

 Page 1 of 18 “Understanding ClearCase UCM White paper”

Understanding ClearCase Client,

Administrative VOB Interactions and
Metadata in a UCM Environment

William Frontiero (wfronti@us.ibm.com)

November 5, 2008

 Page 2 of 18 “Understanding ClearCase UCM White paper”

INTRODUCTION ..3

OVERVIEW OF ADMINISTRATIVE VOB HIERARCHY IN UCM................................4
BUSINESS CASE FOR UNDERSTANDING THE ADMINISTRATIVE VOB HIERARCHY IN UCM
ENVIRONMENTS FOR OPTIMAL DEVELOPMENT: ..4
THINGS TO CONSIDER FROM THE START ..4
HOW UCM ENABLES MULTIPLE COMPONENT VOBS TO SHARE METADATA TO ACHIEVE A COMMON
GOAL ...5
CORE ADMINISTRATIVE VOB METADATA UNDERSTANDING ...5
WHAT METADATA IS SPECIFIC TO COMPONENT VOBS / WHAT METADATA EXISTS SOLELY IN

THE PROJECT VOB ..5
SUMMARY / CONCLUSION..17

REFERENCES ...18

 Page 3 of 18 “Understanding ClearCase UCM White paper”

Introduction
IBM® Rational® ClearCase® UCM (Unified Change Management) makes
extensive use of client and administrative VOB relationships. This white paper
provides details about those relationships and the underlying actions that result
from various operations performed in a UCM environment. It does not contain all
possible interactions that may take place on objects in a UCM environment.
This document is designed to be read by ClearCase UCM Administrators who are
responsible for their organizations UCM configuration.
Before proceeding you should have an understanding of the general UCM
concepts covered in the Understanding UCM section of IBM Rational ClearCase
Managing Software Projects.

 Page 4 of 18 “Understanding ClearCase UCM White paper”

Overview of Administrative VOB Hierarchy in UCM

UCM Development implies parallel development amongst multiple component
VOBs. These component VOBs are administered by a common administrative VOB
(project VOB). Each component VOB can be developed independently, while
adhering to metadata common to all. Understanding the Administrative VOB
structures, along with inter-relationships between client and Administrative VOBs,
is key to the successful design and administration of an optimal UCM
environment.

Business Case for Understanding the Administrative VOB Hierarchy in
UCM Environments for Optimal Development:

UCM environments are based on the core understanding and functionality of the
administrative VOB Structure. Administration and design of a UCM environment
must take into consideration the underlying administrative VOB structure. Things
to consider include; backup and restore, MultiSite replication, total size of all
associated VOBs, ownership of metadata and hyperlinks shared by the VOBs.

Without a solid understanding of administrative VOB structures and how UCM
relies on them, making design decisions, troubleshooting issues and general
development can become overwhelming. For instance UCM development will not
operate as desired if metadata is unavailable from required locations. UCM
operations such as make component, make baseline, make stream, checkout/in
and deliver require the use of shared metadata. Understanding where UCM
specific metadata resides is required when troubleshooting, configuring and
operating a UCM environment

Things to Consider from the Start
When Creating a UCM environment, you should consider building for scalability
and growth. The creation of a requirements document will help in achieving these
desired goals. Before implementing the environment, you should consider the
following while also considering future project requirements:

1.) Total number of component VOBs.
2.) Will the component VOBs and project VOB exist on the same VOB server?
3.) How large will the component VOBs become over time.
4.) What dependencies will exist between the component VOBs.
5.) Will the component VOBs need to be shared with new project VOBs in the

future
6.) Will there be a need for multiple project VOBs upon implementation.

 Page 5 of 18 “Understanding ClearCase UCM White paper”

How UCM enables Multiple Component VOBs to Share Metadata to
achieve a common goal

Linking multiple components to a common administrative VOB (PVOB) provides
the structure necessary for sharing component data and metadata amongst
various inter-related development projects. The sections below will provide
further details about the infrastructure UCM supplies to make this all possible.

Core Administrative VOB Metadata Understanding
UCM baselines (identified by the use of UCM metadata) are vital to the success of
each UCM component’s development. If there is no means of testing the
baselines integrity, then a successful build becomes the only means of validation.

Many operations performed in a UCM environment trigger a chain of events that
include interactions between a client VOB containing one or more UCM
components and it’s associated administrative project VOB (PVOB). There is key
metadata which is generated during those interactions.

The information below outlines the key metadata generated during standard UCM
operations. The examples assume a project VOB “bfPvob” and a component VOB
“bfCvob”. We will outline and discuss what, when and where metadata is
generated during typical UCM development.

What Metadata is specific to Component VOBs / What
Metadata exists solely in the Project VOB

The following sections identify the metadata generated in the component VOB
and project VOB when performing traditional UCM operations.

1.) Component Creation: Overview of metadata generated in the VOBs during
component creation:

Project VOB “bfPvob”

o Component object
o ComponentRootDir hyperlink (pointing from the component toward

the root directory Element)
o Component INITIAL_BASELINE label type

Component VOB “bfCvob”

o Root Director Element (Vob root which is marked by a CRDE
“Component root directory Element” Number)

o AdminVOB hlink (pointing from the component VOB toward the
project VOB)

 Page 6 of 18 “Understanding ClearCase UCM White paper”

2.) Stream Creation: Overview of metadata generated in the VOBs during
stream creation:

Project VOB “bfPvob”

o Global branch type associated with the UCM stream UCM Stream
object

o IndependentGuard hyperlink associating the stream with the global
branch type

o UseBaseline hyperlink linking the stream to the baseline being
chosen

Component VOB “bfCvob”

o No NEW metadata generated on stream creation

3.) Checkout/Checkin: Overview of metadata generated in the VOBs during
Checkout / Checkin:

Project VOB “bfPvob”

o UCM Activity object
o Changeset hyperlink pointing from the activity to the version

Component VOB “bfCvob”

o Local copy of the global branch type
o GlobalDefinition hyperlink pointing from the branch local copy to

the Global Copy
o New Directory version

4.) Make Baseline: Overview of metadata generated in the VOBs during the

make baseline Operation:

Project VOB “bfPvob”

o UCM baseline object
o BaselineLbtype hyperlink (pointing from the baseline to the lbtype

in the component VOB)

Component VOB “bfCvob”
o Ordinary label type associated with the baseline object
o IncrementalLbtype hyperlink pointing to the previous baseline

associated label type

The following operations are discussed in the sections below:

o Make component Operation (cleartool mkcomp) figure 1.0
o Make Stream Operation (cleartool mkstream) figures 1.1 and 1.2

 Page 7 of 18 “Understanding ClearCase UCM White paper”

o Checkout / Checkin versions on the UCM stream (cleartool co / cleartool
ci)

o Make baseline Operation (cleartool mkbl)

1.) Operation: Make component (cleartool mkcomp –root .\bfCvob
component:bfCvob@\bfPvob)

The creation of a UCM component will require two major hyperlinks to be created; a
ComponentRootDir hyperlink and an AdminVOB hyperlink. The ComponentRootDir
hyperlink will be created in the project VOB. The ComponentRootDir hyperlink is
unidirectional. It will point from the component object in the PVOB, toward the root
directory object (either a VOB root, or subdirectory of the root). The AdminVOB hyperlink
will be generated in the respective component VOB. The AdminVOB hyperlink is also
unidirectional. It will point from the component VOB toward the project VOB. Any failure to
create these two hyperlinks can result in component creation failure.

Examples:

o cleartool describe –l ComponentRootDir@111@\bfPvob

Here is what a long describe of the ComponentRootDir hyperlink looks like:

ComponentRootDir@111@\bfPvob component:bfCvob@\bfPvob ->
M:\betaBase\bfCvob\.@@

o cleartool describe –l –ahlink –all component:bfCvob@\bfPvob

Here is what the hyperlink looks like when running a long describe of the component
object in a view context:

ComponentRootDir@111@\bfPvob -> M:\betaBase\bfCvob\.@@

o cleartool describe –l –ahlink –all .@@

Here is what the hyperlink looks like when running a long describe of the root
directory object in a view context:

ComponentRootDir@111@\bfPvob <- component:bfCvob@\bfPvob

o cleartool describe –l AdminVOB@46@\bfCvob

Here is what a long describe of the AdminVOB hyperlink looks like:

AdminVOB@46@\bfCvob vob:\bfCvob -> vob:\bfPvob

 Page 8 of 18 “Understanding ClearCase UCM White paper”

o cleartool describe –l –ahlink –all vob:\bfCvob

Here is what a long describe of the component VOB looks like:

AdminVOB@46@\bfCvob -> vob:\bfPvob

o cleartool describe –l –ahlink –all vob:\bfPvob

Here is what a long describe of the project VOB looks like:
AdminVOB@46@\bfCvob <- vob:\bfCvob

Figure 1.0 (This screen shot shows the component “bfCvob” created and
associated with project VOB “bfPvob”)

2.) Operation: Make Stream (cleartool mkstream -integration -in
project:Project1@\bfPvob -nc -baseline bfCvob_INITIAL@\bfPvob
Project1_Integration_Stream@\bfPvob)

Each stream is linked to a global branch type in the project VOB. This ensures
that any component VOB performing a checkout will receive a local copy of
the shared global branch type. This is the core of how UCM is able to track
versions from multiple component VOBs using a single stream. A stream
becomes a central point of administration for any component added to its
configuration. Any version generated from the streams associated global
branch type can be tracked and managed centrally in UCM. Although UCM
baselines are specific to components, they are also created in a stream
context. This means a stream enables users to run a single operation to
generate new baselines across multiple components. This also means the

 Page 9 of 18 “Understanding ClearCase UCM White paper”

stream can enforce policies that will be applied to all components configured
in the stream. The shared branching structure enabled by the administrative
VOB structure becomes the Core of UCM development.

The creation of a UCM stream will generate a corresponding global branch
type in the project VOB. The stream will be linked to the branch type by an
IndependentGuard hyperlink. Independent Guard hyperlinks are created in
the project VOB and are unidirectional. They point from the stream object
toward the corresponding branch type. When creating a stream, you can
choose the UCM baselines you would like the stream Configured with. A
UseBaseline hyperlink will be created in the project VOB associating the
stream with the baseline chosen. The UseBaseline hyperlink is also a
unidirectional hyperlink. It will point from the stream object toward the
baseline object being selected. There will be a UseBaseline hyperlink for each
foundation baseline in the streams configuration.

Examples:

o Here is the name of the stream:
Stream:Project1_Integration_Stream@\bfPvob

o Here is the name of the global branch type:
brtype:Project1_Integration_Stream@\bfPvob

o Here is the name of the IndependentGuard hyperlink generated:
IndependentGuard@146@\bfPvob

IndependentGuard hyperlinks point from the stream object, to the global
branch type

o cleartool describe –l hlink:IndependentGuard@146@\bfPvob

Here is what a long describe of the hyperlink looks like:
IndependentGuard@146@\bfPvob
stream:demo_Proj_Integration@\bfPvob ->
brtype:demo_Proj_Integration@\bfPvob

o cleartool describe –l –ahlink –all stream:
Project1_Integration_Stream@\bfPvob

Here is what the hyperlink looks like from a long describe of the stream

 Page 10 of 18 “Understanding ClearCase UCM White paper”

IndependentGuard@146@\bfPvob ->
brtype:Project1_Integration_Stream@\bfPvob

o cleartool describe –l –ahlink –all brtype:

Project1_Integration_Stream@\bfPvob

Here is what the hyperlink looks like from a long describe of the
Associated global branch type:

IndependentGuard@146@\bfPvob <-
stream:Project1_Integration_Stream@\bfPvob

o cleartool describe –l hlink:UseBaseline@154@\bfPvob

Here is an example of the UseBaseline hyperlink that is created from the
stream to the UCM baseline:

UseBaseline@154@\bfPvob
stream:Project1_Integration_Stream@\bfPvob ->
baseline:bfCvob_INITIAL@\bfPvob

NOTE: At this point, component VOBs do NOT contain a copy of the global
branch type.

 Page 11 of 18 “Understanding ClearCase UCM White paper”

NOTE: At this point the global branch types exist in the project VOB:

Figure 1.1 (Screen Shot of the stream created in the bfPvob)
In the figure below you can see the stream was created under a new
project in the project VOB “vob:\bfPvob”

Figure 1.2 (Screen Shot of the project VOBs branch type properties in the
type explorer)
In the screen shot below you can see the branch type is a “Global” branch
type. This means any component VOBs associated with the “bfPvob” can
generate local copies of this global type

 Page 12 of 18 “Understanding ClearCase UCM White paper”

3.) Operation: Checkout / Checkin versions on the UCM stream (cleartool co /

cleartool ci)

Checking out an element on a UCM stream will require the usage of a UCM
Activity. Once you have created and set to a desired activity you can then
perform a checkout. When checking out an element on a UCM stream, the
component VOB containing the element will generate a local copy of the
streams corresponding global branch type. In the information above, we
demonstrate that the stream is linked to the global branch type in the project
VOB. This ensures that any component VOB performing a checkout will
receive a local copy of the shared global branch type. This is how UCM is able
to track versions from multiple component VOBs using a single stream. Any
version generated from a local instance of the global branch type can be
tracked by the guarding stream. Any checkin on a UCM stream will require
that an activity is also associated at the time of checkin. The activity is

 Page 13 of 18 “Understanding ClearCase UCM White paper”

usually the same activity used for checkout. During the checkin, a changeset
hyperlink is created from the activity to the version in the component VOB.
(NOTE: When you checkout on a UCM stream, a change hyperlink is
associated with the checkout reference until the change is committed)

Before checking out you will need to set to a UCM Activity. You can use
cleartool setact <Existing_Act> or you can make a new activity and set to it in
one step.

In the example below we are using mkactivity: cleartool mkact bfDevActivity

Here is the output of running mkact from a UCM View:

Created activity "bfDevActivity".
Set activity "bfDevActivity" in view "Project1_int".

Here is an example of a directory element checkout on a UCM stream:
(cleartool checkout –nc .)

Note at this point that the global branch type is being used to generate a local
copy in the component VOB.

Automatically created branch type "Project1_Integration_Stream" from global
definition in VOB "\bfPvob".
Created branch "Project1_Integration_Stream" from "." version "\main\0".
Checked out "." from version "\main\Project1_Integration_Stream\0".
 Attached activity:
 activity:bfDevActivity@\bfPvob "bfDevActivity"

Notice that the activity we created is being attached to the checked out
version of the directory element on the UCM stream.

At this point, let’s take a look at the hyperlink created that associates the local
copy of the branch type in the component VOB to the global type in the
project VOB. The hyperlink is of type GlobalDefinition. The hyperlink is created
in the component VOB. It is a unidirectional hyperlink. It points from the local
copy of the branch type in the component VOB toward the global branch type
in the project VOB.

o Here is an example of a long describe of the global definition hyperlink
created:
cleartool describe –l GlobalDefinition@48@\bfCvob
GlobalDefinition@48@\bfCvob

 Page 14 of 18 “Understanding ClearCase UCM White paper”

brtype:Project1_Integration_Stream@\bfCvob ->
brtype:Project1_Integration_Stream@\bfPvob

Notice that it points from the brtype in the bfCvob toward the brtype in the
bfPvob.

At this point the directory checkout is going to be checked in. The
example below demonstrates the directory version being associated with
the UCM activity.

o Here is a long describe of the activity before the checkin:
Cleartool describe –l –ahlink –all activity:bfDevActivity@\bfPvob
Change@164@\bfPvob ->
M:\Project1_int\bfCvob\.@@\main\Project1_Integration_Stream\CHECKE
DOUT.51

o Here is a long describe of the activity after the directory checkin.:
cleartool describe –l –ahlink –all activity: :bfDevActivity@\bfPvob
Change@164@\bfPvob ->
M:\Project1_int\bfCvob\.@@\main\Project1_Integration_Stream\1

o Here is a long describe of the change hyperlink associating the version
with the activity:
cleartool describe –l hlink:Change@164@\bfPvob
Change@164@\bfPvob
activity:bfDevActivity@\bfPvob ->
M:\Project1_int\bfCvob\.@@\main\Project1_Integration_Stream\1

Notice that the change hyperlink points from the UCM activity to the
version created in the component VOB. It is also helpful to notice that the
change hyperlink exists in the project VOB.

4.) Operation: Make Baseline (cleartool mkbl BF2_Demo)

Making a UCM baseline will require a component object and a stream context.
The baseline creation procedure will determine which component it will be
created for, and which stream it will be associated with. A baseline creation
procedure will generate a baseline object in the UCM project VOB. It will also
create a label type in the component VOB. A BaselineLbtype hyperlink will be
generated in the project VOB linking the baseline to the label type. The
BaselineLbtype hyperlink is unidirectional pointing from the baseline object
toward the label type. When creating a UCM baseline you can choose to
create a full baseline or an incremental baseline. Deciding to create a full
baseline will not alter the actual baseline object. It will generate a label type
applied recursively across all LATEST versions being selected by the streams
config spec. When choosing to make an incremental baseline, it will only apply
the label to the versions changed or created since the last fully labeled
baseline created. The make baseline operation is able to determine the last

 Page 15 of 18 “Understanding ClearCase UCM White paper”

fully labeled baseline through the use of IncrementalLbtype hyperlinks. These
hyperlinks connect incremental label types back to the last fully labeled
lbtype. A fully labeled baseline is considered a backstop for successive
baselines created until another full.

Examples:

o Here is an example of the make baseline operation: (cleartool mkbl

BF2_Demo)
Created baseline "BF2_Demo" in component "bfCvob".
Begin incrementally labeling baseline "BF2_Demo".
Done incrementally labeling baseline "BF2_Demo".
Notice that the baseline is being incrementally labeled. This means the
baseline is an incremental baseline. The make baseline command will
create an incremental baseline unless Specified with the “-full” flag. The
GUI has a drop down option to choose.

o Here is a long describe of the baseline to show any hyperlinks associated:

cleartool describe –l –ahlink –all baseline:BF2_Demo@\bfPvob
BaselineLbtype@172@\bfPvob -> lbtype:BF2_Demo@\bfCvob

Notice that the baseline object does not contain any information about the
labeling structure. The label is responsible for keeping track of the label
status.

o Here is a long describe of the label type associated with the baseline.:
cleartool describe –l –ahlink –all lbtype:BL1_Demo@\bfCvob

The first hyperlink we see is of type IncrementalLbtype. This link will keep
track of previous labels. These types of hyperlinks work together to trace
back to the last fully generated label type.
IncrementalLbtype@55@\bfCvob -> lbtype:BL1_Demo@\bfCvob

The second hyperlink we see is of type BaselineLbtype. This link will
associate the baseline object with the label type.
BaselineLbtype@172@\bfPvob <- baseline:BF2_Demo@\bfPvob (This hlink
associates the label type with the baseline)

o Here is the long describe of the IncrementalLbtype hyperlink:
cleartool describe –l hlink:IncrementalLbtype@55@\bfCvob
IncrementalLbtype@55@\bfCvob lbtype:BF2_Demo@\bfCvob ->
lbtype:BL1_Demo@\bfCvob

o Here is the long describe of the BaselineLbtype hlink:
cleartool describe –l hlink:BaselineLbtype@172@\bfPvob

BaselineLbtype@172@\bfPvob baseline:BF2_Demo@\bfPvob ->
lbtype:BF2_Demo@\bfCvob

 Page 16 of 18 “Understanding ClearCase UCM White paper”

 Page 17 of 18 “Understanding ClearCase UCM White paper”

Summary / Conclusion
As discussed above, a core understanding of the administrative VOB structure in
a UCM environment is required for optimal development. If the administrative
VOB structure is damaged or administered improperly, UCM functions will suffer
greatly. Understanding how to protect and manage the VOB structure will enable
administrators and developers to better perform day to day operations. This
means less downtime and higher productivity leading to overall project success.

 Page 18 of 18 “Understanding ClearCase UCM White paper”

References
The following were used in references or as other sources of information:

• http://www.ibm.com
• Managing Software Project:

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=
/com.ibm.rational.clearcase.cc_proj.doc/cc_proj_manage.htm

• Developing Software
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=
/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/c_basic_cc_concepts.ht
m

• Command Reference
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=
/com.ibm.rational.clearcase.cc_ref.doc/topics/refintro.htm

http://www.ibm.com/
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/cc_proj_manage.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_proj.doc/cc_proj_manage.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/c_basic_cc_concepts.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/c_basic_cc_concepts.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.dev.doc/topics/cc_dev/c_basic_cc_concepts.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_ref.doc/topics/refintro.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m1/index.jsp?topic=/com.ibm.rational.clearcase.cc_ref.doc/topics/refintro.htm

	 Introduction
	 Overview of Administrative VOB Hierarchy in UCM
	Business Case for Understanding the Administrative VOB Hierarchy in UCM Environments for Optimal Development:
	Things to Consider from the Start

	
	How UCM enables Multiple Component VOBs to Share Metadata to achieve a common goal
	Core Administrative VOB Metadata Understanding
	What Metadata is specific to Component VOBs / What Metadata exists solely in the Project VOB

	 Summary / Conclusion
	 References

