbol export list. If you do not specify a -bE option, all the global
symbols are exported IBM except for those symbols that have the hidden
or internal visibility attribute. IBM

v If you are creating a shared library from C++ object files, you can also assign
an initialization priority to the shared library, as described in “Assigning
priorities to objects” on page 45.

For example:
xlc -qmkshrobj -o mySharedObject.o test1.o test2.o -bE:exportlist

Notes:

v The default name of the shared object is shr.o, unless you use the -o option
to specify another name.

v Exporting some functions (such as restf# where # is a number) might cause
incorrect execution. If any files in the shared library use floating point and
are compiled with the -qtwolink option, do not export the restf# or
equivalent floating-point utility functions.

C++

Users without XL C/C++ installed can use the makeC++SharedLib

utility described in “Creating a shared library with the makeC++SharedLib
utility” on page 58 to create a shared library from C++ object files. This method
is not recommended for compiler users. The -qmkshrobj option is preferred
because it has several advantages, including the ability to automatically handle
C++ template instantiation, and compatibility with the -O5 optimization option.

C++

4. Optional: Use the AIX ar command to produce an archive library file from
multiple shared or static objects. For example:
ar -rv libtest.a mySharedObject.o myStaticObject.o

5. Link the shared library to the main application, as described in “Linking a
library to an application” on page 44.

For use with runtime linking

To create a shared library that uses runtime linking:
1. Compile each source file into an object file with no linking.
2. Optional: Create an export file listing the global symbols to be exported, by

doing one of the following:
v Use the CreateExportList utility, described in “Exporting symbols with the

CreateExportList utility” on page 44.
v Use the -qexpfile compiler option with the -qmkshrobj option. The -qexpfile

option saves all exported symbols from a list of given object files in a
designated file.

v Manually create an export file using a text editor. You can edit an export file
to include or exclude global symbols from the target shared library.

42 XL C/C++: Optimization and Programming Guide

3. Use the -G option to create a shared library from the generated object files, and
to enable runtime linking with applications that support it.
v If you created an export file, use the -bE linker option to use your global

symbol export list. If you do not specify a -bE option, all the global symbols
are exported IBM except for those symbols that have the hidden or
internal visibility attribute. IBM

v If you are creating a shared library from C++ object files, you can also assign
an initialization priority to the shared library, as described in “Assigning
priorities to objects” on page 45.

For example:
xlc -G -o libtest.so test1.o test2.o -bE:exportlist

4. Link the shared library to the main application using the -brtl option, as
described in “Linking a library to an application” on page 44.

Dynamic loading of a shared library

Shared libraries built for either dynamic or runtime linking can be dynamically
loaded. See the documentation of AIXoperating systems for more information
about using the dynamic loading routines:
v dlopen
v dlclose
v dlerror
v loadAndInit
v loadbind
v loadquery
v terminateAndUnload

C++

If you want the system to perform static initialization when dynamically

loading a shared library, use the load and unload functions described in
“Dynamically loading a shared library” on page 50.

Related external information

v AIX Linking and Loading Mechanisms

v ar and ld in the AIX Commands Reference, Volumes 1 - 6

v Shared Objects and Runtime Linking
Related information in the XL C/C++ Compiler Reference

-qexpfile

-qmkshrobj

-O, -qoptimize

-G

-qvisibility (IBM extension)

#pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)

-brtl

Chapter 6. Constructing a library 43

http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/dlopen.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/advanced/help.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/dlclose.htm&topic=/com.ibm.aix.basetechref/doc/basetrf1/dlclose.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/dlerror.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/load.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/loadbind.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf1/loadquery.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.basetechref/doc/basetrf2/unload.htm
http://download.boulder.ibm.com/ibmdl/pub/software/dw/aix/es-aix_ll.pdf
http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds1/ar.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ld.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/shared_object_runtime_linking.htm

Exporting symbols with the CreateExportList utility
CreateExportList is a shell script that creates a file containing a list of exportable
symbols found in a given set of object files. Note that this command is run
automatically when you use the -qmkshrobj option, unless you specify an
alternative export file with the -qexpfile command.

The syntax of the CreateExportList command is as follows:

►► CreateExportList exp_list -f file_list
-r obj_files -w 32

-X 64

►◄

You can specify one or more of the following options:

-r If specified, template prefixes are pruned. The resource file symbol (__rsrc)
is not added to the resource list.

exp_list
The name of a file that will contain a list of global symbols found in the
object files. This file is overwritten each time the CreateExportList
command is run.

-ffile_list
The name of a file that contains a list of object file names.

obj_files
One or more names of object files.

-w Excludes weak symbols from the export list.

-X32 Generates names from 32-bit object files in the input list specified by -f
file_list or obj_files. This is the default.

-X64 Generates names from 64-bit object files in the input list specified by -f
file_list or obj_files.

The CreateExportList command creates an empty list if any of the following is
true:
v No object files are specified by either -f file_list or obj_files.
v The file specified by the -f file_list parameter is empty.
v IBM All global symbols in the object files have the hidden or internal

visibility attribute. IBM

Related information in the XL C/C++ Compiler Reference

-qmkshrobj

-qexpfile

-qvisibility (IBM extension)

#pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)

Linking a library to an application
You can use the following command string to link a static or shared library to your
main program. For example:
xlc -o myprogram main.c -Ldirectory1:directory2 -ltest

44 XL C/C++: Optimization and Programming Guide

You instruct the linker to search for libtest.a in the first directory specified by the
-L option. If libtest.a is not found, the search continues with the next directory
specified by the -L option.

If your library uses runtime linking, add the -brtl option to the command:
xlc -brtl -o myprogram main.c -Ldirectory -ltest

By using the -brtl option with the -l option, you instruct the linker to search for
libtest.so in the first directory specified by the -L option. If libtest.so is not
found, the linker searches for libtest.a. If neither file is found, the search
continues with the next directory specified by the -L option.

For additional linkage options, including options that modify the default behavior,
see the AIX ld documentation (http://publib.boulder.ibm.com/infocenter/aix/
v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ld.htm).

Related information in the XL C/C++ Compiler Reference

-l

-L

-brtl

Linking a shared library to another shared library
Just as you link modules into an application, you can create dependencies between
shared libraries by linking them together. For example:
xlc -qmkshrobj -o mylib.so myfile.o -Ldirectory -ltest

Related information in the XL C/C++ Compiler Reference

-qmkshrobj

-L

Initializing static objects in libraries (C++)
The C++ language definition specifies that all non-local objects with constructors
from all the files included in the program must be properly constructed before the
main function in a C++ program is executed. Although the language definition
specifies the order of initialization for these objects within a file (which follows the
order in which they are declared), it does not specify the order of initialization for
these objects across files and libraries. You might want to specify the initialization
order of static objects declared in various files and libraries in your program.

To specify an initialization order for objects, you assign relative priority numbers to
objects. The mechanisms by which you can specify priorities for entire files or
objects within files are discussed in “Assigning priorities to objects.” The
mechanisms by which you can control the initialization order of objects across
modules are discussed in “Order of object initialization across libraries” on page
47.

Assigning priorities to objects
You can assign a priority level number to objects and files within a single library
using the following approaches. The objects will be initialized at run time

Chapter 6. Constructing a library 45

http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ld.htm
http://publib.boulder.ibm.com/infocenter/aix/v7r1/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds3/ld.htm

according to the order of priority level. In addition, because modules are loaded
and objects are initialized differently on different platforms, you can choose an
approach that fits the platform better.

Set the priority level for an entire file
To use this approach, specify the -qpriority compiler option during
compilation. By default, all objects within a single file are assigned the
same priority level; they are initialized in the order in which they are
declared, and they are terminated in reverse declaration order.

Set the priority level for objects within a file
To use this approach, include #pragma priority directives in the source
files. Each #pragma priority directive sets the priority level for all the
objects that follow it until another pragma directive is specified. Within a
file, the first #pragma priority directive must have a higher priority
number than the number specified in the -qpriority option (if it is used),
and subsequent #pragma priority directives must have increasing numbers.
While the relative priority of objects within a single file will remain the
order in which they are declared, the pragma directives will affect the
order in which objects are initialized across files. The objects are initialized
according to their priority and terminated in reverse priority order.

On AIX, you can additionally set the priority of an entire shared library, by using
the priority suboption of the -qmkshrobj compiler option. As loading and
initialization on AIX occur as separate processes, priority numbers assigned to files
(or to objects within files) are entirely independent of priority numbers assigned to
libraries, and do not need to follow any sequence.

Using priority numbers

Priority numbers can range from -2147483648 to 2147483647. However, numbers
from -2147483648 to -2147482625 are reserved for system use. The smallest priority
number that you can specify, -2147482624, is initialized first. The largest priority
number, 2147483647, is initialized last. If you do not specify a priority level, the
default priority is 0 (zero).

The examples below show how to specify the priority of objects within a single file
and across two files. “Order of object initialization across libraries” on page 47
provides detailed information on the order of initialization of objects.

Example of object initialization within a file

The following example shows how to specify the priority for several objects within
a source file.
...
#pragma priority(2000) //Following objects constructed with priority 2000
...

static Base a ;

House b ;
...
#pragma priority(3000) //Following objects constructed with priority 3000
...

Barn c ;
...
#pragma priority(2500) // Error - priority number must be larger

// than preceding number (3000)

46 XL C/C++: Optimization and Programming Guide

...
#pragma priority(4000) //Following objects constructed with priority 4000
...

Garage d ;
...

Example of object initialization across multiple files

The following example describes the initialization order for objects in two files,
farm.C and zoo.C. Both files are contained in the same shared module, and use the
-qpriority compiler option and #pragma priority directives.

farm.C -qpriority=1000 zoo.C -qpriority=2000

...
Dog a ;
Dog b ;
...
#pragma priority(6000)
...
Cat c ;
Cow d ;
...
#pragma priority(7000)
Mouse e ;
...

...

Bear m ;
...
#pragma priority(5000)
...
Zebra n ;
Snake s ;
...
#pragma priority(8000)
Frog f ;
...

At run time, the objects in these files are initialized in the following order:

Sequence Object
Priority
value Comment

1 Dog a 1000 Takes option priority (1000).

2 Dog b 1000 Follows with the same priority.

3 Bear m 2000 Takes option priority (2000).

4 Zebra n 5000 Takes pragma priority (5000).

5 Snake s 5000 Follows with same priority.

6 Cat c 6000 Next priority number.

7 Cow d 6000 Follows with same priority.

8 Mouse e 7000 Next priority number.

9 Frog f 8000 Next priority number (initialized last).

Related information in the XL C/C++ Compiler Reference

-qpriority / #pragma priority (C++ only)

-qmkshrobj

Order of object initialization across libraries
At run time, once all modules in an application have been loaded, the modules are
initialized in their order of priority (the executable program containing the main
function is always assigned a priority of 0). When objects are initialized within a
library, the order of initialization follows the rules outlined in “Assigning priorities
to objects” on page 45. If objects do not have priorities assigned, or have the same

Chapter 6. Constructing a library 47

priorities, object files are initialized in random order, and the objects within the
files are initialized according to their declaration order. Objects are terminated in
reverse order of their construction.

For objects assigned the same priorities, if you want to control their initialization
order, you can use the -Wm option to do so. -Wm with the -c suboption specifies
that object files with the same priority are to be initialized in link order — where
link order is the order in which the files were given on the command line during
linking into the library — and the static objects within the files are initialized
according to their declaration order. -Wm with the -r suboption specifies that the
object files with the same priority are to be initialized in reverse link order.

Example of object initialization across libraries

In this example, the following modules are used:
v main.out, the executable containing the main function
v libS1 and libS2, two shared libraries
v libS3 and libS4, two shared libraries that are dependencies of libS1
v libS5 and libS6, two shared libraries that are dependencies of libS2

The source files are compiled into object files with the following commands:
xlC -qpriority=101 -c fileA.C -o fileA.o
xlC -qpriority=150 -c fileB.C -o fileB.o
xlC -c fileC.C -o fileC.o
xlC -c fileD.C -o fileD.o
xlC -c fileE.C -o fileE.o
xlC -c fileF.C -o fileF.o
xlC -qpriority=300 -c fileG.C -o fileG.o
xlC -qpriority=200 -c fileH.C -o fileH.o
xlC -qpriority=500 -c fileI.C -o fileI.o
xlC -c fileJ.C -o fileJ.o
xlC -c fileK.C -o fileK.o
xlC -qpriority=600 -c fileL.C -o fileL.o

The dependent libraries are created with the following commands:
xlC -qmkshrobj=50 -o libS3.a fileE.o fileF.o
xlC -qmkshrobj=-600 -o libS4.a fileG.o fileH.o
xlC -qmkshrobj=-200 -o libS5.a fileI.o fileJ.o
xlC -qmkshrobj=-150 -o libS6.a fileK.o fileL.o

The dependent libraries are linked with their parent libraries using the following
commands:
xlC -qmkshrobj=-300 -o libS1.a fileA.o fileB.o -L. -lS3 -lS4
xlC -qmkshrobj=100 -o libS2.a fileC.o fileD.o -L. -lS5 -lS6

The parent libraries are linked with the main program with the following
command:
xlC main.C -o main.out -L. -R. -lS1 -lS2

The following diagram shows the initialization order of the objects in the shared
libraries.

48 XL C/C++: Optimization and Programming Guide

6 31 4

2 7

5

fileG.o fileK.ofileE.o fileI.o

fileA.o fileC.o

fileH.o fileL.ofileF.o fileJ.o

fileB.o fileD.o

libS4

-qmkshrobj=-600

libS6

-qmkshrobj=-150
libS3

-qmkshrobj=50

libS5

-qmkshrobj=-200

libS1

-qmkshrobj=-300

libS2

-qmkshrobj=100

-qpriority=300

-qpriority=101

-qpriority=200

-qpriority=150

main.out

-qpriority=500 -qpriority=600

First, the shared libraries are initialized, in the following order:

Sequence Object
Priority
value Comment

1 libS4 -600 Initialized first (lowest priority number).

2 libS1 -300 Initialized next (next priority number).

3 libS5 -200 Initialized next (next priority number).

4 libS6 -150 Initialized next (next priority number).

5 main.out 0 Initialized next (next priority number). The main
program always has a priority of 0.

6 libS3 50 Initialized next (next priority number).

7 libS2 100 Initialized last (next priority number).

Then, each of the files is initialized, in the following order:

Sequence Object
Priority
value Comment

8 fileH 200 Initialized first (contained in libS4; lowest priority
number).

9 fileG 300 Initialized next (contained in libS4; next priority
number).

10 fileA 101 Initialized next (contained in libS1; lowest priority
number).

11 fileB 150 Initialized next (contained in libS1; next priority
number).

12 fileJ 0 Initialized next (contained in libS5; lowest priority
number).

13 fileI 500 Initialized next (contained in libS5; next priority
number).

Figure 1. Object initialization order on AIX

Chapter 6. Constructing a library 49

Sequence Object
Priority
value Comment

14 fileK 0 Initialized next (contained in libS6; lowest priority
number).

15 fileL 600 Initialized next (contained in libS6; next priority
number).

16 Objects in main are initialized according to their
priority.

17 fileE, fileF 0, 0 Initialized next, in random order (contained in
libS3; same priority number).

18 fileC, fileD 0, 0 Initialized next, in random order (contained in
libS2; same priority number).

Related information in the XL C/C++ Compiler Reference

-qmkshrobj

-W

Dynamically loading a shared library
If you want to programmatically control the loading and initialization of C++
objects contained in shared libraries, you can use two functions provided by XL
C/C++: loadAndInit and terminateAndUnload. These functions are declared in the
header file load.h, and you can call them from the main program to load,
initialize, terminate, and unload any named shared library. These functions work in
the same way, take the same parameters, and return the same values and error
codes as the AIX load and unload routines, respectively, but they additionally
perform initialization of C++ objects. See the load and unload routines in the
Technical Reference: Base Operating System and Extensions, Volumes 1 & 2 for more
information.

Note: For portability, you might want to use the POSIX dlopen and dlclose
functions, which also perform initialization and termination, and interact correctly
with loadAndInit and terminateAndUnload. For more information about dlopen and
dlclose, see the Technical Reference: Base Operating System and Extensions, Volumes 1
& 2.
Related information:
“Loading and initializing a module with the loadAndInit function”
“Terminating and unloading a module with the terminateAndUnload function” on
page 52

Loading and initializing a module with the loadAndInit
function

The loadAndInit function takes the same parameters and returns the same values
and error codes as the load routine. See the load routine in the Technical Reference:
Base Operating System and Extensions, Volumes 1 & 2 for more information.

Format
#include <load.h>
int (*loadAndInit(char *FilePath, unsigned int Flags, char *LibraryPath))();

50 XL C/C++: Optimization and Programming Guide

Description

The loadAndInit function calls the AIX load routine to load the specified module
(shared library) into the address space of the calling process. If the shared library is
loaded successfully, any C++ initialization is performed. The loadAndInit function
ensures that a shared library is only initialized once, even if dlopen is used to load
the library too. Subsequent loads of the same shared library will not perform any
initialization of the shared library.

If loading a shared library results in other shared libraries being loaded, the
initialization for those shared libraries will also be performed (if it has not been
previously). If loading a shared library results in the initialization of multiple
shared libraries, the order of initialization is determined by the priority assigned to
the shared libraries when they were built. Shared libraries with the same priority
are initialized in random order.

To terminate and unload the shared library, use the terminateAndUnload function,
described below.

Do not reference symbols in the C++ initialization that need to be resolved by a
call to the AIX loadbind routine because the loadbind routine normally is not
called until after the loadAndInit function returns.

Parameters

FilePath
Points to the name of the shared library being loaded, or to the member of
an archive. If you specify a relative or full path name (that is, a name
containing one or more / characters), the file is used directly, and no
search of directories specified in the LibraryPath is performed. If you
specify a base name (that is, a name containing no / characters), a search is
performed of the directory you specify in the LibraryPath parameter (see
below).

Flags Modifies the behavior of loadAndInit. If no special behavior is required,
set the value to 0 (or 1). The possible flags are:

L_LIBPATH_EXEC
Specifies that the library path used at program execution time be
prepended to any library path specified in the loadAndInit call.
You should use this flag.

L_NOAUTODEFER
Specifies that any deferred imports must be explicitly resolved by
the use of the loadbind routine.

L_LOADMEMBER
Specifies that the FilePath is the name of a member in an archive.
The format is archivename.a(member).

LibraryPath
Points to the default library search path.

Return values

Upon successful completion, the loadAndInit function returns the pointer to
function for the entry point (or data section) of the shared library.

Chapter 6. Constructing a library 51

If the loadAndInit function fails, a null pointer is returned, the module is not
loaded or initialized, and the errno global variable is set to indicate the error.

Terminating and unloading a module with the
terminateAndUnload function

The terminateAndUnload function takes the same parameters and returns the same
values and error codes as the unload routine. See the unload routine in Technical
Reference: Base Operating System and Extensions, Volumes 1 & 2 for more information.

Format
#include <load.h>
int terminateAndUnload(int (*FunctionPointer)());

Description

The terminateAndUnload function performs any C++ termination that is required
and unloads the module (shared library). The function pointer returned by the
loadAndInit routine is used as the parameter for the terminateAndUnload function.
If this is the last time the shared library is being unloaded, any C++ termination is
performed for this shared library and any other shared libraries that are being
unloaded for the last time as well. The terminateAndUnload function ensures that
the shared library is only terminated once, even if dlclose is used to unload the
library too. The order of termination is the reverse order of initialization performed
by the loadAndInit function. If any uncaught exceptions occur during the C++
termination, the termination is stopped and the shared library is unloaded.

If the loadAndInit function is called more times for a shared library than
terminateAndUnload, the shared library will never have the C++ termination
performed. If you rely on the C++ termination being performed at the time the
terminateAndUnload function is called, ensure the number of calls to the
terminateAndUnload function matches the number of calls to the loadAndInit
function. If any shared libraries loaded with the loadAndInit function are still in
use when the program exits, the C++ termination is performed.

If the terminateAndUnload function is used to unload shared libraries not loaded
with the loadAndInit function, no termination will be performed.

Parameters

FunctionPointer
Specifies the name of the function returned by the loadAndInit function.

Return values

Successful completion of the terminateAndUnload function returns a value of 0,
even if the C++ termination was not performed and the shared library was not
unloaded because the shared library was still in use.

If the terminateAndUnload function fails, it returns a value of -1 and sets errno to
indicate the error.

52 XL C/C++: Optimization and Programming Guide

Chapter 7. Replacing operator new and operator delete in
applications that use shared libraries (C++)

You can define your own versions of operator new() and operator delete() in
C++ applications. In applications that use shared libraries, it might be useful for
the shared library to use a user-defined operator new() and operator delete() in
the main application executable. You might want to do this if you want more
control over memory management than if you use the default calls to these
operators in the C++ Runtime Library libC.a. Enabling this facility in your
applications requires using the runtime linking option -brtl, creating an export list
with the mangled names for the operators you are defining, and building your
applications with the correct link time option so that calls to operator new() and
operator delete() are replaceable. The mangled names indicated by the export list
are then available to the runtime environment so that libraries loaded at run time
use your versions of operator new() and operator delete().

Follow these steps:
1. Write the code that defines your own versions of operator new() or operator

delete(). For example, this program shows operator new() being defined:
#include <new>
#include <cstdio>
#include <cstdlib>
void* operator new(unsigned long x) {

printf("operator new %ld\n", x);
return malloc(x);

}

int main() {
return 5;

}

2. Create an export list that contains the mangled name symbols for the operator
you are defining. For new() and delete(), there are a limited number of name
mangling possibilities when you compile with xlC. For example, depending on
the exception handling specified with the -qlanglvl=newexcp option, different
mangled names will be used. See Table 17 on page 54 for the list of possible
mangled names.
As an aid to creating an export list, compile without linking the code that has
your operator definitions; use the nm command on your object file to display
the symbols that the compiler is using in your object; then, refer to Table 17 on
page 54 to find the matching symbols. For example:
a. Compile without linking:

xlC -c my_app.C

The command creates my_app.o.
b. Use the nm command to display the symbols in new.o

nm -epC my_app.o

The nm command displays a listing similar to this:
.__nw__FUl T 0
TOC d 56
__nw__FUl D 60 12
__nw__FUl d 56 4

© Copyright IBM Corp. 1996, 2015 53

__nw__FUl is a valid symbol that is listed in Table 17. Add this symbol to
your export list.

3. Link your application and use the -bE option to specify the export list you
created that contains the mangled names for the operators you are defining.
Also, specify the -brtl option so that the application uses runtime linking. For
example:
xlC my_app.o -bE:my_app.exp -brtl

Where my_app.exp is the export file that you created in step 2.

Table 17. Mangled names for operator new(), operator delete(), vector new, and vector
delete

Mangled names

Operator new and vector
new names when
compiling with
-qlanglvl=nonewexcp

v __nw__FUl

v __nw__FUlPv

v __nw__FUlRCQ2_3std9nothrow_t

v __vn__FUl

v __vn__FUlPv

v __vn__FUlRCQ2_3std9nothrow_t

Operator new and vector
new names when
compiling with
-qlanglvl=newexcp

v __snw__FUl

v __svn__FUl

Operator delete names v __dl__FPv

v __dl__FPvRCQ2_3std9nothrow_t

v __dl__FPvT1

v __dl__FPvUl

v __vd__FPv

v __vd__FPvRCQ2_3std9nothrow_t

v __vd__FPvUl

Related information in the XL C/C++ Compiler Reference

-qlanglvl

-b

-brtl

54 XL C/C++: Optimization and Programming Guide

Chapter 8. Using the C++ utilities

XL C/C++ provides a set of additional utilities you can use for managing your
C++ applications:
v A filter for demangling compiled symbol names in object files. Described in

“Demangling compiled C++ names with c++filt.”
v A library of classes for demangling and manipulating mangled names. Described

in “Demangling compiled C++ names with the demangle class library” on page
56.

v A distributable shell script for creating shared libraries from library files.
Described in “Creating a shared library with the makeC++SharedLib utility” on
page 58.

v A distributable shell script for linking C++ object files and archives. Described in
“Linking with the linkxlC utility” on page 60.

Demangling compiled C++ names
When XL C/C++ compiles a C++ program, it encodes (mangles) all function
names and certain other identifiers to include type and scoping information. The
name mangling is necessary to accommodate overloading of C++ functions and
operators. The linker uses these mangled names to resolve duplicate symbols and
ensure type-safe linkage. These mangled names appear in the object files and the
final executable file.

Tools that can manipulate the files, the AIX dump utility for example, have only
the mangled names and not the original source-code names, and present the
mangled name in their output. This output might be undesirable because the
names are no longer recognizable.

Two utilities convert the mangled names to their original source code names:

c++filt A filter that demangles (decodes) mangled names.

demangle.h
A class library that you can use to develop tools to manipulate mangled
names.

Demangling compiled C++ names with c++filt
The c++filt utility is a filter that copies characters from file names or standard
input to standard output, replacing all mangled names with their corresponding
demangled names. You can use the filter directly with file name arguments, and
the filter outputs the demangled names of all mangled names in the files; or you
can use a shell command that inputs text, such as specific mangled names, and
pipe it to the filter, so that the filter provides the demangled names of the names
you specified.

c++filt command syntax

►► c++filt ▼

options

▼

filename
►◄

© Copyright IBM Corp. 1996, 2015 55

You can specify one or more of the following options:

-m Produces a symbol map, containing a side-by-side listing of demangled
names in the left column and their corresponding mangled names in the
right column.

-s Produces a continuous listing of each demangled name followed
immediately by its mangled name.

-w width
Prints demangled names in fields width characters wide. If the name is
shorter than width, it is padded on the right with blanks; if longer, it is
truncated to width.

-C Demangles standalone class names, such as Q2_1X1Y.

-S Demangles special compiler-generated symbol names, such as __vft1X
(represents a virtual function).

filename
Is the name of the file containing the mangled names you want to
demangle. You can specify more than one file name.

For example, the following command shows the symbols contained in an object file
functions.o, producing a side-by-side listing of the mangled and demangled
names with a field width of 40 characters:
c++filt -m -w 40 functions.o

The output is displayed as follows:
C++ Symbol Mapping
demangled: Mangled:

Average::insertValue(double) insertValue__7AverageFd
Average::getCount() getCount__7AverageFv
Average::getTotal() getTotal__7AverageFv
Average::getAverage() getAverage__7AverageFv

The following command shows the demangled name immediately followed by the
mangled name:
echo getAverage__7AverageFv | c++filt -s

The output is displayed as follows:
Average::getAverage()getAverage__7AverageFv

Demangling compiled C++ names with the demangle class
library

The demangle class library contains a small class hierarchy that client programs can
use to demangle names and examine the resulting parts of the name. It also
provides a C-language interface for use in C programs. Although it is a C++
library, it uses no external C++ features, so you can link it directly to C programs.
The demangle library is included as part of libC.a, and is automatically linked,
when required, if libC.a is linked.

Note: If your application or library is linked with any of the following objects,
ensure that the demangler symbols resolve to libC.a but not libdemangle.a.
v libC.a

v An application that might be linked against libC.a

56 XL C/C++: Optimization and Programming Guide

The header file declares a base class, Name, and a member function, Demangle, that
takes a mangled name as a parameter, and returns the corresponding demangled
name. The header file declares four additional subclasses, which each contain
member functions that allow you to get additional information about the name.
These classes are:

ClassName
Can be used to query names of independent or nested classes.

FunctionName
Can be used to query names of functions.

MemberVarName
Can be used to query names of member variables.

MemberFunctionName
Can be used to query names of member functions.

For each of these classes, functions are defined to provide you with information
about the name. For example, for function names, a set of functions are defined
that return the following information:

Kind Returns the type of the name being queried (that is, class, function,
member variable, or member function).

Text Returns the fully qualified original text of the function.

Rootname
Returns the unqualified original name of the function.

Arguments
Returns the original text of the parameter list.

Scope Returns the original text of the function's qualifiers.

IsConst/IsVolatile/IsStatic
Returns true/false for these type qualifiers or storage class specifiers.

Note: The demangle class library is not threadsafe. If the library functions are used
in a multithreaded program, calls to these functions must be serialized.

To demangle a name (represented as a character array), create a dynamic instance
of the Name class, providing the character string to the class's constructor. For
example, if the compiler mangled X::f(int) to the mangled name f__1XFi, in
order to demangle the name, use the following code:
char *rest;
Name *name = Demangle(“f__1XFi”, rest) ;

If the supplied character string is not a name that requires demangling, because
the original name was not mangled, the Demangle function returns NULL. When
you are done with name, you must delete it.

After your program has constructed an instance of class Name, the program could
query the instance to find out what kind of name it is, using the Kind method.
Using the example of the mangled name f__1XFi, the following code:
name->Kind()

returns MemberFunction.

Chapter 8. Using the C++ utilities 57

Based on the kind of name returned, the program might ask for the text of the
different parts of the name, or the text of the entire name. The following table
shows examples, still assuming the mangled name f__1XFi.

To return... ...use this code: Result

The name of the
function's qualifier

((MemberFunctionName *)name)->Scope()->Text() X

The unqualified name of
the function

((MemberFunctionName *)name)->RootName() f

The fully qualified name
of the function

((MemberFunctionName *)name)->Text() X::f(int)

For further details about the demangle library and the C++ interface, see the
comments in the library's header file, /opt/IBM/xlC/13.1.3/include/demangle.h.

Creating a shared library with the makeC++SharedLib utility
makeC++SharedLib is a shell script that links C++ .o and .a files. It can be
redistributed and used by someone who does not have XL C/C++ installed.

It is recommended that you use the -qmkshrobj compiler option instead of the
makeC++SharedLib command. Among the advantages to using this option are the
automatic handling of link-time C++ template instantiation (using either the
template include directory or the template registry), and compatibility with the -O5
option.

makeC++SharedLib command syntax

►► invocation ▼

options input_files
►◄

invocation
Is the command, preceded by the path. The following commands are
provided:
v makeC++SharedLib
v makeC++SharedLib_r
v makeC++SharedLib_r7
v makeC++SharedLib128

You can specify one or more of the following options:

-o shared_file.o
The name of the file that will hold the shared file information. The default
is shr.o.

-b Uses the -b binder options of the ld command.

-Llib_dir
Uses the -L option of the ld command to add the directory lib_dir to the
list of directories to be searched for unresolved symbols.

-llibrary
Adds library to the list of libraries to be searched for unresolved symbols.

58 XL C/C++: Optimization and Programming Guide

-p priority
Specifies the priority level for the file. priority can be any number from
-214782623 (highest priority-initialized first) to 214783647 (lowest
priority-initialized last). Numbers from -214783648 to -214782624 are
reserved for system use. For more information, see “Assigning priorities to
objects” on page 45.

-I import_list
Uses the -bI option of the ld command to resolve the list of symbols in the
file import_list that can be resolved by the binder.

-E export_list
Uses the -bE option of the ld command to export the external symbols in
the export_list file. If you do not specify -E export_list, all the global
symbols are exported to a list IBM except for those symbols that have
the hidden or internal visibility attribute IBM .

-e file Saves in file the list computed by -E export_list.

-n name
Sets the entry name for the shared executable to name. This is equivalent to
using the command ld -e name.

-w Excludes weak symbols from being exported.

-X mode
Specifies the type of object file makeC++SharedLib should create. The
mode must be either 32, which processes only 32-bit object files, or 64,
which processes only 64-bit object files. The default is to process 32-bit
object files (ignore 64-bit objects). You can also set the mode with the
OBJECT_MODE environment variable. For example, OBJECT_MODE=64
causes makeC++SharedLib to process any 64-bit objects and ignore 32-bit
objects. The -X flag overrides the OBJECT_MODE variable.

The input files can be any of the following:

file.o Is an object file to be put into the shared library.

file.a Is an archive file to be put into the shared library.

The following table shows equivalent options between makeC++SharedLib and
-qmkshrobj.

makeC++SharedLib options -qmkshrobj and related options

-p nnn -qmkshrobj=nnn

-e file_name -qexpfile=file_name

-E export_file -bE:export_file

-I export_file -bI:export_file

-x -qnolib

-x 32 -q32

-x 64 -q64

-n entry_point -e entry_point

-w -qnoweakexp

Related information in the XL C/C++ Compiler Reference

-qmkshrobj

Chapter 8. Using the C++ utilities 59

-O, -qoptimize

-qvisibility (IBM extension)

#pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)

Linking with the linkxlC utility
linkxlC is a small shell script that links C++ .o and .a files. It can be redistributed,
and then used if you do not have XL C/C++ installed.

linkxlC supports the following subset of the xlC compiler options:
v -q32 (build a 32-bit application)
v -q64 (build a 64-bit application)
v -b (pass linker options to ld)
v -f (pass a list of object files to ld)
v -l (pass a library to ld)
v -L (pass a library path to ld)
v -o (specify the output file)
v -s (strip output)
v -qtwolink (enable two-step linking)

linkxlC does not support the following compiler options:
v -G

v -p

v -pg

linkxlC accepts and ignores all other compiler options.

Unlike xlC, linkxlC does not specify any runtime libraries. You must specify these
libraries yourself. For example, xlC a.o becomes:
linkxlC a.o -L/usr/lpp/vacpp/lib -lC -lm -lc

Related information in the XL C/C++ Compiler Reference

-q32, -q64

-b

-f

-l

-L

-o

-s

-qtwolink (C++ only)

-G

-p, -pg, -qprofile

60 XL C/C++: Optimization and Programming Guide

Chapter 9. Optimizing your applications

The XL compilers enable development of high performance 32-bit and 64-bit
applications by offering a comprehensive set of performance enhancing techniques
that exploit the multilayered PowerPC® architecture. These performance
advantages depend on good programming techniques, thorough testing and
debugging, followed by optimization and tuning.

Distinguishing between optimization and tuning
You can use optimization and tuning separately or in combination to increase the
performance of your application. Understanding the difference between them is the
first step in understanding how the different levels, settings, and techniques can
increase performance.

Optimization

Optimization is a compiler-driven process that searches for opportunities to
restructure your source code and give your application better overall performance
at run time, without significantly impacting development time. The XL compiler
optimization suite, which you control using compiler options and directives,
performs best on well-written source code that has already been through a
thorough debugging and testing process. These optimization transformations can
bring the following benefits:
v Reduce the number of instructions that your application executes to perform

critical operations.
v Restructure your object code to make optimal use of the PowerPC architecture.
v Improve memory subsystem usage.
v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Each basic optimization technique can result in a performance benefit, although
not all optimizations can benefit all applications. Consult the “Steps in the
optimization process” on page 62 for an overview of the common sequence of
steps that you can use to increase the performance of your application.

Tuning

Tuning is a user-driven process where you experiment with changes, for example
to source code or compiler options, to make the compiler better optimize your
program. While optimization applies general transformations designed to improve
the performance of any application in any supported environment, tuning offers
you opportunities to adjust specific characteristics or target execution environments
of your application to improve its performance. Even at low optimization levels,
tuning for your application and target architecture can have a positive impact on
performance. With proper tuning, the compiler can make the following
improvements:
v Select more efficient machine instructions.
v Generate instruction sequences that are more relevant to your application.
v Select from more focussed optimizations to improve your code.

© Copyright IBM Corp. 1996, 2015 61

For instructions, see “Tuning for your system architecture” on page 68.

Steps in the optimization process
When you begin the optimization process, consider that not all optimization
techniques suit all applications. Trade-offs sometimes occur between an increase in
compile time, a reduction in debugging capability, and the improvements that
optimization can provide.

Learning about and experimenting with different optimization techniques can help
you strike the right balance for your XL compiler applications while achieving the
best possible performance. Also, though it is unnecessary to hand-optimize your
code, compiler-friendly programming can be extremely beneficial to the
optimization process. Unusual constructs can obscure the characteristics of your
application and make performance optimization difficult. Use the steps in this
section as a guide for optimizing your application.
1. The Basic optimization step begins your optimization processes at levels 0 and

2.
2. The Advanced optimization step exposes your application to more intense

optimizations at levels 3, 4, and 5.
3. The Using high-order loop analysis and transformations step can help you limit

loop execution time.
4. The Using interprocedural analysis step can optimize your entire application at

once.
5. The Using profile-directed feedback step focuses optimizations on specific

characteristics of your application.
6. The Debugging optimized code step can help you identify issues and problems

that can occur with optimized code.

Basic optimization
The XL compiler supports several levels of optimization, with each option level
building on the levels below through increasingly aggressive transformations and
consequently using more machine resources.

Ensure that your application compiles and executes properly at low optimization
levels before you try more aggressive optimizations. This topic discusses two
optimizations levels, listed with complementary options in Table 18. The table also
includes a column for compiler options that can have a performance benefit at that
optimization level for some applications.

Table 18. Basic optimizations

Optimization level
Additional options
implied by default

Complementary
options

Other options with
possible benefits

-O0 None -qarch None

-O2 -qmaxmem=8192 -qarch
-qtune

-qmaxmem=-1
-qhot=level=0

Optimizing at level 0
Benefits at level 0
v Provides minimal performance improvement with minimal impact on machine

resources

62 XL C/C++: Optimization and Programming Guide

v Exposes some source code problems that can be helpful in the debugging
process

Begin your optimization process at -O0, which the compiler already specifies by
default. This level performs basic analytical optimization by removing obviously
redundant code, and it can result in better compile time. It also ensures your code
is algorithmically correct so you can move forward to more complex optimizations.
-O0 also includes some redundant instruction elimination and constant folding.
The -qfloat=nofold option can be used to suppress folding floating-point
operations. Optimizing at this level accurately preserves all debugging information
and can expose problems in existing code, such as uninitialized variables and bad
casting.

Additionally, specifying -qarch at this level targets your application for a particular
machine and can significantly improve performance by ensuring that your
application takes advantage of all applicable architectural benefits.

Note: For SMP programs, you need to add an additional option -qsmp=noopt.

For more information about tuning, see “Tuning for your system architecture” on
page 68.

Related information in the XL C/C++ Compiler Reference

-qarch

Optimizing at level 2
Benefits at level 2
v Eliminates redundant code
v Performs basic loop optimization
v Structures code to take advantage of -qarch and -qtune settings

After you successfully compile, execute, and debug your application using -O0,
recompiling at -O2 opens your application to a set of comprehensive low-level
transformations that apply to subprogram or compilation unit scopes and can
include some inlining. Optimizations at -O2 attain a relative balance between
increasing performance while limiting the impact on compilation time and system
resources. You can increase the memory available to some of the optimizations in
the -O2 portfolio by providing a larger value for the -qmaxmem option. Specifying
-qmaxmem=-1 allows the optimizer to use memory as needed without checking for
limits but does not change the transformations the optimizer applies to your
application at -O2.

C In C, compile with -qlibansi unless your application defines functions
with names identical to those of library functions. If you encounter problems with
-O2, consider using -qalias=noansi rather than turning off optimization.

Also, ensure that pointers in your C code follow these type restrictions:
v Generic pointers can be char* or void*.
v Mark all shared variables and pointers to shared variables volatile.

C

Chapter 9. Optimizing your applications 63

Starting to tune at O2

Choosing the right hardware architecture target or family of targets becomes even
more important at -O2 and higher. By targeting the proper hardware, the optimizer
can make the best use of the available hardware facilities. If you choose a family of
hardware targets, the -qtune option can direct the compiler to emit code that is
consistent with the architecture choice and that can execute optimally on the
chosen tuning hardware target. With this option, you can compile for a general set
of targets and have the code run best on a particular target.

For details on the -qarch and -qtune options, see “Tuning for your system
architecture” on page 68.

The -O2 option can perform a number of additional optimizations as follows:
v Common subexpression elimination: Eliminates redundant instructions
v Constant propagation: Evaluates constant expressions at compile time
v Dead code elimination: Eliminates instructions that a particular control flow

does not reach or that generate an unused result
v Dead store elimination: Eliminates unnecessary variable assignments
v Global register allocation: Globally assigns user variables to registers
v Value numbering: Simplifies algebraic expressions by eliminating redundant

computations
v Instruction scheduling for the target machine
v Loop unrolling and software pipelining
v Moving loop-invariant code out of loops
v Simplifying control flow
v Strength reduction and effective use of addressing modes
v Widening: Merges adjacent load/stores and other operations
v Pointer aliasing improvements to enhance other optimizations

Even with -O2 optimizations, some useful information about your source code is
made available to the debugger if you specify -g. Using a higher -g level increases
the information provided to the debugger but reduces the optimization that can be
done. Conversely, higher optimization levels can transform code to an extent to
which debugging information is no longer accurate.

Advanced optimization
Higher optimization levels can have a tremendous impact on performance, but
some trade-offs can occur in terms of code size, compile time, resource
requirements, and numeric or algorithmic precision.

After applying “Basic optimization” on page 62 and successfully compiling and
executing your application, you can apply more powerful optimization tools. The
XL compiler optimization portfolio includes many options for directing advanced
optimization, and the transformations that your application undergoes are largely
under your control. The discussion of each optimization level in Table 19 on page
65 includes information on the performance benefits and the possible trade-offs
and information on how you can help guide the optimizer to find the best
solutions for your application.

64 XL C/C++: Optimization and Programming Guide

Table 19. Advanced optimizations

Optimization Level
Additional options
implied

Complementary
options

Options with
possible benefits

-O3 -qnostrict
-qmaxmem=-1
-qhot=level=0

-qarch
-qtune

-qpdf

-O4 -qnostrict
-qmaxmem=-1
-qhot
-qipa
-qarch=auto
-qtune=auto
-qcache=auto

-qarch
-qtune
-qcache

-qpdf
-qsmp=auto

-O5 All of -O4
-qipa=level=2

-qarch
-qtune
-qcache

-qpdf
-qsmp=auto

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -O3 -qhot

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent vector functions in the Mathematical Acceleration Subsystem
libraries (MASS), with the exceptions of functions vdnint, vdint, vcosisin,
vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4, and vpopcnt8. If the compiler
cannot vectorize, it automatically tries to call the equivalent MASS scalar functions.
For automatic vectorization or scalarization, the compiler uses versions of the
MASS functions contained in the system library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

Optimizing at level 3
Benefits at level 3
v In-depth memory access analysis
v Better loop scheduling
v High-order loop analysis and transformations (-qhot=level=0)
v Inlining of small procedures within a compilation unit by default
v Eliminating implicit compile-time memory usage limits

Specifying -O3 initiates more intense low-level transformations that remove many
of the limitations present at -O2. For instance, the optimizer no longer checks for
memory limits, by setting the default to -qmaxmem=-1. Additionally, optimizations
encompass larger program regions and attempt more in-depth analysis. Although
not all applications contain opportunities for the optimizer to provide a measurable
increase in performance, most applications can benefit from this type of analysis.

Chapter 9. Optimizing your applications 65

Potential trade-offs at level 3

With the in-depth analysis of -O3 comes a trade-off in terms of compilation time
and memory resources. Also, because -O3 implies -qnostrict, the optimizer can
alter certain floating-point semantics in your application to gain execution speed.
This typically involves precision trade-offs as follows:
v Reordering of floating-point computations
v Reordering or elimination of possible exceptions, such as division by zero or

overflow
v Using alternative calculations that might give slightly less precise results or not

handle infinities or NaNs in the same way

You can still gain most of the -O3 benefits while preserving precise floating-point
semantics by specifying -qstrict. Compiling with -qstrict is necessary if you require
the same absolute precision in floating-point computational accuracy as you get
with -O0, -O2, or -qnoopt results. The option -qstrict=ieeefp also ensures
adherence to all IEEE semantics for floating-point operations. If your application is
sensitive to floating-point exceptions or the order of evaluation for floating-point
arithmetic, compiling with -qstrict, -qstrict=exceptions, or -qstrict=order helps to
ensure accurate results. You should also consider the impact of the
-qstrict=precision suboption group on floating-point computational accuracy. The
precision suboption group includes the individual suboptions: subnormals,
operationprecision, association, reductionorder, and library (described in the
-qstrict option in the XL C/C++ Compiler Reference).

Without -qstrict, the difference in computation for any one source-level operation
is very small in comparison to “Basic optimization” on page 62. Although a small
difference can be compounded if the operation is in a loop structure where the
difference becomes additive, most applications are not sensitive to the changes that
can occur in floating-point semantics.

For information about the -O level syntax, see "-O -qoptimize" in the XL C/C++
Compiler Reference .

An intermediate step: adding -qhot suboptions at level 3
At -O3, the optimization includes minimal -qhot loop transformations at level=0 to
increase performance. To further increase your performance benefit from -qhot,
increase the optimization aggressiveness by increasing the optimization level of
-qhot. Try specifying -qhot without any suboptions or -qhot=level=1.

For more information about -qhot, see “Using high-order loop analysis and
transformations” on page 70.

Conversely, if the application does not use loops processing arrays, which -qhot
improves, you can improve compile speed significantly, usually with minimal
performance loss by using -qnohot after -O3.

Optimizing at level 4
Benefits at level 4
v Propagation of global and argument values between compilation units
v Inlining code from one compilation unit to another
v Reorganization or elimination of global data structures
v An increase in the precision of aliasing analysis

66 XL C/C++: Optimization and Programming Guide

Optimizing at -O4 builds on -O3 by triggering -qipa=level=1, which performs
interprocedural analysis (IPA), optimizing your entire application as a unit. This
option is particularly pertinent to applications that contain a large number of
frequently used routines.

To make full use of IPA optimizations, you must specify -O4 on the compilation
and link steps of your application build as interprocedural analysis occurs in
stages at both compile time and link time.

Beyond -qipa, -O4 enables other optimization options:
v -qhot

Enables more aggressive HOT transformations to optimize loop constructs and
array language.

v -qarch=auto and -qtune=auto

Optimizes your application to execute on a hardware architecture identical to
your build machine. If the architecture of your build machine is incompatible
with the execution environment of your application, you must specify a different
-qarch suboption after the -O4 option. This overrides -qtune=auto.

v -qcache=auto

Optimizes your cache configuration for execution on specific hardware
architecture. The auto suboption assumes that the cache configuration of your
build machine is identical to the configuration of your execution architecture.
Specifying a cache configuration can increase program performance, particularly
loop operations by blocking them to process only the amount of data that can fit
into the data cache at a time.
If you want to execute your application on a different machine, specify correct
cache values.

Potential trade-offs at level 4

In addition to the trade-offs already mentioned for -O3, specifying -qipa can
significantly increase compilation time, especially at the link step.

The IPA process
1. At compile time optimizations occur on a file-by-file basis, as well as

preparation for the link stage. IPA writes analysis information directly into the
object files the compiler produces.

2. At the link stage, IPA reads the information from the object files and analyzes
the entire application.

3. This analysis guides the optimizer on how to rewrite and restructure your
application and apply appropriate -O3 level optimizations.

The “Using interprocedural analysis” on page 74 section contains more information
about IPA including details on IPA suboptions.

Optimizing at level 5
Benefits at level 5
v Makes most aggressive optimizations available
v Makes full use of loop optimizations and interprocedural analysis

As the highest optimization level, -O5 includes all -O4 optimizations and deepens
whole program analysis by increasing the -qipa level to 2. Compiling with -O5
also increases how aggressively the optimizer pursues aliasing improvements.

Chapter 9. Optimizing your applications 67

Additionally, if your application contains a mix of C/C++ and Fortran code that
you compile using the XL compilers, you can increase performance by compiling
and linking your code with the -O5 option.

Potential trade-offs at level 5

Compiling at -O5 requires more compilation time and machine resources than any
other optimization levels, particularly if you include -O5 on the IPA link step.
Compile at -O5 as the final phase in your optimization process after successfully
compiling and executing your application at -O4.

Tuning for your system architecture
You can instruct the compiler to generate code for optimal execution on a given
microprocessor or architecture family. By selecting appropriate target machine
options, you can optimize to suit the broadest possible selection of target
processors, a range of processors within a given family of processor architectures,
or a specific processor.

The following table lists the optimization options that affect individual aspects of
the target machine. Using a predefined optimization level sets default values for
these individual options.

Table 20. Target machine options

Option Behavior

-q32 Generates code for a 32-bit (4 byte integer / 4 byte long / 4 byte pointer)
addressing model (32-bit execution mode). This is the default setting.

-q64 Generates code for a 64-bit (4 byte integer / 8 byte long / 8 byte pointer)
addressing model (64-bit execution mode).

-qarch Selects a family of processor architectures for which instruction code
should be generated. This option restricts the instruction set generated to
a subset of that for the PowerPC architecture. Using -O4 or -O5 sets the
default to -qarch=auto. See “Getting the most out of target machine
options” on page 69 for more information about this option.

-qtune Biases optimization toward execution on a given microprocessor, without
implying anything about the instruction set architecture to be used as a
target. See “Getting the most out of target machine options” on page 69
for more information about this option.

-qcache Defines a specific cache or memory geometry. The defaults are
determined through the setting of -qtune. See “Getting the most out of
target machine options” on page 69 for more information about this
option.

For a complete list of valid hardware related suboptions and combinations of
suboptions, see the following information in the XL C/C++ Compiler Reference.
v Acceptable -qarch/-qtune combinations in -qtune
v Specifying compiler options for architecture-specific compilation

Related information in the XL C/C++ Compiler Reference

-q32, -q64

-qarch

-qipa

68 XL C/C++: Optimization and Programming Guide

-qcache

Getting the most out of target machine options
Using the -qarch option

Use the -qarch compiler option to generate instructions that are optimized for a
specific machine architecture. For example, if you want to generate an object code
that contains instructions optimized for POWER8®, use -qarch=pwr8. If your
application runs on the same machine on which you compile it, use the
-qarch=auto option, which automatically detects the specific architecture of the
compiling machine and generates code to take advantage of instructions available
only on that machine (or on a system that supports the equivalent processor
architecture). Otherwise, use the -qarch option to specify the smallest possible
family of the machines that can run your code reasonably well.

If you want to run your application on a system architecture that provides specific
feature supports, you must specify a corresponding -qarch suboption to generate
the object code for your system architecture. For example, if you want to deploy
your application on a POWER7®, POWER7+™, or POWER8 machine and to fully
exploit VMX vector processing and large-page support, you must specify
-qarch=pwr7 for POWER7 or POWER7+ and -qarch=pwr8 for POWER8 on your
compiling machine. Specifying -qarch=auto or -qarch does not give you the
support you want. However, if you deploy your application on both POWER7 and
POWER8, you must make sure that -qarch is set to the lowest common
architecture. This way your application will only contain instructions that are
common to all processors the application is deployed on. In this example, the
lowest common architecture is POWER7, so you must use -qarch=pwr7. For details
about -qarch and its suboptions, see -qarch in the XL C/C++ Compiler Reference. For
details about the corresponding system architectures each -qarch suboption
supports, see the Features support in processor architectures table in -qarch.

Using the -qtune option

Use the -qtune compiler option to control the scheduling of instructions that are
optimized for your machine architecture. If you specify a particular architecture
with -qarch, -qtune automatically selects the suboption that generates instruction
sequences with the best performance for that architecture. If you specify a group of
architectures with -qarch, compiling with -qtune=auto generates code that runs on
all of the architectures in the specified group, but the instruction sequences are
those with the best performance on the architecture of the compiling machine.

Try to specify with -qtune the particular architecture that the compiler should
target for best performance but still allow execution of the produced object file on
all architectures specified in the -qarch option. For information about the valid
combinations of -qarch and -qtune settings, see Acceptable -qarch/-qtune combinations
in the -qtune section of the XL C/C++ Compiler Reference.

If you need to create a single binary file that runs on a range of PowerPC
hardware, you can use the -qtune=balanced option. With this option in effect,
optimization decisions made by the compiler are not targeted to a specific version
of hardware. Instead, tuning decisions try to include features that are generally
helpful across a broad range of hardware and avoid those optimizations that might
be harmful on some hardware.

Chapter 9. Optimizing your applications 69

Note: You must verify the performance of code compiled with the
-qtune=balanced option before distributing it.

The difference between -qtune=balanced and other -qtune suboptions including
-qtune=auto is as follows:
v With the -qtune=balanced option, the compiler generates instructions that

perform reasonably well across a range of Power® hardware.
v With other suboptions, the compiler generates instructions that are optimized for

that specified versions of hardware architecture and might not perform well on
others.

Using -qcache options

Before using the -qcache option, use the -qlistopt option to generate a listing of the
current settings and verify if they are satisfactory. If you decide to specify your
own -qcache suboptions, use -qhot or -qsmp along with it.

Related information in the XL C/C++ Compiler Reference

-qhot

-qsmp

-qcache

-qlistopt

-qarch

-qtune

Using high-order loop analysis and transformations
High-order transformations are optimizations that specifically improve the
performance of loops through techniques such as interchange, fusion, and
unrolling.

The goals of these loop optimizations include:
v Reducing the costs of memory access through the effective use of caches and

address translation look-aside buffers
v Overlapping computation and memory access through effective utilization of the

data prefetching capabilities provided by the hardware
v Improving the utilization of microprocessor resources through reordering and

balancing the usage of instructions with complementary resource requirements
v Generating SIMD vector instructions to offer better program performance when

-qsimd=auto is specified
v Generating calls to vector math library functions

To enable high-order loop analysis and transformations, use the -qhot option,
which implies an optimization level of -O2. The following table lists the suboptions
available for -qhot.

70 XL C/C++: Optimization and Programming Guide

Table 21. -qhot suboptions

Suboption Behavior

level=0 Instructs the compiler to perform a subset of high-order transformations
that enhance performance by improving data locality. This suboption
implies -qhot=novector and -qhot=noarraypad. This level is automatically
enabled if you compile with -O3.

level=1 This is the default suboption if you specify -qhot with no suboptions. This
level is also automatically enabled if you compile with -O4 or -O5. This is
equivalent to specifying -qhot=vector.

level=2 When used with -qsmp, instructs the compiler to perform the
transformations of -qhot=level=1 plus some additional transformation on
nested loops. The resulting loop analysis and transformations can lead to
more cache reuse and loop parallelization.

vector When specified with -qnostrict and -qignerrno, or -O3 or a higher
optimization level, instructs the compiler to transform some loops to use
the optimized versions of various math functions contained in the MASS
libraries, rather than use the system versions. The optimized versions make
different trade-offs with respect to accuracy and exception-handling versus
performance. This suboption is enabled by default if you specify -qhot with
no suboptions. Also, specifying -qhot=vector with -O3 implies
-qhot=level=1.

arraypad Instructs the compiler to pad any arrays where it infers there might be a
benefit and to pad by whatever amount it chooses.

Related information in the XL C/C++ Compiler Reference

-qhot

-qstrict

-qignerrno

-qarch

-qsimd

Getting the most out of -qhot
Here are some suggestions for using -qhot:
v Try using -qhot along with -O3 for all of your code. It is designed to have a

neutral effect when no opportunities for transformation exist. However, it
increases compilation time and might have little benefit if the program has no
loop processing vectors or arrays. In this case, using -O3 -qnohot might be
better.

v If the runtime performance of your code can significantly benefit from automatic
inlining and memory locality optimizations, try using -O4 with -qhot=level=0 or
-qhot=novector.

v If you encounter unacceptably long compilation time (this can happen with
complex loop nests), try -qhot=level=0 or -qnohot.

v If your code size is unacceptably large, try reducing the inlining level or using
-qcompact along with -qhot.

v You can compile some source files with the -qhot option and some files without
the -qhot option, allowing the compiler to improve only the parts of your code
that need optimization.

Chapter 9. Optimizing your applications 71

v Use -qreport along with -qhot to generate a loop transformation listing. The
listing file identifies how loops are transformed in a section marked LOOP
TRANSFORMATION SECTION. Use the listing information as feedback about how the
loops in your program are being transformed. Based on this information, you
might want to adjust your code so that the compiler can transform loops more
effectively. For example, you can use this section of the listing to identify
non-stride-one references that might prevent loop vectorization.

v Use -qreport along with -qhot or any optimization option that implies -qhot to
generate information about nested loops in the LOOP TRANSFORMATION SECTION of
the listing file. In addition, when you use -qprefetch=assistthread to generate
prefetching assist threads, a message Assist thread for data prefetching was
generated is also displayed in this section of the report. To generate a list of
aggressive loop transformations and parallelizations performed on loop nests in
the LOOP TRANSFORMATION SECTION of the listing file, use -qhot=level=2 and
-qsmp together with -qreport.

v Use -qassert=refalign, where appropriate, to assert to the compiler that all
pointers inside the compilation unit only point to data that is naturally aligned
with respect to the length of the pointer types. With this assertion, the compiler
might generate more efficient code. This assertion is particularly useful when
you target a SIMD architecture with -qhot=level=0 or -qhot=level=1 with the
-qsimd=auto option.
Related information in the XL C/C++ Compiler Reference

-qcompact

-qhot

-qsimd

-qprefetch

-qstrict

Using shared-memory parallelism (SMP)
Most IBM pSeries machines are capable of shared-memory parallel processing. You
can compile with -qsmp to generate the threaded code needed to exploit this
capability. The -qsmp option implies the -qhot option and an optimization level of
-O2 or higher.

The following table lists the most commonly used suboptions. Descriptions and
syntax of all the suboptions are provided in -qsmp in the XL C/C++ Compiler
Reference. An overview of automatic parallelization, as well as of IBM SMP and
OpenMP directives is provided in Chapter 13, “Parallelizing your programs,” on
page 155.

Table 22. Commonly used -qsmp suboptions

suboption Behavior

auto Instructs the compiler to automatically generate parallel code where possible
without user assistance. Any SMP programming constructs in the source
code, including IBM SMP and OpenMP directives, are also recognized. This
is the default setting if you do not specify any -qsmp suboptions, and it also
implies the opt suboption.

72 XL C/C++: Optimization and Programming Guide

Table 22. Commonly used -qsmp suboptions (continued)

suboption Behavior

omp Instructs the compiler to enforce strict conformance to the OpenMP API for
specifying explicit parallelism. Only language constructs that conform to the
OpenMP standard are recognized. Note that -qsmp=omp is incompatible
with -qsmp=auto.

opt Instructs the compiler to optimize as well as parallelize. The optimization is
equivalent to -O2 -qhot in the absence of other optimization options.

noopt All optimization is turned off. During development, it can be useful to turn
off optimization to facilitate debugging.

fine_tuning Other values for the suboption provide control over thread scheduling,
locking, and so on.

Related information in the XL C/C++ Compiler Reference

-O, -qoptimize

-qsmp

-qhot

Getting the most out of -qsmp
Here are some suggestions for using the -qsmp option:
v Before using -qsmp with automatic parallelization, test your programs using

optimization and -qhot in a single-threaded manner.
v If you are compiling an OpenMP program and do not want automatic

parallelization, use -qsmp=omp:noauto.
v Always use threadsafe compiler invocations (the _r invocations) when using

-qsmp.
v By default, the runtime environment uses all available processors. Do not set the

XLSMPOPTS=PARTHDS or OMP_NUM_THREADS environment variables
unless you want to use fewer than the number of available processors. You
might want to set the number of executing threads to a small number or to 1 to
ease debugging.

v If you are using a dedicated machine or node, consider setting the SPINS and
YIELDS environment variables (suboptions of the XLSMPOPTS environment
variable) to 0. Doing so prevents the operating system from intervening in the
scheduling of threads across synchronization boundaries such as barriers.

v When debugging an OpenMP program, try using -qsmp=noopt (without -O) to
make the debugging information produced by the compiler more precise.
Related information in the XL C/C++ Compiler Reference

-qsmp

-qhot

Invoking the compiler

XLSMPOPTS

Environment variables for parallel processing

Chapter 9. Optimizing your applications 73

Using interprocedural analysis
Interprocedural analysis (IPA) enables the compiler to optimize across different
files (whole-program analysis), and it can result in significant performance
improvements.

You can specify interprocedural analysis on the compilation step only or on both
compilation and link steps in whole program mode. Whole program mode
expands the scope of optimization to an entire program unit, which can be an
executable or a shared object. As IPA can significantly increase compilation time,
you should limit using IPA to the final performance tuning stage of development.

You can generate relinkable objects while preserving IPA information by specifying
-r -qipa=relink. This creates a nonexecutable package that contains all object files.
By using this suboption, you can postpone linking until the very last stage.

If you want to use your own archive files while generating the nonexecutable
package, you can use the ar tool and set the XL_AR environment variable to point
to the ar tool. For details, refer to the -qipa section of the XL C/C++ Compiler
Reference.

You can enable IPA by specifying the -qipa option. The most commonly used
suboptions and their effects are described in the following table. The full set of
suboptions and syntax is described in the -qipa section of the XL C/C++ Compiler
Reference.

The steps to use IPA are as follows:
1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that
increases compilation time and link time. You can reduce some compilation and
link overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compilation and the link steps of the
entire application, or as much of it as possible. Use suboptions to indicate
assumptions to be made about parts of the program not compiled with -qipa.

Table 23. Commonly used -qipa suboptions

Suboption Behavior

level=0 Program partitioning and simple interprocedural optimization, which
consists of:
v Automatic recognition of standard libraries.
v Localization of statically bound variables and procedures.
v Partitioning and layout of procedures according to their calling

relationships. (Procedures that call each other frequently are
located closer together in memory.)

v Expansion of scope for some optimizations, notably register
allocation.

level=1 Inlining and global data mapping. Specifically:
v Procedure inlining.
v Partitioning and layout of static data according to reference

affinity. (Data that is frequently referenced together will be located
closer together in memory.)

This is the default level if you do not specify any suboptions with
the -qipa option.

74 XL C/C++: Optimization and Programming Guide

Table 23. Commonly used -qipa suboptions (continued)

Suboption Behavior

level=2 Global alias analysis, specialization, interprocedural data flow:
v Whole-program alias analysis. This level includes the

disambiguation of pointer dereferences and indirect function calls,
and the refinement of information about the side effects of a
function call.

v Intensive intraprocedural optimizations. This can take the form of
value numbering, code propagation and simplification, moving
code into conditions or out of loops, and elimination of
redundancy.

v Interprocedural constant propagation, dead code elimination,
pointer analysis, code motion across functions, and interprocedural
strength reduction.

v Procedure specialization (cloning).
v Whole program data reorganization.

inline=suboptions Provides precise control over function inlining.

fine_tuning Other values for -qipa provide the ability to specify the behavior of
library code, tune program partitioning, read commands from a file,
and so on.

relink Creates a nonexecutable package that contains all of your object files
while preserving IPA information.

Notes:

v XL C/C++ and XL Fortran provide backwards compatibility with IPA objects
that are created by earlier compiler versions. If IPA object files that are compiled
with newer versions of compilers are linked by an earlier version, errors occur
during the link step. For example, if IPA object file a.o is compiled by XL
C/C++, V13.1.3 and is to be linked with IPA object file b.o that is compiled by
XL Fortran, V15.1.0, then you must use a compiler whose version is XL C/C++,
V13.1.3 or later.

v XL C/C++ and XL Fortran versions released at the same time produce matching
IPA level information and can be linked together. For example, the IPA for XL
C/C++, V13.1.3 matches with the IPA for XL Fortran, V15.1.3, because these
compilers are released at the same time. For example, the IPA level for XL
C/C++, V13.1.3 matches with the IPA for XL Fortran, V15.1.3. The following
table lists some matching XL C/C++ and XL Fortran releases:

Table 24. Compiler versions and release date

Compiler version General availability (Release date)

XL C for AIX, V13.1.3

XL C/C++ for AIX, V13.1.3

XL Fortran for AIX, V15.1.3

11-Dec-2015

XL C for AIX, V13.1.0

XL C/C++ for AIX, V13.1.0

XL Fortran for AIX, V15.1.0

06-Jun-2014

XL C for AIX, V12.1.0

XL C/C++ for AIX, V12.1.0

XL Fortran for AIX, V14.1.0

18-May-2012

Chapter 9. Optimizing your applications 75

For more information about the release dates of compiler products, see
http://www-01.ibm.com/software/support/lifecycle/index_x.html
If your compiler version has two release dates on the Support Lifecycle web site,
determine the date based on your product ID.
Related information in the XL C/C++ Compiler Reference

-qipa

Getting the most from -qipa
It is not necessary to compile everything with -qipa, but try to apply it to as much
of your program as possible. Here are some suggestions:
v Specify the -qipa option on both the compile and the link steps of the entire

application. Although you can also use -qipa with libraries, shared objects, and
executable files, be sure to use -qipa to compile the main and exported
functions.

v When compiling and linking separately, use -qipa=noobject on the compile step
for faster compilation.

v When specifying optimization options in a makefile, use the compiler driver
(xlC) to link with all the compiler options on the link step included.

v As IPA can generate significantly larger object files than traditional compilations,
ensure that there is enough space in the /tmp directory (at least 200 MB). You
can use the TMPDIR environment variable to specify a directory with sufficient
free space.

v Try varying the level suboption if link time is too long. Compiling with
-qipa=level=0 can still be very beneficial for little additional link time.

v Use -qipa=list=long to generate a report of functions that were previously
inlined. If too few or too many functions are inlined, consider using -qinline or
-qnoinline. To control the inlining of specific functions, use
-qinline+function_name or -qinline-function_name.

v To generate data reorganization information in the listing file, specify the
optimization level -qipa=level=2 or -O5 together with -qreport. During the IPA
link pass, the data reorganization messages for program variable data will be
produced to the data reorganization section of the listing file with the label DATA
REORGANIZATION SECTION. Reorganizations include array splitting, array
transposing, memory allocation merging, array interleaving, and array
coalescing.

v Use -r -qipa=relink to create a nonexecutable package that contains all of your
object files while preserving IPA information. If you want to use your archive
files while generating the package, you can use the ar tool and set the XL_AR
environment variable to point to the ar tool. For details, refer to the section of
the XL C/C++ Compiler Reference.

Note: While IPA's interprocedural optimizations can significantly improve
performance of a program, they can also cause incorrect but previously functioning
programs to fail. Here are examples of programming practices that can work by
accident without aggressive optimization but are exposed with IPA:
v Relying on the allocation order or location of automatic variables, such as taking

the address of an automatic variable and then later comparing it with the
address of another local variable to determine the growth direction of a stack.
The C language does not guarantee where an automatic variable is allocated, or
its position relative to other automatic variables. Do not compile such a function
with IPA.

76 XL C/C++: Optimization and Programming Guide

http://www-01.ibm.com/software/support/lifecycle/index_x.html

v Accessing a pointer that is either invalid or beyond an array's bounds. Because
IPA can reorganize global data structures, a wayward pointer that might have
previously modified unused memory might now conflict with user-allocated
storage.

v Dereferencing a pointer that has been cast to an incompatible type.
Related information in the XL C/C++ Compiler Reference

-qinline

-qlist

-qipa

Using profile-directed feedback
You can use profile-directed feedback (PDF) to tune the performance of your
application for a typical usage scenario. The compiler optimizes the application
based on an analysis of how often branches are taken and blocks of code are run.

Use the PDF process as one of the last steps of optimization before putting the
application into production. Optimization at all levels from -O2 up can benefit
from PDF. Other optimizations such as the -qipa option and optimization levels
-O4 and -O5 can also benefit from PDF process.

The following diagram illustrates the PDF process.

Compile with
-qpdf1

Compile with
-qpdf2

Source
code

Instrumented
executable

Profile data

Optimized
executable

Sample runs

To use the PDF process to optimize your application, follow these steps:
1. Compile some or all of the source files in a program with the -qpdf1 option.

You must specify at least the -O2 optimization level.

Notes:

v A PDF map file is generated at this step. It is used for the showpdf utility to
display part of the profiling information in text or XML format. For details,
see “Viewing profiling information with showpdf” on page 80. If you do not
need to view the profiling information, specify the -qnoshowpdf option at
this step so that the PDF map file is not generated. For details of
-qnoshowpdf, see -qshowpdf in the XL C/C++ Compiler Reference.

Figure 2. Profile-directed feedback

Chapter 9. Optimizing your applications 77

v Although you can specify PDF optimization (-qpdf) as early in the
optimization level as -O2, PDF optimization is recommended at -O4 and
higher.

v You do not have to compile all of the files of the programs with the -qpdf1
option. In a large application, you can concentrate on those areas of the code
that can benefit most from the optimization.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf1 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

Restriction: When you run an application that is compiled with -qpdf1, you
must end the application using normal methods, including reaching the end of
the execution for the main function and calling the exit() function in libc
(stdlib.h) for C/C++ programs. System calls exit(), _Exit(), and abort() are
considered abnormal termination methods and are not supported. Using
abnormal program termination might result in incomplete instrumentation data
generated by using the PDF file or PDF data not being generated at all.

2. Run the resulting application with a typical data set. When the application
exits, profile information is written to one or more PDF files. You can train the
resulting application multiple times with different data sets. The profiling
information is accumulated to provide a count of how often branches are taken
and blocks of code are run, based on the input data used. This step is called the
PDF training step. By default, the PDF file is named ._pdf, and it is placed in
the current working directory or the directory specified by the PDFDIR
environment variable. If the PDFDIR environment variable is set but the
specified directory does not exist, the compiler issues a warning message. To
override the defaults, use the -qpdf1=pdfname or -qpdf1=exename option.
If you recompile your program with the -qpdf1 option, the compiler removes
the existing PDF file or files whose names and locations are the same as the file
or files that will be created in the training step before generating a new
application.

Notes:

v When you compile your program with the -qpdf1 or -qpdf2 option, by
default, the -qipa option is also invoked with level=0.

v To avoid wasting compile and run time, make sure that the PDFDIR
environment variable is set to an absolute path. Otherwise, you might run
the application from a wrong directory, and the compiler cannot locate the
profiling information files. When it happens, the program might not be
optimized correctly or might be stopped by a segmentation fault. A
segmentation fault might also happen if you change the value of the PDFDIR
environment variable and run the application before the PDF process
finishes.

v Avoid using atypical data. Otherwise, it might distort the analysis of
infrequently executed code paths.

3. If you have several PDF files, use the mergepdf utility to combine these PDF
files into one PDF file. For example, if you produce three PDF files that
represent usage patterns that occur 53%, 32%, and 15% of the time respectively,
you can use this command:

mergepdf -r 53 file_path1 -r 32 file_path2 -r 15 file_path3 -o file_path4

78 XL C/C++: Optimization and Programming Guide

where file_path1, file_path2, and file_path3 specify the directories and names of
the PDF files that are to be merged, and file_path4 specifies the directory and
name of the output PDF file.

Notes:

v Avoid mixing the PDF files created by different versions or PTF levels of the
XL C/C++ compiler.

v You cannot edit PDF files that are generated by the resulting application.
Otherwise, the performance or function of the generated executable
application might be affected.

4. Recompile your program using the same compiler options as before, but
change -qpdf1 to -qpdf2. In this second compilation, the accumulated profiling
information is used to fine-tune the optimizations. The resulting program
contains no profiling overhead and runs at full speed.
It is recommended that you use the -qpdf2 option to link the object files that
are created during the -qpdf1 phase without recompiling your program. Using
this approach, you can save considerable compilation time and achieve the
same optimization result as if you had recompiled your program during the
-qpdf2 phase.

Notes:

v If the compiler cannot read any PDF files in this step, the compiler issues
error message 1586-401 but continues the compilation. If you want the
compiler to stop the compilation, specify -qhaltonmsg=1586-401.

v You are highly recommended to use the same optimization level at all
compilation steps for a particular program. Otherwise, the PDF process
cannot optimize your program correctly and might even slow it down. All
compiler settings that affect optimization must be the same, including any
supplied by configuration files.

v You can modify your source code and use the -qpdf1 and -qpdf2 options to
compile your program. Old profiling information can still be preserved and
used during the second stage of the PDF process. The compiler issues a list
of warnings but the compilation does not stop. An information message is
also issued with a number in the range of 0 - 100 to indicate how outdated
the old profiling information is.

v When option -O4, -O5, or any level of option -qipa is in effect, and you
specify the -qpdf2 option at the link step but not at the compile step, the
compiler issues a warning message. The message indicates that you must
recompile your program to get all the profiling information.

v When using the -qreport option with the -qpdf2 option, you can get
additional information in your listing file to help you tune your program.
This information is written to the PDF Report section.

5. If you want to erase the PDF information, use the cleanpdf utility.

Examples

The following example demonstrates that you can concentrate on compiling with
-qpdf1 only the code that can benefit most from the optimization, instead of
compiling all the code with the -qpdf1 option:
#Set the PDFDIR variable
export PDFDIR=$HOME/project_dir

#Compile most of the files with -qpdf1
xlc -qpdf1 -O3 -c file1.c file2.c file3.c

Chapter 9. Optimizing your applications 79

#This file does not need optimization
xlc -c file4.c

#Non-PDF object files such as file4.o can be linked
xlc -qpdf1 -O3 file1.o file2.o file3.o file4.o

#Run several times with different input data
./a.out < polar_orbit.data
./a.out < elliptical_orbit.data
./a.out < geosynchronous_orbit.data

#Link all the object files into the final application
xlc -qpdf2 -O3 file1.o file2.o file3.o file4.o

The following example bypasses recompiling the source with the -qpdf2 option:
#Compile source with -qpdf1
xlc -c -qpdf1 -O3 file1.c file2.c

#Link object files
xlc -qpdf1 -O3 file1.o file2.o

#Run with one set of input data
./a.out < sample.data

#Link object files
xlc -qpdf2 -O3 file1.o file2.o

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-O, -qoptimize

Runtime environment variables

Viewing profiling information with showpdf
With the showpdf utility, you can view the following types of profiling
information that is gathered from your application:
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option during the

-qpdf1 phase.

You can view the first two types of profiling information in either text or XML
format. However, you can view value profiling and cache-miss profiling
information only in XML format.

Syntax

►► showpdf
pdfdir -f pdfname -m pdfmapdir -xml

►◄

Parameters

pdfdir
Is the directory that contains the profile-directed feedback (PDF) file. If the
PDFDIR environment variable is not changed after the -qpdf1 phase, the PDF

80 XL C/C++: Optimization and Programming Guide

map file is also contained in this directory. If this parameter is not specified,
the compiler uses the value of the PDFDIR environment variable as the name
of the directory.

pdfname
Is the name of the PDF file. If this parameter is not specified, the compiler uses
._pdf as the name of the PDF file.

pdfmapdir
Is the directory that contains the PDF map file. If this parameter is not
specified, the compiler uses the value of the PDFDIR environment variable as
the name of the directory.

-xml
Determines the display format of the PDF information. If this parameter is
specified, the PDF information is displayed in XML format; otherwise, it is
displayed in text format. Because value profiling and cache-miss profiling
information can be displayed only in XML format, the PDF report in XML
format contains more information than the report in text format.

Usage

A PDF map file that contains static information is generated during the -qpdf1
phase, and a PDF file is generated during the execution of the resulting
application. The showpdf utility needs both the PDF and PDF map files to display
PDF information in either text or XML format.

By default, the PDF file is named ._pdf, and the PDF map file is named ._pdf_map.
If the PDFDIR environment variable is set, the compiler places the PDF and PDF
map files in the directory specified by PDFDIR. Otherwise, the compiler places
these files in the current working directory. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message. To override the defaults, use the -qpdf1=pdfname option to specify the
paths and names for the PDF and PDF map files. For example, if you specify the
-qpdf1=pdfname=/home/joe/func option, the resulting PDF file is named func, and
the PDF map file is named func_map. Both of the files are placed in the /home/joe
directory.

If the PDFDIR environment variable is changed between the -qpdf1 phase and the
execution of the resulting application, the PDF and PDF map files are generated in
separate directories. In this case, you must specify the directories for both of these
files to the showpdf utility.

Notes:

v PDF and PDF map files must be generated from the same compilation instance.
Otherwise, the compiler issues an error.

v PDF and PDF map files must be generated during the same profiling process.
This means that you cannot mix and match PDF and PDF map files that are
generated from different profiling processes.

v You must use the same version and PTF level of the compiler to generate the
PDF file and the PDF map file.

v The showpdf utility accepts only PDF files that are in binary format.
v You can use the PDF_WL_ID environment variable to distinguish the multiple

sets of PDF counters that are generated by multiple training runs of the user
program.

Chapter 9. Optimizing your applications 81

The following example shows how to use the showpdf utility to view the profiling
information for a Hello World application:

The source for the program file hello.c is as follows:
#include <stdio.h>
void HelloWorld()
{

printf("Hello World");
}
main()
{

HelloWorld();
return 0;

}

1. Compile the source file.
xlc -qpdf1 -O hello.c

2. Run the resulting executable program a.out using a typical data set or several
typical data sets.

3. If you want to view the profiling information for the executable file in text
format, run the showpdf utility without any parameters.
showpdf

The result is as follows:
HelloWorld(67): 1 (hello.c)

Call Counters:
4 | 1 printf(69)

Call coverage = 100% (1/1)

Block Counters:
2-4 | 1
5 |
5 | 1

Block coverage = 100% (2/2)

main(68): 1 (hello.c)

Call Counters:
8 | 1 HelloWorld(67)

Call coverage = 100% (1/1)

Block Counters:
6-9 | 1
10 |

Block coverage = 100% (1/1)

Total Call coverage = 100% (2/2)
Total Block coverage = 100% (3/3)

If you want to view the profiling information in XML format, run the showpdf
utility with the -xml parameter.
showpdf -xml

The result is as follows:
<?xml version="1.0" encoding="UTF-8" ?>

- <XLTransformationReport xmlns="http://www.ibm.com/2010/04/CompilerTransformation" version="1.0">
- <CompilationStep name="showpdf">
- <ProgramHierarchy>

82 XL C/C++: Optimization and Programming Guide

- <FileList>
- <File id="1" name="hello.c">
- <RegionList>

<Region id="67" name="HelloWorld" startLineNumber="2" />
<Region id="68" name="main" startLineNumber="6" />

</RegionList>
</File>

</FileList>
</ProgramHierarchy>
<TransformationHierarchy />

- <ProfilingReports>
- <BlockCounterList>
- <BlockCounter regionId="67" execCount="1" coveredBlock="2" totalBlock="2">
- <BlockList>

<Block index="3" execCount="1" startLineNumber="2" endLineNumber="4" />
<Block index="2" execCount="0" startLineNumber="5" endLineNumber="5" />
<Block index="4" execCount="1" startLineNumber="5" endLineNumber="5" />

</BlockList>
</BlockCounter>

- <BlockCounter regionId="68" execCount="1" coveredBlock="1" totalBlock="1">
- <BlockList>

<Block index="3" execCount="1" startLineNumber="6" endLineNumber="9" />
<Block index="2" execCount="0" startLineNumber="10" endLineNumber="10" />

</BlockList>
</BlockCounter>

</BlockCounterList>
- <CallCounterList>
- <CallCounter regionId="67" execCount="1" coveredCall="0" totalCall="0">
- <CallList>

<Call name="printf" execCount="1" lineNumber="4" />
</CallList>

</CallCounter>
- <CallCounter regionId="68" execCount="1" coveredCall="0" totalCall="0">
- <CallList>

<Call name="HelloWorld" execCount="1" lineNumber="8" />
</CallList>

</CallCounter>
</CallCounterList>
<ValueProfileList />
<CacheMissList />

</ProfilingReports>
</CompilationStep>

</XLTransformationReport>

Related information in the XL C/C++ Compiler Reference

-qpdf1, -qpdf2

-qshowpdf

Object level profile-directed feedback
About this task

In addition to optimizing entire executables, profile-directed feedback (PDF) can
also be applied to specific object files. This can be an advantage in applications
where patches or updates are distributed as object files or libraries rather than as
executables. Also, specific areas of functionality in your application can be
optimized without the process of relinking the entire application. In large
applications, you can save the time and trouble that otherwise need to be spent
relinking the application.

The process for using object level PDF is essentially the same as the standard PDF
process but with a small change to the -qpdf2 step. For object level PDF, compile
your program using the -qpdf1 option, execute the resulting application with
representative data, compile the program again with the -qpdf2 option, but now
also use the -qnoipa option so that the linking step is skipped.

The steps below outline this process:
1. Compile your program using the -qpdf1 option. For example:

xlc -c -O3 -qpdf1 file1.c file2.c file3.c

Chapter 9. Optimizing your applications 83

In this example, we are using the optimization level -O3 to indicate that we
want a moderate level of optimization.

2. Link the object files to get an instrumented executable:
xlc -O3 -qpdf1 file1.o file2.o file3.o

3. Run the instrumented executable with sample data that is representative of the
data you want to optimize for.
a.out < sample_data

4. Compile the program again using the -qpdf2 option. Specify the -qnoipa
option so that the linking step is skipped and PDF optimization is applied to
the object files rather than to the entire executable.
xlc -c -O3 -qpdf2 -qnoipa file1.c file2.c file3.c

The resulting output of this step are object files optimized for the sample data
processed by the original instrumented executable. In this example, the
optimized object files would be file1.o, file2.o, and file3.o. These can be linked
by using the system loader ld or by omitting the -c option in the -qpdf2 step.

Notes:

v You must use the same optimization level in all the steps. In this example, the
optimization level is -O3.

v If you want to specify a file name for the profile that is created, use the
pdfname suboption in both the -qpdf1 and -qpdf2 steps. For example:
xlc -O3 -qpdf1=pdfname=myprofile file1.c file2.c file3.c

Without the pdfname suboption, by default the file name is ._pdf; the location
of the file is the current working directory or whatever directory you have set
using the PDFDIR environment variable. If the PDFDIR environment variable is
set but the specified directory does not exist, the compiler issues a warning
message.

v Because the -qnoipa option needs to be specified in the -qpdf2 step so that
linking of your object files is skipped, you cannot use interprocedural analysis
(IPA) optimizations and object level PDF at the same time.

For details, see -qpdf1, -qpdf2 in the XL C/C++ Compiler Reference.

Handling table of contents (TOC) overflow
To handle table of contents (TOC) overflow, you can reduce the number of global
symbols, enlarge the TOC access range, or apply interprocedural analysis.

The addresses of global symbols in programs are stored in a data structure called
TOC. To access a global symbol, the address of the global symbol must be
retrieved from the TOC. The default TOC data structure has a fixed size that can
store a fixed number of global symbols. For example, the IBM PowerPC
architecture uses an instruction with a signed 16-bit offset for indirect address
calculations and limits the size of the TOC to 64 KB. A maximum of 16 K entries
can be stored in the TOC in 32-bit mode and 8 K entries in 64-bit mode.

For large applications, it is common to have more global symbols than can be
stored in the default TOC. If an application contains more TOC entries than the
TOC can hold, the linker reports TOC overflow, indicating that an alternative
mechanism must be used. Use the following approaches to handle TOC overflow:
v Reduce the number of global symbols in programs in the following ways:

84 XL C/C++: Optimization and Programming Guide

– Change the source code. It is the best approach to reduce the number of
global symbols.

– Specify the -qminimaltoc option.
– Apply interprocedural analysis by specifying the -qipa option. For more

information about the option, see “Using interprocedural analysis” on page 74
and “Getting the most from -qipa” on page 76.

v Enlarge the TOC access range by specifying the following options:
– -bbigtoc (a linker option)
– -qpic=large

Options for reducing the number of global symbols
The best approach to handle table of contents (TOC) overflow is to reduce the
number of global symbols so that the required number of TOC entries is also
reduced.

You can reduce the number of global symbols by refining the source code. If
possible, change the source code to remove unnecessary global variables and
functions, mark them as static, or group global variables in structures. However,
changing the source code can be time consuming and error prone. In fact, the
compiler can finish these tasks automatically when link-time optimization is used
at high optimization levels (-O4 and -O5) or the optimization is applied explicitly
with -qipa at both compile and link time. The optimization result is similar to
what can be achieved through source changes but without widespread manual
source changes.

To reduce the number of global symbols, you can also specify the -qminimaltoc
option. When you specify this option, the compiler creates a separate table for each
source file. The table contains the address of each global symbol that is used in the
source file. Specifying the option ensures that the compiler creates only one TOC
entry for each compilation unit. This option is effective only if the TOC entries are
spread across multiple source files. If a single source file contains enough global
symbols to cause TOC overflow, the option has no effect to help with TOC
overflow.

Notes:

v It is unnecessary to specify -qminimaltoc for each compilation unit.
v Use -qminimaltoc with discretion because it might lead to low performance. The

use of -qminimaltoc introduces indirect reference and hence increases the time
that is required to access a global symbol. Another drawback is that the memory
requirements for the application might increase. For more information about the
performance impact of the option, see “Performance considerations of handling
TOC overflow” on page 86.

Options for enlarging the TOC access range
Enlarging the table of contents (TOC) access range is an effective way to handle
TOC overflow. Two instructions are used to access the TOC and group the ranges
to consecutive TOC regions. The maximum 16-bit offset on IBM PowerPC supports
a large TOC of 64 K TOC regions. With a maximum of 64 K entries in each TOC
region, a large TOC can be 4 GB. It creates a limit of 1 G global symbols in a 32-bit
environment and 500 M in a 64-bit environment. On POWER8 systems, the two
instructions are often executed together in the same time as one.

Chapter 9. Optimizing your applications 85

To enlarge a TOC, you can specify the -bbigtoc or -qpic=large option. Before you
specify the options, reduce the number of TOC entries because a program that
contains generated code can result in poor performance.

-bbigtoc

The -bbigtoc option is a linker option of the -b flag. It generates extra code if the
size of TOC is greater than 64 K. To increase the total TOC capacity, extended TOC
regions are created in addition to the base TOC. As a result, the base TOC is the
first 64 K region, followed by one or more 64 K regions that form the extended
TOC. When the address of a global symbol is placed in the extended TOC, the
linker inserts a branch to out-of-line code that contains instructions to compute the
location within the extended TOC. The location of the symbol is computed with
three instructions: one to locate the extended TOC region, the second to compute
the location within the extended TOC, and the third to branch back. When you
specify this option, the execution time is increased.

Note: The -bbigtoc option is a linker option and the code that is produced by the
compiler is not changed when the option is specified.

-qpic=large

The -qpic=large option works with the linker to generate more efficient code than
the -bbigtoc option does. When -qpic=large is specified, the compiler always
generates two instructions to get the address of a symbol, whether TOC overflow
occurs or not. When the option is specified, all the symbols, including the symbols
in the base TOC, require an extra instruction to compute the addresses. For offsets
within the normal 64 KB base TOC size, the linker converts the first instruction to
one that does nothing and takes no execution time. On POWER8, these two
instructions are often merged into one instruction with a larger displacement. The
linker does not insert a branch to out-of-line code for offsets. For more information
about how performance is affected by the option, see “Performance considerations
of handling TOC overflow.”

Note: It is unnecessary to specify -qpic=large for each compilation unit.

Performance considerations of handling TOC overflow
Performance must be considered when you handle table of contents (TOC)
overflow. When you bypass TOC overflow, minimize any negative effects on
runtime performance.

When TOC overflow occurs, the best solution is to reduce the number of global
symbols by modifying the source code. You can also consider specifying the
following options, depending on performance requirements:

-qipa

v Advantage: Applying the interprocedural analysis (IPA) process significantly
reduces TOC pressure. In many cases, it completely eliminates TOC overflow.
IPA does so by restructuring your program so that the number of global symbols
is reduced.

v Consideration: IPA is implied at optimization levels -O4 and -O5, but those also
include other complex optimizations that are not relevant to commercial
application development. One good alternative is -qipa=level=0, which applies a
minimal level of whole program optimization; however, you might need

86 XL C/C++: Optimization and Programming Guide

-qipa=level=1 for large applications. Level 1 runs a more aggressive reduction of
the TOC requirements, at the cost of a longer compilation process.

Note: For whole program analysis, you must specify the -qipa option at both the
compile and link command lines.

-qminimaltoc

v Advantage: If the source code contains only performance insensitive global
symbols, use -qminimaltoc to compile the file. The option places all global
symbols in a source file into a separate data structure, which is useful to reduce
overall pressure on the TOC.

v Consideration: You must specify the option with discretion, particularly with
files that contain frequently executed code. The use of the option can
significantly affect performance when it is used to compile files that contain
performance-sensitive global symbols. When -qminimaltoc is specified, the
program is larger and slower than it was. However, it is still faster than using
the -bbigtoc option.

Note: You do not need to specify -qminimaltoc on all compilation units. Minimize
the negative performance by using this option only on compilation units that are
not performance relevant.

-bbigtoc

v Advantage: When you specify the option, there is no additional performance
cost to access global symbols that are stored in the base TOC.

v Consideration:If you specify the -bbigtoc option, accessing global symbols in the
extended TOC requires more instructions to be executed, including a branch to
out-of-line code. The execution time for the sequence of instructions is much
more than for the two instructions that are generated by -qpic=large, although
there is no increased execution time to load pointers within the normal 64 KB
base TOC size. In addition, the compiler can miss opportunities to optimize the
file because handling the offset calculation is generated at link time.

-qpic=large

v Advantage: The -qpic=large option is usually the preferred solution, because it
provides the best balance for accessing symbols in both the base and the
extended TOC.

v Consideration: The option might affect performance because it uses two
instructions to get the address of a symbol, regardless of whether TOC overflow
occurs. However, the two instructions have only a short latency when compared
with the sequence generated by -bbigtoc. On POWER8 based system, the two
instructions are often executed together in the same time as one.

Marking variables as local or imported
The compiler assumes that all variables in applications are imported, but the use of
-qdatalocal and -qdataimported can mark variables local or imported. The
compiler optimizes applications that are based on the specification of static or
dynamic binding for program variables.

-qdatalocal

Local variables are stored in a special segment of memory that is uniquely bound
to a program or shared library. Specify the -qdatalocal option to identify variables

Chapter 9. Optimizing your applications 87

to be treated as local to a compiled program or shared library. You can specify the
option with no parameters to indicate that all appropriate variables are local.
Alternatively, you can append a list of colon-separated names to the option to treat
only a subset of the program arguments as local.

When it can be, a variable that is marked as local is embedded directly into a
structure that is called the table of contents (TOC) instead of in a separate global
piece of memory. The prerequisite is that the variable's storage must be no more
than the pointer size for it to be embedded in the TOC. Usually, pointers to data
are stored in the TOC. The -qdatalocal option allows storage of data directly in
the TOC, hence reducing data accesses from two load instructions to one load
instruction.

-qdataimported

Imported variables are stored according to the default memory allocation scheme.
The -qdataimported option is the default data binding mechanism. Specifying the
option implies that the data is visible to other program or shared library that is
linked. As a result, specifying variable names as arguments to the -qdataimported
option or compiling with the -qdataimported option without arguments in
isolation has no effect.

The -qdataimported option is useful when you use it in combination with
-qdatalocal. Because it is unlikely that you want to store all data in the TOC, the
-qdataimported option can override -qdatalocal for variables external to a
program or shared library. For example, the use of options -qdatalocal
-qdataimported=<variable> stores all global data in the TOC except for <variable>.

Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Getting the most out of -qdatalocal
You can see some examples that illustrate the use of the -qdatalocal option.

In the source for the following program file, A1 and A2 are global variables:
int A1;
int A2;
int main(){

A2=A1+1;
return A2;

}

Here is an excerpt of the listing file that is created if you specify -qlist without
-qdatalocal:

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=.A1(gr2,0)
5| 000004 lwz 80630000 1 L4A gr3=A1(gr3,0)
5| 000008 addi 38630001 1 AI gr3=gr3,1
5| 00000C lwz 80820008 1 L4A gr4=.A2(gr2,0)
5| 000010 stw 90640000 1 ST4A A2(gr4,0)=gr3

Here is an excerpt of the listing file that is created if you specify -qlist with
-qdatalocal:

88 XL C/C++: Optimization and Programming Guide

| 000000 PDEF main
4| PROC
5| 000000 lwz 80620004 1 L4A gr3=A1(gr2,0)
5| 000004 addi 38630001 1 AI gr3=gr3,1
5| 000008 stw 90620008 1 ST4A A2(gr2,0)=gr3

When you specify -qdatalocal, the data is accessed by a single load instruction
because the A1 and A2 variables are embedded in the TOC. When you do not
specify -qdatalocal, A1 and A2 variables are accessed by two load instructions. In
this example, you can use -qdatalocal=A1:A2 to specify local variables
individually.

You can always see the section that begins with >>>>> OPTIONS SECTION <<<<< in
the .lst file that is created by -qlist to confirm the use of these options. For
example, you can view DATALOCAL=<variables> or DATALOCAL when the option is
specified.

Notes:

v On AIX, TOC entries are pointer size. When you specify -qdatalocal without
arguments, the option is ignored for variables that are larger than the pointer
size. Conversely, data smaller than pointer size is word-aligned. See the
following example of an objdump excerpt that shows when a char (r3) is
marked local. The offset between the byte and the next data (r4) is still 4 bytes.
The data is accessed by a load byte instruction instead of a regular load. For
more information about how TOC stores data, see Handling table of contents
(TOC) overflow.
10000380: 88 62 00 20 lbz r3,32(r2)
10000384: 80 82 00 24 l r4,36(r2)
r2 (base address of the TOC), r3 (char), r4 (int)

v If you specify an unsuitable variable as a parameter to -qdatalocal, -qdatalocal
is ignored. Unsuitable variables can be data that exceeds pointer-size bytes or
variables that do not exist. When you specify -qdatalocal for a variable that is
not a TOC candidate, the default storage for that variable is set to
-qdataimported and the variable is not stored in the TOC.

v C++ You must use the mangled names when you specify local variables.
Otherwise, you might encounter an error message. C++

v Mark variables as local with care. If you specify -qdatalocal without any
arguments, expect all global variables to be candidates for TOC direct placement,
even those variables that are marked as external. Variables with static linkage do
not have the same issues.

v Since each TOC structure is unique to a module or shared library, the utility of
the -qdatalocal option is limited to data within that module or shared library.

v For programs with multiple modules, switching between multiple TOC
structures might dilute the speedup that is associated with this option.
Related information in the XL C/C++ Compiler Reference

-qdataimported, -qdatalocal, -qtocdata

Using compiler reports to diagnose optimization opportunities
You can use the -qlistfmt option to generate a compiler report in XML or HTML
format. It provides information about how your program is optimized. You can
also use the genhtml utility to convert an existing XML report to HTML format.
This information helps you understand your application codes and tune codes for
better performance.

Chapter 9. Optimizing your applications 89

The compiler report in XML format can be viewed in a browser that supports
XSLT. If you compile with the stylesheet suboption, for example,
-qlistfmt=xml=all:stylesheet=xlstyle.xsl, the report contains a link to a stylesheet
that renders the XML readable. By reading the report, you can detect opportunities
to further optimize your code. You can also create tools to parse this information.

By default, the name of the report is a.xml for XML format, and a.html for HTML
format. You can use the -qlistfmt=xml=filename or -qlistfmt=html=filename
option to override the default name.

Inline reports

If you compile with -qinline and one of -qlistfmt=xml=inlines,
-qlistfmt=html=inlines, -qlistfmt=xml, or -qlistfmt=html, the generated compiler
report includes a list of inline attempts during compilation. The report also
specifies the type of attempt and its outcome.

For each function that the compiler has attempted to inline, there is an indication
of whether the inline was successful. The report might contain any number of
reasons why a named function has not been successfully inlined. Some examples of
these reasons are as follows:
v FunctionTooBig - The function is too big to be inlined.
v RecursiveCall - The function is not inlined because it is recursive.
v ProhibitedByUser - Inlining was not performed because of a user-specified

pragma or directive.
v CallerIsNoopt - No inlining was performed because the caller was compiled

without optimization.
v WeakAndNotExplicitlyInline - The calling function is weak and not marked as

inline.

For a complete list of the possible reasons, see the Inline optimization types
section of the XML schema help file named XMLContent.html in the
/opt/IBM/xlC/13.1.3/listings/ directory. The Japanese and Chinese versions of
the help file, XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html,
are included in this directory as well.

Loop transformations

If you compile with -qhot and one of -qlistfmt=xml=transforms,
-qlistfmt=html=transforms, -qlistfmt=xml or -qlistfmt=html, the generated
compiler report includes a list of the transformations performed on all loops in the
file during compilation. The report also lists the reasons why transformations were
not performed in some cases:
v Reasons why a loop cannot be automatically parallelized
v Reasons why a loop cannot be unrolled
v Reasons why SIMD vectorization failed

For a complete list of the possible transformation problems, see the Loop
transformation types section of the XML schema help file named XMLContent.html
in the /opt/IBM/xlC/13.1.3/listings/ directory.

90 XL C/C++: Optimization and Programming Guide

Data reorganizations

If you compile with -qhot and one of -qlistfmt=xml=data, -qlistfmt=html=data,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes a list of
data reorganizations performed on the program during compilation. Here are some
examples of data reorganizations:
v Array splitting
v Array coalescing
v Array interleaving
v Array transposition
v Memory merge

For each of these reorganizations, the report contains details about the name of the
data, file names, line numbers, and the region names.

Profile-directed feedback reports

If you compile with -qpdf2 and one of -qlistfmt=xml=pdf, -qlistfmt=html=pdf,
-qlistfmt=xml, or -qlistfmt=html, the generated compiler report includes the
following information:
v Loop iteration counts
v Block and call counts
v Cache misses (if compiled with -qpdf1=level=2)
Related information:

-qlistfmt

Parsing compiler reports with development tools
You can write tools to parse the compiler reports produced in XML format to help
you find opportunities to improve application performance.

The compiler includes an XML schema that you can use to create a tool to parse
the compiler reports and display aspects of your code that might represent
performance improvement opportunities. The schema, xllisting.xsd, is located in
the /opt/IBM/xlC/13.1.3/listings/ directory. This schema helps present the
information from the report in a tree structure.

You can also find a schema help file named XMLContent.html that helps you
understand the schema details. The Japanese and Chinese versions of the help file,
XMLContent-Japanese.utf8.html and XMLContent-Chinese.utf8.html, are in the
same directory.

Other optimization options
Options are available to control particular aspects of optimization. They are often
enabled as a group or given default values when you enable a more general
optimization option or level.

For more information about these options, see the heading for each option in the
XL C/C++ Compiler Reference.

Chapter 9. Optimizing your applications 91

Table 25. Selected compiler options for optimizing performance

Option Description

-qignerrno Allows the compiler to assume that errno is not modified by
library function calls, so that such calls can be optimized. Also
allows optimization of square root operations, by generating
inline code rather than calling a library function.

-qsmallstack Instructs the compiler to compact stack storage. Doing so
might increase heap usage, which might increase execution
time. However, it might be necessary for the program to run
or to be optimally multithreaded.

-qinline Controls inlining.

-qunroll Independently controls loop unrolling. -qunroll is implicitly
activated under -O3.

-qinlglue Instructs the compiler to inline the "glue code" generated by
the linker and used to make a call to an external function or a
call made through a function pointer.

-qtbtable Controls the generation of traceback table information.

C++

-qnoeh Informs the compiler that no C++ exceptions will be thrown

and that cleanup code can be omitted. If your program does
not throw any C++ exceptions, use this option to compact
your program by removing exception-handling code.

-qnounwind Informs the compiler that the stack will not be unwound
while any routine in this compilation is active. This option can
improve optimization of nonvolatile register saves and
restores. In C++, the -qnounwind option implies the -qnoeh
option. It should not be used if the program uses
setjmp/longjmp or any other form of exception handling.

-qstrict Disables all transformations that change program semantics.
In general, compiling a correct program with -qstrict and any
levels of optimization produces the same results as without
optimization.

-qnostrict Allows the compiler to reorder floating-point calculations and
potentially excepting instructions. A potentially excepting
instruction is one that might raise an interrupt due to
erroneous execution (for example, floating-point overflow, a
memory access violation). -qnostrict is used by default for the
-O3 and higher optimization levels.

-qlargepage Supports large 16M pages in addition to the default 4K pages,
to allow hardware prefetching to be done more efficiently.
Informs the compiler that heap and static data will be
allocated from large pages at execution time.

-qprefetch Inserts prefetch instructions in compiled code to improve code
performance. In situations where you are working with
applications that generate a high cache-miss rate, you can use
its suboption assistthread to generate prefetching assist
threads (for example, -qprefetch=assistthread). -qnoprefetch
is the default option.

Related information in the XL C/C++ Compiler Reference

-qignerrno

-qsmallstack

-qinline

92 XL C/C++: Optimization and Programming Guide

-qunroll / #pragma unroll

-qinlglue

-qtbtable

-qeh (C++ only)

-qunwind

-qstrict

-qlargepage

-qprefetch

Chapter 9. Optimizing your applications 93

94 XL C/C++: Optimization and Programming Guide

Chapter 10. Debugging optimized code

Debugging optimized programs presents special usability problems. Optimization
can change the sequence of operations, add or remove code, change variable data
locations, and perform other transformations that make it difficult to associate the
generated code with the original source statements.

For example:

Data location issues
With an optimized program, it is not always certain where the most
current value for a variable is located. For example, a value in memory
might not be current if the most current value is being stored in a register.
Most debuggers cannot follow the removal of stores to a variable, and to
the debugger it appears as though that variable is never updated, or
possibly even never set. This contrasts with no optimization where all
values are flushed back to memory and debugging can be more effective
and usable.

Instruction scheduling issues
With an optimized program, the compiler might reorder instructions. That
is, instructions might not be executed in the order you would expect based
on the sequence of lines in the original source code. Also, the sequence of
instructions for a statement might not be contiguous. As you step through
the program with a debugger, the program might appear as if it is
returning to a previously executed line in the code (interleaving of
instructions).

Consolidating variable values
Optimizations can result in the removal and consolidation of variables. For
example, if a program has two expressions that assign the same value to
two different variables, the compiler might substitute a single variable.
This can inhibit debug usability because a variable that a programmer is
expecting to see is no longer available in the optimized program.

There are a couple of different approaches you can take to improve debug
capabilities while also optimizing your program:

Debug non-optimized code first
Debug a non-optimized version of your program first, and then recompile
it with your desired optimization options. See “Debugging in the presence
of optimization” on page 98 for some compiler options that are useful in
this approach.

Use -g level
Use the -g level suboption to control the amount of debugging information
made available. Increasing it improves debug capability but prevents some
optimizations. For more information, see -g.

Use -qoptdebug
When compiling with -O3 optimization level or higher, use the compiler
option -qoptdebug to generate a pseudocode file that more accurately
maps to how instructions and variable values will operate in an optimized
program. With this option, when you load your program into a debugger,

© Copyright IBM Corp. 1996, 2015 95

you will be debugging the pseudocode for the optimized program. For
more information, see “Using -qoptdebug to help debug optimized
programs” on page 99.

Detecting errors in code
The compiler provides environment variables and options that help with detecting
errors in your source code.

OMP_DISPLAY_ENV

Setting the OMP_DISPLAY_ENV environment variable instructs the OpenMP
runtime library to display the values of the internal control variables (ICVs)
associated with OpenMP environment variables and the OpenMP runtime library.
It also displays information about OpenMP version and build-specific information
about the runtime library. You can use the environment variable in the following
cases:
v When the runtime library is statically linked with an OpenMP program, use

OMP_DISPLAY_ENV=VERBOSE to check the version of the library that is used
during link time.

v When the runtime library is dynamically linked with an OpenMP program, use
OMP_DISPLAY_ENV=VERBOSE to check the library that is used at run time.

v Use OMP_DISPLAY_ENV=VERBOSE or OMP_DISPLAY_ENV=TRUE to check
the current setting of the runtime environment.

For more information on the environment variable, see OMP_DISPLAY_ENV in the
XL C/C++ Compiler Reference.

-qcheck=bounds

The -qcheck=bounds option performs runtime checking of addresses for
subscripting within an object of known size. The index is checked to ensure that it
will result in an address that lies within the bounds of the object's storage. A trap
will occur if the address does not lie within the bounds of the object. This
suboption has no effect on accesses to a variable length array.

-qcheck=stackclobber

The -qcheck=stackclobber option detects stack corruption of nonvolatile registers
in the save area in user programs. This type of corruption happens only if any of
the nonvolatile registers in the save area of the stack is modified.

If -qstackprotect and -qcheck=stackclobber are both specified,
-qcheck=stackclobber catches the stack corruption first.

-qcheck=unset

The -qcheck=unset option checks for automatic variables that are used before they
are set at run time.

The -qinitauto option initializes automatic variables. As a result, the -qinitauto
option hides uninitialized variables from the -qcheck=unset option.

96 XL C/C++: Optimization and Programming Guide

-qinfo=mt

The -qinfo=mt option reports potential synchronization issues in parallel code.
This suboption detects the Global Thread Flag pattern where one thread uses a
shared volatile flag variable to notify other threads that it has completed a
computation and stored its result to memory. Other threads check the flag variable
in a loop that does not change the flag variable. When the value of the flag
variable changes, the waiting threads access the computation result from memory.
The PowerPC storage model requires synchronization before the flag variable is set
in the first thread, and after the flag variable is checked in the waiting threads.
Synchronization can be done by a synchronization built-in function. For more
information about this suboption, see the -qinfo option.

To use the -qinfo=mt suboption, you must enable the -qthreaded option and
specify at least one of the following options:
v -O3

v -O4

v -O5

v -qipa

v -qhot

v -qsmp

Understanding different results in optimized programs
Here are some reasons why an optimized program might produce different results
from one that has not undergone the optimization process:
v Optimized code can fail if a program contains code that is not valid. The

optimization process relies on your application conforming to language
standards.

v If a program that works without optimization fails when you optimize, check
the cross-reference listing and the execution flow of the program for variables
that are used before they are initialized. Compile with the -qinitauto=hex_value
option to try to produce the incorrect results consistently. For example, using
-qinitauto=FF gives variables an initial value of "negative not a number"
(-NAN). Any operations on these variables will also result in NAN values. Other
bit patterns (hex_value) might yield different results and provide further clues as
to what is going on. Programs with uninitialized variables can appear to work
properly when compiled without optimization because of the default
assumptions the compiler makes, but such programs might fail when you
optimize. Similarly, a program can appear to execute correctly after optimization,
but it fails at lower optimization levels or when it is run in a different
environment. You can also use the -qcheck=unset option and -qinfo=unset
option to detect variables that are not or might not be initialized.

v Referring to an automatic-storage variable by its address after the owning
function has gone out of scope leads to a reference to a memory location that
can be overwritten as other auto variables come into scope as new functions are
called.

Use with caution debugging techniques that rely on examining values in storage,
unless the -g8 or -g9 option is in effect and the optimization level is -O2. The
compiler might have deleted or moved a common expression evaluation. It might
have assigned some variables to registers so that they do not appear in storage at
all.

Chapter 10. Debugging optimized code 97

Debugging in the presence of optimization
Debug and compile your program with your desired optimization options. Test the
optimized program before placing it into production. If the optimized code does
not produce the expected results, you can attempt to isolate the specific
optimization problems in a debugging session.

The following list presents options that provide specialized information, which can
be helpful during the debugging of optimized code:

-qlist Instructs the compiler to emit an object listing. The object listing includes
hex and pseudo-assembly representations of the generated instructions,
traceback tables, and text constants.

-qreport
Instructs the compiler to produce a report of the loop transformations it
performed, how the program was parallelized, what inlining was done,
and some other transformations. To generate a listing file, you must specify
the -qreport option with at least one optimization option such as -qhot,
-qsmp, -qinline, or -qsimd.

-qinfo=mt
Reports potential synchronization issues in parallel code. For details, see
-qinfo.

-qinfo=unset
Detects automatic variables that are used before they are set, and flags
them with informational messages at compile time. For details, see -qinfo.

-qipa=list
Instructs the compiler to emit an object listing that provides information
for IPA optimization.

-qcheck
Generates code that performs certain types of runtime checking.

-qsmp=noopt
If you are debugging SMP code, -qsmp=noopt ensures that the compiler
performs only the minimum transformations necessary to parallelize your
code and preserves maximum debug capability.

-qkeepparm
Ensures that procedure parameters are stored on the stack even during
optimization. This can negatively impact execution performance. The
-qkeepparm option then provides access to the values of incoming
parameters to tools, such as debuggers, simply by preserving those values
on the stack.

-qinitauto
Instructs the compiler to emit code that initializes all automatic variables to
a given value.

-qextchk
Generates additional symbolic information to allow the linker to do
cross-file type checking of external variables and functions. This option
requires the linker -btypchk option to be active.

-g Generates debugging information to be used by a symbolic debugger. You
can use different -g levels to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.

98 XL C/C++: Optimization and Programming Guide

Higher -g levels provide a more complete debug support, while lower
levels provide higher runtime performance. For details, see -g.

In addition, you can also use the snapshot pragma to ensure that certain variables
are visible to the debugger at points in your application. For details, see #pragma
ibm snapshot.

Using -qoptdebug to help debug optimized programs
The purpose of the -qoptdebug compiler option is to aid the debugging of
optimized programs. It does this by creating pseudocode that maps more closely to
the instructions and values of an optimized program than the original source code.
When a program compiled with -qoptdebug is loaded into a debugger, you will be
debugging the pseudocode rather than your original source. By making
optimizations explicit in pseudocode, you can gain a better understanding of how
your program is really behaving under optimization. Files containing the
pseudocode for your program are generated with file suffix .optdbg. Only line
debugging is supported for this feature.

Note: The compiler has introduced support for -g to provide support for various
levels of trade-off between full debug support and optimization. If you want to
debug your source code while taking advantage of compiler optimizations, use -g
instead of -qoptdebug. For more information, see -g.

Compile your program as in the following example:
xlc myprogram.c -O3 -qhot -g -qoptdebug

In this example, your source file is compiled to a.out. The pseudocode for the
optimized program is written to a file called myprogram.optdbg, which can be
referred to when you debug your program.

Notes:

v The -g or the -qlinedebug option must also be specified in order for the
compiled executable to be debuggable. However, if neither of these options is
specified, the pseudocode file <output_file>.optdbg that contains the optimized
pseudocode is still generated.

v The -qoptdebug option takes effect only when one or more of the optimization
options -qhot, -qsmp, -qpdf, or -qipa are specified, or when the optimization
levels that imply these options are specified; that is, the optimization levels -O3,
-O4, and -O5. The example shows the optimization options -qhot and -O3.

Debugging the optimized program

From the following examples, you can see how the compiler might apply
optimizations to a simple program and how debugging it can differ from
debugging your original source.

Example 1: Represents the original non-optimized code for a simple program. It
presents a couple of optimization opportunities to the compiler. For example, the
variables z and d are both assigned by the equivalent expressions x + y. Therefore,
these two variables can be consolidated in the optimized source. Also, the loop can
be unrolled. In the optimized source, you can see iterations of the loop listed
explicitly.

Chapter 10. Debugging optimized code 99

Example 2: Represents a listing of the optimized source as shown in the debugger.
Note the unrolled loop and the consolidation of values assigned by the x + y
expression.

Example 3: Shows an example of stepping through the optimized source using the
debugger. Note that there is no longer a correspondence between the line numbers
for these statements in the optimized source as compared with the line numbers in
the original source.

Example 1: Original code
#include "stdio.h"

void foo(int x, int y, char* w)
{
char* s = w+1;
char* t = w+1;
int z = x + y;
int d = x + y;
int a = printf("TEST\n");

for (int i = 0; i < 4; i++)
printf("%d %d %d %s %s\n", a, z, d, s, t);
}

int main()
{
char d[] = "DEBUG";
foo(3, 4, d);
return 0;
}

Example 2: dbx debugger listing
(dbx) list

1 3 | void foo(long x, long y, char * w)
2 4 | {
3 9 | a = printf("TEST\n");
4 12 | printf("%d %d %d %s %s\n",a,x + y,x + y,

((char *)w + 1),((char *)w + 1));
5 printf("%d %d %d %s %s\n",a,x + y,x + y,

((char *)w + 1),((char *)w + 1));
6 printf("%d %d %d %s %s\n",a,x + y,x + y,

((char *)w + 1),((char *)w + 1));
7 printf("%d %d %d %s %s\n",a,x + y,x + y,

((char *)w + 1),((char *)w + 1));
8 13 | return;
9 } /* function */
10
11
12 15 | long main()
13 16 | {
14 17 | d$init$0 = "DEBUG";
15 18 | @PARM.x0 = 3;
16 @PARM.y1 = 4;
17 @PARM.w2 = &d;
18 9 | a = printf("TEST\n");
19 12 | printf("%d %d %d %s %s\n",a,@PARM.x0 + @PARM.y1,

@PARM.x0 + @PARM.y1,((char *)@PARM.w2 + 1),
((char *)@PARM.w2 + 1));

20 printf("%d %d %d %s %s\n",a,@PARM.x0 + @PARM.y1,
@PARM.x0 + @PARM.y1,((char *)@PARM.w2 + 1),
((char *)@PARM.w2 + 1));

21 printf("%d %d %d %s %s\n",a,@PARM.x0 + @PARM.y1,
@PARM.x0 + @PARM.y1,((char *)@PARM.w2 + 1),
((char *)@PARM.w2 + 1));

100 XL C/C++: Optimization and Programming Guide

22 printf("%d %d %d %s %s\n",a,@PARM.x0 + @PARM.y1,
@PARM.x0 + @PARM.y1,((char *)@PARM.w2 + 1),
((char *)@PARM.w2 + 1));

23 19 | rstr = 0;
24 return rstr;
25 20 | } /* function */

Example 3: Stepping through optimized source
(dbx) stop at 18
[1] stop at "myprogram.o.optdbg":18
(dbx) run
[1] stopped in main at line 18 in file "myprogram.o.optdbg"

18 9 | a = printf("TEST\n");
(dbx) cont
TEST
5 7 7 EBUG EBUG
5 7 7 EBUG EBUG
5 7 7 EBUG EBUG
5 7 7 EBUG EBUG

execution completed

Chapter 10. Debugging optimized code 101

102 XL C/C++: Optimization and Programming Guide

Chapter 11. Coding your application to improve performance

Chapter 9, “Optimizing your applications,” on page 61 discusses the various
compiler options that the XL C/C++ compiler provides for optimizing your code
with minimal coding effort. If you want to take your application a step further to
complement and take the most advantage of compiler optimizations, the topics in
this section discuss C and C++ programming techniques that can improve
performance of your code.

Finding faster input/output techniques
There are a number of ways to improve your program's performance of input and
output:
v If your file I/O accesses do not exhibit locality (that is truly random access such

as in a database), implement your own buffering or caching mechanism on the
low-level I/O functions.

v If you do your own I/O buffering, make the buffer a multiple of 4KB, which is
the minimum size of a page.

v Use buffered I/O to handle text files.
v If you have to process an entire file, determine the size of the data to be read in,

allocate a single buffer to read it to, read the whole file into that buffer at once
using read, and then process the data in the buffer. This reduces disk I/O,
provided the file is not so big that excessive swapping will occur. Consider
using the mmap function to access the file.

Reducing function-call overhead
When you write a function or call a library function, consider the following
guidelines:
v Call a function directly, rather than using function pointers.
v Use const arguments in inlined functions whenever possible. Functions with

constant arguments provide more opportunities for optimization.
v Use the #pragma expected_value preprocessor directive so that the compiler can

optimize for common values used with a function.
v Use the #pragma isolated_call preprocessor directive to list functions that have

no side effects and do not depend on side effects.
v Use the restrict keyword for pointers that can never point to the same

memory.
v Use #pragma disjoint within functions for pointers or reference parameters that

can never point to the same memory.
v Declare a nonmember function as static whenever possible. This can speed up

calls to the function and increase the likelihood that the function will be inlined.
v C++ Usually, you should not declare all your virtual functions inline. If all

virtual functions in a class are inline, the virtual function table and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

v C++ When declaring functions, use the const specifier whenever possible.

v C Fully prototype all functions. A full prototype gives the compiler and
optimizer complete information about the types of the parameters. As a result,

© Copyright IBM Corp. 1996, 2015 103

promotions from unwidened types to widened types are not required, and
parameters can be passed in appropriate registers.

v C Avoid using unprototyped variable argument functions.
v Design functions so that they have few parameters and the most frequently used

parameters are in the leftmost positions in the function prototype.
v Avoid passing by value large structures or unions as function parameters or

returning a large structure or a union. Passing such aggregates requires the
compiler to copy and store many values. This is worse in C++ programs in
which class objects are passed by value because a constructor and destructor are
called when the function is called. Instead, pass or return a pointer to the
structure or union, or pass it by reference.

v Pass non-aggregate types such as int and short or small aggregates by value
rather than passing by reference, whenever possible.

v If your function exits by returning the value of another function with the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then branch directly to the
other function.

v Use the built-in functions, which include string manipulation, floating-point, and
trigonometric functions, instead of coding your own. Intrinsic functions require
less overhead and are faster than a function call, and they often allow the
compiler to perform better optimization.

C++ Many functions from the C++ standard libraries are mapped to
optimized built-in functions by the compiler.

C Many functions from string.h and math.h are mapped to optimized
built-in functions by the compiler.

v Selectively mark your functions for inlining using the inline keyword. An
inlined function requires less overhead and is generally faster than a function
call. The best candidates for inlining are small functions that are called
frequently from a few places, or functions called with one or more compile-time
constant parameters, especially those that affect if, switch, or for statements.
You might also want to put these functions into header files, which allows
automatic inlining across file boundaries even at low optimization levels. Be sure
to inline all functions that only load or store a value, or use simple operators
such as comparison or arithmetic operators. Large functions and functions that
are called rarely are generally not good candidates for inlining. Neither are
medium size functions that are called from many places.

v Avoid breaking your program into too many small functions. If you must use
small functions, you can use the -qipa compiler option to automatically inline
such functions and use other techniques to optimize calls between functions.

v C++ Avoid virtual functions and virtual inheritance unless required for class
extensibility. These language features are costly in object space and function
invocation performance.
Related information in the XL C/C++ Compiler Reference

#pragma expected_value

-qisolated_call / #pragma isolated_call

#pragma disjoint

-qipa

104 XL C/C++: Optimization and Programming Guide

Managing memory efficiently (C++ only)
Because C++ objects are often allocated from the heap and have limited scope,
memory use affects performance more in C++ programs than it does in C
programs. For that reason, consider the following guidelines when you develop
C++ applications:
v In a structure, declare the largest aligned members first. Members of similar

alignment should be grouped together where possible.
v In a structure, place variables near each other if they are frequently used

together.
v Ensure that objects that are no longer needed are freed or otherwise made

available for reuse. One way to do this is to use an object manager. Each time you
create an instance of an object, pass the pointer to that object to the object
manager. The object manager maintains a list of these pointers. To access an
object, you can call an object manager member function to return the
information to you. The object manager can then manage memory usage and
object reuse.

v Storage pools are a good way of keeping track of used memory (and reclaiming
it) without having to resort to an object manager or reference counting. Do not
use storage pools for objects with non-trivial destructors, because in most
implementations the destructors cannot be run when the storage pool is cleared.

v For XL C/C++ for AIX, V11.1 level 11.1.0.03 and higher, consider using the
<ssostring> header file that is supplied by IBM for programs that create large
numbers of small strings. The header file uses the Small Buffer Optimization
(SBO) technique that can reduce the number of dynamic memory allocations at
program execution time so runtime overhead is reduced and runtime
performance is improved. The public interface of the header file is identical to
the <string> header file in the standard C++ library. For more information about
using the header file, see Small String Optimized (SSO) string class and
<string>.

v Avoid copying large and complicated objects.
v Avoid performing a deep copy if you only need a shallow copy. For an object that

contains pointers to other objects, a shallow copy copies only the pointers and
not the objects to which they point. The result is two objects that point to the
same contained object. A deep copy, however, copies the pointers and the objects
they point to, as well as any pointers or objects that are contained within that
object, and so on. A deep copy must be performed in multithreaded
environments, because it reduces sharing and synchronization.

v Use virtual methods only when absolutely necessary.
v Use the "Resource Acquisition is Initialization" (RAII) pattern.
v Use shared_ptr and weak_ptr.

Optimizing variables
Consider the following guidelines:
v Use local variables, preferably automatic variables, as much as possible. The

compiler must make several worst-case assumptions about global variables. For
example, if a function uses external variables and also calls external functions,
the compiler assumes that every call to an external function could use and
change the value of every external variable. If you know that a global variable is
not read or affected by any function call and this variable is read several times
with function calls interspersed, copy the global variable to a local variable and
then use this local variable.

Chapter 11. Coding your application to improve performance 105

http://www-01.ibm.com/support/docview.wss?uid=swg21453760

v If you must use global variables, use static variables with file scope rather than
external variables whenever possible. In a file with several related functions and
static variables, the optimizer can gather and use more information about how
the variables are affected.

v If you must use external variables, group external data into structures or arrays
whenever it makes sense to do so. All elements of an external structure use the
same base address. Do not group variables whose addresses are taken with
variables whose addresses are not taken.

v The #pragma isolated_call preprocessor directive can improve the runtime
performance of optimized code by allowing the compiler to make less
pessimistic assumptions about the storage of external and static variables.
Isolated call functions with constant or loop-invariant parameters can be moved
out of loops, and multiple calls with the same parameters can be replaced with a
single call.

v Avoid taking the address of a variable. If you use a local variable as a temporary
variable and must take its address, avoid reusing the temporary variable for a
different purpose. Taking the address of a local variable can inhibit
optimizations that would otherwise be done on calculations involving that
variable.

v Use constants instead of variables where possible. The optimizer is able to do a
better job reducing runtime calculations by doing them at compile time instead.
For instance, if a loop body has a constant number of iterations, use constants in
the loop condition to improve optimization (for (i=0; i<4; i++) can be better
optimized than for (i=0; i<x; i++)). An enumeration declaration can be used
to declare a named constant for maintainability.

v Use register-sized integers (long data type) for scalars to avoid sign extension
instructions after each change in 64-bit mode. For large arrays of integers,
consider using one-byte or two-byte integers or bit fields.

v Use the smallest floating-point precision appropriate to your computation. Use
the long double data type only when high precision is required.
Related information in the XL C/C++ Compiler Reference

-qisolated_call / #pragma isolated_call

Manipulating strings efficiently
The handling of string operations can affect the performance of your program.
v When you store strings into allocated storage, align the start of the string on an

8-byte or 16-byte boundary.
v Keep track of the length of your strings. If you know the length of a string, you

can use mem functions instead of str functions. For example, memcpy is faster than
strcpy because it does not have to search for the end of the string.

v If you are certain that the source and target do not overlap, use memcpy instead
of memmove. This is because memcpy copies directly from the source to the
destination, while memmove might copy the source to a temporary location in
memory before copying to the destination, or it might copy in reverse order
depending on the length of the string.

v When manipulating strings using mem functions, faster code can be generated if
the count parameter is a constant rather than a variable. This is especially true
for small count values.

v Make string literals read-only, whenever possible. When the same string is used
multiple times, making it read-only improves certain optimization techniques,
reduces memory usage, and shortens compilation time. You can explicitly set

106 XL C/C++: Optimization and Programming Guide

strings to read-only by using #pragma strings (readonly) in your source files or
-qro (this is enabled by default C except when compiling with cc

C) to avoid changing your source files.
Related information in the XL C/C++ Compiler Reference

-qro / #pragma strings

Optimizing expressions and program logic
Consider the following guidelines:
v If components of an expression are used in other expressions and they include

function calls or there are function calls between the uses, assign the duplicated
values to a local variable.

v Avoid forcing the compiler to convert numbers between integer and
floating-point internal representations. For example:
float array[10];
float x = 1.0;
int i;
for (i = 0; i< 9; i++) { /* No conversions needed */

array[i] = array[i]*x;
x = x + 1.0;
}

for (i = 0; i< 9; i++) { /* Multiple conversions needed */
array[i] = array[i]*i;
}

When you must use mixed-mode arithmetic, code the integer and floating-point
arithmetic in separate computations whenever possible.

v Do not use global variables as loop indices or bounds.
v Avoid goto statements that jump into the middle of loops. Such statements

inhibit certain optimizations.
v Improve the predictability of your code by making the fall-through path more

probable. Code such as:
if (error) {handle error} else {real code}

should be written as:
if (!error) {real code} else {error}

v If one or two cases of a switch statement are typically executed much more
frequently than other cases, break out those cases by handling them separately
before the switch statement. If possible, replace the switch statement by
checking whether the value is in range to be obtained from an array.

v C++ Use try blocks for exception handling only when necessary because
they can inhibit optimization.

v Keep array index expressions as simple as possible.

Optimizing operations in 64-bit mode
The ability to handle larger amounts of data directly in physical memory rather
than relying on disk I/O is perhaps the most significant performance benefit of
64-bit machines. However, some applications compiled in 32-bit mode perform
better than when they are recompiled in 64-bit mode. Some reasons for this
include:
v 64-bit programs are larger. The increase in program size places greater demands

on physical memory.
v 64-bit long division is more time-consuming than 32-bit integer division.

Chapter 11. Coding your application to improve performance 107

v 64-bit programs that use 32-bit signed integers as array indexes or loop counts
might require additional instructions to perform sign extension each time the
array is referenced or the loop count is incremented.

Some ways to compensate for the performance liabilities of 64-bit programs
include:
v Avoid performing mixed 32-bit and 64-bit operations. For example, adding a

32-bit data type to a 64-bit data type requires that the 32-bit be sign-extended to
clear or set the upper 32-bit of the register. This slows the computation.

v Use long types instead of signed, unsigned, and plain int types for variables
that will be frequently accessed, such as loop counters and array indexes. Doing
so frees the compiler from having to truncate or sign-extend array references,
parameters during function calls, and function results during returns.

Tracing functions in your code
You can instruct the compiler to insert calls to user-defined tracing functions to aid
in debugging or timing the execution of other functions.

Using tracing functions in your program requires the following steps:
1. Writing tracing functions
2. Specifying which functions to trace with the -qfunctrace option

Using the -qfunctrace option causes the compiler to insert calls to these tracing
functions at key points in the function body; however, you are responsible for
defining these tracing functions. The following list describes at which points the
tracing functions are called:
v The compiler inserts calls to the tracing function at the entry point of a function.

The line number passed to the routine is the line number of the first executable
statement in the instrumented function.

v The compiler inserts calls to the tracing function at the exit point of a function.
The line number that is passed to the function is the line number of the
statement causing the exit in the instrumented function.

v The catch tracing function is called at the beginning of the C++ catch block
when the exception occurs.

You can use the -qnofunctrace compiler option or the #pragma nofunctrace
pragma to disable function tracing.

How to write tracing functions

To trace functions in your code, define the following tracing functions:
v __func_trace_enter is the entry point tracing function.
v __func_trace_exit is the exit point tracing function.
v __func_trace_catch is the catch tracing function.

The prototypes of these functions are as follows:
v void __func_trace_enter(const char *const function_name, const char

*const file_name, int line_number, void **const user_data);

v void __func_trace_exit(const char *const function_name, const char *const
file_name, int line_number, void **const user_data);

v void __func_trace_catch(const char *const function_name, const char
*const file_name, int line_number, void **const user_data);

108 XL C/C++: Optimization and Programming Guide

In the preceding tracing functions, the descriptions for their variables are as
follows:
v function_name is the name of the function you want to trace.
v file_name is the name of the file.
v line_number is the line number at entry or exit point of the function. This is a

4-byte number.
v user_data is the address of a static pointer variable. The static pointer variable is

generated by the compiler and initialized to NULL; in addition, because the
pointer variable is static, its address is the same for all instrumentation calls
inside the same function.

Notes:

v The exit function is not called if the function has an abnormal exit. The
abnormal exit can be caused by actions such as raising a signal, throwing a C++
exception, or calling the exit() or abort() functions.

v The -qfunctrace option does not support setjmp and longjmp. For example, a call
to longjmp() that leaves function1 and returns from setjmp() in function2 will
have a missing call to __func_trace_exit in function1 and a missing a call to
__func_trace_enter in function2.

v The catch function is called at the point where the C++ exception is caught by
user code.

v To define tracing functions in C++ programs, use the extern "C" linkage
directive before your function definition.

v The function calls are only inserted into the function definition, and if a function
is inlined, no tracing is done within the inlined code.

v If you develop a multithreaded program, make sure the tracing functions have
the proper synchronization and do not cause deadlock. Calls to the tracing
functions are not thread-safe.

v If you specify a function that does not exist with the option, the function is
ignored.

Rules

The following rules apply when you trace functions in your code:
v When optimization is enabled, line numbers might not be accurate.
v The tracing function must not call any instrumented function; otherwise an

infinite loop might occur.
v If you instruct the compiler to trace recursive functions, make sure that your

tracing functions can handle recursion.
v Inlined functions are not instrumented.
v Tracing functions are not instrumented.
v Compiler-generated functions are not instrumented, except for the outlined

functions generated by optimization such as OpenMP. In those cases, the name
of the outlined function contains the name of the original user function as prefix.

v Tracing functions might be called during static initialization. You must be careful
that anything used in the tracing functions is initialized before the first possible
call to the tracing function.

Chapter 11. Coding your application to improve performance 109

Examples

The following C example shows how you can trace functions in your code using
function prototypes. Assume you want to trace the entry and exit points of
function1 and function2, as well as how much time it takes the compiler to trace
them in the following code:

Main program file: t1.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#ifdef __cplusplus
extern "C"
#endif
void __func_trace_enter(const char *function_name, const char *file_name,

int line_number, void** const user_data){
if((*user_data)==NULL)

(*user_data)=(time_t *)malloc(sizeof(time_t));
(*(time_t *)*user_data)=time(NULL);
printf("begin function: name=%s file=%s line=%d\n",function_name,file_name,

line_number);
}
#ifdef __cplusplus
extern "C"
#endif
void __func_trace_exit(const char *function_name, const char*file_name,

int line_number, void** const user_data){
printf("end function: name=%s file=%s line=%d. It took %g seconds\n",

function_name,file_name,line_number, difftime(time(NULL),
*(time_t *)*user_data));

}
void function2(void){

sleep(3);
}
void function1(void){

sleep(5);
function2();

}
int main(){

function1();
}

Compile the main program source file as follows:
xlc t1.c -qfunctrace+function1:function2

Run executable a.out to output function trace results:
begin function: name=function1 file=t.c line=27
begin function: name=function2 file=t.c line=24
end function: name=function2 file=t.c line=25. It took 3 seconds
end function: name=function1 file=t.c line=29. It took 8 seconds

As you see from the preceding example, the user_data parameter is defined to use
the system time as basis for time calculation. The following steps explain how
user_data is defined to achieve this goal:
1. The function reserves a memory area for storing the value of user_data.
2. The system time is used as the value for user_data.
3. In the __func_trace_exit function, the difftime function uses user_data to

calculate time differences. The result is displayed in the form of It took %g
seconds in the output.

110 XL C/C++: Optimization and Programming Guide

The following C++ example shows how tracing functions are called. The following
example traces class myStack, function foo, and disables tracing for int main()
using #pragma nofunctrace:

Main program file: t2.cpp
#include <iostream>
#include <vector>
#include <stdexcept>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
extern "C"
void __func_trace_enter(const char *function_name, const char *file_name,

int line_number, void** const user_data){
if((*user_data)==NULL)
(*user_data)=(time_t *)malloc(sizeof(time_t));

(*(time_t *)*user_data)=time(NULL);
printf("enter function: name=%s file=%s line=%d\n",function_name,file_name,

line_number);
}
extern "C"
void __func_trace_exit(const char *function_name, const char*file_name,

int line_number, void** const user_data){
printf("exit function: name=%s file=%s line=%d. It took %g seconds\n",

function_name, file_name, line_number, difftime(time(NULL),
*(time_t *)*user_data));

}
extern "C"
void __func_trace_catch(const char *function_name, const char*file_name,

int line_number, void** const user_data){
printf("catch function: name=%s file=%s line=%d. It took %g seconds\n",

function_name, file_name,line_number, difftime(time(NULL),
*(time_t *)*user_data));

}

template <typename T> class myStack{
private:
std::vector<T> elements;
public:
void push(T const&);
void pop();

};

template <typename T>
void myStack<T>::push(T const& value){

sleep(3);
std::cout<< "\tpush(" << value << ")" <<std::endl;
elements.push_back(value);

}
template <typename T>
void myStack<T>::pop(){

sleep(5);
std::cout<< "\tpop()" <<std::endl;
if(elements.empty()){
throw std::out_of_range("myStack is empty");

}
elements.pop_back();

}
void foo(){

myStack<int> intValues;
myStack<float> floatValues;
myStack<double> doubleValues;
intValues.push(4);
floatValues.push(5.5f);
try{

Chapter 11. Coding your application to improve performance 111

intValues.pop();
floatValues.pop();
doubleValues.pop(); // cause exception

} catch(std::exception const& e){
std::cout<<"\tException: "<<e.what()<<std::endl;

}
std::cout<<"\tdone"<<std::endl;

}
#pragma nofunctrace(main)
int main(){

foo();
}

Compile the main program source file as follows:
xlC t2.cpp -qfunctrace+myStack:foo

Run executable a.out to output function trace results:
enter function: name=_Z3foov file=t2.cpp line=56
enter function: name=_ZN7myStackIiE4pushERKi file=t2.cpp line=42

push(4)
exit function: name=_ZN7myStackIiE4pushERKi file=t2.cpp line=45. It took 3 seconds
enter function: name=_ZN7myStackIfE4pushERKf file=t2.cpp line=42

push(5.5)
exit function: name=_ZN7myStackIfE4pushERKf file=t2.cpp line=45. It took 3 seconds
enter function: name=_ZN7myStackIiE3popEv file=t2.cpp line=48

pop()
exit function: name=_ZN7myStackIiE3popEv file=t2.cpp line=54. It took 5 seconds
enter function: name=_ZN7myStackIfE3popEv file=t2.cpp line=48

pop()
exit function: name=_ZN7myStackIfE3popEv file=t2.cpp line=54. It took 5 seconds
enter function: name=_ZN7myStackIdE3popEv file=t2.cpp line=48

pop()
catch function: name=_Z3foov file=t2.cpp line=65. It took 21 seconds

Exception: myStack is empty
done

exit function: name=_Z3foov file=t2.cpp line=69. It took 21 seconds

Related information
v For details about the -qfunctrace compiler option, see -qfunctrace in the XL

C/C++ Compiler Reference.
v See #pragma nofunctrace in the XL C/C++ Compiler Reference for details about the

#pragma nofunctrace.

Using C++ templates
In C++, you can use a template to declare a set of related:
v Classes (including structures)
v Functions
v Static data members of template classes

Reducing redundant template instantiations

Within an application, you can instantiate the same template multiple times with
the same arguments or with different arguments. If you use the same arguments
for template instantiation in different compilation units, the repeated instantiations
are redundant. These redundant instantiations increase compilation time, increase
the size of the executable, and deliver no benefit.

There are several basic approaches to the problem of redundant instantiations:

112 XL C/C++: Optimization and Programming Guide

Handling redundancy during linking
The size increase of the final executable might be small enough that it does
not justify changing the way you compile your program or modify the
source file. Most linkers have some form of garbage collection functionality.
On AIX, the linker performs garbage collection well, especially when you
use the -qfuncsect option. If you use -qtmplinst=always or
-qtmplinst=auto without using -qtemplateregistry or -qtempinc, no
compile time management of redundant instantiations is done. In this case,
you can use the -qfuncsect option to reduce the executable size. For
details, see -qfuncsect in the XL C/C++ Compiler Reference.

Controlling implicit instantiation in the source code
Concentrating implicit instantiations of a specialization: Organize your
source code so that object files contain fewer instances of each required
instantiation and fewer unused instantiations. This is the least usable
approach, because you must know where each template is defined, which
instantiations are used, and where to declare an explicit instantiation for
each instantiation.

C++11 Using explicit instantiation declarations: With the explicit
instantiation declarations feature, you can suppress the implicit
instantiation of a template specialization or its members. This helps reduce
the collective size of the object files. It might also reduce the size of the
final executable if the suppressed symbol definitions are meant to be found
in a shared library, or if the system linker is unable to always remove
additional definitions of a symbol. For more information, see “Using
explicit instantiation declarations (C++11)” on page 117 C++11 .

Note: If you want to control implicit instantiation in the source code, or
use explicit instantiation declarations, you can use the -qtmplinst=none or
-qtmplinst=noinlines option to prevent accidental implicit instantiations
from occurring.

Having the compiler store instantiation information in a registry
Use the -qtemplateregistry compiler option. Information about each
template instantiation is stored in a template registry. If the compiler is
asked to instantiate the same template again with the same arguments, it
points to the instantiation in the first object file instead. This approach is
described in “Using the -qtemplateregistry compiler option” on page 116.

Having the compiler store instantiations in a template include directory
Use the -qtempinc compiler option. If the template definition and
implementation files have the required structure, each template
instantiation is stored in a template include directory. If the compiler is
asked to instantiate the same template again with the same arguments, it
uses the stored version instead. The source file created in the template
include directory is compiled during the link step recursively until all
instantiations are done. This approach is described in “Using the -qtempinc
compiler option” on page 114.

Note: Use this approach for legacy codes only.

Notes:

v The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.
v -qtemplateregistry is a better approach than -qtempinc for the following

reasons:
– -qtemplateregistry provides better benefits than -qtempinc.

Chapter 11. Coding your application to improve performance 113

– -qtemplateregistry does not require modifications to the header files.

The compiler generates code for an implicit instantiation unless one of the
following conditions is true:
v You use either -qtmplinst=none or -qtmplinst=noinlines.
v You use -qtmplinst=auto, which is the default suboption of -qtmplinst with

-qnotemplateregistry.
v You use -qtmplinst=auto with -qtempinc and the template source that is

organized to use -qtempinc.
v C++11 An explicit instantiation declaration for that instantiation is in the

current translation unit. C++11

Related information in the XL C/C++ Compiler Reference

-qfuncsect

-qtempinc (C++ only)

-qtemplateregistry (C++ only)

-qtmplinst (C++ only)

-qlanglvl

Using the -qtempinc compiler option
To use -qtempinc, you must structure your application as follows:
v Declare your class templates and function templates in template declaration files,

with a .h extension.
v For each template declaration, create a template definition file. This file must

have the same file name as the template declaration file and an extension of .c
or .t, or the name must be specified in a #pragma implementation directive.
For a class template, the implementation file defines the member functions and
static data members. For a function template, the implementation file defines the
function.

v In your source program, specify an #include directive for each template
declaration file.

v Optionally, to ensure that your code is applicable for both -qtempinc and
-qnotempinc compilations, in each template declaration file, conditionally
include the corresponding template implementation file if the __TEMPINC__
macro is not defined. (This macro is automatically defined when you use the
-qtempinc compilation option.) This produces the following results:
– Whenever you compile with -qnotempinc, the template implementation file is

included.
– Whenever you compile with -qtempinc, the compiler does not include the

template implementation file. Instead, the compiler looks for a file with the
same name as the template implementation file and extension .c the first time
it needs a particular instantiation. If the compiler subsequently needs the
same instantiation, it uses the copy stored in the template include directory.

Note:

v Use the -qtempinc option for legacy applications only.
v Use -qtemplateregistry, which provides more benefits than -qtempinc and does

not require modifications to your source files. For details, see "-qtemplateregistry
(C++ only)" in the XL C/C++ Compiler Reference.

114 XL C/C++: Optimization and Programming Guide

Related information in the XL C/C++ Compiler Reference

-qtempinc (C++ only)

-qtemplateregistry (C++ only)

-qtmplinst (C++ only)

#pragma implementation (C++ only)

Example of using -qtempinc
The following example shows how the compiler manages implicit instantiation of a
template when the template declaration and definition are in separate files. This
example includes the following source files:
v The template declaration file: a.h
v The corresponding template implementation file: a.t
v The main program source file: a.cpp

Template declaration file: a.h
struct IC {

virtual void myfunc() = 0;
};

template <class T> struct C : public IC{
virtual void myfunc();

};

#ifndef __TEMPINC__
#include "a.t"

#else
#pragma implementation("a.t")

#endif

Template implementation file : a.t

This file contains the template definition of myfunc function, which is called from
the main program.
template <class T> void C<T>::myfunc() {}

Main program file: a.cpp

This file creates an object that requires an implicit instantiation.
#include "a.h"

int main() {
IC* pIC = new C<int>();
pIC->myfunc();

}

You can use the following command to compile the main program a.cpp:
xlC -qtempinc a.cpp

Notes:

v If -qnotempinc is specified, the template implementation file is included;
otherwise, if -qtempinc is specified, the #pragma implementation directive
instructs the compiler path to the template implementation file.

v The compiler searches for a.c as the template implementation file by default, if
the #pragma implementation directive is not specified.

Chapter 11. Coding your application to improve performance 115

Regenerating the template instantiation file
The compiler builds a template instantiation file in the TEMPINC directory
corresponding to each template implementation file. With each compilation, the
compiler can add information to the file but it never removes information from the
file.

As you develop your program, you might remove template function references or
reorganize your program so that the template instantiation files become obsolete.
You can periodically delete the TEMPINC destination and recompile your
program.

Using -qtempinc with shared libraries
In a traditional application development environment, different applications can
share both source files and compiled files. When you use templates, applications
can share source files but cannot share compiled files.

If you use -qtempinc, follow these guidelines:
v Each application must have its own TEMPINC destination.
v You must compile all of the source files for the application, even if some of the

files have already been compiled for another application.

Using the -qtemplateregistry compiler option
The template registry uses a "first-come first-served" algorithm:
v When a compiler performs an implicit instantiation for the first time, it is

instantiated in the compilation unit in which it occurs.
v When another compilation unit performs the same implicit instantiation, it is not

instantiated. Thus, only one copy is generated for the entire program.

The instantiation information is stored in a template registry file. You must use the
same template registry file for the entire program. Two programs cannot share a
template registry file.

The default file name for the template registry file is templateregistry, but you
can specify any other valid file name to override this default. When cleaning your
program build environment before starting a fresh or scratch build, you must
delete the registry file along with the old object files.

You can perform multiple compilations in parallel using the same template registry
file with minimal impact on compile time.

When you recompile your program, the information in the template registry file is
also used to determine whether a recompilation of a source file might introduce
link errors because of missing template instantiations. If the following conditions
are true, the compiler will schedule the recompilation of one or more source files
when you recompile a source file:
v The source file instantiated a template that other source files instantiated.
v The source file was chosen by the template registry to actually instantiate the

template.
v The source file no longer instantiates the template.

When the preceding conditions are all true, the compiler chooses another source
file to instantiate the template in. That file is scheduled for recompilation during
the link step. If you happen to recompile a source file that is scheduled to be
recompiled during the link step, the scheduled recompilation is cancelled.

116 XL C/C++: Optimization and Programming Guide

You can use -qnotemplaterecompile to disable the scheduled recompilation during
the link step. For details, see "-qtemplaterecompile (C++ only)" in the XL C/C++
Compiler Reference.

Related information in the XL C/C++ Compiler Reference

-qtempinc (C++ only)

-qtemplaterecompile (C++ only)

-qtemplateregistry (C++ only)

Recompiling related compilation units
If two compilation units, A and B, reference the same instantiation, the
-qtemplateregistry compiler option has the following effect:
v If you compile A first, the object file for A contains the code for the instantiation.
v When you later compile B, the object file for B does not contain the code for the

instantiation because object A already does.
v If you later change A so that it no longer references this instantiation, the

reference in object B would produce an unresolved symbol error. When you
recompile A, the compiler detects this problem and handles it as follows:
– If the -qtemplaterecompile compiler option is in effect, the compiler

automatically recompiles B during the link step, using the same compiler
options that were specified for A. (Note, however, that if you use separate
compilation and linkage steps, you need to include the compilation options in
the link step to ensure the correct compilation of B.)

– If the -qnotemplaterecompile compiler option is in effect, the compiler issues
a warning and you must manually recompile B.

Related information in the XL C/C++ Compiler Reference

-qtemplateregistry (C++ only)

-qtemplaterecompile (C++ only)

Switching from -qtempinc to -qtemplateregistry
Because the -qtemplateregistry compiler option does not impose any restrictions
on the file structure of your application, it has less administrative overhead than
-qtempinc. You can make the switch as follows:
v If your application compiles successfully with both -qtempinc and -qnotempinc,

you do not need to make any changes.
v If your application compiles successfully with -qtempinc but not with

-qnotempinc, you must change it so that it will compile successfully with
-qnotempinc. In each template definition file, conditionally include the
corresponding template implementation file if the __TEMPINC__ macro is not
defined. This is illustrated in “Example of using -qtempinc” on page 115.

Using explicit instantiation declarations (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to

Chapter 11. Coding your application to improve performance 117

maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Syntactically, an explicit instantiation declaration is an explicit instantiation definition
preceded by the extern keyword, see "Explicit instantiation (C++ only)" in the XL
C/C++ Language Reference.

Consider the following points when you use the explicit instantiation declarations
feature:
v IBM An explicit instantiation declaration of a class template specialization

does not cause implicit instantiation of said specialization. IBM

v IBM In a translation unit, if a user-defined inline function is subject to an
explicit instantiation declaration and not subject to an explicit instantiation
definition, no out-of-line copy of the function is generated in that translation
unit whether the compiler option -qkeepinlines is specified or not.

Note: This rule does not limit the behavior for functions that are implicitly
generated by the compiler. Implicitly declared special members such as the
default constructor, copy constructor, destructor and copy assignment operator
are inline and the compiler might instantiate them. In particular, out-of-line
copies might be generated.

IBM

v A degradation of the amount of inlining achieved on functions that are not
inline and are subject to explicit instantiation declarations might occur.

v When a non-pure virtual member function is subject to an explicit instantiation
declaration, either directly or through its class, the virtual member function must
be subject to an explicit instantiation definition somewhere in the entire
program. Otherwise, an unresolved symbol error might result at link time.

v When implicit instantiation of a class template specialization is allowed, the user
program must be written as if the implicit instantiation of all virtual member
functions of that class specialization occurs. Otherwise, an unresolved symbol
error for a virtual member function might result at link time.

v When implicit instantiation of a class template specialization is allowed and the
specialization is subject to an explicit instantiation declaration, the class template
specialization must be subject to an explicit instantiation definition somewhere
in the user program. Otherwise, an unresolved symbol error might result at link
time.
Related information in the XL C/C++ Compiler Reference

-qtempinc (C++ only)

#pragma implementation (C++ only)

-qlanglvl
Related information in the XL C/C++ Language Reference

Explicit instantiation (C++ only)

Using delegating constructors (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features

118 XL C/C++: Optimization and Programming Guide

is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

Before C++11, common initialization in multiple constructors of the same class
cannot be concentrated in one place in a robust and maintainable manner. Starting
from C++11, with the delegating constructors feature, you can concentrate common
initialization in one constructor, which can make the program more readable and
maintainable. Delegating constructors help reduce code size and collective size of
object files.

Syntactically, delegating constructors and target constructors present the same
interface as other constructors, see "Delegating constructors (C++11)" in the XL
C/C++ Language Reference.

Consider the following points when you use the delegating constructors feature:
v Call the target constructor implementation in such a way that virtual bases,

direct nonvirtual bases, and class members are initialized by the target
constructor as appropriate.

v The feature has minimal impact on compile-time and runtime performance.
However, use of default arguments with an existing constructor is recommended
in place of a delegating constructor where possible. Without inlining and
interprocedural analysis, runtime performance might degrade because of
function call overhead and increased opacity.
Related information in the XL C/C++ Compiler Reference

-qlanglvl

Using rvalue references (C++11)

Note: IBM supports selected features of C++11, known as C++0x before its
ratification. IBM will continue to develop and implement the features of this
standard. The implementation of the language level is based on IBM's
interpretation of the standard. Until IBM's implementation of all the C++11 features
is complete, including the support of a new C++11 standard library, the
implementation might change from release to release. IBM makes no attempt to
maintain compatibility, in source, binary, or listings and other compiler interfaces,
with earlier releases of IBM's implementation of the new C++11 features.

In C++11, you can overload functions based on the value categories of arguments
and similarly have lvalueness detected by template argument deduction. You can
also have an rvalue bound to an rvalue reference and modify the rvalue through
the reference. This enables a programming technique with which you can reuse the
resources of expiring objects and therefore improve the performance of your
libraries, especially if you use generic code with class types, for example, template
data structures. Additionally, the value category can be considered when writing a
forwarding function.

Move semantics

When you want to optimize the use of temporary values, you can use a move
operation in what is known as destructive copying. Consider the following string
concatenation and assignment:

Chapter 11. Coding your application to improve performance 119

std::string a, b, c;
c = a + b;

In this program, the compiler first stores the result of a + b in an internal
temporary variable, that is, an rvalue.

The signature of a normal copy assignment operator is as follows:
string& operator = (const string&)

With this copy assignment operator, the assignment consists of the following steps:
1. Copy the temporary variable into c using a deep-copy operation.
2. Discard the temporary variable.

Deep copying the temporary variable into c is not efficient because the temporary
variable is discarded at the next step.

To avoid the needless duplication of the temporary variable, you can implement an
assignment operator that moves the variable instead of copying the variable. That
is, the argument of the operator is modified by the operation. A move operation is
faster because it is done through pointer manipulation, but it requires a reference
through which the source variable can be manipulated. However, a + b is a
temporary value, which is not easily differentiated from a const-qualified value in
C++ before C++11 for the purposes of overload resolution.

With rvalue references, you can create a move assignment operator as follows:
string& operator= (string&&)

With this move assignment operator, the memory allocated for the underlying
C-style string in the result of a + b is assigned to c. Therefore, it is not necessary
to allocate new memory to hold the underlying string in c and to copy the
contents to the new memory.

The following code can be an implementation of the string move assignment
operator:
string& string::operator=(string&& str)
{

// The named rvalue reference str acts like an lvalue
std::swap(_capacity, str._capacity);
std::swap(_length, str._length);

// char* _str points to a character array and is a
// member variable of the string class
std::swap(_str, str._str);
return *this;

}

However, in this implementation, the memory originally held by the string being
assigned to is not freed until str is destroyed. The following implementation that
uses a local variable is more memory efficient:
string& string::operator=(string&& parm_str)
{

// The named rvalue reference parm_str acts like an lvalue
string sink_str;
std::swap(sink_str, parm_str);
std::swap(*this, sink_str);
return *this;

}

120 XL C/C++: Optimization and Programming Guide

In a similar manner, the following program is a possible implementation of a
string concatenation operator:
string operator+(string&& a, const string& b)
{

return std::move(a+=b);
}

Note: The std::move1 function only casts the result of a+=b to an rvalue reference,
without moving anything. The return value is constructed using a move
constructor because the expression std::move(a+=b) is an rvalue. The relationship
between a move constructor and a copy constructor is analogous to the
relationship between a move assignment operator and a copy assignment operator.

Perfect forwarding

The std::forward1 function is a helper template, much like std::move. It returns a
reference to its function argument, with the resulting value category determined by
the template type argument. In an instantiation of a forwarding function template,
the value category of an argument is encoded as part of the deduced type for the
related template type parameter. The deduced type is passed to the std::forward
function.

The wrapper function in the following example is a forwarding function template
that forwards to the do_work function. Use std::forward in forwarding functions
on the calls to the target functions. The following example also uses the decltype
and trailing return type features to produce a forwarding function that forwards to
one of the do_work functions. Calling the wrapper function with any argument
results in a call to a do_work function if a suitable overload function exists. Extra
temporaries are not created and overload resolution on the forwarding call resolves
to the same overload as it would if the do_work function were called directly.
struct s1 *do_work(const int&); // #1
struct s2 *do_work(const double&); // #2
struct s3 *do_work(int&&); // #3
struct s4 *do_work(double&&); // #4
template <typename T> auto wrapper(T && a)->

decltype(do_work(std::forward<T>(*static_cast<typename std::remove_reference<T>
::type*>(0))))

{
return do_work(std::forward<T>(a));

}
template <typename T> void tPtr(T *t);
int main()
{

int x;
double y;
tPtr<s1>(wrapper(x)); // calls #1
tPtr<s2>(wrapper(y)); // calls #2
tPtr<s3>(wrapper(0)); // calls #3
tPtr<s4>(wrapper(1.0)); // calls #4

}

Note:

1. The following sample implements functionality similar to std::move and
std::forward:
namespace MyStd {

template <typename T> struct remove_reference {
typedef T type;

};
template <typename T> struct remove_reference<T&> {

typedef T type;

Chapter 11. Coding your application to improve performance 121

};
template <typename T> struct remove_reference<T&&> {

typedef T type;
};

namespace Impl {
template <typename T> struct NotAnLvalueReference {

enum { value = 1 };
};
template <typename T> struct NotAnLvalueReference<T&> {

enum { value = 0 };
};

}

template <typename T> inline
T &&forward(typename remove_reference<T>::type &t) {

return static_cast<T &&>(t);
}

template <typename T> inline
T &&forward(typename remove_reference<T>::type &&t) {

static_assert(Impl::NotAnLvalueReference<T>::value,
"T cannot be an lvalue reference type when "
"calling this overload.");

return static_cast<T &&>(t);
}

template <typename T> inline
typename remove_reference<T>::type &&move(T &&t) {

return static_cast<typename remove_reference<T>::type &&>(t);
}

}

Related information in the XL C/C++ Compiler Reference

-qlanglvl
Related information in the XL C/C++ Language Reference

Reference collapsing(C++11)

The decltype(expression) type specifier (C++11)

Trailing return type (C++11)

Using visibility attributes (IBM extension)
Visibility attributes describe whether and how an entity that is defined in one
module can be referenced or used in other modules. Visibility attributes affect
entities with external linkage only, and they cannot increase the visibility of other
entities. By specifying visibility attributes for entities, you can export only the
entities that are necessary to shared libraries. With this feature, you can get the
following benefits:
v Decrease the size of shared libraries.
v Reduce the possibility of symbol collision.
v Allow more optimization for the compile and link phases.
v Improve the efficiency of dynamic linking.

Supported types of entities

C++

122 XL C/C++: Optimization and Programming Guide

The compiler supports visibility attributes for the following entities:
v Function
v Variable
v Structure/union/class
v Enumeration
v Template
v Namespace

C++

C

The compiler supports visibility attributes for the following entities:
v Function
v Variable

Note: Data types in the C language do not have external linkage, so you cannot
specify visibility attributes for C data types.

C

Related information in the XL C/C++ Compiler Reference

-qvisibility (IBM extension)

-G

-qmkshrobj

#pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)
Related information in the XL C/C++ Language Reference

The visibility variable attribute (IBM extension)

The visibility function attribute (IBM extension)

The visibility type attribute (C++ only) (IBM extension)

The visibility namespace attribute (C++ only) (IBM extension)

Internal linkage

External linkage

No linkage

Types of visibility attributes
The following table describes different visibility attributes.

Table 26. Visibility attributes

Attribute Description

default Indicates that external linkage entities have the default attribute in object
files. These entities are exported in shared libraries, and can be preempted.

Chapter 11. Coding your application to improve performance 123

Table 26. Visibility attributes (continued)

Attribute Description

protected Indicates that external linkage entities have the protected attribute in object
files. These entities are exported in shared libraries, but cannot be
preempted.

hidden Indicates that external linkage entities have the hidden attribute in object
files. These entities are not exported in shared libraries, but their addresses
can be referenced indirectly through pointers.

internal Indicates that external linkage entities have the internal attribute in object
files. These entities are not exported in shared libraries, and their addresses
are not available to other modules in shared libraries.

Notes:

v In this release, the hidden and internal visibility attributes are the same. The addresses
of the entities that are specified with either of these visibility attributes can be referenced
indirectly through pointers.

v On the AIX platform, all the external linkage entities do not have visibility attributes by
default if they do not get visibility attributes from the compiler option, pragma
directives, explicitly specified attributes, or propagation rules. Whether these entities are
exported in shared libraries depends on the specified export list or the one that is
generated by the compiler.

v On the AIX platform, entity preemption occurs only when runtime linking is used. For
details, see "Linking a library to an application" in the XL C/C++ Optimization and
Programming Guide .

Example: Differences among the default, protected, hidden, and internal visibility
attributes
//a.c
#include <stdio.h>
void __attribute__((visibility("default"))) func1(){

printf("func1 in the shared library");
}
void __attribute__((visibility("protected"))) func2(){

printf("func2 in the shared library");
}
void __attribute__((visibility("hidden"))) func3(){

printf("func3 in the shared library");
}
void __attribute__((visibility("internal"))) func4(){

printf("func4 in the shared library");
}

//a.h
extern void func1();
extern void func2();
extern void func3();
extern void func4();

//b.c
#include "a.h"
void temp(){

func1();
func2();

}

//b.h
extern void temp();

//main.c
#include "a.h"
#include "b.h"

124 XL C/C++: Optimization and Programming Guide

void func1(){
printf("func1 in b.c");

}
void func2(){

printf("func2 in b.c");
}
void main(){

temp();
// func3(); // error
// func4(); // error

}

You can use the following commands to create a shared library named libtest.so:
xlc -c -qpic a.c b.c
xlc -G -o libtest.so a.o b.o

Then, you can dynamically link libtest.so during run time by using the following
commands:
xlc main.c -L. -ltest -brtl -bexpall -o main
./main

The output of the example is as follows:
func1 in b.c
func2 in the shared library

The visibility attribute of function func1() is default, so it is preempted by the
function with the same name in main.c. The visibility attribute of function func2()
is protected, so it cannot be preempted. The compiler always calls func2() that is
defined in the shared library libtest.so. The visibility attribute of function
func3() is hidden, so it is not exported in the shared library. The compiler issues a
link error to indicate that the definition of func3() cannot be found. The same
issue is with function func4() whose visibility attribute is internal.

Rules of visibility attributes
Priority of visibility attributes

The visibility attributes have a priority sequence, which is default < protected <
hidden < internal. You can see Example 3 and Example 9 for reference.

Rules of determining the visibility attributes

C

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.
2. Otherwise, if the entity has a pair of enclosing pragma directives, the visibility

attribute that is specified by the pragma directives takes effect.
3. Otherwise, the setting of the -qvisibility option takes effect.

Note: On the AIX platform, if the setting of the -qvisibility option takes effect
and is specified to unspecified (the default value), the entity does not have a
visibility attribute.

C

Chapter 11. Coding your application to improve performance 125

C++

The visibility attribute of an entity is determined by the following rules:
1. If the entity has an explicitly specified visibility attribute, the specified visibility

attribute takes effect.
2. Otherwise, if the entity is a template instantiation or specialization, and the

template has a visibility attribute, the visibility attribute of the entity is
propagated from that of the template. See Example 1.

3. Otherwise, if the entity has any of the following enclosing contexts, the
visibility attribute of this entity is propagated from that of the nearest context.
See Example 2. For the details of propagation rules, see “Propagation rules
(C++ only)” on page 131.
v Structure/class
v Enumeration
v Namespace
v Pragma directives

Restriction: Pragma directives do not affect the visibility attributes of class
members and template specializations.

4. Otherwise, the visibility attribute of the entity is determined by the following
visibility attribute settings. The visibility attribute that has the highest priority
is the actual visibility attribute of the entity. See Example 3. For the priority of
the visibility attributes, see Priority of visibility attributes.
v The setting of the -qvisibility option.
v The visibility attribute of the type of the entity, if the entity is a variable and

its type has a visibility attribute.
v The visibility attribute of the return type of the entity, if the entity is a

function and its return type has a visibility attribute.
v The visibility attributes of the parameter types of the entity, if the entity is a

function and its parameter types have visibility attributes.
v The visibility attributes of template arguments or template parameters of the

entity, if the entity is a template and its arguments or parameters have
visibility attributes.

Note: On the AIX platform, if the setting of the -qvisibility option is
unspecified (the default value), the -qvisibility option does not take part in
the determination of the visibility attribute.

Example 1

In the following example, template template<typename T, typename U> B{} has the
protected visibility attribute. The visibility attribute is propagated to those of
template specialization template<> class B<char, char>{}, partial specialization
template<typename T> class B<T, float>{}, and all the types of template
instantiations.
class __attribute__((visibility("internal"))) A{} vis_v_a; //internal

//protected
template<typename T, typename U>
class __attribute__((visibility("protected"))) B{

public:
void func(){}

};

126 XL C/C++: Optimization and Programming Guide

//protected
template<>
class B<char, char>{

public:
void func(){}

};

//protected
template<typename T>
class B<T, float>{

public:
void func(){}

};

B<int, int> a; //protected
B<A, int> b; //protected
B<char, char> c; //protected
B<int, float> d; //protected
B<A, float> e; //protected

int main(){
a.func();
b.func();
c.func();
d.func();
e.func();

}

Example 2

In the following example, the nearest enclosing context of function func() is class
B, so the visibility attribute of func() is propagated from that of class B, which is
hidden. The nearest enclosing context of class A is the pragma directives whose
setting is protected, so the visibility of class A is protected.
namespace __attribute__((visibility("internal"))) ns{
#pragma GCC visibility push(protected)

class A{
class __attribute__((visibility("hidden"))) B{

int func(){};
};

};
#pragma GCC visibility pop
};

Example 3

In the following example, the visibility attribute specified by the -qvisibility option
is protected. The type of variable vis_v_d is class CD, whose visibility attribute is
default. The visibility attribute that has a higher priority of these two attributes is
protected, so the actual visibility attribute of variable vis_v_d is protected. The
same rule applies to the determination of the visibility attributes of variables
vis_v_p, vis_v_h, and vis_v_i. For functions vis_f_fun1, vis_f_fun2, and
vis_f_fun3, their visibility attributes are determined by those of their parameter
types, return types, and the setting of the -qvisibility option. For template
functions vis_f_template1 and vis_f_template2, their visibility attributes are
determined by those of their template arguments, template parameters, function
parameter types, return types, and the setting of the -qvisibility option. The
visibility attribute that has the highest priority takes effect.
//The -qvisibility=protected option is specified
class __attribute__((visibility("default"))) CD {} vis_v_d; //protected
class __attribute__((visibility("protected"))) CP {} vis_v_p; //protected
class __attribute__((visibility("hidden"))) CH {} vis_v_h; //hidden

Chapter 11. Coding your application to improve performance 127

class __attribute__((visibility("internal"))) CI {} vis_v_i; //internal

void vis_f_fun1(CH a, CP b, CD c, CI d) {} //internal
void vis_f_fun2(CD a) {} //protected
CH vis_f_fun3(CI a, CP b) {} //internal

template<class T, class U> T vis_f_template1(T t, U u){}
template<class T, int N> void vis_f_template2(T t, int i){}

int main(){
vis_f_template1<CD, CH>(vis_v_d, vis_v_p); //hidden
vis_f_template2<CD, 10)(vis_v_p, 10); // protected

}

C++

Rules and restrictions of using the visibility attributes

When you specify visibility attributes for entities, consider the following rules and
restrictions:
v You can specify visibility attributes only for entities that have external linkage.

The compiler issues a warning message when you set the visibility attribute for
entities with other linkages, and the specified visibility attribute is ignored. See
Example 4.

v You cannot specify different visibility attributes in the same declaration or
definition of an entity; otherwise, the compiler issues an error message. See
Example 5.

v If an entity has more than one declaration that is specified with different
visibility attributes, the visibility attribute of the entity is the first visibility
attribute that the compiler processes. See Example 6.

v You cannot specify visibility attributes in the typedef statements. See Example 7.
v C++ If type T has a visibility attribute, types T*, T&, and T&& have the same

visibility attribute with that of type T. See Example 8.
v C++ If a class and its enclosing classes do not have explicitly specified

visibilities and the visibility attribute of the class has a lower priority than those
of its nonstatic member types and its bases classes, the compiler issues a
warning message. See Example 9. For the priority of the visibility attributes, see
Priority of visibility attributes. C++

v C++ The visibility attribute of a namespace does not apply for the
namespace with the same name. See Example 10. C++

v C++ If you specify a visibility attribute for a global new or delete operator,
the compiler issues a warning message to ignore the visibility attribute unless
the visibility attribute is default. See Example 11. C++

Example 4

In this example, because m and i have internal linkage and j has no linkage, the
compiler ignores the visibility attributes of variables m, i, and j.
static int m __attribute__((visibility("protected")));
int n __attribute__((visibility("protected")));

int main(){
int i __attribute__((visibility("protected")));
static int j __attribute__((visibility("protected)));

}

128 XL C/C++: Optimization and Programming Guide

Example 5

In this example, the compiler issues an error message to indicate that you cannot
specify two different visibility attributes at the same time in the definition of
variable m.
//error
int m __attribute__((visibility("hidden"))) __attribute__((visibility("protected")));

Example 6

In this example, the first declaration of function fun() that the compiler processes
is extern void fun() __attribute__((visibility("hidden"))), so the visibility
attribute of fun() is hidden.
extern void fun() __attribute__((visibility("hidden")));
extern void fun() __attribute__((visibility("protected")));

int main(){
fun();

}

Example 7

In this example, the visibility attribute of variable vis_v_ti is default, which is not
affected by the setting in the typedef statement.
//The -qvisibility=default option is specified.
typedef int __attribute__((visibility("protected"))) INT;
INT vis_v_ti = 1;

C++

Example 8

In this example, the visibility attribute of class CP is protected, so the visibility
attribute of CP* and CP& is also protected.
class __attribute__((visibility("protected"))) CP {} vis_v_p;
class CP* vis_v_p_p = &vis_v_p; //protected
class CP& vis_v_lr_p = vis_v_p; //protected

Example 9

In this example, the compiler accepts the default visibility attribute of class
Derived1 because the visibility attribute is explicitly specified for class Derived1.
The compiler also accepts the protected visibility attribute of class Derived2
because the visibility attribute is propagated from that of the enclosing class A.
Class Derived3 does not have an explicitly specified visibility attribute or an
enclosing class, and its visibility attribute is default. The compiler issues a warning
message because the visibility attribute of class Derived3 has a lower priority than
those of its parent class Base and the nonstatic member function fun().
//The -qvisibility=default option is specified.
//base class
struct __attribute__((visibility("hidden"))) Base{

int vis_f_fun(){
return 0;

}
};

//Ok

Chapter 11. Coding your application to improve performance 129

struct __attribute__((visibility("default"))) Derived1: public Base{
int vis_f_fun(){

return Base::vis_f_fun();
};

}vis_v_d;

//Ok
struct __attribute__((visibility("protected"))) A{

struct Derived2: public Base{
int vis_f_fun(){

__attribute__((visibility("protected")))
};

}
};

//Warning
struct Derived3: public Base{

//Warning
int fun() __attribute__((visibility("protected"))){};

};

Example 10

In this example, the visibility attribute of the definition of namespace X does not
apply to the extension of namespace X.
//The -qvisibility=default option is specified.
//namespace definition
namespace X __attribute__((visibility("protected"))){

int a; //protected
int b; //protected

}
//namespace extension
namespace X {

int c; //default
int d; //default

}
//equivalent to namespace X
namespace Y {

int __attribute__((visibility("protected"))) a; //protected
int __attribute__((visibility("protected"))) b; //protected
int c; //default
int d; //default

}

Example 11

In this example, the new and delete operators defined outside of class A are global
functions, so the explicitly specified hidden visibility attribute does not take effect.
The new and delete operations defined within class A are local ones, so you can
specify visibility attributes for them.
#include <stddef.h>
//default
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

class A{
public:
//hidden
void* operator new(size_t) throw (std::bad_alloc) __attribute__((visibility("hidden")))
{

130 XL C/C++: Optimization and Programming Guide

return 0;
};
void operator delete(void*) throw () __attribute__((visibility("hidden"))){}

};

C++

Propagation rules (C++ only)

Visibility attributes can be propagated from one entity to other entities. The
following table lists all the cases for visibility propagation.

Table 27. Propagation of visibility attributes

Original
entity

Destination
entities Example

Namespace Named
namespaces that
are defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Namespace B has the hidden visibility attribute,
// which is propagated from namespace A.
namespace B{}
// The unnamed namespace does not have a visibility
// attribute.
namespace{}

}

Namespace Classes that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Class B has the hidden visibility attribute,
// which is propagated from namespace A.
class B;
// Object x has the hidden visibility attribute,
// which is propagated from namespace A.
class{} x;

}

Namespace Functions that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Function fun() has the hidden visibility
// attribute, which is propagated from namespace A.
void fun(){};

}

Namespace Objects that are
defined in the
original
namespace

namespace A __attribute__((visibility("hidden"))){
// Variable m has the hidden visibility attribute,
// which is propagated from namespace A.
int m;

}

Class Member classes class __attribute__((visibility("hidden"))) A{
// Class B has the hidden visibility attribute,
// which is propagated from class A.
class B{};

}

Class Member
functions or static
member variables

class __attribute__((visibility("hidden"))) A{
// Function fun() has the hidden visibility
// attribute, which is propagated from class A.
void fun(){};
// Static variable m has the hidden visibility
// attribute, which is propagated from class A.
static int m;

}

Chapter 11. Coding your application to improve performance 131

Table 27. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Template Template
instantiations/
template
specifications/
template partial
specializations

template<typename T, typename U>
class __attribute__((visibility("hidden"))) A{

public:
void fun(){};

};

// Template instantiation class A<int, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
class A<int, char>{

public:
void fun(){};

};

// Template specification
// template<> class A<double, double> has the hidden
// visibility attribute, which is propagated
// from template class A(T,U).
template<> class A<double, double>{

public:
void fun(){};

};

// Template partial specification
// template<typename T> class A<T, char> has the
// hidden visibility attribute, which is propagated
// from template class A(T,U).
template<typename T> class A<T, char>{

public:
void fun(){};

};

Template
argument/
parameter

Template
instantiations/
template
specifications/
template partial
specializations

template<typename T> void fun1(){}
template<typename T> void fun2(T){}

class M __attribute__((visibility("hidden"))){} m;

// Template instantiation fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
fun1<M>();

// Template instantiation fun2<M>(M) has the hidden
// visibility attribute, which is propagated from
// template parameter m.
fun2(m);

// Template specification fun1<M>() has the hidden
// visibility attribute, which is propagated from
// template argument M.
template<> void fun1<M>();

Inline
function

Static local
variables

inline void __attribute__((visibility("hidden")))
fun(){
// Variable m has the hidden visibility attribute,
// which is propagated from inline function fun().
static int m = 4;

}

132 XL C/C++: Optimization and Programming Guide

Table 27. Propagation of visibility attributes (continued)

Original
entity

Destination
entities Example

Type Entities of the
original type

class __attribute__((visibility("hidden"))) A {};

// Object x has the hidden visibility attribute,
// which is propagated from class A.
class A x;

Function
return
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun() has the hidden visibility attribute,
// which is propagated from function return type A.
A fun();

Function
parameter
type

Function class __attribute__((visibility("hidden"))) A{};
// Function fun(class A) has the hidden visibility
// attribute, which is propagated from function
// parameter type A.
void fun(class A);

Specifying visibility attributes using the -qvisibility option
You can use the -qvisibility option to globally set visibility attributes for external
linkage entities in your program. The entities have the visibility attribute that is
specified by the -qvisibility option if they do not get visibility attributes from
pragma directives, explicitly specified attributes, or propagation rules.

Specifying visibility attributes using pragma preprocessor
directives

You can selectively set visibility attributes for entities by using pairs of the #pragma
GCC visibility push and #pragma GCC visibility pop preprocessor directives
throughout your source program.

The compiler supports nested visibility pragma preprocessor directives. If entities
are included in several pairs of the nested #pragma GCC visibility push and
#pragma GCC visibility pop directives, the nearest pair of directives takes effect.
See Example 1.

You must not specify the visibility pragma directives for header files. Otherwise,
your program might exhibit undefined behaviors. See Example 2.

C++ Visibility pragma directives #pragma GCC visibility push and #pragma
GCC visibility pop affect only namespace-scope declarations. Class members and
template specializations are not affected. See Example 3 and Example 4. C++

Examples

Example 1

In this example, the function and variables have the visibility attributes that are
specified by their nearest pairs of pragma preprocessor directives.
#pragma GCC visibility push(default)
namespace ns
{

void vis_f_fun() {} //default
pragma GCC visibility push(internal)

int vis_v_i; //internal
pragma GCC visibility push(protected)

Chapter 11. Coding your application to improve performance 133

int vis_v_j; //protected
pragma GCC visibility push(hidden)

int vis_v_k; //hidden
pragma GCC visibility pop
pragma GCC visibility pop
pragma GCC visibility pop
}
#pragma GCC visibility pop

Example 2

In this example, the compiler issues a link error message to indicate that the
definition of the printf() library function cannot be found.
#pragma GCC visibility push(hidden)
#include <stdio.h>
#pragma GCC visibility pop

int main(){
printf("hello world!");
return 0;

}

C++

Example 3

In this example, the visibility attribute of class members vis_v_i and vis_f_fun()
is hidden. The visibility attribute is propagated from that of the class, but is not
affected by the pragma directives.
class __attribute__((visibility("hidden"))) A{
#pragma GCC visibility push(protected)

public:
static int vis_v_i;
void vis_f_fun() {}

#pragma GCC visibility pop
} vis_v_a;

Example 4

In this example, the visibility attribute of function vis_f_fun() is hidden. The
visibility attribute is propagated from that of the template specialization or partial
specialization, but is not affected by the pragma directives.
namespace ns{

#pragma GCC visibility push(hidden)
template <typename T, typename U> class TA{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(protected)
//The visibility attribute of the template specialization is hidden.
template <> class TA<char, char>{

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

#pragma GCC visibility push(default)
//The visibility attribute of the template partial specialization is hidden.
template <typename T> class TA<T, long>{

134 XL C/C++: Optimization and Programming Guide

public:
void vis_f_fun(){}

};
#pragma GCC visibility pop

C++

Chapter 11. Coding your application to improve performance 135

136 XL C/C++: Optimization and Programming Guide

Chapter 12. Using the high performance libraries

IBM XL C/C++ for AIX, V13.1.3 is shipped with a set of libraries for
high-performance mathematical computing:
v The Mathematical Acceleration Subsystem (MASS) is a set of libraries of tuned

mathematical intrinsic functions that provide improved performance over the
corresponding standard system math library functions. MASS is described in
“Using the Mathematical Acceleration Subsystem (MASS) libraries.”

v The Basic Linear Algebra Subprograms (BLAS) are a set of routines that provide
matrix/vector multiplication functions tuned for PowerPC architectures. The
BLAS functions are described in “Using the Basic Linear Algebra Subprograms –
BLAS” on page 150.

Using the Mathematical Acceleration Subsystem (MASS) libraries
XL C/C++ is shipped with a set of Mathematical Acceleration Subsystem (MASS)
libraries for high-performance mathematical computing.

The MASS libraries consist of a library of scalar C/C++ functions described in
“Using the scalar library” on page 138, a set of vector libraries tuned for specific
architectures described in “Using the vector libraries” on page 140, and a set of
SIMD libraries tuned for specific architectures described in “Using the SIMD
libraries” on page 146. The functions contained in both scalar and vector libraries
are automatically called at certain levels of optimization, but you can also call
them explicitly in your programs. Note that accuracy and exception handling
might not be identical in MASS functions and system library functions.

The MASS functions must run with the default rounding mode and floating-point
exception trapping settings.

When you compile programs with any of the following sets of options:
v -qhot -qignerrno -qnostrict

v -qhot -qignerrno -qstrict=nolibrary

v -qhot -O3

v -O4

v -O5

the compiler automatically attempts to vectorize calls to system math functions by
calling the equivalent MASS vector functions (with the exceptions of functions
vdnint, vdint, vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt, vpopcnt4,
vpopcnt8, vexp2, vexp2m1, vsexp2, vsexp2m1, vlog2, vlog21p, vslog2, and vslog21p).
If it cannot vectorize, it automatically tries to call the equivalent MASS scalar
functions. For automatic vectorization or scalarization, the compiler uses versions
of the MASS functions contained in the XLOPT library libxlopt.a.

In addition to any of the preceding sets of options, when the -qipa option is in
effect, if the compiler cannot vectorize, it tries to inline the MASS scalar functions
before deciding to call them.

© Copyright IBM Corp. 1996, 2015 137

“Compiling and linking a program with MASS” on page 149 describes how to
compile and link a program that uses the MASS libraries, and how to selectively
use the MASS scalar library functions in conjunction with the regular system
libraries.

Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the scalar library
The MASS scalar library libmass.a contains an accelerated set of frequently used
math intrinsic functions that provide improved performance over the
corresponding standard system library functions. The MASS scalar functions are
used when you explicitly link libmass.a.

If you want to explicitly call the MASS scalar functions, you can take the following
steps:
1. Provide the prototypes for the functions by including math.h and mass.h in

your source files.
2. Link the MASS scalar library with your application. For instructions, see

“Compiling and linking a program with MASS” on page 149.

The MASS scalar functions accept double-precision parameters and return a
double-precision result, or accept single-precision parameters and return a
single-precision result, except sincos which gives 2 double-precision results. They
are summarized in Table 28.

Table 28. MASS scalar functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acos acosf Returns the arccosine of
x

double acos (double x); float acosf (float x);

acosh acoshf Returns the hyperbolic
arccosine of x

double acosh (double x); float acoshf (float x);

anint Returns the rounded
integer value of x

float anint (float x);

asin asinf Returns the arcsine of x double asin (double x); float asinf (float x);

asinh asinhf Returns the hyperbolic
arcsine of x

double asinh (double x); float asinhf (float x);

atan2 atan2f Returns the arctangent
of x/y

double atan2 (double x,
double y);

float atan2f (float x, float y);

atan atanf Returns the arctangent
of x

double atan (double x); float atanf (float x);

atanh atanhf Returns the hyperbolic
arctangent of x

double atanh (double x); float atanhf (float x);

cbrt cbrtf Returns the cube root
of x

double cbrt (double x); float cbrtf (float x);

copysign copysignf Returns x with the sign
of y

double copysign (double
x,double y);

float copysignf (float x);

cos cosf Returns the cosine of x double cos (double x); float cosf (float x);

138 XL C/C++: Optimization and Programming Guide

http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 28. MASS scalar functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

cosh coshf Returns the hyperbolic
cosine of x

double cosh (double x); float coshf (float x);

cosisin Returns a complex
number with the real
part the cosine of x and
the imaginary part the
sine of x.

double_Complex cosisin
(double);

dnint Returns the nearest
integer to x (as a
double)

double dnint (double x);

erf erff Returns the error
function of x

double erf (double x); float erff (float x);

erfc erfcf Returns the
complementary error
function of x

double erfc (double x); float erfcf (float x);

exp expf Returns the exponential
function of x

double exp (double x); float expf (float x);

expm1 expm1f Returns (the
exponential function of
x) - 1

double expm1 (double x); float expm1f (float x);

hypot hypotf Returns the square root
of x2 + y2

double hypot (double x,
double y);

float hypotf (float x, float y);

lgamma lgammaf Returns the natural
logarithm of the
absolute value of the
Gamma function of x

double lgamma (double x); float lgammaf (float x);

log logf Returns the natural
logarithm of x

double log (double x); float logf (float x);

log10 log10f Returns the base 10
logarithm of x

double log10 (double x); float log10f (float x);

log1p log1pf Returns the natural
logarithm of (x + 1)

double log1p (double x); float log1pf (float x);

pow powf Returns x raised to the
power y

double pow (double x,
double y);

float powf (float x, float y);

rsqrt Returns the reciprocal
of the square root of x

double rsqrt (double x);

sin sinf Returns the sine of x double sin (double x); float sinf (float x);

sincos Sets *s to the sine of x
and *c to the cosine of
x

void sincos (double x,
double* s, double* c);

sinh sinhf Returns the hyperbolic
sine of x

double sinh (double x); float sinhf (float x);

sqrt Returns the square root
of x

double sqrt (double x);

tan tanf Returns the tangent of x double tan (double x); float tanf (float x);

tanh tanhf Returns the hyperbolic
tangent of x

double tanh (double x); float tanhf (float x);

Chapter 12. Using the high performance libraries 139

Notes:

v The trigonometric functions (sin, cos, tan) return NaN (Not-a-Number) for large
arguments (where the absolute value is greater than 250pi).

v In some cases, the MASS functions are not as accurate as the ones in the libm.a
library, and they might handle edge cases differently (sqrt(Inf), for example).

v For accuracy comparisons with libm.a, see Product documentation (manuals) in
the Product support content section of the Mathematical Acceleration Subsystem
website.
Related external information

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the vector libraries
If you want to explicitly call any of the MASS vector functions, you can do so by
including massv.h in your source files and linking your application with the
appropriate vector library. Information about linking is provided in “Compiling
and linking a program with MASS” on page 149.

The vector libraries shipped with XL C/C++ are listed below:

libmassv.a
The generic vector library that runs on any supported POWER® processor.
Unless your application requires this portability, use the appropriate
architecture-specific library below for maximum performance.

libmassvp4.a
Contains some functions that are tuned for the POWER4 architecture. The
remaining functions are identical to those in libmassv.a. If you are using a
PPC970 machine, this library is the recommended choice.

libmassvp5.a
Contains some functions that are tuned for the POWER5 architecture. The
remaining functions are identical to those in libmassv.a.

libmassvp6.a
Contains some functions that are tuned for the POWER6® architecture. The
remaining functions are identical to those in libmassv.a.

libmassvp7.a
Contains functions that are tuned for the POWER7 architecture.

libmassvp8.a
Contains functions that are tuned for the POWER8 architecture.

All libraries can be used in either 32-bit or 64-bit mode.

The single-precision and double-precision floating-point functions contained in the
vector libraries are summarized in Table 29 on page 141. The integer functions
contained in the vector libraries are summarized in Table 30 on page 144. Note that
in C and C++ applications, only call by reference is supported, even for scalar
arguments.

With the exception of a few functions (described in the following paragraph), all of
the floating-point functions in the vector libraries accept three parameters:

140 XL C/C++: Optimization and Programming Guide

http://www-03.ibm.com/software/products/us/en/mathaccesubsfami/
http://www-03.ibm.com/software/products/us/en/mathaccesubsfami/
http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

v A double-precision (for double-precision functions) or single-precision (for
single-precision functions) vector output parameter

v A double-precision (for double-precision functions) or single-precision (for
single-precision functions) vector input parameter

v An integer vector-length parameter.

The functions are of the form
function_name (y,x,n)

where y is the target vector, x is the source vector, and n is the vector length. The
parameters y and x are assumed to be double-precision for functions with the
prefix v, and single-precision for functions with the prefix vs. As an example, the
following code outputs a vector y of length 500 whose elements are exp(x[i]),
where i=0,...,499:
#include <massv.h>

double x[500], y[500];
int n;
n = 500;
...
vexp (y, x, &n);

The functions vdiv, vsincos, vpow, and vatan2 (and their single-precision versions,
vsdiv, vssincos, vspow, and vsatan2) take four arguments. The functions vdiv,
vpow, and vatan2 take the arguments (z,x,y,n). The function vdiv outputs a vector z
whose elements are x[i]/y[i], where i=0,..,*n–1. The function vpow outputs a vector
z whose elements are x[i]y[i], where i=0,..,*n–1. The function vatan2 outputs a vector
z whose elements are atan(x[i]/y[i]), where i=0,..,*n–1. The function vsincos takes
the arguments (y,z,x,n), and outputs two vectors, y and z, whose elements are
sin(x[i]) and cos(x[i]), respectively.

In vcosisin(y,x,n) and vscosisin(y,x,n), x is a vector of n elements and the
function outputs a vector y of n __Complex elements of the form (cos(x[i]),sin(x[i])).
If -D__nocomplex is used (see note in Table 29), the output vector holds y[0][i] =
cos(x[i]) and y[1][i] = sin(x[i]), where i=0,..,*n-1.

Table 29. MASS floating-point vector functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vacos vsacos Sets y[i] to the arc cosine
of x[i], for i=0,..,*n-1

void vacos (double y[],
double x[], int *n);

void vsacos (float y[], float
x[], int *n);

vacosh vsacosh Sets y[i] to the hyperbolic
arc cosine of x[i], for
i=0,..,*n-1

void vacosh (double y[],
double x[], int *n);

void vsacosh (float y[], float
x[], int *n);

vasin vsasin Sets y[i] to the arc sine of
x[i], for i=0,..,*n-1

void vasin (double y[],
double x[], int *n);

void vsasin (float y[], float
x[], int *n);

vasinh vsasinh Sets y[i] to the hyperbolic
arc sine of x[i], for
i=0,..,*n-1

void vasinh (double y[],
double x[], int *n);

void vsasinh (float y[], float
x[], int *n);

vatan2 vsatan2 Sets z[i] to the arc
tangent of x[i]/y[i], for
i=0,..,*n-1

void vatan2 (double z[],
double x[], double y[], int
*n);

void vsatan2 (float z[], float
x[], float y[], int *n);

Chapter 12. Using the high performance libraries 141

Table 29. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vatanh vsatanh Sets y[i] to the hyperbolic
arc tangent of x[i], for
i=0,..,*n-1

void vatanh (double y[],
double x[], int *n);

void vsatanh (float y[], float
x[], int *n);

vcbrt vscbrt Sets y[i] to the cube root
of x[i], for i=0,..,*n-1

void vcbrt (double y[],
double x[], int *n);

void vscbrt (float y[], float
x[], int *n);

vcos vscos Sets y[i] to the cosine of
x[i], for i=0,..,*n-1

void vcos (double y[],
double x[], int *n);

void vscos (float y[], float
x[], int *n);

vcosh vscosh Sets y[i] to the hyperbolic
cosine of x[i], for
i=0,..,*n-1

void vcosh (double y[],
double x[], int *n);

void vscosh (float y[], float
x[], int *n);

vcosisin1 vscosisin1 Sets the real part of y[i]
to the cosine of x[i] and
the imaginary part of y[i]
to the sine of x[i], for
i=0,..,*n-1

void vcosisin (double
_Complex y[], double x[], int
*n);

void vscosisin (float
_Complex y[], float x[], int
*n);

vdint Sets y[i] to the integer
truncation of x[i], for
i=0,..,*n-1

void vdint (double y[],
double x[], int *n);

vdiv vsdiv Sets z[i] to x[i]/y[i], for
i=0,..,*n–1

void vdiv (double z[],
double x[], double y[], int
*n);

void vsdiv (float z[], float
x[], float y[], int *n);

vdnint Sets y[i] to the nearest
integer to x[i], for
i=0,..,*n-1

void vdnint (double y[],
double x[], int *n);

verf vserf Sets y[i] to the error
function of x[i], for
i=0,..,*n-1

void verf (double y[], double
x[], int *n)

void vserf (float y[], float
x[], int *n)

verfc vserfc Sets y[i] to the
complementary error
function of x[i], for
i=0,..,*n-1

void verfc (double y[],
double x[], int *n)

void vserfc (float y[], float
x[], int *n)

vexp vsexp Sets y[i] to the
exponential function of
x[i], for i=0,..,*n-1

void vexp (double y[],
double x[], int *n);

void vsexp (float y[], float
x[], int *n);

vexp2 vsexp2 Sets y[i] to 2 raised to the
power of x[i], for
i=1,..,*n-1

void vexp2 (double y[],
double x[], int *n);

void vsexp2 (float y[], float
x[], int *n);

vexpm1 vsexpm1 Sets y[i] to (the
exponential function of
x[i])-1, for i=0,..,*n-1

void vexpm1 (double y[],
double x[], int *n);

void vsexpm1 (float y[],
float x[], int *n);

vexp2m1 vsexp2m1 Sets y[i] to (2 raised to
the power of x[i]) - 1, for
i=1,..,*n-1

void vexp2m1 (double y[],
double x[], int *n);

void vsexp2m1 (float y[],
float x[], int *n);

vhypot vshypot Sets z[i] to the square
root of the sum of the
squares of x[i] and y[i],
for i=0,..,*n-1

void vhypot (double z[],
double x[], double y[], int
*n);

void vshypot (float z[], float
x[], float y[], int *n);

142 XL C/C++: Optimization and Programming Guide

Table 29. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

vlog vslog Sets y[i] to the natural
logarithm of x[i], for
i=0,..,*n-1

void vlog (double y[],
double x[], int *n);

void vslog (float y[], float
x[], int *n);

vlog2 vslog2 Sets y[i] to the base-2
logarithm of x[i], for
i=1,..,*n-1

void vlog2 (double y[],
double x[], int *n);

void vslog2 (float y[], float
x[], int *n);

vlog10 vslog10 Sets y[i] to the base-10
logarithm of x[i], for
i=0,..,*n-1

void vlog10 (double y[],
double x[], int *n);

void vslog10 (float y[], float
x[], int *n);

vlog1p vslog1p Sets y[i] to the natural
logarithm of (x[i]+1), for
i=0,..,*n-1

void vlog1p (double y[],
double x[], int *n);

void vslog1p (float y[], float
x[], int *n);

vlog21p vslog21p Sets y[i] to the base-2
logarithm of (x[i]+1), for
i=1,..,*n-1

void vlog21p (double y[],
double x[], int *n);

void vslog21p (float y[],
float x[], int *n);

vpow vspow Sets z[i] to x[i] raised to
the power y[i], for
i=0,..,*n-1

void vpow (double z[],
double x[], double y[], int
*n);

void vspow (float z[], float
x[], float y[], int *n);

vqdrt vsqdrt Sets y[i] to the fourth
root of x[i], for i=0,..,*n-1

void vqdrt (double y[],
double x[], int *n);

void vsqdrt (float y[], float
x[], int *n);

vrcbrt vsrcbrt Sets y[i] to the reciprocal
of the cube root of x[i],
for i=0,..,*n-1

void vrcbrt (double y[],
double x[], int *n);

void vsrcbrt (float y[], float
x[], int *n);

vrec vsrec Sets y[i] to the reciprocal
of x[i], for i=0,..,*n-1

void vrec (double y[],
double x[], int *n);

void vsrec (float y[], float
x[], int *n);

vrqdrt vsrqdrt Sets y[i] to the reciprocal
of the fourth root of x[i],
for i=0,..,*n-1

void vrqdrt (double y[],
double x[], int *n);

void vsrqdrt (float y[], float
x[], int *n);

vrsqrt vsrsqrt Sets y[i] to the reciprocal
of the square root of x[i],
for i=0,..,*n-1

void vrsqrt (double y[],
double x[], int *n);

void vsrsqrt (float y[], float
x[], int *n);

vsin vssin Sets y[i] to the sine of
x[i], for i=0,..,*n-1

void vsin (double y[],
double x[], int *n);

void vssin (float y[], float
x[], int *n);

vsincos vssincos Sets y[i] to the sine of
x[i] and z[i] to the
cosine of x[i], for
i=0,..,*n-1

void vsincos (double y[],
double z[], double x[], int
*n);

void vssincos (float y[],
float z[], float x[], int *n);

vsinh vssinh Sets y[i] to the hyperbolic
sine of x[i], for i=0,..,*n-1

void vsinh (double y[],
double x[], int *n);

void vssinh (float y[], float
x[], int *n);

vsqrt vssqrt Sets y[i] to the square
root of x[i], for i=0,..,*n-1

void vsqrt (double y[],
double x[], int *n);

void vssqrt (float y[], float
x[], int *n);

vtan vstan Sets y[i] to the tangent of
x[i], for i=0,..,*n-1

void vtan (double y[],
double x[], int *n);

void vstan (float y[], float
x[], int *n);

vtanh vstanh Sets y[i] to the hyperbolic
tangent of x[i], for
i=0,..,*n-1

void vtanh (double y[],
double x[], int *n);

void vstanh (float y[], float
x[], int *n);

Chapter 12. Using the high performance libraries 143

Table 29. MASS floating-point vector functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

Note:

1. By default, these functions use the __Complex data type, which is only available for AIX 5.2 and later, and does
not compile on older versions of the operating system. To get an alternate prototype for these functions, compile
with -D__nocomplex. This defines the functions as void vcosisin (double y[][2], double *x, int *n); and
void vscosisin(float y[][2], float *x, int *n);

Integer functions are of the form function_name (x[], *n), where x[] is a vector of
4-byte (for vpopcnt4) or 8-byte (for vpopcnt8) numeric objects (integral or
floating-point), and *n is the vector length.

Table 30. MASS integer vector library functions

Function Description Prototype

vpopcnt4 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 32-bit objects.

unsigned int vpopcnt4 (void *x,
int *n)

vpopcnt8 Returns the total number of 1 bits in the
concatenation of the binary
representation of x[i], for i=0,..,*n–1 ,
where x is a vector of 64-bit objects.

unsigned int vpopcnt8 (void *x,
int *n)

Overlap of input and output vectors

In most applications, the MASS vector functions are called with disjoint input and
output vectors; that is, the two vectors do not overlap in memory. Another
common usage scenario is to call them with the same vector for both input and
output parameters (for example, vsin (y, y, &n)). For other kinds of overlap, be
sure to observe the following restrictions, to ensure correct operation of your
application:
v For calls to vector functions that take one input and one output vector (for

example, vsin (y, x, &n)):
The vectors x[0:n-1] and y[0:n-1] must be either disjoint or identical, or the
address of x[0] must be greater than the address of y[0]. That is, if x and y are
not the same vector, the address of y[0] must not fall within the range of
addresses spanned by x[0:n-1], or unexpected results might be obtained.

v For calls to vector functions that take two input vectors (for example, vatan2 (y,
x1, x2, &n)):
The previous restriction applies to both pairs of vectors y,x1 and y,x2. That is, if
y is not the same vector as x1, the address of y[0] must not fall within the range
of addresses spanned by x1[0:n-1]; if y is not the same vector as x2, the address
of y[0] must not fall within the range of addresses spanned by x2[0:n-1].

v For calls to vector functions that take two output vectors (for example, vsincos
(x, y1, y2, &n)):
The above restriction applies to both pairs of vectors y1,x and y2,x. That is, if y1
and x are not the same vector, the address of y1[0] must not fall within the
range of addresses spanned by x[0:n-1]; if y2 and x are not the same vector, the
address of y2[0] must not fall within the range of addresses spanned by
x[0:n-1]. Also, the vectors y1[0:n-1] and y2[0:n-1] must be disjoint.

144 XL C/C++: Optimization and Programming Guide

Alignment of input and output vectors

To get the best performance from the POWER7 and POWER8 vector libraries, align
the input and output vectors on 8-byte (or better, 16-byte) boundaries.

Consistency of MASS vector functions

The accuracy of the vector functions is comparable to that of the corresponding
scalar functions in libmass.a, though results might not be bitwise-identical.

In the interest of speed, the MASS libraries make certain trade-offs. One of these
involves the consistency of certain MASS vector functions. For certain functions, it
is possible that the result computed for a particular input value varies slightly
(usually only in the least significant bit) depending on its position in the vector, the
vector length, and nearby elements of the input vector. Also, the results produced
by the different MASS libraries are not necessarily bit-wise identical.

All the functions in libmassvp7.a and libmassvp8.a are consistent.

The following functions are consistent in all versions of the library in which they
appear.

double-precision functions
vacos, vacosh, vasin, vasinh, vatan2, vatanh, vcbrt, vcos, vcosh, vcosisin,
vdint, vdnint, vexp2, vexpm1, vexp2m1, vlog, vlog2, vlog10, vlog1p, vlog21p,
vpow, vqdrt, vrcbrt, vrqdrt, vsin, vsincos, vsinh, vtan, vtanh

single-precision functions
vsacos, vsacosh, vsasin, vsasinh, vsatan2, vsatanh, vscbrt, vscos, vscosh,
vscosisin, vsexp, vsexp2, vsexpm1, vsexp2m1, vslog, vslog2, vslog10,
vslog1p, vslog21p, vspow, vsqdrt, vsrcbrt, vsrqdrt, vssin, vssincos,
vssinh, vssqrt, vstan, vstanh

The following functions are consistent in libmassvp3.a, libmassvp4.a,
libmassvp5.a, and libmassvp6.a:

vsqrt and vrsqrt.

The following functions are consistent in libmassvp4.a, libmassvp5.a, and
libmassvp6.a:

vrec, vsrec, vdiv, vsdiv, and vexp.

The following function is consistent in libmassv.a, libmassvp5.a, and
libmassvp6.a:

vsrsqrt.

Older, inconsistent versions of some of these functions are available on the
Mathematical Acceleration Subsystem for AIX website. If consistency is not required,
there might be a performance advantage to using the older versions. For more
information on consistency and avoiding inconsistency with the vector libraries, as
well as performance and accuracy data, see the Mathematical Acceleration Subsystem
website.

Related information in the XL C/C++ Compiler Reference

-D

Chapter 12. Using the high performance libraries 145

Related external information

Mathematical Acceleration Subsystem for AIX website, available at
http://www.ibm.com/software/awdtools/mass/aix

Mathematical Acceleration Subsystem website, available at
http://www.ibm.com/software/awdtools/mass/

Using the SIMD libraries
The MASS SIMD library libmass_simdp7.a or libmass_simdp8.a contains a set of
frequently used math intrinsic functions that provide improved performance over
the corresponding standard system library functions. If you want to use the MASS
SIMD functions, you can do so as follows:
1. Provide the prototypes for the functions by including mass_simd.h in your

source files.
2. Link the MASS SIMD library libmass_simdp7.a or libmass_simdp8.a with your

application. For instructions, see “Compiling and linking a program with
MASS” on page 149.

The single-precision MASS SIMD functions accept single-precision arguments and
return single-precision results. Likewise, the double-precision MASS SIMD
functions accept double-precision arguments and return double-precision results.
They are summarized in Table 31.

Table 31. MASS SIMD functions

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

acosd2 acosf4 Computes the arc
cosine of each element
of vx.

vector double acosd2 (vector
double vx);

vector float acosf4 (vector float
vx);

acoshd2 acoshf4 Computes the arc
hyperbolic cosine of
each element of vx.

vector double acoshd2 (vector
double vx);

vector float acoshf4 (vector float
vx);

asind2 asinf4 Computes the arc sine
of each element of vx.

vector double asind2 (vector
double vx);

vector float asinf4 (vector float
vx);

asinhd2 asinhf4 Computes the arc
hyperbolic sine of each
element of vx.

vector double asinhd2 (vector
double vx);

vector float asinhf4 (vector float
vx);

atand2 atanf4 Computes the arc
tangent of each element
of vx.

vector double atand2 (vector
double vx);

vector float atanf4 (vector float
vx);

atan2d2 atan2f4 Computes the arc
tangent of each element
of vx/vy.

vector double atan2d2 (vector
double vx, vector double vy);

vector float atan2f4 (vector float
vx, vector float vy);

atanhd2 atanhf4 Computes the arc
hyperbolic tangent of
each element of vx.

vector double atanhd2 (vector
double vx);

vector float atanhf4 (vector float
vx);

cbrtd2 cbrtf4 Computes the cube root
of each element of vx.

vector double cbrtd2 (vector
double vx);

vector float cbrtf4 (vector float
vx);

cosd2 cosf4 Computes the cosine of
each element of vx.

vector double cosd2 (vector
double vx);

vector float cosf4 (vector float
vx);

146 XL C/C++: Optimization and Programming Guide

http://www.ibm.com/software/awdtools/mass/aix
http://www.ibm.com/software/awdtools/mass/aix
http://www.ibm.com/software/awdtools/mass/
http://www.ibm.com/software/awdtools/mass/

Table 31. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

coshd2 coshf4 Computes the
hyperbolic cosine of
each element of vx.

vector double coshd2 (vector
double vx);

vector float coshf4 (vector float
vx);

cosisind2 cosisinf4 Computes the cosine
and sine of each
element of x, and stores
the results in y and z as
follows:

cosisind2 (x,y,z) sets
y and z to {cos(x1),
sin(x1)} and
{cos(x2), sin(x2)}
where x={x1,x2}.

cosisinf4 (x,y,z) sets
y and z to {cos(x1),
sin(x1), cos(x2),
sin(x2)} and
{cos(x3), sin(x3),
cos(x4), sin(x4)}
where x={x1,x2,x3,x4}.

void cosisind2 (vector double x,
vector double *y, vector double
*z)

void cosisinf4 (vector float x,
vector float *y, vector float *z)

divd2 divf4 Computes the quotient
vx/vy.

vector double divd2 (vector
double vx, vector double vy);

vector float divf4 (vector float
vx, vector float vy);

erfcd2 erfcf4 Computes the
complementary error
function of each
element of vx.

vector double erfcd2 (vector
double vx);

vector float erfcf4 (vector float
vx);

erfd2 erff4 Computes the error
function of each
element of vx.

vector double erfd2 (vector
double vx);

vector float erff4 (vector float
vx);

expd2 expf4 Computes the
exponential function of
each element of vx.

vector double expd2 (vector
double vx);

vector float expf4 (vector float
vx);

exp2d2 exp2f4 Computes 2 raised to
the power of each
element of vx.

vector double exp2d2 (vector
double vx);

vector float exp2f4 (vector float
vx);

expm1d2 expm1f4 Computes (the
exponential function of
each element of vx) - 1.

vector double expm1d2 (vector
double vx);

vector float expm1f4 (vector
float vx);

exp2m1d2 exp2m1f4 Computes (2 raised to
the power of each
element of vx) -1.

vector double exp2m1d2 (vector
double vx);

vector float exp2m1f4 (vector
float vx);

hypotd2 hypotf4 For each element of vx
and the corresponding
element of vy,
computes
sqrt(x*x+y*y).

vector double hypotd2 (vector
double vx, vector double vy);

vector float hypotf4 (vector float
vx, vector float vy);

Chapter 12. Using the high performance libraries 147

Table 31. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

lgammad2 lgammaf4 Computes the natural
logarithm of the
absolute value of the
Gamma function of
each element of vx .

vector double lgammad2 (vector
double vx);

vector float lgammaf4 (vector
float vx);

logd2 logf4 Computes the natural
logarithm of each
element of vx.

vector double logd2 (vector
double vx);

vector float logf4 (vector float
vx);

log2d2 log2f4 Computes the base-2
logarithm of each
element of vx.

vector double log2d2 (vector
double vx);

vector float log2f4 (vector float
vx);

log10d2 log10f4 Computes the base-10
logarithm of each
element of vx.

vector double log10d2 (vector
double vx);

vector float log10f4 (vector float
vx);

log1pd2 log1pf4 Computes the natural
logarithm of each
element of (vx +1).

vector double log1pd2 (vector
double vx);

vector float log1pf4 (vector float
vx);

log21pd2 log21pf4 Computes the base-2
logarithm of each
element of (vx +1).

vector double log21pd2 (vector
double vx);

vector float log21pf4 (vector
float vx);

powd2 powf4 Computes each element
of vx raised to the
power of the
corresponding element
of vy.

vector double powd2 (vector
double vx, vector double vy);

vector float powf4 (vector float
vx, vector float vy);

qdrtd2 qdrtf4 Computes the quad
root of each element of
vx.

vector double qdrtd2 (vector
double vx);

vector float qdrtf4 (vector float
vx);

rcbrtd2 rcbrtf4 Computes the
reciprocal of the cube
root of each element of
vx.

vector double rcbrtd2 (vector
double vx);

vector float rcbrtf4 (vector float
vx);

recipd2 recipf4 Computes the
reciprocal of each
element of vx.

vector double recipd2 (vector
double vx);

vector float recipf4 (vector float
vx);

rqdrtd2 rqdrtf4 Computes the
reciprocal of the quad
root of each element of
vx.

vector double rqdrtd2 (vector
double vx);

vector float rqdrtf4 (vector float
vx);

rsqrtd2 rsqrtf4 Computes the
reciprocal of the square
root of each element of
vx.

vector double rsqrtd2 (vector
double vx);

vector float rsqrtf4 (vector float
vx);

sincosd2 sincosf4 Computes the sine and
cosine of each element
of vx.

void sincosd2 (vector double vx,
vector double *vs, vector double
*vc);

void sincosf4 (vector float vx,
vector float *vs, vector float *vc);

sind2 sinf4 Computes the sine of
each element of vx.

vector double sind2 (vector
double vx);

vector float sinf4 (vector float
vx);

148 XL C/C++: Optimization and Programming Guide

Table 31. MASS SIMD functions (continued)

Double-
precision
function

Single-
precision
function

Description Double-precision function
prototype

Single-precision function
prototype

sinhd2 sinhf4 Computes the
hyperbolic sine of each
element of vx.

vector double sinhd2 (vector
double vx);

vector float sinhf4 (vector float
vx);

sqrtd2 sqrtf4 Computes the square
root of each element of
vx.

vector double sqrtd2 (vector
double vx);

vector float sqrtf4 (vector float
vx);

tand2 tanf4 Computes the tangent
of each element of vx.

vector double tand2 (vector
double vx);

vector float tanf4 (vector float
vx);

tanhd2 tanhf4 Computes the
hyperbolic tangent of
each element of vx.

vector double tanhd2 (vector
double vx);

vector float tanhf4 (vector float
vx);

Compiling and linking a program with MASS
To compile an application that calls the functions in the scalar, SIMD, or vector
MASS libraries, specify mass, and/or one of mass_simdp7, mass_simdp8, and/or
one of massv, massvp4, massvp5, massvp6, massvp7, massvp8 on the -l linker
option.

For example, if the MASS libraries are installed in the default directory, you can
use one of the following commands:

Link object file progc with scalar library libmass.a and vector library
libmassvp8.a

xlc -qarch=pwr8 progc.c -o progc -lmass -lmassvp8

Link object file progc with SIMD library libmass_simdp8.a
xlc -qarch=pwr8 progc.c -o progc -lmass_simdp8

Using libmass.a with the math system library
If you want to use the libmass.a scalar library for some functions and the normal
math library libm.a for other functions, follow this procedure to compile and link
your program:
1. Create an export list that is a flat text file and contains the names of the wanted

functions. For example, to select only the fast tangent function from libmass.a
for use with the C program sample.c, create a file called fasttan.exp with the
following line:
tan

2. Create a shared object from the export list with the ld command, linking with
the libmass.a library. For example:
ld -bexport:fasttan.exp -o fasttan.o -bnoentry -lmass -bmodtype:SRE

3. Archive the shared object into a library with the ar command. For example:
ar -q libfasttan.a fasttan.o

4. Create the final executable using xlc, specifying the object file containing the
MASS functions before the standard math library, libm.a. This links only the
functions specified in the object file (in this example, the tan function) and the
remainder of the math functions from the standard math library. For example:
xlc sample.c -o sample -Ldir_containing_libfasttan -lfasttan -lm

Notes:

Chapter 12. Using the high performance libraries 149

v The MASS sincos function is automatically linked if you export MASS cosisin.
v The MASS cos function is automatically linked if you export MASS sin.
v The MASS atan2 is automatically linked if you export MASS atan.

Related external information

v ar and ld in the AIX Commands Reference, Volumes 1 - 6

Using the Basic Linear Algebra Subprograms – BLAS
Four Basic Linear Algebra Subprograms (BLAS) functions are shipped with the XL
C/C++ compiler in the libxlopt library. The functions consist of the following:
v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product for a general matrix or its transpose
v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes

Because the BLAS routines are written in Fortran, all parameters are passed to
them by reference and all arrays are stored in column-major order.

Note: Some error-handling code has been removed from the BLAS functions in
libxlopt, and no error messages are emitted for calls to the these functions.

“BLAS function syntax” describes the prototypes and parameters for the XL
C/C++ BLAS functions. The interfaces for these functions are similar to those of
the equivalent BLAS functions shipped in IBM's Engineering and Scientific
Subroutine Library (ESSL); for more information and examples of usage of these
functions, see Engineering and Scientific Subroutine Library Guide and Reference,
available at the Engineering and Scientific Subroutine Library (ESSL) and Parallel
ESSL web page.

“Linking the libxlopt library” on page 152 describes how to link to the XL C/C++
libxlopt library if you are also using a third-party BLAS library.

BLAS function syntax
The prototypes for the sgemv and dgemv functions are as follows:
void sgemv(const char *trans, int *m, int *n, float *alpha,

void *a, int *lda, void *x, int *incx,
float *beta, void *y, int *incy);

void dgemv(const char *trans, int *m, int *n, double *alpha,
void *a, int *lda, void *x, int *incx,
double *beta, void *y, int *incy);

The parameters are as follows:

trans
is a single character indicating the form of input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in computation

m represents:
v the number of rows in input matrix a
v the length of vector y, if ’N’ or ’n’ is used for the trans parameter
v the length of vector x, if ’T’ or ’t’ is used for the trans parameter

150 XL C/C++: Optimization and Programming Guide

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/esslbooks.html

The number of rows must be greater than or equal to zero, and less than the
leading dimension of matrix a (specified in lda)

n represents:
v the number of columns in input matrix a
v the length of vector x, if ’N’ or ’n’ is used for the trans parameter
v the length of vector y, if ’T’ or ’t’ is used for the trans parameter

The number of columns must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix of float (for sgemv) or double (for dgemv) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. The leading dimension must be greater than or
equal to 1 and greater than or equal to the value specified in m.

x is the input vector of float (for sgemv) or double (for dgemv) values.

incx
is the stride for vector x. It can have any value.

beta
is the scaling constant for vector y

y is the output vector of float (for sgemv) or double (for dgemv) values.

incy
is the stride for vector y. It must not be zero.

Note: Vector y must have no common elements with matrix a or vector x;
otherwise, the results are unpredictable.

The prototypes for the sgemm and dgemm functions are as follows:
void sgemm(const char *transa, const char *transb,

int *l, int *n, int *m, float *alpha,
const void *a, int *lda, void *b, int *ldb,
float *beta, void *c, int *ldc);

void dgemm(const char *transa, const char *transb,
int *l, int *n, int *m, double *alpha,
const void *a, int *lda, void *b, int *ldb,
double *beta, void *c, int *ldc);

The parameters are as follows:

transa
is a single character indicating the form of input matrix a, where:
v ’N’ or ’n’ indicates that a is to be used in computation
v ’T’ or ’t’ indicates that the transpose of a is to be used in computation

transb
is a single character indicating the form of input matrix b, where:
v ’N’ or ’n’ indicates that b is to be used in computation
v ’T’ or ’t’ indicates that the transpose of b is to be used in computation

l represents the number of rows in output matrix c. The number of rows must
be greater than or equal to zero, and less than the leading dimension of c.

Chapter 12. Using the high performance libraries 151

n represents the number of columns in output matrix c. The number of columns
must be greater than or equal to zero.

m represents:
v the number of columns in matrix a, if ’N’ or ’n’ is used for the transa

parameter
v the number of rows in matrix a, if ’T’ or ’t’ is used for the transa parameter

and:
v the number of rows in matrix b, if ’N’ or ’n’ is used for the transb

parameter
v the number of columns in matrix b, if ’T’ or ’t’ is used for the transb

parameter

m must be greater than or equal to zero.

alpha
is the scaling constant for matrix a

a is the input matrix a of float (for sgemm) or double (for dgemm) values

lda
is the leading dimension of the array specified by a. The leading dimension
must be greater than zero. If transa is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 1. If transa is specified as ’T’ or
’t’, the leading dimension must be greater than or equal to the value specified
in m.

b is the input matrix b of float (for sgemm) or double (for dgemm) values.

ldb
is the leading dimension of the array specified by b. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to the value specified in m. If transa is
specified as ’T’ or ’t’, the leading dimension must be greater than or equal to
the value specified in n.

beta
is the scaling constant for matrix c

c is the output matrix c of float (for sgemm) or double (for dgemm) values.

ldc
is the leading dimension of the array specified by c. The leading dimension
must be greater than zero. If transb is specified as ’N’ or ’n’, the leading
dimension must be greater than or equal to 0 and greater than or equal to the
value specified in l.

Note: Matrix c must have no common elements with matrices a or b; otherwise,
the results are unpredictable.

Linking the libxlopt library
By default, the libxlopt library is linked with any application that you compile
with the XL C/C++ compiler. However, if you are using a third-party BLAS library
but want to use the BLAS routines shipped with libxlopt, you must specify the
libxlopt library before any other BLAS library on the command line at link time.
For example, if your other BLAS library is called libblas.a, you would compile
your code with the following command:
xlc app.c -lxlopt -lblas

152 XL C/C++: Optimization and Programming Guide

The compiler will call the sgemv, dgemv, sgemm, and dgemm functions from the
libxlopt library and all other BLAS functions in the libblas.a library.

Chapter 12. Using the high performance libraries 153

154 XL C/C++: Optimization and Programming Guide

Chapter 13. Parallelizing your programs

The compiler offers you the following methods of implementing shared memory
program parallelization:
v Automatic parallelization of countable program loops, which are defined in

“Countable loops” on page 156. An overview of the compiler's automatic
parallelization capabilities is provided in “Enabling automatic parallelization” on
page 157.

v C Explicit parallelization of countable loops using IBM SMP directives.
An overview of the IBM SMP directives is provided in “Using IBM SMP
directives (C only)” on page 157.

v Explicit parallelization of C and C++ program code using pragma directives
compliant to the OpenMP Application Program Interface specification. An
overview of the OpenMP directives is provided in “Using OpenMP directives”
on page 160.

All methods of program parallelization are enabled when the -qsmp compiler
option is in effect without the omp suboption. You can enable strict OpenMP
compliance with the -qsmp=omp compiler option, but doing so will disable
automatic parallelization.

Note: The -qsmp option must only be used together with threadsafe compiler
invocation modes (those that contain the _r suffix).

Parallel regions of program code are executed by multiple threads, possibly
running on multiple processors. The number of threads created is determined by
environment variables and calls to library functions. Work is distributed among
available threads according to scheduling algorithms specified by the environment
variables. For any of the methods of parallelization, you can use the XLSMPOPTS
environment variable and its suboptions to control thread scheduling; for more
information about this environment variable, see XLSMPOPTS in the XL C/C++
Compiler Reference. If you are using OpenMP constructs, you can use the OpenMP
environment variables to control thread scheduling; for information about OpenMP
environment variables, see OpenMP environment variables for parallel processing in the
XL C/C++ Compiler Reference. For more information about both IBM SMP and
OpenMP built-in functions, see Built-in functions for parallel processing in the XL
C/C++ Compiler Reference.

For details about the OpenMP constructs, environment variables, and runtime
routines, refer to the OpenMP Application Program Interface Specification, available at
http://www.openmp.org.
Related information:
“Using shared-memory parallelism (SMP)” on page 72

Related information in the XL C/C++ Compiler Reference

XLSMPOPTS

OpenMP environment variables for parallel processing

Built-in functions for parallel processing
Related external information

© Copyright IBM Corp. 1996, 2015 155

http://www.openmp.org

OpenMP Application Program Interface Language Specification, available at
http://www.openmp.org

Countable loops

Loops are considered to be countable if they take any of the following forms:

Countable for loop syntax with single statement

►► for (; exit_condition ; increment_expression)
iteration_variable

►

► statement ►◄

Countable for loop syntax with statement block

►► for (;)
iteration_variable expression

►

► { increment_expression }
declaration_list statement_list statement_list

►◄

Countable while loop syntax

►► while (exit_condition) ►

► { increment_expression }
declaration_list statement_list

►◄

Countable do while loop syntax

►► do { increment_expression } while (exit_condition)
declaration_list statement_list

►◄

The following definitions apply to these syntax diagrams:

iteration_variable
is a signed integer that has either automatic or register storage class, does not
have its address taken, and is not modified anywhere in the loop except in the
increment_expression.

exit_condition
takes the following form:

increment_variable <= expression
<
>=
>

where expression is a loop-invariant signed integer expression. expression cannot
reference external or static variables, pointers or pointer expressions, function
calls, or variables that have their address taken.

increment_expression
takes any of the following forms:
v ++iteration_variable

v --iteration_variable

156 XL C/C++: Optimization and Programming Guide

http://www.openmp.org
http://www.openmp.org

v iteration_variable++
v iteration_variable--
v iteration_variable += increment

v iteration_variable -= increment

v iteration_variable = iteration_variable + increment

v iteration_variable = increment + iteration_variable

v iteration_variable = iteration_variable - increment

where increment is a loop-invariant signed integer expression. The value of the
expression is known at run time and is not 0. increment cannot reference
external or static variables, pointers or pointer expressions, function calls, or
variables that have their address taken.

Enabling automatic parallelization
The compiler can automatically locate and parallelize all countable loops where
possible in your program code. A loop is considered to be countable if it has any
of the forms shown in “Countable loops” on page 156, and:
v There is no branching into or out of the loop.
v The increment_expression is not within a critical section.

In general, a countable loop is automatically parallelized only if all of the following
conditions are met:
v The order in which loop iterations start or end does not affect the results of the

program.
v The loop does not contain I/O operations.
v Floating point reductions inside the loop are not affected by round-off error,

unless the -qnostrict option is in effect.
v The -qnostrict_induction compiler option is in effect.
v The -qsmp=auto compiler option is in effect.
v The compiler is invoked with a threadsafe compiler invocation mode (those that

contain the _r suffix).

Using IBM SMP directives (C only)

Note: The pragma directive #pragma ibm schedule has been deprecated and
might be removed in a future release. You can use the corresponding OpenMP
directives or clauses to obtain the same behavior.

For detailed information about how to replace the deprecated pragma directives
with corresponding OpenMP directives, refer to "Deprecated directives" in the XL
C/C++ Compiler Reference.

IBM SMP directives exploit shared memory parallelism through the parallelization
of countable loops. A loop is considered to be countable if it has any of the forms
described in “Countable loops” on page 156. The XL C compiler provides pragma
directives that you can use to improve on automatic parallelization performed by
the compiler. Pragmas fall into two general categories:
1. Pragmas that give you explicit control over parallelization. Use these pragmas

to force or suppress parallelization of a loop (#pragma ibm sequential_loop),
apply specific parallelization algorithms to a loop (#pragma ibm schedule), and
synchronize access to shared variables using critical sections.

Chapter 13. Parallelizing your programs 157

2. Pragmas that let you give the compiler information on the characteristics of a
specific countable loop (#pragma ibm independent_calls, #pragma ibm
independent_loop, #pragma ibm iterations, #pragma ibm permutation). The
compiler uses this information to perform more efficient automatic
parallelization of the loop.

IBM SMP directive syntax

►► #pragma ibm pragma_name_and_args countable_loop ►◄

Pragma directives must appear immediately before the countable loop to which
they apply. More than one parallel processing pragma directive can be applied to a
countable loop. For example:
#pragma ibm independent_loop
#pragma ibm independent_calls
#pragma ibm schedule(static,5)
countable_loop

Some pragma directives are mutually exclusive of each other, for example, the
parallel_loop and sequential_loop directives. If mutually exclusive pragmas are
specified for the same loop, the pragma last specified applies to the loop.

Other pragmas, if specified repeatedly for a given loop, have an additive effect. For
example:
#pragma ibm permutation (a,b)
#pragma ibm permutation (c)

is equivalent to:
#pragma ibm permutation
(a,b,c)

For a pragma-by-pragma description of the IBM SMP directives, refer to Pragma
directives for parallel processing in the XL C/C++ Compiler Reference.

Related information in the XL C/C++ Compiler Reference

Pragma directives for parallel processing

Data sharing attribute rules
The rules of data sharing attributes determine the attributes of variables that are
referenced in parallel and task directives, and worksharing regions.

Data sharing attribute rules for variables referenced in a
construct

The data sharing attributes of variables that are referenced in a construct can be
classified into the following categories:
v Predetermined data sharing attributes
v Explicitly determined data sharing attributes
v Implicitly determined data sharing attributes

Specifying a variable in a firstprivate, lastprivate, or reduction clause of an
enclosed construct initiates an implicit reference to the variable in the enclosing
construct. Such implicit references also follow the data sharing attribute rules.

158 XL C/C++: Optimization and Programming Guide

Some variables and objects have predetermined data sharing attributes as follows:
v Variables that are specified in threadprivate directives are threadprivate.
v Variables with automatic storage duration that are declared in a scope inside the

construct are private.
v Objects with dynamic storage duration are shared.
v Static data members are shared.
v The loop iteration variables in the associated for loops of a for or parallel for

construct are private.
v Variables with const-qualified types are shared if they have no mutable member.
v For variables with static storage duration, if they are declared in a scope inside

the construct, they are shared.

Variables with predetermined data sharing attributes cannot be specified in data
sharing attribute clauses. However, in the following situations, specifying a
predetermined variable in a data sharing attribute clause is allowed and overrides
the predetermined data sharing attributes of the variable.
v The loop iteration variables in the associated for loops of a for or parallel for

construct can be specified in a private or lastprivate clause.
v For variables with const-qualified type, if they have no mutable member, they

can be specified in a firstprivate clause.

Variables that meet the following conditions have explicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables are specified in a data sharing attribute clause on the construct.

Variables that meet all the following conditions have implicitly determined data
sharing attributes:
v The variables are referenced in a construct.
v The variables do not have predetermined data sharing attributes.
v The variables are not specified in a data sharing attribute clause on the

construct.

For variables that have implicitly determined data sharing attributes, the rules are
as follows:
v In a parallel or task construct, the data sharing attributes of the variables are

determined by the default clause, if present.
v In a parallel construct, if no default clause is present, the variables are shared.
v For constructs other than task, if no default clause is present, the variables

inherit their data sharing attributes from the enclosing context.
v In a task construct, if no default clause is present, variables that are determined

to be shared in the enclosing context by all implicit tasks bound to the current
team are shared.

v In a task construct, if no default clause is present, variables whose data sharing
attributes are not determined by the rules above are firstprivate.

Data sharing attribute rules for variables referenced in a region
but not in a construct

The data sharing attributes of variables that are referenced in a region, but not in a
construct, are determined as follows:

Chapter 13. Parallelizing your programs 159

v If variables with static storage duration are declared in called routines in the
region, the variables are shared.

v Variables with const-qualified types are shared if they have no mutable member
and are declared in called routines.

v File-scope or namespace-scope variables referenced in called routines in the
region are shared unless they are specified in a threadprivate directive.

v Objects with dynamic storage duration are shared.
v Static data members are shared unless they are specified in a threadprivate

directive.
v The formal arguments of called routines in the region that are passed by

reference inherit the data sharing attributes of the associated actual arguments.
v Other variables declared in called routines in the region are private.

Using OpenMP directives
OpenMP directives exploit shared memory parallelism by defining various types of
parallel regions. Parallel regions can include both iterative and non-iterative
segments of program code.

The #pragma omp pragmas fall into these general categories:
1. The #pragma omp pragmas that let you define parallel regions in which work

is done by threads in parallel (#pragma omp parallel). Most of the OpenMP
directives either statically or dynamically bind to an enclosing parallel region.

2. The #pragma omp pragmas that let you define how work is distributed or
shared across the threads in a parallel region (#pragma omp sections, #pragma
omp for, #pragma omp single, #pragma omp task).

3. The #pragma omp pragmas that let you control synchronization among threads
(#pragma omp atomic, #pragma omp master, #pragma omp barrier, #pragma
omp critical, #pragma omp flush, #pragma omp ordered) .

4. The #pragma omp pragmas that let you define the scope of data visibility
across parallel regions within the same thread (#pragma omp threadprivate).

5. The #pragma omp pragmas for synchronization (#pragma omp taskwait,
#pragma omp barrier)

OpenMP directive syntax

►► ▼

,

#pragma omp pragma_name
clause

statement_block ►◄

Adding certain clauses to the #pragma omp pragmas can fine tune the behavior of
the parallel or work-sharing regions. For example, a num_threads clause can be
used to control a parallel region pragma.

The #pragma omp pragmas generally appear immediately before the section of
code to which they apply. The following example defines a parallel region in
which iterations of a for loop can run in parallel:

160 XL C/C++: Optimization and Programming Guide

#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++)

...
}

This example defines a parallel region in which two or more non-iterative sections
of program code can run in parallel:
#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

structured_block_1
...

#pragma omp section
structured_block_2

...
....

}
}

For a pragma-by-pragma description of the OpenMP directives, refer to Pragma
directives for parallel processing in the XL C/C++ Compiler Reference.

Related information in the XL C/C++ Compiler Reference

Pragma directives for parallel processing

OpenMP built-in functions

OpenMP environment variables for parallel processing

Shared and private variables in a parallel environment
Variables can have either shared or private context in a parallel environment.
Variables in shared context are visible to all threads running in associated parallel
regions. Variables in private context are hidden from other threads. Each thread
has its own private copy of the variable, and modifications made by a thread to its
copy are not visible to other threads.

The default context of a variable is determined by the following rules:
v Variables with static storage duration are shared.
v Dynamically allocated objects are shared.
v Variables with automatic storage duration that are declared in a parallel region

are private.
v Variables in heap allocated memory are shared. There can be only one shared

heap.
v All variables defined outside a parallel construct become shared when the

parallel region is encountered.
v Loop iteration variables are private within their loops. The value of the iteration

variable after the loop is the same as if the loop were run sequentially.
v Memory allocated within a parallel loop by the alloca function persists only for

the duration of one iteration of that loop, and is private for each thread.

The following code segments show examples of these default rules:

Chapter 13. Parallelizing your programs 161

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */
int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */
/* is accessible by all threads */
/* and cannot be privatized */

#pragma omp parallel firstprivate (p)
{

int b; /* private automatic */
static int s; /* shared static */

#pragma omp for
for (i =0;...) {

b = 1; /* b is still private here ! */
foo (i); /* i is private here because it */

/* is an iteration variable */
}

#pragma omp parallel
{

b = 1; /* b is shared here because it */
/* is another parallel region */

}
}

}

int E2; /*shared static */

void foo (int x) { /* x is private for the parallel */
/* region it was called from */

int c; /* the same */
... }

Some OpenMP clauses let you specify visibility context for selected data variables.
A brief summary of data scope attribute clauses are listed below:

Data scope
attribute clause

Description

private The private clause declares the variables in the list to be private to
each thread in a team.

firstprivate The firstprivate clause provides a superset of the functionality
provided by the private clause. The private variable is initialized by
the original value of the variable when the parallel construct is
encountered.

lastprivate The lastprivate clause provides a superset of the functionality
provided by the private clause. The private variable is updated after
the end of the parallel construct.

shared The shared clause declares the variables in the list to be shared among
all the threads in a team. All threads within a team access the same
storage area for shared variables.

reduction The reduction clause performs a reduction on the scalar variables that
appear in the list, with a specified operator.

default The default clause allows the user to affect the data-sharing attribute
of the variables appeared in the parallel construct.

162 XL C/C++: Optimization and Programming Guide

For more information, see the OpenMP directive descriptions in "Pragma directives
for parallel processing" in the XL C/C++ Compiler Reference. You can also refer to
the OpenMP Application Program Interface Language Specification, which is available
at http://www.openmp.org.

Related information in the XL C/C++ Compiler Reference

Pragma directives for parallel processing

Reduction operations in parallelized loops
The compiler can recognize and properly handle most reduction operations in a
loop during both automatic and explicit parallelization. In particular, it can handle
reduction statements that have either of the following forms:

►► variable = variable + expression
-
*
^
|
&

►◄

►► variable += expression
-=
*=
^=
|=
&=

►◄

where:

variable
is an identifier designating an automatic or register variable that does not have
its address taken and is not referenced anywhere else in the loop, including all
loops that are nested. For example, in the following code, only S in the nested
loop is recognized as a reduction:
int i,j, S=0;
for (i= 0 ;i < N; i++) {

S = S+ i;
for (j=0;j< M; j++) {

S = S + j;
}

}

expression
is any valid expression.

When using IBM directives, use critical sections to synchronize access to all
reduction variables not recognized by the compiler. OpenMP directives provide
you with mechanisms to specify reduction variables explictly.

Chapter 13. Parallelizing your programs 163

http://www.openmp.org

164 XL C/C++: Optimization and Programming Guide

Chapter 14. Selecting the standard allocation method to suit
performance (C++)

You can select the allocation method used by the standard allocator of the C++
Standard Library to suit the performance needs of the application. For instance, in
a non-threaded application you might want to use a pooled allocation strategy for
standard allocators. This tends to be faster than the classic allocator for allocating
small objects. However, there might be some instances when the classic allocator is
preferable, as in the case where an application provides its own fast versions of the
operator new() and operator delete() operators. In this case, the pooled
allocators might not increase the performance and will incur a greater memory
overhead.

To use the pooled std::allocator, do one of the following steps:
v On the command line, specify the option:

-D__IBM_ENABLE_POOLED_ALLOCATORS__=1

v In the source code, use the following line:
#define __IBM_ENABLE_POOLED_ALLOCATORS__ 1

To use the "classic", non-pooled std::allocator, do one of the following steps:
v On the command line, specify the option:

-D__IBM_ENABLE_CLASSIC_ALLOCATORS__=1

v In the source code, use the following line:
#define __IBM_ENABLE_CLASSIC_ALLOCATORS__ 1

In all applications, threaded and non-threaded, if no macro is specified, the
"classic", non-pooled allocators are used by default; they have no effect on
performance. In applications that link to libpthreads.a, the "classic", non-pooled
allocators are always used, and the macro
__IBM_ENABLE_POOLED_ALLOCATORS__ has no effect. Pooled allocators are
not thread-safe and are not available in threaded programs.

Note: All compilation units in a program, including those located in a static or
shared library, must be compiled with the same allocation strategy macro. If a
program is composed of a mix of object files where some objects have been
compiled with __IBM_ENABLE_POOLED_ALLOCATORS__, while other objects
have been compiled with __IBM_ENABLE_CLASSIC_ALLOCATORS__ (this
includes cases where neither macro was defined, and so the default "classic" setting
was selected), unexpected behavior, including program crashes, can occur.

Related information in the Standard C++ Library Reference

<memory> allocator

© Copyright IBM Corp. 1996, 2015 165

166 XL C/C++: Optimization and Programming Guide

Chapter 15. Ensuring thread safety (C++)

If you are building multithreaded C++ applications, there are some thread-safety
issues that you need to consider when using objects defined in the C++ Standard
Template Library or in the stream classes.

Ensuring thread safety of template objects
The following headers in the Standard Template Library are reentrant:
v algorithm
v deque
v functional
v iterator
v list
v map
v memory
v numeric
v queue
v set
v stack
v string
v unordered_map
v unordered_set
v utility
v valarray
v vector

The XL C/C++ compiler supports reentrancy to the extent that you can safely read
a single object from multiple threads simultaneously. This level of reentrancy is
intrinsic. No locks or other globally allocated resources are used.

However, the headers are not reentrant in these cases:
v A single container object is written by multiple threads simultaneously.
v A single container object is written in one thread, while being read in one or

more other threads.

If multiple threads write to a single container, or a single thread writes to a single
container while other threads are reading from that container, it is your
responsibility to serialize access to this container. If multiple threads read from a
single container, and no processes write to the container, no serialization is
necessary.

Ensuring thread safety of stream objects
All classes declared in the iostream standard library are reentrant, and use a single
lock to ensure thread-safety while preventing deadlock from occurring. However,
on multiprocessor machines, there is a chance, although rare, that livelock can
occur when two different threads attempt to concurrently access a shared stream
object, or when a stream object holds a lock while waiting for input (for example,
from the keyboard). If you want to avoid the possibility of livelock, you can
disable locking in input stream objects, output stream objects, or both, by using the
following macros at compile time:

© Copyright IBM Corp. 1996, 2015 167

__NOLOCK_ON_INPUT
Disables input locking.

__NOLOCK_ON_OUTPUT
Disables output locking.

To use one or both of these macros, prefix the macro name with the -D option on
the compilation command line. For example:
xlC_r -D__NOLOCK_ON_INPUT -D__NOLOCK_ON_OUTPUT a.C

Alternatively, you can disable locking in input stream objects, output stream
objects, or both, by using the following environment variables at run time:

XLCPP_NOLOCK_ON_INPUT
Disables input locking.

XLCPP_NOLOCK_ON_OUTPUT
Disables output locking.

For example, you can use the following command to disable locking in input
stream objects:
export XLCPP_NOLOCK_ON_INPUT=1

It is recommended that you use the environment variables to disable locking in
stream objects.

However, if you disable locking on input or output objects, you must provide the
appropriate locking mechanisms in your source code if stream objects are shared
between threads. If you do not, the behavior is undefined, with the possibility of
data corruption or application crash.

Note: If you use OpenMP directives or the -qsmp option to automatically
parallelize code that shares input/output stream objects, in conjunction with the
lock-disabling macros, you run the same risks as with code that implements
Pthreads or other multithreading constructs, and you will need to synchronize the
threads accordingly.

Related information in the XL C/C++ Compiler Reference

-D

-qsmp

168 XL C/C++: Optimization and Programming Guide

Chapter 16. Memory debug library functions

This appendix contains reference information about the XL C/C++ compiler
memory debug library functions, which are extensions of the standard C memory
management functions. The appendix is divided into two sections:
v “Memory allocation debug functions” describes the debug versions of the

standard library functions for allocating heap memory.
v “String handling debug functions” on page 178 describes the debug versions of

the standard library functions for manipulating strings.

Notes:

v The memory debug library supports only extensions for the memory
management functions that are described in this document.

v The compiler supports the memory allocation debug functions, but IBM has no
plans to change or enhance these functions, and these functions will be removed
in a future release. If you use these functions to debug memory problems in
your programs, you can migrate to the AIX debug malloc tool to achieve
equivalent functionality. For details of the AIX debug malloc tool, see
http://publib16.boulder.ibm.com/pseries/index.htm.

To use these debug versions, you can do either of the following operations:
v In your source code, prefix any of the default or user-defined-heap memory

management functions with _debug_.
v If you do not want to make changes to the source code, compile with the

-qheapdebug option. This option maps all calls to memory management
functions to their debug version counterparts. To prevent a call from being
mapped, parenthesize the function name.

All of the examples provided in this appendix assume compilation with the
-qheapdebug option.

Related information in the XL C/C++ Compiler Reference

-qheapdebug

Memory allocation debug functions
This section describes the debug versions of standard and user-created heap
memory allocation functions. All of these functions automatically make a call to
_heap_check or _uheap_check to check the validity of the heap. You can then use
the _dump_allocated or _dump_allocated_delta functions to print the information
returned by the heap-checking functions.
Related information:
“Functions for debugging memory heaps” on page 37

_debug_calloc — Allocate and initialize memory
Format
#include <stdlib.h> /* also in <malloc.h> */
void *_debug_calloc(size_t num, size_t size, const char *file, size_t line);

© Copyright IBM Corp. 1996, 2015 169

http://publib16.boulder.ibm.com/pseries/index.htm

Purpose

This is the debug version of calloc. Like calloc, it allocates memory from the
default heap for an array of num elements, each of length size bytes. It then
initializes all bits of each element to 0. In addition, _debug_calloc makes an
implicit call to _heap_check, and stores the name of the file file and the line number
line where the storage is allocated.

Return values

Returns a pointer to the reserved space. If not enough memory is available, or if
num or size is 0, returns NULL.

Examples

This example reserves storage of 100 bytes. It then attempts to write to storage that
was not allocated. When _debug_calloc is called again, _heap_check detects the
error, generates several messages, and stops the program.
/* _debug_calloc.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)calloc(1, 100))) {
puts("Could not allocate memory block.");
exit(EXIT_FAILURE);

}
memset(ptr1, ’a’, 105); /* overwrites storage that was not allocated */
ptr2 = (char*)calloc(2, 20); /* this call to calloc invokes _heap_check */
puts("_debug_calloc did not detect that a memory block was overwritten.");
return 0;

}

The output is similar to:
1546-503 End of allocated object 0x2001D9F0 was overwritten at 0x2001DA54.
1546-514 The first eight bytes of the object (in hex) are: 6161616161616161.
1546-519 This object was (re)allocated at line 10 in _debug_calloc.c.

_debug_ucalloc@AF53_46 + 6C
_debug_ucalloc_init + 44

_debug_calloc + 64
main + 28

1546-512 Heap state was valid at line 10 in _debug_calloc.c.
_int_debug_umalloc + 54

_debug_ucalloc@AF53_46 + 6C
_debug_ucalloc_init + 44

_debug_calloc + 64
main + 28

1546-511 Heap error detected at line 14 in _debug_calloc.c.
1546-522 Traceback:

d0c017a4 = _debug_memset + 0x50
100003ec = main + 0x78

_debug_free — Free allocated memory
Format
#include <stdlib.h> /* also in <malloc.h> */
void _debug_free(void *ptr, const char *file, size_t line);

170 XL C/C++: Optimization and Programming Guide

Purpose

This is the debug version of free. Like free, it frees the block of memory pointed
to by ptr. _debug_free makes an implicit call to the _heap_check function, and
stores the file name file and the line number line where the memory is freed.

Because _debug_free always checks the type of heap from which the memory was
allocated, you can use this function to free memory blocks allocated by the regular,
heap-specific, or debug versions of the memory management functions. However,
if the memory was not allocated by the memory management functions, or was
previously freed, _debug_free generates an error message and the program ends.

Return values

There is no return value.

Examples

This example reserves two blocks, one of 10 bytes and the other of 20 bytes. It then
frees the first block and attempts to overwrite the freed storage. When _debug_free
is called a second time, _heap_check detects the error, prints out several messages,
and stops the program.
/* _debug_free.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(10)) || NULL == (ptr2 = (char*)malloc(20))) {
puts("Could not allocate memory block.");
exit(EXIT_FAILURE);

}
free(ptr1);
memset(ptr1, ’a’, 5); /* overwrites storage that has been freed */
free(ptr2); /* this call to free invokes _heap_check */
puts("_debug_free did not detect that a freed memory block was overwritten.");
return 0;

}

The output is similar to:
1546-507 Free heap was overwritten at 0x2001DA10.
1546-512 Heap state was valid at line 14 in _debug_free.c.

_debug_ufree + CC
_debug_free + 10

main + 8C
1546-511 Heap error detected at line 15 in _debug_free.c.
1546-522 Traceback:

d0c017a4 = _debug_memset + 0x50
10000424 = main + 0xB0

_debug_heapmin — Free unused memory in the default heap
Format
#include <stdlib.h> /* also in <malloc.h> */
int _debug_heapmin(const char *file, size_t line);

Chapter 16. Memory debug library functions 171

Purpose

This is the debug version of _heapmin. Like _heapmin, it returns all unused memory
from the default runtime heap to the operating system. In addition,
_debug_heapmin makes an implicit call to _heap_check, and stores the file name file
and the line number line where the memory is returned.

Return values

If successful, returns 0; otherwise, returns -1.

Examples

This example allocates 10000 bytes of storage, changes the storage size to 10 bytes,
and then uses _debug_heapmin to return the unused memory to the operating
system. The program then attempts to overwrite memory that was not allocated.
When _debug_heapmin is called again, _heap_check detects the error, generates
several messages, and stops the program.
/* _debug_heapmin.c */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *ptr;

/* Allocate a large object from the system */
if (NULL == (ptr = (char*)malloc(100000))) {

puts("Could not allocate memory block.");
exit(EXIT_FAILURE);

}
ptr = (char*)realloc(ptr, 10);
_heapmin(); /* No allocation problems to detect */

(ptr - 1) = ’a’; / Overwrite memory that was not allocated */
_heapmin(); /* This call to _heapmin invokes _heap_check */

puts("_debug_heapmin did not detect that a non-allocated memory block"
"was overwritten.");

return 0;
}

The output is similar to:
1546-510 Header information of object 0x200360E0 was overwritten at 0x200360DC.
1546-514 The first eight bytes of the object (in hex) are: 4300000000000000.
1546-519 This object was (re)allocated at line 14 in _debug_heapmin.c.

_debug_urealloc + 128
_debug_realloc + 18

main + 6C
1546-512 Heap state was valid at line 15 in _debug_heapmin.c.

_debug_uheapmin + 50
_debug_heapmin + 54

main + 80
1546-511 Heap error detected at line 18 in _debug_heapmin.c.
1546-522 Traceback:

d119522c = _debug_uheapmin + 0x58
d0c010d0 = _debug_heapmin + 0x5C
10000418 = main + 0xA4

172 XL C/C++: Optimization and Programming Guide

_debug_malloc — Allocate memory
Format
#include <stdlib.h> /* also in <malloc.h> */
void *_debug_malloc(size_t size, const char *file, size_t line);

Purpose

This is the debug version of malloc. Like malloc, it reserves a block of storage of
size bytes from the default heap. _debug_malloc also sets all the memory it allocates
to 0xAA, so you can easily locate instances where your program uses the data in
the memory without initializing it first. In addition, _debug_malloc makes an
implicit call to _heap_check, and stores the file name file and the line number line
where the storage is allocated.

Return values

Returns a pointer to the reserved space. If not enough memory is available or if
size is 0, returns NULL.

Examples

This example allocates 100 bytes of storage. It then attempts to write to storage
that was not allocated. When _debug_malloc is called again, _heap_check detects
the error, generates several messages, and stops the program.
/* _debug_malloc.c */
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char *ptr1, *ptr2;

if (NULL == (ptr1 = (char*)malloc(100))) {
puts("Could not allocate memory block.");
exit(EXIT_FAILURE);

}
(ptr1 - 1) = ’a’; / overwrites storage that was not allocated */
ptr2 = (char*)malloc(10); /* this call to malloc invokes _heap_check */
puts("_debug_malloc did not detect that a memory block was overwritten.");
return 0;

}

The output is similar to:
1546-510 Header information of object 0x2001D9C0 was overwritten at 0x2001D9BC.
1546-514 The first eight bytes of the object (in hex) are: 4300000000000000.
1546-519 This object was (re)allocated at line 9 in _debug_malloc.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-512 Heap state was valid at line 9 in _debug_malloc.c.
_int_debug_umalloc + 54

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-511 Heap error detected at line 14 in _debug_malloc.c.
1546-522 Traceback:

d1195358 = _debug_umalloc + 0x84
d0c01258 = _debug_malloc + 0x64
100003ec = main + 0x78

Chapter 16. Memory debug library functions 173

_debug_ucalloc — Reserve and initialize memory from a
user-created heap

Format
#include <umalloc.h>
void *_debug_ucalloc(Heap_t heap, size_t num, size_t size, const char *file,

size_t line);

Purpose

This is the debug version of _ucalloc. Like _ucalloc, it allocates memory from the
heap you specify for an array of num elements, each of length size bytes. It then
initializes all bits of each element to 0. In addition, _debug_ucalloc makes an
implicit call to _uheap_check, and stores the name of the file file and the line
number line where the storage is allocated.

If the heap does not have enough memory for the request, _debug_ucalloc calls the
heap-expanding function that you specify when you create the heap with _ucreate.

Note: Passing _debug_ucalloc a heap that is not valid results in undefined
behavior.

Return values

Returns a pointer to the reserved space. If size or num was specified as zero, or if
your heap-expanding function cannot provide enough memory, returns NULL.

Examples

This example creates a user heap and allocates memory from it with
_debug_ucalloc. It then attempts to write to memory that was not allocated. When
_debug_free is called, _uheap_check detects the error, generates several messages,
and stops the program.
/* _debug_ucalloc.c */
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

if (NULL == (ptr = (char*)_ucalloc(myheap, 100, 1))) {
puts("Cannot allocate memory from user heap.");
exit(EXIT_FAILURE);

}
memset(ptr, ’x’, 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

}

The output is similar to :
1546-503 End of allocated object 0x2001DA00 was overwritten at 0x2001DA64.
1546-514 The first eight bytes of the object (in hex) are: 7878787878787878.
1546-519 This object was (re)allocated at line 15 in _debug_ucalloc.c.

_debug_ucalloc@AF53_46 + 6C
main + 38

174 XL C/C++: Optimization and Programming Guide

1546-512 Heap state was valid at line 15 in _debug_ucalloc.c.
_int_debug_umalloc + 54

_debug_ucalloc@AF53_46 + 6C
main + 38

1546-511 Heap error detected at line 20 in _debug_ucalloc.c.
1546-522 Traceback:

d11954e8 = _debug_ufree + 0xD4
d0c0112c = _debug_free + 0x18
10000410 = main + 0x9C

_debug_uheapmin — Free unused memory in a user-created
heap

Format
#include <umalloc.h>
int _debug_uheapmin(Heap_t heap, const char *file, size_t line);

Purpose

This is the debug version of _uheapmin. Like _uheapmin, it returns all unused
memory blocks from the specified heap to the operating system.

To return the memory, _debug_uheapmin calls the heap-shrinking function you
supply when you create the heap with _ucreate. If you do not supply a
heap-shrinking function, _debug_uheapmin has no effect and returns 0.

In addition, _debug_uheapmin makes an implicit call to _uheap_check to validate the
heap.

Return values

If successful, returns 0. A nonzero return value indicates failure. If the heap
specified is not valid, generates an error message with the file name and line
number in which the call to _debug_uheapmin was made.

Examples

This example creates a heap and allocates memory from it, then uses
_debug_heapmin to release the memory.
/* _debug_uheapmin.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <umalloc.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

/* Allocate a large object */
if (NULL == (ptr = (char*)_umalloc(myheap, 60000))) {

puts("Cannot allocate memory from user heap.\n");
exit(EXIT_FAILURE);

}
memset(ptr, ’x’, 60000);
free(ptr);

Chapter 16. Memory debug library functions 175

/* _debug_uheapmin will attempt to return the freed object to the system */
if (0 != _uheapmin(myheap)) {

puts("_debug_uheapmin returns failed.\n");
exit(EXIT_FAILURE);

}
return 0;

}

_debug_umalloc — Reserve memory blocks from a
user-created heap

Format
#include <umalloc.h>
void *_debug_umalloc(Heap_t heap, size_t size, const char *file, size_t line);

Purpose

This is the debug version of _umalloc. Like _umalloc, it reserves storage space from
the heap you specify for a block of size bytes. _debug_umalloc also sets all the
memory it allocates to 0xAA, so you can easily locate instances where your
program uses the data in the memory without initializing it first.

In addition, _debug_umalloc makes an implicit call to _uheap_check, and stores the
name of the file file and the line number line where the storage is allocated.

If the heap does not have enough memory for the request, _debug_umalloc calls the
heap-expanding function that you specify when you create the heap with _ucreate.

Note: Passing _debug_umalloc a heap that is not valid results in undefined
behavior.

Return values

Returns a pointer to the reserved space. If size was specified as zero, or your
heap-expanding function cannot provide enough memory, returns NULL.

Examples

This example creates a heap myheap and uses _debug_umalloc to allocate 100 bytes
from it. It then attempts to overwrite storage that was not allocated. The call to
_debug_free invokes _uheap_check, which detects the error, generates messages,
and ends the program.
/* _debug_umalloc.c */
#include <stdlib.h>
#include <stdio.h>
#include <umalloc.h>
#include <string.h>

int main(void)
{

Heap_t myheap;
char *ptr;

/* Use default heap as user heap */
myheap = _udefault(NULL);

if (NULL == (ptr = (char*)_umalloc(myheap, 100))) {
puts("Cannot allocate memory from user heap.\n");
exit(EXIT_FAILURE);

}

176 XL C/C++: Optimization and Programming Guide

memset(ptr, ’x’, 105); /* Overwrites storage that was not allocated */
free(ptr);
return 0;

}

The output is similar to :
1546-503 End of allocated object 0x2001DA00 was overwritten at 0x2001DA64.
1546-514 The first eight bytes of the object (in hex) are: 7878787878787878.
1546-519 This object was (re)allocated at line 15 in _debug_umalloc.c.

_debug_umalloc + D0
main + 34

1546-512 Heap state was valid at line 15 in _debug_umalloc.c.
_int_debug_umalloc + 54

_debug_umalloc + D0
main + 34

1546-511 Heap error detected at line 20 in _debug_umalloc.c.
1546-522 Traceback:

d11954e8 = _debug_ufree + 0xD4
d0c0112c = _debug_free + 0x18
1000040c = main + 0x98

_debug_realloc — Reallocate memory block
Format
#include <stdlib.h> /* also in <malloc.h> */
void *_debug_realloc(void *ptr, size_t size, const char *file, size_t line);

Purpose

This is the debug version of realloc. Like realloc, it reallocates the block of
memory pointed to by ptr to a new size, specified in bytes. It also sets any new
memory it allocates to 0xAA, so you can easily locate instances where your
program tries to use the data in that memory without initializing it first. In
addition, _debug_realloc makes an implicit call to _heap_check, and stores the file
name file and the line number line where the storage is reallocated.

If ptr is NULL, _debug_realloc behaves like _debug_malloc (or malloc) and
allocates the block of memory.

Because _debug_realloc always checks to determine the heap from which the
memory was allocated, you can use _debug_realloc to reallocate memory blocks
allocated by the regular or debug versions of the memory management functions.
However, if the memory was not allocated by the memory management functions,
or was previously freed, _debug_realloc generates an error message and the
program ends.

Return values

Returns a pointer to the reallocated memory block. The ptr argument is not the
same as the return value; _debug_realloc always changes the memory location to
help you locate references to the memory that were not freed before the memory
was reallocated.

If size is 0, returns NULL. If not enough memory is available to expand the block
to the given size, the original block is unchanged and NULL is returned.

Chapter 16. Memory debug library functions 177

Examples

This example uses _debug_realloc to allocate 100 bytes of storage. It then attempts
to write to storage that was not allocated. When _debug_realloc is called again,
_heap_check detects the error, generates several messages, and stops the program.
/* _debug_realloc.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(void)
{

char *ptr;

if (NULL == (ptr = (char*)realloc(NULL, 100))) {
puts("Could not allocate memory block.");
exit(EXIT_FAILURE);

}
memset(ptr, ’a’, 105); /* overwrites storage that was not allocated */
ptr = (char*)realloc(ptr, 200); /* realloc invokes _heap_check */
puts("_debug_realloc did not detect that a memory block was overwritten.");
return 0;

}

The output is similar to:
1546-503 End of allocated object 0x2001D9F0 was overwritten at 0x2001DA54.
1546-514 The first eight bytes of the object (in hex) are: 6161616161616161.
1546-519 This object was (re)allocated at line 10 in _debug_realloc.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 28

1546-512 Heap state was valid at line 10 in _debug_realloc.c.
_int_debug_umalloc + 54

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 28

1546-511 Heap error detected at line 14 in _debug_realloc.c.
1546-522 Traceback:

d0c017a4 = _debug_memset + 0x50
100003ec = main + 0x78

String handling debug functions
This section describes the debug versions of the string manipulation and memory
functions of the standard C string handling library. Note that these functions check
only the current default heap; they do not check all heaps in applications that use
multiple user-created heaps.

_debug_memcpy — Copy bytes
Format
#include <string.h>
void *_debug_memcpy(void *dest, const void *src, size_t count, const char *file,

size_t line);

178 XL C/C++: Optimization and Programming Guide

Purpose

This is the debug version of memcpy. Like memcpy, it copies count bytes of src to dest,
where the behavior is undefined if copying takes place between objects that
overlap.

_debug_memcpy validates the heap after copying the bytes to the target location, and
performs this check only when the target is within a heap. _debug_memcpy makes
an implicit call to _heap_check. If _debug_memcpy detects a corrupted heap when it
makes a call to _heap_check, _debug_memcpy reports the file name file and line
number line in a message.

Return values

Returns a pointer to dest.

Examples

This example contains a programming error. On the call to memcpy used to initialize
the target location, the count is more than the size of the target object, and the
memcpy operation copies bytes past the end of the allocated object.
/* _debug_memcpy.c */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define MAX_LEN 10

int main(void)
{

char *source, *target;

target = (char*)malloc(MAX_LEN);
memcpy(target, "This is the target string", 11);

printf("Target is \"%s\"\n", target);
return 0;

}

The output is similar to:
1546-503 End of allocated object 0x2001D9B0 was overwritten at 0x2001D9BA.
1546-514 The first eight bytes of the object (in hex) are: 5468697320697320.
1546-519 This object was (re)allocated at line 12 in _debug_memcpy.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-512 Heap state was valid at line 12 in _debug_memcpy.c.
_int_debug_umalloc + 54

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-511 Heap error detected at line 13 in _debug_memcpy.c.
1546-522 Traceback:

d0c018a4 = _debug_memcpy + 0x50
100003bc = main + 0x48

Chapter 16. Memory debug library functions 179

_debug_memset — Set bytes to value
Format
#include <string.h>
void *_debug_memset(void *dest, int c, size_t count, const char *file, size_t line);

Purpose

This is the debug version of memset. Like memset, it sets the first count bytes of dest
to the value c. The value of c is converted to an unsigned character.

_debug_memset validates the heap after setting the bytes, and performs this check
only when the target is within a heap. _debug_memset makes an implicit call to
_heap_check. If _debug_memset detects a corrupted heap when it makes a call to
_heap_check, _debug_memset reports the file name file and line number line in a
message.

Return values

Returns a pointer to dest.

Examples

This example contains a programming error. The invocation of memset that puts 'B'
in the buffer specifies the wrong count, and stores bytes past the end of the buffer.
/* _debug_memset.c */
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#define BUF_SIZE 20

int main(void)
{

char *buffer, *buffer2;
char *string;

buffer = (char*)calloc(1, BUF_SIZE+1); /* +1 for null-terminator */

string = (char*)memset(buffer, ’A’, 10);
printf("\nBuffer contents: %s\n", string);
memset(buffer+10, ’B’, 20);

return 0;

}

The output is similar to:
Buffer contents: AAAAAAAAAA
1546-503 End of allocated object 0x2001D9A0 was overwritten at 0x2001D9B5.
1546-514 The first eight bytes of the object (in hex) are: 4141414141414141.
1546-519 This object was (re)allocated at line 13 in _debug_memset.c.

_debug_ucalloc@AF53_46 + 6C
_debug_ucalloc_init + 44

_debug_calloc + 64
main + 28

1546-512 Heap state was valid at line 15 in _debug_memset.c.
_chk_if_heap + E8
_debug_memset + 48

main + 44

180 XL C/C++: Optimization and Programming Guide

1546-511 Heap error detected at line 17 in _debug_memset.c.
1546-522 Traceback:

d0c017a4 = _debug_memset + 0x50
100003f4 = main + 0x80

_debug_strcat — Concatenate strings
Format
#include <string.h>
char *_debug_strcat(char *string1, const char *string2, const char *file,

size_t file);

Purpose

This is the debug version of strcat. Like strcat, it concatenates string2 to string1
and ends the resulting string with the null character.

_debug_strcat validates the heap after concatenating the strings, and performs this
check only when the target is within a heap. _debug_strcat makes an implicit call
to _heap_check. If _debug_strcat detects a corrupted heap when it makes a call to
_heap_check, _debug_strcat reports the file name file and line number file in a
message.

Return values

Returns a pointer to the concatenated string string1.

Examples

This example contains a programming error. The buffer1 object is not large
enough to store the result after the string " program" is concatenated.
/* _debug_strcat.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, "computer");

ptr = strcat(buffer1, " program");
printf("buffer1 = %s\n", buffer1);
return 0;

}

The output is similar to:
1546-503 End of allocated object 0x2001D9D0 was overwritten at 0x2001D9DA.
1546-514 The first eight bytes of the object (in hex) are: 636F6D7075746572.
1546-519 This object was (re)allocated at line 13 in _debug_strcat.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-512 Heap state was valid at line 14 in _debug_strcat.c.
_chk_if_heap + E8

Chapter 16. Memory debug library functions 181

_debug_strcpy + 50
main + 3C

1546-511 Heap error detected at line 16 in _debug_strcat.c.
1546-522 Traceback:

d0c01630 = _debug_strcat + 0x9C
100003d0 = main + 0x5C

_debug_strcpy — Copy strings
Format
#include <string.h>
char *_debug_strcpy(char *string1, const char *string2, const char *file,

size_t line);

Purpose

This is the debug version of strcpy. Like strcpy, it copies string2, including the
ending null character, to the location specified by string1.

_debug_strcpy validates the heap after copying the string to the target location,
and performs this check only when the target is within a heap. _debug_strcpy
makes an implicit call to _heap_check. If _debug_strcpy detects a corrupted heap
when it makes a call to _heap_check, _debug_strcpy reports the file name file and
line number line in a message.

Return values

Returns a pointer to the copied string string1.

Examples

This example contains a programming error. The source string is too long for the
destination buffer, and the strcpy operation damages the heap.
/* _debug_strcpy.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *source = "1234567890123456789";
char *destination;
char *return_string;

destination = (char*)malloc(SIZE);
strcpy(destination, "abcdefg"),

printf("destination is originally = ’%s’\n", destination);
return_string = strcpy(destination, source);
printf("After strcpy, destination becomes ’%s’\n\n", destination);
return 0;

}

The output is similar to:
destination is originally = ’abcdefg’
1546-503 End of allocated object 0x2001D9F0 was overwritten at 0x2001D9FA.
1546-514 The first eight bytes of the object (in hex) are: 3132333435363738.
1546-519 This object was (re)allocated at line 14 in _debug_strcpy.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 2C

182 XL C/C++: Optimization and Programming Guide

1546-512 Heap state was valid at line 15 in _debug_strcpy.c.
_chk_if_heap + E8
_debug_strcpy + 50

main + 44
1546-511 Heap error detected at line 18 in _debug_strcpy.c.
1546-522 Traceback:

d0c0170c = _debug_strcpy + 0x58
100003e8 = main + 0x74

_debug_strncat — Concatenate strings
Format
#include <string.h>
char *_debug_strncat(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Purpose

This is the debug version of strncat. Like strncat, it appends the first count
characters of string2 to string1 and ends the resulting string with a null character
(\0). If count is greater than the length of string2, the length of string2 is used in
place of count.

_debug_strncat validates the heap after appending the characters, and performs
this check only when the target is within a heap. _debug_strncat makes an implicit
call to _heap_check. If _debug_strncat detects a corrupted heap when it makes a
call to _heap_check, _debug_strncat reports the file name file and line number line
in a message.

Return values

Returns a pointer to the joined string string1.

Examples

This example contains a programming error. The buffer1 object is not large
enough to store the result after eight characters from the string " programming" are
concatenated.
/* _debug_strncat.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *buffer1;
char *ptr;

buffer1 = (char*)malloc(SIZE);
strcpy(buffer1, "computer");

/* Call strncat with buffer1 and " programming" */

ptr = strncat(buffer1, " programming", 8);
printf("strncat: buffer1 = \"%s\"\n", buffer1);
return 0;

}

The output is similar to:
1546-503 End of allocated object 0x2001D9E0 was overwritten at 0x2001D9EA.
1546-514 The first eight bytes of the object (in hex) are: 636F6D7075746572.
1546-519 This object was (re)allocated at line 13 in _debug_strncat.c.

Chapter 16. Memory debug library functions 183

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 24

1546-512 Heap state was valid at line 14 in _debug_strncat.c.
_chk_if_heap + E8
_debug_strcpy + 50

main + 3C
1546-511 Heap error detected at line 18 in _debug_strncat.c.
1546-522 Traceback:

d0c01518 = _debug_strncat + 0xC4
100003d4 = main + 0x60

_debug_strncpy — Copy strings
Format
#include <string.h>
char *_debug_strncpy(char *string1, const char *string2, size_t count,

const char *file, size_t line);

Purpose

This is the debug version of strncpy. Like strncpy, it copies count characters of
string2 to string1. If count is less than or equal to the length of string2, a null
character (\0) is not appended to the copied string. If count is greater than the
length of string2, the string1 result is padded with null characters (\0) up to length
count.

_debug_strncpy validates the heap after copying the strings to the target location,
and performs this check only when the target is within a heap. _debug_strncpy
makes an implicit call to _heap_check. If _debug_strncpy detects a corrupted heap
when it makes a call to _heap_check, _debug_strncpy reports the file name file and
line number line in a message.

Return values

Returns a pointer to string1.

Examples

This example contains a programming error. The source string is too long for the
destination buffer, and the strncpy operation damages the heap.
/* _debug_strncpy.c */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SIZE 10

int main(void)
{

char *source = "1234567890123456789";
char *destination;
char *return_string;
int index = 15;

destination = (char*)malloc(SIZE);
strcpy(destination, "abcdefg"),

printf("destination is originally = ’%s’\n", destination);
return_string = strncpy(destination, source, index);
printf("After strncpy, destination becomes ’%s’\n\n", destination);
return 0;

}

184 XL C/C++: Optimization and Programming Guide

The output is similar to:
destination is originally = ’abcdefg’
1546-503 End of allocated object 0x2001DA10 was overwritten at 0x2001DA1A.
1546-514 The first eight bytes of the object (in hex) are: 3132333435363738.
1546-519 This object was (re)allocated at line 15 in _debug_strncpy.c.

_debug_umalloc + D0
_debug_umalloc_init + 3C

_debug_malloc + 5C
main + 34

1546-512 Heap state was valid at line 16 in _debug_strncpy.c.
_chk_if_heap + E8
_debug_strcpy + 50

main + 4C
1546-511 Heap error detected at line 19 in _debug_strncpy.c.
1546-522 Traceback:

d0c0137c = _debug_strncpy + 0x48
100003f4 = main + 0x80

Chapter 16. Memory debug library functions 185

186 XL C/C++: Optimization and Programming Guide

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C/C++ for AIX.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 187

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

188 XL C/C++: Optimization and Programming Guide

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 189

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

190 XL C/C++: Optimization and Programming Guide

Index

Special characters
__align type qualifier 19
-O0 62
-O2 63
-O3 65

trade-offs 66
-O4 66

trade-offs 67
-O5 67

trade-offs 68
-q32 1, 68
-q64 1, 68
-qalign 13
-qarch 68, 69
-qcache 66, 68, 69
-qfloat 25, 27

IEEE conformance 24
multiply-add operations 24

-qflttrap 27
-qfunctrace 108
-qheapdebug 36, 169
-qhot 70
-qipa 66, 68, 74

IPA process 67
-qlistfmt 90
-qlongdouble

32-bit and 64-bit precision 23
corresponding Fortran types 8

-qmkshrobj 41
-qnofunctrace 108
-qpdf1, -qpdf2 77
-qpriority 45
-qsmp 72, 155, 157
-qstrict 25, 66
-qtempinc 112
-qtemplaterecompile 117
-qtemplateregistry 112
-qtune 68, 69
-qwarn64 1
-W 47
-y 25
#pragma nofunctrace 108

Numerics
64-bit mode 4

alignment 4
bit-shifting 3
data types 1
Fortran 4
long constants 2
long types 2
optimization 107
pointers 3

A
advanced optimization 64
aggregate

alignment 4, 13, 15

aggregate (continued)
Fortran 10

aligned attribute 19
alignment 4, 13

bit-fields 18
modes 13
modifiers 19

architecture
optimization 68

arrays, Fortran 10
attribute

aligned 19
packed 19

B
basic example, described xii
basic optimization 62
bit-field 18

alignment 18
bit-shifting 3
BLAS library 150

C
C++11

delegating constructors 118
explicit instantiation

declarations 112, 117
rvalue references 119
target constructors 118
variadic templates 112

c++filt utility 55
cloning, function 68, 74
constants

folding 25
long types 2
rounding 25

D
data scoping rules 158
data sharing attribute rules 158
data types

32-bit and 64-bit modes 1
64-bit mode 1
Fortran 4, 8
long 2
size and alignment 13

debugging 95
heap memory 29, 169
string handling functions 178

detecting errors 96
dynamic library 41
dynamic loading 50
dynamic memory allocation 29, 169

E
environment variable

HD_FILL 39
HD_STACK 40
OBJECT_MODE 1

errors, floating-point 27
exceptions, floating-point 27
export list 41

F
floating-point

exceptions 27
folding 25
IEEE conformance 24
range and precision 23
rounding 25

folding, floating-point 25
Fortran

64-bit mode 4
aggregates 10
arrays 10
data types 4, 8
function calls 11
function pointers 11
identifiers 7

function calls
Fortran 11
optimizing 103

function cloning 68, 74
function pointers, Fortran 11

H
hardware optimization 68
HD_FILL environment variable 39
HD_STACK environment variable 40
heap memory 29, 169

I
IBM SMP 163
IBM SMP directives 157
IEEE conformance 24
initialization order of C++ static

objects 45
input/output

floating-point rounding 26
optimizing 103
thread safety 167

instantiating templates 112
interlanguage calls 11
interprocedural analysis (IPA) 74

L
libmass library 138
libmassv library 140

© Copyright IBM Corp. 1996, 2015 191

library
BLAS 150
MASS 137
scalar 138
shared (dynamic) 41
static 41
vector 140

linear algebra functions 150
long constants, 64-bit mode 2
long data type, 64-bit mode 2
loop optimization 70, 155

M
mangled names 55
marking variables as local or

imported 87
MASS libraries 137

scalar functions 138
vector functions 140

matrix multiplication functions 150
memory

allocation 29, 169
debugging 29, 169
management 105
user heaps 29, 169

mergepdf 77
move 119
multithreading 72, 155, 167

N
name mangling 55

O
OBJECT_MODE environment variable 1
OpenMP 72, 161, 163
OpenMP directives 160
optimization 103

-O0 62
-O2 63
-O3 65
-O4 66
-O5 67
64-bit mode 107
across program units 74
advanced 64
architecture 68, 87
basic 62
debugging 95
detecting errors 96
hardware 68
loops 70, 155
math functions 137

optimization and tuning
optimizing 61
tuning 61

optimization trade-offs
-O3 66
-O4 67
-O5 68

optimization, diagnostics 90, 91
optimizing

applications 61

option
-qheapdebug 36, 169

P
packed attribute 19
parallelization 72, 155

automatic 157
IBM SMP directives 157
OpenMP directives 160

perfect forwarding 119
performance tuning 103
pointers

64-bit mode 3
Fortran 11

pragma
align 13
ibm 157
implementation 114
omp 160
pack 19
priority 45

pragma nofunctrace 108
precision, floating-point numbers 23
priority of static objects 45
profile-directed feedback (PDF) 77
profiling 77

R
range, floating-point numbers 23
reentrancy 167
rounding, floating-point 25

S
scalar MASS library 138
shared (dynamic) library 41, 50
shared memory parallelism (SMP) 72,

155, 157, 160, 161, 163
showpdf 77
Standard Template Library 167
static library 41
static objects, C++ 45
strings

debug functions 178
optimizing 106

structure alignment 15
64-bit mode 4

T
template instantiation 112
thread safety 167

stream objects 167
template objects 167

TOC overflow 84
-bbigtoc 86
-qminimaltoc 85
-qpic=large 86
performance 86

tracing
functions 108

tuning for performance 68

V
vector MASS library 140
visibility attributes 122

propagation 131

X
xlopt library 150
XML report schema 91

192 XL C/C++: Optimization and Programming Guide

IBM®

Product Number: 5765-J07; 5725-C72

Printed in USA

SC27-4261-02

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions
	Related information
	IBM XL C/C++ information
	Standards and specifications
	Other IBM information
	Other information

	Technical support
	How to send your comments

	Chapter 1. Using 32-bit and 64-bit modes
	Assigning long values
	Assigning constant values to long variables
	Bit-shifting long values

	Assigning pointers
	Aligning aggregate data
	Calling Fortran code

	Chapter 2. Using XL C/C++ with Fortran
	Identifiers
	Corresponding data types
	Character and aggregate data
	Function calls and parameter passing
	Pointers to functions
	Sample program: C/C++ calling Fortran

	Chapter 3. Aligning data
	Using alignment modes
	Alignment of aggregates
	Alignment examples

	Alignment of bit-fields

	Using alignment modifiers

	Chapter 4. Handling floating-point operations
	Floating-point formats
	Handling multiply-and-add operations
	Compiling for strict IEEE conformance
	Handling floating-point constant folding and rounding
	Matching compile-time and runtime rounding modes
	Rounding modes and standard library functions

	Handling floating-point exceptions
	Compiling a decimal floating-point program

	Chapter 5. Using memory heaps
	Managing memory with multiple heaps
	Functions for managing user-created heaps
	Creating a heap
	Expanding a heap
	Using a heap
	Getting information about a heap
	Closing and destroying a heap
	Changing the default heap used in a program
	Compiling and linking a program with user-created heaps
	Example of a user heap with regular memory

	Debugging memory heaps
	Functions for checking memory heaps
	Functions for debugging memory heaps
	Using memory allocation fill patterns
	Skipping heap checking
	Using stack traces

	Chapter 6. Constructing a library
	Compiling and linking a library
	Compiling a static library
	Compiling a shared library
	Exporting symbols with the CreateExportList utility
	Linking a library to an application
	Linking a shared library to another shared library

	Initializing static objects in libraries (C++)
	Assigning priorities to objects
	Order of object initialization across libraries

	Dynamically loading a shared library
	Loading and initializing a module with the loadAndInit function
	Terminating and unloading a module with the terminateAndUnload function

	Chapter 7. Replacing operator new and operator delete in applications that use shared libraries (C++)
	Chapter 8. Using the C++ utilities
	Demangling compiled C++ names
	Demangling compiled C++ names with c++filt
	Demangling compiled C++ names with the demangle class library

	Creating a shared library with the makeC++SharedLib utility
	Linking with the linkxlC utility

	Chapter 9. Optimizing your applications
	Distinguishing between optimization and tuning
	Steps in the optimization process
	Basic optimization
	Optimizing at level 0
	Optimizing at level 2

	Advanced optimization
	Optimizing at level 3
	An intermediate step: adding -qhot suboptions at level 3
	Optimizing at level 4
	The IPA process

	Optimizing at level 5

	Tuning for your system architecture
	Getting the most out of target machine options

	Using high-order loop analysis and transformations
	Getting the most out of -qhot

	Using shared-memory parallelism (SMP)
	Getting the most out of -qsmp

	Using interprocedural analysis
	Getting the most from -qipa

	Using profile-directed feedback
	Viewing profiling information with showpdf
	Object level profile-directed feedback

	Handling table of contents (TOC) overflow
	Options for reducing the number of global symbols
	Options for enlarging the TOC access range
	Performance considerations of handling TOC overflow

	Marking variables as local or imported
	Getting the most out of -qdatalocal

	Using compiler reports to diagnose optimization opportunities
	Parsing compiler reports with development tools

	Other optimization options

	Chapter 10. Debugging optimized code
	Detecting errors in code
	Understanding different results in optimized programs
	Debugging in the presence of optimization
	Using -qoptdebug to help debug optimized programs

	Chapter 11. Coding your application to improve performance
	Finding faster input/output techniques
	Reducing function-call overhead
	Managing memory efficiently (C++ only)
	Optimizing variables
	Manipulating strings efficiently
	Optimizing expressions and program logic
	Optimizing operations in 64-bit mode
	Tracing functions in your code
	Using C++ templates
	Using the -qtempinc compiler option
	Example of using -qtempinc
	Regenerating the template instantiation file
	Using -qtempinc with shared libraries

	Using the -qtemplateregistry compiler option
	Recompiling related compilation units
	Switching from -qtempinc to -qtemplateregistry

	Using explicit instantiation declarations (C++11)

	Using delegating constructors (C++11)
	Using rvalue references (C++11)
	Using visibility attributes (IBM extension)
	Types of visibility attributes
	Rules of visibility attributes
	Propagation rules (C++ only)
	Specifying visibility attributes using the -qvisibility option
	Specifying visibility attributes using pragma preprocessor directives

	Chapter 12. Using the high performance libraries
	Using the Mathematical Acceleration Subsystem (MASS) libraries
	Using the scalar library
	Using the vector libraries
	Using the SIMD libraries
	Compiling and linking a program with MASS
	Using libmass.a with the math system library

	Using the Basic Linear Algebra Subprograms – BLAS
	BLAS function syntax
	Linking the libxlopt library

	Chapter 13. Parallelizing your programs
	Countable loops
	Enabling automatic parallelization
	Using IBM SMP directives (C only)
	Data sharing attribute rules
	Using OpenMP directives
	Shared and private variables in a parallel environment
	Reduction operations in parallelized loops

	Chapter 14. Selecting the standard allocation method to suit performance (C++)
	Chapter 15. Ensuring thread safety (C++)
	Ensuring thread safety of template objects
	Ensuring thread safety of stream objects

	Chapter 16. Memory debug library functions
	Memory allocation debug functions
	_debug_calloc — Allocate and initialize memory
	_debug_free — Free allocated memory
	_debug_heapmin — Free unused memory in the default heap
	_debug_malloc — Allocate memory
	_debug_ucalloc — Reserve and initialize memory from a user-created heap
	_debug_uheapmin — Free unused memory in a user-created heap
	_debug_umalloc — Reserve memory blocks from a user-created heap
	_debug_realloc — Reallocate memory block

	String handling debug functions
	_debug_memcpy — Copy bytes
	_debug_memset — Set bytes to value
	_debug_strcat — Concatenate strings
	_debug_strcpy — Copy strings
	_debug_strncat — Concatenate strings
	_debug_strncpy — Copy strings

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	X

