
IBM Security Access Manager
Version 9.0.5
March 2018

Advanced Access Control Configuration
topics

IBM

IBM Security Access Manager
Version 9.0.5
March 2018

Advanced Access Control Configuration
topics

IBM

ii IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Contents

Figures vii

Tables ix

Chapter 1. Upgrading configuration . . . 1
Upgrading external databases with the dbupdate tool
(for appliance at version 9.0.0.0 and later) 2
Upgrading a SolidDB external database (for
appliance versions earlier than 9.0.0.0) 3
Upgrading a DB2 external runtime database (for
appliance versions earlier than 9.0.0.0) 4
Upgrading an Oracle external runtime database (for
appliance versions earlier than 9.0.0.0) 5
Setting backward compatibility mode for one-time
password 6
Updating template files 6
Updating PreTokenGeneration to limit OAuth tokens 7
Reviewing existing Web Reverse Proxy instance point
of contact settings 8
Upgrading the signing algorithms of existing policy
servers 9

Chapter 2. Getting started with
Advanced Access Control 13

Chapter 3. Managing application
interfaces 15

Chapter 4. Managing the runtime
component 17

Chapter 5. Managing user registries . . 19

Chapter 6. Runtime security services
external authorization service 21
Configuring runtime security services for client
certificate authentication 21
Permitting access decisions when runtime security
services cannot be contacted 23
Retaining the version 7.0 attribute IDs in existing
policies 24

Chapter 7. Using the isamcfg tool . . . 25
Configuring an appliance reverse proxy instance
from the appliance 25
Configuring an appliance reverse proxy instance
from an external machine. 26
Configuring a WebSEAL instance 27
Configuring WebSEAL in a highly available
environment 28
isamcfg reference 30

isamcfg command line reference 30

isamcfg Security Access Manager appliance
configuration worksheet 32
isamcfg WebSEAL configuration worksheet . . . 34

Using a response file 37

Chapter 8. Adding runtime listening
interfaces 39

Chapter 9. Support for compliance with
NIST SP800-131a 41

Chapter 10. Authentication 45
Authentication Service configuration overview . . 48
Authentication configuration scenarios 50

Configuring step-up authentication 50
Configuring authentication 52

Configuring an HOTP one-time password
mechanism 53
Configuring a TOTP one-time password mechanism 55
Configuring a MAC one-time password mechanism 58
Configuring an RSA one-time password mechanism 59
Configuring one-time password delivery methods 63
Configuring username and password authentication 67
Configuring an HTTP redirect authentication
mechanism 70
Configuring consent to device registration 71
Configuring an End-User License Agreement
authentication mechanism 72
Configuring an Email Message mechanism 73

HTML format for OTP email messages 75
Configuring the reCAPTCHA Verification
authentication mechanism 75
Configuring an Info Map authentication mechanism 77

Embedding reCAPTCHA verification in an Info
Map mechanism 79
Available parameters in Info Map 79
Embedded Cloud Identity API calls in an Info
Map mechanism 80

Configuring a Knowledge Questions authentication
mechanism 81
Configuring a FIDO Universal 2nd Factor
authentication mechanism 84
Enabling or disabling authentication policies . . . 86
Managing mapping rules 86

Authentication Service Credential mapping rule 87
OTPGetMethods mapping rule 88
OTPGenerate mapping rule 89
OTPDeliver mapping rule 90
OTPVerify mapping rule 91
Customizing one-time password mapping rules
to use access control context data 92

One-time password and authentication template
files 94
Push notification registration 94

iii

||905||
||905||||905||

Obtaining the required authentication credentials
to configure push notification for IBM Verify . . 95

Cloud Identity API Integration 96
Cloud Identity JavaScript 96
Authentication flow 97
User Self Care flow 98

Chapter 11. OAuth 2.0 and OIDC
support 99
OAuth and OpenID Connect concepts 99

OAuth 2.0 concepts. 99
OpenID Connect concepts 100

OAuth 2.0 endpoints 102
OAuth 2.0 and OIDC workflows 105

Client authentication considerations at the
OAuth 2.0 token endpoint 114
Configuring an authenticated token endpoint
with WebSEAL as the point of contact 115

State management 116
Trusted clients management 117
Proof Key for Code Exchange support 118
Reverse proxy configuration for OAuth and OIDC
provider 119

Configuring a reverse proxy for OAuth and an
OIDC Connect provider 119
Viewing a reverse proxy log for an automated
configuration 121
Example reverse proxy log for OAuth and
OIDC configuration 122
Removing reverse proxy configuration for
OAuth and OIDC provider 124

Configuring API protection. 125
Creating an API protection definition 125
Managing API protection definitions 126
API Protection token management properties 127
API Protection OpenID Connect Provider
properties 129
PIN policy 131
Registering an API protection client 131
Managing registered API protection clients . . 133
Managing policy attachments 134
Using oauthScope attributes in an access control
policy 137
Uploading OAuth response files 138
OAuth introspection 138
OAuth revocation endpoint. 140

OIDC Claims customization 141
Client authentication to /token through an
incoming JSON Web Token 147
Passing parameters through JWT in a request to
/authorize 148
Mapping rules for OAuth and OIDC 150

Managing OAuth 2.0 and OIDC mapping rules 150
OAuth 2.0 and OIDC mapping rule methods 151
OAuth and OIDC mapping rules files 151
OAuth and OIDC mapping rules actions . . . 152
Customizing OAuth tokens by updating the
sample PreTokenGeneration mapping rule. . . 157
OpenID Connect mapping rules 158
Device flows verification uri 160

OAuth 2.0 template files. 160

OAuth 2.0 template page for consent to authorize 161
Error responses. 164
User self-administration tasks for OAuth 164

Managing OAuth 2.0 authorization grants . . . 164
OAuth STS Interface for Authorization
Enforcement Points 165
API Protection form post response mode 173
Access policy for OAuth or OIDC 174

Making an OAuth or OIDC consent decision
using access policy 174

OIDC Dynamic Clients 175
OIDC Dynamic Clients- Authentication and
deployment 175
OIDC Dynamic Clients- Register a client . . . 176
OIDC Dynamic Clients- Clients Management 176
OIDC Dynamic Clients- Custom Identifiers . . 177

Chapter 12. Mobile Multi-Factor
Authentication 179
Authenticator registration 179
Authentication method enrollment 180
Configuring Mobile Multi-Factor Authentication 180
MMFA mapping rule methods. 181

Chapter 13. Access control policies 185
Defining a custom application for policy
attachments 185
Invoking the RTSS XACML engine 186

ContextId JSON example 186
ApplicationId JSON example 187
resource-id JSON example 188

Chapter 14. Defining a custom domain
for policy attachments 191

Chapter 15. Deploying pending
changes 193

Chapter 16. Options for handling
session failover events 195
Option 1: No handling of failover events 195
Option 2: The distributed session cache. 195

Chapter 17. Global settings 197
Managing advanced configuration 198

Advanced configuration properties 199
Managing user registries 217
Tuning runtime application parameters and tracing
specifications 218
Template files 224

Managing template files 224
Customizing the consent page 226
Template page scripting 226
Template files reference 229
Template file macros 256

Mapping rules 259
Managing JavaScript mapping rules 259
Managing mapping rules 260
Managing OAuth 2.0 mapping rules. 267

iv IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905				905	
	905					
	905				905	
	905				905	
	905				905	
	905				905	

Actions to be performed in mapping rules. . . 269
MMFA mapping rule methods. 270
JavaScript whitelist 272
Managing JavaScript mapping rules 275
Customizing SAML 2.0 identity mapping . . . 276
STSRequest and STSResponse access using a
JavaScript mapping rule 278
OpenID Connect mapping rules 285
Import a mapping rule from another mapping
rule 286

Managing Distributed Session Cache 287

Managing server connections 287
Server connection properties 289

Point of contact profiles 292
Creating a point of contact profile 292
Updating or viewing a point of contact profile 293
Deleting a point of contact profile 293
Setting a current point of contact profile . . . 294
Callback parameters and values 294

Index 297

Contents v

vi IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Figures

1. WebSEAL client in an environment with
multiple IBM Security Access Manager servers . 29

2. OAuth 2.0 JavaScript sample code with state
management 117

3. Template for user_consent.html 163
4. OAuth STS trust chain workflow 166
5. OAuth authorization enforcement point

workflow 173

vii

viii IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Tables

1. Advanced Access Control configuration
upgrade tasks 1

2. Scenario 1 10
3. Scenario 2 11
4. Runtime security services EAS access decisions 21
5. OAuth 2.0 endpoint definitions and URLs 103
6. Response type values for each flow 109
7. Configurations supported 115
8. OAuth modes 120
9. Reverse proxy instance 120

10. Reuse configuration 121
11. Auto-configuration log files 122
12. Mapping rule variable for OAuth revocation 141
13. Claims types 142
14. Example configuration of Attribute Sources 144
15. Attribute Mapping 144
16. LDAP Attribute Source example 144
17. Chain modules for JWT format 147
18. Mapping Rules 152
19. New request types 159
20. Configuration data types. 199
21. Filter by Category 199
22. HTTP proxy properties 221
23. Valid trace levels 223
24. Example JavaScript 227
25. Default template files in the ac/ directory 230
26. Default template files in the mga/ directory 230
27. Default template files in the authsvc/

directory 232
28. Default template files in the otp/ directory 232

29. Default template files in the
authsvc/authenticator/password/ directory . 235

30. Default template files in the
authsvc/authenticator/http_redirect/
directory 235

31. Default template files in the
authsvc/authenticator/macotp/ directory . . 236

32. Default template files in the
authsvc/authenticator/rsa/ directory . . . 237

33. Default template files in the
authsvc/authenticator/totp/ directory . . . 237

34. Default template files in the
authsvc/authenticator/hotp/ directory . . . 238

35. Default template files in the
authsvc/authenticator/
consent_register_device/ directory 238

36. Default template files in the
authsvc/authenticator/eula/ directory . . . 239

37. Default template files in the
authsvc/authenticator/
knowledge_questions/ directory 240

38. Default files in the proper/ directory 241
39. Default files in the oauth20/ directory 243
40. SAML 2.0 HTML page identifiers and macros 246
41. Supported consent values for SAML 2.0

response 255
42. JSON to SAML2 module chain values 280
43. SAML2 to JSON module chain values 283
44. Server Connection properties 289
45. Tuning properties 291

ix

x IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 1. Upgrading configuration

After you install the upgrade software on a Security Access Manager appliance,
you must complete several configuration tasks.

Review the following tasks, and perform the ones that are appropriate for your
installation.

Table 1. Advanced Access Control configuration upgrade tasks

Upgrade task See

Run the isamcfg tool to obtain the correct
configuration settings for WebSEAL and
Security Access Manager.

Chapter 7, “Using the isamcfg tool,” on page
25

If you use solidDB as an external runtime
database, upgrade solidDB.

“Upgrading a SolidDB external database (for
appliance versions earlier than 9.0.0.0)” on
page 3 or “Upgrading external databases
with the dbupdate tool (for appliance at
version 9.0.0.0 and later)” on page 2

If you use DB2® as an external runtime
database, upgrade DB2.

“Upgrading a DB2 external runtime
database (for appliance versions earlier than
9.0.0.0)” on page 4 or “Upgrading external
databases with the dbupdate tool (for
appliance at version 9.0.0.0 and later)” on
page 2

If you use Oracle as an external runtime
database, upgrade Oracle.

“Upgrading an Oracle external runtime
database (for appliance versions earlier than
9.0.0.0)” on page 5 or “Upgrading external
databases with the dbupdate tool (for
appliance at version 9.0.0.0 and later)” on
page 2

After an upgrade, the setting for one-time
password authentication is set to run in
backward compatibility mode. Disable this
mode.

“Setting backward compatibility mode for
one-time password” on page 6

If you customized any template files,
upgrade them.

“Updating template files” on page 6

The new role membership features in later
versions of the appliance are granted the
permission of None by default. Configure
the permissions for these new role
membership features, if necessary.

Managing roles of users and groups

To limit the number of OAuth tokens per
user per definition, update the mapping
rule.

“Updating PreTokenGeneration to limit
OAuth tokens” on page 7

Review and update some existing Web
Reverse Proxy instance point of contact
settings for the Advanced Access Control
runtime.

“Reviewing existing Web Reverse Proxy
instance point of contact settings” on page 8

After you complete the appropriate configuration tasks, go to Chapter 2, “Getting
started with Advanced Access Control,” on page 13.

1

Upgrading external databases with the dbupdate tool (for appliance at
version 9.0.0.0 and later)

Use the dbupdate tool that is provided by the appliance to upgrade your external
runtime databases, such as DB2, Oracle, PostgreSQL, and solidDB.

About this task

Use this task if your Security Access Manager appliance version is 9.0.0.0 or later.
If your appliance version is earlier than 9.0.0.0, you must first update the appliance
and the external database to version 9.0.0.0 by using the following methods:
v “Upgrading a SolidDB external database (for appliance versions earlier than

9.0.0.0)” on page 3
v “Upgrading a DB2 external runtime database (for appliance versions earlier than

9.0.0.0)” on page 4
v “Upgrading an Oracle external runtime database (for appliance versions earlier

than 9.0.0.0)” on page 5

You must have Java version 8 or later to run the database update tool.

Procedure
1. In the local management interface, go to Manage System Settings > Secure

Settings > File Downloads.
2. Expand access_control > database.
3. Select the dbupdate9.zip file. This file contains the database update tool

(dbupdate.jar), the README file, and update files for all databases and SQL
types.

4. Click Export.
5. Save the file.
6. Extract the dbupdate9.zip file and run the dbupdate.jar tool for your

environment.
v The usage of the tool is as follows:

${JAVA_HOME}/bin/java -jar dbupdate.jar [-t] [-n]
<dbType> <sqlType> <connectString> <user> [<password>]

-t Enable debug trace output.

-n Do not perform any updates, but instead output the update
operations that would have been executed.

dbType The database type. Valid values are config or runtime.

sqlType
The database server type. Valid values are db2, oracle, postgresql,
or soliddb.

connectString

The string that is used when establishing a connection to the
database server.

db2 Typically the database name, which is used in "db2 CONNECT
TO <connectString> USER <user> USING <password>;".

oracle If the string is not empty, it corresponds to the value used for

2 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

sqlplus "CONNECT <user>/<password>@<connectString>;". If
the string is empty (""), the ORACLE_SID environment variable
is used.

postgresql

The connectString for PostgreSQL contains the psql
command line options that need to be supplied to connect to
the database. This usually consists of the hostname, port and
database name. For example:
’--host=<hostname> --port=<port> --dbname=<db name>’

soliddb
Typically "tcp <host> <port>", which is used in the "solsql
<options> <connectString> <user> <password>" command.

user Database user to update the database with.

password
Database user's password. If not provided, the value is read from
console.

Note: For DB2 external databases, the db2 command must be in the path. For
Oracle external databases, the sqlplus command must be in the path. For
PostgreSQL external database, the psql command must be in the path. For
SolidDB external databases, the solsql command must be in the path.

v Java 8 or later is required for running the tool.
v The following command shows an example of using the tool to update a

DB2 database:
/opt/ibm/java-x86_64-80/jre/bin/java -jar dbupdate.jar runtime db2
"HVDB" db2inst1 passw0rd

The following command shows an example of using the tool to update an
Oracle database:
/opt/ibm/java-x86_64-80/jre/bin/java -jar dbupdate.jar runtime oracle
"" SYSTEM passw0rd

v If the tool is not flexible enough for your environment, you can see which
commands the tool runs without executing them and manually run those
commands to suit your environment. To see which commands the update
tool runs against the database, run the tool with the -n option. This option
still must be able to read from the database to get the current update
versions in order to determine which updates to apply. However, it will not
execute any update operations.

v See the README file that is included in the dbupdate9.zip file for more details
about the update tool.

Upgrading a SolidDB external database (for appliance versions earlier
than 9.0.0.0)

If SolidDB is the external runtime database, upgrade it after you install the
appliance upgrade so that you are using the correct .sql file version.

About this task

Attention: Use this task only if you have not installed v9000.

Chapter 1. Upgrading configuration 3

The updates to the .sql file for each release are not cumulative. Therefore,
depending on which version of the isam_access_control_soliddb_update_v*.sql
file you installed, make the following updates:
v v8003.sql is not installed: First upgrade to v8003, then to v8004, then to v8005,

and finally to v9000.
v v8003.sql is installed: First upgrade to v8004, then to v8005, and finally to

v9000.
v v8004.sql is installed: First upgrade to v8005, and then to v9000.
v v8005.sql is installed: Upgrade to v9000.

Use this task to install each version you require, replacing references to
isam_access_control_soliddb_update_v9000.sql with the version number you are
upgrading to each time, and starting with the earliest version you require.

Procedure
1. Log in to the local management interface.
2. Click Manage System Settings > File Downloads.
3. Expand access_control > database > soliddb > runtime.
4. Select isam_access_control_soliddb_update_v9000.sql
5. Click Export.
6. Save the file.
7. Log in to the solsql utility.

/opt/solidDB/soliddb-7.0/bin/solsql network_name username password

network_name

The network name of the solidDB server.

username

The user name for the database administrator.

password

The password for the database administrator.
8. Run the following command in the SolidDB SQL Editor:

@fully_qualified_path_to_script

The following example shows the fully qualified path to the script:
@/tmp/isam_access_control_soliddb_update_v9000.sql

9. Validate that the tables were successfully updated.
10. Ensure that no errors were returned during the update and log in to the

database to manually check that the tables exist.

Upgrading a DB2 external runtime database (for appliance versions
earlier than 9.0.0.0)

If DB2 is the external runtime database, upgrade it after you install the appliance
upgrade so that you are using the correct .sql file version.

About this task

Attention: Use this task only if you have not installed v9000.

4 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The updates to the .sql file for each release are not cumulative. Therefore,
depending on which version of the isam_access_control_db2_update_v*.sql file
you installed, make the following updates:
v v8004.sql not installed: First upgrade to v8004, then to v8005, and finally to

v9000.
v v8004.sql is installed: Upgrade to v8005 and then to v9000.
v v8005.sql is installed: Upgrade to v9000.

Use this task to install each version you require, replacing references to
isam_access_control_db2_update_v9000.sql with the version number you are
upgrading to each time, and starting with the earliest version you require.

Procedure
1. Log in to the local management interface.
2. Click Manage System Settings > File Downloads.
3. Expand access_control > database > db2 > runtime.
4. Select isam_access_control_db2_update_v9000.sql
5. Click Export.
6. Save the file.
7. Open the isam_access_control_db2_update_v9000.sql file in an editor on the

DB2 server.
8. Replace the following macros with the values specific to your environment:

&DBINSTANCE
The name of the DB2 instance.

&DBUSER
The name of the DB2 administrator.

&DBPASSWORD
The password for the DB2 administrator.

9. Save the changes.
10. Log in to the DB2 Command utility (Windows) or DB2 host (UNIX) as the

DB2 administrator.
11. Run the following command:

db2 -tsvf fully_qualified_path_to_script

The following example shows the fully qualified path to the script:
db2 -tsvf tmp/isam_access_control_db2_update_v9000.sql

12. Validate that the tables were successfully updated.
13. Ensure that no errors were returned during the update and log in to the

database to manually check that the tables exist.

Upgrading an Oracle external runtime database (for appliance versions
earlier than 9.0.0.0)

If Oracle is the external runtime database, upgrade it after you install the appliance
upgrade so that you are using the correct .sql file version.

About this task

Attention: Use this task only if you have not installed v9000.

Chapter 1. Upgrading configuration 5

The updates to the .sql file for each release are not cumulative. Therefore,
depending on which version of the isam_access_control_oracle_update_v*.sql
file you installed, make the following updates:
v v8011.sql not installed: First upgrade to v8011 and then to v9000.
v v8011.sql is installed: Upgrade to v9000.

Use this task to install each version you require, replacing references to
isam_access_control_oracle_update_v9000.sql with the version number you are
upgrading to each time, and starting with the earliest version you require.

Procedure
1. Log in to the local management interface.
2. Click Manage System Settings > File Downloads.
3. Expand access_control > database > oracle > runtime.
4. Select isam_access_control_oracle_update_v9000.sql
5. Click Export.
6. Save the file.
7. Copy the downloaded isam_access_control_oracle_update_v9000.sql file

into the Oracle home directory. For example: ORACLE_HOME=/opt/oracle/app/
oracle/product/11.2.0/dbhome_1

8. Log in to SQL*Plus.
9. At the SQL prompt, run START

isam_access_control_oracle_update_v9000.sql.
10. Validate that the tables were successfully updated.
11. Ensure that no errors were returned during the update and log in to the

database to manually check that the tables exist.

Setting backward compatibility mode for one-time password
When you upgrade your installation, the setting for one-time password
authentication is set to run in backward compatibility mode. Complete this task if
you need to disable this mode.

About this task

The default value for a new installation is false. For an upgrade, the value is set
to true.

Procedure
1. Select Secure Access Control > Global Settings > Advanced Configuration.
2. Click the edit icon for poc.otp.backwardCompatibilityEnabled.
3. Change the value from true, which enables backward compatibility mode, to

false.
4. Click OK.
5. Deploy the changes when prompted.

Updating template files
If you want to update your template files to the latest version, complete this task.
Otherwise, the template files from the previous version are ready for use after the
upgrade.

6 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Procedure
1. Download the new template file.
2. Log in to the local management interface.
3. Select Manage System Settings > File Downloads.
4. Expand access_control > pages and select mga_template_files.zip.
5. Click Export.
6. Extract the file.
7. Edit and customize the template files, as necessary.
8. Compress the template files into a .zip file.
9. In the local management interface, select Secure Access Control > Global

Settings > Template Files.
10. Select Manage > Import Zip.
11. Click Browse and locate the .zip file you compressed in step 8.
12. Click Open.
13. Click Import.
14. Deploy the changes.

Updating PreTokenGeneration to limit OAuth tokens
Update the latest version of the PreTokenGeneration mapping rule to limit the
number of OAuth tokens per user per definition.

About this task

Follow this procedure so that any API protection definitions you created in a
previous version can take advantage of limiting OAuth tokens. If you create new
definitions, the latest PreTokenGeneration mapping rule is used.

Procedure
1. Log in to the local management interface.
2. Download the updated mapping rule:

a. Click Manage System Settings > File Downloads.
b. Expand access_control > examples > mapping_rules.
c. Select oauth_20_pre_mapping.js.
d. Click Export.

3. Optional: Edit and customize the mapping rule if you customized it in the
previous version.

4. Replace the PreTokenGeneration mapping rule for the existing API protection
definitions.
a. Click Secure Access Control > API Protection.
b. Click Advanced.
c. Select the appropriate PreTokenGeneration mapping rule.
d. Click Replace.
e. Browse for the updated mapping rule and click OK.

5. Deploy the changes.

Chapter 1. Upgrading configuration 7

Reviewing existing Web Reverse Proxy instance point of contact
settings

After you upgrade from appliance v8.n.n.n to v9.n.n.n, it might be necessary to
review and update some existing Web Reverse Proxy instance point of contact
settings for the Advanced Access Control runtime.

Reviewing ACL settings for Authentication Services REST
endpoint

A new REST endpoint for the Authentication Services Framework was introduced
in v9.0.0.0. The default URL for this endpoint is “/mga/sps/apiauthsvc”. After an
upgrade from a Security Access Manager appliance at v8.n.n.n, if you want to use
the “/mga/sps/apiauthsvc” endpoint with an existing web reverse proxy, it might
be necessary to create an ACL named “isam_mobile_rest_unauth” and attach it to
the “/mga/sps/apiauthsvc” endpoint. You can use the following Security Access
Manager policy administration commands to enable this setting.
acl create "isam_mobile_rest_unauth"
acl modify "isam_mobile_rest_unauth" set user "sec_master" TcmdbsvaBRrxl
acl modify "isam_mobile_rest_unauth" set group iv-admin TcmdbsvaBRrxl
acl modify "isam_mobile_rest_unauth" set group webseal-servers Tgmdbsrxl
acl modify "isam_mobile_rest_unauth" set any-other Tmdrxl
acl modify "isam_mobile_rest_unauth" set unauth Tmdrxl

acl attach "/WebSEAL/<web reverse proxy>/mga/sps/apiauthsvc" "isam_mobile_rest_unauth"

Reviewing EAI point of contact settings

Some of the default settings that are related to Advanced Access Control point of
contact and EAI headers changed in v9.0.0.0. After an upgrade from v8.n.n.n where
an existing Web Reverse Proxy instance has been configured with Advanced
Access Control, review the following settings and correct the settings if required.

In the Web Reverse Proxy configuration file, check the [eai] stanza settings:
EAI HEADER NAMES

EAI PAC header names
eai-pac-header = am-eai-pac
eai-pac-svc-header = am-eai-pac-svc

EAI USER ID header names
eai-user-id-header = am-eai-user-id
eai-auth-level-header = am-eai-auth-level
eai-xattrs-header = am-eai-xattrs

EAI external USER ID header names
eai-ext-user-id-header = am-eai-ext-user-id
eai-ext-user-groups-header = am-eai-ext-user-groups

EAI COMMON header names
eai-redir-url-header = am-eai-redir-url

The names of the headers must match the point of contact settings for the
Advanced Access Control runtime. You can manage these settings with the local
management interface by going to Secure Access Control > Global Settings >
Point of Contact. Review the parameter value settings for the active point of
contact profile.

8 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

AAC point of contact parameter Reverse Proxy header name

fim.user.response.header.name am-eai-ext-user-id

fim.target.response.header.name am-eai-redir-url

fim.attributes.response.header.name am-eai-xattrs

fim.groups.response.header.name am-eai-ext

fim.user.request.header.name iv-user

fim.cred.request.header.name iv-creds

fim.groups.request.header.name iv-groups

fim.cred.response.header.name am-eai-pac

Upgrading the signing algorithms of existing policy servers
Internally Security Access Manager uses X509 certificates to handle authentication
of the communication channel between the various Security Access Manager
servers. You can run certain CLI commands to force the generation of new X509
certificates.

Before you begin

Make sure that your environment meets the following conditions.
v All appliances and any external PD.jar API applications must be updated to

version 9.0.2.1 before you use this upgrade feature. Older versions are not
supported and they will permanently lose contact with the policy server after it
has been updated with a new certificate.

v The time and date on all servers should be synchronized so that the “not before”
and “not after” attributes of the new certificates are accurate.

Procedure
1. Use the following CLI commands in order.

a. isam -> ca -> new

This command must be the first command to run. Use this command on the
appliance that is running the policy server. It creates a new CA certificate in
the policy server key file. The policy server keeps the original CA certificate
in its key file and continues to use its original server certificate to accept
connections from Security Access Manager servers that have not been
updated.
The policy server will be automatically restarted by this command.

b. isam -> ca -> update

This command imports the new CA certificate to all Security Access
Manager related key files on the appliance. It also forces all Security Access
Manager servers to request a new server certificate from the policy server. If
the policy server is on the same appliance, this command also updates the
server certificate of the policy server. Each Security Access Manager server
will start to use the new server certificate, but will also retain the original
CA certificate in its key file so that it can continue to connect to the policy
server until the server certificate of the policy server is also updated.
This command must be used after you execute the command in the
previous step to generate the new CA certificate and the command must be
run on all appliances that are configured to use the policy server. The
appliance that is running the policy server must be the last appliance on

Chapter 1. Upgrading configuration 9

which this command is run. This is because when the policy server has a
new personal certificate, clients that do not have the new CA certificate will
fail to connect to it. The policy server must be running for this command to
work.
In a scenario where a policy server is configured on a machine that is not in
a cluster and a cluster is using that non-cluster policy server, then the
cluster primary node must be the first node among the cluster nodes to run
the "update" command.
All Security Access Manager servers on the appliance on which this
command is run will be automatically restarted.

c. isam -> ca -> deprecate

This command must be used after you execute the command from the
previous step to update the Security Access Manager CA certificates of all
appliances. This command removes the original CA certificate from all
Security Access Manager key files on the appliance. This command is to be
used after all appliances have had their Security Access Manager CA
certificate updated.
All Security Access Manager servers on the appliance on which this
command is run will be automatically restarted.

If a cluster of appliances is configured to replicate the runtime, then after step
a, the subsequent step b might have to be delayed until the update on the
primary node is replicated to the node that is running the “update” command.
A new command isam → ca → replicated is provided for administrators to
detect when the replication has occurred.

2. If a system missed running the "update" operation before the “update” and
"deprecate" operation were run on the policy server, use the following
commands to allow the system to reconnect with the policy server.
a. isam -> ca -> add-old

This command adds the original CA certificate into the policy server key
file so that Security Access Manager servers using server certificates that are
signed by the original CA certificate can be accepted by the policy server.
The policy server will be restarted by this command.

b. isam -> ca -> remove-old

This command removes and saves the original CA certificate from the
policy server key file. The policy server will be restarted by this command.

Use these commands in the following sequence:
a. On the policy server appliance, run the command isam -> ca -> add-old.
b. On the appliances that need to be recovered, run the isam -> ca -> update

and isam -> ca -> deprecate commands.
c. On the policy server appliance, run the command isam -> ca ->

remove-old.
Example scenarios:
a. The environment consists of a cluster of two appliances. The policy server is

running on the primary master and the runtime data is being replicated to
the cluster. An additional appliance, which is not a member of the cluster,
also has a Web Reverse Proxy instance configured against the policy server.

Table 2. Scenario 1

Step
Primary (policy
server) node Secondary node Non-cluster node

1 new

10 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 2. Scenario 1 (continued)

Step
Primary (policy
server) node Secondary node Non-cluster node

2 update update

3 update

4 deprecate deprecate

5 deprecate

b. The environment consists of a cluster of two appliance that are configured
to replicate the runtime. The Web Reverse Proxy instances on these two
appliances are configured against a policy server that is running on an
appliance that is external to the cluster.

Table 3. Scenario 2

Step Primary node Secondary node
Non-cluster node
(policy server)

1 new

2 update (before other
cluster nodes)

3 update

4 update

5 deprecate

6 deprecate (after other
cluster nodes)

7 deprecate

Chapter 1. Upgrading configuration 11

12 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 2. Getting started with Advanced Access Control

Several configuration tasks must be completed in order to start using Advanced
Access Control.

After setup of IBM Security Access Manager Appliance, complete an initial
configuration of Advanced Access Control.

Note: If you have not already set up your appliance, see Getting Started.

Complete the following tasks:
1. Activate the product. You must activate both the IBM Security Access Manager

Platform offering and the Advanced Access Control Module.
2. Manage application interfaces.
3. Configure the runtime environment.
4. Manage user registries.
5. Run the isamcfg tool.
6. Review optional runtime security services EAS configuration tasks.

You also might need to complete the following task to enable communication
between appliances. See Chapter 8, “Adding runtime listening interfaces,” on page
39.

13

14 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 3. Managing application interfaces

To manage application interfaces with the local management interface, use the
Application Interfaces management page.

Procedure
1. From the top menu, select Manage System Settings > Network Settings >

Application Interfaces. All current application interfaces are displayed in tabs.
Each tab contains the current addresses and settings for a particular interface.

2. Select the tab of the interface that you want to work with. You can then add,
edit, or delete an address on the corresponding interface tab.
v Add an address

a. Click New.
b. In the Add Address page, provide details of the address to add.

– Select the Enabled check box if you want this address to be enabled
after creation.

– Select IPv4 or IPv6 to indicate the type of address to add.
- If IPv4 is selected:

1) Under IPv4 Settings, select either Static or Auto to indicate
whether the IPv4 address is static or DHCP-assigned.

Note: Only one address per interface can be set to auto. If an
existing address is already set to auto, then the Auto check box
is disabled.

2) Optional: If Static is selected in the previous step, you must enter
the IPv4 address and subnet mask. If Auto is selected in the
previous step, you can ignore the Address and Subnet Mask
field.

- If IPv6 is selected, enter the IPv6 Address and Prefix.
– Click Save.

v Modify an address

– Method 1:

a. Select the address to modify from the table.
b. Click Edit.
c. In the Edit Address page, modify as needed. See the “Add an address

” section for descriptions of the fields.
d. Click Save to save your changes.

– Method 2:

a. In the table, double-click the field to edit.
b. Make changes inline.

Note: Only some fields can be edited inline.
c. Click outside the editing field to save the changes.

v Delete an address

a. Select the address to delete from the table.
b. Click Delete.
c. In the Delete Address page, click Yes to confirm the deletion.

15

v Test connection to a server

a. Click Test.
b. On the Ping Server page, enter the IP address or name of the server to

test the connection with.
c. Click Test. A message is then displayed indicating whether the ping

operation was successful.

16 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 4. Managing the runtime component

To manage configuration files with the local management interface, use the
Runtime Component management page.

About this task

When you first install the appliance, you must configure the runtime component.
At any time after configuration, you can either edit the configuration settings, or
unconfigure the runtime component.

Procedure
1. From the top menu, select Secure Web Settings > Manage > Runtime

Component.
2. Select one of the following actions.
v Configure

a. On the Main tab, select the User Registry type of LDAP.

Note: The runtime component does not communicate with the user
registry, but you must select a registry type. It does not matter what user
registry your system uses. Selection of the user registry type has no effect
on the runtime component. Select LDAP in order to minimize the
configuration steps.

b. On the Policy Server tab, provide settings.
– Host name: The name of the host that hosts the IBM® Security Access

Manager policy server.
– Port: The port over which communication with the IBM Security

Access Manager policy server takes place.
– Management Domain: The IBM Security Access Manager domain

name.
c. Provide settings on the LDAP tab. Enter a Host name and accept the

default value for Port.

Note: The host name and port values are just placeholders. The runtime
component does not use the values, but the configuration wizard requires
that values must be set.

d. Click Finish to save the settings.
v Unconfigure the remote policy server

a. Select the Force check box if you want the unconfigure operation to
forcefully remove all of the configuration data. By default, this check box
is not selected.

Note: Select the Force check box only if the unconfiguration fails
repeatedly. Use this option only as a last resort.

b. Click Submit to confirm operation.
v Edit

a. Select the runtime configuration file of interest.

17

b. Edit the configuration file and then click Save to save the changes. If you
do not want to save the changes, click Cancel. If you want to revert to
the previous version of the configuration file, click Revert.

Note: For the changes to take effect, they must be deployed.
Related information:
Deploy pending changes
Some configuration and administration changes require an extra deployment step.

18 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 5. Managing user registries

The appliance runtime profile has a user registry associated. Use the User Registry
management page to administer the users and group memberships. The user
registry in discussion here is the one used by the runtime applications, not the one
used by the management interface.

Procedure
1. From the top menu, select the user interface panel for your licensing level.
v Secure Access Control > Manage > User Registry

v Secure Federation > Manage > User Registry

A list of all the current users in the registry is displayed. You can filter and
reorder the list of users.

2. Perform one or more of the following actions as needed:

Create a user in the registry

a. Click New.
b. In the Create User window, enter the user name and password for

the new user.
c. Click OK.

Delete a user from the registry

a. Select the user to delete.
b. Click Delete.
c. In the Delete User window, click Yes to confirm the delete

operation.

Change the password of a user in the registry

a. Select the user for which you want to change password.
b. Click Set Password.
c. In the Set Password window, enter the password in the New

Password and Confirm Password fields.
d. Click OK.

Manage group memberships of a user

a. Select the user of interest. The group memberships that are
associated with this user are displayed under the Group
Membership section.

b. You can add the user to a group or delete the user from a group in
the registry.

Add the user to a group

1) In the Group Membership section, click Add.
2) In the Add to Group window, select the group to add

this user to.

Note: Only a single group can be selected.
3) Click OK.

Remove the user from a group

19

1) In the Group Membership section, select the group to
remove the user from.

2) Click Delete.
3) In the Remove from Group window, click Yes to confirm

the removal.

20 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 6. Runtime security services external authorization
service

The runtime security services external authorization service (EAS) provides the
policy enforcement point function for context-based access.

You can configure the runtime security services EAS to include context-based
access decisions as part of the standard authorization on WebSEAL requests.
WebSEAL becomes the authorization enforcement point for access to resources that
context-based access protects.

The runtime security services EAS constructs a request that it sends to the policy
decision point (PDP). Based on the policy decision that is received from the PDP,
the EAS takes one of the actions listed in the following table.

Table 4. Runtime security services EAS access decisions.

Action Description

Permit Grants access to the protected resource.

Deny Denies access to the protected resource.

Permit with
Authentication

Grants access to the protected resource, after a specific
authentication action successfully takes place.

Permit with
Obligation

Grants access to the protected resource, after the user successfully
authenticates with a secondary challenge.

Deny with Obligation Denies access to the protected resource, after the user
unsuccessfully responds to a secondary challenge.

The following steps set up the initial integration with Advanced Access Control:
1. Configure runtime security services for client certificate authentication.
2. Run the isamcfg tool to automatically update the WebSEAL configuration file

and to complete other configuration setup.
3. (Optional) Update the WebSEAL configuration file to:
v Retain the version 7.0 attribute IDs.
v Define custom attributes for the authorization service.
v Map an obligation to a URL.
v Permit access decisions when runtime security services cannot be contacted.

For information about WebSEAL, see Web Reverse Proxy configuration.

Configuring runtime security services for client certificate
authentication

Configure runtime security services for client certificate authentication used for
authentication between WebSEAL and Advanced Access Control.

About this task

Before selecting the client certificate authentication option provided in the isamcfg
tool, you must perform the following general steps for the client certificate:

21

1. Generate a certificate that represents the user who will be authenticating from
WebSEAL, or the Web Reverse Proxy, to Advanced Access Control. For
example, use easuser.

2. Import that certificate into the WebSEAL or Web Reverse Proxy key database as
a personal certificate.

3. Import the signer of this certificate as a trusted certificate in the Advanced
Access Control keystore.

4. Set Accept Client Certificates to True on the appliance.

Procedure
1. Create a client certificate for user easusercert.

a. In the local management interface, go to Manage System Settings > Secure
Settings > SSL Certificates.

b. Select the pdsrv certificate database.
c. Click Manage > Edit SSL Certificate Database.
d. Click Personal Certificates.
e. Click New to create a new personal certificate.
f. Provide the following information:
v Certificate Label: easusercert
v Certificate Distinguished Name: cn=easuser
v Key Size: 2048
v Expiration Time (in days): 365

g. Click Save.
2. Deploy pending changes. See Chapter 15, “Deploying pending changes,” on

page 193.
3. Restart your reverse proxy instances.
4. Export the client certificate.

a. Select the pdsrv certificate database.
b. Click Manage > Edit SSL Certificate Database.
c. Click Personal Certificates.
d. Select the easusercert certificate you created.
e. Click Manage > Export.
f. Save the file.

5. Import the exported personal certificate as a signer certificate on the appliance.
The signer of the client certificate needs to be trusted. The certificate is
self-signed. Importing the easusercert as a signer certificate into the appliances
allows that trust.
a. Click Manage System Settings > Secure Settings > SSL Certificates.
b. Select the rt_profiles_keys certificate database.
c. Click Manage > Edit SSL Certificate Database.
d. Click Signer Certificates.
e. Click Manage > Import.
f. Click Browse.
g. Browse to the directory that contains the file to be imported and select the

file. Click Open.
h. Click Import. A message that indicates successful import is displayed.

22 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

6. Deploy pending changes. See Chapter 15, “Deploying pending changes,” on
page 193.

7. Configure the appliance for client certificate authentication.
a. In the local management interface, go to Secure Access Control > Global

Settings > Runtime Parameters.
b. Select Accept Client Certificates.
c. Click Edit and set the value as True.

8. Restart the runtime.

What to do next

Run the isamcfg tool. Ensure that you respond to the following isamcfg prompts
appropriately:
v When answering the question Select the method for authentication between

WebSEAL and the Advanced Access Control rumtime listening interface in the
isamcfg tool, select Certificate Authentication.

v When prompted to enter the Advanced Access Control rumtime listening
interface SSL keyfile label, enter the label of the certificate that represents
the user who will be authenticating from WebSEAL or Web Reverse Proxy to
Advanced Access Control.

For more information, see “isamcfg Security Access Manager appliance
configuration worksheet” on page 32.

Permitting access decisions when runtime security services cannot be
contacted

Update the WebSEAL configuration file if you want to change the behavior when
runtime security services servers cannot be contacted by the EAS.

About this task

By default, if the EAS cannot contact a runtime security services server, the EAS
removes the server from the pool of servers. If all of the servers are removed from
the pool, WebSEAL returns an error. To prevent the error, you can permit access
decisions even if no servers can be contacted. The following instructions show you
how to update the WebSEAL configuration file to make this change.

Important: When you perform this task, every single request will be permitted
only when none of the runtime security services servers are available. This
includes access that might not be permitted if the server was available.

Procedure
1. Open the WebSEAL configuration file.
2. Add the following entry to the [rtss-eas] stanza:

permit-when-no-rtss-available = true

The default value for this entry is false.
3. Save the file.
4. Restart the WebSEAL server for the change to take effect.

Chapter 6. Runtime security services external authorization service 23

Results

If none of the servers are available, the user is always be permitted to access a
resource. The access is granted even when the runtime security services server
would normally deny access if it was available.

Retaining the version 7.0 attribute IDs in existing policies
If your existing policies contain any of the changed attribute IDs, you can update
your WebSEAL configuration file to continue using risk-based access version 7.0
IDs.

Before you begin

. Determine whether it is necessary for you to continue using the risk-based access
version 7.0 IDs.

About this task

Use the following procedure to continue to use the version 7.0 attribute IDs.

Procedure
1. Open the WebSEAL configuration file, and locate the [rtss-eas] stanza.
2. Add the provide_700_attribute_ids flag and set it to true. This flag enables

your existing policies to use the version 7.0 attribute IDs. For example:
[rtss-eas]
provide_700_attribute_ids = true

3. Save the file.
4. Restart the WebSEAL server for the changes to take effect.

24 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 7. Using the isamcfg tool

Various features of Advanced Access Control can be configured with the isamcfg
tool.

The isamcfg tool helps automate configuration of the following software and
appliances:
v WebSEAL
v Security Access Manager appliance
v Security Access Manager for Web appliance
v Security Access Manager for Web software version
v Security Web Gateway appliance

The tools helps with:
v Creating a junction that points to the Advanced Access Control runtime

endpoint.
v Creating a Security Access Manager POP used by Advanced Access Control to

attach a policy.
v Configuring the instance of the appliance that supplies the web function, such as

WebSEAL, with the instance of the appliance that provides the authorization
server for Advanced Access Control.

v Configuring SSL, sets up key stores, trust stores, and authentication
configuration between Advanced Access Control and the web function.

v Configuring a set of default obligation-to-URL mappings for the authentication
service.

v Modifying the Security Access Manager appliance authentication configuration
to support the authentication service.

Note: If you are upgrading, see the installation and configuration instructions in
the IBM Knowledge Center.

If you are upgrading from a previous version of the product, run the isamcfg tool
to unconfigure the current version. Then, run the isamcfg tool to configure the new
version.

Configuring an appliance reverse proxy instance from the appliance
Use the isamcfg tool to configure an appliance reverse proxy instance from a local
or remote appliance.

About this task

Run the command from the appliance command-line interface.

You must use this method to configure a reverse proxy instance on an appliance
that is a restricted node in a cluster.

Note: Your appliance can be one of the following product versions:
v Security Access Manager 9.*
v Security Access Manager for Web 8.*

25

v Security Web Gateway 7.*

Procedure
1. Connect to the appliance with SSH.
2. Enter the administrator user ID and password.
3. Navigate to isam > aac > config. The isamcfg tool starts.
4. Use isamcfg to complete the configuration. For configuration details, see

“isamcfg Security Access Manager appliance configuration worksheet” on page
32.

Results

When you complete the configuration, a summary screen displays indicating that
the configuration is complete.

Configuring an appliance reverse proxy instance from an external
machine

Use the isamcfg tool to configure an appliance reverse proxy instance from a
remote machine.

Before you begin

Your appliance server and Advanced Access Control servers must be listening for
connections on the appropriate management IP addresses and port numbers.

To use the isamcfg tool, you must meet the following conditions:
v Obtain an IBM® JRE v6.0 Update 10 or later.
v At least one reverse proxy instance exists on the appliance.
v Configure the com.ibm.security.cmskeystore.CMSProvider in the java.security file,

which is in $JAVA_HOME/lib/security, of the IBM® JRE. The isamcfg tool uses
the ikeycmd command to manipulate key database files. This requires the JRE to
have the CMS provider that is configured in the java.security file.

v Ensure that the ikeycmd tool in the $JAVA_HOME/bin is on the system path.
v The reverse proxy instance that you are configuring cannot be on an appliance

that is a restricted node in a cluster. See “Configuring an appliance reverse
proxy instance from the appliance” on page 25.

About this task

Use this procedure if you want to configure an appliance that is on a machine that
is separate from the Advanced Access Control appliance. Once you download the
tool from the Advanced Access Control appliance, you can then use the command
shell to configure an existing remote appliance.

The appliance you configure can be one of the following product versions:
v Security Access Manager 9.*
v Security Access Manager for Web 8.*
v Security Web Gateway 7.*

26 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Procedure
1. Download the isamcfg.jar from the IBM Security Access Manager appliance

with Advanced Access Control activated.
2. From the command line, type:

java -jar isamcfg -action config -cfgurl http://isam-appliance-host-url/

The isam-appliance-host-url/ refers to the URL of the activated Security Access
Manager appliance base.

3. Use the isamcfg tool to complete the configuration. For configuration details,
see “isamcfg Security Access Manager appliance configuration worksheet” on
page 32.

Results

When you complete the configuration, a summary screen displays indicating that
the configuration is complete.

Configuring a WebSEAL instance
Use the isamcfg tool to configure WebSEAL as a point of contact and policy
enforcement point for an appliance that has Advanced Access Control activated.

Before you begin

Make sure that your WebSEAL server is listening for connections on the
appropriate IP addresses and port numbers. You can control the IP address and
port number by using the WebSEAL configuration file. The IP address is controlled
by the [server] network-interface configuration option, and the port numbers are
controlled by the [server] https-port and [server] http-port options.

To use the isamcfg tool, you must:
v Obtain an IBM JRE, version 8.0 or later that is supported by the version of

PDJrte installed.
v Ensure that the Java Runtime used to start the isamcfg tool is configured into

the Security Access Manager domain in full mode that uses the PDJRTE. An
error is displayed if this condition is not met. For more information about using
the PDJRTE, see http://download.boulder.ibm.com/ibmdl/pub/software/dw/
jdk/security/60/iKeyman.8.User.Guide.pdf.

v Ensure that the isamcfg tool is able to access the application interface for
Advanced Access Control.

v Run the command from the appliance that hosts the reverse proxy instance, if
the instance is a restricted node in a cluster. Also, you must use the
command-line interface to run the command.

For IBM Security Access Manager WebSEAL, version 7.0 or later, you must also
meet the following conditions:
v Configure the com.ibm.security.cmskeystore.CMSProvider in the java.security file,

which is in $JAVA_HOME/lib/security, of the IBM JRE. The isamcfg tool uses the
ikeycmd command to manipulate key database files. This requires the JRE to
have the CMS provider that is configured in the java.security file.

v Ensure that the ikeycmd tool in the $JAVA_HOME/bin is on the system path.

For Tivoli Access Manager for e-business WebSEAL versions 6.1.1 or prior, ensure
that gsk7ikm tool is on the system path.

Chapter 7. Using the isamcfg tool 27

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf

Run the tool on the same system where WebSEAL is located.

About this task

This procedure connects the WebSEAL software version 7.* to Security Access
Manager.

Note: This procedure is not intended for deployments that have a Security Access
Manager appliance with the WebSEAL function.

Procedure
1. Download the isamcfg.jar from the Security Access Manager appliance with

Advanced Access Control.
2. On the WebSEAL machine, set up a JAVA_HOME environment variable for the

JRE: For example:
export JAVA_HOME=/opt/ibm/java-x86_64-60/jre, or
export JAVA_HOME=/opt/IBM/WebSphere/AppServer/java/jre

3. Add $JAVA_HOME/bin to the path export PATH=$JAVA_HOME/bin:$PATH.
4. From the command line, type:

java -jar isamcfg.jar -action config -cfgfile /path/to/webseald.conf

5. Use the isamcfg tool to complete the configuration. For configuration details,
see “isamcfg WebSEAL configuration worksheet” on page 34.

Results

When you complete the configuration, a summary screen displays indicating that
the configuration is complete.

Configuring WebSEAL in a highly available environment
When you are working in an environment with multiple Security Access Manager
with Advanced Access Control servers, you can configure WebSEAL for failover
and high availability.

About this task

You can configure the WebSEAL junction and Runtime Security Services External
Authorization Service (RTSS EAS) to take advantage of high availability.

Figure 1 on page 29 depicts an environment where WebSEAL is configured to use
two Security Access Manager servers, AAC_1 and AAC_2. AAC_1 and AAC_2 are
appliances with Advanced Access Control activated. For high availability, you can
configure a stateful junction to each available appliance. You can also include each
server in the RTSS EAS configuration.

28 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Advanced Access Control provides the isamcfg tool which configures each
WebSEAL instance. This tool sets up a single junction server and configures the
RTSS EAS to point to a single appliance.

If you have more than one appliance with Advanced Access Control activated, you
need to manually configure the additional servers.

Procedure
1. For each Advanced Access Control appliance, include a server entry in the

[rtss-cluster:<cluster>] stanza in the WebSEAL configuration file (for
example, webseald-default.conf).
[rtss-cluster:cluster1]
server = 9,https://192.0.2.0:443/rtss/authz/services/AuthzService
server = 9,https://192.0.2.5:443/rtss/authz/services/AuthzService

Note:

v The first parameter in each entry is the priority of the server in the cluster.
Set the priority of your servers as appropriate to your environment. Using a
priority of 9 for all servers evenly distributes the load and switches between
the available appliances.

v The second parameter is a well-formed Uniform Resource Locator (URL) for
the runtime security services on the appliance. Use the IP address of the
application interface on the Advanced Access Control-activated appliance.

2. Use the pdadmin utility to add extra servers to the junction.
pdadmin sec_master> server task default-webseald-test.example.com add -h
192.0.2.0 -p 443 /mga

pdadmin sec_master> server task default-webseald-test.example.com add -h
192.0.2.5 -p 443 /mga

Note:

v You must replace all example values in these commands with values that are
appropriate to your environment.

v The first parameter in this server task command is the fully qualified name
of the WebSEAL server. For example, default-webseald-test.example.com.

v The -h option specifies the appliance that you want to add to the junction.
Use the IP address of the application interface on the target appliance.

v The isamcfg tool creates an SSL junction by default. Therefore, when you are
adding servers to this junction, use the SSL port number 443.

v By default, the isamcfg tool creates a junction that is called /mga. This default
value is used in the example commands.

AAC_1

AAC_2

WebSEALBrowser

JCT

RTSS
EAS

IBM Security Access
Manager with

Advanced Access
Control servers

Figure 1. WebSEAL client in an environment with multiple IBM Security Access Manager
servers

Chapter 7. Using the isamcfg tool 29

3. For secure communication between WebSEAL and the appliance, use trusted
certificates. WebSEAL must trust the certificates that are presented by the
appliance. To establish this trust, you can use a common certificate authority
(CA) that is trusted in your environment or you can configure WebSEAL to
trust each individual certificate.
Similarly, for client certificate authentication, the Advanced Access Control
appliance must trust the certificates that are presented by WebSEAL.

4. To configure failover between junctioned servers, set the use-new-stateful-on-
error stanza entry to yes for the stateful junction to the appliance. That is,
update the use-new-stateful-on-error entry in the [junction:/mga] stanza in
the WebSEAL configuration file. Where /mga is the name of the junction. The
isamcfg tool creates a junction that is called /mga by default, but this name is
configurable.
If a stateful junction becomes unavailable when this value is set to yes,
WebSEAL fails over to a different server. For example, if the stateful junction to
AAC_1 in Figure 1 on page 29 becomes unavailable, WebSEAL fails over to
AAC_2.

isamcfg reference
Use the isamcfg tool to configure WebSEAL and Security Access Manager
appliance servers. You configure a point of contact and policy enforcement point.

The appliance you configure can be one of the following product versions:
v Security Access Manager 9.*
v Security Access Manager for Web 8.*
v Security Web Gateway 7.*

isamcfg command line reference
Use the command line options described in this section to configure and
unconfigure WebSEAL and Security Access Manager appliance servers.

Syntax
java -jar isamcfg.jar -action mode options

Description

The configuration tool has two modes of operation:
v config

v unconfig

Each mode uses different command line options.

Options

-action config options
This command configures a WebSEAL or Secure Access Manager appliance
server. This mode uses different command line options:

-cfgfile file
Specifies which WebSEAL configuration file to use. This option is
required when configuring a WebSEAL server.

30 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

-cfgurl URL
Specifies the appliance configuration URL to use. This option is
required if configuring a Security Access Manager appliance.

-rspfile file
Specifies the response file for a configuration that is not interactive.

Default value: Interactive configuration.

-record
Generates a response file and make some necessary changes to
WebSEAL configuration file but does not modify any other Security
Access Manager appliance configuration.

-sslfactory
Specifies the secure socket connection factory to use.

When the Security Access Manager environment is enabled for NIST
SP800-131a Strict mode, the only supported factory type is TLSv1.2.

If the parameter is not specified, the factory default is TLS.

-action unconfig options
This command unconfigures a WebSEAL or Security Access Manager
appliance server. This mode uses different command line options:

-cfgfile file
Specifies which WebSEAL configuration file to use. This option is
required when unconfiguring a WebSEAL server.

-cfgurl URL
Specifies the Security Access Manager appliance configuration URL to
use. This option is required when unconfiguring a Security Access
Manager appliance.

-rspfile file
Specifies the response file for a configuration that is not interactive.

Default value: Interactive configuration.

-record
Generates a response file and make some necessary changes to
WebSEAL configuration file but does not modify any other Security
Access Manager appliance configuration.

-sslfactory
Specifies the secure socket connection factory to use.

When the IBM Security Access Manager environment is enabled for
NIST SP800-131a Strict mode, the only supported factory type is
TLSv1.2.

If the parameter is not specified, the factory default is TLS.

Example
java -jar isamcfg.jar -action -config -cfgfile webseald.conf

The log files for the isamcfg tool are written to the system temporary directory.
The system temporary file directory is specified by the system property
java.io.tmpdir.

Chapter 7. Using the isamcfg tool 31

isamcfg Security Access Manager appliance configuration
worksheet

Use the worksheet for the isamcfg command-line tool to collect the information
you need about the configuration properties before you run the tool.

Description of properties

Note: If you are upgrading the Advanced Access Control module, see the
installation and configuration instructions.

Select/deselect the capabilities you would like to configure by typing its
number.

By default, the tool selects context-based authorization, authentication
service, and API protection. You can configure all of them at the same time.
If you do not want to configure them all, clear the capability that you do
not want to configure by selecting its corresponding number.

Context-based Authorization

Configure this capability if your environment requires the use of
behavioral and contextual data analytics to calculate the risk of a
transaction.

Authentication service

Configure this capability if your environment requires the use of a
step-up authentication type of authentication.

API Protection

Configure this capability if your environment requires the use of
an OAuth authentication type to protect your Application
Programming Interface (API).

Advanced Access Control Local Management Interface hostname
Enter the Local Management Interface hostname or IP address.

Advanced Access Control Local Management Interface port

Specify the port number of the Local Management Interface. The tool
displays a port number.

Example value: 443

Press Enter to use the displayed port or enter your preferred port.

Advanced Access Control administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Advanced Access Control administrator password

Enter the corresponding administrator password.

SSL certificate data valid (y/n)

Press y to validate that the displayed SSL certificate values are valid
otherwise, press n.

Security Access Manager Appliance Local Management Interface hostname

Enter the Security Access Manager Appliance Local Management Interface
hostname or IP address. The tool might display a value. Press Enter to use
the displayed value or enter your preferred hostname or IP address.

32 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Security Access Manager Appliance Local Management Interface port

Specify the port number of the Local Management Interface port. The tool
displays a port number.

Example value: 443

Press Enter to use the port or enter your preferred port.

Security Access Manager Appliance administrator user ID
Press Enter to use the user ID or enter your preferred user ID.

Security Access Manager Appliance administrator password
Enter the corresponding administrator password.

SSL certificate data valid (y/n)

Press y to validated that the displayed SSL certificate values are valid
otherwise, press n.

Instance to configure
The tool displays the available instances that you can configure in a list.
Select the instance that you would like to configure.

Security Access Manager administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Security Access Manager administrator password

Enter the corresponding administrator password.

Security Access Manager domain name [Default]:
Enter the corresponding domain name.

Advanced Access Control runtime listening interface hostname

Enter the hostname or IP address of the runtime listening interface for the
appliance that has Advanced Access Control activated.

Example value: 172.16.229.10

Advanced Access Control runtime listening interface port

Specify the port number of the runtime listening interface for the appliance
that has Advanced Access Control activated.

Example value: 443

Select the method for authentication between WebSEAL and the Advanced
Access Control runtime listening interface

Certificate authentication
Use a certificate to authenticate between WebSEAL and the
Advanced Access Control runtime listening interface.

User ID and password authentication
Use credentials to authenticate between WebSEAL and the
Advanced Access Control runtime listening interface.

The default username is easuser and the default password is
passw0rd.

Advanced Access Control runtime listening interface user ID:

Press Enter to use the displayed user ID or enter your preferred user ID.

Advanced Access Control runtime listening interface password:

Chapter 7. Using the isamcfg tool 33

Enter the corresponding Advanced Access Control runtime listening
interface password.

SSL certificate data valid (y/n):

Press y to validated that the displayed SSL certificate values are valid
otherwise, press n.

Automatically add CA certificate to the key database (y/n)
Press y if you want to automatically add the CA certificate to the key
database, otherwise press n.

Note: Web Reverse Proxy instance restarts if y is selected.

The CA certificate already exists in the key database. Replace the CA
certificate? (y/n)

Press y if you want to automatically replace the CA certificate to the key
database, otherwise press n.

The following files are available on the Security Access Manager Appliance.
Choose one file for the following pages:
v The 400 Bad Request response page. The default page is

oauth_template_rsp_400_bad_request.html.
v The 401 Unauthorized response page. The default page is

oauth_template_rsp_401_unauthorized.html.
v The 502 Bad Gateway response page. The default page is

oauth_template_rsp_502_bad_gateway.html.

If you are not running theisamcfg tool on the appliance, you can choose
Cancel to upload a local file.

If you are running theisamcfg tool on the appliance, you must upload your
custom response file. Upload the file to the Security Access Manager
appliance first before you run the isamcfg tool so that the file is displayed
as an option. See “Uploading OAuth response files” on page 138.

The junction mga contains endpoints that require Authorization HTTP header
to be forwarded to the backend server. Do you want to enable this feature?
[y|n]? Press y to allow endpoints that require Authorization HTTP header to be

forwarded to the backend server. Otherwise, press n.

isamcfg WebSEAL configuration worksheet
Use the worksheet for the isamcfg command-line tool to collect the information
you need about the configuration properties before you run the tool.

Description of properties

Note: If you are upgrading the Advanced Access Control module, see the
installation and configuration instructions.

Select/deselect the capabilities you would like to configure by typing its
number.

By default, the tool selects context-based authorization, authentication
service, and API protection. You can configure all of them at the same time.
If you do not want to configure them all, clear the capability that you do
not want to configure by selecting its corresponding number.

Context-based Authorization

34 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Configure this capability if your environment requires the use of
behavioral and contextual data analytics to calculate the risk of a
transaction.

Authentication service

Configure this capability if your environment requires the use of a
step-up authentication type of authentication.

API Protection

Configure this capability if your environment requires the use of
an OAuth authentication type to protect your Application
Programming Interface (API).

Advanced Access Control Local Management Interface hostname
Enter the Local Management Interface hostname or IP address.

Advanced Access Control Local Management Interface port

Specify the port number of the Local Management Interface. The tool
displays a port number.

Example value: 443

Press Enter to use the displayed port or enter your preferred port.

Advanced Access Control Appliance administrator user ID

Press Enter to use the displayed user ID or enter your preferred user ID.

Advanced Access Control Appliance administrator password

Enter the corresponding administrator password.

Security Access Manager Domain name
Enter the Security Access Manager domain name. Press Enter to use the
default domain name or enter your preferred domain name.

Security Access Manager administrator user ID

Enter a valid Security Access Manager administrator user ID. Press Enter
to use the user ID or enter your preferred user ID.

Security Access Manager administrator password
Enter the corresponding Security Access Manager administrator password.

Advanced Access Control runtime listening interface hostname

Enter the hostname or IP address of the runtime listening interface for the
appliance that has Advanced Access Control activated.

Example value: 172.16.229.10

Advanced Access Control runtime listening interface port

Specify the port number of the runtime listening interface for the appliance
that has Advanced Access Control activated.

Example value: 443

Advanced Access Control runtime listening interface SSL key file

Specify the path to the keystore that contains the SSL keys that are
required to connect to the Advanced Access Control runtime listening
interface. Press Enter to use the default key file.

Advanced Access Control runtime listening interface SSL stash file

Chapter 7. Using the isamcfg tool 35

Specify the path to the stash file that contains the password to the
Advanced Access Control runtime listening interface SSL keyfile. Press
Enter to use the default stash file.

Select the method for authentication between WebSEAL and the Advanced
Access Control runtime listening interface

Certificate authentication

Use a certificate to authenticate between WebSEAL and the
Advanced Access Control runtime listening interface.

Note: On Windows operating systems, you must use certificate
authentication for WebSEAL from IBM Security Access Manager for
Web 7.0.0.2.

User ID and password authentication
Use credentials to authenticate between WebSEAL and the
Advanced Access Control runtime listening interface.

The default username is easuser and the default password is
passw0rd.

Advanced Access Control runtime listening interface SSL key file label

Specify the key label of the certificate to present to Advanced Access
Control at run time.

SSL certificate data valid (y/n)

Press y to validated that the displayed SSL certificate values are valid
otherwise, press n.

Automatically add CA certificate to the key database (y/n)
Press y if you want to automatically add the CA certificate to the key
database, otherwise press n.

Note: Web Reverse Proxy instance restarts if y is selected.

The CA certificate already exists in the key database. Replace the CA
certificate? (y/n)

Press y if you want to automatically replace the CA certificate to the key
database, otherwise press n.

Runtime security service external authorization service library
By default, the tool displays the available library. Press Enter to use the
available library or enter your preferred library.

The 400 Bad Request response page:
Choose one for the 400 Bad Request response page. The default page is
oauth_template_rsp_400_bad_request.html.

The following files are available on the Secure Access Manager Appliance.
Choose one file for the following pages:
v The 400 Bad Request response page. The default page is

oauth_template_rsp_400_bad_request.html.
v The 401 Unauthorized response page. The default page is

oauth_template_rsp_401_unauthorized.html.
v The 502 Bad Gateway response page. The default page is

oauth_template_rsp_502_bad_gateway.html.

36 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Using a response file
Create and use a response file with the isamcfg tool to configure WebSEAL and
IBM Security Access Manager for Web 7.0.

A response file records the actions to be taken by the isamcfg tool.

Use the -record command to create a response file without changing the
configuration. For example:
/usr/lib/jvm/jre-1.7.0-ibm.x86_64/bin/java -jar
/opt/IBM/FIM/tools/isamcfg/isamcfg.jar -action config
-cfgurl https://1.1.1.1/ -record

You can then use the response file to run the isamcfg tool non-interactively. Use
the -rspfile command to run the isamcfg tool with a response file. For example:
/usr/lib/jvm/jre-1.7.0-ibm.x86_64/bin/java -jar
/opt/IBM/FIM/tools/isamcfg/isamcfg.jar -action config
-cfgurl https://1.1.1.1/ -rspfile /tmp/isamcfg-access-control.properties

The contents of a response varies depending on your configuration, for example:
#Fri Sep 06 12:45:28 EST 2013
webseal.addcacert=y
tam.admin=sec_master
wga.pass=
pop.replace=pop.reuse
mga.admin.ssl.sha1fingerprint=CD\:1C\:F0\:D9\:A6\:3A\:7A\:11\
:16\:CC\:18\:CB\:56\:02\:08\:E2\:53\:99\:83\:3B
mga.runtime.auth.mode=mga.runtime.auth.ba
mga.runtime.ssl.md5fingerprint=E4\:65\:16\:A9\:D8\:B2\:97\
:3C\:F6\:13\:19\:77\:25\:8B\:B0\:0A
mga.admin.ssl.subjectdn=CN\=amapp800
wga.ssl.md5fingerprint=B2\:9F\:87\:8A\:D1\:49\:D9\:A1\:BA\
:03\:4B\:41\:E9\:DF\:44\:C7
rtss.password=
wga.ssl.sha1fingerprint=CD\:1C\:F0\:D9\:A6\:3A\:7A\:11\:16\
:CC\:18\:CB\:56\:02\:08\:E2\:53\:99\:83\:3B
wga.instance=mobile
mga.admin.user=admin
wga.port=443
isam.mode=context_based_authorization,
authentication_service,
mga.runtime.port=443
mga.admin.pass=
jct.replace=reuse
wga.host=1.1.1.1
mga.runtime.host=1.1.1.1
mga.admin.ssl.md5fingerprint=B2\:9F\:87\:8A\:D1\:49\:D9\
:A1\:BA\:03\:4B\:41\:E9\:DF\:44\:C7
wga.ssl.subjectdn=CN\=amapp800
mga.runtime.ssl.subjectdn=CN\=isam, O\=ibm, C\=us
mga.admin.ssl.issuerdn=CN\=amapp800
rtss.user=admin
mga.runtime.ssl.sha1fingerprint=F9\:38\:5A\:53\:0A\:DA\:1A\
:FF\:67\:46\:C9\:58\:3F\:F1\:2B\:00\:B0\:6C\:83\:32
mga.admin.port=443
tam.password=
wga.ssl.issuerdn=CN\=amapp800
mga.runtime.ssl.issuerdn=CN\=isam, O\=ibm, C\=us
wga.user=admin
mga.admin.host=1.1.1.1

Chapter 7. Using the isamcfg tool 37

38 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 8. Adding runtime listening interfaces

Add your application interfaces to the list of runtime listening interfaces. This
procedure enables communication between an appliance with Advanced Access
Control and another Security Access Manager appliance.

Before you begin

When you run the isamcfg tool, ensure that you specify the runtime listening
interface host name and port when prompted.

Define your application interfaces.

About this task

Use the following procedure only if your deployment has Advanced Access
Control running on an appliance that is separate from another Security Access
Manager appliance.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Global Settings, click Runtime Parameters.
4. On the Runtime Tuning Parameters page, click Add to add a runtime listening

interface on port 443:
a. For Interface, select your appliance interface.
b. For Port, select or type 443.
c. Ensure SSL is checked.
d. Click OK.

5. Click Add to add a runtime listening interface on port 80:
a. For Interface, select your appliance interface.
b. For Port, select or type 80.
c. Clear the SSL checkbox.
d. Click OK.

6. Deploy these changes.

39

40 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 9. Support for compliance with NIST SP800-131a

Advanced Access Control supports the requirements that are defined by the
National Institute of Standards and Technology (NIST) Special Publications
800-131a.

SP 800-131a strengthens security by defining stronger cryptographic keys and more
robust algorithms. The standard defines a period to allow customers time to make
the transition to the new requirements. The transition period closes at the end of
2013. See the NIST publication Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths for the new standards that are
defined by Special Publication 800-131, and details about allowed protocols, cipher
suites, and key strength.

You can run the appliance that provides Advanced Access Control in either of the
two modes that are supported by NIST SP800-131a:
v Transition mode
v Strict mode

When configured in transition mode, server components support the transition
mode Transport Layer Security (TLS) protocols, which include TLS 1.0 and TLS 1.1.
Client components, such as the HTTPS client that performs one-time password
(OTP) delivery and the syslog auditing client, support TLS 1.2 only.

When configured in strict mode, both the server components and the client
components of Advanced Access Control support TLS 1.2 only.

To deploy in transition mode, you need to select only the mode during initial
configuration of the appliance. To run in strict mode, you must also set an extra
configuration option.

If your deployment uses client certificate authentication, and you want to use strict
mode, you must complete more configuration steps for the point of contact server.
The point of contact server can be either IBM Security Access Manager WebSEAL
or IBM Security Web Gateway appliance 7.0.

Transition mode

When you install the appliance, select the option to enable FIPS 140-2 mode. This
selection turns on compliance for NIST SP800-131a.

When enabled, NIST SP800-131a compliance is run in transition mode. You do not
have to complete any further configuration steps in order to run in transition
mode.

Note:

v Enable FIPS 140-2 mode only if you must comply with the NIST SP800-131a
requirements. There is no advantage to enabling FIPS 140-2 mode if your
installation does not require this compliance.

41

http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

Important: The setting of the FIPS 140-2 Mode option is permanent and cannot
be turned off after it is enabled. To disable the option, you must reinstall the
appliance.

v If you enable FIPS 140-2 mode, the appliance is automatically restarted before it
continues with the rest of the setup.

v FIPS Limitation: For Advanced Access Control, the FIPS 140-2 mode option in
the appliance setup wizard does not turn on compliance for FIPS 140-2. It turns
on compliance for NIST SP800-131a only.

Strict mode

Overview of configuration tasks:
1. Enable FIPS 140-2 mode during appliance configuration.
2. Set a tuning parameter to enable strict mode.
3. (Optional) If your deployment uses client certificate authentication, configure

TLS v1.2.

Instructions:
1. Install the appliance and choose to enable FIPS 140-2 mode. This selection turns

on compliance for NIST SP800-131a.
2. Use the appliance local management interface (LMI) to modify the advanced

tuning parameter nist.sp800-131a.strict. This parameter is set by default to
false. Complete the following steps:
a. Verify that your browser supports TLS 1.2.

CAUTION:
Strict mode requires the use of TLS 1.2. Some browsers support TLS 1.2
but have the support disabled by default. If you set the value of the
nist.sp800-131a.strict parameter to true, and your browser is not
configured to support TLS 1.2, you lose access to the appliance LMI.

b. On the LMI, select Manage System Settings > System Settings > Advanced
Tuning Parameters.

c. Select nist.sp800-131a.strict. Select Edit. Change the value to true.
3. Determine whether your deployment uses basic authentication or client

certificate authentication, for communication between Advanced Access Control
and the point of contact server.
v If you use basic authentication, the configuration is complete.
v If you use client certificate authentication, continue with the next section.

Client certificate configuration for strict mode

If you use client certificate authentication on the point of contact server, you must
configure it to be in compliance with NIST SP800-131a strict mode.

To comply with strict mode, configure the point of contact server to use TLS v.1.2
for client certificate authentication.

You must create a self-signed certificate, and configure the point of contact server
to use TLS v1.2 with the runtime security services external authorization service
(EAS). Complete each of the following tasks:
1. Create a self-signed certificate.

42 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v Review the “Before you begin” section of “Configuring runtime security
services for client certificate authentication” on page 21. Select one of the
following actions, as fits your deployment:
– If your deployment uses Web Reverse Proxy, follow the instructions in

“Configuring runtime security services for client certificate authentication”
on page 21. In Step 1 “Create a client certificate for user easusercert",
specify:
Signature Algorithm: SHA2withRSA

– If your deployment uses WebSEAL:
Manually create a self-signed certificate. To specify a NIST-compliant
algorithm, use an external utility such as gsk7ikm. Open the pd.srv
certificate database, and create a self-signed certificate with these
credentials:
Certificate Label: easusercert
Certificate Distinguished Name: cn=easuser
Key Size: 2048
Expiration Time (in days): 365
Signature Algorithm: SHA2withRSA

Note:

- The user cn=easuser is the built-in user, but any user with sufficient
permissions (as created by the Advanced Access Control administrator)
can be used instead.

- It is not mandatory that WebSEAL has FIPS 140-2 mode configured in
order to communicate with the Advanced Access Control server.
However, to comply with NIST SP800-131a strict mode, client certificate
authentication between WebSEAL and the server must be over TLS v1.2.

- See the WebSEAL information in the IBM Knowledge Center for
complete information on configuring client certificate authentication.

2. Configure the point of contact server to use TLS v1.2 with the Runtime Security
Services External Authorization Service (EAS)
The point of contact server uses the EAS to process authorization requests. The
default EAS setting for communication specifies Secure Sockets Layer (SSL) v2,
which is not supported by Advanced Access Control when it operates in NIST
SP800-131a strict mode. If you do not adjust the configuration setting for the
EAS, the authorization request (and the regular ping call) does not succeed.
Select the action that fits your deployment:
v If you deploy your point of contact server on the same computer as the

appliance:
a. In the Advanced Access Control local management interface, select

Reverse Proxy Settings > your_instance_name > Manage >
Configuration > Edit to open the configuration file. Add the following
parameter to the existing stanza:
[rtss-cluster:cluster1]
gsk-attr-name = enum:438:1

b. Click Save. Deploy the changes. Restart the instance.
v If you deploy your point of contact server on a different computer from the

appliance:
a. Open the WebSEAL instance configuration file for editing. For example:

/opt/pdweb/etc/webseald-appliance-default.conf.
b. Add the following parameter to the existing stanza:

[rtss-cluster:cluster1]
gsk-attr-name = enum:438:1

Chapter 9. NIST compliance 43

.

44 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 10. Authentication

Security Access Manager provides user authentication functions that allow for
simple and complex authentication scenarios.

The users who want to access your protected resources can be challenged to
provide credentials to authenticate with the various authentication technologies
that are supported by Security Access Manager. The component responsible for this
capability is called the Authentication Service. The Authentication Service consists
of a framework you can use to enforce the execution of various supported
authentication mechanisms to authenticate users.

Authentication mechanisms are modules that authenticate the user with a specific
challenge or authentication technology, such as user name and password and
one-time password. The order on which the authentication mechanisms are run is
controlled by an authentication policy. An authentication policy is an XML
document that you create with the authentication policy editor. The authentication
policy dictates the order of authentication mechanisms to execute.

During an authentication event, the Authentication Service manages the execution
of the authentication policy that is required for the event. Each authentication
mechanism is included on the authentication policy workflow. This workflow is
started by the Authentication Service authentication policy. After the user
successfully authenticates to all of the authentication mechanisms that are required
by the authentication policy, the Authentication Service generates a user credential.
This user credential creates an authenticated session for the user at the point of
contact.

The administrator can determine what information is included in the credential by
configuring the authentication policy. The authentication policy editor provides a
credential editor that an administrator can use to specify the attributes to be
included in the resulting credential.

The generated credential contains:
v authenticationTypes and authenticationMechanismTypes attributes to indicate

the authentication policies.
v Authentication mechanisms that are completed during the authenticated session.

The administrator can use authenticationTypes and
authenticationMechanismTypes attributes to author an access control policy to
require:
v The user to authenticate through an authentication policy or mechanism once

per policy.
v The user to authenticate every time they access the protected resource.

The Authentication Service supports two flows of execution:
v Enforcement of an authentication event as a result of an access control

evaluation.
v Request the user to authenticate as a result of either:

– A point of contact access control list (ACL).
– A protected object policy (POP) evaluation.

45

Authentication mechanisms

Security Access Manager provides the following authentication mechanisms:

One-time password authentication mechanisms

A one-time password is a password that is generated for an authentication
event and is valid for one use. The one-time password authentication
capability in Security Access Manager provides the following features:
v One-time password generation and validation with support for various

implementations as provided.
v One-time password delivery with email and short message service (SMS)

implementation.
v Time-based, counter-based, and RSA one-time password generation and

validation that requires no delivery mechanism.

The one-time password authentication mechanisms are described in the
following table.

Mechanism Description

One-time password authentication Users provide a one-use password that is
generated for an authentication event and is
typically communicated between the client
and the server through a secure channel.
The OTP mechanism groups all the
supported one-time passwords methods in a
single flow and ask the user to select which
one-time password method to use to login.
The user can select from the supported
one-time password authentication methods:

v HOTP

v TOTP

v RSA OTP

v MAC OTP with SMS delivery

v MAC OTP with email delivery

46 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Mechanism Description

MAC One-time password authentication Users provide a one-use password that is
generated for an authentication event and is
typically communicated between the client
and the server through a secure channel.
The MAC mechanism generates one-time
passwords by randomly drawing one
character at a time from the configured
character set until the configured number of
characters are drawn. The MAC mechanism
also stores the generated one-time
passwords in the configured one-time
password store plug-in. Each one-time
password is salted and hashed before it is
stored in the configured one-time password
store plug-in. The user can select from the
supported MAC one-time password
authentication methods:

v MAC OTP with email delivery.

The email delivery sends the email
address of the user and the one-time
password in a message,
whose MIME type is text/plain, to the
configured SMTP Server. The SMTP
Server then sends the one-time password
to the user by email. The product does
not provide an SMTP Server. You must
configure your own SMTP Server.

v MAC OTP with SMS delivery.

The SMS Delivery first sends the phone
number of the user and the one-time
password in an HTTP POST request,
whose content type is application/x-
www-form-urlencoded, to the configured
SMS Gateway. The SMS Gateway then
sends the one-time password to the user
through SMS. The product does not
provide an SMS Gateway. You must
configure your own SMS Gateway.

This mechanism also supports the one-time
password mapping rules.

HOTP One-time password authentication Users provide a one-use password that is
generated for an authentication event. The
one-time password is generated by the
HOTP method.

TOTP One-time password authentication Users provide a one-use password that is
generated for an authentication event. The
TOTP mechanism generates one-time
passwords by using a specified algorithm
with a time-based one-time password
application. Passwords are not
communicated or stored, but are verified as
a match between server and client as they
are regenerated at regular intervals.

Chapter 10. Authentication 47

Mechanism Description

RSA One-time password authentication Users provide a one-use password that is
generated for an authentication event. The
RSA mechanism works with an RSA SecurID
Authentication Manager and passcode
generator. You must own the RSA
Authentication Manager product to use RSA
as a mechanism. The RSA Authentication
Manager and passcode generator generates a
passcode every 30 - 60 seconds. The user
name and passcode are supplied by the user
and passed to the RSA Authentication
Manager. The RSA Authentication Manager
makes a decision and returns it to Security
Access Manager, which relays the decision
back to the user.

Username and Password mechanism
Users provide a user name and password.

HTTP Redirect mechanism
Use this mechanism to integrate a custom authentication mechanism into
the workflow of an authentication policy. Users provide credentials that are
required by the custom authentication mechanism.

Consent to device registration mechanism
Users provide consent to allow their device to be registered.

FIDO Universal 2nd Factor mechanism
Users authenticate through the use of registered FIDO Universal 2nd
Factor tokens.

Authentication policies

By grouping the provided authentication mechanisms into the workflow of an
authentication policy, you can achieve several types of authentication:
v Simple authentication

Users provide basic identifying information such as a user name and password.
v Step-up authentication

Users provide a specific type of credential usually to access sensitive resources.
The users might be challenged to authenticate and provide an extra set of
credentials to prove that they are allowed to access sensitive resources.

v Multi-factor authentication
Users provide more than one type of credential to access a protected resource.

Each authentication policy has a unique identifier that you can use with an access
policy or to start the authentication service directly without any prior access policy
invocation.

Authentication Service configuration overview
Most of the configuration that is associated with the authentication service and the
supported authentication mechanisms is pre-configured on the appliance. In most
scenarios, this configuration is adequate. However, some scenarios require
customization to meet your requirements.

48 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

You can configure the following components to customize the authentication
support:
v Configure the point of contact settings.
v Customize the authentication mechanism settings.
v Modify the template pages to customize how you interact with your users.

Point of contact settings

You can configure the point of contact in the Advanced Configuration settings of
the local management interface. For more information, see the configuration
settings that begin with poc. in Managing Advanced Configuration.

This version of the Security Access Manager simplified the configuration that is
required for the authentication service. Previous versions relied on a list of
preconfigured authentication callbacks to determine the authentication flow. The
addition of the new authentication policy format eliminated the need to rely on the
authentication level value to determine the order of execution of the authentication
mechanisms. The execution of an authentication event now depends on the content
of the authentication policy. You can configure the Authentication Service to allow
reauthentication. If enabled, the Authentication Service runs all the authentication
mechanisms included on the authentication policy regardless of a pre-existing
authentication session.

Access policy scenario configuration

This scenario is almost fully configured when you complete deployment
and run activation and isamcfg. To enable this scenario:
1. Create an access policy that references any of the authentication policies

that are provided.
2. Attach the access policy to the resource that you want to protect.

No further configuration is needed.

Web Gateway Appliance step-up authentication scenario

This scenario requires a set of manual steps to enable it when you
complete deployment and run activation and isamcfg. This scenario relies
on an ACL or POP on the point of contact configuration to initiate the
policy execution. The user must complete an authentication policy flow
when the policy requires that the user step up to a higher authentication.
This setup is specific to and dependent on the point of contact technology
you are using in your environment. To configure the Web Gateway
Appliance to enable this scenario, see “Configuring step-up authentication”
on page 50.

Web Gateway Appliance authentication scenario
This scenario requires a set of manual steps to enable it when you
complete deployment and run activation and isamcfg. This scenario relies
on an ACL or POP on the point of contact configuration to initiate the
policy execution. The user must complete an authentication policy flow
when the policy requires that the user authenticate. This setup is specific to
and dependent on the point of contact technology you are using in your
environment. To configure the Web Gateway Appliance to enable this
scenario, see “Configuring authentication” on page 52.

Chapter 10. Authentication 49

Authentication mechanism settings

You can modify authentication mechanism settings through the local management
interface. See the configuring topics for the authentication mechanisms you want to
use:
v “Configuring a TOTP one-time password mechanism” on page 55
v “Configuring an HOTP one-time password mechanism” on page 53
v “Configuring an RSA one-time password mechanism” on page 59
v “Configuring a MAC one-time password mechanism” on page 58
v “Configuring consent to device registration” on page 71
v “Configuring an HTTP redirect authentication mechanism” on page 70
v “Configuring username and password authentication” on page 67
v “Configuring an End-User License Agreement authentication mechanism” on

page 72
v “Configuring a Knowledge Questions authentication mechanism” on page 81

For advanced customization of the authentication service or the one-time password
generation, delivery, and verification, you can customize the mapping rules. See
“Managing mapping rules” on page 86.

Template configuration

Many HTML pages and XML documents are provided to interact with your users.
The pages prompt users for authentication information, provide them with
one-time passwords, or notify them of errors during authentication. For
information about customizing the template pages, see Modifying template files.

Authentication configuration scenarios
Use the configuration scenarios to create a custom configuration for your
environment.

Configuring step-up authentication
The appliance reverse proxy server can be configured to use the authentication
service for step-up authentication. The user is required to complete an
authentication policy flow when the policy (ACL or POP) dictates that the user
steps up to a higher authentication level.

About this task

This task applies to both the Web Gateway appliance and the Security Access
Manager appliance.

Procedure
1. Configure the appliance with the isamcfg tool. See Chapter 7, “Using the

isamcfg tool,” on page 25.
2. Modify the appliance stepuplogin.html file so that it redirects the

authentication request to the Security Access Manager Authentication Service.
a. Locate the stepuplogin.html file. For information about working with

reverse proxy pages, see HTML server response page modification.

50 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

b. Edit the file to insert the following code in the JavaScript section of the file.
Optionally, to indicate where to send the user agent after successful
authentication, pass the Target query string parameters, which is the
default. For example:
var authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2"){
window.location = "https://<HOST>:<PORT>/<JUNCTION>

/sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED%&PolicyId=<POLICY_ID>";
}

Where:

HOST

The host name for the reverse proxy instance.

PORT

The port number for the reverse proxy instance.

JUNCTION
The Advanced Access Control junction name. For example: mga.

POLICY_ID
The authentication policy identifier to execute when the user is
requested to step up.

The following example uses one-time password as the step-up mechanism:
var authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2"){

window.location = "https://example.com/mga/
sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED%&PolicyId=urn:ibm:security:
authentication:asf:otp";

}

3. Restart the appliance.
4. Verify the configuration:

a. Create a test user account. For example:
pdadmin> user create john cn=john, dc=iswga John Doe password

b. Activate the account. For example:
pdadmin> user modify john account-valid yes

c. Create a test resource that is protected with level 2 authentication and place
it in the document root of the appliance reverse proxy server. For example:
/junction-root/test.html

For information about working with reverse proxy pages, see HTML server
response page modification

d. Try accessing that resource through the appliance reverse proxy server. For
example:
https://mga.example.com/test.html

A web form is displayed and prompts you to enter the user name and
password.

e. Enter the credential that you created in step 4a. The contents of the resource
is displayed.

f. Create a Protected Object Policy (POP) with a level 2 authentication. For
example:
pdadmin> pop create level2only
pdadmin> pop modify level2only set ipauth anyothernw 2

Chapter 10. Authentication 51

g. Attach the POP to the protected resource that you created in step 4c on
page 51. For example:
pdadmin> pop attach /WebSEAL/mga.example.com-default/

test.html level2only

h. Open a new browser session and try accessing the test resource again. A
web form is displayed and prompts you to enter the user name and
password.

i. Enter the credential for the test user. You are forwarded to the extended
authentication endpoint. You are now starting the authentication policy.

j. Enter the required credentials to complete the authentication policy. If you
authenticate successfully, you are redirected to back to the test resource and
you can access the contents of the resource.

Configuring authentication
The appliance reverse proxy server can be configured to use the authentication
service for authentication. The user will be required to complete an authentication
policy flow when the Security Access Manager policy (ACL or POP) dictates that
the user authenticates.

About this task

This task applies to the Web Gateway, Security Access Manager for Web, and
Security Access Manager appliances.

Procedure
1. Configure the appliance using the isamcfg tool. See Chapter 7, “Using the

isamcfg tool,” on page 25.
2. Modify the appliance login.html so that it redirects the authentication request

to the Security Access Manager Authentication Service.
a. Locate the login.html file on the appliance. For information about working

with reverse proxy pages, see HTML server response page modification.
b. Open the file in a text editor and insert a meta-tag refresh tag to send the

request to the authentication service. Optionally, to indicate where to send
the user agent after successful authentication, pass the Target query string
parameters, which is the default. For example:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<meta http-equiv="refresh" content="2;url=https://<HOST>:<PORT>/<JUNCTION>/
sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED&PolicyId=<POLICY_ID>">

<TITLE>Access Manager for Web Login</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
</BODY>
</HTML>

Where:

HOST

The host name for the reverse proxy instance.

PORT

The port number for the reverse proxy instance.

JUNCTION
The Advanced Access Control junction name. For example: mga.

52 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

POLICY_ID
The authentication policy identifier to execute when the user is
requested to step up.

The following example uses user name and password as the login mechanism:
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<HTML>
<HEAD>
<meta http-equiv="refresh" content="2;url=https://example.com/mga/

sps/authsvc?Target=%HTTPS_BASE%%URL_ENCODED%&PolicyId=urn:ibm:security:authentication:asf:password">
<TITLE>Access Manager for Web Login</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
</BODY>
</HTML>

3. Restart the appliance.
4. Verify the configuration:

a. Create a test user account. For example:
pdadmin> user create john cn=john,dc=iswga John Doe password

b. Activate the account. For example:
pdadmin> user modify john account-valid yes

c. Create a test resource that is protected with the isam_mobile_anyauth ACL
and place it in the document root of WebSEAL. For example:
junction-root/test.html

For information about working with reverse proxy pages, see HTML server
response page modification

d. Attach the isam_mobile_anyauth ACL to the protected resource. For
example:
pdadmin> acl attach /WebSEAL/mga.example.com-default/test.html

isam_mobile_anyauth

e. Open a new browser session and try accessing the test resource. You are
forwarded to the authentication service endpoint. You are now starting the
authentication policy.

f. Enter the required credentials to complete the authentication policy. If you
authentication successfully, you are redirected to the test resource and you
can access the contents of that resource.

Configuring an HOTP one-time password mechanism
The HOTP one-password mechanism relies on a public algorithm to generate the
one-time password.

About this task

The HOTP client solution and Security Access Manager use the same algorithm to
generate the one-time password value. No interaction is required between the
client software and the Security Access Manager solution. The algorithm uses a
shared secret key and a counter to generate the one-time password value. Every
time a new one-time password is generated, the counter value increments on both
server and client solutions. No delivery of the one-time password is required.

This task describes the steps and properties for configuring a HOTP mechanism.
For information about configuring other providers, see:
v “Configuring a MAC one-time password mechanism” on page 58

Chapter 10. Authentication 53

v “Configuring a TOTP one-time password mechanism” on page 55
v “Configuring an RSA one-time password mechanism” on page 59

Note: When users attempt to log in using HOTP or TOTP and submit an incorrect
one-time password, they receive one strike against their account. This strike
remains on their account for a configurable duration. By default, the duration is 10
minutes. After that duration, the strike is removed from their account. When users
submit multiple incorrect one-time passwords, they can reach a maximum and are
then prevented from making another attempt until one of their strikes expires. By
default, the maximum is 5. If the users log in successfully, any strikes on their
account are cleared. Strikes are shared between TOTP and HOTP. For example, if
the users made two incorrect attempts using TOTP, those strikes count against
them on HOTP as well. Because user retries affect only TOTP and HOTP logins,
users who exceeded password attempt using those logins can still use other OTP
provider logins or basic username/password authentication. You can modify the
password retry settings through the Advanced Configuration settings in the local
management interface. For more information, see “Managing advanced
configuration” on page 198.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click HOTP One-time Password.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

HOTP

Max Counter Lookahead
The number of times to increment the counter to see whether
the one-time password is valid before stopping. Any
non-negative number is valid.

The default is 25.

Password Length
The length of the generated one-time passwords, which can be
6 - 9 characters or numbers.

The default is 6.

Generation Algorithm
The algorithm that is used to generate the one-time password.
Valid options include the following algorithms:
v HmacSHA1

v HmacSHA256

v HmacSHA512

54 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The default is HmacSHA1.

Secret key URL

The URL that is used to deliver the secret key. The QR code is
also generated using this URL. The URL format might include
information specific to your environment, such as your
company name.

The default URL is:
otpauth://hotp/Example:@USER_NAME@?secret=@SECRET_KEY
@&issuer=Example&counter=0

The URL supports the following macros and may be positioned
wherever their corresponding values belong.

@SECRET_KEY@
The secret key.

@USER_NAME@
The user name of the authorized user who logs in.

@ALGORITHM@
The one-time password generation algorithm.

@DIGITS@
The one-time password length.

A secret key URL example to utilize all macros is:
otpauth://hotp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example
&counter=0&algorithm=@ALGORITHM@&digits=@DIGITS@

Secret key attribute name
The attribute name that is used for storage of the HOTP secret
key in the database.

Data type: String

Example: otp.hmac.hotp.secret.key

Secret key attribute namespace
The attribute namespace of the HOTP secret key. The
namespace in combination with the attribute name constitutes
the unique identifier for the attribute in the database.

Data type: String

Example: urn:ibm:security:otp:hmac
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Configuring a TOTP one-time password mechanism
The TOTP one-password mechanism relies on a public algorithm to generate the
one-time password.

Chapter 10. Authentication 55

About this task

The TOTP client solution and the Security Access Manager use the same algorithm
to generate the one-time password value. No interaction is required between the
client software and the Security Access Manager solution. The algorithm uses a
shared secret key and the time to generate the one-time password value. No
delivery of the one-time password is required.

This task describes the steps and properties for configuring a TOTP mechanism.
For information about configuring other one-time password providers, see:
v “Configuring a MAC one-time password mechanism” on page 58
v “Configuring an HOTP one-time password mechanism” on page 53
v “Configuring an RSA one-time password mechanism” on page 59

Note: When users attempt to log in using HOTP or TOTP and submit an incorrect
one-time password, they receive one strike against their account. This strike
remains on their account for a configurable duration. By default, the duration is 10
minutes. After that duration, the strike is removed from their account. When users
submit multiple incorrect one-time passwords, they can reach a maximum and are
then prevented from making another attempt until one of their strikes expires. By
default, the maximum is 5. If the users log in successfully, any strikes on their
account are cleared. Strikes are shared between TOTP and HOTP. For example, if
the users made two incorrect attempts using TOTP, those strikes count against
them on HOTP as well. Because user retries affect only TOTP and HOTP logins,
users who exceeded password attempt using those logins can still use other OTP
provider logins or basic username/password authentication. You can modify the
password retry settings through the Advanced Configuration settings in the local
management interface. For more information, see “Managing advanced
configuration” on page 198.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click TOTP One-time Password.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

TOTP

Generation Interval (seconds)
The number of seconds an interval lasts. This number
determines how long a one-time password is active before the
next one-time password generates.

The default is 30.

56 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Password Length
The length of the generated one-time passwords, which can be
6 - 9 characters or numbers.

The default is 6.

Skew Intervals
The skew intervals of the algorithm. The skew intervals
consider any possible synchronization delay between the server
and the client that generates the one-time password. For
example, a skew interval of 2 means a one-time password in up
to two intervals in the past, or two in the future are valid. For
example, if it is interval 563, and intervals are 30 seconds, then
one-time passwords for intervals 561-565 are computed and
checked against within a range of 2.5 minutes.

The default is 1.

One Time Use
Whether to cache one-time passwords if they are used to
successfully log in. If set to true, then the reuse of a one-time
password is prevented while it is in cache.

The default is true.

Generation Algorithm
The algorithm that is used to generate the one-time password.
Valid options include the following algorithms:
v HmacSHA1

v HmacSHA256

v HmacSHA512

The default is HmacSHA1.

Secret key URL

The URL that is used to deliver the secret key. The QR code is
also generated using this URL. The URL format might include
information specific to your environment, such as your
company name.

The default URL is:
otpauth://totp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example

The URL supports the following macros and may be positioned
wherever their corresponding values belong.

@SECRET_KEY@
The secret key.

@USER_NAME@
The user name of the authorized user who logs in.

@ALGORITHM@
The one-time password generation algorithm.

@DIGITS@
The one-time password length.

@PERIOD@
The one-time password generation interval.

A secret key URL example to utilize all macros is:

Chapter 10. Authentication 57

otpauth://totp/Example:@USER_NAME@?secret=@SECRET_KEY@&issuer=Example
&algorithm=@ALGORITHM@&digits=@DIGITS@&period=@PERIOD@

Secret key attribute name
The attribute name that is used for storage of the TOTP secret
key in the database.

Data type: String

Example: otp.hmac.totp.secret.key

Secret key attribute namespace
The attribute namespace of the TOTP secret key. The
namespace in combination with the attribute name constitutes
the unique identifier for the attribute in the database.

Data type: String

Example: urn:ibm:security:otp:hmac
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Configuring a MAC one-time password mechanism
A one-time password is valid for one session or login. The MAC password is
generated by Security Access Manager and can be delivered to the user through
Short Message Service (SMS) or e-mail.

About this task

This task describes the steps and properties for configuring a MAC mechanism.
For information about configuring other providers, see:
v “Configuring an HOTP one-time password mechanism” on page 53
v “Configuring a TOTP one-time password mechanism” on page 55
v “Configuring an RSA one-time password mechanism” on page 59

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click MAC One-time Password.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

58 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

MAC

Password Character Set
The character set from which the characters in the one-time
password are generated.

The default is 0123456789.

Password Length
The length of the characters in the one-time password.

The default is 6.

Store Entry Hash Algorithm
The hash algorithm that is used for hashing the one-time
password before it is stored in the one-time password store
plug-in. The supported algorithms are:
v SHA1

v SHA-256

v SHA-512

The default is SHA-256.

Store Entry Lifetime (seconds)
The length of time that the one-time password is stored. The
lifetime is in seconds.

The default is 300.
9. Click Save.

What to do next

When you configure one-time password providers, a message indicates that
changes have not been deployed. If you have finished making changes, deploy
them. For more information, see Chapter 15, “Deploying pending changes,” on
page 193.

Next, consider configuring the delivery methods for the one-time password. Both
SMS and Email delivery are enabled but you will want to configure the delivery
properties, such as SMTP server or connection URL, for your environment. See
“Configuring one-time password delivery methods” on page 63.

Configuring an RSA one-time password mechanism
A one-time password is valid for one session or login. To use RSA as a mechanism,
you must own RSA Authentication Manager. The server and the client generate the
passwords with the same algorithm.

Before you begin

Complete the following steps.
1. On your RSA server, generate the following files:

sdconf.rec
The configuration file for connecting to the RSA Authentication server.

sdopts.rec
The configuration properties file that contains optional configurations
for load balancing.

Chapter 10. Authentication 59

2. See your RSA Authentication server documentation for details on creating these
files and use the following guidelines:
v On the appliance, you must specify an Agent Network Interface. See Agent

Network Interface in step 8. If you connect the RSA server to the appliance
by using an application network interface with multiple IP addresses, list all
the IP addresses in the Alternate IPs box on the RSA server.

v For Agent type, choose Standard.
v Agent Auto-Registration must be enabled when the first RSA one-time

password authentication is performed. You can disable it after the first
successful authentication is completed.

Note: The RSA one-time password mechanism does not support replication of
the RSA session information through the cluster environment. The session
information is local to each cluster node and the environment must be
configured to enforce session affinity between the client and the cluster node.

3. Move or copy the generated files from the RSA server to the appliance.

About this task

This task describes the steps and properties for configuring an RSA mechanism.
For information about configuring other providers, see:
v “Configuring an HOTP one-time password mechanism” on page 53
v “Configuring a MAC one-time password mechanism” on page 58
v “Configuring a TOTP one-time password mechanism” on page 55

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click RSA One-time Password.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Agent Network Interface
The name of the network interface that the RSA Agent is using to
connect to the RSA server.

Required: Yes

Data type: String

Valid values:

Management network interface values

v M.1

v M.2

60 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Application network interface values

v P.1

v P.2

v P.3

v P.4

Note: If you are using the RSA mechanism in a cluster
environment and use an application interface with multiple IP
addresses defined for that interface, use the RSA console to
add all of those IP addresses to the whitelist. See the RSA
documentation for information about adding IP addresses to
the whitelist.

Example: M.1

Server Exchange Initial Timeout
The initial timeout coefficient in milliseconds used to calculate the
timeout of the request.

Required: No

Data type: Integer

Example: 1000

Server Exchange Timeout Offset
The offset timeout coefficient in milliseconds used to calculate the
timeout of the request.

Required: No

Data type: Integer

Example: 200

Server Exchange Timeout Increment
The increment coefficient in milliseconds used to calculate the timeout
of the request.

Required: No

Data type: Integer

Example: 100

Event Log Level
The minimum event level to be logged. Events below the level that is
specified in this property are not logged.

The events in order from lowest level to highest are:
a. OFF

b. DEBUG

c. INFO

d. WARN

e. ERROR

f. FATAL

Required:

Data type: String

Chapter 10. Authentication 61

Example: INFO. If this property is set to INFO, the DEBUG errors are not
logged.

Enable Debug Tracing
The property that enables debug tracing.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, debug tracing is not enabled.

Trace Function Entries
The property that enables tracing of function entries.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, function entries are not traced.

Trace Function Exits
The property that enables tracing of exits.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, exits are not traced.

Trace Flow Statements
The property that enables tracing of flow statements.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, flow statements are not traced.

Trace Regular Statements
The property that enables tracing of regular statements.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, regular statements are not traced.

Trace Location
The property that enables the class name and line number to be
displayed in the trace.

Required: No

Data type: Boolean

Example: FALSE. If set to FALSE, class name and line number are not
displayed.

Session Timeout
The length of time, in seconds, that a connection to the RSA
Authentication Manager server remains open before it times out when
a user attempts to authenticate.

Required: No

Data type: Integer

Example: 1800
9. Click the Agent Files tab.

62 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

10. Select a file in the table the corresponds to the file you generated on the RSA
server.

11. Click Upload to upload the file or Clear to remove the contents of the selected
file. The status area indicates one of three statuses:

Not uploaded
Upload is not completed.

Last upload date
Upload was completed on date indicated.

Auto-generated
The SecurID was automatically generated instead of uploaded.

Repeat this step until all of your files have been uploaded to the appliance.
12. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Configuring one-time password delivery methods
Passwords can be delivered to the user through Short Message Service (SMS) or
email.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click the delivery type.
v SMS One-time Password

v Email One-time Password

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the delivery method.

SMS

Basic Authentication User Name
The user name that is used in HTTP Basic authentication.

SMS Delivery does not perform the HTTP basic authentication
if this configuration is not specified.

Required: False

Multi-value: No

Chapter 10. Authentication 63

Example: username

Basic Authentication Password
The password that is used in HTTP basic authentication.

SMS Delivery does not perform HTTP Basic authentication if
this configuration is not specified.

Required: False

Multi-value: No

Example: password

Connection URL
The URL of the SMS Gateway where the phone number of the
user and the one-time password is sent.

Required: True

Multi-value: No

Example: https://smsgateway.tfim.example.com/

HTTP Request Parameters
The list of name and value pairs that is included in the body of
the HTTP POST request to the SMS Gateway. In each pair, the
name and the value must be separated by equal sign.

Two macros, $DEST_NO$ and MSG, are replaced by the phone
number of the user and the content of the SMS. These two
macros can be used only as value in the name and value pair.

Required: True

Multi-value: Yes

Example:
v From=+0123456789

v To= $DEST_NO$

v Body= MSG

Success HTTP Response Body Regex Pattern
This parameter defines the Java™ regular-expression pattern
that matches the HTTP response body that is returned by the
SMS Gateway. When the match is successful, the SMS delivery
is successful.

The default value is empty.

The default behavior is that the HTTP response body is not
going to be matched against any Java regular-expression and
the success or failure decision is going to be based on the
SuccessHTTP
ReturnCode value only.

Note: If the HTTP response from the SMS Gateway does not
contain a body, this matching is not performed.

Required: False

Multi-value: No

Example:

64 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v When the body of all responses by the SMS Gateway
contains either Success or Failure followed by no newline
character, the sample SuccessHTTP
Response
BodyRegex
Pattern value is
Success

v When the body of all responses by the SMS Gateway
contains the following text:
MGDID=TTTT
TTTTTTTTT
RESPONSE
CODE=NNN
SMS=TTTTTTT
TTTTTTTT
TTTTTTT
DATE=NNNNNNNN

where each line ends with the \n character without any
preceding \r character, and the RESPONSECODE is defined such
that a three-digit number from 0 to 199 indicates success, the
sample SuccessHTTP
ResponseBody
RegexPattern value is
(?s).*
RESPONSE
CODE=(\d{1,2}
|[0-1]{1}
\d{2})\n.*

Success HTTP Return Code
The response code from the SMS Gateway that is an
acknowledge
ment from the SMS Gateway that the request is successfully
processed.

The default SuccessHTTP
ReturnCode, which is 200, is used when this configuration is not
specified.

Note: The SuccessHTTP
ReturnCode match must be successful before this matching is
done.

Required: False

Multi-value: No

Example: 200

HTTPS Trust Store
The keystore that validates the SMS Gateway SSL certificate.

This configuration must be specified only when SMS Delivery
communicates with the SMS Gateway by using HTTPS.

Required: False

Multi-value: No

Example: rt_profile_keys

Chapter 10. Authentication 65

Client Authentication Key
The certificate that is used as client certificate in SSL Client
authentication.

SMS Delivery does not perform SSL Client authentication if this
configuration is not specified.

Required: False

Multi-value: No

Example: rt_profile_keys

Email

Sender Email
The email address that is used as the sender of the email that is
sent to the user.

Required: True

Multi-value: No

Example: otp_emailer@example.com

SMTP Host Name
The host name of the SMTP Server.

Required: True

Multi-value: No

Example: smtpserver.tfim.example.com

SMTP User Name
The user name that is used in SMTP authentication.

Required: False

Multi-value: No

Example: username

SMTP Password
The password that is used in SMTP authentication.

Required: False

Multi-value: No

Example: password

Use SSL
Use SSL for the connection to the SMTP server.

Required: True

Multi-value: No

Example: false

Enable STARTTLS
Defines whether STARTTLS will be used to negotiate TLS to
the SMTP server.

Required: True

Default: false

Type: Boolean

66 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

TLS protocol
TLS protocol to be used when connecting to the SMTP server.

Required: True

Default: TLS

Type: String
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Configuring username and password authentication
The user name and password authentication mechanism authenticates users with
their user name and password credentials that are stored in the Access Manager
user repository.

Before you begin

This authentication mechanism uses the user registry that is configured as part of
the runtime component settings. Ensure that you configured this registry before
you use the mechanism. See Chapter 4, “Managing the runtime component,” on
page 17.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Username Password.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

LDAP Bind DN
An LDAP account with sufficient rights to update the user registry
entries. For example: cn=SecurityMaster,secAuthority=Default

One method for creating such an account is using the pdadmin
command. For example:
user create no-password-policy testapi cn=testapi,secAuthority=Default

testapi api passw0rd (SecurityGroup ivacld-servers remote-acl-users)

Data type: String

Chapter 10. Authentication 67

LDAP Bind Password
The LDAP bind password.

Data type: String

LDAP Host Name
The host name of the LDAP server.

Data type: String

LDAP Port
The port number of the LDAP server.

Data type: String

Default: 389

Management Domain
The Security Access Manager Management Domain name. This name
is used to determine the location of subdomain in the registry.
Subdomains are located relative to the Management Domain LDAP
location.

Data type: String

Default: Default.

SSL Enabled
Set this option to true to enable SSL to the LDAP server.

Data type: Boolean

Default: False.

SSL Trust Store
The keystore that contains the trusted CA signers for the LDAP server
certificate.

Specify an SSL trust store if you use one of the following LDAP
registry scenarios for user name and password authentication:
v You configure one primary LDAP registry which uses SSL.
v You configure federated directories, where at least one of the

directories uses SSL. In this scenario, the Use Federated Directories
Configuration property must be set to true.

The trust store you specify must be configured to work with any and
all of the LDAP registries that use SSL.

Data type: String

Use Federated Directories Configuration
Set this option to true to use the configured federated directories
when authenticating a user name and password.

If you specify true:
v The LDAP Host Name and LDAP Port properties must define a

Security Access Manager user registry. This is typically the user
registry of the runtime component.

v The users in any of the additional federated directories you
configure must exist in the user registry of the runtime component.
Therefore, import these users, if necessary.

Data type: Boolean

Default: false.

68 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

User Search Filter
An LDAP search filter that selects any native user entry.

Data type: String

Default: (|(objectclass=ePerson)(objectclass=Person)).

Maximum Server Connections
The maximum number of connections that can exist on the LDAP
server. Valid values are 2 though 4096.

Data type: Integer

Default: 16.

Login Failures Persistent
Login failures are used with the three-strikes policy. If you set this
option to false, each process that uses this API stores the number of
login failures in memory. If you use multiple appliances in a cluster,
the total number of login failures to trigger a strike-out might vary.

If you set this option to true, the strike count is stored in LDAP and
shared across all servers. An accurate count can be kept in a
multiserver environment.

Data type: Boolean

Default: False.
9. Click the Attributes tab.

10. Complete any of the following tasks.

Add an attribute. Complete the Registry Attribute, Context Name,
Context Namespace fields for the attribute.

Modify an attribute. Modify the Registry Attribute, Context Name,
Context Namespace fields for the attribute.

Delete an attribute. Select an attribute and click delete.

By default, this mechanism uses the following attributes. These registry
attributes are retrieved from the user account in the user registry and are
stored in the Session context with the context name and name space.

Registry Attribute Context Name Context Namespace

mail emailAddress urn:ibm:security:authentication

:asf:mechanism:password

mobile mobileNumber urn:ibm:security:authentication:

asf:mechanism:password

11. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Chapter 10. Authentication 69

Configuring an HTTP redirect authentication mechanism
The HTTP redirect authentication mechanism integrates an external application
that you provide to use for authenticating users.

Before you begin

The external application that you plan to use must exist before you begin this task.
The application must meet the following requirements:
v To indicate a successful authentication, the application must generate a

credential with an attribute that matches the Success Credential Attribute Name
and Success Credential Attribute Value properties.

v When the authentication is complete, the application must return control to
Security Access Manager by redirecting the browser to the location provided on
the ReturnURL query string parameter when the application was invoked.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click HTTP Redirect Authentication.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Redirect URL
The URL to the external authentication application.

Data type: String

Success Credential Attribute Name
The credential attribute name that verifies successful authentication.

Data type: String

Default: httpRedirectAuthCompleted.

Success Credential Attribute Value
The credential attribute value that verifies successful authentication.

Data type: String

Default: true.
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. When you finish the changes, deploy them. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

70 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Configuring consent to device registration
Consent-based device registration is the process of registering the device
fingerprint only after the user consents to the device registration.

About this task

The settings of the consent to device registration mechanism specify:
v Whether to set the authentication level of the user's credential when the consent

to device registration is completed.
v The value to be used to set the authentication level. The authentication level on

the credential is used to represent the strength of the authentication that is used
to generate the credential.

By default, the authentication level is not set by the consent to device registration
operation. Use this task to enable setting the authentication level on the user
credential. When the authentication level is set, it can be evaluated as part of an
access control policy or by the policy enforcement point to grant access to a
resource that requires a specific authentication level .

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Consent to device registration.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Set Authentication Level Credential Attribute
Enables the consent to device registration authentication to set the
authentication level on the session.

Data type: Boolean

Default: False.

Authentication Level Credential Attribute Value
The authentication level value to be used when the consent to device
registration is configured to set the authentication level.

Data type: Integer.

Default: 2.
9. Click Save.

Chapter 10. Authentication 71

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy changes when you are finished. For more information, see
Chapter 15, “Deploying pending changes,” on page 193.

Configuring an End-User License Agreement authentication
mechanism

The End-User License Agreement authentication mechanism prompts the user to
accept an End-User License Agreement (EULA) during an authentication flow.

About this task

Configure the End-User License Agreement and the corresponding properties to
determine when the mechanism will show the license agreement.

Note: When you accept the license, the date that you last accepted the license file
is stored.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click End-User License Agreement.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Accept If Last Accepted Date Before

If the date the user last accepted the license is before this date, the
mechanism requires the user to accept the license again.

Data type: Date

There is not a default value.

Valid values: A date in the following format: YYYY-MM-DD

Always Show License

Set this option to true so that the mechanism always prompts the user
to accept the license file.

Data type: Boolean

Default value: false

License File

72 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Specify the path to the license template file to display for the End-User
License Agreement. The path to the license file is relative to the locale
in the template tree. For more information about how to update the
license and add additional license files, see Template files and Template
file macros

Data type: String

Default value: /authsvc/authenticator/eula/license.txt

License Renewal Term

Specify the number of days until the user must accept the license again.
When you specify a value that is less than 1, there is not a renewal
term. This property compares the date that the user last accepted the
license to the current date. The software then determines the number of
days since the user last accepted the license.

Data type: String

Default value: 0
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy them. See Chapter 15, “Deploying pending changes,” on page
193.
Related reference:
Authentication policy parameters and credentials
When you add or modify an authentication policy, you specify parameters for the
authentication mechanism and the attributes that you want in the credential. The
credentials are evaluated as part of the access control decision.

Configuring an Email Message mechanism
The Email Message mechanism provides arbitrary information about a user via
either email, webpage, or JSON for consumption by users or applications.

Before you begin

Before using the Email Message mechanism, an SMTP server connection must first
be configured. For more information about how to configure the SMTP server
connection, see Managing server connections.

About this task

This mechanism can be used in conjunction with the Info Map mechanism. The
Info Map mechanism populates some session info and potentially enriches the
session further through user mapping. The Email Message mechanism then
provides this information to the user via email.

For example, for a forgotten username:
v The user initiates the forgot username flow.
v The user is prompted to enter his or her email and date of birth.
v The user provides the details.

Chapter 10. Authentication 73

v The Info Map mechanism performs a lookup based on the information and
enriches the session with the user name.

v The Email Message mechanism sends an email that provides the user name to
the user.

If this mechanism is not used in conjunction with the Info Map mechanism, only
information from the Access Manager credential will be made available.

To use values in the Access Manager credential or session information added by
the Info Map mechanism, add wrapping @ signs to the attribute identifier in the
same way as they are used in macros. For example, to make use of a user's
credential that contains the attribute “firstName” in the template page:
...
This is the welcome page for @firstName@
...

Note: The attribute identifier is case sensitive. For example, @firstname@ cannot be
used to reference the attribute firstName.

You can use the Email Message mechanism to send messages in HTML format. See
“HTML format for OTP email messages” on page 75.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Email Message.
6. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify Property.
c. Enter the value for that property.
d. Click OK.

7. Take note of the properties for the mechanism.

Email Attribute Identifier

The name of the attribute that contains the email address to be used.

If this attribute is not set, the system always displays the template
HTML page to the user.

Default value: emailAddress

Email Sender Value

The value to use in the sender field of an email.

Email Template

The path to the template XML file to be used when sending an email to
the user.

Default value: /authsvc/authenticator/sessionattributeresponse/
email_message.xml

Note: The default value omits the locale portion of the path, which you
can see in the templates page view.

74 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Error Template

The path to the template HTML file to be used when displaying an
error message to the user.

Default value: /authsvc/authenticator/sessionattributeresponse/
error.html

Server Connection
This field defines the SMTP connection that is used to send the email.
You can select the SMTP server from the drop-down list.

8. Click Save.

What to do next

After you have configured the mechanism, a message that indicates the changes
are not deployed will be displayed. Deploy changes when you are finished. For
more information, see Chapter 15, “Deploying pending changes,” on page 193.

After deploying the changes, you can create policies that include this mechanism.
For more information, see Creating an authentication policy.

HTML format for OTP email messages
The HTML format for One-Time Password (OTP) email messages includes an
identifying header of the Security Access Manager host that sent the message.

The email message mechanism supports sending an HTML formatted message to
the configured SMTP server. The server receives a message that contains a
Message-ID with information that identifies the Security Access Manager LMI host
that sent the message. When your deployment is a Security Access Manager
cluster, this information is useful for determining which host sent the email.

For example, in the email below, the LMI host acme.com is included in the
Message-ID.
Date: Thu, 5 Oct 2017 01:55:29 -0400 (EDT)
From: support@mycompany.com
To: testuser@example.company.com
Message-ID: <1932638797.7.1507182929009.JavaMail.www-data@acme.com>
Subject: Email Subject
MIME-Version: 1.0
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit

Configuring the reCAPTCHA Verification authentication mechanism
The reCAPTCHA Verification authentication mechanism provides anti-robot
protection.

Before you begin

The appliance uses the Google reCAPTCHA service to provide such verification.
For more information, see www.google.com/recaptcha.

Note: The appliance supports only Google reCAPTCHA V2.

Before configuring a reCAPTCHA Verification mechanism, you must first complete
the following steps.

Chapter 10. Authentication 75

v Ensure that the appliance can connect to www.google.com. You can test the
connection in the CLI, for example:

myappliance.example.ibm.com:tools>
myappliance.example.ibm.com:tools> connect www.google.com:443
Test: www.google.com (address: 216.58.197.68) on port 443
Status: connection was successful

v Add the issuer of the Google CA certificate to the HTTP client default trust
store, which is set by the value of the util.httpClient.defaultTrustStore
advanced tuning parameter. The default value of the
util.httpClient.defaultTrustStore parameter is rt_profile_keys.
1. From the top menu, select Manage System Settings > Secure Settings > SSL

Certificates.
2. Select the rt_profile_keys key database.
3. Select Manage > Edit SSL Certificate Database.
4. Select the Signer Certificates tab.
5. Select Manage > Load.
6. Specify the following fields.

Server: www.google.com
Port:443
Certificate Label: Google

7. Click Load.

About this task

The reCAPTCHA Verification mechanism can provide protection against spam or
abuse caused by robots. With this mechanism, the user is presented with a web
page that contains a simple Turing test provided by the Google reCAPTCHA API.
These tests can distinguish a human user from a robot. You can add this
mechanism to your policy to prevent robots from accessing your applications.

The following HTML snippet shows an example of embedding the reCAPTCHA
mechanism in the template page:
<form method="POST" action="@ACTION@">

<input type="hidden" name="operation" value="verify"></input>
<div class="g-recaptcha" data-sitekey="@SITE_KEY@"></div>

<div class="controls">
<input class="submitButton" id="Submit" name="Submit"
type="submit" value="Submit"></input>
</div>

</form>

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click reCAPTCHA Verification.
6. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify Property.
c. Enter the value for that property.

76 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

d. Click OK.
7. Take note of the properties for the mechanism.

Site Key

This property is embedded in the HTML template and used to generate
the CAPTCHA in the client browser.

Default value: 6LeIxAcTAAAAAJcZVRqyHh71UMIEGNQ_MXjiZKhI

Secret Key

This property is used on the server side by the appliance to verify
reCAPTCHA responses with Google.

Default value: 6LeIxAcTAAAAAGG-vFI1TnRWxMZNFuojJ4WifJWe

Note: The default Site Key and Secret Key values are designated
Google test credentials. When these default values are used, all
verification requests will pass.

Template Page
The path to the template HTML page to be displayed to the user.

Default value: /authsvc/authenticator/recaptcha/standalone.html
8. Click Save.

What to do next

After you have configured the mechanism, a message that indicates the changes
are not deployed will be displayed. Deploy changes when you are finished. For
more information, see Chapter 15, “Deploying pending changes,” on page 193.

After deploying the changes, you can create policies that include this mechanism.
For more information, see Creating an authentication policy.

Configuring an Info Map authentication mechanism
Use this mechanism in your policy to return a template form and perform
validation on the responding POST data. This mechanism is intended to work in
conjunction with the Email Message mechanism.

About this task

The Info Map mechanism can be used to implement JavaScript authentication
mechanisms. When this mechanism is invoked, the configured JavaScript mapping
rule will be run.
v If the rule returns FALSE, then a page will be returned to the user. The JavaScript

can also define which page to return or it can use a preconfigured page. The
JavaScript can also populate any macros on the page and modify what is
displayed to the user.

v If the rule returns TRUE, then the mechanism will return success and the policy
will continue.

The following parameters are available in an Info Map mapping rule:

Context

This is an authentication service context. It is identical to what is provided
in the Authentication Service Credential mapping rule. For more

Chapter 10. Authentication 77

information about how to use the context, see the context attributes section
of Authentication policy parameters and credentials.

Use the context to make changes to the credential and the values that the
Email Message mechanism will display.

State

A state map that is used for the lifetime of this mechanism invocation.

Note: Each instance of this mechanism will have a new state map created
per invocation of the policy. If the user invokes the policy again, the state
map will be empty because the state map is discarded when the rule
returns TRUE.

Page

The path to the page to be returned. By default, this parameter is set to the
value that is configured in the mechanism properties. It can be modified to
return a different page.

Macros

A map of macros that will be populated on the returned page.

Success

Indicates whether the rule execution was successful. This parameter is set
to TRUE if the rule was successful and the policy will continue. It is set to
FALSE if the rule was not successful and a page will be returned to a user.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Info Map Authentication.
6. In the New Authentication Mechanism window, set the name and identifier of

the mechanism on the General tab. If you are modifying an existing Info Map
authentication mechanism instead of creating a new instance, values on the
General tab cannot be changed.

7. Click the Properties tab.
a. Select a property that you want to configure.
b. Click Modify Property.
c. Enter the value for that property.

Template Page
This property defines the HTML template page.

Mapping Rule
Select a mapping rule from the list. Only JavaScript mapping rules
in the InfoMap category are displayed in the list for selection.

d. Click OK.
e. Repeat the previous steps as needed.

8. Click Save.

78 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

What to do next

After you have configured the mechanism, a message that indicates the changes
are not deployed will be displayed. Deploy the changes when you are finished. For
more information, see Chapter 15, “Deploying pending changes,” on page 193.

After deploying the changes, you can create policies that include this mechanism.
For more information, see Creating an authentication policy.

Embedding reCAPTCHA verification in an Info Map
mechanism

You can embed reCAPTCHA verification in Info Map mechanism instances.

The Site Key and Secret Key configured in the reCAPTCHA Verification
mechanism are made available to the Info Map mechanism via two default macros:
@RECAPTCHASITEKEY@ and @RECAPTCHASECRETKEY@.

For more information about configuring reCAPTCHA support, see “Configuring
the reCAPTCHA Verification authentication mechanism” on page 75.

In the HTML template:
v Include the reCAPTCHA JavaScript in the head of your template
v Include the reCAPTCHA element in your form

For example:
...
<SCRIPT SRC="https://www.google.com/recaptcha/api.js" ASYNC DEFER></SCRIPT>
...
<DIV CLASS="g-recaptcha" DATA-SITEKEY="@RECAPTCHASITEKEY@"></DIV>
...

In the JavaScript mapping rule:
v The reCAPTCHA response is received in a request parameter named

g-recaptcha-response

v Verification can be performed in the JavaScript mapping rule

For example:
importClass(Packages.com.ibm.security.access.recaptcha.RecaptchaClient);
...
// Retrieve the reCAPTCHA response from the request.
var captchaResponse = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:parameter",
"g-recaptcha-response");
// Verify captchaResponse with Google, using @RECAPTCHASECRETKEY@. The third parameter
allows you to overload Google’s verify endpoint URL, passing null will use the default.
var captchaVerified = (captchaResponse != null) && RecaptchaClient.verify(captchaResponse,
macros.get("@RECAPTCHASECRETKEY@"), null);

Available parameters in Info Map
The following parameters are available in a mapping rule that is invoked by the
Info Map authentication mechanism.

Input:

v var:context - type:Context - The same session context that is passed into
the authsvc_credential mapping rule. For more information, see Table 2
in Authentication policy parameters and credentials.

Chapter 10. Authentication 79

v var:state - type:Map - Any values placed in the user's state by prior
invocations of this instance of the Info Map authentication mechanism.

Output:

v var:page - type:InfoMapString - The page template to be displayed if this
rule returns false. The following methods can be used to get and set the
string:
java.lang.String getValue() - Returns the internal String value.
void setValue(java.lang.String value) - Sets the internal String value.
For more information, see the Javadoc on the appliance.

v var:macros - type:Map<String, String> - Values to populate on the
returned template page.

v var:result - type:InfoMapResult - An object that captures the status of
this Info Map invocation. Set it to true to signal success or false to
signal failure. The following method is used to set success:
void setValue(boolean value)

For more information, see the Javadoc on the appliance.

Embedded Cloud Identity API calls in an Info Map mechanism
You can embed Cloud Identity (CI) API calls in Info Map mechanism instances
with a new client, CI Client. Configure a CI Server connection to make calls with
the CI Client.

The client ID and client secret that is configured in the CI Server Connection are
made available to the CI Client by using the Server Connection Factory. The CI
Client then automatically manages the client credentials token.

For more information about configuring the CI Server Connection, see Server
connection properties.

For example:
importPackage(Packages.com.ibm.security.access.ciclient);
importPackage(Packages.com.ibm.security.access.server_connections);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);

IDMappingExtUtils.traceString("entry Cloud Identity Mapping Rule");

var connection = ServerConnectionFactory.getCiConnectionByName("milano");

var id = CiClient.getUserId(connection, "testuser@ibm.com");
if (id != null) {

IDMappingExtUtils.traceString("CI User ID: " + id);
} else {

IDMappingExtUtils.traceString("CI User does not exist.");
}

Available CI Client methods include:
getUser(CiServerConnection connection, String username)
Retrieve a user object (via SCIM) by username

getUserId(CiServerConnection connection, String username)
Retrieve the user’s IUI (via SCIM) by username

registerAuthenticator(CiServerConnection connection, String json)
Initiate device registration (to be completed by the user’s authenticator app)

getAuthenticators(CiServerConnection connection, String username)

80 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

||905||

	905	
	905	
	905	

	905	
	905	
	905	

||905||
||905||

||905||

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

Get all authenticators for the given user

getAuthenticator(CiServerConnection connection, String id)
Get a specific authenticator based on ID

updateAuthenticator(CiServerConnection connection, String id, String json)
Update a specific authenticator based on ID

deleteAuthenticator(CiServerConnection connection, String id)
Delete a specific authenticator based on ID

getAuthMethods(CiServerConnection connection, String username)
Get all auth methods for the given user

getAuthMethod(CiServerConnection connection, String id)
Get a specific auth method based on ID

updateAuthMethod(CiServerConnection connection, String id, String json)
Update a specific auth method based on ID

deleteAuthMethod(CiServerConnection connection, String id)
Delete a specific auth method based on ID

createTransaction(CiServerConnection connection, String authenticatorId, String json)
Create a new transaction for the given authenticator ID

getTransactions(CiServerConnection connection, String authenticatorId)
Get all transactions for the given authenticator ID

getTransaction(CiServerConnection connection, String authenticatorId, String id)
Get a specific transaction for the given authenticator ID

getRequest(CiServerConnection connection, String url)
Generic GET request on the given URL

postRequest(CiServerConnection connection, String url, String json)
Generic POST request on the given URL

putRequest(CiServerConnection connection, String url, String json)
Generic PUT request on the given URL

deleteRequest(CiServerConnection connection, String url)
Generic DELETE request on the given URL

Configuring a Knowledge Questions authentication mechanism
The Knowledge Questions authentication mechanism is an extra step-up
authentication measure that uses knowledge questions and answers to authenticate
the user.

Before you begin

The user must register answers to the knowledge questions that the mechanism
uses during authentication.

About this task

The mechanism requires users to provide personal information to successfully
authenticate. You can use the Knowledge Questions authentication mechanism:
v With user ID and password authentication to provide two-factor authentication.
v As a step-up authentication method when the user accesses a high-value

resource or performs a high-value transaction.

Chapter 10. Authentication 81

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||

The administrator can configure the mechanism to provide a predetermined list of
knowledge questions, or the user can specify and register their own knowledge
questions. Typical knowledge questions about the user might include:
v Mother's maiden name.
v Name of first grade teacher.
v Name of favorite pet.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click Knowledge Questions.

6. Click .
7. Click the Properties tab.

a. Select a property that you want to configure.

b. Click .
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Allow User Provided Questions
Specify true to specify custom questions as opposed to pre-configured
questions.

Default value: true

Valid values: Boolean

Answer Hashing Algorithm
Specify this property to indicate the hashing algorithm that the
appliance uses to store the knowledge questions for each user.

Default value: SHA-256

Valid values include the following string values:
v SHA-1

v SHA-256

v SHA-512

Answer Hashing Enabled
The mechanism uses a hashing algorithm to store hash values of the
answers to the knowledge questions provided by the user instead of
storing the actual answers to the knowledge questions. This prevents
the administrator from reading the knowledge question answers for the
user. Specify False so that the mechanism does not hash the question
answer before it stores it.

Default value: true

Valid values: Boolean

Correct Answers Required
Specify the number of correct answers that is required for the
authentication to be successful.

82 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Default value: 1

Valid values: Any positive integer that does not exceed the number of
questions that are stored per user.

Retry Count Attribute Name
Specify the number of times that a user can submit invalid answers to
the knowledge questions. When the user reaches this number, they are
unable to authenticate.

Default value: user:knowledge:questions:retry:count

Valid values: String

Grace Period Authentication Count Attribute Name
Specify the name of the attribute that is used to record the number of
times the user has authenticated during the grace period. The number
of times that the user has authenticated during the grace period is
stored in the user information database. The mechanism does not
require the user to authenticate during the grace period.

Default value: user:knowledge:questions:grace:period:count

Valid values: String

Maximum Amount of Answers Stored
Specify the maximum number of question and answer combinations
that the mechanism can store for each user.

Default value: 3

Valid values: Any positive integer.

Maximum Amount of Grace Period Authentications
Specify the maximum number of user authentications that the
mechanism permits during the grace period. The mechanism does not
require the user to configure knowledge questions during the grace
period.

Default value: 0

Valid values: Any positive integer.

Presentation Mode
Specify Individual so that the mechanism presents one knowledge
question at a time. When you specify Group, the mechanism presents all
of the knowledge questions in one form.

Default value: Group

Presentation Order
Specify Sequential so that the mechanism presents the questions in the
order that they are stored. When you specify Random, the mechanism
presents the questions in random order.

Default value: Random

Questions Attribute Name
Specify the name of the attribute that is used to store the user
knowledge questions in the user information database.

Default value: user:knowledge:questions

Valid values: String

Chapter 10. Authentication 83

Retry Protection Enabled
Specify false to disable retry protection.

Default value: true

Valid values: Boolean

Retry Protection Max Number Of Attempts
Specify the maximum number of times that a user can supply incorrect
answers before the mechanism prohibits the user from logging in.

Default value: 5

Valid values: Integer

Retry Timeout
Specify the number of seconds that a user must wait before trying to
log in again after the user reaches the maximum number of login
attempts.

Note: If a value of -1 is entered the user is locked out indefinitely until
an administrator explicitly unlocks the user with the SCIM API.

Default value: 600

Valid values: Integer

Use Exact Answer Matching
Specify true so that the mechanism performs an exact match when it
validates the submitted answer.

Default value: false

Valid values: Boolean

User Attributes Namespace
Specify the namespace to be used to store all of the user attributes that
are related to the Knowledge Questions authentication mechanism that
are stored in the user information database.

Default value:
urn:ibm:security:authentication:asf:mechanism:knowledge_questions

Valid values: String
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy them. See Chapter 15, “Deploying pending changes,” on page
193.
Related reference:
Authentication policy parameters and credentials
When you add or modify an authentication policy, you specify parameters for the
authentication mechanism and the attributes that you want in the credential. The
credentials are evaluated as part of the access control decision.

Configuring a FIDO Universal 2nd Factor authentication mechanism
The FIDO Universal 2nd Factor authentication mechanism prompts the user to sign
a random challenge string with a FIDO Universal 2nd Factor token provided
during the authentication flow.

84 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

||905||
||905||

Before you begin

The user must register a compatible FIDO Universal 2nd Factor token.

About this task

Configure the FIDO Universal 2nd Factor and the corresponding properties to
determine the operation of the mechanism.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Mechanisms.
5. Click FIDO Universal 2nd Factor.
6. Click Modify.
7. Click the Properties tab.

a. Select a property that you want to configure.
b. Click Modify.
c. Enter the value for that property.
d. Click OK.

8. Take note of the properties for the mechanism.

Application ID

The protocol, hostname, and port that the user will use to attempt
authentication.

Default value: https://webseal.com

Valid values: String, valid URL

Attestation Type

The type of certificate attestation validation to perform. Specify None to
not perform certificate attestation validation. Specify Keystore to
perform certificate attestation validation using the keystore configured
in attestationSource. Specify JWKS to perform certificate attestation
validation using the JSON Web Key Set configured in
attestationSource.

Default value: None

Valid values: None, Keystore, JWKS

Attestation Source

The keystore or key set to use for certificate attestation validation.
Either the name of the keystore on the appliance, or the URL for a
JSON Web Key Set.

Default value: No default value

Valid values: String

Attestation Enforcement

The level of enforcement of certificate attestation validation. When you
specify Required, certificate attestation validation is required, and
requests that fail validation will return a validation error. When you

Chapter 10. Authentication 85

specify Optional, certificate attestation validation is performed, but
requests that fail validation will not return an error.

Default value: Required

Valid values: Required, Optional
9. Click Save.

What to do next

When you configure the mechanism, a message indicates that changes are not
deployed. Deploy them. See Chapter 15, “Deploying pending changes,” on page
193.
Related reference:
Authentication policy parameters and credentials
When you add or modify an authentication policy, you specify parameters for the
authentication mechanism and the attributes that you want in the credential. The
credentials are evaluated as part of the access control decision.

Enabling or disabling authentication policies
You can selectively enable or disable authentication policies to control exactly
which authentication policies are enabled in your environment.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Policies.
v To enable or disable a specific authentication policy, select the authentication

policy and then click Enable or Disable. Follow the prompts.
v To enable or disable all authentication policies, click Enable all or Disable

all. Follow the prompts.

Managing mapping rules
The mapping rules are JavaScript code that run during the authentication flow. Use
the rules to customize the authentication service and the one-time password
generation, delivery, and verification.

Before you begin

Attention: Use extreme care when you replace mapping rules. Any change that
you make to a mapping rule can affect the entire runtime environment. Always
export a copy of the original rule you plan to replace so that you have a backup
copy.

About this task

You can customize several components through JavaScript code. For example, you
can customize the Authentication Service to modify the content of user credential
by modifying the AuthSvcCredential mapping rule.

The JavaScript code is run by the Rhino JavaScript engine. Your JavaScript code
must conform to JavaScript 1.7. Your JavaScript code is not run under a browser

86 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

environment. Therefore, you cannot use objects and functions that are available
only in a browser environment. You can, however, use standard JavaScript objects
(such as Math) and functions (such as parseInt). In addition, your JavaScript code
can use white-listed Java classes, which you might need so that you can use
operations that are not supported by standard JavaScript functions. You can find
the list of these Java classes at JavaScript whitelist. To find out more about using
Java classes in JavaScript, see the Rhino documentation https://
developer.mozilla.org/en/docs/Rhino.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control or Secure Federation.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Take one of the following actions:

View a mapping rule:

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the
mapping rule is displayed.

c. Click OK to close the panel.

Export a mapping rule:

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:
Use an existing mapping rule as the basis for the updated mapping
rule.

Attention: When you replace this file, an error in the JavaScript
source might be found immediately after it is replaced or it might not
be found until the file is run.
a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or the Browse button and select a file.

Attention: The name of the mapping rule cannot be replaced. The
name of the uploaded file is ignored.

d. Click OK to upload the mapping rule.

What to do next

When you replace a mapping rule, the appliance displays a message that there are
undeployed changes. Deploy the changes when you are done. For more
information, see Chapter 15, “Deploying pending changes,” on page 193.

Authentication Service Credential mapping rule
The Authentication Service Credential mapping rule is JavaScript code that you can
use to customize the information that is contained in the user credential.

Chapter 10. Authentication 87

https://developer.mozilla.org/en/docs/Rhino
https://developer.mozilla.org/en/docs/Rhino

During authentication, the Authentication Service gathers information about the
authenticated user, including attributes associated with the user ID. After
successful authentication, the Authentication Service provides this information to
the Authentication Service Credential mapping rule. The main task of the mapping
rule is to modify or add attributes to the user information before it is used to
generate a credential.

Customizing the mapping rule is an advanced way to customize the credential. To
specify basic credential attributes, use an authentication policy and the Credentials
panel in the local management interface instead of creating a custom mapping rule.
See Creating an authentication policy.

If you write your own mapping rule and use it to replace the existing rule, be
aware of the following considerations:
v Credential attributes are string values. For example, user names and lists of

groups are string arrays.
v Do not use spaces, commas, or colons in credential attribute names. Use

alphanumeric characters.

The sample mapping rule provides more descriptions about considerations for
writing your own mapping rule.

A default AuthSvcCredential mapping rule is provided. To review the rule:
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Select AuthSvcCredential.

6. Click .
7. Choose a location and save the file.

To review an example of a customized credential mapping rule:
1. Log in to the local management interface.
2. Click Manage System Settings.
3. Click File Downloads.
4. Click access_control > examples > mapping_rules.
5. Select authsvc_credential.js.
6. Click Export to download the file.

If you create your own rule, use it to replace the existing rule. See the replacement
instructions in “Managing mapping rules” on page 86.

OTPGetMethods mapping rule
OTPGetMethods specifies the methods for delivering the one-time password to the
user.

This sample mapping rule sets password delivery conditions for the following
delivery methods:
v By email
v By SMS
v No delivery

88 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Each delivery method includes the following attributes and their corresponding
value:

id Specifies a unique delivery method ID. This value replaces the
@OTP_METHOD_ID@ macro in the OTP Method Selection page. Use a unique
value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The
value must match one of the types in the
DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file.
For example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value
depends on the one-time password provider plug-in for the delivery type.
For example:
v For SMS delivery, the value is the mobile number of the user. For

example, mobileNumber.
v For email delivery, the value is the email address of the user. For

example, emailAddress.
v For no delivery, the value is an empty string.

label Specifies the unique delivery method to the user. For time-based and
counter-based one-time password, use this attribute to specify the secret
key of the user. If label is not specified, the time-based and counter-based
one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in
the OTP Method Selection page.

otpType
Specifies the one-time password provider plug-in that generates and
verifies the password. The value must match one of the types in the
OTPTypesToOTPProviderModuleIds parameter of the OTP response file. For
example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user
information that is required to calculate the one-time password. This
parameter is only required if user information is used for calculation of the
one-time password.

To customize one-time password delivery, you can do one of the following actions:
v Create your own mapping rules that are based on the sample OTPGetMethods

mapping rule.
v Modify the sample OTPGetMethods mapping rule.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPGenerate mapping rule
OTPGenerate mapping rule specifies the generation of the one-time password for
the user.

You can use the OTPGenerate mapping rule in the following configuration:

Chapter 10. Authentication 89

Modify the one-time password type of the selected method to generate the
one-time password

Indicates the one-time password type to determine the one-time password
Provider plug-in that generates the one-time password for the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPDeliver mapping rule
The OTPDeliver mapping rule specifies the delivery method of the one-time
password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated
with the one-time password. The one-time password hint is displayed in
the One-Time Password Login page. It is also sent to the user together
with the one-time password.

You can customize the way the one-time password hint is generated by
modifying the following section in the default OTPDeliver mapping rule:
var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time
password. The formatted one-time password, instead of the actual one-time
password, is sent to the user. For example, for one-time password hint
abcd, and one-time password 12345678, you can set the formatted one-time
password as abcd-12345678. For one-time password hint efgh, and
one-time password87654321, you can set the one-time password as
efgh#8765#4321.

You can customize the way that the one-time password is generated by
modifying the following section in the sample OTPDeliver mapping rule:
var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time
password

The delivery type specifies the one-time password Delivery plug-in that
delivers the one-time password to the user.

Modify the delivery attribute of the selected method to deliver
The delivery attribute is an attribute that is associated with delivery type.
The meaning of the delivery attribute depends on the one-time password
provider plug-in for the delivery type. For example, for SMS delivery type,
the delivery attribute is the mobile number of the user. For email delivery
type, the delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

90 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPVerify mapping rule
OTPVerify specifies the verification of the one-time password that is submitted by
the user.

You can customize the sample OTPVerify mapping rule to modify the following
verification rules:

Modify the one-time password type of the user
Indicates the one-time password type to determine the one-time Provider
plug-in that verifies the one-time password submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued
that contains the authentication level of the user. You can customize the
authentication level by modifying the following section in the mapping
rule:
var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType

("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",

"urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the
one-time password login page

If a user exceeds the permitted number of times to submit a one-time
password, an error message displays. You can customize the number of
times that the user can submit the one-time password in the one-time
password login page by modifying the following section in the mapping
rule:
var retryLimit = 5;

By default, this option is set to false.

Note: This setting applies only to MAC OTP.

Identify the secret key of a user
When a user registers with a time-based one-time password application,
they are assigned a secret key. Store the secret key in this mapping rule for
verification of the user by modifying the following code:
var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.

Override the one-time password target URL
By default, a user is redirected to a target URL upon completion of an
one-time password flow. That target URL was either the initial cached
request at the WebSEAL or reverse proxy instance or was specified as part
of the one-time password invocation using the Target query string
parameter.

You can use the OTPVerify mapping rule to override this target URL by
adding an attribute called itfim_override_targeturl_attr. This attribute
ensures that at the completion of a successful one-time password flow, the
user is redirected to the override target instead of the initial target.
Example code:

Chapter 10. Authentication 91

var targetUrl = new java.lang.String("http://www.example.com/url");
var targetUrlAttr = new Attribute("itfim_override_targeturl_attr",
"urn:ibm:names:ITFIM:5.1:accessmanager", targetUrl);
attributeContainer.setAttribute(targetUrlAttr);

To customize one-time password verification, you can do one of the following
actions:
v Create your own verification rules that are based on the sample OTPVerify

mapping rule.
v Modify the sample OTPVerify mapping rule.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data.”

Customizing one-time password mapping rules to use access
control context data

Some authentication scenarios require that context data used in making an access
control decision be available during authentication. You can configure Security
Access Manager to capture the content data and make it available to the one-time
password mapping rules.

About this task

You can configure Security Access Manager to perform access control policy
evaluation when a resource is accessed. The access control policy evaluation can
result on a permit with authentication. The required authentication is determined
by the access control policy. Some scenarios require that the context data used to
perform the access control decision be available during the authentication. In order
to provide access to the access control context data, you can persist the context
information for the predefined authentication obligations that perform one-time
password authentication.

Note: The context data available is limited to the attributes referenced by the
access control policy and the request attributes provided by the policy enforcement
point. If the policy relies on the risk score to perform access control, the context
data available also includes the risk-profile attributes.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control > Global Settings > Advanced Configuration.
3. Select attributeCollection.authenticationContextAttributes.

4. Click

for the property.
5. In the text field, enter a list of comma separated attribute names to be collected

during the authorization policy evaluation. For example, if your scenario
requires the authentication level and host of the request the configuration
property, enter authenticationLevel, http:host. The access control context
data is provided to the one-time password mapping rules as context attributes
values. The following format is used:
<stsuuser:Attribute name="AttributeName-AttributeURI"

type=""authn.service.context.attribute.type.AttributeDatatype">
<stsuuser:Value>AttributeValue</stsuuser:Value>
</stsuuser:Attribute>

92 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Where:
v name is the attribute name and attribute identifier separated by a dash (-).
v type is the attribute data type prefixed by

authn.service.context.attribute.type.

For example the authenticationLevel attribute value is added as:
<stsuuser:Attribute name="authenticationlevel-urn-ibm:

security:subject:authenticationlevel"
type="authn.service.context.attribute.type.Integer">

<stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute>

6. Click OK.
7. When you edit a property, a message indicates that there are undeployed

changes. If you have finished making changes, deploy them.
For more information, see Chapter 15, “Deploying pending changes,” on page
193.

8. Configure the mapping rule to use the information collected by this property as
the context attribute.
a. Click Secure Access Control.
b. Under Policy, click Authentication.
c. Click Advanced.
d. Select and export the mapping rule.
e. Use a text editor and modify the rule to access the attributes collected

during the access control policy evaluation in the following format:
var accessControlAttribute =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("AttributeName-AttributeURI",
"authn.service.context.attribute.type.AttributeDatatype");

Where:
v name is the attribute name and attribute identifier separated by a dash (-).
v type is the attribute data type prefixed by

authn.service.context.attribute.type.

For example, the authenticationLevel attribute can be obtained using the
following information:
var accessControlAuthenticationLevel =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("authenticationlevel-urn-ibm:security:subject:authenticationlevel",
"authn.service.context.attribute.type.Integer");

f. Save the mapping rule and take note of its location.
g. In the local management interface, click Secure Access Control.
h. Under Policy, click Authentication.
i. Click Advanced.
j. Select the mapping rule you want to replace.
k. Click Replace. The Replace Mapping Rule panel opens.
l. Click the field or the Browse button and select the file for your saved

mapping rule.
Attention: The name of the mapping rule cannot be replaced. The name of
the uploaded file is ignored.

m. Click OK to upload the mapping rule.

Chapter 10. Authentication 93

One-time password and authentication template files
The one-time password and authentication methods rely on HTML pages to
interact with users, such as displaying errors or prompting users to provide a
password or pin or to indicate the method by which they want to receive the
password. You can customize these pages using the one-time password and
authentication template files.

For information about one-time password and authentication template files, see
Template files.

Push notification registration
Security Access Manager supports push notifications on both iOS and Android
platforms. It can also be configured to send push notifications to the IBM Verify
application.

About this task

To issue a notification to a client device, a specific payload must be generated and
sent to the push notification service of the device's platform (Apple Push
Notification Service, Firebase Cloud Messaging, or Push for IBM Verify). This
notification request requires a form of authentication and authorization. To
establish a trusted connection, Apple Push Notification Service requires a provider
certificate, Firebase Cloud Messaging requires a server (API) key, and Push for IBM
Verify requires configuration of authentication credentials.

As an administrator, you must register such forms of authentication for your
authenticator applications to successfully deliver push notifications to clients on
demand. Such registration can be done through either the local management
interface or the RESTful API. For details about how to register push notification
endpoints through the RESTful API, see the RESTful API documentation.

Note: For certificate-based push notification registration, use a specific SSL
certificate database for this purpose and import all required certificates to the SSL
certificate database before registration.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Manage, click Push Notification Providers.

Adding a push notification provider

a. Click Add.
b. Provide values for the displayed fields.

Mobile Platform
Specifies whether the push notification is for iOS or
Android platform.

Application ID
Identifier of the application.

Push Provider Host
Host name to be used to connect to the push service
provider. The value can include port number, for example,
fcm.googleapis.com:443.

94 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Push Provider
Select the provider for your push notifications. The available
options are Firebase (Google's push notification provider),
Apple (Apple's push notification service), or Push for IBM
Verify.

Server Key
If Android Application is selected in the Mobile Platform
field or Firebase is selected as the Push Provider when iOS
Application is selected in the Mobile Platform field, then
this text field becomes available to enter the Server API Key
to be used for authentication.

Certificate Store
If iOS Application is selected in the Mobile Platform field
and Apple is selected as the Push Provider, then this field
becomes available to select the certificate store on the
appliance that contains the certificate to be used to
authenticate to the Apple push notification service.

Certificate Label
If iOS Application is selected in the Mobile Platform field
and Apple is selected as the Push Provider, then this field
becomes available to select the certificate to be used to
authenticate to the Apple push notification service.

c. Click Save.
d. Deploy the changes.

Modifying a push notification provider

a. Select the push notification provider to be modified.
b. Click Edit.
c. Change the settings as needed.
d. Click Save.
e. Deploy the changes.

Obtaining the required authentication credentials to configure
push notification for IBM Verify

IBM Verify can receive push notifications from Security Access Manager to alert
users about pending transactions. But first Security Access Manager must be
configured to have the required IBM Verify authentication credentials before it can
send push notifications to IBM Verify.

To configure your Security Access Manager appliance to send push notifications to
IBM Verify, you must create a push notification application in Security Access
Manager. This process requires you to have a push notification account including a
unique client ID, client secret, and refresh token for push notification.
1. Send an email to the IBM Verify Administrator, verify@au1.ibm.com, with the

subject line “IBM Verify Push Notification Registration”.
In the email contents, include your Name, IBM ID, company name, and site
number (as provided in your Passport Advantage account).
For example:
Name: Joe Smith
IBM ID: jblack@thecompany.com
Company Name: The Company Pty Ltd
Site Number: 1768

Chapter 10. Authentication 95

Note: You can send through your details if you would like IBM to provide you
with a push notification account. A push notification account allows you to
configure your IBM Security Access Manager environment to send push
notifications to IBM Verify. IBM will use the personal details that you provide
to register you for an IBM Verify push notification account. You will be
contacted via email to provide you with your account details. You might also
receive emails on occasion with important updates regarding the push
notification process.

2. You will receive an email reply within two business days with the following
details:
Mobile platform: iOS Application
Application ID: com.ibm.security.verifyapp
Push Provider Host: api8.silverpop.com
Push Provider: Push for IBM Verify
Client ID: xxx
Client Secret: xxx
Refresh Token: xxx
App Key: apdREtdPxG

Mobile platform: Android Application
Application ID: com.ibm.security.verifyapp
Push Provider Host: api8.silverpop.com
Push Provider: Push for IBM Verify
Client ID: xxx
Client Secret: xxx
Refresh Token: xxx
App Key: gcGgrbKtJZ

3. Configure a new push notification application on your appliance. Select Push
for IBM Verify as the Push Provider during the configuration. For more
information, see “Push notification registration” on page 94.

Cloud Identity API Integration
Cloud Identity supports several multi-factor authentication types including IBM
Verify. One advantage of leveraging authentication methods from the cloud is that
the methods can be updated with newer technology more rapidly, and new
methods can be adopted without the need for a Security Access Manager update.

A second advantage is that Cloud Identity supplies both an email gateway and an
SMS gateway, for SMS and Email OTP methods.

Instead of redirecting users to Cloud Identity to perform authentication the Cloud
Identity API integration within ISAM can be used. This allows for complete control
over the look and feel of the authentication experience.

The API Integration is achieved through a series of Info Map rules as well as a
new Authentication Mechanism type - Cloud Identity JavaScript. The new
mechanism type is very similar to an Info Map mechanism, with a few extra
properties.

Cloud Identity JavaScript
The Cloud Identity JavaScript mechanism can be used to implement authentication
and user self care flows between Security Access Manager, Cloud Identity, and the
end user.

This mechanism has several properties:

96 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://www.ibm.com/security/identity-access-management/cloud-identity

Mapping Rule
The configured Info Map mapping rule to be run

Server Connection
The Cloud Identity server connection to use to perform all operations

Verify Client ID
The client ID configured for IBM Verify in Cloud Identity

Bypass if not enrolled
A boolean indicating whether to return success without attempting
authentication if no multi-factor authentication methods are enrolled.

Similar to Info Map mechanisms, if the configured mapping rule returns FALSE,
then a page will be returned to the user. The JavaScript must define which page to
return. The JavaScript can also populate any macros on the page and modify what
is displayed to the user. If the rule returns TRUE, then the mechanism will return
success and the policy will continue.

The following parameters are available in the mapping rule: “Available parameters
in Info Map” on page 79

After you have configured the mechanism, you can create policies that include this
mechanism. For more information, see Creating an authentication policy

Authentication flow
One of the Cloud Identity JavaScript mapping rules provided out of the box is the
Authentication rule, which operates at a high level as follows.

Action Result

Empty or "initiate" Produce a landing page with all
authentication methods listed such that the
user can choose which method they would
like to perform authentication with.

"chooseMethod" Create a transaction (if required) and return
a page relevant to the chosen method.
Waiting page for IBM Verify, OTP input
page for SMS/Email/Time-Based OTP, and
OTP delivery detail input page for Transient
Email/SMS.

"submitTransient" Create a transient transaction with the given
OTP delivery detail. Returns a OTP input
page.

"verifyOTP" Send the OTP to Cloud Identity for
verification. If the verification succeeds,
progress to the next step in the policy. If
verification fails, display an error to the user.

"checkVerify" Check the status of the IBM Verify
transaction. If the transaction was successful
progress to the next step in the policy,
otherwise display an error to the user.

Several parameters can be modified at the beginning of the mapping rule to
control different behavior:

Chapter 10. Authentication 97

Variable Affect Affect

otpCorrelation The correlation to use in SMS
and Email OTP transactions.

"ISAM verification"

enabledMethods The type of methods to
display to a user, if enrolled.

["Verify", "SMSOTP"
"EmailOTP", "TOTP",
"TransientEmail",
"TransientSMS"]

verifyTransactionMessage The transaction message to
send when creating Verify
transactions.

"You have a pending
authentication challenge."

expandVerifyMethods A boolean indicating whether
all available Verify methods
should be displayed to the
user, or only one (which is
the highest priority in
verifyMethodPriority).

false

verifyMethodPriority The priority of Verify
methods to display if
expandVerifyMethods is
false.

["face", "iris", "retina", "eye",
"fingerprint", "userpresence"]

jitMethodEnrollment A boolean indicating whether
to redirect to the USC flow if
no enrollments are found.

false

User Self Care flow
One of the Cloud Identity Javascript mapping rules provided out of the box is the
User Self Care rule, which operates at a high level as follows:

Action Result

Empty or "initiate" Produce a landing page with all
authentication methods listed and an Add
new button.

"register" Either register a new authenticator, or enroll
a new method type.

Several parameters can be modified at the beginning of the mapping rule to
control different behavior:

Variable Affect Default

enabledMethods The type of methods to
display to a user, and to
allow to be enrolled.

["Verify", "SMSOTP"
"EmailOTP", "TOTP"]

98 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 11. OAuth 2.0 and OIDC support

Security Access Manager supports the OAuth 2.0 protocol, including OpenID
Connect.

The support is provided at both the Advanced Access Control and the Federation
licensing levels.
v OAuth is an HTTP-based authorization protocol. It gives third-party applications

scoped access to a protected resource on behalf of the resource owner. It gives
scoped access by creating an approval interaction between the resource owner,
client, and the resource server. It gives users the ability to share their private
resources between sites without providing user names and passwords. Private
resources can be anything, but common examples include photos, videos, and
contact lists.
The implementation of OAuth 2.0 in Advanced Access Control strictly follows
the OAuth 2.0 standards. For a complete description of the OAuth 2.0
specifications, see the OAuth website http://www.oauth.net.
The OAuth 2.0 implementation of Advanced Access Control also integrates with
WebSphere DataPower. For more information, see DataPower Integration.

v OpenID Connect is an extension of the OAuth protocol to better support identity
and authentication. For a complete description of the OpenID Connect
specifications, see the OpenID website: http://openid.net/specs/

Note: Prior versions of Security Access Manager supported OIDC through
federation support. Security Access Manager now supports OIDC through API
Protection. Existing deployments of Security Access Manager OIDC federations
are fully supported, but new OIDC deployments should use API Protection. For
documentation on managing existing OIDC federations, see Legacy support for
OpenID Connect federations

OAuth and OpenID Connect concepts
You can use the following topics to review the main concepts for the OAuth 2.0
protocol and for the OpenID Connect extensions to the protocol.

OAuth 2.0 concepts
This topic introduces the main concepts of OAuth 2.0.

The following concepts are generally used in OAuth 2.0.

Resource owner
An entity capable of authorizing access to a protected resource. When the
resource owner is a person, it is called an user.

OAuth client
A third-party application that wants access to the private resources of the
resource owner. The OAuth client can make protected resource requests on
behalf of the resource owner after the resource owner grants it
authorization. OAuth 2.0 introduces two types of clients: confidential and
public. Confidential clients are registered with a client secret, while public
clients are not.

99

http://www.oauth.net
https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM Security Federated Identity Manager/page/DataPower Integration
http://openid.net/specs/

OAuth server
Known as the Authorization server in OAuth 2.0. The server that gives
OAuth clients scoped access to a protected resource on behalf of the
resource owner. The server issues an access token to the OAuth client after
it successfully does the following actions:
v Authenticates the resource owner.
v Validates a request or an authorization grant.
v Obtains resource owner authorization.

An authorization server can also be the resource server.

Scope A property requested by the OAuth client, to specify the scope of the
access request. The scope is used by the caller to tag the intended use of
the token. The authorization server can use the scope response parameter
to tell the client the scope of the access token that was issued. Scopes are
usually shown on the consent page, so that a user can understand the
client's intended use of the token. Common scopes include profile and
email.

Access token
A string that represents authorization granted to the OAuth client by the
resource owner. This string represents specific scopes and durations of
access. It is granted by the resource owner and enforced by the OAuth
server.

Bearer token
Token issued from the token endpoint. This includes an access token and
potentially a refresh token. See http://tools.ietf.org/html/rfc6750 for more
information on bearer tokens.

Protected resource
A restricted resource that can be accessed from the OAuth server using
authenticated requests.

Resource server
The server that hosts the protected resources. It can use access tokens to
accept and respond to protected resource requests. The resource server
might be the same server as the authorization server.

Authorization grant
A grant that represents the resource owner authorization to access its
protected resources. OAuth clients use an authorization grant to obtain an
access token. There are four authorization grant types: authorization code,
implicit, resource owner password credentials, and client credentials.

Authorization code
A code that the Authorization server generates when the resource owner
authorizes a request.

Refresh token
A string that is used to obtain a new access token.

A refresh token is optionally issued by the authorization server to the
OAuth client together with an access token. The OAuth client can use the
refresh token to request another access token that is based on the same
authorization, without involving the resource owner again.

OpenID Connect concepts
OpenID Connect extends OAuth 2.0 function. The OpenID Connect concepts
include the OAuth 2.0 concepts.

100 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://tools.ietf.org/html/rfc6750

OpenID Connect Provider (OP)
OAuth 2.0 Authorization Server that can authenticate the user and
providing claims to a Relying Party about the authentication event and the
user.

Relying Party (RP)
OAuth 2.0 Client application that requires user authentication and claims
from an OpenID Connect Provider.

Claim

Piece of information asserted about an entity that is included in the ID
token. An OpenID Connect Provider must document which claims it
includes in its ID tokens.

The following claims are required claims about the authentication event:
v aud (Audience): Must contain the client identifier of the RP registered at

the issuer.
v iss(Issuer): The issuer identifier of the OP.
v exp (Expiration time): The RP must validate the ID token before this

time.
v iat (Issued at): The time at which the ID token was issued.

The following claims are required claims about the user:
v sub (Subject): A locally unique and permanent (never reassigned)

identifier of the user at the issuer.

Optional claims about the user can include first_name, last_name, picture,
gender, etc.

Scope A property that is requested by the Relying Party, which can be consented
to by the user, that requests certain claims be included in the ID token. In
addition to the definition of scope in OAuth, OpenID Connect adds some
well-defined scopes. It requires the openid scope to identify a request to an
OpenID Connect flow. It also includes the common scopes profile and
email, which pertain to a specific set of claims.

Bearer token
In addition to the types of tokens that are listed in the description of
Bearer token for OAuth 2.0 support, for OpenID Connect the token can be
an ID token.

ID token

JSON Web Token (JWT) that contains claims about the authentication event
and the user.

JWTs are Base64 encoded JSON objects with three sections: Header, Claims
Set, and JSON Web Signature (JWS). The sections are separated in the JWT
by a period ('.'). The Header must at least contain the algorithm that is
used to sign the JWT (the alg claim).

The Claims Set includes claims about the authentication event and the user.

The JSON Web Signature (JWS) is used to verify the signing of the JWT.
For more information, see RFC7515.

For more information about JWTs, see RFC7519.

Issuer Entity that issues a set of claims.

Issuer identifier
Verifiable identifier for an issuer. An issuer identifier is a case-sensitive

Chapter 11. OAuth 2.0 and OIDC support 101

https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7519

URL that uses the HTTPS scheme that contains scheme, host, and
optionally, port number and path components and no query or fragment
components.

Hybrid flow

The OpenID Connect hybrid flow is a request to /authorize, where both
an authorization code and either an access token or id_token, or both, are
returned. The value of response_type for a hybrid flow is any of the
following values.
v code id_token

v code id_token token

v code token

Some tokens are returned by the authorization endpoint, and others are
returned by the token endpoint.

Note: Hybrid flow is supported in OpenID Connect but not in OAuth. See
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth.

Metadata
Metadata is the discovery information that the OpenID Provider (OP)
exposes. If metadata is configured, the Relying Party (RP) uses it as the
source of the /authorize, /token, /jwks, and /userinfo URLs for the RP.
See http://openid.net/specs/openid-connect-discovery-
1_0.html#ProviderMetadata.

Userinfo
The Userinfo endpoint is an OAuth 2.0 protected resource that returns
claims about the authenticated user. These claims are normally represented
by a JSON object that contains a collection of name and value pairs for
each claim. For more information, see http://openid.net/specs/openid-
connect-core-1_0.html#UserInfo.

OAuth 2.0 endpoints
Endpoints provide OAuth clients the ability to communicate with the OAuth
server or authorization server within a definition.

All endpoints can be accessed through URLs. The syntax of the URLs is specific to
the purpose of the access.

If you are responsible for installing and configuring the appliance, you might find
it helpful to be familiar with these endpoints and URLs.

API protection definitions

The API protection definitions naming follows the standard Advanced Access
Control naming convention. The syntax is:
https://<hostname:port>/<junction>/sps/oauth/oauth20

For example:
https://server.oauth.com/mga/sps/oauth/oauth20

The following table describes the endpoints that are used in an API protection
definition.

102 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

Notes:

v There is only a single set of endpoints.
v Not all authorization grant types use all three endpoints in a single OAuth 2.0

flow.

Table 5. OAuth 2.0 endpoint definitions and URLs

Endpoint name Description Example

Authorization endpoint An authorization URL where the resource
owner grants authorization to the OAuth
client to access the protected resource.

https://server.oauth.com/mga/sps/oauth/
oauth20/authorize

Token endpoint A token request URL where the OAuth
client exchanges an authorization grant for
an access token and an optional refresh
token.

https://server.oauth.com/mga/sps/oauth/
oauth20/token

Clients manager endpoint A URL for resource owners to manage
their trusted clients.

The resource owner can use the clients
manager endpoint to access and modify
the list of clients that are authorized to
access the protected resource. The trusted
clients manager shows the client name and
permitted scope of an authorized client.

Note: The list does not show clients that
are disabled or deleted from the definition.

The resource owner can optionally remove
trusted client information from the list. In
doing so, the resource owner is prompted
for consent to authorize the next time the
OAuth client attempts to access the
protected resource.

https://server.oauth.com/mga/sps/oauth/
oauth20/clients

Session endpoint A URL where an access_token can be
exchanged for a web session. The client
uses the endpoint to obtain an
authenticated web session for the resource
owner that is typically used in hybrid
mobile application scenarios.
Note: The session endpoint is disabled by
default and can be enabled by using
advanced configuration.The client must
send a POST request with the access_token
in the body.

POST /mga/sps/oauth/oauth20/session
HTTP/1.1Host: server.oauth.com
Content-Type: application
/x-www-form-urlencoded
access_token=abc123...

https://server.oauth.com/mga/sps/oauth/
oauth20/session

Authorization grant
management endpoint

A URL where you can view your
authorization grants and the tokens and
attributes of each authorization grant.

http://server.oauth.com/mga/sps/mga/
user/mgmt/html/device/
device_selection.html

Logout endpoint A URL where you can end a session by
revoking an access_token. The token must
be provided in the Authorization header
or a session cookie must be used.

http://server.oauth.com/mga/sps/oauth/
oauth20/logout

Chapter 11. OAuth 2.0 and OIDC support 103

Table 5. OAuth 2.0 endpoint definitions and URLs (continued)

Endpoint name Description Example

Introspect endpoint A URL where an access_token can be
inspected by an oauth_client. For more
details, see “OAuth introspection” on page
138.
Note: The introspect endpoint is disabled
by default and can be enabled by using
the advanced configuration.

https://server.oauth.com/mga/sps/oauth/
oauth20/introspect

Revocation endpoint A URL where you can revoke OAuth
tokens issued to a client. For more details,
see “OAuth revocation endpoint” on page
140.

https://server.oauth.com/mga/sps/oauth/
oauth20/revoke

Metadata endpoint Final portion of URL is a path parameter
that is the name of your API Protection
definition. Template file available:

<locale>/oauth20/metadata.json

If a custom template is needed per
definition use:

<Locale>/oauth20/<Your_API_Definition_Name>/metadata.json

Example:

{"issuer":"https://mywebseal.com",
"authorization_endpoint":"https://mywebseal.com/sps/oauth/oauth20/authorize",
"token_endpoint":"htps://mywebseal.com/sps/oauth/oauth20/token",
"userinfo_endpoint":"https://mywebseal.com/sps/oauth/oauth20/userinfo",
"jwks_uri":"http://mywebseal.com/sps/oauth/oauth20/jwks/testDef",
"response_types_supported":["token","id_token","token id_token","code"],
"response_modes_supported":["fragment","form_post"],
"grant_types_supported":"implicit","password","authorization_code"],
"id_token_signing_alg_values_supported:["RS256"],
"introspect_endpoint":"https://mywebseal.com/sps/oauth/oauth20/introspect",
"revocation_endpoint":"https://mywebseal.com/sps/oauth/oauth20/revoke"}

https://server.oauth.com/mga/sps/oauth/
oauth20/metadata/<Definition_Name>

Userinfo Endpoint The Userinfo endpoint is an OAuth 2.0
protected resource that returns claims
about the authenticated end-user. These
claims are normally represented by a JSON
object that contains a collection of name
and value pairs for each claim. For more
info, see http://openid.net/specs/openid-
connect-core-1_0.html#UserInfo

https://server.oauth.com/mga/sps/oauth/
oauth20/userinfo

JWKS Uri The URL of the JSON Web Key (JWK) Set
document for the OpenID Provider. This
data contains the signing key (or keys)
that the Relying Party uses to validate
signatures from the OpenID Provider.
Optionally, the JWK Set can contain the
Server's encryption key (or keys), which
Relying Parties use to encrypt requests to
the Server.

https://server.oauth.com/mga/sps/oauth/
oauth20/jwks/<Definition_Name>

Client Registration
Endpoint

The Client Registration Endpoint where an
application can request a clientId in order
to make OAuth/OIDC requests. This is
also the endpoint to retrieve a registered
client's definition, or delete it.

https://server.oauth.com/mga/sps/oauth/
oauth20/register/<Definition_Name>

104 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||
||905||

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

Table 5. OAuth 2.0 endpoint definitions and URLs (continued)

Endpoint name Description Example

Device Authorize Endpoint Endpoint initially visited by the device
client to obtain a device code and user
code.

https://server.oauth.com/mga/sps/oauth/
oauth20/device_authorize

User Authorize Endpoint Endpoint visited by a user to verify a
user_code so a device client may obtain an
authorization grant for the user.

https://server.oauth.com/mga/sps/oauth/
oauth20/user_authorize

OAuth 2.0 and OIDC workflows
The OAuth 2.0 support in IBM Security Access Manager provides four different
ways for an OAuth client to obtain access the protected resource.

OAuth 2.0 workflow

Advanced Access Control supports the following OAuth 2.0 workflows.

Authorization code flow

The authorization code grant type is suitable for OAuth clients that can keep their
client credentials confidential when authenticating with the authorization server.
For example, a client implemented on a secure server. As a redirection-based flow,
the OAuth client must be able to interact with the user agent of the resource
owner. It also must be able to receive incoming requests through redirection from
the authorization server.

Note: For OIDC, a Relying Party is an OAuth Client, and an OIDC Provider is an
OAuth Authorization server. For OIDC, the authorization code flow returns an
authorization code to the Relying Party, which can then directly exchange it for an
ID token and access token. This mechanism provides the benefit of not exposing
any tokens to the browser or end-user. The OpenID Connect Provider also
authenticates the Relying Party before exchanging the authorization code for an
access token. The authorization code flow is suitable for Relying Parties that can
securely maintain a client secret between themselves and the OpenID Connect
Provider.

Chapter 11. OAuth 2.0 and OIDC support 105

1. Client identifier and redirect URI

2. User authenticates

Client

Resource
owner

3.Authorization code

5. Access token with optional refresh token

Authorization
server

User agent

4. Client credentials, authorization
code, and redirect URI

1

2

3

1. The OAuth client initiates the flow when it directs the user agent of the
resource owner to the authorization endpoint. The OAuth client includes its
client identifier, requested scope, local state, and a redirection URI. The
authorization server sends the user agent back to the redirection URI after
access is granted or denied.
For OIDC, the scope must include openid. The state parameter must also be
included.

2. The authorization server authenticates the resource owner through the user
agent and establishes whether the resource owner grants or denies the access
request.

3. If the resource owner grants access, the OAuth client uses the redirection URI
provided earlier to redirect the user agent back to the OAuth client. The
redirection URI includes an authorization code and any local state previously
provided by the OAuth client.
If this is an OpenID Connect request, then the redirection URI must be present.
For Oauth, by contrast, it can be sourced from the client configuration. This
requirement exists because OpenID Connect is stricter on request validation.

4. The OAuth client requests an access token from the authorization server
through the token endpoint. The OAuth client authenticates with its client
credentials and includes the authorization code received in the previous step.
The OAuth client also includes the redirection URI used to obtain the
authorization code for verification.
For OIDC, the Relying Party requests an access token and, in addition, an ID
token from the OpenID Connect Provider through the token endpoint.

5. The authorization server validates the client credentials and the authorization
code. The server also ensures that the redirection URI received matches the URI
used to redirect the client in Step 3. If valid, the authorization server responds
back with an access token. If OIDC is configured, an id token is returned.

106 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

For OIDC, if the redirection URI is valid, the OpenID Connect Provider
responds back with an access token and an ID token.

The authorization server can be the same server as the resource server or a
separate entity. A single authorization server can issue access tokens accepted by
multiple resource servers.

Authorization code flow with refresh token

1. Authorization grant and client credentials

2. Access token and refresh token

Client

3. Access token

4. Protected resource

5. Access token

6. Invalid token error

Resource
server

Authorization
server

7. Refresh token and client credentials

8. Access token and refresh token

The authorization code workflow with refresh token diagram involves the
following steps:
1. The OAuth client requests an access token by authenticating with the

authorization server with its client credentials, and presenting an authorization
grant.

2. The authorization server validates the client credentials and the authorization
grant. If valid, the authorization server issues an access token and a refresh
token.

3. The OAuth client makes a protected resource request to the resource server by
presenting the access token.de

4. The resource server validates the access token. If the access token is valid, the
resource owner serves the request.

5. Repeat steps 3 and 4 until the access token expires. If the OAuth client knows
that the access token has expired, skip to Step 7. Otherwise, the OAuth client
makes another protected resource request.

6. If access token is not valid, the resource server returns an error.
7. The OAuth client requests a new access token by authenticating with the

authorization server with its client credentials, and presenting the refresh token.
8. The authorization server validates the client credentials and the refresh token,

and if valid, issues a new access token and a new refresh token. For OpenID
Connect, an ID token is returned in addition to the new access token and
refresh token.

Implicit grant flow

Chapter 11. OAuth 2.0 and OIDC support 107

The implicit grant type is suitable for clients that are not capable of maintaining
their client credentials confidential for authenticating with the authorization server.
An example can be in the form of client applications that are in a user agent,
typically implemented in a browser using a scripting language such as JavaScript.

As a redirection-based flow, the OAuth client must be able to interact with the user
agent of the resource owner, typically a web browser. The OAuth client must also
be able to receive incoming requests through redirection from the authorization
server.

Note: For OIDC, a Relying Party is an OAuth Client, and an OIDC Provider is an
OAuth Authorization server. For OIDC, the implicit flow can be used by Relying
Parties with an in-browser scripting language component. The access token and ID
token are returned directly to the Relying Party, which may expose them to the
end-user and applications that have access to the end-user's browser. The token
endpoint is not used and the OpenID Connect Provider does not perform
authentication on the Relying Party in this flow. The Relying Party does not have
to directly communicate with the OpenID Connect Provider as all interactions can
be performed through the browser.

1. Client identifier and redirect URI

2. User authenticates

Client

Resource
owner

3.Redirect URI with access
token in fragment

5. Script

Web server with
client resource

Authorization
server

User agent

4. Redirect URI without fragment

1

2

7. Access token

6

The implicit grant workflow diagram involves the following steps:
1. The OAuth client initiates the flow by directing the user agent of the resource

owner to the authorization endpoint. The OAuth client includes its client

108 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

identifier, requested scope, local state, and a redirection URI. The authorization
server sends the user agent back to the redirection URI after access is granted
or denied.
For OIDC, the requested scope must include openid, and the parameters nonce
and state must also be included.

2. The authorization server authenticates the resource owner through the user
agent and establishes whether the resource owner grants or denies the access
request.

3. If the resource owner grants access, the authorization server redirects the user
agent back to the client using the redirection URI provided earlier. The
redirection URI includes the access token in the URI fragment.
For OIDC, the redirection URI includes both the access token and the ID token
in the URI fragment.

4. The user agent follows the redirection instructions by making a request to the
web server without the fragment. The user agent retains the fragment
information locally.

5. The web server returns a web page, which is typically an HTML document
with an embedded script. The web page accesses the full redirection URI
including the fragment retained by the user agent. It can also extract the access
token and other parameters contained in the fragment.

6. For OAuth 2.0, the user agent runs the script provided by the web server
locally, which extracts the access token and passes it to the client.
For OIDC, the script extracts both the access token and the ID token. If
response_mode=form_post is specified, the OpenID Provider returns a
self-posting form.

Note: When the response type includes token or ID token, the parameter
response_mode=form_post is set by default. You can use advanced mapping to
change or remove this parameter if necessary. However, by default most
authorization servers ignore this parameter if they do not support it.

Hybrid flow

OpenID Connect supports a hybrid flow. In the OAuth 2.0 hybrid flow, an
authorization code (response_type = code) or an access token (response_type =
token) is returned by the authorization endpoint. Some tokens are returned by the
authorization endpoint, and others are returned by the token endpoint.

The hybrid flow is similar to authorization code flow in allowing clients to be
authenticated, and in supporting refresh tokens. The hybrid flow is similar to
implicit grant flow in allowing tokens to be revealed to the user agent.

The hybrid flow supports multiple response_type values.

Table 6. Response type values for each flow

response_type value Flow

code Authorization Code Flow

id_token Implicit Flow

id_token token Implicit Flow

code id_token Hybrid Flow

code token Hybrid Flow

code id_token token Hybrid Flow

Chapter 11. OAuth 2.0 and OIDC support 109

The hybrid flow uses the steps shown in the diagram for authorization code.
1. The OAuth client initiates the flow when it directs the user agent of the

resource owner to the authorization endpoint. The OAuth client includes its
client identifier, requested scope, local state, and a redirection URI. The
authorization server sends the user agent back to the redirection URI after
access is granted or denied.
For OIDC, the scope must include openid. The state parameter must also be
included.
For hybrid flow, the response type is more than just code. For example,
response_type = code + id_token will result in the return of both an id_token
and code in step 3.

2. The authorization server authenticates the resource owner through the user
agent and establishes whether the resource owner grants or denies the access
request.

3. If the resource owner grants access, the OAuth client uses the redirection URI
provided earlier to redirect the user agent back to the OAuth client. The
redirection URI includes an authorization code and any local state previously
provided by the OAuth client.
If this is an OpenID Connect request, then the redirection URI must be present.
For OAuth, by contrast, it can be sourced from the client configuration. This
requirement exists because OpenID Connect is stricter on request validation.
For hybrid flow, when the authorization code is returned, an id_token and (or)
an access token may also be returned.

4. The OAuth client requests an access token from the authorization server
through the token endpoint. The OAuth client authenticates with its client
credentials and includes the authorization code received in the previous step.
The OAuth client also includes the redirection URI used to obtain the
authorization code for verification.
For OIDC, the Relying Party requests an access token and, in addition, an ID
token from the OpenID Connect Provider through the token endpoint.

5. The authorization server validates the client credentials and the authorization
code. The server also ensures that the redirection URI received matches the URI
used to redirect the client in Step 3. If valid, the authorization server responds
back with an access token. If OIDC is configured, an id token is returned.
For OIDC, if the redirection URI is valid, the OpenID Connect Provider
responds back with an access token and an ID token.

For more information on the hybrid flow, see http://openid.net/specs/openid-
connect-core-1_0.html#HybridFlowSteps.

Resource owner password credentials flow

The resource owner password credentials grant type is suitable in cases where the
resource owner has a trust relationship with the client. For example, the resource
owner can be a computer operating system of the OAuth client or a highly
privileged application.

You can only use this grant type when the OAuth client has obtained the
credentials of the resource owner. It is also used to migrate existing clients using
direct authentication schemes by converting the stored credentials to an access
token.

110 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowSteps
http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowSteps

2. Client credentials and resource
owner password credentials

3. Access token with
optional refresh token

Client

Resource
owner

Authorization
server

1. Password credentials

The resource owner password credentials workflow diagram involves the
following steps:
1. The resource owner provides the client with its user name and password.
2. The OAuth client requests an access token from the authorization server

through the token endpoint. The OAuth client authenticates with its client
credentials and includes the credentials received from the resource owner.

3. After the authorization server validates the resource owner credentials and the
client credentials, it issues an access token and optionally a refresh token.
OIDC requests can return, from a request to /authorize, any combination of the
following:
v An access token
v An id_token
v A code
If a code is returned, then the following can be returned to /token:
v An access token
v An ID token
v A refresh token, if enabled
If a refresh token is presented to /token, then following are returned:
v An access token
v An ID token
v A refresh token

JWT and SAML bearer grant type flows

The assertion bearer grant types are an extension to the OAuth 2.0 framework. In
such flows, a client presents a JWT or SAML assertion to the token endpoint in
exchange for tokens. The assertion that is presented must represent the resource
owner for whom tokens will be issued to. See RFC 7522 and RFC 7523 for further
details.

The assertions must be validated in the pre-token mapping rule. A callout to the
STS is one way to validate a presented assertion.

The following diagram describes the steps in the assertion bearer grant type flows:

Chapter 11. OAuth 2.0 and OIDC support 111

https://tools.ietf.org/html/rfc7522
https://tools.ietf.org/html/rfc7523

OAuth request for a
protected resource

HTTP 401 Status Code
False

OAuth data present

True

HTTP 400 Status Code
False

True

All required
parameters present

Construct RST and send
to stst for validation

False

False

True

True

HTTP 503 Status Code
STS returns as

RSTR with an authorized
attribute

HTTP 401 Status Code
Authorized attribute
has the value TRUE

Appened any attributes
with the Response
Attribute type to the
request and allow it

through to the resource

1. The client obtains a JWT or SAML assertion from the resource owner.
2. The client presents the assertion to the authorization server.
3. The authorization server validates the presented assertion through signature

validation, decryption, or both. The issuer and subject are extracted and
validated. If the issuer is trusted, tokens are issued to the subject that is
captured in the assertion.

Client credentials flow

112 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The client credentials flow is used when the OAuth client requests an access token
using only its client credentials. This flow is applicable in one of the following
situations:
v The OAuth client is requesting access to the protected resources under its

control.
v The OAuth client is requesting access to a different protected resource, where

authorization has been previously arranged with the authorization server.

1. Client credentials

2. Access token

Client
Authorization

server

The client credentials workflow diagram involves the following steps:
1. The OAuth client requests an access token from the token endpoint by

authenticating with its client credentials.
2. After the authorization server validates the client credentials, it issues an access

token.

Device flow

The OAuth device flow is a draft RFC (Currently version 9, see:
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-09). The OAuth device flow
is intended for use where the OAuth client is unable to provide any input
mechanism to the user, and is only able to broadcast information. Such
applications would be smart devices which can display (for example, a smart
device plugged into a TV) content, but not provide a user-agent. This means the
flow of information is one way from the client to the resource owner. There are
three endpoints used in this flow, the device_authorize endpoint, a JSON endpoint
used by the client to get the initial device and user codes. The user authorize
endpoint, where the user visits to authenticate and authorize the client, and the
token endpoint, where the client will poll with the device code.

The steps of a device flow are:
1. The client makes a request to device authorize and receives a device_code, a

user_code and a verification_uri.
2. The client shows the user_code on the screen, along with the verification uri.

The client may also choose to show an alternative method of consuming this
user_code and verification code, such as a QR code to be scanned by a resource
owner with a mobile device.

3. The client begins polling the token endpoint with the device_code, it will
receive errors of 'authorization_pending' or 'slow_down' while it waits for a
user to verify the user code.

4. The user visits the verification uri presenting the user_code. The user will then
be prompted to authenticate and consent. After the user has authenticated and
consented, asuccess page is shown.

5. The client, which has been continuing to poll will now receive a bearer token
rather than an 'authorization_pending' error.

The following diagram describes the steps in the device flows:

Chapter 11. OAuth 2.0 and OIDC support 113

||905||
||905||

Client authentication considerations at the OAuth 2.0 token
endpoint

The OAuth 2.0 token endpoint is used for direct communications between an
OAuth client and the authorization server. The token endpoint is used to obtain an
OAuth token.

The client type, whether public or confidential, determines the authentication
requirements of the OAuth 2.0 token endpoint. The Advanced Access Control
runtime is responsible for authenticating the client by using the client_id and
client_secret in sending the request.

OAuth 2.0 workflows for confidential clients that require client authentication at
the token endpoint, can be configured in one of the following ways:
1. The Advanced Access Control point of contact requires authentication at the

token endpoint:
v The point of contact is responsible for authenticating the client.
v The Confidential check box from the client instance panel is not relevant. A

client_secret parameter must not be sent in the token endpoint request.
v If a client_id parameter is sent in the request, it must match the identity of

the client that is authenticated by the point of contact.
2. The Advanced Access Control point of contact permits unauthenticated access

to the token endpoint:
v The client_id parameter in the token endpoint request is used to identify

the client.
v The Confidential check box from the client instance panel determines

whether a client_secret parameter is required in the token endpoint
request. A client secret is required for confidential clients only.

3. Basic Authentication can be performed by the runtime instead of by the point
of contact server.

4. Client displays user_code and verification uri to the end user

5. User visits the verification uri
with the user_code,
authenticates and consents.

6. The client receives a successful response containing an access token

3. Client begins polling /token with device code

2. Client receives device_code and user_code

1. Client initiates request at /device_authorize with client_id and scopes

Client

Authorization Server

User Agent

114 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Note: When enforcing client authentication at the token endpoint, the point of
contact must contain the client ID and client secret within its user registry. The
point of contact must be able to map the authenticated user credential to the
client_id parameter sent in the OAuth 2.0 token endpoint request.

Based on this information, the following configurations are supported:

Table 7. Configurations supported

Client types Configurations
WebSEAL point of contact token
endpoint URI considerations

Check box setting for the
Confidential parameter

Confidential
clients

The point of contact performs
client authentication.

v Authenticated ACL on token
endpoint is required.

v Token endpoint port must
match WebSEAL port.

N/A

Confidential
clients

Basic Authentication is
performed by the runtime.

The point of contact configuration
does not need to make any change
to the Authorization header.

N/A

Confidential
clients

The client_id and client_secret
parameters in the token
endpoint request are used to
perform client authentication.

v Unauthenticated ACL on token
endpoint is required.

v Token endpoint port must
match WebSEAL port.

Must be cleared.

Public clients The client_id parameter is used
to perform client validation.

v Unauthenticated ACL on token
endpoint is required.

v Token endpoint port must
match the WebSEAL port.

Must be selected.

Configuring an authenticated token endpoint with WebSEAL
as the point of contact

Configure an authenticated token endpoint with WebSEAL as the point of contact
to delegate authentication of the client to WebSEAL. Note that basic authentication
can be completed without configuration of WebSEAL as the point of contact.

Before you begin

When you want WebSEAL to do client authentication, you must attach an
authenticated ACL on the token endpoint. You can use the isam_mobile_anyauth
ACL that you can create by using the oauth_config REST API. See “Configuring a
reverse proxy for OAuth and an OIDC Connect provider” on page 119.

You must also know how to enable Basic Authentication and Certificate
Authentication. For more information, see Basic authentication and Client-side
certificate authentication .

About this task

Use separate WebSEAL instances for the token and authorization endpoints to
enforce authentication at WebSEAL for the token endpoint. Clients can authenticate
with authentication mechanisms, such as Basic Authentication and Client
Certificates. At the same time, users can authenticate by using forms authentication
at the authorize and clients manager endpoints.

Chapter 11. OAuth 2.0 and OIDC support 115

Procedure
1. Log in to the pdadmin utility with the sec_master account.
2. Attach the isam_mobile_anyauth ACL to the token endpoint

/WebSEAL/<WebSEAL_instance_name>/mga/sps/oauth/oauth20/token. For
example,
acl attach /WebSEAL/server-default/mga/sps/oauth/oauth20/token isam_mobile_anyauth

3. Enable Basic Authentication, Certificate Authentication, or both.
4. Ensure that the point of contact contains the client ID and client secret within

its user registry by running the following command:
user list * 0

5. Verify the configuration:
a. Ensure that the token endpoint is protected. For example, run the following

command and verify that you get a login form:
curl -kv https://server:445/mga/sps/oauth/oauth20/token

b. If you enabled Basic Authentication or Certificate authentication, ensure that
you can authenticate to the point of contact with the Basic Authentication
header or Client Certificate. For example, run the following commands and
ensure that you can reach the token endpoint:

Basic Authentication
curl -kv https://server:445/mga/sps/oauth/oauth20/token
--basic -u jHTzyil9lQAcFsJu9Dw3:CDrQlexadocQ6FwTzEUG

Certificate Authentication
curl -kv https://server:445/mga/sps/oauth/oauth20/token
--cert /path/to/cert.pem

State management
The state_id parameter in the STSUniversalUser module is used as a key to store
or retrieve state information for each invocation of the trust chain of an OAuth
flow.

Advance Access Control provides sample mapping rules. These sample mapping
rules use state management API and are applicable to OAuth 2.0 protocols. You
can get the sample mapping rules from the File downloads section.

OAuth 2.0

OAuth 2.0 tokens, such as grants, access tokens, and refresh tokens, have a
state_id parameter that is used in Security Token Service mapping rules. The
state_id parameter maintains state between associated Security Token Service calls
in an OAuth 2.0 flow.

The OAuth 2.0 mapping rule uses the state_id as the key to issue an
authorization grant. The key is used to add the token storage time to a cache. The
storage time is then retrieved from the cache during a request for a protected
resource.

Figure 2 on page 117 shows a section of the sample JavaScript mapping rule for
OAuth 2.0.

116 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Trusted clients management
Advanced Access Control stores trusted client information that is based on the
decisions of a resource owner on which clients to trust.

In an OAuth 2.0 flow, the resource owner is asked to provide consent on the
scopes that are requested by a client to access the protected resource. The resource
owner can either grant permission or deny the client from its access request.

The OAuth server or authorization server uses the trusted clients manager to
manage information about trusted clients.

Administrators can configure the behavior of the trusted clients manager in the
API protection page. They can configure whether a resource owner is prompted for
consent in the Authorization code flow or the Implicit grant flow.

The following configuration options are available:
v Never prompt a resource owner for consent - Resource owners are never

prompted for consent and the authorization decision defaults to allow access to
the resource.

...
var request_type = null;
var grant_type = null;

// The request type - if none available assume ’resource’
temp_attr = stsuu.getContextAttributes().getAttributeValuesByNameAndType("request_type", "urn:ibm:names:ITFIM:oauth:request");
if (temp_attr != null && temp_attr.length > 0) {

request_type = temp_attr[0];
} else {

request_type = "resource";
}

// The grant type
temp_attr = stsuu.getContextAttributes().getAttributeValuesByNameAndType("grant_type", "urn:ibm:names:ITFIM:oauth:body:param");
if (temp_attr != null && temp_attr.length > 0) {

grant_type = temp_attr[0];
}

/* The following demonstrates the use of the state management API.
*
* request_type = ’authorization’ ==> Store the UTC time of the request into a cache

with state_id as key [authorization_code, implicit]
* request_type = ’access_token’ && grant_type = ’client_credentials’ ==> Store the UTC time of the request

into a cache with state_id as key [client_credentials]
* request_type = ’access_token’ && grant_type = ’password’ ==> Store the UTC time of the request into a cache

with state_id as key [password]
* request_type = ’resource’ ==> Retrieve the stored time and put it into an attribute named recovered_state
*
* It also stores the flow type we are in be used later to detect if this is a client_credentials two-legged flow or not.
*/

if (request_type == "authorization" || (request_type == "access_token" &&
(grant_type == "client_credentials" || grant_type == "password"))) {

var curr_utc_time = "State storage time was: " + IDMappingExtUtils.getCurrentTimeStringUTC();
IDMappingExtUtils.getIDMappingExtCache().put(state_id, curr_utc_time, 1000);

} else if (request_type == "resource") {
var recovered_state = IDMappingExtUtils.getIDMappingExtCache().get(state_id);

if (recovered_state != null) {
var state_arr = java.lang.reflect.Array.newInstance(java.lang.String, 1);
state_arr[0] = recovered_state;
stsuu.addContextAttribute(new Attribute("recovered_state",

"urn:ibm:names:ITFIM:oauth:response:attribute", state_arr));
}

}
...

Figure 2. OAuth 2.0 JavaScript sample code with state management

Chapter 11. OAuth 2.0 and OIDC support 117

v Always prompt a resource owner for consent - Resource owners are always
prompted for consent even if the client was previously allowed to access the
resource.

v Prompt the resource owner once and remember consent - Resource owners are
prompted once for consent and later allows access to the resource.

Note: For the Prompt once and remember configuration options, the trusted client
manager verifies whether the resource owner previously provided consent on the
scopes that are requested by a client.

Proof Key for Code Exchange support
You can configure support for Proof Key for Code Exchange for OAuth clients.

Proof Key for Code Exchange (PKCE) support is a capability (defined in RFC 7636)
that adds security when performing the authorization code flow on a mobile
device. It addresses a possible security problem that can occur when the following
conditions are true:
v There is no client secret.
v The browser or operating system is being used to perform the authentication

request.
v A native mobile application is consuming the redirect from the authentication

request, and performing an exchange of code for access tokens at the token
endpoint.

PKCE support aims to mitigate the risk of a bad actor on the mobile device
intercepting the redirect back to native app, and maliciously using the
authorization code and the returned access tokens. For a detailed explanation of
the scenario, see the Internet Engineering Task Force (IETF) Request for Comments
(RFC) 7636: https://tools.ietf.org/html/rfc7636

PKCE requires the OAuth client to generate a random string and perform a hash
(SHA256 + BASE64URL) on this string. The initial string must be persisted for use
at /token, and both the hash and the hash method are presented at /authorize.
The authorization server, upon receiving the hash and the method, persists this
value against the issued authorization code. When the authorization code is
presented at /token, along with the initially generated string, the hash method is
applied to the presented string and checked against the string presented at
/authorize. If the two match, the request to /token is successful. If they do not
match, the request is rejected.

The processing flow is as follows:
1. Client generates a code_verifier, and computes code_challenge using

code_challenge_method.
2. Client makes request to /authorize.
3. Authorization server performs standard OAuth request validation for

/authorize.
4. Authorization server checks for presence of code_challenge and

code_challenge_method.
5. Authorization server stores code_challenge and code_challenge_method

against authorization code.
6. Authorization server returns authorization code response.

118 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

https://tools.ietf.org/html/rfc7636

7. Client presents authorization code to /token including the additional
code_verifier.

8. Authorization server performs standard OAuth request validation for /token.
9. Authorization server generates its own code_challenge, using the presented

code_verifier, and the stored code_challenge_method.
10. Authorization server compares its generated code_challenge, to the value

which was presented in the initial request to /authorize(and stored against the
authorization code).

11. If the two match, then an access_token is issued. If the two do not, the request
is rejected.

Note: The IETF specification contains a diagram of the above flow. See
https://tools.ietf.org/html/rfc7636#section-1.1.

To use the IBM Security Access Manager support for PKCE, you must configure
the OAuth client to set the requirePkce property to true. When this property of
the OAuth client is set to true, the following conditions apply:
v A new parameter is required in the request to /token.

code verifier
A cryptographic string of sufficient entropy such that an attacker cannot
predict or guess its value, as specified in section 4.1 of the RFC. This value is
used with the code_challenge_method presented in the /authorize request, to
produce the value to check against the code_challenge, which is also
presented at /authorize.

v Two new parameters are required in the request to /authorize.

code_challenge

The product of the code_verifier and the code_challenge_method. Must be
the product of the SHA256 + BASE64URL encode, as specified in section 4.2
of the RFC.

code_challenge_method

The method applied to the code_verifier as presented at /token, which is
used to check the value of code_challenge. The value of
code_challenge_method must be S256, as specified in section 4.2 of the RFC.

Reverse proxy configuration for OAuth and OIDC provider
You can run an automated configuration of a reverse proxy for OAuth and OIDC
provider, and view a log of the configuration steps. To remove the reverse proxy
configuration, follow the instructions in this section.

Configuring a reverse proxy for OAuth and an OIDC Connect
provider

Use a wizard to perform automated configuration of a reverse proxy appliance for
OAuth and an OIDC Connect provider.

Before you begin

The reverse proxy server that you want to use for your OAuth or OIDC Connect
provider must already be configured. See Configuring an instance.

Chapter 11. OAuth 2.0 and OIDC support 119

https://tools.ietf.org/html/rfc7636#section-1.1

Procedure
1. From the local management interface, select Secure Web Settings > Manage >

Reverse Proxy. A list of reverse proxy instances displays.
2. Select the reverse proxy instance name from the list.
3. Select Manage > OAuth and OIDC Connnect provider Configuration. A

window opens where you can add the configuration information.
4. Enter the configuration details.

The OAuth modes section lists supported modes. You can select more than one
mode.
The modes are options that extend a basic OAuth configuration. A basic
configuration sets up the junction, loads the runtime certificate, and provides
access to the API Protection endpoints: /token, /userinfo, /introspect, /revoke,
/metadata, and /jwks. The base configuration is sufficient if you are doing
only a resource or password credentials flow. In this case, you cannot do any
API enforcement, but you can get tokens issued. In this scenario, you do not
need to select either of the OAuth modes.
If you want to use of the authorization code flow, or implicit flows, which go
via a user agent, or if you want to get a user session using the /session
endpoint, then you must select Configure for browser interaction. If you want
this reverse proxy to protect resources with access tokens you must select
Configure for API protection. The two options are not mutually exclusive; you
can select both.

Table 8. OAuth modes

Mode Description

Configure for browser interaction When configured for browser interaction,
the /authorize and /session endpoints are
accessible. Also, EAI authentication is
enabled for /session. This configuration
option is required for the authorize or
implicit code flows.

Configure for API Protection When this option is selected, an access token
can be presented to WebSEAL, and an
authenticated session retrieved. The use of
cookies is not required; the authorization
header is used as the session index. Selecting
this option configures oauth-auth and
oauth-cluster in the [oauth] stanza in the
WebSEAL configuration file.
Note: If you select Configure for API
protection and do not select Configure for
browser interaction, the configuration
parameter forms-auth is disabled.

Table 9. Reverse proxy instance

Parameter Description

Host name The host name or IP address of the runtime
server. This field is required.

Port The SSL port number of the runtime server.
This field is required.

User name The user name that is used to authenticate
with the runtime server. This field is
required.

120 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 9. Reverse proxy instance (continued)

Parameter Description

Password The password that is used to authenticate
with the runtime server. This field is
required.

Junction The junction for the reverse proxy instance.
The default is /mga.

The Reuse Actions section indicates reuse of existing access control lists (ACLs)
and certificates.

Table 10. Reuse configuration

Parameter Description

Reuse Certificates Select to reuse the SSL certificate if it was
already saved. If this check box is not
selected, the certificate is overwritten.

Reuse ACLs Select to reuse any existing ACLs with the
same name. If this check box is not selected,
the ACLs are replaced.

5. Click Finish.
6. When prompted, deploy the pending changes.
7. Restart the reverse proxy.

What to do next

You can examine a log file to view the results of the auto-configuration. See
“Viewing a reverse proxy log for an automated configuration”

Viewing a reverse proxy log for an automated configuration
You can view a log file to see the steps taken during the automated configuration
of a reverse proxy, such as changes to the reverse proxy configuration file and
execution of Security Access Manager pdadmin administration commands.

About this task

Use the LMI to view the log that was created when you ran the automated
configuration of the reverse proxy for one of the following uses:
v OAuth and OIDC Connect Provider
v Mobile Multi-Factor Authentication (MMFA)
v Federation

The log files typically show configuration of the junction, such as /mga, and
creation of the required ACLs, plus additional steps as required.

Procedure
1. Select Secure Web Settings > Reverse Proxy > Manage > Logging.
2. Select the log file you want to view. The following log files are supported:

Chapter 11. OAuth 2.0 and OIDC support 121

Table 11. Auto-configuration log files

Log file Description

autoconfig__oauth.log Automated configuration of the reverse
proxy instance with OAuth or an OIDC
Connect provider.

autoconfig__mmfa.log Automated configuration of the reverse
proxy instance with MMFA, including
configuration of the junction and creation of
the required ACLs.

autoconfig__federation.log Automated configuration of a federation on
a reverse proxy server, to set up access
between the federation and reverse proxy
appliances.

3. Click View.
The log file displays in a new window. You can take the following actions:
v View log output by scrolling through the display.
v Select Number of lines to view at one time.
v Select Starting from line to narrow the range of log file entries to view at

one time.
v Click Reload to update the display after completion of another configuration.
v Click Export to save the log output to a file.

Example

To view example log file output, see “Example reverse proxy log for OAuth and
OIDC configuration.”

Example reverse proxy log for OAuth and OIDC configuration
The log file for the automated configuration of a reverse proxy instance lists the
configuration actions taken.

Sample output:
v Junction creation

Performing pdadmin cmd:
server task default-webseald-server create -t ssl -h localhost -p 443

-b ignore -c all -j -J inhead -k -r -e utf8_uri -f /mga
Created junction at /mga

v Reverse proxy configuration file changes
setting stanza value:

[server] http-method-disabled-remote = TRACE,CONNECT
setting stanza value:

[eai] eai-auth = https
setting stanza value:

[eai] retain-eai-session = yes
setting stanza value:

[eai] eai-redir-url-priority = yes
adding stanza value:

[eai-trigger-urls] trigger = /mga/sps/oauth/oauth20/session*
adding stanza value:

[eai-trigger-urls] trigger = /mga/sps/auth*
adding stanza value:

[eai-trigger-urls] trigger = /mga/sps/authservice/authentication*
setting stanza value:

122 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

[azn-decision-info] HTTP_HOST_HDR = header:host
setting stanza value:

[azn-decision-info] HTTP_REQUEST_SCHEME = scheme
setting stanza value:

[azn-decision-info] HTTP_REQUEST_METHOD = method
setting stanza value:

[azn-decision-info] HTTP_REQUEST_URI = uri
setting stanza value:

[azn-decision-info] HTTP_AZN_HDR = header:authorization
setting stanza value:

[azn-decision-info] HTTP_CONTENT_TYPE_HDR = header:content-type
setting stanza value:

[azn-decision-info] HTTP_TRANSFER_ENCODING_HDR = header:transfer-encoding
setting stanza value:

[oauth] oauth-auth = https
setting stanza value:

[oauth] default-fed-id = https://localhost/sps/oauth/oauth20
setting stanza value:

[oauth] fed-id-param = FederationId
setting stanza value:

[oauth] cluster-name = oauth-cluster
setting stanza value:

[oauth] user-identity-attribute = username
setting stanza value:

[tfim-cluster:oauth-cluster] handle-pool-size = 10
setting stanza value:

[tfim-cluster:oauth-cluster] handle-idle-timeout = 240
setting stanza value:

[tfim-cluster:oauth-cluster] timeout = 240

setting stanza value:
[tfim-cluster:oauth-cluster] server = 9,

https://localhost:443/TrustServerWS/SecurityTokenServiceWST13

setting stanza value:
[tfim-cluster:oauth-cluster] basic-auth-user = easuser

setting stanza value:
[tfim-cluster:oauth-cluster] basic-auth-passwd = ####

setting stanza value:
[tfim-cluster:oauth-cluster] ssl-keyfile = /var/pdweb/shared/keytab/pdsrv.kdb

setting stanza value:
[tfim-cluster:oauth-cluster] ssl-keyfile-stash = /var/pdweb/shared/keytab/pdsrv.sth

setting stanza value:
[session] require-mpa = no

setting stanza value:
[session] user-session-ids = yes

setting stanza value:
[session-http-headers] Authorization = https

v Creating or modifying an ACL
Performing pdadmin cmd:

acl create isam_mobile_anyauth
Performing pdadmin cmd:

acl modify isam_mobile_anyauth description OAuth_Auto_Configuration
Performing pdadmin cmd:

acl modify isam_mobile_anyauth set user sec_master TcmdbsvaBRrxl
Performing pdadmin cmd:

acl modify isam_mobile_anyauth set group iv-admin TcmdbsvaBRrxl
Performing pdadmin cmd:

acl modify isam_mobile_anyauth set group webseal-servers Tgmdbsrxl
Performing pdadmin cmd:

acl modify isam_mobile_anyauth set any-other Tr
Performing pdadmin cmd:

acl modify isam_mobile_anyauth set unauth T
Performing pdadmin cmd:

acl create isam_mobile_nobody
Performing pdadmin cmd:

Chapter 11. OAuth 2.0 and OIDC support 123

acl modify isam_mobile_nobody description OAuth_Auto_Configuration
Performing pdadmin cmd:

acl modify isam_mobile_nobody set user sec_master TcmdbsvaBRrxl
Performing pdadmin cmd:

acl modify isam_mobile_nobody set group iv-admin TcmdbsvaBRrxl
Performing pdadmin cmd:

acl modify isam_mobile_nobody set group webseal-servers Tgmdbsrxl
Performing pdadmin cmd:

acl modify isam_mobile_nobody set any-other T
Performing pdadmin cmd:

acl modify isam_mobile_nobody set unauth T

v Attaching an ACL
Performing pdadmin cmd:

acl attach /WebSEAL/isam-default/mga/sps/oauth/oauth20/session isam_mobile_unauth
Performing pdadmin cmd:

acl attach /WebSEAL/isam-default/mga/sps/oauth/oauth20/token isam_mobile_unauth
Performing pdadmin cmd:

acl attach /WebSEAL/isam-default/mga/sps/static isam_mobile_unauth
Performing pdadmin cmd:

acl attach /WebSEAL/isam-default/mga/sps/wssoi isam_mobile_anyauth
Performing pdadmin cmd:

acl attach /WebSEAL/isam-default/mga/sps/xauth isam_mobile_anyauth

Removing reverse proxy configuration for OAuth and OIDC
provider

You must manually remove the configuration of OAuth and OIDC provider from a
reverse proxy instance.

About this task

You can accomplish the manual steps by using the pdadmin command and by
editing the WebSEAL configuration file.

You can use the appliance Local Management Interface (LMI) to edit the WebSEAL
configuration file. On the Reverse Proxy management page, select the appropriate
WebSEAL instance and click Manage > Configuration > Edit Configuration File to
open the Advanced Configuration File Editor. You can use this editor to directly
edit the WebSEAL configuration file.

For information on pdadmin, see pdadmin commands.

Procedure
1. Remove the following ACLS:
v isam_oauth_anyauth

v isam_oauth_unauth

v isam_oauth_nobody
v isam_oauth_rest

You can use the pdadmin command to remove ACLs. See acl detach and acl
delete.

2. If your deployment has no further need for the junction, delete it.

Note: Ensure that the junction is not used for any function other than
configuration of OAuth and OIDC provider. If you are not certain about
whether junction is used for other configurations, you can skip this step.
The junction name is the value you specified when you created the junction.
The default junction name is /mga.

124 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

You can use the pdadmin command to delete junctions. See server task delete.
3. If OAuth was configured for API protection, disable oauth-auth in the [oauth]

stanza.
To disable the property, edit the WebSEAL configuration file. See oauth-auth
and [oauth] stanza.

4. If OAuth was configured for Browser flows:
a. Remove the trigger URI /<jct>/sps/oauth/oauth20/session

Note: In the URI, /<jct> refers to the WebSEAL junction that you
configured. You assigned it a unique name or accepted the default name of
/mga.

b. If no other ISAM services are configured, remove the following trigger
URIs:
v /<jct>/sps/auth*

v /<jct>/sps/authservice/authentication

c. If all triggers are removed, disable eai-auth in the [eai] stanza.

To remove trigger URLs, edit the WebSEAL configuration file. See
[eai-trigger-urls] stanza and [eai] stanza.

5. If OAuth was configured for API protection but OAuth was not configured for
browser flows, re-enable forms-auth in the [forms] stanza.
To modify the property, edit the WebSEAL configuration file. See [forms] stanza
and forms-auth.

Configuring API protection
The API protection uses the OAuth 2.0 protocol. To configure the API protection,
you must create a definition and a client.

You must then attach the API protection definition to a resource.

Creating an API protection definition
Create API protection definitions to configure the settings that dictate the behavior
of how resources are accessed. The configuration settings protect the resources
from unauthorized access.

Procedure
1. Log in to the local management interface.
2. Click either Secure Access Control > Policy > OpenID Connect and API

Protection or Secure Federation > Manage > OpenID Connect and API
Protection.

3. Click Definitions, and click .
4. In the Name field, type a unique name for the definition.

Note: The name must begin with an alphabetic character. Do not use control
characters, leading and trailing blanks, and the following special characters ~ !
@ # $ % ^ & * () + | ` = \ ; : " ' < > ? , [] { } / anywhere in the name.

5. In the Description field, provide a brief description about the definition.
6. If you want to enforce an access policy, select the policy from the menu for

the Access Policy field.

Chapter 11. OAuth 2.0 and OIDC support 125

Note: The menu shows Access Policies that are currently defined. To use an
access policy with OpenID Connect and API Protection, you must define the
policy prior to running the configuration wizard. See Access policies.

7. Click Grant Types and select at least one grant type.
The grant type Authorization code is enabled by default. For information on
grant types, see “OAuth 2.0 and OIDC workflows” on page 105.

8. Click Token Management.
Specify values for the token properties. For descriptions of each property, see
“API Protection token management properties” on page 127.

9. Click Trusted Clients and Consent and select when you want the user to be
prompted to consent to an authorization grant.

10. If you want to protect an OpenID Connect Provider, click OpenID Connect
Provider and select Enable OpenID Connect .
Specify OpenID Connect Provider settings as needed for your deployment.
For descriptions of each property, see “API Protection OpenID Connect
Provider properties” on page 129

11. Click Save.

What to do next
v Register an API protection client.
v Deploy the pending changes. See Chapter 15, “Deploying pending changes,” on

page 193

Managing API protection definitions
An API protection definition is a set of configurations that define how resources
are accessed.

About this task

You can add, modify, and delete definitions.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Definitions.
5. Perform one or more of the following actions:

Add definitions

Click . See “Creating an API protection definition” on page 125 for
details.

Modify definitions

a. Select a definition in the list of definitions.

b. Click .
c. Complete the properties for the definition.

Note:

You cannot modify the definition name and grant types. See
“Creating an API protection definition” on page 125 for details.

126 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

d. Click Save.

Delete definitions

a. Select a definition or press Ctrl and select multiple definitions in the
definition list.

b. Click . Confirm the deletion. Click OK to continue or click
Cancel.

Note: A definition cannot be deleted if there are clients associated with
it or it is attached to a resource.

6. Click Save.
7. When you add, modify or delete a definition, a message indicates that there are

changes to deploy. If you are finished with the changes, deploy them.
For more information, see Chapter 15, “Deploying pending changes,” on page
193.

API Protection token management properties
When you configure API Protection for OAuth and OpenID Connect, you must
specify properties for token management.

The local management interface (LMI) page OpenID Conect and API Protection
has a section that prompts for settings for token management. Refer to the
following list of properties to determine the appropriate value, for your
deployment, for each property.

For configuration task instructions, see “Creating an API protection definition” on
page 125.

Access token lifetime (seconds)
Specifies the number of seconds an access token is valid. When the access
token becomes invalid, the client cannot use it to access the protected
resource.

Default value: 3600 seconds.

Minimum value: 1 second.

Access token length
Specifies the number of characters in an access token.

Default value: 20 characters.

Minimum value: one character.

Maximum value: 500 characters.

Enforce single-use authorization grant
If enabled, all the authorization grant tokens are revoked after an access
token is validated. If enabled, resource requests that involve redirects fail
because the access token is validated multiple times.

Default value: disabled

Authorization code lifetime (seconds)
Specifies the number of seconds that an authorization code is valid.

This option applies only to an authorization code grant type. The
authorization server generates an authorization code and sends it to the
client. The client uses the authorization code in exchange for an access
token.

Chapter 11. OAuth 2.0 and OIDC support 127

Default value: 300 seconds.

Minimum value: 1 second.

Authorization code length
Specifies the number of characters in an authorization code.

Default value: 30 characters.

Minimum value: one character.

Maximum value: 500 characters.

Issue refresh token
Specifies whether a refresh token is sent to the client. A refresh token
obtains a new pair of access and refresh tokens. This option is only
applicable to the Authorization code and Resource owner password
credentials grant types.

Maximum authorization grant lifetime (seconds)
Specifies the maximum number of seconds that the resource owner
authorizes the client to access the protected resource.

This option is available only if you enable the Issue refresh token option.

The value for this lifetime must be greater than the values specified for the
authorization code and access token lifetimes.

When this lifetime expires, the resource owner must reauthorize the client
to obtain an authorization grant to access the protected resource.

Default value: 604800 seconds.

Minimum value: 1 second.

Refresh token length
Specifies the number of characters in a refresh token. This option is
available only if you enable the Issue refresh token option.

Default value: 40 characters.

Minimum value: 1 characters.

Maximum value: 500 characters.

Enforce single access token per authorization grant
If enabled, all previously granted access tokens are revoked after a new
access token is generated presenting the refresh token to the authorization
server.

This option is available only if you enable the Issue refresh token option.

Default value: enabled

Enable multiple refresh tokens for fault tolerance

Specifies how refresh tokens are handled. When this option is enabled, and
a refresh request is made, the initially-used refresh token remains active
(assuming it was initially active), even after a successful refresh request is
made and a new token pair (access token and refresh token) is returned.
Only upon the subsequent use of the new access token or new refresh
token will the initially presented refresh token be invalidated. If the
initially used refresh token is presented again, the tokens issued on the
first refresh request (Pair 1) are revoked, and another token pair (access
token and refresh token) is issued. This new pair (Pair 2) is valid, and Pair
1 is invalid.

128 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

This option is available only if you enable the Issue refresh token option.

Default value: disabled

Enable PIN policy
Provides more protection during the exchange of a refresh token fro a new
pair of access and refresh tokens.

This option is available only if you enable the Issue refresh token option.
If enabled, you must configure the PIN length.

PIN Length
Specifies the number of characters in a PIN. This option is available only if
you enable the Enable PIN policy option. You can use the
runtime.hashAlgorithm runtime parameter to configure the algorithm that
is used to hash the PIN before it is stored. For more information, see
Advanced configuration properties.

Default value: 4 characters.

Minimum value: 3 characters.

Maximum value: 12 characters.

Token character set
By default, a set of alphanumeric characters is displayed. You can specify
the set of characters used to generate tokens in the following methods:
v Manually enter characters
v Select from a pre-defined character set from the drop-down list
v Edit the characters in the field after selecting from a set from the

drop-down list

The configured token character set is applicable for all token types. If this
parameter is left blank, all available alphanumeric characters are used to
generate the token.

Maximum number for characters allowed: 200

API Protection OpenID Connect Provider properties
When you configure API Protection for OAuth and OpenID Connect, and you
enable OpenID Connect , you must specify properties for the OIDC Provider.

The local management interface (LMI) page OpenID Connect and API Protection
has a section that prompts for settings for OpenID Connect Provider. Refer to the
following list of properties to determine the appropriate value for each property.

For configuration task instructions, see “Creating an API protection definition” on
page 125.

Issuer Identifier
This entry identifies the issuing entity. It must be a valid URL with the
protocol prefix https://. For example, https://ibm.com or
https://accounts.google.com. It must not include fragment or query
portions. The Issuer Identifier is defined by the OIDC specification. See
http://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

Point of Contact Prefix
The Point of Contact Prefix is used to correctly populate the URLs on the
metadata page. It must include the host, port, and path information of the

Chapter 11. OAuth 2.0 and OIDC support 129

http://openid.net/specs/openid-connect-core-1_0.html#IssuerIdentifier

reverse proxy junction to the runtime. For example: https://
isam.myidp.ibm.com:443/mga/ . Note that is not a field from the OIDC
standard.

Metadata URI
A location where you can view your metadata. Metadata is useful to
discover the capabilities of an OP. The metadata includes all other URIs.
This field is read-only.

id_token Lifetime
Time in seconds for which the id_token is valid. The value is the difference
between the values in the iat and exp claims of the issued JSON Web
Token (JWT). You can use a pre-token mapping rule to overload this value
at runtime.

Default: 3600 seconds.

Signing Algorithm
The algorithm that is used to sign the JWT. This setting is the alg claim in
the JWT. Use the menu to select the appropriate value. You can use a
pre-token mapping rule to overload this value at runtime.

Default: RS256.

Key Database for Signing
The Key database that is used to source the private key for signing the
ES/RS signature algorithms. You can use a pre-token mapping rule to
overload this value at runtime.

Default: rt_profile_keys

Certificate Label for Signing
The label of the key in the selected keystore that is used as the private key
for ES/RS signing. You can use a pre-token mapping rule to overload this
value at runtime.

Default: server

Encrypt ID token
Boolean value to indicate whether this JWT must be encrypted. Select the
check box to encrypt the token and configure encryption settings. You can
use a pre-token mapping rule to overload this value at runtime.

Key Agreement Algorithm
The encryption algorithm that is used for JWT key agreement. This
setting is the alg claim in the encrypted JWT. You can use a
pre-token mapping rule to overload this value at runtime.

Default: RSA-OAEP-256

Encryption Algorithm
The encryption algorithm that is used for JWT payload encryption.
This setting is the enc claim in the encrypted JWT. You can use a
pre-token mapping rule to overload this value.

Default: A128CBC-HS256

Attribute Mapping

You can use the Attribute Mapping section to define attributes that can be
used to customize claims from attribute sources. Attribute sources can be:
Fixed, Credential, or LDAP.

130 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

When you select Enable OpenID Connect, the New and Delete icons are
activated for attribute mapping. To create, select New and enter Attribute
Name. Select Attribute Source type.

To remove an existing Attribute Name, select the attribute and click
Delete.

If you do not select Enable OpenID Connect, you cannot create new
attribute mappings.

Enable client registration
Check this check box to allow users to register dynamic clients.

Issue Client Secret
If dynamic clients are enabled, check this check box if you want
them to be confidential clients.

PIN policy
Advanced Access Control extends OAuth 2.0 capabilities with a PIN policy.

The PIN policy provides the capability of protecting a refresh token with a PIN
provided by the API protection client. An administrator can configure the API
protection definition to enable the PIN policy for the grant types that issue a
refresh token. The two grant types that issue a refresh token are Authorization
code and the Resource owner password credentials.

When enabled, the client is required to send a PIN as a parameter in the first
access token request. The parameter name is pin. The parameter value consists of
digits of the length that is configured in the API protection definition. The client
must submit the same PIN on subsequent requests when exchanging a refresh
token for a new access token.

The PIN policy can be configured to use various hash algorithms to hash and store
the PIN. Use the runtime.hashAlgorithm configuration parameter to specify the
hash algorithm. For more information about configuring the hash algorithm, see
Runtime properties in Advanced configuration properties

Registering an API protection client
Register OAuth API protection clients in the Clients panel. Clients are the entities
against which OAuth access and refresh tokens are granted at runtime.

About this task

API Protection clients now have a dynamic data field when they are configured.
This allows storage of arbitrary data against the client which can be accessed at
runtime (for example, in the consent page or in mapping rules).

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Clients.

5. Click .
6. Specify the following information:

Chapter 11. OAuth 2.0 and OIDC support 131

||905||
||905||

	905	
	905	
	905	

	905	
	905	
	905	

Client name
Specify a meaningful client identifier for each client registration. You
can use this value to search for client registrations.

API definition
Specifies the related Definition, which owns and defines the client. A
Definition can own many client registrations but a client registration
can belong to only one Definition. When you create a client, a list of
available Definitions are available. When a client is created, this value
cannot be modified.

Confidential
Specify whether the client type is confidential. A confidential client type
requires a client secret. Enable this feature if you want the client to
require a client secret.

Client secret
This field is enabled only if the client is indicated as confidential.
Specify a client secret that is used to authenticate an OAuth client at
runtime. It is mandatory for all clients that belong to API protection
definitions where the client type is Confidential and the client
credentials grant type is enabled. Click Generate to have a client secret
that is generated for you or specify your own secret.

Redirect URI (Optional)
Click New to specify the redirect URI to use for the client. You can
create multiple redirect URI entries. Each URL must be unique.

Company name
Specify the name of the company for this client.

Company URL (Optional)
Specify the URL of the company website.

Contact name (Optional)
Specify a name of the contact person for this client.

Email address (Optional)
Specify the email address of the contact person for this client.

Telephone number (Optional)
Specify the telephone number of the contact person for this client.

Contact type (Optional)
Select the contact type from the list:
v Administrative
v Support
v Technical
v Billing
v Other

Other information (Optional)
Specify extra information about the client contact.

Require PKCE (RFC 7636)
Requires Proof Key for Code Exchange, which adds security when
performing the authorization code flow on a mobile device. See “Proof
Key for Code Exchange support” on page 118.

JWKS endpoint

132 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

This endpoint allows retrieval for a client's public key when encryption
is used.

JWT Encryption keystore
The database that is used in key agreement when using an asymmetric
JWT encryption algorithm. You can use a pre-token mapping rule to
overload this value at runtime.

This field is enabled if OIDC is enabled for the selected API Definition.

JWT Encryption certificate
The label of the key in the keystore that is used in key agreement,
when you use an asymmetric JWT encryption algorithm. You can use a
pre-token mapping rule to overload this value at runtime.

This field is enabled only if a valid encryption keystore is selected from
the drop-down list for JWT Encryption keystore.

7. Enter any dynamic data on the Extension Properties tab.
8. Click OK.

Managing registered API protection clients
Manage registered OAuth API protection clients.

About this task

You can search and delete clients. You can search for API protection clients based
on the following values:
v Client name
v Client ID
v API protection definition

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click OpenID Connect and API Protection.
4. Click Clients.
5. Perform one or more of the following actions:

View and filter clients
You can filter for client name, client ID, and API protection definition.

Take any of the following actions to filter your view:

v Select the Details View to view client name, client ID, and API
protection definition.

v Select the List View to view only the name of the client.
v Type a term, such as an client name, client ID, and API protection

definition in the Filter field to list clients that use that term. Any part
of the values for client name, client ID, or API protection definition
that match is applied by the filter and is displayed in the search
results. Click x to clear the Filter field.

v Sort the client list by column with the up or down arrow on each
column. For example, you can view the list of clients that are sorted
by the Clients column in ascending order by clicking the up arrow.

Chapter 11. OAuth 2.0 and OIDC support 133

||905||

Modify clients
Attention: Ensure that the modification does not affect a current
policy or configuration. If you modify a client that is in-use, the policy
or configuration that uses the client might stop working.
a. Select the client you want to modify.

b. Click
c. Complete the properties for the clients.
d. Click OK.

Delete clients

a. Select a client or press and hold the Ctrl key and select multiple
clients to remove.

b. Click . Confirm the deletion. Click OK to continue or click
Cancel.
When you delete a client:
v The client registration is removed from the database.
v All tokens issued against that client is removed.

6. When you add, modify or delete a client, a message indicates that there are
changes to deploy. If you are finished with the changes, deploy them.
For more information, see Chapter 15, “Deploying pending changes,” on page
193.

Managing policy attachments
Attach policies or API protection definitions to resources so that the policies and
definitions can be enforced.

Before you begin

You must create policies, policy sets, or API protection definitions.

When you create policies, policy sets, or API protection definitions you cannot use
them until you publish them to resources. Once policies, policy sets, or API
protection definitions are published, they are enforced during the evaluation of
access requests.

About this task

You can:
v Add a resource
v Add a policy or API protection definition attachment to a resource
v Remove a policy or API protection definition attachment from a resource
v Delete a resource
v Publish a policy or API protection definition attachment

When a deployment is fully configured, the Resources panel displays three levels
of entries. The top-level entry is the web container that contains the protected
object space for a server instance. The second level shows the resources in the
protected object space. The third level lists the policies and API protection
definitions that are attached to each resource.

134 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Tip: The user interface provides a quick filter feature for use on the top-level entry.
Use the quick filter to search for a specific top-level entry. Enter the first few
characters of the web container, and the list displays only the entries that contain
the specified characters.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Access Control.
4. Click Resources.
5. Perform one or more of the following actions:

Add a resource

a. Click .

Note: When you add a resource for the first time, the system
prompts you to enter the user name, password, and domain for the
Security Access Manager policy server. The entered information is
cached and used by default when you add a resource again. If you
want to change this domain, click Change Domain and then enter
the new user name, password, and domain information. This new
information replaces the old cached values.

b. Select the resource type in the Type field.
v If you select the Reverse Proxy type:

1) In the Proxy Instance field, click the down arrow icon to
display a list of proxy instances. Select an entry.
For example, the list of proxy instances is the WebSEAL
protected object space that is defined directly under /WebSEAL.

2) Specify a resource by entering its name or browsing for it.
When you browse, you can expand the list of resources. The
list hierarchy is based on the structure of the WebSEAL
protected object space.
– In some cases, not all resources are displayed because the

WebSEAL protected object space is a sparse tree. For
example, you might see only the resource
/myserver-jct/benefits. You can select this resource and
click OK to add it to the Protected Path. You can then add
/myserver-jct/benefits/medical.

– In some cases, you cannot view the object space for the
web server junction. For example, if the administrator did
not install the IBM Security Access Manager querycontents
script on the application server, you cannot see the junction
contents. In these cases, you can enter the resource path
manually.

v If you select the Application type:
1) Select an application ID from the list or click Add New to add

a new application ID.
2) Enter the resource ID.

c. Click Save.
d. Attach a policy to the resource.

Attach a policy or API protection definition to a resource

Chapter 11. OAuth 2.0 and OIDC support 135

a. Select a resource node and click

Attach.
b. In the Attach Policies panel, select Policies or Policy Sets or API

Protection.
c. From the displayed list, select one or more policies or policy sets or

API protection definitions.

Tip: You can type the name of the applicable policy or policy set or
API protection definition in the quick filter.

Notes:

v You can attach both individual policies, policy sets, or API
protection definitions.

v You cannot attach policies or policy sets to a resource where that
resource already has API protection definitions attached.

v You cannot attach API protection definitions to a resource where
that resource already has policies and policy sets attached.

d. Click OK to save your changes.

Note: The policy or API protection definition remains inactive until
you publish it.

Remove a policy or API protection definition attachment

a. To remove a policy or API protection definition attachment from a

resource, select the policy node and click .
b. When prompted, confirm the deletion.

Note: You must publish the change.

Delete a resource

a. To delete a resource and all attached policies or API protection

definitions, select the resource node and click .
b. When prompted, confirm the deletion.

When you delete a resource:
v You cannot delete the server node.
v You do not have to manually publish the change. The deletion is

automatically published.

Publish a policy or API protection definition

Select a resource in the resource hierarchy and click

Publish. When
the publication completes, the status column for the resource indicates
the status and time of the publication.

Note: Activation of the published policy or API protection definition
could take up to a minute to complete.

Modify Resource

Note: You can only use this function if policy or policy sets are
attached to the given resource.

a. Select a resource node and click .

136 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

b. In the Modify Resource panel, you can modify the Policy
Combining Algorithm. Choose the preferred algorithm:
v Deny access if any attached policy returns deny

This algorithm means that if multiple policies or API protection
definitions are attached to a resource, and any one of those
policies or API protection definitions returns Deny, then the access
request is denied.

v Permit access if any attached policy returns permit

This algorithm means that if multiple policies or API protection
definitions are attached to a resource, and any one of those
policies or API protection definitions returns Permit, then the
access request is permitted.

Using oauthScope attributes in an access control policy
You can use the subject and resource oauthScope attributes as part of an access
control decision for a resource.

Before you begin
1. Create a reverse proxy instance.
2. Run the isamcfg tool. You must configure access control policies and API

protection capabilities.
3. Determine the access control resources that your policies must be attached to. If

the resources do not exist, add them.

About this task

To use the OAuth attributes in an access control decision, you must attach the
access control policy and API protection definition in the proper locations in the
protected object space.

Procedure
1. Create an access control policy. Specify the oauthScopeResource attribute, the

oauthScopeSubject attribute, or both, in one or more rules for this policy. See
Creating an access control policy.

2. Attach the access control policy to an object in the protected object space. See
“Managing policy attachments” on page 134.

3. Create an API protection definition. See “Creating an API protection definition”
on page 125.

4. Register an API client that uses the API protection definition you created in
step 3. See “Registering an API protection client” on page 131.

5. Attach the API protection definition to an object in the protected object space.
See “Managing policy attachments” on page 134.
When you attach the definition to a resource, the resource must be at a level
lower than where the access control policy is attached in step 2. The term lower
means farther away from the root of the protected object space.
For example, in the resource tree jct/dir1/dir2/protected_resource, you can
attach the access control policy to /jct. Then, attach the API protection
definition to /jct/dir1.

6. Deploy the pending changes.

Chapter 11. OAuth 2.0 and OIDC support 137

Results

The access decision for a resource at or below the API protection definition
involves the oauthScope attributes that were defined in the access control policy.

Uploading OAuth response files
Use the local management interface to upload your own custom OAuth response
files.

Procedure
1. From the top menu, select Secure Reverse Proxy Settings > Manage > Reverse

Proxy.
2. Select a reverse proxy.
3. Select Manage > Management Root.
4. Select the oauth folder.
5. Select Manage > Import.
6. Click Browse.
7. Browse to the file you want to import.
8. Click Open.
9. Click Import.

OAuth introspection
An Introspection URL implemented to the spec of RFC 7662 allows for information
about an access token to be returned. This allows OAuth clients to query a token
to identify if the token exists and is valid. Extensions to this endpoint have been
made to also include some information about the token, beyond whether the token
is valid.

The introspection URL is disabled by default. To enable it, set the advanced
configuration oauth20.introspectEndpointEnabled to true.

A usual introspection response for a valid token includes the following values:
{
“active”:true,
“username”:”jessica”,
“client_id”:”yb98la1”,
“scope”:”email profile”,
“iat”: 1487744340,
“exp”: 1487747940
}

active Signifies this token is valid.

scope The scope of the access token.

username
The username of the user token was granted by.

client_id
The client this token was granted to.

iat The UNIX timestamp for when this token was granted.

exp The UNIX timestamp for when this token will expire.

A usual introspection response for an invalid token includes the following values:

138 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

{
"active":false
}

active Signifies this token is invalid.

The RFC articulates that the introspection endpoint must be authenticated with
client credentials. These credentials can be provided as post parameters 'client_id'
and 'client_secret', or they can be provided as a Basic Authentication (BA)
header. The authentication using BA can occur at the point of contact (reverse
proxy) or by the introspection endpoints itself (similar to the token endpoint). The
client may also authenticate using an access token issued to this client.

This client authentication is performed in the pre-token mapping rule (with the
default rule). This out of the box rule does not allow non-confidential clients to
introspect tokens. However, by modification of the rule, non-confidential clients
may be able to make use of this endpoint. The RFC articulates security concerns
when allowing non-confidential clients to introspect tokens (DOS, crawling the
possible token space. See section 4. https://tools.ietf.org/html/rfc7662#section-4).
A non-confidential client can provide client credentials using BA or post
parameters. When using BA, the credentials should present a password of empty
string ("").

The introspection endpoint can allow clients to introspect the tokens of each other.
By default, this is not allowed. However, a change to the POST token rule can be
made to enable it. See the out of the box rule for details.

URL:
https://<Reverse proxy host/port/junction> /sps/oauth/oauth20/introspect

HTTP Request Example:
POST /mga/sps/oauth/oauth20/introspect HTTP/1.1

Host: server.oauth.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded

client_id=yb98la1&client_secret=4531959525657&token=2YotnFZFEjr1zCsicMWpAA

The introspection endpoint supports use of the 'token_type_hint' as per section
2.1 (https://tools.ietf.org/html/rfc7662#section-2.1). This allows an optimization in
the time of the token lookup. This does not limit the breadth of the search for the
token in the token cache. Any token type will still be found even when its type is
not the same as the hint.

For example:
POST /sps/oauth/oauth20/introspect HTTP/1.1
Content-Type: application/x-www-form-urlencoded

token=&client_id=aClient&client_secret=aSecret&token_type_hint=access_token

Valid values for token_type_hint are 'access_token' and 'refresh_token'.

If using custom tokens that are not stored in the token cache, the pre-mapping rule
can be used to inform the runtime that the token provided was valid. To do this,
add a context attribute with the name 'active' and the type
'urn:ibm:names:ITFIM:oauth:rule:decision'. The response attribute type can also
be used. If this parameter is provided, the runtime will do no further work, and
the post-rule will be invoked. For example:

Chapter 11. OAuth 2.0 and OIDC support 139

https://tools.ietf.org/html/rfc7662#section-2.1

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("active",
"urn:ibm:names:ITFIM:oauth:rule:decision", "true"));

OAuth revocation endpoint
You can use a revocation endpoint to ensure that tokens are revoked.

Security Access Manager supports use of an OAuth revocation endpoint. This
endpoint enables clients to inform an authorization server that a specified token is
no longer used, and must be revoked. The support is compliant with RFC 7009.

The revocation URL is enabled by default and cannot be disabled.

A typical revocation response returns a 200 response, with an empty body. You can
modify a mapping rule to add response attributes.

The RFC states that the revocation endpoint must be authenticated with client
credentials. You can provide these credentials as post parameters client_id and
client_secret, or provide them as a Basic Authentication (BA) header. The
authentication that uses BA can occur at the point of contact (reverse proxy) or by
the revocation endpoint itself (similar to the OAuth token endpoint). The client can
also authenticate by using an access token that was issued to this client.

The RFC states that the revocation endpoint can revoke only tokens that were
generated by the client that is requesting the revocation.

URL
https://<Reverse proxy host/port/junction> /sps/oauth/oauth20/revoke

HTTP Request Example
POST /mga/sps/oauth/oauth20/revoke HTTP/1.1

Host: server.oauth.com
Content-Type: application/x-www-form-urlencoded
client_id=yb98la1&client_secret=4531959525657&token=2YotnFZFEjr1zCsicMWpAA

token_type_hint
The revocation endpoint supports use of the token_type_hint. Use of the
hint optimizes the lookup time for the token. Use of the hint does not limit
the breadth of the search for the token in the token cache. Token types are
found even if a token's type is not the same as the hint.

For example:
POST /sps/oauth/oauth20/revoke HTTP/1.1
Content-Type: application/x-www-form-urlencoded

token=&client_id=aClient&client_secret=aSecret&token_type_hint=access_token

Valid values for token_type_hint are access_token and refresh_token.

140 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Mapping rule variables

Table 12. Mapping rule variable for OAuth revocation

Variable Description

only_allow_conf_client_revoke You can use the pre-mapping rule to specify
whether non-confidential clients can revoke
tokens. By default, only confidential clients
can revoke tokens.

To enable non-confidential clients to revoke
tokens, set this parameter to false.

Default:

var only_allow_conf_client_revoke = true;

OIDC Claims customization
You can customize the OIDC claims that contain information about the user and
about the authentication event.

The OIDC specification describes standards for creating and processing claims.
OpenID defines a standard set of basic profile Claims. You can use specific scope
values to access pre-defined sets of Claims. You can also request individual Claims
by using the claims request parameter.

The specification outlines the following structure for defining and handling claims:
v There are about twenty standard claims, such as name, picture, gender, and so

on.
v You can use the scope parameter to request Claims. There are well defined

scopes, each of which translates to a collection of standard claims such as
profile, email, phone, and address.

v You can also request claims individually by using the claims request parameter.
v When an access token exists, claims are returned in UserInfo. When there is no

access token, claims are returned in ID Tokens.
v UserInfo is returned at the /userinfo endpoint. ID Tokens are returned at either

the /authorize or /token endpoints, depending on which OIDC flow is
executed.

v There are additional request parameters that can affect the claims. Examples of
these include max_age, acr_values, and claims_locales.

OIDC does not perform authentication itself, but relies on an authentication
module to authenticate the user. This means that the OIDC protocol cannot
provide claims values, because it has no knowledge of what user information is
available, and how to the data is stored. For example, perhaps only the user name
information is available, but is stored in LDAP as the attribute cn.

As a result, Security Access Manager supports the customization of claims values.
For ID Tokens, you can customize claims values through a pre-token mapping rule.
For UserInfo, you can customize claims in a post-mapping rule.

In Security Access Manager, when you create a new OIDC Definition, default
pre-token and post-token mapping rules are created. These mapping rules contain
examples of how the claims can be resolved.

Chapter 11. OAuth 2.0 and OIDC support 141

Note: To review the OIDC specification, see http://openid.net/specs/openid-
connect-core-1_0.html#Claims

UserInfo endpoint

The OIDC specification recommends the use of the UserInfo endpoint. The
UserInfo endpoint is useful, for example, when a Relying Party cannot parse a JWT
Token to obtain information about the authenticated user.

Without the use of customization, the /userinfo endpoint contains only the field
sub. This is the subject identifier for the end-user at the issuer.

The specification mandates to output the claims as much as possible at the
/userinfo endpoint, except when an access token is not generated. Also, in some
cases the ID Token is generated at both /authorize and /token endpoint. The
Security Access Manager will not impose any restriction of which claims must be
output to ID Token or User Info. Likewise, there are no restrictions that the same
claims must be returned at /authorize and /token. Based on the needs of your
deployment, you can choose not to output some claims in certain flows even
though the claims are requested.

The /userinfo endpoint is protected by an access token. You can access it by an
HTTP GET or POST. See the following links:
v http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest
v https://tools.ietf.org/html/rfc6750#section-2

An unauth ACL is attached for this endpoint.

Claims List

Many parameters can contribute to a claims list. For example, parameters specified
by a scope are often used to build a list. By parsing the claims parameter, you can
also retrieve individual claims and determine when claims are for UserInfo and
which claims are for ID Tokens.

Security Access Manager builds a claims list and makes it available in the Security
Token Service Universal User (STSUU) as a list of voluntary and essential claims.
This list is produced only for OIDC requests that have scope openid against an
OIDC-enabled provider.

The processing sequence is:
1. The scope parameter is processed first, since all claims requested through it are

voluntary claims. The specification defines only profile, address, email, and
phone scopes as well-defined scopes. These translate into a list of standard
claims. However, if the scope contains other scopes that are not well-defined, it
is treated as an individual claim.

2. Next the claims parameter is processed. Either UserInfo or ID Token is
processed, depending on the endpoint.

Table 13. Claims types

Claim Type

Voluntary claims urn:ibm:names:ITFIM:oidc:claim:voluntary

Essential claims urn:ibm:names:ITFIM:oidc:claim:essential

142 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://openid.net/specs/openid-connect-core-1_0.html#Claims
http://openid.net/specs/openid-connect-core-1_0.html#Claims
http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest
https://tools.ietf.org/html/rfc6750#section-2

For example, given a request with scope=“openid phone organization” and a
claims parameter that is the described in the following JavaScript Object Notation
(JSON):
{

"userinfo": {
"given_name": {"essential": true},
"email": {"essential": true},
"email_verified": {"essential": true},
"http://example.info/claims/groups": null

},
"id_token": {

"nickname": null,
"auth_time": {"essential": true},
"acr": {"values": ["urn:mace:silver"] }

}
}

At the /authorize or /token endpoint where the ID Token can be generated, the
following is available in the STSUU context:
<stsuuser:ContextAttributes>

// from scope: phone and organization
<stsuuser:Attribute name=“organization" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>

<stsuuser:Attribute name="phone_number" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
<stsuuser:Attribute name="phone_number_verified"

type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
// from id_token claims parameter
<stsuuser:Attribute name="nickname" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
<stsuuser:Attribute name="auth_time" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
<stsuuser:Attribute name="acr" type="urn:ibm:names:ITFIM:oidc:claim:voluntary">

<stsuuser:Value>urn:mace:silver</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:ContextAttributes>

At the /userinfo endpoint, the following is available in the STSUU context:
<stsuuser:ContextAttributes>

// from scope: phone and organization
<stsuuser:Attribute name=“organization" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
<stsuuser:Attribute name="phone_number" type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
<stsuuser:Attribute name="phone_number_verified"

type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
// from userinfo claims parameter
<stsuuser:Attribute name="given_name" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
<stsuuser:Attribute name="email" type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
<stsuuser:Attribute name="email_verified"

type="urn:ibm:names:ITFIM:oidc:claim:essential"/>
<stsuuser:Attribute name="http://example.info/claims/groups"

type="urn:ibm:names:ITFIM:oidc:claim:voluntary"/>
</stsuuser:ContextAttributes>

Retrieving Claim Values

You can use the function associate() and UserLookupHelp to retrieve claim values.
Security Access Manager allows you to also retrieve claim values by using attribute
sources. The Federation support in Security Access Manager includes management
of attribute sources, in the LMI under Advanced Access Control.

You can provide mappings between a specific attribute name and an attribute
source, as part of configuring an OIDC Definition. During runtime, this mapping is
resolved and made available in the STSUU.

For example, assume the attribute sources in the following table are configured.

Chapter 11. OAuth 2.0 and OIDC support 143

Table 14. Example configuration of Attribute Sources

Attribute Name Value Type

CredentialNickName AZN_CRED_PRINCIPAL_NAME Credential

FixedOrganization www.ibm.com Fixed

LDAPMail mail LDAP

Assume also that you have created the following attribute mapping in the OIDC
Definition configuration.

Table 15. Attribute Mapping

Attribute Name Attribute Source

email LDAPMail

nickname CredentialNickName

organization FixedOrganization

Then, during runtime, in the STSUU the following attributes can be found:
<stsuuser:AttributeList>

<stsuuser:Attribute name=“nickname" type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>test1</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name=“organization" type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>www.ibm.com</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="email" type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>test1@iswga.com</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>

The resolution of attribute sources during runtime is dependent on the context.
The context is the list of attributes that are available in the STSUU at that moment.
The following conditions apply:
v For fixed attribute source, there is no restriction on attribute source resolution.
v For a credential type attribute source, resolution occurs best at the /authorize

endpoint. This is because since the entire authentication information (and
credential) is available at that time.

v For LDAP type attribute source, if you are using a macro for the search filter or
baseDN, resolution also depends on the context. The information might be
available in STSUU, but in a different context it might be available under a
different name. This means it can be difficult to create one LDAP attribute
source that fits all contexts.
The common use of a macro is to retrieve information based on the username
that is being authenticated. Security Access Manager includes an attribute
oidc_username which contains the authenticated username in all contexts:
whether at /authorize, /token or /userinfo endpoints. For example, you can
create a common LDAP Attribute Source, as shown in the following table.

Table 16. LDAP Attribute Source example

Type LDAP

Attribute Name LDAPMail

LDAP Attribute mail

Server Connection TestLDAP

144 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 16. LDAP Attribute Source example (continued)

Type LDAP

Scope Subtree

Selector uid

Search filter: (uid={oidc_username})

Base DN: dc=iswga

Saving Values or Parameters

Security Access Manager enables you to save values or parameters that are related
to the claims at the /authorize endpoint.

For example, some request parameters can be specified at the /authorize endpoint,
but the claims might be produced at the /token or /userinfo endpoint. The claims
need to be saved so that they can be available at the /token or /userinfo endpoint.
An example of this is the claims_locales request parameter.

Another example is the existence of values, such as credential information, that are
available at the /authorize endpoint, but need to be output at the /token or
/userinfo endpoint. An example of this is the values that are used in the credential
type attribute sources. You can save these values. This overcomes the limitation of
the attribute source such that for the credential-type attribute source, the context
exists only at the /authorize endpoint, and if the values are not saved, the context
is not available at any other endpoint.

You can do this by creating a context attribute in the STSUU of the type
urn:ibm:names:ITFIM:oidc:claim:parameter for parameter or
urn:ibm:names:ITFIM:oidc:claim:value for value.

The difference between these two types is that, during runtime, the claim value is
put back into STSUU Attribute List under type
urn:ibm:names:ITFIM:5.1:accessmanager, but the claim parameter is put in the
STSUU context under type urn:ibm:names:ITFIM:oidc:claim:parameter.

Note that these saved values or parameters exist as long as the grant exists. When
the grant is removed or expires, the saved values and parameters are removed.

For example, we man modify the pre-token mapping rule and add the following
code to save the AZN_CRED_PRINCIPAL_NAME attribute.
var saveValue = stsuu.getAttributeContainer()

.getAttributeValueByNameAndType("AZN_CRED_PRINCIPAL_NAME",
"urn:ibm:names:ITFIM:5.1:accessmanager");

if (saveValue != null) {
var attro = new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("AZN_CRED_PRINCIPAL_NAME",
"urn:ibm:names:ITFIM:oidc:claim:value", saveValue);
stsuu.getContextAttributes().setAttribute(attro);
}

By doing this, the CredentialNickName attribute source (as shown in the example
earlier in this article) can be resolved in the /token or /userinfo endpoint.

Chapter 11. OAuth 2.0 and OIDC support 145

Customizing claims

Security Access Manager provides, in pre-token and post-token mapping rule,
examples of how to customize the claims.

For ID Tokens, customization is done in a pre-token mapping rule. You must
enable the sample by setting the customize_id_token variable to true. For
UserInfo, customization is done in a post-token mapping rule.

For the example, the algorithm used is the same. The first step is to retrieve the
claim list. You might want to process essential claims and voluntary claims
separately.

To resolve claims, the produceClaim() method is called. If an expected value, as
specified by the claim, is found, use it. Next, try to find an attribute that has been
resolved using Attribute Source mapping, and has the same name as the claim.
Next, if still there is no value, for essential claims, you can set some value or
optionally throw an STS exception. Note, however, that the OIDC specification
does not recommend throwing an error even if an essential claim cannot be
fulfilled.

For the final step, if the claim value exists, it is put into the STSUU. The type must
be set correctly, in order to included as part of ID Token or UserInfo. For ID Token,
the type must be urn:ibm:jwt:claim. For UserInfo, the type must be
urn:ibm:names:ITFIM:oauth:response:attribute.

Special parameter for UserInfo

You can customize UserInfo by using a special attribute. You can create an
attribute in the STSUU Context, with name userinfo and type
urn:ibm:names:ITFIM:oauth:rule:userinfo, with the value as a JSON string.

The purpose of this special parameter is to allow you to provide a complex value
for UserInfo, in situations where the limitations of the STSUU structure prevent
support for the value. For example, the following JSON defines an address that
consists of two parts:
{"firstname":"John",

"lastname":"Doe",
"address":{

"zipcode":34234
"city":"Newark"

}
}

The JSON string provided in this parameter serves as the base JSON structure, and
is added with other customization attributes, if they exist, to the output of the
/userinfo endpoint.

Another use of the special parameter is when you want to generate UserInfo in
JWT format. By default, the Security Access Manager implementation produces
UserInfo in JSON format. If you need to produce UserInfo in JWT format, there is
an example in the post-mapping rule.

To use the example in the post-mapping rule, complete the following steps:
1. Create an STS chain that includes the modules in the table below.

146 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 17. Chain modules for JWT format

Module Mode

Default STSUU Module Instance Validate

Default Jwt Module Issue

Default STSUU Module Instance Issue

For more information on creating STS templates and chains, see Managing trust
chains.

2. In the post mapping-rule, set produce_jwt_userinfo to true:
var produce_jwt_userinfo = true;

Client authentication to /token through an incoming JSON Web Token
Security Access Manager OIDC Providers support client authentication to /token
through an incoming JSON Web Token (JWT).

Some deployment scenarios, such as Open Banking, require the use of a signed
assertion as a method to replace client_id and client_secret. To view the
implementer requirements for client authentication, see https://
www.openbanking.org.uk/read-write-apis/security-profile/id1-0-1/.

Security Access Manager OIDC Providers support client authentication to /token
through an incoming JSON Web Token (JWT). Security Access Manager support of
client assertions satisfies RFC 7523. See https://tools.ietf.org/html/rfc7523.

Note: Support for authentication to /token with a JWT is different from support
for request JWTs that are presented to /authorize. For /authorize, see “Passing
parameters through JWT in a request to /authorize” on page 148.

When an incoming client assertion is detected by the presence of the parameters
client_assertion_type (of a valid value) and client_assertion, the OAuth
delegate invokes a token exchange. This token exchange is to a well-known
(predictable) set of issuer and appliesTo values.

The JWT must contain the following claims:

iss
The issuer of the JWT. This value must be that of the security entity that
created this JWT. Its presence is validated, but explicit validation of the value
must be completed in the STS chain.

sub
Subject Identifier. This value must be the client_id you want to authenticate.

aud
Intended audiences for the ID Token. It must be a value that represents this
entity, such as the API Protection definition name.

exp
Expiration time on or after which the JWT is not accepted for processing.

The parameter nbf, if present, is validated. This parameter is the "not before" claim
that identifies the time before which the JWT is not accepted for processing.

Chapter 11. OAuth 2.0 and OIDC support 147

https://www.openbanking.org.uk/read-write-apis/security-profile/id1-0-1/
https://www.openbanking.org.uk/read-write-apis/security-profile/id1-0-1/
https://tools.ietf.org/html/rfc7523

You can create a Secure Token Service (STS) chain with modules to handle client
assertions through incoming JWTs during authentication. To configure an STS
chain that is compatible with incoming client assertions, the chain must ensure:
1. No token type is set.
2. RequestType of Validate is accepted.

Examples of ISSUER and APPLIESTO fields that handle all presented client assertions
are as follows:
ISSUER="REGEXP:(urn:ietf:params:oauth:client-assertion-type:jwt-bearer:.*)"
APPLIESTO=https://localhost/sps/oauth/oauth20

Note: In the example above, all clients match with this chain. (Note the .* value in
the regexp for the Issuer.) If a particular chain is needed, then use the
issuer:urn:ietf:params:oauth:client-assertion-type:jwt-bearer:myClient
where myClient is the client_id of the interested client.
v The issuer is a combination of the assertion type plus the client identifier.
v The appliesto is the federation name. For Security Access Manager, the

federation name is always:
https://localhost/sps/oauth/oauth20

The client configured secret and jwks_uris are included in the request to the STS
through WS-Trust claims. To view how the JWT module supports validation, see
Validate mode.

After the JWT is validated, OAuth expects a Secure Token Service Universal User
(STSUU) in return, as follows:
v The sub claim is populated with the client_id of the incoming request.
v The aud field is checked against the configured issuer identifier of the API

definition.

Note: The values of iss and aud must be validated. This validation can be done
through the STS chain configuration, or in a map module in the STS chain, or in
the pre-token mapping rule. Validation within the chain is easiest when the
values of iss and aud are static.

All the claims in the JWT are mapped into the STSUU attribute list, with the type
similar to urn:ibm:oauth20:client:assertion.

To implement this set of features, you must configure an STS chain with the
following modules:
v JWT module in Validate mode >
v An optional JavaScript mapping rule >
v STSUU module in Issue mode

Following is an example of code for retrieving the values:
var sub = stsuu.getAttributeContainer().getAttributeValueByName("sub");
var aud = stsuu.getAttributeContainer().getAttributeValueByName("aud");
var iss = stsuu.getAttributeContainer().getAttributeValueByName("iss");
IDMappingExtUtils.traceString("sub: " + sub + " aud: " + aud + " iss: " + iss);

Passing parameters through JWT in a request to /authorize
Security Access Manager OIDC Providers support passing request parameters by
way of a JWT in a request to /authorize.

148 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The support satisfies the requirements in Section 5.1 of the OpenID Connect Core
specification http://openid.net/specs/openid-connect-core-1_0.html..

Deployments such as web banking applications require integration with strong
authentication as offered by a third party. This scenario requires that clients avoid
providing claims directly in a query string. By sending the claims in a JSON Web
Token (JWT), the client proves that it signed them with an established secret.
Security Access Manager supports this function by providing decryption of OIDC
ID tokens that are received with the authorization code grant flow from a
third-party OpenID Provider. The received tokens are signed (for example, by
presenting a JWT that uses the JWS algorithm RS256) and encrypted (for example,
by use of the content encryption algorithm AES128CBC-HS256 and key agreement
algorithm of RSA-OEAP). See https://tools.ietf.org/html/rfc7518.

A request JWT can be used to provide incoming request parameters. The
specification requires that the OAuth request parameters must still contain
client_id and response_type, but all other parameters, such as redirect_uri, and
scope, can be provided only in the request JWT. The client_id and response_type
can also be presented in the request JWT, but the values of each must match those
that are provided in the OAuth request parameters.

To configure an STS chain that is compatible with incoming JWT request
parameters, the chain must meet the same requirements as required for handling
client assertions:
1. No token type is set.
2. RequestType of Validate is accepted.

Examples of ISSUER and APPLIESTO fields that handle all presented client assertions
are as follows:
ISSUER="REGEXP:(urn:ibm:ITFIM:oauth20:client_request:.*)"
APPLIESTO=https://localhost/sps/oauth/oauth20

Note: In the example above, all clients match with this chain. (Note the .* value in
the regexp for the Issuer.) If a particular chain is needed, then use the
issuer:urn:ietf:params:oauth:client-assertion-type:jwt-bearer:myClient
where myClient is the client_id of the interested client.
v The APPLIESTO is the federation ID.
v The ISSUER must be the string "urn:ibm:ITFIM:oauth20:client_request:", and

the clientId that is included in the request.

The claims are mapped into the request. Validation occurs on request_type and
client_id, as required by the specification:
v Validating JWT-based Requests

When the request authorization parameter is used, the JWT is passed to the
auxiliary chain, and the returned claims are mapped back into the request
STSUU. The response type of the auxiliary chain must be STSUU. If signature
validation fails, the request is rejected.

v Request Parameter Assembly and Validation
The Authorization Server must assemble the set of Authorization Request
parameters to be used from the Request Object value and the OAuth 2.0
Authorization Request parameters (minus the request parameters). If the same
parameter exists both in the Request Object and the OAuth Authorization
Request parameters, the parameter in the Request Object is used. Using the

Chapter 11. OAuth 2.0 and OIDC support 149

http://openid.net/specs/openid-connect-core-1_0.html.
https://tools.ietf.org/html/rfc7518

assembled set of Authorization Request parameters, the Authorization Server
then validates the request in the normal manner for the flow that is being used.

Mapping rules for OAuth and OIDC
Security Access Manager provides default mapping rules that you can use and
customize for your OAuth or OIDC deployment.

Managing OAuth 2.0 and OIDC mapping rules
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.

About this task

The OAuth 2.0 and OIDC mapping rules are JavaScript code that run during the
OAuth 2.0 or OIDC flow. You can view, export, and replace OAuth or OIDC
mapping rules.

View the mapping rule if you want to see the content and structure of the
mapping rule. Export the mapping rule if you want to save a copy of the mapping
rule. You can also edit this copy. Replace a mapping rule if you want to use a new
mapping rule.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control > Policy > OpenID Connect and API Protection

or Secure Federation > Manage > OpenID Connect and API Protection.
3. Click Mapping Rules.
4. Perform one or more of the following actions:

View a mapping rule

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the
mapping rule is displayed.

c. Click OK to close the panel.

Export a mapping rule

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:

Note: Use an existing mapping rule as the basis for the updated
mapping rule.
a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or Browse and select a file.
d. Click OK to upload the mapping rule.

5. When you replace a mapping rule, the appliance displays a message that there
are undeployed changes. If you are finished with the changes, deploy them.

150 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

For more information, see Chapter 15, “Deploying pending changes,” on page
193.

Related reference:
“OAuth 2.0 and OIDC mapping rule methods”
You can use Java methods to customize the PreTokenGeneration and
PostTokenGeneration mapping rules.

OAuth 2.0 and OIDC mapping rule methods
You can use Java methods to customize the PreTokenGeneration and
PostTokenGeneration mapping rules.

The sample mapping rules are oauth_20_pre_mapping.js and
oauth_20_post_mapping.js.

You can access the sample mapping rules from the LMI. Navigate to Manage
System Settings > Secure Settings > File Downloads. Continue to either of the
following locations:
v access_control > examples > mapping rules

v federation > examples > mapping rules

The following limitations affect the attribute keys and values that are associated
with the state_id by using the OAuthMappingExtUtils class:
v Keys cannot be null or empty.
v Values cannot be null but can be empty.
v Associated key-value pairs are read and write-allowed and not-sensitive.
v Some keys are reserved for system use and cannot be modified by this utility.

For example, the keys and values for the API PIN protection.

For more information, see the Javadoc. In the LMI, navigate to Manage System
Settings > Secure Settings > File Downloads. Continue to either access_control >
doc or federation > doc.

See also JavaScript whitelist.

OAuth and OIDC mapping rules files
In OAuth and OpenID Connect deployments, you can use mapping rules to
customize your use of Security Access Manager features.

Security Access Manager provides template mapping rules that you can use when
configuring OAuth and OpenID Connect deployments. For OIDC, the rules are
automatically included when you create an OIDC API Protection definition. One
mapping rule is used pre-token generation. The other mapping rule is used
post-token generation.

Note: If you created API definitions in a prior release of Security Access Manager,
and updated to Version 9.0.4, you have the option to enable OIDC. However,
enabling OIDC and saving the definition does not update the mapping rules. You
can manually update the mapping rules by following the instructions in “Updating
mapping rules when enabling OIDC” on page 159.

Chapter 11. OAuth 2.0 and OIDC support 151

Table 18. Mapping Rules

Mapping Rule Supported Actions

oauth_20_pre_mapping.js v Use a user registry for verification of the username and
password for the ROPC scenario. Optionally, force sourcing
the ROPC password validation config from ldap.conf.

v Show an example of the ROPC scenario using an external
service for verification of the username and password.

v Limit the number of tokens per user per client, and specify
the algorithm to use.

v Customize ID Token

v Specify whether to only allow confidential clients to
introspect or revoke tokens

v Discover the request_type and the grant type.

v Limit the number of grants per user per client.

v Enable a token lookup example.

v Enable custom tokens

v Enable assertion grants

v Calling additional STS chains

oauth_20_post_mapping.js v Associate attributes

v Deletetokens

v Makean HTTP(S) callout

v Update a token

v Register an Authenticator for MFA

v Enforce that clients are only introspecting their own tokens

v UserInfo Customization

v Produce JWT UserInfo

v Call additional STS chains

v Return additional attributes to the user via response
attributes.

OAuth and OIDC mapping rules actions
You can modify mapping rules to perform actions that you need for your OAuth
or OIDC deployment.

This topic provides details for some of the actions you can take to modify the
mapping rules. For information on more actions, see the comments in the code for
each mapping rule.

Note that for certain grant types, some actions must be performed in the pre-token
mapping rule.

See “Managing OAuth 2.0 and OIDC mapping rules” on page 150 for instructions
on replacing a mapping rule after you make the updates to the file.

Resource owner password credentials (ROPC) grant type flow

For the ROPC flow, the pre-token mapping rule is responsible for
performing validation of the user name and password. This validation can
be performed in various ways. The pre-defined rule that is included with
the appliance provides the following examples:

152 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v Use UserLookupHelper to validate a user name and password against a
configured LDAP. You can also use the java class PluginUtils but it is
limited.
To configure the LDAP to be used, see “Configuring username and
password authentication” on page 67.

v Validate the user name and password through an HTTP callout. The
mapping rule sends the user name and password to a web service. As
the format of the messages is not fixed, various services (for example,
REST, SOAP, SCIM) can be used for this purpose. Javadoc on the HTTP
client and all other exposed Java classes available in mapping rules can
be downloaded from the appliance File Downloads page under the path
access_control > doc > ISAM-javadoc.zip.

JWT and SAML bearer grant type flow

For the JWT or SAML assertion bearer grant type flows, the pre-token
mapping rule must perform the following actions:
v Validate the assertion, including but not limited to:

– Validate the signature (if signed).
– Decrypt the assertion (if encrypted).
– Check the expiry and "not before" value of the assertion.
– Ensure that the issuer is a trusted party.

v Extract the subject from the assertion and set the USERNAME field of the
STSUU.
The USERNAME field of the STSUU can be set via a call, for example:
// username is a variable containing the subject of the assertion

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("username","urn:ibm:names:ITFIM:oauth:rule:decision", username));

The validation of the assertion can be performed in various ways:
– HTTP callout to a web service. Use the HTTP client to perform this.
– WS-Trust request to the Secure Token Service (STS).

- A chain must be configured to consume the assertion and return
the required information.

- The STSClientHelper will be called to invoke the STS via HTTP. For
more information about this class, see the Javadoc that is
embedded in the appliance.

Any attributes of the assertion can be extracted and associated to the
OAuth grant to be used later. For more information about associating
attributes, see “OAuth 2.0 and OIDC mapping rule methods” on page
151.

v The type of the username attribute added must be
"urn:ibm:names:ITFIM:oauth:rule:decision" to ensure that only a value
populated from the rule is used.

OAuth 2.0 token limits
You can define limits on the number of OAuth tokens per user per
definition so that the high-volume database does not go beyond capacity.

Security Access Manager for Mobile has a thread that runs at a specified
interval defined by the advanced configuration property,
oauth20.tokenCache.cleanupWait. This property defines the amount of
time, in seconds, to wait before it performs another cleanup of expired
grants and tokens in the OAuth 2.0 token cache.

Chapter 11. OAuth 2.0 and OIDC support 153

Depending on the interval and use of OAuth grants and tokens, there is a
possibility that the capacity of the high-volume database can be reached
before the cleanup process runs. If this happens, the appliance can be
negatively impacted.

To prevent issues such as this, the OAuth PreTokenGeneration mapping
rule, by default, limits the number of OAuth tokens per user per client
definition. When a user requests an OAuth token, the current number of
tokens for that user and the specified client definition will be compared to
the maximum allowed. If the maximum is exceeded, an error message is
returned to the user.

An additional algorithm implements least recently used (LRU) and, if the
maximum is exceeded, the least recently used token determined by the
date last used for that user and client definition will be removed from the
high-volume database.

You can set the limit and algorithm to use, which are controlled by
variables in the mapping rule file. Two algorithms are implemented in this
mapping rule:
v Strictly enforce the limit.
v When the limit is reached, remove the least recently used tokens for the

user per client.

Update the OAuth PreTokenGeneration mapping rule,
oauth_20_pre_mapping.js to modify the algorithms. See the comments in
the code for an explanation of the values you can modify.

See “Updating PreTokenGeneration to limit OAuth tokens” on page 7 so
that any API protection definitions you created in versions prior to 8.0.1.2
can take advantage of these limits.

Customizing OAuth tokens by updating the sample PreTokenGeneration
mapping rule

You can customize the format of the tokens that are issued by your OAuth
definition.

The OAuth tokens can be customized by modifying the sample
PreTokenGeneration mapping rule. Enable the PreTokenGeneration
mapping rule on the appliance by setting the variable enable_custom_tokens
to true.

When custom token formats are used, the tokens must remain unique.
Otherwise, users might become authenticated with another user's
credential. Thus, it is recommended that custom tokens always contain a
nonce of reasonable entropy.

To customize the authorization code, insert a context attribute into the
STSUU with the type "urn:ibm:ITFIM:oauth20:custom:token" and the
name "urn:ibm:ITFIM:oauth20:custom:token:authorization_code". The
provided value will be used as the authorization code if an authorization
code would have been issued in this request.

To customize the access token, insert a context attribute into the STSUU
with the type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:access_token". The provided value
will be used as the access token if an access token would have been issued
as part of this request.

To customize the refresh token, insert a context attribute into the STSUU
with the type "urn:ibm:ITFIM:oauth20:custom:token" and the

154 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

name"urn:ibm:ITFIM:oauth20:custom:token:refresh_token". The provided
value will be used as the refresh token if a refresh token would have been
issued as part of this request.

Returning additional attributes in responses

If you want to return additional attributes to an OAuth response, modify
the pre or post token mapping rule to add an attribute with the name and
value of the desired response attribute, and specify the well-known type
urn:ibm:names:ITFIM:oauth:response:attribute. You can also use the post
token mapping rule to modify any response attributes which are already
included.

Here is an example of adding a new response attribute in JavaScript.
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("myAdditionalAttribute" ,"urn:ibm:names:ITFIM:oauth:response:attribute", "myValue"));

If you want to return a multi-valued attribute, provide a Java array as the
value. Here is an example of constructing and returning a multi-valued
response attribute.

var javaArray = java.lang.reflect.Array.newInstance(java.lang.String, 1);
javaArray[0] = ’myValue’;
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("myAdditionalAttribute" ,"urn:ibm:names:ITFIM:oauth:response:attribute", javaArray));

Here is an example of an access_token response using the same examples:
{

"access_token": "afcddfegeedffdeeabb",
"refresh_token": "cbbdegfcgcffgffdcbdeafadaccegaebeebeaagd",
"scope": "scope1",
"myAdditionalAttribute": "myValue",
"token_type": "bearer",
"expires_in": 3589

}

{
"access_token": "gdbafbcgffcggfgeccb",
"refresh_token": "dfgagecdgbeddeebbedcdacegdacccccfafabcee",
"scope": "scope1",
"myAdditionalAttribute": [

"myValue",
"mySecondValue"

],
"token_type": "bearer",
"expires_in": 3589

}

This action is commonly performed for the response types:
v authorize
v access_token
v introspect
v userinfo
v revoke

Note: when used for revoke, JSON will be returned rather than a 200
with no body.

Customize ID Tokens
For OIDC deployments, the post-mapping rule oauth_20_pre_mapping.js
provides examples for how to customize ID tokens. When populating an

Chapter 11. OAuth 2.0 and OIDC support 155

ID token, the rule processes essential claims and voluntary claims
separately so that they are treated appropriately if they have no value. In
the STSUU, the attribute's name is the claim name and the attribute's
value(s) are the expected value of the claim. See the mapping rule for more
information.

Customize UserInfo
For OIDC deployments, the post-mapping rule oauth_20_post_mapping.js
provides examples for how to customize Userinfo based on OIDC scope
and claims request parameters. In the STSUU context, the claims are listed
in terms of essential and voluntary claims. When AttributeSources are
configured in the definition, they too are resolved and available in the
STSUU. This is one way of doing customization.

Produce JWT Userinfo
For OIDC deployments, the post-mapping rule oauth_20_post_mapping.js
provides examples for how to produce JWT UserInfo. In the STSUU
context, the signing and encryption data (based on the OP Definition) are
available. To create JWT, you can call an STS Chain which has 2 modules:
1) Default STSUU validation module, 2) Default JWT issuer module. You
must create this chain, it is not supplied by default. The chain passes the
signature and encryption data and all the JWT claims. The JWT token
result then needs to be set back in the STSUU under specific name and
type. See the mapping rule file for more information.

Modifying JWT signing and encryption parameters in the pre-token mapping
rule

This action applies only when OIDC is enabled.

When using OIDC, the JSON Web Token (JWT) configuration is sourced
from the OAuth definition. However, an administrator may want to write
logic which at runtime augments how a JWT is formed. For example,
specifying a different certificate when signing JWTs for a specific client or
specific type of client. You can take this action within the pre-token
mapping rule for the definition.

The JWT STS module is used to build the JWT that is returned in the
OIDC flow. This module allows a well-known set of claims to be provided
at runtime. For documentation on those values, see Issue mode.

When making use of the issue context attributes defined in the JWT STS
module, the values must be provided by using a different and specific
attribute type. When calling the STS, the STS Universal User (STSUU) that
is provided is just for a JWT. For OIDC, the STSUU is an encapsulation of
the HTTP request. To provide a custom property for building a JWT, set a
context attribute with the name and attribute as described in the "Issue
mode" link, but use the attribute type urn:ibm:oidc10:jwt:create. If you
want to set a JWT claim or header claim (not how the actual JWT is
formed), use the types urn:ibm:jwt:claim orurn:ibm:JWT:header:claim,
respectively.

Note: The Security Token Service Universal User (STSUU) document is an
XML representation of a request that passes through a trust module chain
in the STS. The three elements in the STS Universal User document are
Principal, AttributeList, and RequestSecurityToken. For more information
on the role of the STSUU in identity mapping, see Security Token Service
Universal User document.

156 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The following example ensures that the JWT that is issued uses HS256
signing with the provided key. This action overrides the configuration in
the OAuth definition.
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute(

"signing.alg", "urn:ibm:oidc10:jwt:create", "HS256"));
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute(

"signing.symmetricKey", "urn:ibm:oidc10:jwt:create", "myKey"));

The following code adds an extra header to the JWT (in this case, the cty
field).
stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("cty",

"urn:ibm:JWT:header:claim", "JWT"));

The following code adds a static claim to the JWT claims.
stsuu.addAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("myClaim" ,

"urn:ibm:jwt:claim", "claimValue"));

Here is a raw JWT produced with all 4 of the above examples enabled.
eyJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJub25jZSI6InNvbWVOb25jZTE0
NzUxIiwiaWF0IjoxNTA2NDkyNTAyLCJpc3MiOiJodHRwczovL3Rlc3REZWYuY29tI
iwic3ViIjoidGVzdHVzZXIiLCJleHAiOjE1MDY0OTYxMDIsIm15Q2xhaW0iOiJjbG
FpbVZhbHVlIiwiYXVkIjoibXl0ZXN0Q2xpZW50In0.ZJdBmJtVw_Ti3Qjnpi21HWl
Yk-asu72UnosYBZXeRn4

The decoded header:
{

"cty": "JWT",
"alg": "HS256"

}

The claims:
{

"nonce": "someNonce14751",
"iat": 1506492502,
"iss": "https://testDef.com",
"sub": "testuser",
"exp": 1506496102,
"myClaim": "claimValue",
"aud": "mytestClient"

}

Customizing OAuth tokens by updating the sample
PreTokenGeneration mapping rule

You can customize the format of the tokens that are issued by your OAuth
definition.

The OAuth tokens can be customized by modifying the sample
PreTokenGeneration mapping rule. Enable the PreTokenGeneration mapping rule
on the appliance by setting the variable enable_custom_tokens to true.

When custom token formats are used, the tokens must remain unique. Otherwise,
users might become authenticated with another user's credential. Thus, it is
recommended that custom tokens always contain a nonce of reasonable entropy.

To customize the authorization code, insert a context attribute into the STSUU with
the type "urn:ibm:ITFIM:oauth20:custom:token" and the name

Chapter 11. OAuth 2.0 and OIDC support 157

"urn:ibm:ITFIM:oauth20:custom:token:authorization_code". The provided value
will be used as the authorization code if an authorization code would have been
issued in this request.

To customize the access token, insert a context attribute into the STSUU with the
type "urn:ibm:ITFIM:oauth20:custom:token" and the
name"urn:ibm:ITFIM:oauth20:custom:token:access_token". The provided value
will be used as the access token if an access token would have been issued as part
of this request.

To customize the refresh token, insert a context attribute into the STSUU with the
type "urn:ibm:ITFIM:oauth20:custom:token" and the
name"urn:ibm:ITFIM:oauth20:custom:token:refresh_token". The provided value
will be used as the refresh token if a refresh token would have been issued as part
of this request.

To customize the device code, insert a context attribute into the STSUU with the
type "urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:device_code". The provided value will be
used as the device_code in the device flow.

To customize the user code, insert a context attribute into the STSUU with the type
"urn:ibm:ITFIM:oauth20:custom:token" and the name
"urn:ibm:ITFIM:oauth20:custom:token:user_code". The provided value will be
used as the user_code in the device flow. Customizing the user_code is particularly
important, as the end user will be required to key this into a user agent
–potentially on a mobile device, where entering long strings can be cumbersome.
There is an out of the box example of this configured be default to make the
format of the user code xxxx-xxxx.

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from
an OpenID Connect Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the
STS, or the mapping can be performed externally via a HTTP request.

OpenID Connect Provider mapping rules
When you write mapping rules for a provider, the primary goal is to augment the
claims that are included in the ID token.

After mapping rule execution, all attributes in the STSUU will be added to the
id_token as a claim, where the attribute key is the key in the id_token, and the
value is the value of the attribute. If there are several attributes with the same key,
then an array containing each attribute will be added to the claim. Some context
information is made available to the user when writing mapping rules; the context
attributes of the passed in STSUU will contain attributes with the type
“urn:ibm:ITFIM:oidc:provider:context”, which can be used to make decisions on
what claims are added, or if any other actions are performed.

These context attributes include:
v The client ID of the client making the request.
v The federation name of the provider servicing the request.
v The redirect URI sent in the request.
v The response type of the request.

158 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v The state parameter of the request.
v The user-consented scopes for the request.

OpenID Connect Relying Party mapping rules
When you write mapping rules for a Relying Party, the resulting STSUU is turned
into a PAC that is used to authenticate the user to a Reverse Proxy via EAI.

The attributes that are included in that PAC will be the attributes of the STSUU,
and the principal will be the first principal which was in the STSUU. When
writing mapping rules for a Relying Party, the values of the id_token will be made
available as Attributes in the STSUU. Some additional context is made available to
the user via the STSUU's context attributes. These attributes will have the types
“urn:ibm:ITFIM:oidc:client:idtoken:param” and
“urn:ibm:ITFIM:oidc:client:token:param”.

These context attributes include:
v All of the claims inside the id_token.
v The raw JWT.
v Any issued access or refresh tokens.
v All of the properties of the issued bearer token if an authorization code flow is

used.
v All of the parameters issued in the response if an implicit flow is used.

Attribute sources
Both OpenID Connect Providers and Relying Parties can be configured to use an
attribute source.

For an OpenID Connect Provider, this can be used instead of a mapping rule.
However for an OpenID Connect Relying Party a mapping rule must still be
present, this mapping rule is required to construct the principal used in the
iv-cred.

For more information about attribute sources, see Managing attribute sources.

Updating mapping rules when enabling OIDC
You can update the default mapping rules for OIDC to enable and customize
mapping actions.

About this task

Security Access Manager provides mapping rules for use with OAuth 2.0 and
OIDC deployments. You can access these files from the File Downloads section of
the LMI. You can then update these files as appropriate for your deployment.

For Version 9.0.4, Security Access Manager supports new OIDC request types, as
described in the following table.

Table 19. New request types

Request type Associated endpoint Description

userinfo https://server.oauth.com/mga/sps/oauth/
oauth20/userinfo

See “OAuth 2.0
endpoints” on page
102 and “OIDC Claims
customization” on page
141

Chapter 11. OAuth 2.0 and OIDC support 159

Table 19. New request types (continued)

Request type Associated endpoint Description

revoke https://server.oauth.com/mga/sps/oauth/
oauth20/revoke

See “OAuth 2.0
endpoints” on page
102 and “OAuth
revocation endpoint”
on page 140

introspect https://server.oauth.com/mga/sps/oauth/
oauth20/introspect

Support for introspect
was added in Version
9.0.3.See “OAuth 2.0
endpoints” on page
102 and “OAuth
introspection” on page
138

Procedure
1. In the LMI, go to Manage System Settings > File Downloads

2. Expand either federation > examples > mapping rules or access_control >
examples > mapping rules

3. Select one or more of the following files and click Export.
v oauth_20_pre_mapping.js
v oauth_20_post_mapping.js

4. Edit the mapping rule as appropriate for your deployment.
5. Import the revised mapping rule into your OIDC API Protection definition.

a. Select either Secure Access Control > Policy > OpenID Connect and API
Protection or Secure Federation > Manage > OpenID Connect and API
Protection.

b. Select the Mapping Rules sub-menu.
c. Click Import to add a new mapping rule. Or, to use an edited mapping rule

to replace an existing mapping rule, highlight the existing mapping rule and
click Replace.

Device flows verification uri
The device flow requires the client be presented with a verification_uri. Because
the exact details of the point of contact are not known by the authorization server
and the response is written back in JSON not HTML, this value needs to be
changed per deployment.

In order to update the verification_uri shown in the response from
device_authorize, update the variable webseal_portion to be the new protocol,
hostname, port, and junction to user in the URI.

OAuth 2.0 template files
The OAuth process relies on HTML pages to interact with users, such as
displaying errors or prompting users to provide information. You can customize
these pages through the OAuth template files.

For information aboutOAuth template files, see Template files.

160 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

OAuth 2.0 template page for consent to authorize
The authorization server uses this page to determine and store user consent
information about which OAuth clients are authorized to access the protected
resource. This page also indicates scopes that the OAuth client requests.

The Security Access Manager for Mobile provides an HTML page template called
user_consent.html. The macros in the template are specifically for an OAuth 2.0
flow.

Note: You can use a separate template for each API definition. To add a template
for a specific definition, create a directory with the same name as the definition
under oauth20 and add the user_consent.html template there.

Security Access Manager for Mobile stores the decisions made by the resource
owner about which OAuth clients to trust. The resource owner is not prompted
every time the same OAuth client requests authorization to access the protected
resource.

The authorization request from the OAuth client shows a list of approved scopes,
and a list of scopes to be approved. These lists are shown in the consent page and
can be of indeterminate length. The template supports multiple copies of stanzas
that are repeated once for each scope in either list.

This template file provides several replacement macros:

@OAUTH_AUTHORIZE_URI@
This macro is replaced with the URI for the authorization endpoint.

@OAUTH_CLIENT_COMPANY_NAME@
This macro is replaced with the name of the company that is requesting
access the protected resource.

@CLIENT_ID@
This macro is replaced with the client_id parameter specified in the
authorization request.

@REDIRECT_URI@
This macro is replaced with the redirect URI that the authorization server
uses to send the authorization code to. The value depends on the following
items:
v Redirect URI that is entered during partner registration
v oauth_redirect parameter specified in the authorization request

@STATE@
This macro is replaced with the state parameter specified in the
authorization request.

@RESPONSE_TYPE@
This macro is replaced with the response_type parameter specified in the
authorization request.

@OAUTH_CLIENT_DATA_MACRO@
This macro is replaced with the client data in JSON format, which contains
values that are entered at configuration time such as:
v Company name
v Company URL
v Contact name

Chapter 11. OAuth 2.0 and OIDC support 161

v Email address
v Telephone number
v Contact type
v Other information

This macro is also the dynamic data of the client. This includes any
statistically configured client values such as Company name, and any
dynamic values, regardless of whether they are from a dynamically
registered client or from an extended client portion. For example, tos_uri

The fields are sanitized through a filter list. To populate or filter a specific
value, change the advanced configuration oauth20.clientDataToInclude.

@USERNAME@
This macro is replaced with the Security Access Manager for Mobile user
name.

@OAUTH_OTHER_PARAM_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@
A multi-valued macro that belongs either inside [RPT
oauthTokenScopePreapprovedRepeatable] or [RPT
oauthTokenScopeNewApprovalRepeatable] repeatable replacement lists. The
values inside the [RPT oauthTokenScopePreapprovedRepeatable] show the
list of token scopes that have been previously approved by the resource
owner. Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable] show the list of token scopes that
have not yet been approved by the resource owner.

@CONSENT_FORM_VERIFIER@
This macro is replaced with a unique identifier for the
consent_form_verifier parameter value. The consent_form_verifier
parameter value is automatically generated by the authorization server.
The parameter name and value must not be modified.

162 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905	
	905	
	905	
	905	

||905||
||905||

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>OAuth 2.0 - Consent to Authorize</title>
<link rel="stylesheet" type="text/css" href="/sps/static/styles.css" />

</head>
<body>

<div class="header">
<div class="brandingLogo"></div>

</div>
<div class="content">

<div class="contentHeader">
<h1 class="pageTitle">OAuth 2.0 - Consent to Authorize</h1>
<div class="instructions"></div>

</div>

<div class="pageContent">
<form action="@OAUTH_AUTHORIZE_URI@" method="post">

<p>The following site is requesting access to an OAuth 2.0 protected resource:</p>
<div class="sectionTitle">
<p>@OAUTH_CLIENT_COMPANY_NAME@</p>
</div>

<p>The client type is: @CLIENT_TYPE@</p>

<p>The client provided the following OAuth 2.0 request parameters:</p>

<ul style="margin-left: 20px">
Client Id: @CLIENT_ID@
Redirect URI: @REDIRECT_URI@
State: @STATE@
Response Type: @RESPONSE_TYPE@

<p>By approving this request you will be providing delegated authorization
on behalf of:</p>
<p>@USERNAME@</p>

<p>The client provided the following extra request parameters:</p>
<!-- START NON-TRANSLATABLE -->
<ul style="margin-left: 20px">
[RPT oauthOtherParamsRepeatable]
@OAUTH_OTHER_PARAM_REPEAT@=@OAUTH_OTHER_PARAM_VALUE_REPEAT@
<input type="hidden" name="@OAUTH_OTHER_PARAM_REPEAT@"
value="@OAUTH_OTHER_PARAM_VALUE_REPEAT@" />
[ERPT oauthOtherParamsRepeatable]

<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes that have been previously approved:</p>
<!-- START NON-TRANSLATABLE -->
<ul style="margin-left: 20px">
[RPT oauthTokenScopePreapprovedRepeatable]
@OAUTH_TOKEN_SCOPE_REPEAT@
<input type="hidden" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" />
[ERPT oauthTokenScopePreapprovedRepeatable]

<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes that have not yet been approved:</p>
<!-- START NON-TRANSLATABLE -->
[RPT oauthTokenScopeNewApprovalRepeatable]
<input type="checkbox" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" checked="checked"/>
<label>@OAUTH_TOKEN_SCOPE_REPEAT@</label>

[ERPT oauthTokenScopeNewApprovalRepeatable]
<!-- END NON-TRANSLATABLE -->

<p/>

<p>Would you like to approve access to this scope?</p>

<input type="hidden" name="consent_form_verifier" value="@CONSENT_FORM_VERIFIER@" />

<!--
The scope parameters can be:
1. Requested as part of the redirect for authorization by the client

by appending them to the authorize URL as query string parameters, and/or
2. If not requested by the client, and you know what authorization options

are valid for the protected resources being requested, you may
also manually prompt for them in this page template as demonstrated
by the following example scope’s

-->
<!--
<table>

<tr>
<td>Scopes to be authorized: </td>
<td>Scope 1</td><td><input type="checkbox" name="scope" value="token_scope_1" /></td>
<td>:: Scope 2</td><td><input type="checkbox" name="scope" value="token_scope_2" /></td>
<td>:: Scope 3</td><td><input type="checkbox" name="scope" value="token_scope_3" /></td>

</tr>
</table>
-->

<table>
<tr>
<td>Permit </td>
<td><input type="radio" name="trust_level" value="permit" checked /></td>

</tr>
<tr>
<td>Deny </td>
<td><input type="radio" name="trust_level" value="deny" /></td>

</tr>
</table>

<div class="controls">
<input class="submitButton" type="submit" name="submit" value="Submit" style="width: 80px" />
</div>

</form>
</div>
</div>
</body>

</html>

Figure 3. Template for user_consent.html

Chapter 11. OAuth 2.0 and OIDC support 163

Error responses
An HTTP response indicates the type of error that has occurred when an action in
an authorization process fails. The error responses described here are only
applicable to Policy Enforcement Point (PEP) error responses.

For more information about OAuth 2.0 error responses for other endpoints, see the
OAuth website: http://www.oauth.net.

In some circumstances, the following HTTP error responses must be returned to
the client:
v 400 Bad Request
v 401 Unauthorized
v 502 Bad Gateway

For the 401 response, an additional WWW-Authenticate header is added to the
response in the following format:
WWW-Authenticate: OAuth realm = <realm-name>

The HTML component of the responses is preinstalled from files that have been
specified in the EAS configuration.

For details on how to configure the response template files for OAuth EAS, see
Configuring WebSEAL to include OAuth decisions.

User self-administration tasks for OAuth
Administrators can configure OAuth to enable users to perform certain
self-management tasks.

A common user task is to manage authorization grants. For example, users can
view the attributes of an authorization grant. A user can also enable an
authorization grant.

Managing OAuth 2.0 authorization grants
You can view your authorization grants and the tokens and attributes of each
authorization grant.

About this task

You can complete the following tasks:
v View a list of your OAuth 2.0 authorization grants.
v View the OAuth 2.0 tokens and attributes of an authorization grant.
v Remove an OAuth 2.0 authorization grant.
v Enable an OAuth 2.0 authorization grant.
v Disable an OAuth 2.0 authorization grant.

Procedure

Take one of the following actions:

164 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

http://www.oauth.net

View your OAuth 2.0 authorization grants and the tokens and attributes of each
authorization grant

1. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

2. Click the ID from the table to view the tokens and attributes of that
authorization grant.

Note: You can also use the following URL to go directly to the tokens and
attributes of a specific authorization grant: http://hostname/mga/sps/mga/
user/mgmt/html/device/grant_attributes.html?id=x.

The query string, id=x, indicates the authorization grant that you are trying
to access. The x represents the ID of the authorization grant.

Remove an OAuth 2.0 authorization grant

1. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

2. Click Remove next to the authorization grant that you want to
remove.

Enable an OAuth 2.0 authorization grant

1. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

2. Select the Enabled box next to the authorization grant that you want to
enable.

Disable an OAuth 2.0 authorization grant

1. Log in to http://hostname/mga/sps/mga/user/mgmt/html/device/
device_selection.html.

2. Clear the Enabled box next to the authorization grant that you want to
disable.

Note: Authorization grants can be enabled, disabled, or removed in the
authorization grant attribute page too.

OAuth STS Interface for Authorization Enforcement Points
Use the WS-Trust interface to directly contact an OAuth Security Token Service
(STS) trust chain in Security Access Manager to validate a request for an OAuth
protected resource. An OAuth enforcement point intercepts requests for OAuth
protected resources. The OAuth enforcement point also validates the request with
Security Access Manager, and passes the request through, if it is valid. If the
request is not valid, the enforcement point denies access to the protected resource.

OAuth STS overview

You can develop your own customized policy enforcement point to work with the
Security Token Service (STS) trust chain through the STS interface. Some examples
of existing customized policy enforcement points are WebSphere® Servlet Filter,
Trust Association Interceptor (TAI), and a reverse proxy such as WebSEAL. As
Security Access Manager supports OAuth 2.0 federations, you can develop
customized policy enforcement points to work with OAuth 2.0 federations. The
following diagram illustrates the relationship between the OAuth STS trust chain
and other OAuth components.

Chapter 11. OAuth 2.0 and OIDC support 165

This section describes the process an OAuth enforcement point undertakes to
transform an HTTP request for an OAuth protected resource into a WS-Trust
message.

The transformation makes it possible for the STS to validate the request. It also
describes the possible responses an enforcement point can receive from the STS
and how to deal with them.

The following information about the policy decision point in Security Access
Manager must be made available to the enforcement point:
v The absolute URL of the Security Access Manager STS trust service endpoint.

(For example: https://isam.com/TrustServer/SecurityTokenService)
v The basic authentication user name and password for the Security Access

Manager STS trust service (if required).
v The ProviderID of the Security Access Manager federation the client belongs to,

which is used as the AppliesTo address for WS-Trust requests. Optionally, the
enforcement point accepts a provider ID from the OAuth client as a request
parameter to serve more than one federation concurrently.

Authorization decision request

Configuration

For OAuth 2.0 requests, the enforcement point must know the Security Access
Manager OAuth 2.0 issuer address prefix (urn:ibm:ITFIM:oauth20:token:).

HTTP request

When an OAuth 2.0 client retrieves a protected resource with its access token, it
constructs a request similar to any of the following examples. Each of these three

User Consumer Application
(often a web application)

Policy Enforcement Point

User’s private resources

Security Token Service
(STS)

STS
interface

IBM Security Access Manager

(Policy Decision Point)

Figure 4. OAuth STS trust chain workflow

166 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

examples is logically the same request. All that differs is the transmission
mechanism (HTTP header, query string, post body) for sending the OAuth 2.0
bearer access token:

OAuth 2.0 Example 1 (Access token in authorization header)
POST /oauth/protectedresource.jsp
Host: isam.com
Authorization: Bearer YPxa78JggdW7hvcFRJph
Content-Type: application/x-www-form-urlencoded

username=steve

OAuth 2.0 Example 2 (Access token in post body)
POST /oauth/protectedresource.jsp
Host: isam.com
Content-Type: application/x-www-form-urlencoded

username=steve&access_token=YPxa78JggdW7hvcFRJph

OAuth 2.0 Example 3 (Access token in query string)
POST /oauth/protectedresource.jsp?access_token=YPxa78JggdW7hvcFRJph
Host: isam.com
Content-Type: application/x-www-form-urlencoded

username=steve

Authorization decision request

The OAuth 2.0 enforcement point is responsible for the following actions:
v Transform HTTP requests into a WS-Trust SOAP message.
v Send the WS-Trust SOAP message to the Security Access Manager STS for

request validation.

The HTTP request is transformed into the following WS-Trust SOAP message:

OAuth 2.0 Token Validate Request (Request Security Token)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wst:RequestType xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

</wst:RequestType>
<wst:Issuer xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
/08/addressing">

urn:ibm:ITFIM:oauth20:token:bearer
</wsa:Address>

</wst:Issuer>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004
/09/policy">

<wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap
.org/ws/2004/08/addressing">

<wsa:Address>https://localhost/sps/oauth/oauth20/</wsa:Address>
</wsa:EndpointReference>

</wsp:AppliesTo>
<wst:Base xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal/>
<stsuuser:AttributeList/>
<stsuuser:ContextAttributes>

<stsuuser:Attribute name="access_token"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="username"
type="urn:ibm:names:ITFIM:oauth:body:param">
<stsuuser:Value>steve</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="port"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>9443</stsuuser:Value>

</stsuuser:Attribute>

Chapter 11. OAuth 2.0 and OIDC support 167

<stsuuser:Attribute name="method"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>POST</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="path"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>/oauth/protectedresource.jsp</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="scheme"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>https</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="host"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>isam.com</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:ContextAttributes>

</stsuuser:STSUniversalUser>
</wst:Base>

</wst:RequestSecurityToken>
</soapenv:Body>

</soapenv:Envelope>

The following attributes are defined by the WS-Trust specification. They are used
by Security Access Manager to identify the federation that is associated with this
request and to identify the type of OAuth 2.0 access token being used.
v The Issuer address element (highlighted in bold) must be set to the Security

Access Manager OAuth 2.0 issuer address prefix
(urn:ibm:ITFIM:oauth20:token:). The token type must be appended at the end
and separated by a colon. Currently, the only token supported type is bearer,
which means the issuer address must be set to
urn:ibm:ITFIM:oauth20:token:bearer.

v The AppliesTo address element (highlighted in italics) must match the Provider
ID of the API Protection Definition within Security Access Manager. The general
form is https://localhost/sps/oauth/oauth20/{id}.

The access_token attribute with type urn:ibm:names:ITFIM:oauth:param is
mandatory in the WS-Trust message sent to Security Access Manager. It must be
appended to the ContextAttributes section of the STSUniversalUser within the
WS-Trust Request Security Token.

If access_token attribute is missing from the request from the OAuth 2.0 client, the
enforcement point does not validate the request with Security Access Manager STS.
It can instantly return an HTTP 400 Bad Request status code and optionally can
include a description of the error in the body.

Note: If the access token is included in the authorization header in the
Authorization: Bearer <token> format, the token must still be added to the
ContextAttributes section of the STSUU. The same format must be used as if the
access token was sent through a query string or post body.

The following attributes are not mandatory in the WS-Trust message that is sent to
Security Access Manager STS for OAuth 2.0. However, they might be useful to a
custom mapping rule that is executed by Security Access Manager.

It is recommended to append the following attributes to the ContextAttributes
section of the STSUniversalUser within the WS-Trust Request Security Token and
set the attribute type to urn:ibm:names:ITFIM:oauth:request.
v method - the HTTP method of the request (GET/POST)
v scheme - (http/https)
v host - host header from the request

168 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v port - the port number on the host (only if it is a non-standard port. For
example, not 80 if the method is HTTP or not 443 if the method is HTTPS)

v path - the requested path

Append any additional parameters that the OAuth 2.0 enforcement point finds in
the request, such as query or post body parameters that are not of OAuth 2.0, to
the Context Attribute section of the STSUniversalUser within the WS-Trust
Request Security Token. The type value is determined by the following table.

In OAuth 2.0 requests, these parameters are not required. However, they might be
useful to a custom mapping rule that is executed by Security Access Manager. So it
is recommended that you append them.

HTTP Parameter Location Attribute Type Value

URL Query String Parameters urn:ibm:names:ITFIM:oauth:query:param

HTTP Request Body Parameters urn:ibm:names:ITFIM:oauth:body:param

Post body parameters must be included only if the following conditions are met:
v The entity-body is single-part.
v The entity-body follows the encoding requirements of the “application/x-www-

form-urlencoded”content-type as defined by [W3C.REC-html40-19980424].
v The HTTP request entity-header includes the “Content-Type” header field set to

“application/x-www-form-urlencoded”.

Authorization decision response

The SOAP message response from Security Access Manager (regardless of OAuth
version) echoes all the context attributes sent in the original request and some
extra response context attributes.

OAuth Token Validate Response (RSTR)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<wst:RequestSecurityTokenResponse wsu:
Id="uuid56a54e7c-012f-1207-9133-c24cad886d75"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401
-wss-wssecurity-utility-1.0.xsd">

<wsp:AppliesTo xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference>
<wsa:Address>https://localhost/sps/oauth/oauth20/</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedSecurityToken>

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names
:ITFIM:1.0:stsuuser">

<stsuuser:Principal/>
<stsuuser:AttributeList/>
<stsuuser:ContextAttributes>

<stsuuser:Attribute name="authorized"
type="urn:ibm:names:ITFIM:oauth:response:decision">

<stsuuser:Value>TRUE</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="expires" type="urn:ibm
:names:ITFIM:oauth:response:decision">

Chapter 11. OAuth 2.0 and OIDC support 169

<stsuuser:Value>2011-04-22T00:52:18Z</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="scope" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>email</stsuuser:Value>
<stsuuser:Value>first</stsuuser:Value>
<stsuuser:Value>last</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="username" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>wasadmin</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="username_is_self"
type="urn:ibm:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>FALSE</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_token" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="recovered_state" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>State storage time was:
2011-04-15T00:52:18Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="state_id" type="urn:ibm
:names:ITFIM:oauth:state">

<stsuuser:Value>2cJsZ3QhXV5rDVZHNePp</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:ContextAttributes>
<stsuuser:AdditionalAttributeStatement id=""/>

</stsuuser:STSUniversalUser>
</wst:RequestedSecurityToken>
<wst:Status>

<wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status
/valid</wst:Code>

</wst:Status>
</wst:RequestSecurityTokenResponse>

</soapenv:Body>
</soapenv:Envelope>

The following context attributes returned to the enforcement point by Security
Access Manager relate to the authorization decision. It also has the attribute type
urn:ibm:names:ITFIM:oauth:response:decision highlighted in italics in the
previous RSTR example. It is up to the enforcement point to decide whether to
down-stream these attributes to the OAuth protected resource.

These attributes are primarily for the use of the enforcement point itself to
determine the authorization status.

Context attributes Description

authorized The value is set to TRUE if the OAuth request is valid and
authorized; FALSE if otherwise.

expires The UTC time when the access token that is used in the request is
no longer valid.

The following context attributes returned to the enforcement point by Security
Access Manager must be down-streamed from the enforcement point to the OAuth
protected resource. They might be appended to the original HTTP request in any
way deemed suitable by the enforcement point and the protected resource. This
way, the protected resource can retrieve them (for example, as additional HTTP
headers).

These context attributes have the attribute type
urn:ibm:names:ITFIM:oauth:response:attribute (highlighted in bold in the
previous RSTR example).

170 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Custom mapping rules that are executed after the OAuth trust chain might also
append attributes with this type. Therefore, any attribute with this type must be
down-streamed to the requested protected resource.

Context attributes Description

access_token The OAuth access token that is used in the protected resource
request.

client_type The type of client that this token was issued to, can be either
public or confidential. Public clients are clients that do not have
client credentials and therefore cannot authenticate to the
authorization server.

oauth_token_client_id The unique identifier of the client to which the current access
token was issued.

scope A list of strings that represents the resource scope that is
authorized by the user at the OAuth resource owner authorization
step. The OAuth protected resource can use this attribute to
determine which resources to return in the response. This attribute
is only present for OAuth flows that include a user authorization
step.

username The name of the user who authorized the OAuth token to access
their protected resources on their behalf. With OAuth flows that
do not involve a separate resource owner, this value is the client
identifier.

Additional attributes with the type
urn:ibm:names:ITFIM:oauth:response:attribute are sometimes appended by a
custom mapping rule, such is the case with recovered_state and username_is_self
in the example.

The state_id context attribute returned to the enforcement point by Security Access
Manager is used by a custom mapping rule that is executed after the OAuth trust
chain. It has the attribute type urn:ibm:names:ITFIM:oauth:state (highlighted with
an underline) and can be ignored by the enforcement point.

The state_id attribute is a unique identifier for the current OAuth token that is
used to store state information.

If the state_id attribute is required by the OAuth protected resource, a custom
mapping rule can be implemented to make a copy of this attribute. The type can
be changed to urn:ibm:names:ITFIM:oauth:response:attribute from the custom
mapping rule to ensure that it is down-streamed to the resource.

Error responses

You can customize the amount of OAuth request validation that the enforcement
point performs. Any validation it performs is repeated by Security Access Manager.
Doing some validation before sending an authorization request to Security Access
Manager might improve performance. The following validation must be performed
by the enforcement point before sending a request to Security Access Manager.
v Validate that some OAuth data is present. If not, return an HTTP 401

Unauthorized status code.
v Validate that none of the required OAuth parameters are missing. If any of them

are not present in the request, return an HTTP 400 Bad Request status code.

Chapter 11. OAuth 2.0 and OIDC support 171

v Validate that none of the required OAuth parameters occur more than once in
the request. They must also occur only in the one component of the request; for
example, the query string or the authorization header. If the validation fails,
return an HTTP 400 Bad Request status code.

The enforcement point must return an HTTP 401 Unauthorized status code to the
OAuth client if the following scenario occurs:
v The enforcement point receives a SOAP message with an authorized context

attribute that has a value of FALSE.

The enforcement point must return an HTTP 503 Service Unavailable status code
to the OAuth client if the following scenarios occur:
v Security Access Manager encounters an error.
v Security Access Manager does not return a constructed SOAP message or the

SOAP message does not contain an authorized context attribute.

The enforcement point might also optionally return a WWW-Authenticate HTTP
header to indicate its support for OAuth.

Flow chart

The following chart shows the expected workflow of an OAuth authorization
enforcement point.

172 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

API Protection form post response mode
With the form post response mode, a client can make an OAuth authorization
request and receive a self-posting form rather than a 302 response.

For more information about the form post response mode, see
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html.

Figure 5. OAuth authorization enforcement point workflow

Chapter 11. OAuth 2.0 and OIDC support 173

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

The form post template page contains a form that is populated with the action URI
as the redirect URI presented on the authorization request. There is also a
repeating macro inside the form, containing name and value macros.

Macros:

@ACTION@

The validated redirect URI presented in the authorization request.

Repeating macros:

The following macros must be used inside the repeating macro block
’oauth_form_post’. For example:
[RPT oauth_form_post]
<input type="hidden" name="@OAUTH_HIDDEN_NAME@" value="@OAUTH_HIDDEN_VALUE@" />
[ERPT oauth_form_post]

@OAUTH_HIDDEN_NAME@

Parameter name of the form post body. Default values include (depending
on response_type) :
scope, state, expires_in, access_token, token_type, code

@OAUTH_HIDDEN_VALUE@
Parameter value in the form post body. This value corresponds to the
@OAUTH_HIDDEN_NAME@ macro value.

Access policy for OAuth or OIDC
Access policy is used to enable advanced authentication scenarios when
performing an OAuth flow.

For details on access policy, see Access policies.

When using access policy for OAuth or OIDC, the consent decision can be made
by the access policy.

Making an OAuth or OIDC consent decision using access
policy

You can use an access policy to prompt the user to enter further information via a
web page or redirect the user to another website. This logic could be used to
perform the consent step when advanced logic beyond "prompt once", "always
prompt", or "never prompt" is required.

This advanced logic is undefined. But it is assumed that as a result of it, the author
of the policy will be able to decide whether the user has consented, and if they
have consented, which scopes the user has granted the client.

The following snippet can be used to set the list of scopes consented:
// Get the protocol Context:
var pctx = context.getProtocolContext();
// Construct our array of scopes
var scopes = java.lang.reflect.Array.newInstance(java.lang.String,2);
// Set the values
scopes[0] = "scope1";
scopes[1] = "scope2";
// Add this to the context
pctx.setConsentDecision(scopes);

174 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

If consent has been performed but no scope was granted, then the follow snippet
can be used:
// Get the protocol Context:
var pctx = context.getProtocolContext();
var scopes = java.lang.reflect.Array.newInstance(java.lang.String,1);
scopes[0] = "";
// Add this to the context
pctx.setConsentDecision(scopes);

OIDC Dynamic Clients
OpenID Connect (OIDC) publishes a specification that allows registration of a
client to an OpenID Connect Provider.

This enables someone to onboard their application to an OpenID Connect provider
through a standard well-formed API. See the specification https://openid.net/
specs/openid-connect-registration-1_0.html.

The primary information that an application administrator is required to provide is
the redirect URI that the application uses when requesting an identity.

To use dynamic client registration, you must be using an OIDC-enabled definition
and have the option Enable Client Registration set to true. See “Creating an API
protection definition” on page 125.

OIDC Dynamic Clients- Authentication and deployment
There are considerations to take when you are deploying a definition that allows
the registration of clients through a public API.

Consider the following factors:

Do you require authentication to register a client?
If you do not require authentication for when a client is registered, there is
no way of identifying who owns a client application.

CAUTION:
This is a higher risk deployment pattern than if you require
authentication.
You can control the access to the registration endpoint with an Access
Control List (ACL). The reverse proxy OAuth configuration API then
configures the ACLs with the Require authentication to register a client
option. Group based requirements might also be added to ensure that only
administrators or trusted users can register clients. The authenticated users
credential information is available in the STSUniversalUser attribute list
during the registration. This information can be associated with the
registered client for use during the consent step, informing the end user
who the application administrator is.

What consent challenges are sent to the resource owner?
Since dynamic clients are inherently less trusted than an
administrator-registered client, the emphasis on the users consent in the
delegated authorization is increased. When and how consent might be
performed depends on who is able to register a client. Dynamic client
parameters such as client_uri are available on the consent page as a
macro. you can use this parameter and other values (For example, tos_uri,
log_uri, policy_uri) to allow the user to identify, discover, and verify who
a client is before granting them access.

Chapter 11. OAuth 2.0 and OIDC support 175

||905||

||905||
||905||

	905	
	905	
	905	

||905||
||905||

	905	
	905	
	905	

||905||

||905||
||905||

||905||

	905	
	905	
	905	

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Will you issue a client secret?
A client secret allows access to the client centric API endpoints such as
/token and /introspect, as well as allows the client to perform HMAC
signing of JWTs. Without a client secret, an authorization code flow cannot
be performed. When the configuration property issue client secret is
enabled, a client secret is issued when the registration is made by an
authenticated party.

OIDC Dynamic Clients- Register a client
To register a client, issue a HTTP POST to the Client Registration Endpoint.

See “OAuth 2.0 endpoints” on page 102.

Any values which are posted in the JSON body are stored such that both standard
values and custom values can be kept. These values are available in mapping rules
and in a macro on the consent page.

The following example is an example request to register a client:
POST_DATA=’{"redirect_uris": ["https://app.com"],

"tos_uri":"https://app.com/tos",
"company_name":"Applications Inc"}’

curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition-d "$POST_DATA" -H "Accept:
application/json" -H "Authorization: Bearer myAccessToken" -H "Content-type: application/json"

HTTP/1.1 200 OK
Content-Type: application/json

{
"client_secret_expires_at": 0,
"owner_username": "testuser",
"company_name": "Applications Inc",
"registration_client_uri": "https://myisam.com/mga/sps/oauth/oauth20/register/testDef?client_id=myClient",
"client_secret": "mySecret",
"tos_uri": "https://app.com/tos",
"client_id_issued_at": 1522139359,
"redirect_uris": "https://app.com",
"registration_access_token": "myClientAccessToken",
"client_id": "myClientId"
}

OIDC Dynamic Clients- Clients Management
When a client is registered, a registration_client_uri is returned in the payload.

This endpoint can be used to perform the following actions:
v Retrieve the registered clients definition
v Delete the client

Note: You must authenticate as either the client, or the user who was
authenticated at the time of client registration in order to view or delete the client.

To view the client, issue an HTTP GET request and include the client_id
parameter. For example:
$ curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition?client_id=myClient -H
Accept:application/json -H "Authorization: Bearer myClientAccessToken"
HTTP/1.1 200 OK
Content-Type: application/json

{
"client_secret_expires_at": 0,
"owner_username": "testuser",
"company_name": "Application Inc",
"registration_client_uri": "https://myisam.com/mga/sps/oauth/oauth20/
register/myDefinition?client_id=myClient",

176 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||

||905||

||905||

	905	
	905	
	905	

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||

||905||

||905||

||905||

||905||

||905||
||905||

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

"client_secret": "hunter2",
"tos_uri": "https://app.com/tos",
"client_id_issued_at": 1522137286,
"redirect_uris": "https://app.com",
"client_id": "myClient"}

To view the client, issue an HTTP GET request and include the client_id
parameter. For example:
$ curl https://myisam.com/mga/sps/oauth/oauth20/register/mydefinition?client_id=myClient -H
Accept:application/json -H "Authorization: Bearer myClientAccessToken"
HTTP/1.1 200 OK
Content-Type: application/json

{
"client_secret_expires_at": 0,
"owner_username": "testuser",
"company_name": "Application Inc",
"registration_client_uri": "https://myisam.com/mga/sps/oauth/oauth20/
register/myDefinition?client_id=myClient",
"client_secret": "hunter2",
"tos_uri": "https://app.com/tos",
"client_id_issued_at": 1522137286,
"redirect_uris": "https://app.com",
"client_id": "myClient"}

OIDC Dynamic Clients- Custom Identifiers
You can customize the value of the client_id, client_secret and
registration_access_token issued to the application.

There is an example of this in the out-of-the-box PreToken mapping rule. Look for
the variable custom_client_id_secret.

If a custom client_secret is set then it is issued, regardless of whether it is enabled
in the definition configuration and whether or not the request is made by an
authenticated party

To customize the registration_access_token, see “Customizing OAuth tokens by
updating the sample PreTokenGeneration mapping rule” on page 157.

API Protection clients now have a dynamic data field when they are configured.
This allows storage of arbitrary data against the client which can be accessed at
runtime (For example, from the consent page and in mapping rules).

Chapter 11. OAuth 2.0 and OIDC support 177

	905	
	905	
	905	
	905	
	905	

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

||905||

||905||
||905||

||905||
||905||

	905	
	905	
	905	

||905||
||905||

	905	
	905	
	905	

178 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 12. Mobile Multi-Factor Authentication

The IBM Security Access Manager Advanced Access Control component supports
authenticator applications. Such support is built around the OAuth 2.0 protocol.

Authenticator applications are mobile-based applications that enable users to
authenticate with minimal reliance on passwords. Mobile devices and biometric
characteristics are used to support authentication and reduce the threat of
unauthorized access to sensitive resources.

The IBM Verify application, which is available for download in major mobile
application stores, is natively supported by the Advanced Access Control
component. The authenticator application is built on the Mobile Access SDK,
which is available for download from Fix Central. The Mobile Access SDK can also
be used to create custom applications.

For instructions on configuring and using the IBM Verify application, see the IBM
Verify User Guide.

The authenticators framework can be integrated with context-based access and
authentication policies. Security Access Manager provides several pre-defined
authentication policies to enable combinations of mobile and biometric
mechanisms.

The authenticator application registration is built around an OAuth grant that is
issued to the mobile device. The grant is used to identify the authenticator in
future requests.

Authenticator registration
The IBM Verify application uses the OAuth authorization grant flow to perform
registration, which is launched by the user in a browser.

A button to initiate the registration flow is available in the device_selection.html
page, which is an example page that demonstrates how the registration might be
initiated. This page is available from the appliance File Downloads area at the
path access_control/pages/C/mga/user/mgmt/device/device_selection.html.

When the button is clicked, it calls the OAuth authorize endpoint to obtain an
authorization code. The user is then presented with a QR code that can be scanned
by the IBM Verify application to complete registration. The following steps
illustrate a typical authenticator registration flow.
1. The user downloads and installs the IBM Verify application.
2. The user logs in to the Security Access Manager User Self Care (USC) with a

desktop browser and clicks a button on the page that is presented by USC to
initiate the registration flow.

3. The browser starts the OAuth authorization code flow.
4. Security Access Manager responds with a QR code.
5. The user scans the QR code with the IBM Verify application.
6. The IBM Verify application completes the registration automatically.

179

https://www.ibm.com/support/fixcentral/
http://www-01.ibm.com/support/docview.wss?uid=swg27048979
http://www-01.ibm.com/support/docview.wss?uid=swg27048979

The Security Access Manager SDK supports registration without the need for
browser initiation in custom applications and also supports the OAuth ROPC flow.

Authentication registration is completed when an OAuth flow is completed with
the scope set to “mmfaAuthn”. Other attributes that can be included and saved via
the OAuth mapping rule are:
v Push token ID
v Application ID
v Device Name
v Device Type
v OS Version
v Fingerprint support included
v Front camera support included
v Tenant ID

Authentication method enrollment
After an authenticator is registered, the user is prompted to enroll authentication
methods.

Supported authentication methods include fingerprint and simple user presence.

Enrollment is performed through the System for Cross-Domain Identity
Management (SCIM) API. For more information, see SCIM configuration.

Configuring Mobile Multi-Factor Authentication
Follow these steps to configure Mobile Muli-Factor Authentication.

Before you begin

The following pre-requisites must be met:
v The IBM Security Access Manager Platform and Advanced Access Control

Module are activated.
v The runtime component and a reverse proxy instance are configured.
v Basic User support is enabled on the local LDAP.
v Transparent path junction to /scim on localhost is configured.

– BA with easuser enabled
– isam_mobile_rest ACL attached to /scim (ACL won't exist until step 2)

v Username Password Mechanism is configured.
v Server connection to local LDAP is set up.
v SCIM is configured with local LDAP server connection dc=iswga suffix.

Procedure
1. Create an API Protection definition and client with:
v Authorization code and ROPC enabled
v Redirect URI: https://<webseal_hostname>:<port>/mga/sps/mmfa/user/mgmt/

html/mmfa/qr_code.html?client_id=<client_ID>

Note:

180 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The redirect URI is essential so that when a user clicks the Register
Authenticator button in the USC UI, the user is correctly redirected to the QR
Code page.

2. Run the Reverse Proxy MMFA Config API.
This step configures the /mga junction and creates the required ACLs.
curl -ki -H ’Accept: application/json’ -H
’Content-type:application/json’ --user ’admin:XXXX’ -X POST https://
192.168.124.130/wga/reverseproxy/default/mmfa_config -d
’{"lmi":{"hostname":"192.168.124.130", "port":443, "username":"admin",
"password":"XXXX"}, "runtime":{"hostname":"localhost", "port":443,
"username":"easuser", "password":"XXXX"}, "reuse_certs":false,
"reuse_acls":false, "reuse_pops":false}'

3. Run the AAC MMFA Config API.
This step configures the reverse proxy details into a location where the AAC
code can access it.
curl -ki -H ’Accept: application/json’ -H
’Content-type: application/json’ --user ’admin:XXXX’ -X POST
https://192.168.124.130/iam/access/v8/mmfa-config -d
’{"client_id":"AuthenticatorClient",
"hostname":"192.168.124.140",
"port":443, "junction":"/mga"}’

MMFA mapping rule methods
Customize the OAuth PreTokenGeneration and PostTokenGeneration mapping
rules by using these methods.

Sample mapping rules are available from Manage System Settings > Secure
Settings > File Downloads under the access_control > examples > mapping rules
directory.

The following limitations affect the attribute keys and values that are associated
with the state_id by using the MMFAMappingExtUtils class:
v Keys cannot be null or empty.
v Values can only be null or empty when specified.
v Associated key-value pairs are read-only and not case sensitive.
v The push token is read-only and case sensitive.

registerAuthenticator
public static String registerAuthenticator(

String stateId
)

This method performs the final steps of registering an authenticator. Use
the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

These responses come from the runtime after registration.
v The new authenticator's ID if successful.
v Null if not successful.

Chapter 12. Mobile Multi-Factor Authentication 181

savePushToken
public static boolean savePushToken(

String stateId,
String pushToken,
String applicationID
)

This method saves the push token and application ID with the
authorization grant state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

pushToken

The push token the authenticator application has received from its
push notification service provider. This parameter cannot be null or
empty.

applicationID

The application ID of the authenticator application. This parameter
can be null or empty.

These responses come from the runtime.
v True if successful.
v False if not successful.

savePushToken
public static boolean savePushToken(

String stateId,
String pushToken
)

This method saves the push token and application ID with the
authorization grant state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

pushToken

The push token the authenticator application has received from its
push notification service provider. This parameter cannot be null or
empty.

These responses come from the runtime.
v True if successful.
v False if not successful.

saveDeviceAttributes
public static boolean saveDeviceAttributes(

String stateId,
String deviceName,
String deviceType,
String osVersion,
String fingerprintSupport,
String frontCameraSupport,
String tenantId
)

182 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

This method saves various device attributes with the authorization grant
state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

deviceName

The name of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

deviceType

The type of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

osVersion

The OS version of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

fingerprintSupport

The type of fingerprint sensor that is supported by the device. This
parameter can be null or empty. If empty, the value is cleared.

frontCameraSupport

flag that indicates if the device has a front facing camera. This
parameter can be null or empty. If empty, the value is cleared.

tenantId

The tenant ID for this registration, if the authenticator application
is multi-tenant. This parameter can be null or empty. If empty, the
value is cleared.

These responses come from the runtime.
v True if successful.
v False if not successful.

Chapter 12. Mobile Multi-Factor Authentication 183

184 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 13. Access control policies

An access control policy is a set of conditions that, after they have been evaluated,
determine access decisions.

Defining a custom application for policy attachments
There are two types of Access Control Resources, Reverse Proxy or Application.

A Reverse Proxy resource defines a server instance with a protected object space,
and a specific resource in that protected object space. An application resource
describes an application server and resource that you would like to protect that is
not in a Reverse Proxy object space.

Ensure that the application ID is unique. The application ID is case-sensitive; for
example "ClaimApplication" and "claimapplication" are considered to be unique
names.

Note: Avoid control characters, leading and trailing blanks, and special characters
such as ! @ # $ % ^ & * [] ; , < >

Application IDs and resources are used as either URL paths or URI scheme names
and therefore must consist of a sequence of any combination of lowercase letters,
numbers, or any of the following special characters: plus ("+"), period ("."), or
hyphen ("-").

If a URL path is used, the ID must begin with a forward slash ("/"). If a URI
scheme name is used, the ID must being with a lowercase letter.

For an application resource with an Application ID /myapp and Resource ID
/myresource, the corresponding XACML JSON would be:
{

"Request": {
"Action": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
"DataType": "string", "Value": "GET"

}
]

},
"Resource": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"DataType": "string", "Value": "/myresource"

}
]

},
"Environment": {

"Attribute": [
{

"AttributeId": "ApplicationId", "DataType": "string", "Value":
"/myapp", "Issuer": "http://security.tivoli.ibm.com/policy/distribution",

}

185

]
}

}
}

Invoking the RTSS XACML engine
The RTSS XACML engine can be invoked directly to retrieve policy decisions.

Both Reverse Proxy or Application resources can be used in an RTSS request. A
JSON endpoint that roughly adheres to the XACML JSON specification can be
accessed via:
https://{runtime_hostname}/rtss/rest/authz/json

To determine which policy to evaluate, the engine will lookup configured policy
attachments via a policy key. The key corresponds to the concatenation of the
resource server and resourceUri. For example,a policy attachment with server
isam.ibm.com-default and resourceURI /protected will be referenced by the key
isam.ibm.com-default/protected. This key is required when sending the JSON
request.

The engine will attempt to find the policy key via the Request.Environment
attributes ContextId or ApplicationId, and if neither are set then the
Request.Resource resource-id attribute will be used.

ContextId JSON example
The ContextId attribute must contain the full policy key, that is the server and the
resourceUri.

For a reverse proxy resource with the server isam.ibm.com-default and
resourceUri /protected, the corresponding XACML JSON request would be:
{

"Request": {
"Action": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
"DataType": "string", "Value": "GET"

}
]

},
"Resource": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"DataType": "string", "Value": "/protected"

}
]

},
"Environment": {

"Attribute": [
{

"AttributeId": "ContextId", "DataType": "string", "Value":
"/WebSEAL/isam.ibm.com-default/protected", "Issuer":
"http://security.tivoli.ibm.com/policy/distribution",

}
]

}
}

}

186 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

If the policy attached to isam.ibm.com-default/protected results in a Permit
decision, the XACML JSON response would be:
{

"Response": [
{

"Status": {
"StatusCode": {

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
}

},
"Decision":"Permit"

}
]

}

ApplicationId JSON example
The ApplicationId attribute must only contain the server part of the full policy
key. The resourceUri is then retrieved from the Request.Resource resource-id
attribute and concatenated on the ApplicationId.

For an application resource with an Application ID /myapp and two resources,
/myresource1 and /myresource2, two policy keys would be generated,
/myapp/myresource1 and /myapp/myresource2.

This allows two separate policies to be evaluated within the one JSON request.

The corresponding XACML JSON would be:
{

"Request": {
"Action": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
"DataType": "string", "Value": "GET"

}
]

},
"Resource": [

{
"Attribute": [

{
"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"DataType": "string", "Value": "/myresource1"

}
]

},
{

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"DataType": "string", "Value": "/myresource2"

}
]

}
],
"Environment": {

"Attribute": [
{

"AttributeId": "ApplicationId", "DataType": "string",
"Value": "/myapp", "Issuer":
"http://security.tivoli.ibm.com/policy/distribution",

}

Chapter 13. Access control policies 187

]
}

}
}

If the policy attached to /myapp/myresouce1 results in a Permit decision and the
policy attached to /myapp/myresouce2 results in a Deny decision, the XACML JSON
response would be:
{

"Response": [
{

"Status": {
"StatusCode": {

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
}

},
"Attribute": [

{
"AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"Value":"\/myresource1"

}
],
"Decision":"Permit"

},
{

"Status": {
"StatusCode": {

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
}

},
"Attribute": [

{
"AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"Value":"\/myresource2"

}
],
"Decision":"Deny"

}
]

}

resource-id JSON example
When neither the ContextId or ApplicationId attributes are set, the
Request.Resource resource-id attribute is used as the policy key.

This allows two separate policies to be evaluated within the one JSON request.

The corresponding XACML JSON would be:
{

"Request": {
"Action": {

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:action:action-id",
"DataType": "string", "Value": "GET"

}
]

},
"Resource": [

{
"Attribute": [

{
"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",

188 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

"DataType": "string", "Value": "/WebSEAL/isam.ibm.com-default/protected"
}

]
},
{

"Attribute": [
{

"AttributeId": "urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"DataType": "string", "Value": "/myapp/myresource1"

}
]

}
],
"Environment": {

"Attribute": [
]

}
}

}

If the policy attached to isam.ibm.com-default/protected results in a Permit with
Obligation decision and the policy attached to /myapp/myresouce1 results in a
NotApplicable decision, the XACML JSON response would be:
{

"Response": [
{

"Status": {
"StatusCode": {

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
}

},
"Obligations": [

{
"Id":"ObligationId"

}
],
"Attribute": [

{
"AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"Value":"/WebSEAL/isam.ibm.com-default/protected"

}
],
"Decision":"Permit"

},
{

"Status": {
"StatusCode": {

"Value":"urn:oasis:names:tc:xacml:1.0:status:ok"
}

},
"Attribute": [

{
"AttributeId":"urn:oasis:names:tc:xacml:1.0:resource:resource-id",
"Value":"\/myapp\/myresource1"

}
],
"Decision":"NotApplicable"

}
]

}

Chapter 13. Access control policies 189

190 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 14. Defining a custom domain for policy attachments

The administrator can specify a custom domain to separate metadata in a registry.
For example, your company might possess metadata that belongs to several
companies, and it is a security demand that the data does not overlap.

About this task

The policy attachment credential automatically selects the default management
domain in all supported versions of IBM Tivoli® Access Manager when you
integrate it with the IBM Security Access Manager local management interface. You
must choose one domain to use for policy attachments.

Procedure
1. Log in to the local management interface.
2. Specify the Tivoli Access Manager administrator credentials when you create a

new reverse proxy instance:

a. Select Secure Web Settings > Manage > Reverse Proxy> New.
b. Select the IBM Security Access Manager tab.
c. Specify the following administrator credentials. These credentials must be

the same as the ones that you use to attach a policy to a domain other than
the default.
v Administrator Name

v Administrator Password

v Domain

Note: You can choose to specify a custom secure domain in the IBM Security
Access Manager tab. However, if you choose not to specify a domain, the
domain field defers to the default.

3. Select Secure Access Control >Policy> Access Control > Resources.

4. Click .
5. Enter the information that you specified in 2c at Policy Server Login.

What to do next

You can reset the credentials that you just defined with the setCredential
parameter under the following conditions:
v You upgrade to IBM Security Access Manager, version 8.0.0.4 or later.
v You want to manage a domain name other than the default.

Before you reset the setCredential parameter, remove all current resources and
their corresponding policy attachments. For more information about this command,
go to the REST API documentation and select Policy Attachments > Resources >
Authenticate with Security Access Manager.

191

192 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 15. Deploying pending changes

Some configuration and administration changes require an extra deployment step.

About this task

When you use the graphical user interface on the appliance to specify changes,
some configuration and administration tasks take effect immediately. Other tasks
require a deployment step to take effect. For these tasks, the appliance gives you a
choice of deploying immediately or deploying later. When you must make
multiple changes, you can wait until all changes are complete, and then deploy all
of them at one time.

When a deployment step is required, the user interface presents a message that
says that there is an undeployed change. The number of pending changes is
displayed in the message, and increments for each change you make.

Note: If any of the changes require the runtime server to be restarted, the restart
occurs automatically when you select Deploy. The runtime server will then be
unavailable for a period of time until the restart completes.

Procedure
1. When you finish making configuration changes, select Click here to review the

changes or apply them to the system.
The Deploy Pending Changes window is displayed.

2. Select one of the following options:

Option Description

Cancel Do not deploy the changes now.

Retain the undeployed configuration
changes. The appliance user interface returns
to the previous panel.

Roll Back Abandon configuration changes.

A message is displayed, stating that the
pending changes were reverted. The
appliance user interface returns to the
previous panel.

Deploy Deploy all configuration changes.

When you select Deploy, a system message
is displayed, stating that the changes were
deployed.

If any of the changes require the runtime
server to be restarted, the restart occurs
automatically when you select Deploy. The
runtime server will then be unavailable for a
period of time until the restart completes.

193

194 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 16. Options for handling session failover events

Advanced Access Control offers several solutions to the challenge of providing
sharing of session state across multiple servers in a clustered environment.

The following sections describe the options available for handling failover events
in clustered environments:
v No handling of failover events
v The Distributed Session Cache

Option 1: No handling of failover events
Failover events are rare when WebSEAL or Web Reverse Proxy instance is
configured to maintain session affinity in a stateful junction to Advanced Access
Control.

This scenario is applicable in the case of using the isamcfg tool to configure the
junction.

When failover events do occur, session state is lost and clients might be required to
restart their current transaction.

This option is configured by default. However, there is a risk of a poor user
experience when:
v The server containing Advanced Access Control becomes unavailable
v The WebSEAL or Web Reverse Proxy cannot maintain session affinity

Option 2: The distributed session cache
The distributed session cache (DSC) can be used for session storage by all Security
Access Manager appliances in a cluster.

When a fail over event occurs, Security Access Manager appliance retrieves the
session data of the user from the DSC. It therefore maintains the existing session
state.

Within Security Access Manager, the DSC is part of the cluster configuration. For
more information about turning on or turning off this feature, see the Distributed
Session Cache section in Advanced configuration properties and Managing
Distributed Session Cache.

195

196 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Chapter 17. Global settings

You can use the LMI to access an administrative menu to configure global settings
that are used by both Federation and Advanced Access Control.

The Local Management Interface (LMI) has a user interface page for administering
each major feature in IBM Security Access Manager. Since some features are used
by multiple licensing levels for the product, the administration page for these
features can be accessed through multiple user interface menu paths.

You can use either of the following LMI menus to access the global settings:
v Secure Access Control > Global Settings

v Secure Federation > Global Settings

You can use the global settings menus to configure the following features:
v Advanced Configuration

Some of the advanced configuration properties are common to Advanced Access
Control and Federation. Others are specific to one of the licensing levels.

v User Registry
Use these settings to administer users and group memberships for the user
registry that is used by the runtime applications. Management tasks are common
to Advanced Access Control and Federation.

v Runtime Parameters
You can use the Runtime Parameters menu to view runtime status, tune runtime
parameters, and set tracing on the runtime. These functions are common to
Advanced Access Control and to Federation.
In addition, the runtime tracing feature can be set in the LMI through
Monitoring Analysis and Diagnostics > Logs > Runtime Tracing > ..
The topic for Runtime Parameters is also included in the appliance
troubleshooting section of the IBM Knowledge Center. See Tuning runtime
application parameters and tracing specifications

v Template Files
Template files are HTML pages that are presented to your users. You can
customize the content of the pages for your deployment by setting supported
macros, or by adding JavaScript scripting. Template pages are used in multiple
scenarios.
– Customizing the authentication process, such as error messages
– Specifying settings for the supported authentication mechanisms
– Customizing error messages for authentication attempts
– Obtaining consent for registering devices
– Specifying authorization parameters for OAuth 2.0
– Configuring user self-care tasks

v Mapping Rules
Mapping rules are JavaScript code that runs during the authentication flow for
Advanced Access Control and Federation. Mapping rules can be used for
multiple purposes. For Advanced Access Control, you can modify rules for the
Authentication Service, OTP, and OAuth 2.0. For Federation, you can modify
mapping rules to manage identities for OIDC and SAML 2.0.

197

v Distributed Session Cache
The Distributed Session Cache is supplied by the Web Reverse Proxy and is
used with all activation levels. The management windows in the LMI can also
be accessed through Secure Web Settings > Manage > Distributed Session
Cache.
For an overview of the Distributed Session Cache, and a review of advanced
configuration options, see: Distributed session cache.

v Server Connections
Advanced Access Control and Federations both use the IBM Security Access
Manager appliance to connect to external data sources. For Advanced Access
Control, you can use the server connections menus to configure LDAP or
database server connections so that you can set up policy information points.
For Federation, you can configure an LDAP server as an attribute source for
attribute mapping.

v Point of Contact
IBM Security Access Manager provides servers, such as WebSEAL, that function
as point of contact servers for handling external requests for authentication and
authorization. You can configure a point of contact profile to specify the
information that is needed for the runtime to communicate with a specific point
of contact server. Security Access Manager provides three Point of Contact
profiles that are ready for use. You can specify callback parameters and values
for these profiles.

v Access Policies
You can use access policies to perform step-up and reauthentication during a
single sign-on flow based on contextual information. Access policies can be
enforced at a federation or at API Protection for OAuth and OpenID Connect.

Note: The LMI mega-menu for the Secure Web licensing level also presents a set
of tasks under a Global Settings heading. These tasks are different from the tasks
under the Global Settings menu for Secure Access and Secure Federation. The
Secure Web > Global Settings LMI menus are not used with Secure Access and
Secure Federation.

Managing advanced configuration
Adjust configuration settings in supported configuration files.

About this task

The advanced configuration panel displays a table of configuration settings. Some
can be modified and some are read-only. Each setting is displayed as a row in the
table. The name of the setting is listed in the key column. The current value of the
key is listed in the value column. You can locate a setting by using one of the
following methods:
v Scroll through the list until you see the setting.

By default, all configuration settings are included in the list.
v Filter the list by entering a string in the Filter field.

When you enter a string, the list is modified to show only the settings that
contain the specified string.

v Filter the list by selecting a category from the Filter by Category menu.

For descriptions of the categories and properties, see “Advanced configuration
properties” on page 199.

198 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Procedure
1. Select the menu entry for your licensing level:
v If using an Advanced Access Control license, select Secure Access Control >

Global Settings > Advanced Configuration.
v If using a Federation license, select Secure Federation > Global Settings >

Advanced Configuration

2. To edit a key, select the edit icon

for the key.

Note: You cannot edit keys that are marked with the read-only icon: .
When you choose to edit a key, a new window displays the name of the key
and the current value.

3. Edit the value for your deployment.

Table 20. Configuration data types

Data type Action

Integers Use the arrow icons to increment or decrement the value. Alternatively,
you can type a new value in the field.

Strings Enter a string value in the field.
Note: This field must have a value. You cannot specify an empty field. To
clear values from a field, enter NULL.

Booleans Select the check box to set the value to true. Clear the check box to set
the value to false.

4. Click OK.
5. Deploy the changes.

Advanced configuration properties
Modify the advanced configurations for Advanced Access Control or Federation to
meet the requirements of your organization.

Category filter

The category filter displays names of grouping of configuration settings. The
groupings correspond to functional areas. When you select a category, the user
interface displays only the settings for the category.

Table 21. Filter by Category

Category Displays values for:

All All keys

poc.websealAuth “WebSEAL Authenticate Callback” on
page 200

poc.otpAuth “One-time password Authenticate
Callback” on page 201

poc.authPolicy “Authentication-Policy Callback” on
page 201

sps.httpRequestClaims “SPS HTTP request claims” on page 201

distributedMap “Distributed shared data storage” on
page 201

userBehavior “Attribute matcher properties” on page
202

Chapter 17. Global Settings 199

Table 21. Filter by Category (continued)

Category Displays values for:

ipReputation “IP reputation PIP properties” on page
202

attributeCollection “Attribute collector properties” on page
202

deviceRegistration “Device registration properties” on page
204

runtime “Runtime properties” on page 205

sps.page “SPS page” on page 206

sps “Single sign-on protocol service” on
page 205

riskEngine “Risk engine properties” on page 207

sps.authService “Authentication service properties” on
page 207

session “Session” on page 207

distributedSessionCache “Distributed session cache” on page 207

otp.retry “TOTP and HOTP retry properties” on
page 208

oauth20 “OAuth20” on page 209

util.httpClient “HTTP client” on page 210

demo “Demo” on page 212

knowledge.questions “Knowledge questions properties” on
page 212

kess “Key encryption and signing service
(KESS)” on page 212

jwks “JSON Web Key” on page 214

pip “Policy information point (PIP)” on
page 214

sts “Security token service (STS)” on page
214

mmfa Mobile Multi-Factor Authentication
(MMFA)

wsfed “WS-Federation” on page 216

saml20 “SAML 2.0” on page 217

demo “Demo” on page 212

saml11 “SAML 1.1” on page 216

WebSEAL Authenticate Callback

poc.websealAuth.authLevel
The authentication level of the callback.

Data type: Integer

Example: 1

200 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

||905||||905||

One-time password Authenticate Callback

poc.otp.authLevel
The authentication level of the callback.

Data type: Integer

Example: 2

poc.otp.backwardCompatibilityEnabled
Indicates whether the one-time password authentication mechanism should
run in backward compatibility mode. The default value is false if it is a
new installation. The default value is true if the installation is an upgrade.

Data type: Boolean

Example: true

Authentication-Policy Callback

poc.authPolicy.allowRequestOverride
Whether the authentication level, the authentication mode, and the
authentication type of the callback can be overwritten by query string
parameters.

Data type: Boolean

Example: true

poc.authPolicy.authLevel
The authentication level of the callback.

Data type: Integer

Example: 1

poc.authPolicy.authType
The authentication type of the callback.

Data type: String

Example: COMPLEMENTARY, HIERARCHICAL

SPS HTTP request claims

sps.httpRequestClaims.enabled
Whether HTTP request information is sent to STS as HTTPRequestClaims.

Data type: Boolean

Example:false

sps.httpRequestClaims.filterSpec
The filter that specifies the HTTP request information that is sent to STS as
HTTPRequestClaims.

Data type: String

Example: cookies=*:headers=*

Distributed shared data storage

distributedMap.cleanupWait
The amount of time, in milliseconds, to wait before it performs another
cleanup against the distributed map.

Data type: Integer

Chapter 17. Global Settings 201

Example: 10000

distributedMap.defaultTTL
The amount of time, in seconds, that the entries in the distributed map
must live when no lifetime is specified for an entry.

Data type: Integer

Example: 3600

distributedMap.getRetryDelay
The amount of time, in milliseconds, to wait before it performs another
retrieval against the distributed map. The default is 0.

Data type: Integer

Example: 500

distributedMap.getRetryLimit
The number of retrievals that is done against the distributed map before it
returns that the retrieved data is not in the distributed map. The default is
0.

Data type: Integer

Example: 10

Attribute matcher properties

userBehavior.minimumUsageHistoryRequired
Minimum usage data records required for any usage data analysis; used by
LoginTimeMatcher.

Data type: Integer

Example: 8

userBehavior.ipAddressRequestAttribute
The XACML request attribute to read from the IP address.

Data type: String

Example: urn:ibm:security:subject:ipAddress

IP reputation PIP properties

ip.reputation.ipAddressAdverseReputationThreshold
The value that an IP classification score must be at or above for an IP
address to be considered as that classification.

Data type: Integer

Example:50

ipReputation.dbConnectionTimeout
Indicates the number of seconds that the IP reputation policy information
point (PIP) waits for a connection to the IP reputation database. The
ipReputation.dbConnectionTimeout property defaults to 120.

Data type: Integer

Example: 60

Attribute collector properties

attributeCollection.cookieName
Correlation ID used by the attribute collector.

202 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Data type: String

Example: ac.uuid

attributeCollection.requestServer
Request server for attribute collector. A list of the allowable hosts where
the ajaxRequest can be sent from.

Data type: String List

Example: https://rbademo.example.com,https://rbaemo2.example.com

attributeCollection.serviceLocation
Location of the attribute collector.

Data type: String List

Example: http://rbademo.example.com/mga

attributeCollection.sessionTimeout
Number of seconds in which sessions stored in context-based access will
automatically expire, unless updated. If any attribute in the session is
updated, the session expiry is extended by the specified number of seconds
configured in this property. The default is 1800 seconds.

Data type: Integer

Example: 1800 seconds

attributeCollection.enableGetAttributes
Enables the REST GET method to return attributes.

Data type: Boolean

Example: false

attributeCollection.getAttributesAllowedClients
A comma-separated list of clients that are allowed to access the ACS REST
GET method.

If this property is not set and attributeCollection.enableGetAttributes is
set to true, anyone can access the GET method. If this property is set but
attributeCollection.enableGetAttributes is set to false, this property is
ignored.

Data type: String List

Example: hostname1, hostname2

attributeCollection.hashAlgorithm
The algorithm that is used to create the hash.

Data type: String

Example: SHA256

attributeCollection.attributesHashEnabled
A comma-separated list of attribute URI values configured for hashing.

Attention: Do not hash the following attributes:
v ipAddress

v geoLocation

v accessTime

Data type: String List

Example:

Chapter 17. Global Settings 203

urn:ibm:security:environment:http:userAgent,
urn:ibm:security:environment:deviceFonts,
urn:ibm:security:environment:browserPlugins

attributeCollection.authenticationContextAttributes
Comma-separated lists of attribute names to be collected during an
authentication service obligation. The maximum number of characters for
this property is 200.

Data type: String List

Example: authenticationLevel, http:host

Device registration properties

deviceRegistration.allowIncompleteFingerprints
Specifies to allow the device registration obligation to store fingerprints
where all the fingerprint attributes are not available on the session
information.

Data type: Boolean

Example: false

deviceRegistration.checkForExpiredDevices
Determines whether registered devices are inactive or expired. If the
deviceRegistration.checkForExpiredDevices property is set to true, the
risk engine checks whether a device is inactive or expired. The
deviceRegistration.checkForExpiredDevices property defaults to false,
which means that users can use any of the devices that are registered.

Date type: Boolean

Example: true

deviceRegistration.cleanupThread.batchSize
Specifies if batch delete is enabled for expired devices and how many
records are deleted per batch.

If the value is defined as 0 or is blank, batch delete is not enabled and all
expired devices are deleted using one SLQ delete statement.

If the value is defined as an integer greater than 0, batch delete is enabled.
The number that you specify determines how many records are deleted in
each batch. The batch delete continues until all of the expired devices are
deleted. The batch process is useful for deleting a large quantity of expired
devices.

Data type: Integer

Example: 1000 (Batch delete is enabled, with a batch size of 1000 records.)

deviceRegistration.deviceMatchThreshold
The risk score threshold where an existing fingerprint is considered to
match the incoming device fingerprint.

Data type: Integer

Example: 20

deviceRegistration.inactiveExpirationTime
Specifies the number of days that a device must be inactive for it to expire.
The deviceRegistration.inactiveExpirationTime property defaults to 90.

Date type: Integer

204 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Example: 100

deviceRegistration.maxRegisteredDevices
Maximum device fingerprint count. The default is 10. Valid values are 1 to
100.

Data type: Integer

Example: 10

deviceRegistration.maxUsageDataPerUser
Maximum number of historical usage attribute records stored per user. The
default is 200. Valid values are 1 to 5000.

Data type: Integer

Example: 1000

deviceRegistration.permitOnIncompleteFingerprints
Specifies to permit access to the resource if the fingerprint collected by the
device registration obligation does not include all fingerprint attributes.

Data type: Boolean

Example: false

Runtime properties

runtime.dbLoggingEnabled
Enables fine-grained logging for database SQL statements.

Data type: Boolean

Example: false

runtime.hashAlgorithm
The algorithm that is used for hashing. The supported algorithms are:
v SHA-1
v SHA-256
v SHA-384
v SHA-512

The runtime.hashAlgorithm property defaults to SHA-256.

Data type: String

Example: SHA-256

runtime.verificationHashAlgorithms
Defines the hashing algorithms that are used to verify a hashed value. The
value is typically a comma separated list of hashing algorithms.

Data type: String

Example: SHA-256, SHA-1

Single sign-on protocol service

sps.setCookiesAsSecure
Determine whether to flag the cookies set by Security Access Manager as
secure.

The default value is false.

Data type: Boolean

Chapter 17. Global Settings 205

Example: false

sps.targetURLWhitelist

Specifies a list of allowed target URLs for SAML 2.0, OpenID Connect, and
the authentication service. Use this property to prevent an attacker from
redirecting a user to malicious target URLs.

The value of this advanced configuration property is a comma-separated
string, where each string is a target URL in the form of a regular
expression. The regular expression must not contain commas, and spaces
between regular expressions are ignored.
v For SAML 2.0 SSO flows, you can specify a Target URL when you

configure the initial URL in flows that are initiated by either the Identity
Provider or the Service Provider. For more information, see SAML 2.0
profile initial URLs.

v For Open ID Connect flows, you can specify a Target URL when you
configure the initial URL for Relying Party initiated single sign-on. For
more information, see Relying Party SSO initiation endpoint.

v For the authentication service, you can specify a Target URL when you
configure the authentication service trigger URL. For more information,
see “Configuring authentication” on page 52.

The default value is “.*”.

Data type String

Example

(http|https)://www.app.ibm.com/.*, (http|https)://www.myidp.ibm.com/.*

SPS page

sps.page.htmlEscapedMacros
A comma-separated list of macros that is HTML-escaped when it is
rendered in pages that are sent to the browser.

Data type: String

Example:
@REQ_ADDR@,
@DETAIL@,
@EXCEPTION_STACK@,
@EXCEPTION_MSG@,
@OTP_METHOD_ID@,
@OTP_METHOD_LABEL@,
@OTP_HINT@,
@ERROR_MESSAGE@,
@MAPPING_RULE_DATA@

sps.page.exceptionMacros
A comma-separated list of classname:macro pairs. Classname is the fully
qualified name of the exception class. Macro is the name of the macro to
which the class maps.

Data type: String

Example:
com.tivoli.am.fim.otp.deliveries.OTPDeliveryException =

@OTP_DELIVERY_EXCEPTION@,
com.tivoli.am.fim.otp.providers.OTPProviderException =

@OTP_PROVIDER_EXCEPTION@

206 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Risk engine properties

riskEngine.reportsEnabled
Enables the generation of risk calculation reports.

Data type: Boolean

Example: false

riskEngine.reportsMaxStored
Specifies the maximum number of reports to store.

Data type: Integer

Example: 5

Authentication service properties

sps.authService.reauthenticationEnabled
Specifies that the authentication service performs authentication even if the
user already has an authenticated session at the required authentication
level.

Data type: Boolean

Example: true

Session

distributedSessionCache.enabled
A switch that dictates if the distributed session cache is used for session
failover. If this setting is not enabled, the distributed session cache server
still runs as a service, but the client does not use it.

Data type: Boolean

Example: false

distributedSessionCache.localCacheSize
The number of sessions to be stored on the client as a local cache. A value
of 0 or less means that any number of sessions can be cached by the client.
A low number requires more connections to the distributed session cache if
there are many active sessions. A high number runs the risk of running out
of memory if many sessions are locally cached. All sessions are still stored
on the distributed session cache when it is enabled.

Data type: Integer

Example: 4096

session.dbCleanupInterval
Specifies the interval, in seconds, that the database cleanup thread runs to
remove expired data in the runtime database. The default is 86400. The
minimum value for this property is 3600. For more information, see
Runtime database tuning parameters

Data type: Integer

Example: 90000

Distributed session cache

distributedSessionCache.enabled
A switch that dictates if the distributed session cache is used for session

Chapter 17. Global Settings 207

failover. If this setting is not enabled, the distributed session cache server
still runs as a service, but the client does not use it.

Data type: Boolean

Example: false

distributedSessionCache.localCacheSize
The number of sessions to be stored on the client as a local cache. A value
of 0 or less means that any number of sessions can be cached by the client.
A low number requires more connections to the distributed session cache if
there are many active sessions. A high number runs the risk of running out
of memory if many sessions are locally cached. All sessions are still stored
on the distributed session cache when it is enabled.

Data type: Integer

Example: 4096

distributedSessionCache.externalServers

A list of locations of the distributed session cache servers in weighted
order.

Syntax:
<primary_address>:<port>[:<ssl>];<secondary_address>:<port>[:<ssl>],...

<address>

The IP address of the distributed session cache server. For example,
10.150.21.80.

<port>

The port for the distributed session cache. For example, 2126.

<ssl>

Whether SSL communication with the distributed session cache is
required. The default value is false.

Data type: String

Example:
10.150.21.80:2126:true;10.150.21.81:2126:false,10.150.21.82:2126

TOTP and HOTP retry properties

otp.retry.enabled
Whether the retry protection is enabled.

Data type: Boolean

Example: true

otp.retry.maxNumberOfAttempts
The maximum number of strikes the users can have before they are
prevented from logging in.

Data type: Integer

Example: 5

otp.retry.otpRetryTimeout
The number in seconds a strike lasts.

Data type: Integer

208 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Example: 600

OAuth20

oauth20.cleanupThread.batchSize
Specifies if batch delete is enabled for expired OAuth 2.0 tokens and how
many records are deleted per batch.

If the value is defined as 0 or is blank, batch delete is not enabled and all
expired OAuth tokens are deleted using one SQL delete statement.

If the value is defined as an integer greater than 0, batch delete is enabled.
The number that you specify determines how many records are deleted in
each batch. The batch delete continues until all of the expired OAuth
tokens are deleted. The batch process is useful for deleting a large quantity
of expired tokens.

Data type: Integer

Example: 1000 (Batch delete is enabled, with a batch size of 1000 records.)

oauth20.clientDataToInclude
Specifies the OAuth client information to be returned as JSON data. This
property is a comma-separated list of the JSON Keys. Valid values are:
contact_type
email_address
contact_person
company_name
company_url
phone_number
other_info

You can specify one or more of these keys for this property.

Note: The oauth20.clientDataToInclude property defaults to
contact_type, email_address, contact_person, company_name,
company_url, phone_number, other_info.

Data type: String

Example: contact_type, email_address, company_name

oauth20.doNotSendXFrameOptionsHeader
Specifies whether an X-Frame-Options header with value SAMEORIGIN must
be returned from the OAuth 2.0 endpoints. When set to true, no
X-Frame-Options header is sent.

Note: The oauth20.doNotSendXFrameOptionsHeader property defaults to
false.

Data type: Boolean

Example: false

oauth20.hashedTokenStorageEnabled
Enables hashed storage when set to true. The Security Access Manager
appliance can persist OAuth 2.0 tokens in the clear text form or in the
more secure hashed form.

The hashing algorithm set in the runtime.hashAlgorithm property will be
used. When verifying hashed tokens, the
runtime.verificationHashAlgorithms property will be used. The
algorithms listed in the runtime.verificationHashAlgorithms property will

Chapter 17. Global Settings 209

be tried in the specified order. This mechanism allows for upgrading of the
hashing algorithm while continuing to support old tokens.

Note: The oauth20.hashedTokenStorageEnabled property defaults to false,
and the OAuth 2.0 tokens will be stored as-is.

Data type: Boolean

Example: false

oauth20.sessionEndpointEnabled
Enables the ability to return an authenticated session at the point-of-contact
when the oauth20.sessionEndpointEnabled property is set to true.

Note: The oauth20.sessionEndpointEnabled property defaults to false.

Data type: Boolean

Example: false

oauth20.tokenCache.cleanupWait
The amount of time, in seconds, to wait before it performs another cleanup
of expired tokens in the OAuth 2.0 token cache.

Note: The oauth20.tokenCache.cleanupWait property defaults to 120.

Data type: Integer

Example: 120

HTTP client

util.httpClient.defaultTrustStore
Stores the default truststore that HTTPS connections in HTTP client uses.

Note: The util.httpClient.TrustStore property defaults to
rt_profile_keys.

Data type: String

Example: rt_profile_keys

util.httpClient.defaultSSLProtocol
Stores the default SSL protocol configuration that HTTPS connections in
HTTP client uses.

Note: The util.httpClient.defaultSSLProtocol property defaults to TLS.

Data type: String

Example: TLS

util.httpClient.maxActiveConnections
Specifies the maximum number of HTTP and HTTPS connections, per host,
between the appliance runtime and other modules. In a multiple host
environment, the runtime might need to establish many HTTP/HTTPS
connections at the same time. By specifying this property, you can limit the
number of active connections for each host. This setting ensures that each
host can obtain their fair share of HTTP/HTTPS connections without being
forced to wait for other hosts to release connections.
v Data type: String
v Default: An unlimited number of HTTP/HTTPS connections are

permitted

210 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

You can specify the maximum number of active connections in one of two
ways:
v Specify a maximum number to apply to every host. Syntax:

"*=<count>"

v Specify a maximum number on a per host basis. Syntax:
"<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"

<host>
The host value can be either an IP address, a hostname or domain
name as specified in the Endpoint URL. Specify the host value based
on the URL format. For example:
– IP Address: 192.168.102.192
– Hostname or domain name: www.server1.com

<port>=<count>
The communication port on the host. For example, to limit port 80 to
only 100 connections, enter 80=100.

*=<count>
The count limit for servers that are not specified by a <host> value
in this property. When set to zero (*=0) there is no limit on the
number of HTTP/HTTPS connections that can be created to other
servers. When set to an integer greater than zero, the integer
specifies the maximum number of HTTP/HTTPS connections that
can be created to each of the other servers.

Note: Ensure that <count> is specified as a value of type integer. Do
not use values of type string for <count>.

Example 1: Specifying a maximum number to apply to every host

For example, your deployment must establish connections to two servers.
You want to limit the number of connections to 100 per server. You also
want to ensure that when you add additional servers, the number of
connections to each additional server is limited to 100.
Use the syntax "*=<count>". For this example:
"*=100"

Example 2: Specifying maximum numbers on a per host basis
For example, your deployment must establish connections to two servers.
You want to limit the number of connections for one server to 100, but
allow the other server to have 200 connections. In addition, you do not
want to limit the number of connections for any additional servers.

Use the syntax:
"<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"
For example, the runtime might need to establish the connections to the
following URLs, for an SMS OTP flow and an OIDC flow:
v http://www.server1.com/isam/sms_otp
v https://192.168.102.192/isam/oidc_sts

Example configuration entry:
"www.server1.com:80=100,192.168.102.192:443=200,*=0"

The example configuration entry specifies:
v The maximum number of HTTP/HTTPS connections that can be created

to www.server1.com at a time (on port 80) is 100.

Chapter 17. Global Settings 211

v The maximum number of HTTP/HTTPS connections that can be created
to 192.168.102.192 at a time (on port 443) is 200.

v There is no limit on the number of HTTP/HTTPS connections that can
be created to other hosts.

Demo

live.demos.enabled
Enables the mobile demonstration application.

Data type: Boolean

Example: False

live.demos.settings
This setting can be used to pre-populate the settings of the mobile demo.
This is a comma separated set of key, value pairs that match what is
submitted on the settings form.

Data type: String

Example: lmiHostAndPort=lmi.host.com, lmiAdminId=admin,
lmiAdminPwd=admin, acHostAndPort=127.0.0.1,
websealHostNameAndPort=webseal.host.com

Knowledge questions properties

knowledge.questions.AnswerValidationRegEx
Specifies the regular expression used to validate the knowledge question
answer value provided during a knowledge question management
operation. The assigned value is the list of invalid characters to match
against to determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters:
<>:"

Data type: RegEx

Example: [\[()<>,;:\\/\"\]=]

knowledge.questions.QuestionValidationRegEx
Specifies the regular expression used to validate the knowledge question
text value provided during a knowledge question management operation.
The assigned value is the list of invalid characters to match against to
determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters:
<>:"

Data type: RegEx

Example: [\[()<>,;:\\/\"\]=]

Key encryption and signing service (KESS)

kess.crlEnabled
Checks the certificate revocation list. Checking is done by the key
encryption and signature service (KESS) for all functions that use an
external certificate, except for the audit syslog. If your configuration does
not require CRL checking, you can disable it. For example, if you use if an
internal certificate authority (CA), you might want to disable CRL
checking. The kess.crlEnabled property defaults to true.

212 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905	
	905	
	905	
	905	

||905||

	905	
	905	
	905	

CRL site unavailability scenario
If you have kess.crlEnabled set to true and a CRL site becomes
unavailable, you cannot determine the revocation status of the
certificate. In this situation, the single sign-on flow will fail.

Confirm a CRL site unavailability issue by looking for the message
“FBTKJK056E The CRL site could not be determined.” in the
runtime trace.log file.

As a temporary workaround, set the CRL checking to false to
keep the single sign-on flow running. As soon as the CRL site is
working again, set kess.crlEnabled to true so that the single
sign-on flow contains the CRL check.

CAUTION:
If you do stop CRL checking as a temporary workaround, be
aware that the certificate might have already been revoked by
the CA. If this type of certificate is allowed to pass the
validation, it creates security issues. Therefore, ensure that you
enable CRL checking to avoid potential security issues such as
this.

Data type: Boolean

Example: true

kess.crlInterval
The amount of time, in seconds, between successive CRL checks. Using an
interval of time between CRL checks reduces the performance impact of
doing the checks every time a certificate needs to be validated.

A value less than or equal to zero means that the runtime performs a CRL
check every time it wants to use a certificate. The default is 0 seconds.

If kess.crlEnabled is set to false, this value is ignored.

Data type: Integer

Example: 86400
This value means that a CRL check on a certificate is performed once per
day.

kess.hostnameValidationDisabled
Determine whether to disable host name verification when establishing an
SSL connection. Host name verification is performed when the host name
of the server does not match the CN of the certificate of the server.

In a test environment, you might want to disable the validation. In a
production environment, you might want to enable validation.

The default value is False.

Data type: Boolean

Example: False

kess.keySelectionCriteria
Specify which key or certificate to use for signing, validating, encrypting,
or decrypting various messages. If there are multiple keys or certificates
with the same Subject DN as the key or certificate with the specified alias,
this setting determines which one to use. Use one of the following selection
methods:

Chapter 17. Global Settings 213

only.alias
Select the key or certificate with the specified alias. This is the default.

longest.lifetime
Select the key or certificate with the longest lifetime.

shortest.lifetime
Select the key or certificate with the shortest lifetime.

Data type: String

Example: only.alias

JSON Web Key

jwks.encryption.keystore

Defines the name of the encryption keystore to be used by the jwks
endpoint for the runtime. These certificates will have their public keys
exposed, with the 'use' value 'enc'.

Default value: rt_profile_keys

jwks.signing.keystore

Defines the name of the signing keystore to be used by the jwks endpoint
for the runtime. These certificates will have their public keys exposed, with
the 'use' value 'sig'.

Default value: rt_profile_keys

Policy information point (PIP)

pip.uncachedAttributes
Defines a comma-separated list of attributes that are generated by a policy
information point (PIP) that you do not want to be cached.

Data type: String list

Example: urn:ibm:security:jdbc:city,
urn:ibm:security:ldap:priviledgeUser

Security token service (STS)

sts.ivcred.unauthenticated.user.name

Set to a special user account for unauthenticated user tokens when using
IVCRED STS module in validate mode. The Default value is "".

Data type: String

Example: guest

sts.ivcred.unauthenticated.user.registry.id

In addition to the user name set in
sts.ivcred.unauthenticated.user.name, a user's registry id can also be
added when using IVCRED STS module in validate mode. The Default
value is "".

This parameter is optional.

Data type: String

Example: cn=guest,o=ibm,c=us

sts.ivcred.unauthenticated.user.uuid

214 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

In addition to the user name set in
sts.ivcred.unauthenticated.user.name, a user's UUID can also be added

when using IVCRED STS module in validate mode. The Default value is
"".

This parameter is optional.

Data type: String

Example: 81a2a65e-0018-0150-8080-3f83b0f74f4c

sts.ldapAttributeCache.TTL
Specifies a time-to-live (TTL) value, in seconds, for the amount of time to
keep an LDAP attribute in the cache. Specify 0 to disable.

The default value is 60.

Data type: Integer

Example: 60

Mobile Multi-Factor Authentication (MMFA)

mmfa.authenticator.cleanupWait

The amount of time, in seconds, to wait before another cleanup of expired
authenticators is performed.

The default value is 3600.

Data type: Integer

Example: 3600

mmfa.transactionArchival.maxCompletedPerUser

The number of historical transactions in a completed state to keep in the
HVDB before archival to the audit log. The oldest transactions will be
removed first. A value of -1 will indicate that no archival should be
performed.

The default value is 50.
Data type: Integer
Example: 50

mmfa.transactionArchival.maxPendingPerUser

The number of transactions to keep in a pending state. Transactions over
this number will have their status set to "fail". The oldest transactions will
be aborted first. A value of -1 will indicate that no archival should be
performed.

The default value is 1.
Data type: Integer
Example: 1

mmfa.transactionPending.minAgeBeforeAbort

The minimum number of seconds a transaction is in the pending state
before being aborted via a cleanup thread. Due to the cleanup thread
interval, the total time a transaction can be in the pending state can be
between minAgeBeforeAbort and (minAgeBeforeAbort + cleanupInterval) -
1

Chapter 17. Global Settings 215

The default value is 300.
Data type: Integer
Example: 300

mmfa.transactionPending.cleanupInterval

The number of seconds between each run of the pending transactions
cleanup thread.

The default value is 150.
Data type: Integer
Example: 150

mmfa.transaction.cleanupOnlyOnPrimaryMaster

Indicates whether transaction cleanup should be run on all nodes in a
cluster, or only on the primary master. This applies to pending transaction
cleanup as well as transaction archival.

The default value is false.

Data type: Boolean

Example: false

WS-Federation

wsfed.idp.rstr.excluded.elements
Specifies a comma-separated list of elements to exclude from the
WS-Federation request security token response. Can optionally contain a
federation realm and federation partner realm, to indicate the federation or
federation partner that uses the property values.

The default value is default=Forwardable,Delegatable,Status,Renewing.

The syntax for specifying federation and federation partner is:
default=<comma_separated_list_of_elements>:<federation_realm>=<comma_separated_list_of_elements>:

<federation_realm>%<partner_realm>=<comma_separated_list_of_elements>

Data type: String

Example:
default=Forwardable,Delegatable,Status,Renewing:fed1-REALM=Forwardable,Delegatable:
fed1-REALM%partner1-REALM=Status

SAML 1.1

saml.use.legacy.clockskew.default
IBM Security Access Manager can add a clock skew of 60 seconds when
validating the SAML assertion timestamps. To enable the 60 second clock
skew, add the custom property:

saml.use.legacy.clockskew.default = true

Default value = False
v Value type: Boolean
v Example value: True

Note: This custom property is also applicable for SAML 2.0

saml.allowDebugMessages
When specified as true, and a SAML artifact resolution failure occurs, the
SystemOut.log and SystemErr.log contains an informational message. In

216 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

addition, the message contains extra debug information about the request
that contained the failed artifact and provides a reason for the event.

Note: This message is only available in English.

Default value: False
v Value type: Boolean
v Example value: SAML.allowDebugMessage = True

saml.allowNoRecipient
Use this custom property if a SAML 1.x service provider needs to accept a
samlp:Response that does not contain a Recipient attribute.

Default value: False

saml.assertion.IncludeNSPrefixList.DS
When this custom property is specified as true, ds is included in the Prefix
List attribute of the InclusiveNameSpaces in the SAML assertion.

Default value: False
v Value type: Boolean
v Example value: True

Note: This custom property is also applicable for SAML 2.0

saml.allowSpecificInvalidArtifactMessages
When this custom property is specified as true, and a SAML artifact
resolution failure occurs, identity provider sends a SAML Response with
specific invalid message to tell the service provider that there is no assertion
available. The specific invalid message isFBTSML276E. If not specified, by
default it is false, and the invalid message send back to service provider is
FBTSML013E.

Default value: False
v Value type: Boolean
v Example value: True

SAML 2.0

saml20.enableSubjectInAuthnRequest

Set to true if the Subject element is required for the SAML 2.0
AuthnRequest. The Subject element is set to the userid of the existing
authenticated session. The Default value is false.

Data type: Boolean

Example: true

Managing user registries
The appliance runtime profile has a user registry associated. Use the User Registry
management page to administer the users and group memberships. The user
registry in discussion here is the one used by the runtime applications, not the one
used by the management interface.

Procedure
1. From the top menu, select the user interface panel for your licensing level.
v Secure Access Control > Manage > User Registry

Chapter 17. Global Settings 217

v Secure Federation > Manage > User Registry

A list of all the current users in the registry is displayed. You can filter and
reorder the list of users.

2. Perform one or more of the following actions as needed:

Create a user in the registry

a. Click New.
b. In the Create User window, enter the user name and password for

the new user.
c. Click OK.

Delete a user from the registry

a. Select the user to delete.
b. Click Delete.
c. In the Delete User window, click Yes to confirm the delete

operation.

Change the password of a user in the registry

a. Select the user for which you want to change password.
b. Click Set Password.
c. In the Set Password window, enter the password in the New

Password and Confirm Password fields.
d. Click OK.

Manage group memberships of a user

a. Select the user of interest. The group memberships that are
associated with this user are displayed under the Group
Membership section.

b. You can add the user to a group or delete the user from a group in
the registry.

Add the user to a group

1) In the Group Membership section, click Add.
2) In the Add to Group window, select the group to add

this user to.

Note: Only a single group can be selected.
3) Click OK.

Remove the user from a group

1) In the Group Membership section, select the group to
remove the user from.

2) Click Delete.
3) In the Remove from Group window, click Yes to confirm

the removal.

Tuning runtime application parameters and tracing specifications
To manually tune selected runtime application parameters and tracing
specifications, use the Runtime Parameters management page.

218 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Before you begin

About this task

Procedure
1. From the top menu, select Secure Access Control > Global Settings > Runtime

Parameters or Secure Federation > Global Settings > Runtime Parameters.
This page contains three panels: Runtime Status, Runtime Tuning Parameters,
and Runtime Tracing.

2. Perform one or more of the following actions to tune your runtime.

Note: Certain changes might require a restart of the runtime before they can
take effect.

Disable automatic restart of the runtime
By default, the runtime is automatically restarted after certain changes
are made. You can disable this automatic restart function if you prefer
manual restarts.
a. On the Runtime Tuning Parameters panel, select Auto Restart.
b. Click Edit.
c. In the Auto Restart window, define the value as False.
d. Click OK.

View the status of the runtime and restart the runtime

a. Select the Runtime Status panel. The status of local and clustered
runtimes are displayed.
v Under Local Runtime Status, you can view the runtime

operational status, when it was last started, and whether a restart
is outstanding. If the value of the Restart Required field is True,
it means that the runtime must be restarted for some changes to
take effect.

v Under Clustered Runtime Status, all nodes in the cluster are
listed.
– The Master column indicates whether a node is the cluster

master.
– The Runtime Status column indicates whether a node is

running or stopped.
– The Changes Active column indicates whether changes made

to the cluster configuration are active on this node. Having a
green indicator in this column means that all changes made
are already active. Having a yellow indicator in this column
means that this node must be restarted before some changes
can take effect.

b. Depending on which runtime you want to restart, click Restart
Local Runtime or Restart All Clustered Runtimes.

Modify the maximum or initial heap size

These parameters indicate the maximum and initial heap size in
megabytes for the runtime Java virtual machine.
a. On the Runtime Tuning Parameters panel, select Max Heap Size or

Initial Heap Size.
b. Click Edit.

Chapter 17. Global Settings 219

c. In the Max Heap Size or Initial Heap Size window, enter the heap
size value as needed.

d. Click OK.

Modify whether to suppress sensitive trace

Enabling this parameter prevents sensitive information from being
exposed in log and trace files. Examples of such sensitive information
include bytes received over a network connection.
a. On the Runtime Tuning Parameters panel, select Suppress

Sensitive Trace.
b. Click Edit.
c. In the Suppress Sensitive Trace window, select or clear the check

box as needed.
d. Click OK.

Modify console log level

Console log level controls the granularity of messages that go to the
console.log file.
a. On the Runtime Tuning Parameters panel, select Console Log

Level.
b. Click Edit.
c. In the Console Log Level window, select the new value from the

list.
d. Click OK.

Set whether to accept client certificates

This parameter controls whether the server accepts client certificates as
a form of authentication.
a. On the Runtime Tuning Parameters panel, select Accept Client

Certificates.
b. Click Edit.
c. In the Accept Client Certificates window, select or clear the check

box as needed.
d. Click OK.

Set session invalidation timeout

This parameter defines the amount of time a session can remain
unused before it is no longer valid.

Note: The default setting is Unset. When this setting is used, the
session invalidation timeout is 1800 seconds.
a. On the Runtime Tuning Parameters panel, select Session

Invalidation Timeout.
b. Click Edit.
c. In the Session Invalidation Timeout window, define the value in

seconds.
d. Click OK.

Set session reaper poll interval

This parameter defines the wake-up interval in seconds for the process
that removes invalid sessions. The minimum value is 30 seconds.

220 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The default setting is Unset. When this setting is used, or if a value less
than the minimum is entered, an appropriate value is automatically
determined and used. This value overrides the default installation
value, which is 30 - 360 seconds, based on the session invalidation
timeout value. Because the default session invalidation timeout is 1800
seconds, the reaper interval is usually between 120 and 180 seconds.
a. On the Runtime Tuning Parameters panel, select Session Reaper

Poll Interval.
b. Click Edit.
c. In the Session Reaper Poll Interval window, define the value in

seconds.
d. Click OK.

Set the keystore that is used by the runtime server

This parameter defines the key database that contains the runtime
server's private key.
a. On the Runtime Tuning Parameters panel, select Keystore.
b. Click Edit.
c. In the Keystore window, select the key database from the list.
d. Click OK.

Set the truststore that is used by the runtime server

This parameter defines the key database that contains keys that are
trusted by the runtime server
a. On the Runtime Tuning Parameters panel, select Truststore.
b. Click Edit.
c. In the Truststore window, select the key database from the list.
d. Click OK.

Configure an outbound HTTP proxy

You must specify values for the properties for the HTTP proxy. You
might also need to import the root CA certificate from the proxy. See
the instructions that follow.

Table 22. HTTP proxy properties

Name Sample Value Description

http.proxyHost http.proxy.ibm.com The hostname or IP address
of the HTTP proxy

http.proxyPort 3128 The port of the HTTP proxy

https.proxyHost https.proxy.ibm.com The hostname or IP address
of the HTTPS proxy

https.proxyPort 3128 The port of the HTTPS proxy

a. For each property in the table above:
1) On the Runtime Tuning Parameters panel, select the property.
2) Click Edit.
3) In the property window, enter the value. See the sample values

in the table.
4) Click OK.

Chapter 17. Global Settings 221

b. When all properties are set, follow the prompt to deploy the
pending changes.

Certain functions, such as the OpenID connect single sign-on flow,
require the root CA certificate of the outbound HTTP proxy to be
imported to the Security Access Manager runtime keystore.

Complete the following steps:
a. Go to your HTTP Proxy application and obtain the necessary

certificate for exchange. The exact steps to take are specific to the
proxy application. Place the certificate on the local file system where
it can be accessed by the appliance.

b. On the Security Access Manager system, log in to the local
management interface and select Manage System Settings > Secure
Settings > SSL Certificates

c. Select the rt_profile_keys keystore.
d. Select Manage > Edit SSL Certificate Database.
e. Select Manage > Import.
f. On the Signer Certificate panel, browse to locate the Certificate File.

Enter a Certificate Label. Click Import.
g. Deploy the changes.

Delete the value of a parameter
Use this button to delete the existing value of a parameter.
a. Select the parameter to reset the value for.
b. Click Delete. The value of the parameter is then changed to Unset.

Manage the application interface on which the runtime listens

a. On the Runtime Tuning Parameters panel, under Runtime
Listening Interfaces, you can add, edit, or delete a listening
interface.

To add a listening interface

1) Click Add.
2) In the Runtime Listening Interfaces window, select the

listening interface from the list.
3) Specify the listening port.
4) Select the SSL check box if security is required.
5) Click OK.

To modify a listening interface

1) Select the listening interface to edit.
2) Click Edit.
3) In the Runtime Listening Interfaces window, edit the

values as needed.
4) Click OK to save the changes.

To delete a listening interface

1) Select the listening interface to delete.
2) Select Delete.
3) Confirm the deletion.

Manage tracing specification

222 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

a. Select the Runtime Tracing link from the top of this page. You can
also access this panel from the top menu by selecting Monitor
Analysis and Diagnostics > Logs > Runtime Tracing.

b. Use one of the following ways to edit the trace level of a
component.
v Select the component name from the Component list. Select the

ideal trace level for this component from the Trace Level list.
Then, click Add. Repeat this process to modify trace levels for
other components if needed. To clear all of the tracing levels, click
Clear.
To log all events, select ALL as the trace level.

Note: This setting increases the amount of data in logs, so use
this level when necessary.
com.tivoli.am.fim.authsvc.*
com.tivoli.am.fim.trustserver.sts.modules.*

Table 23. Valid trace levels. The following table contains the valid trace levels.

Level Significance

ALL All events are logged. If you create custom
levels, ALL includes those levels and can
provide a more detailed trace than FINEST.

FINEST Detailed trace information that includes all
of the details that are necessary to debug
problems.

FINER Detailed trace information.

FINE General trace information that includes
methods entry, exit, and return values.

DETAIL General information that details sub task
progress.

CONFIG Configuration change or status.

INFO General information that outlines the overall
task progress.

AUDIT Significant event that affects the server state
or resources.

WARNING Potential error or impending error. This level
can also indicate a progressive failure. For
example: the potential leaking of resources

SEVERE The task cannot continue, but component,
application, and server can still function.
This level can also indicate an impending
unrecoverable error.

FATAL The task cannot continue, and component,
application, and server cannot function.

OFF Logging is turned off.

v Enter the name and value of the trace component in the Trace
Specification field. To modify multiple components, separate two
strings with a colon (:). Here is an example.
com.x.y.*=WARNING:com.a.b.*=WARNING:com.ibm.isam.*=INFO

c. Click Save.

Chapter 17. Global Settings 223

3. When you make changes, the appliance displays a message that there are
undeployed changes. If you have finished making changes, deploy them.

Template files
Template files are HTML pages that are presented to your users during the
authentication process. The pages prompt users for authentication information,
such as user names and passwords, or present information to users, such as
one-time passwords, status, or errors.

You can customize any of the HTML pages by exporting, modifying, and
importing its corresponding template file. Each template file uses one or more
specific macros.

Managing template files
Use the local management interface to manage files and directories in the template
files.

About this task

You can run the following tasks on the template files:
v New- Use this option if you want to create a new file or directory.
v Edit- Use this option if you want to view or modify the template file.
v Import- Use this option if you to import a file to the template files root.
v Export- Use this option if you want to export a file from the template files root.
v Rename- Use this option if you want to rename a file or directory from the

template files root.
v Delete- Use this option if you want to delete a file or directory from the

template files root.
v Import Zip- Use this option if you want to import the template files from a

compressed file.
v Export Zip- Use this option if you want to export the template files as a

compressed file.

Note: When you use this option to export template files as a compressed file,
you cannot export an individual folder. The root directory, including all the
subdirectories, is exported. To access the contents of a specific directory, export
the entire template directory, and then view the directory from the extracted
compressed file on your local workstation.

Procedure
1. Select Secure Access Control > Global Settings > Template Files

2. Work with all the management files and directories.

Create a file or directory in the template files root

a. Select the directory of interest.
b. Select New.
c. Select File or Directory.
d. Enter the name of the file or directory.
e. Click Save.

View or update the contents of a file in the template files root

224 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

a. Select the file of interest.
b. Select Edit. You can then view the contents of the file.
c. Edit the contents of the file.
d. Click Save.

Export a file from the template files root

a. Select the file of interest.
b. Select Manage > Export.
c. Confirm the save operation when your browser displays a

confirmation window.

Rename file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Rename.
c. Enter the new resource name.
d. Click Save.

Delete file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Delete.
c. Click Yes.

Import a file to the template files root

v Select a file.
a. Select Manage > Import.
b. Click Browse.
c. Browse to the file that you want to import the contents from.
d. Click Open.
e. Click Import.

v Select a folder.
a. Select Manage > Import.
b. Click Browse.
c. Browse to the file that you want to import to the selected folder.
d. Click Open.
e. Click Import.

Export the template file as a compressed file

a. Select Manage > Export Zip.
b. Confirm the save operation when your browser displays a

confirmation window.

Import the template files as a compressed file
Make sure that the files in the compressed file are in the same directory
structure as the files in the root directory or appliance.

For example, if a file in the compressed file is in the /C directory of the
appliance, the compressed file must contain the C folder and the file
that you want to import. When you import a compressed file that
contains:
v A file that exists in the appliance

The file is replaced in the appliance.
v A file or directory that does not exist in the appliance

Chapter 17. Global Settings 225

The file or directory is created in the appliance. You can put these
new files and directories in an existing non-root directory or add a
new directory in the root.

Note: You cannot delete a top level directory after you create it.
a. Select Manage > Import Zip.
b. Click Browse.
c. Browse to the file you want to import.
d. Click Open.
e. Click Import.

3. When you edit or import template files, the appliance displays a message that
there are undeployed changes. If you finish the changes, deploy them.
For more information, see Deploying pending changes.

Customizing the consent page
The consent page of an OpenID Connect Provider Federation can be changed with
the Template Files page in the local management interface.

About this task

All OpenID Connect Provider (OP) federations can have their own unique consent
pages. Follow these steps to set a consent page to be used by a specific federation.

Procedure
1. Log in to the local management console.
2. Select Secure Federation > Global Settings > Template Files.
3. Expand the C locale.
4. Highlight the oidc folder.
5. Click New and select Directory.
6. Enter the Federation Name of the OpenID Connect Provider Federation to use

the custom consent page.
7. Click Save.
8. Highlight the new directory.
9. Click New and select File.

10. Enter consent.html as the file name.
11. Populate the file contents.
12. Click Save.
13. Deploy the pending changes.

Note: The deploy operation triggers a runtime restart.

Template page scripting
You can use JavaScript to add server-side scripting for Advanced Access Control
and Federation template pages. You can use JavaScript functions, closures, objects,
and delegations.

Usage

You can customize template files or pages on the server. For example, you can
customize an error message that is displayed by the runtime server.

226 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The template files menu is located under both the Secure Federation and Secure
Access Control menus.

To edit a Federation template file, go Secure Federation > Template Files, select
the specific template file, and click Edit.

To edit a Secure Access Control template file, go to Secure Access Control >
Template Files, select the specific template file, and click Edit.

The JavaScript engine supports the following syntax:
v Insert JavaScript code between <% and %>.
v Embed JavaScript expressions between <%= and %>.

Example tasks
v Access whitelisted Java classes. For example,

var javaStr = new java.lang.String("Hello")

v Access all the macro variables through templateContext. The standard object to
access a Java object is templateContext. For example,
templateContext.macros["@TIMESTAMP@"]

v Use the document.write function to write content to the output stream. For
example,
templateContext.response.body.write("Hello")

Examples

Table 24. Example JavaScript

Template HTML Output

<%
var contents = {product:"ISAM",department:"Lab",country:"SG",region:"Asia"};
templateContext.response.body.write(contents.product);
%>

ISAM

<%
var date = templateContext.macros["@TIMESTAMP@"].substring(0, 10);
templateContext.response.body.write(date);
%>

2017-01-25

The following code example shows how to use repeatable macros. The following
example shows an OAuth consent page.
<%
var test = templateContext.macros["oauthTokenScopeNewApprovalRepeatable"];
n = test.length;
for (i=0; i<n; i++){

var scope = test[i]["@OAUTH_TOKEN_SCOPE_REPEAT@"];
if (scope == "contacts"){
label ="Do you grant permission to the client to access your phone book";
}
else if (scope == "photos"){
label ="Do you grant permission to the client to access your photos";
}
else if (scope == "messages"){
label ="Do you grant permission to the client to access your WhatsApp messages";
}
else{
label ="Do you grant permission to the client to access your "+scope;
}

%>

Chapter 17. Global Settings 227

Setting an HTTP response header

You can use templateContext.response.setHeader(HeaderName, HeaderValue) to
set an HTTP response header.

For example, you can set the Content-Type to support both a mobile-based browser
and a traditional browser. A mobile-based browser might expect JSON format
while a traditional browser expects forms-based HTML.
<%
templateContext.response.setHeader("Content-Type","application/json");
var myObj = { "name":"John", "age":31, "city":"New York" };
templateContext.response.body.write(JSON.stringify(myObj));
%>

To set an HTTP header that uses forms-based HTML:
templateContext.response.setHeader("Content-Type","text/html");

Setting an HTTP status code

You can use templateContext.response.setStatus(Code) to set an HTTP response
status code.

For example, if you want to set the status to 400 (standard code for a bad request):
templateContext.response.setStatus(400);

Setting a Redirect URL

You can use templateContext.response.sendRedirect(URL) to redirect the HTTP
response to a different URL.

For example, when you configure single logout, you can redirect the response to a
specific target page, based on the federation name. An example scenario is a
deployment that has one SAML 2.0 federation with two partner federations. The
partner federations are named saml20app2 and saml20sp. The saml20app2
federation uses an application that is named jkebank. The saml20sp federation uses
an application that is named jkeschool. The page to display on logout is
determined by the federation name.
var fedName = templateContext.macros[@FEDERATION_NAME@"];
if (fedName == "saml20app2")
{

templateContext.response.sendRedirect("http://jkebank:1337");
}
else if
{
(fedName == "saml20sp")
{

templateContext.response.sendRedirect("http://jkeschool:1400");
}

Obtaining a list of macros that are available for a template page

In some scenarios, you might want to write JavaScript based on configuration
values in your deployment. For example, you might implement one action based
on the authentication type, such as if the OTP type is TOTP. Another example is
you might implement an action if the Federation name of the single sign-on
partner matches a certain value.

228 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Information such as the OTP type and partner name can be retrieved only through
the template page macros. To use such information, you need to know which
macros are used by the page. The JavaScript engine support provides a utility that
can print the available macros for a page.

Use the following syntax to obtain a list of the available macros.
<% templateContext.response.body.write(JSON.stringify(templateContext.macros)); %>

For example, the following sample code prints the macros from a template page
that ran a single sign-on flow with a partner that does not exist.

{

"@PAGE_IDENTIFIER@": "/saml20/invalid_init_msg.html",
"@TARGET@": "https://www.mysp.ibm.com/isam/mobile-demo/diag",
"@PARTNER_ENTITY_ID@": "",
"@ERROR_MESSAGE@": "FBTSML002E The value https://saml.partner.com for attribute PartnerId is not valid.",
"@FEDERATION_NAME@": "saml20idp",
"@FEDERATION_ENTITY_ID@": "https://www.myidp.ibm.com/isam/sps/saml20idp/saml20",
"@REQ_ADDR@": "/sps/saml20idp/saml20/logininitial",
"@ERROR_CODE@": "FBTSML002E",
"@EXCEPTION_STACK@": "",
"@PARTNER_NAME@": "",
"@TIMESTAMP@": "2017-06-22T03:34:39Z",
"@SAMLSTATUS@": "<fim:FIMStatusCollection xmlns:fim=\"urn:ibm:names:ITFIM:saml\"
xmlns:samlp=\"urn:oasis:names:tc:SAML:2.0:protocol\"><fim:FIMStatusCollectionEntry>
<samlp:Status><samlp:StatusCode Value=\"urn:oasis:names:tc:SAML:2.0:status:Responder\"></samlp:StatusCode>
<samlp:StatusDetail><fim:FIMStatusDetail MessageID=\"invalid_attribute_value\">
<fim:SubstitutionString>https://saml.salesforce.com</fim:SubstitutionString>
<fim:SubstitutionString>PartnerId</fim:SubstitutionString></fim:FIMStatusDetail>
</samlp:StatusDetail></samlp:Status></fim:FIMStatusCollectionEntry></fim:FIMStatusCollection>",

"@EXCEPTION_MSG@": ""

}

The format is JSON { "name1":"value1","name2":"value2"}

Limitations
v JavaScript validation is done only when a template file is edited (imported) or

created. A template file that is imported as a part of an Import compressed file is
not validated.

v You must restart the runtime manually to activate changes to OpenID Connect
template files. In the administrative interface, click Secure Federation ->
Runtime Tuning -> Restart Runtime.

v When you access a variable, do not end the variable name with a semicolon. For
example, in the following JavaScript, do not end <%=example%> with a semicolon
<%=example;%>.
<%var example = "Hello World"; %>
<%=example%>

The correct syntax is <%=example%>. Do not use the incorrect syntax
<%=example;%>.

Template files reference
Template files are HTML pages that are presented to your users during the
authentication process. The pages prompt users for authentication information,
such as user names and passwords, or present information to users, such as
one-time passwords, status, or errors.

Chapter 17. Global Settings 229

Consent to register device template files
These files support consent to registering a device.

Consent to register device template files

These files support consent to registering a device.

Table 25. Default template files in the ac/ directory

Page name File name and macros Description

Attribute Collection
JavaScript

ac/info.js Detects the location of the
device from which the
requests are made. Collects
the web browser attributes
and sends them to the server
for storing in the database.
When the user logs out or
when the current session
times out, the script deletes
the attributes from the
database.

Dynamics Attributes
JavaScript

ac/javascript_rules/
dynamic_attributes.js

Runs after each request is
processed by risk engine.
Use it to capture attributes
that do not get captured
automatically. Captured
attributes are stored either in
the session storage or the
behavior storage area of the
risk-based component, or
both. The risk profile
configuration dictates where
the attributes are stored.

User self-care template files
These files support user self-care tasks.

User self-care template files

These files support user self-care tasks.

Table 26. Default template files in the mga/ directory

Page name File name and macros Description

Common User Profile
Management JavaScript

mga/user/mgmt/common.js Used by one-time password
pages and by device
management pages. Contains
functions and properties that
are used for making calls to
the user self-care REST
services.

230 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 26. Default template files in the mga/ directory (continued)

Page name File name and macros Description

Device Attributes mga/user/mgmt/device/
device_attributes.html

Enables or disable devices.
Renames or removes device.
Displays all of the attributes
for a device.

For more information, see
Managing your registered
devices.

Device Attributes JavaScript mga/user/mgmt/device/
device_attributes.js

Processes values that are
entered in the
device_attributes.html
template

Device Selection mga/user/mgmt/device/
device_selection.html

Displays device name, status
(enabled or disabled), and
time of last activity.

For more information, see
Managing your registered
devices.

Device Selection JavaScript mga/user/mgmt/device/
device_selection.js

Processes data to display in
the device_selections.html
template

Authorization Grant mga/user/mgmt/device/
grant_attributes.html

Enables or disables an
OAuth 2.0 authorization
grant. Removes an OAuth
2.0 authorization grant.
Displays the OAuth 2.0
tokens and attributes of an
authorization grant. For
more information, see
“Managing OAuth 2.0
authorization grants” on
page 164.

Authorization Grants
JavaScript

mga/user/mgmt/device/
grant-attributes.js

Processes data to display in
the grant_attributes.html
template.

HMAC OTP Shared Key mga/user/mgmt/otp/otp.html Resets TOTP and HOTP
Secret Key.

For more information, see
Managing OTP secret keys.

HMAC OTP Shared Key
JavaScript

mga/user/mgmt/otp/otp.js Resets TOTP and HOTP
Secret Key.

Knowledge Questions
management

mga/user/mgmt/questions/
user_questions.html

Macros:

v @USERNAME @

v @MAX_STORED_QUESTIONS@

Displayed for the user to
manage their knowledge
questions. The user can select
pre-configured questions or
write their own questions.

Chapter 17. Global Settings 231

Table 26. Default template files in the mga/ directory (continued)

Page name File name and macros Description

Knowledge Questions
JavaScript functions

mga /user/mgmt/questions/
user_questions.js

Consists of the JavaScript
functions that:

v Display the knowledge
questions.

v Allow the user to manage
their knowledge questions.

Authentication process
These files support the authentication process

Authentication process template files

These files support the authentication process. For more information, see
Chapter 10, “Authentication,” on page 45.

Table 27. Default template files in the authsvc/ directory

Page name File name and macros Description

Server Error authsvc/server_error.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays general server
errors.

User Error authsvc/user_error.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during
authentication policy
execution that are caused by
user input.

Authentication mechanisms
These files support the authentication mechanisms.

Authentication mechanisms

These files support the authentication mechanisms. For more information, see
Chapter 10, “Authentication,” on page 45.

Table 28. Default template files in the otp/ directory

Page name File name and macros
Description and link to file
contents

Change PIN required otp/change_pin.html

Macros:

v @ERROR_MESSAGE@

v @MAPPING_RULE_DATA@

v
@DISPLAY_RESELECT_BUTTON@

Enables the user to enter a
new PIN.

232 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 28. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

OTP Email Delivery Message otp/delivery/
email_message.xml

Used by EmailOTPDelivery as
the content of the email that
it sends to the user.

The template file must be a
compliant XML file.

The content can be plain text
or HTML. Following is an
example using HTML in the
email template:

<?xml version="1.0" encoding="UTF-8"?>
<root>
<Subject>

<Value>One-time Password</Value>
</Subject>
<Message>

<Value><![CDATA[<html>
<body>

This is your HTML email one-time password @OTP_STRING@.

<p>Thank you,

The Example Co.</p>

</body>
</html>]]>

</Value>
</Message>
</root>

For information on HTML
formatting of email
messages, see “HTML format
for OTP email messages” on
page 75.

OTP SMS Delivery Message otp/delivery/
sms_message.xml

Used by SMSOTPDelivery as
the content of the SMS that it
sends to the user.

The template file must be a
compliant XML file.

One-Time Password Delivery
Selection

otp/
delivery_selection.html

Macros:

v @OTP_METHOD_CHECKED@

v @OTP_METHOD_LABEL@

Displays the list of methods
for generating, delivering,
and verifying the one-time
password.

OTP General Error otp/errors/allerror.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays general errors that
happen during the one-time
password flow.

Chapter 17. Global Settings 233

Table 28. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

OTP Validation Error otp/errors/
error_could_not_validate_otp.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays errors during the
validation of the one-time
password that the user
submits.

OTP Generation Error otp/errors/
error_generating_otp.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays errors during the
generation of a one-time
password.

OTP Methods Retrieval Error otp/errors/
error_get_delivery_options.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays errors during the
retrieval of the list of
methods for delivering
one-time password to the
user.

OTP Delivery Error otp/errors/
error_otp_delivery.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays errors during the
delivery of a one-time
password to the user.

OTP STS Invocation Error otp/errors/
error_sts_invoke_failed.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays errors during the
invocation of the Security
Token Service.

One-Time Password Login otp/login.html

Macros:

v @ERROR_MESSAGE@

v @MAPPING_RULE_DATA@

v
@DISPLAY_RESELECT_BUTTON@

Displays the form where the
user can enter the one-time
password.

234 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 28. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

Enter Next OTP Form otp/next_otp.html

Macros:

v @ERROR_MESSAGE@

v @MAPPING_RULE_DATA@

v
@DISPLAY_RESELECT_BUTTON@

Enables the user to enter the
next one time password.

Table 29. Default template files in the authsvc/authenticator/password/ directory

Page name File name and macros Description

Change Password authsvc/authenticator/
password/
change_password.html

Macros:

v @USERNAME@

v @ERROR_MESSAGE@

Enables the users to change
their registry password.

Username and Password
Error

authsvc/authenticator/
password/error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
user name and password
authentication or when the
users modify their password.

Username and Password
Login

authsvc/authenticator/
password/login.html

Displays the form where the
users can enter their user
name and password to log
in.

Table 30. Default template files in the authsvc/authenticator/http_redirect/ directory

Page name File name and macros Description

HTTP Redirect
Authentication Error

authsvc/authenticator/
http_redirect/
allerror.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays general errors
during for HTTP redirect
authentication mechanism.

Chapter 17. Global Settings 235

Table 30. Default template files in the authsvc/authenticator/http_redirect/
directory (continued)

Page name File name and macros Description

HTTP Redirect
Authentication Failed

authsvc/authenticator/
http_redirect/
error_authenticate.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
HTTP redirect authentication
flow.

Table 31. Default template files in the authsvc/authenticator/macotp/ directory

Page name File name and macros Description

MAC One-Time Password
Delivery Selection

authsvc/authenticator/
macotp/
delivery_selection.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays the list of methods
for generating, delivering,
and verifying the one-time
password.

MAC OTP One-Time
Password Error

authsvc/authenticator/
macotp/error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
MAC one-time password
authentication.

MAC One-Time Password
Login

authsvc/authenticator/
macotp/login.html

Macros:

v @OTP_HINT@

v @OTP_LOGIN_DISABLED@

Displays the form where the
user can enter the MAC
one-time password

236 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 32. Default template files in the authsvc/authenticator/rsa/ directory

Page name File name and macros Description

RSA One-Time Password
Error

authsvc/authenticator/rsa/
error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
RSA one-time password
authentication.

RSA One-Time Password
Login

authsvc/authenticator/rsa/
code.html

Macro:

@ERROR_MESSAGE@

Displays the form where the
users can enter the RSA
one-time password to log in.

RSA One-Time Password
Login (New PIN)

authsvc/authenticator/rsa/
new_pin.html

Macro:

@ERROR_MESSAGE@

Enables users to enter a new
RSA pin.

RSA One-Time Password
Login (Next OTP)

authsvc/authenticator/rsa/
next_code.html

Macro:

@ERROR_MESSAGE@

Enables users to enter the
next RSA one-time password.

Table 33. Default template files in the authsvc/authenticator/totp/ directory

Page name File name and macros Description

TOTP One-Time Password
Error

authsvc/authenticator/
totp/error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
TOTP one-time password
authentication.

TOTP One-Time Password
Login

authsvc/authenticator/
totp/login.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays the form where the
users can enter the TOTP
password to log in.

Chapter 17. Global Settings 237

Table 34. Default template files in the authsvc/authenticator/hotp/ directory

Page name File name and macros Description

HOTP One-Time Password
Error

authsvc/authenticator/
hotp/error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
HOTP one-time password
authentication.

HOTP One-Time Password
Login

authsvc/authenticator/
hotp/login.html

Macros:

@ERROR_MESSAGE@

Displays the form where the
users can enter the HOTP
password to log in.

Table 35. Default template files in the authsvc/authenticator/consent_register_device/
directory

Page name File name and macros Description

Consent to Device
Registration Error

authsvc/authenticator/
consent_register_device/
error.html

Macros:

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during the
consent to device registration
flow.

Consent page authsvc/authenticator/
consent_register_device/
consent-form.html

Macro:

@ERROR_MESSAGE@

Prompts the user to provide
consent for registering a
device.

238 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 36. Default template files in the authsvc/authenticator/eula/ directory

Page name File name and macros Description

End-User License Agreement
license file display

authsvc/authenticator/
eula/license.txt

Contains the license
agreement to display to the
user.

The template does not use
replacement macros.
Note: You can add more
license files to the template
tree.

Specify the metadata in the
End-User License Agreement
for the following purposes:

v Auditing

v Forensic

The End-User License
Agreement authentication
mechanism removes the
metadata before it displays
the license agreement to the
user. The metadata must be
on the first line of the license
agreement. For example:

Metadata: Version: 1.0 Identifier: 135223434343

When the user accepts the
license agreement or declines
the license agreement, the
mechanism audits:

v The user action.

v The license file name.

v The corresponding
metadata.

End-User License Agreement
license agreement display

authsvc/authenticator/
eula/eula.html

Macros:

v @USERNAME@

v @LICENSE@

Displays the page where the
user views the license and
accepts the license
agreement.

Chapter 17. Global Settings 239

Table 36. Default template files in the authsvc/authenticator/eula/ directory (continued)

Page name File name and macros Description

End-User License Agreement
license agreement decline

authsvc/authenticator/
eula/
error_license_declined.html

Macros:

v @USERNAME@

v @ERROR_MESSAGE@

v @REQ_ADDR@

v @TIMESTAMP@

v @ERROR_MESSAGE@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

v @LICENSE_FILE@

v @LICENSE_METADATA@

Displays the page where the
user declines the license
agreement.

Table 37. Default template files in the authsvc/authenticator/knowledge_questions/
directory

Page name File name and macros Description

Knowledge Questions
authentication mechanism
knowledge question form

authsvc/authenticator/
knowledge_questions/
login.html

Macros:

v @ QUESTION_TEXT @

v @ QUESTION_INDEX @

v @QUESTION_UNIQUE_ID@

v @QUESTION_COUNT@

v @ERROR_MESSAGE@

v @NUM_REQUIRED_ANSWERS@

Displays the form where the
user enters the answers to
the required knowledge
questions.

Knowledge Questions
authentication mechanism
knowledge question
authentication errors

authsvc/authenticator/
knowledge_questions/
error.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @ERROR_MESSAGE@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors during
knowledge-question
authentication.

240 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 37. Default template files in the authsvc/authenticator/knowledge_questions/
directory (continued)

Page name File name and macros Description

Knowledge Questions
authentication mechanism
missing knowledge questions
with grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_found_continue.html

Macros:

v @USERNAME@

v @NUM_REQUIRED_ANSWERS@

v
@NUM_REGISTERED_QUESTIONS@

v @
GRACE_PERIOD_AUTH_COUNT@

v @MAX_
GRACE_PERIOD_AUTH_COUNT@

Displayed when the user did
not register the required
number of knowledge
questions and answers that
are required for successful
authentication. The following
conditions must also be true:

v The administrator
configured the
environment to allow
grace-period
authentication.

v The user did not reach the
limit of grace-period
logins.

Knowledge Questions
authentication mechanism
missing knowledge questions
without grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_found_error.html

Macros:

v @USERNAME@

v @NUM_REQUIRED_ANSWERS@

v
@NUM_REGISTERED_QUESTIONS@

v @REQ_ADDR@

v @TIMESTAMP@

Displayed when the user did
not register the required
number of knowledge
questions and answers that
are required for successful
authentication. One of the
following conditions must
also be true:

v The administrator did not
configure the environment
to allow grace-period
authentication.

v The user reached the limit
of grace-period logins.

Authentication error template files
These files display errors that occur during authentication.

Authentication error template files

These files display errors that occur during authentication.

Table 38. Default files in the proper/ directory

Page name File name and macros Description

Access Denied proper/errors/
access_denied.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

Displays a message that the
user cannot access the
requested resource.

Chapter 17. Global Settings 241

Table 38. Default files in the proper/ directory (continued)

Page name File name and macros Description

General Error proper/errors/
allerror.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_STACK@

Displays general errors that
are not displayed in other
template files.

Missing Component Error proper/errors/
missingcomponent.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @DETAIL@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays an error that the
component required to
process the request was not
correctly configured or was
not initialized.

Authentication Required proper/errors/
need_authentication.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

Displays an error that
authentication is required to
access the requested
resource.

Protocol Determination Error proper/errors/
noprotdet.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays an error that the
access request is to an
unknown address. The error
might occur because no
configured endpoint or
protocol exists that is
mapped to this endpoint.

Protocol Runtime Error proper/errors/
protocol_error.html

Macros:

v @REQ_ADDR@

v @TIMESTAMP@

v @EXCEPTION_MSG@

v @EXCEPTION_STACK@

Displays errors that an error
occurred fulfilling a request
to a specified address, and
the error was caused by an
unexpected error on the
protocol module.

OAuth template files
These files support OAuth.

OAuth template files

These files support OAuth. For more information, see Chapter 11, “OAuth 2.0 and
OIDC support,” on page 99.

242 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 39. Default files in the oauth20/ directory

Page name File name and macros Description

OAuth 2.0 Trusted Clients
Manager

oauth20/
clients_manager.html

Macros:

v @USERNAME@

v
@OAUTH_CLIENT_COMPANY_NAME@

v @PERMITTED_SCOPES@

v @OAUTH_CUSTOM_MACRO@

Used by resource owners to
show and manage trusted
clients information.

OAuth 2.0 - Consent to
Authorize

oauth20/user_consent.html

Macros:

v @USERNAME@

v
@OAUTH_CLIENT_COMPANY_NAME@

v @PERMITTED_SCOPES@

v @OAUTH_CUSTOM_MACRO@

Used by the authorization
server to determine and store
user consent information
about which OAuth clients
are authorized to access the
protected resource.

The page also lists of scopes
that the OAuth client
requests. These lists are
shown in the consent page
and can be of indeterminate
length. The template
supports multiple copies of
stanzas that are repeated
once for each scope in the
lists.

OAuth 2.0 - Error oauth20/user_error.html

Macros:

v
@OAUTH_CLIENT_COMPANY_NAME@

v @CLIENT_TYPE@

v @CLIENT_ID@

v @REDIRECT_URI@

v @STATE@

v @RESPONSE_TYPE@

v @USERNAME@

v
@OAUTH_TOKEN_SCOPE_REPEAT@

v
@OAUTH_OTHER_PARAM_REPEAT@

v
@OAUTH_OTHER_PARAM_VALUE_REPEAT@

Shows detailed text
information when an error
occurs in an OAuth 2.0 flow.

Chapter 17. Global Settings 243

Table 39. Default files in the oauth20/ directory (continued)

Page name File name and macros Description

OAuth - Response oauth20/user_response.html

Macros:

v @OAUTH_CODE@

Displays the authorization
code of an OAuth client that
did not specify a client
redirection URI upon
registration.

When the OAuth client does
not specify a client
redirection URI or cannot
receive redirects, the
authorization server does not
know where to send the
resource owner after
authorization. As a result, the
OAuth client does not
receive the authorization
code that is required to
exchange for an access token
or refresh token.

The page includes several
codes:

v The authorization code
that the resource owner
can provide to the trusted
OAuth client.

v The authorization code as
machine-readable Quick
Response (QR) code.
Note: The encoder that
creates the QR code
follows the ISO/IEC
18004:2006 specification.
Scanners that support this
specification can read the
generated QR code.

Customizing SAML 2.0 pages
Access Manager generates files that are displayed in response to events that occur
during single sign-on requests. The response that is displayed might be a form,
such as when login information is required, or an error or information statement
about a condition that occurred while the request was processed.

You can customize the event pages by modifying their appearance or content.

Before you continue with the customization, you need to have a thorough
understanding of how event pages are generated and displayed.

Generation of event pages:

Event pages are displayed in response to events that occur during single sign-on
requests. They usually contain a form (such as a prompt for user name and
password information) or text (such as an informational or error message).

244 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Event pages are dynamic pages that are generated by Security Access Manager
using the following information:

Template files
XML or HTML files that are provided with the appliance and contain
elements, such as fields, text, or graphics, and sometimes macros that are
replaced with information that is specific to the request or to provide a
response to the request.

Page identifiers
Event information that corresponds to one or more template files. Each
page identifier corresponds to a specific event condition, such as a specific
error or a condition in which a message or a form must be displayed.

Message catalogs
Text that is used to replace macros in the template files.

When a request is received, the appropriate response page is generated as follows:
1. Processing of the request occurs and a response to an event is required.
2. Template files and page identifiers are read from the file system.
3. Macros in the template files are replaced with values that are appropriate for

the response that is needed.
4. An appropriate event page is generated.
5. The generated event page is displayed.

SAML 2.0 page identifiers:

The SAML 2.0 runtime can display HTML pages in response to events that occur
during single sign-on requests. You can select which pages to display and also
modify the pages.

Use HTML pages for the following purposes:
v Displaying success and error messages to users
v Asking users for confirmation
v Sending SAML messages

You can customize these HTML pages so that they display what you want. These
pages contain macros and are similar to other HTML pages in Security Access
Manager. A macro is text in an HTML page that is replaced with context-specific
information. For example, the macro @ERROR_MESSSAGE@ is replaced by text that
describes the error that occurred.

You can find the SAML 2.0 pages in the local management interface using these
steps:
1. Click Secure Federation > Global Settings > Template Files.
2. Expand the locale folder to locate a template file.

For example, the English version of the SAML consent_to_federate.html template
is in C/saml20.

All of the available SAML 2.0 HTML pages are listed in the following table.

Chapter 17. Global Settings 245

Table 40. SAML 2.0 HTML page identifiers and macros

Page identifier Description Macros and descriptions

saml20/
consent_to_federate.html

Displays during the SAML
single sign-on flow whenever
the service provider wants to
federate the account at the
identity provider with the
account at the service
provider.

@TOKEN:form_action@
The URL to which
the SAML message
is sent.

@TOKEN:SPProviderID@
The ID of the
Service Provider.

@TOKEN:SPDisplayName@
The name of the
Service Provider.

@TOKEN:IPProviderID@
The name of the
Identity Provider.

saml20/
logout_partial_success.html

Displays whenever the
SAML single log out flow
completes with partial
success.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@TOKEN:UserName@
The user name that
performs the
operation.

saml20/logout_success.html Displays whenever the
SAML single log out flow
completes successfully.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@TOKEN:UserName@
The user name that
performs the
operation.

saml20/
nimgmt_terminate_success.html

Displays whenever the
SAML name identifier
management terminate flow
completes successfully.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@TOKEN:UserName@
The user name that
performs the
operation.

@TOKEN:PartnerID@
The ID of the
partner.

246 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
nimgmt_update_success.html

Displays whenever the
SAML name identifier
management update flow
completes successfully.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@TOKEN:UserName@
The user name that
performs the
operation.

@TOKEN:PartnerID@
The ID of the
partner.

saml20/
saml_post_artifact.html

Sends the SAML artifact to
the partner for HTTP POST
binding.

@TOKEN:form_action@
The URL to which
the SAML message
is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_request.html

Sends the SAML request
message to partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which
the SAML message
is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_response.html

Sends the SAML response
message to the partner for
HTTP POST binding.

@TOKEN:form_action@
The URL to which
the SAML message
is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

Chapter 17. Global Settings 247

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
art_exchange_failed.html

Displays whenever there is a
failure during the SAML
artifact resolution flow.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/authn_failed.html Displays whenever there is a
failure during the SAML
single sign-on flow.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_building_msg.html

Displays whenever an
outgoing SAML message is
not constructed.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

248 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_decrypting_msg.html

Displays whenever an
incoming SAML message is
decrypted.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_missing_config_param.html

Displays whenever a SAML
flow is run on a SAML
federation with invalid
configuration.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_parsing_art.html

Displays whenever an
incoming SAML artifact is
parsed.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

Chapter 17. Global Settings 249

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_parsing_msg.html

Displays whenever an
incoming SAML message is
parsed.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_sending_msg.html

Displays whenever an
outgoing SAML message is
sent.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_validating_art.html

Displays whenever an
incoming SAML artifact is
validated.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

250 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_validating_init_msg.html

Displays whenever a SAML
flow is initiated. @REQ_ADDR@

The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_validating_msg.html

Displays whenever an
incoming SAML message is
validated.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
error_validating_msg_signature.html

Displays whenever an
incoming SAML message is
signature validated.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

Chapter 17. Global Settings 251

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/invalid_art.html Displays whenever an
incoming SAML artifact is
validated.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
invalid_init_msg.html

Displays whenever a SAML
flow is initiated. @REQ_ADDR@

The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/invalid_msg.html Displays whenever an
incoming SAML message is
validated.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

252 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Table 40. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/logout_failed.html Displays whenever there is a
failure during SAML single
logout flow.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
nimgmt_terminate_failed.html

Displays whenever there is a
failure during the SAML
name identifier terminate
management flow.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

saml20/
nimgmt_update_failed.html

Displays whenever there is a
failure during the SAML
name identifier update
management flow.

@REQ_ADDR@
The URL of the
request.

@TIMESTAMP@
The time stamp of
the request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of
the error. Do not use
this macro in a
production
environment.

Template page for the WAYF page:

The Where Are You From (WAYF) page is used at the service provider. The WAYF
page enables users to select their identity provider if there is more than one
configured in the federation.

Chapter 17. Global Settings 253

When a user arrives at a service provider, a WAYF identifier can be delivered
through a cookie or query-string parameter with the request. The entity ID of the
identity provider is stored as the value of the cookie or query-string parameter. If
the WAYF identifier cookie or query-string parameter is not present, the WAYF
page opens.

An example URL that includes the query string parameter for WAYF:
https://sp.host.com/isam/sps/samlfed/saml20/
logininitial?RequestBinding=HTTPRedirect&ResponseBinding
=HTTPPost&ITFIM_WAYF_IDP=https://idp.host.com/isam/sps/samlfed/saml20

This example is for a SAML 2.0 single sign-on URL. The query string parameter
name is ITFIM_WAYF_IDP. The value of the identity provider ID is
https://idp.host.com/isam/sps/samlfed/saml20.

The WAYF page requires the user to indicate where they came from. If the user is
not logged on to their identity provider, they are asked to log on. Depending on
the attributes passed, the service provider can grant or deny access to the service.

You can find the template pages for WAYF in the local management interface using
these steps:
1. Click Secure Federation > Global Settings > Template Files.
2. Expand the locale folder and navigate to /pages/itfim/wayf.

Administrators can use the WAYF page without modifications, but in some cases
might want to modify the HTML style to match the specific deployment
environment.

This template file provides several replacement macros:

@WAYF_FORM_ACTION@
This macro is replaced with the endpoint of the original request. This
macro does not belong within a repeatable section.

@WAYF_FORM_METHOD@
This macro is replaced with the HTTP method of the original request. This
macro does not belong within a repeatable section.

@WAYF_FORM_PARAM_ID@
This macro is replaced with ID used by the action for the identity provider.
This macro is repeated once for each identity provider.

@WAYF_IP_ID@
This macro is replaced with the unique ID of the identity provider. This
macro is repeated once for each identity provider.

@WAYF_IP_DISPLAY_NAME@
This macro is replaced with the configured display name of the identity
provider. This macro is repeated once for each identity provider.

@WAYF_HIDDEN_NAME@
This macro is replaced with the name of the hidden parameter. This macro
is repeated once for each original request parameter and is hidden.

@WAYF_HIDDEN_VALUE@
This macro is replaced with the value of the hidden parameter. This macro
is repeated once for each original request parameter and is hidden.

254 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Customizing the Consent to Federate Page:

A consent to federate page is an HTML form which prompts a user to give consent to
joining a federation. You can customize the consent to federate page to specify what
information it requests from a user.

Before you begin

Determine what values you want to use for the consent to federate page.

About this task

When a user accesses a federation, they agree to join the federation. The HTML
form saml20/consent_to_federate.html prompts for this consent. You can
customize what the form requests by adding consent values. These values indicate
how a user agrees to join a federation and if service providers are notified of the
consent. Identity providers receive the consent values in the SAML 2.0 response.

The following values determine how a user joins a federation:

1 A user agrees to join a federation without notifying the service provider.

0 A user refuses to join a federation.

A URI value
A URI can indicate whether the user agrees to join a federation and if you
want to notify the service provider about the user consent. The following
table lists and describes the supported URI values.

Table 41. Supported consent values for SAML 2.0 response

Consent value URI Description

Unspecified urn:oasis:names:tc:
SAML:2.0:consent: unspecified

The consent of the user is not
specified.

Obtained urn:oasis:names:tc:
SAML:2.0:consent: obtained

Specifies that user consent is acquired
by the issuer of the message.

Prior urn:oasis:names:tc:
SAML:2.0:consent: prior

Specifies that user consent is acquired
by the issuer of the message before
the action which initiated the
message.

Implicit urn:oasis:names:tc:
SAML:2.0:consent: current-implicit

Specifies that user consent is
implicitly acquired by the issuer of
the message when the message was
initiated.

Explicit urn:oasis:names:tc:
SAML:2.0:consent: current-explicit

Specifies that the user consent is
explicitly acquired by the issuer of
the message at the instance that the
message was sent.

Unavailable urn:oasis:names:tc:
SAML:2.0:consent: unavailable

Specifies that the issuer of the
message was not able to get consent
from the user.

Inapplicable urn:oasis:names:tc:
SAML:2.0:consent: inapplicable

Specifies that the issuer of the
message does not need to get or
report the user consent.

Follow the steps in this procedure to customize the consent to federate page.

Chapter 17. Global Settings 255

Procedure

1. Log in to the local management interface.
2. Click Secure Federation > Global Settings > Template Files.
3. Expand a locale and select saml20/consent_to_federate.html.
4. Click Edit and add the appropriate consent values for your federation.
5. Click Save.
6. Deploy the changes.

Example

The following example shows an added URI with a consent value Obtained:
<input type="radio" checked name="Consent"
value="urn:urn:oasis:names:tc:SAML:2.0:consent:obtained"/>
Consent Obtained.

In this example, the user consent is acquired by the issuer of the message.

Template file macros
Most template pages contain one or more macros. The macros are replaced by
values that are specific to the action that is requested on the page.

Macro Value that replaces the macro

@CLIENT_ID@ The client_id parameter that is specified in
the authorization request.

@CONSENT_FORM_VERIFIER@ A unique identifier for the
consent_form_verifier parameter value. The
value is automatically generated by the
authorization server. Do not modify the
parameter name or value.

@DETAIL@ The error message.

@ERROR_CODE@ Characters that uniquely identify the error.

@ERROR_DESCRIPTION@ The native language support (NLS) text of
the error message that is associated with the
error.

@ERROR_MESSAGE@ An error message that is specific to the
action in the page. For example, on the
One-time password template page for login,
the error message indicates that the
password submitted contains errors, such as
the password is not valid or has expired.

@EXCEPTION_MSG@ The exception message.

@EXCEPTION_STACK@ The stack trace of the error.

@GRACE_PERIOD_AUTH_COUNT@ The amount of grace-period authentication.

@LICENSE@ The contents of the license file.

@LICENSE_FILE@ The name of the license file.

@LICENSE_METADATA@ The metadata that is either:

v Defined in the license file.

v Not Available if it is not defined.

256 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Macro Value that replaces the macro

@MAPPING_RULE_DATA@ If the submitted one-time password contains
an error, this value is the STS Universal User
context attribute with the name
@MAPPING_RULE_DATA@ and is type
otp.sts.macro.type. This context attribute
can be set in the OTPVerify mapping rule.

@MAX_GRACE_PERIOD_AUTH_COUNT@ The maximum count of grace-period
authentication that is allotted to a policy.

@MAX_STORED_QUESTIONS@ The maximum number of answers that can
be stored per user.

@NUM_REQUIRED_ANSWERS@ The number of valid answers that is
required for successful authentication.

@NUM_REGISTERED_QUESTIONS@ The number of questions that the user
registered.

@OAUTH_AUTHORIZE_URI@ The URI for the authorization endpoint.

@OAUTH_CLIENT_COMPANY_NAME@ A multi-valued macro that belongs inside an
[RPT trustedClients] repeatable
replacement list. The values are replaced
with the name of the company that requests
access to the protected resource.

@OAUTH_CLIENTMANAGERURL@ A multi-valued macro that belongs inside an
[RPT trustedClients] repeatable
replacement list. The values are replaced
with the endpoint of the trusted clients
manager.

@OAUTH_CODE@ The oauth_code parameter that is specified
in the authorization response.

@OAUTH_CUSTOM_MACRO@ A multi-valued macro that belongs inside an
[RPT trustedClients] repeatable
replacement list. The values are replaced
with trusted client information that contains
additional information about an authorized
OAuth client.

@OAUTH_OTHER_PARAM_REPEAT@ A multi-valued macro that belongs inside an
[RPT oauthOtherParamsRepeatable]
repeatable replacement list. The values show
the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@ A multi-valued macro that belongs inside an
[RPT oauthOtherParamsRepeatable]
repeatable replacement list. The values show
the list of extra parameter values.

Chapter 17. Global Settings 257

Macro Value that replaces the macro

@OAUTH_TOKEN_SCOPE_REPEAT@ A multi-valued macro that belongs inside an
[RPT
oauthTokenScopePreapprovedRepeatable] or
[RPT
oauthTokenScopeNewApprovalRepeatable]repeatable
replacement lists. The values inside the [RPT
oauthTokenScopePreapprovedRepeatable]
show the list of token scopes that have been
previously approved by the resource owner.
Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable]
show the list of token scopes that have not
yet been approved by the resource owner.

@OTP_HINT@ The one-time password hint. The hint is a
sequence of characters that is associated
with the one-time password.

@OTP_METHOD_CHECKED@ For the first method, this macro is replaced
with an HTML radio button attribute that
causes that radio button to be selected. For
the remaining methods that generate,
deliver, and verify one-time passwords, this
macro is replaced with an empty string.

@OTP_METHOD_ID@ The ID of the method for generating,
delivering, and verifying the one-time
password. This ID is generated by the
OTPGetMethods mapping rule.

@OTP_METHOD_LABEL@ The label of the method for generating,
delivering, and verifying the one-time
password. This label is generated by the
OTPGetMethods mapping rule.

@OTP_METHOD_TYPE@ The type of the currently selected method
for generating, delivering, and verifying the
one-time password. This type is generated
by the OTPGetMethods mapping rule and was
selected by the user.

@OTP_STRING@ The one-time password that is generated by
the one-time password provider.

@PERMITTED_SCOPES@ A multi-valued macro that belongs inside an
[RPT trustedClients] repeatable list. The
values are replaced with the token scopes to
which the OAuth client has access.

@QUESTION_COUNT@ The number of questions that are presented
on the login page.

@QUESTION_TEXT@ The question text. This macro is only
populated when the question is a
user-provided question.

@QUESTION_INDEX@ The question index. This index corresponds
to the array of questions that are presented
on the page when questions are presented as
a group.

@QUESTION_UNIQUE_ID@ The question unique identifier.

258 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Macro Value that replaces the macro

@REDIRECT_URI@ The redirect URI that the authorization
server uses to send the authorization code
to. The value depends on the following
items:

v Redirect URI that is entered during
partner registration.

v oauth_redirect parameter that is specified
in the authorization request

@REGENERATE_ACTION@ The URl where the Generate button posts
the form to regenerate and deliver the new
one-time password value.

@RESPONSE_TYPE@ The response_type parameter specified in
the authorization request.

@REQ_ADDR@ The URL into which the request from the
user is sent.

@RESELECT_ACTION@ The URl where the Reselect button posts the
form to reselect the method for generating,
delivering, and verifying the one-time
password value.

@STATE@ The state parameter that is specified in the
authorization request.

@TIMESTAMP@ The time stamp when the error occurred.

@UNIQUE_ID@ A multi-valued macro that belongs inside an
[RPT trustedClients] repeatable
replacement list. The values are replaced
with a unique identifier that identifies the
trusted client information for each entry in
the list.

@USERNAME@ The Security Access Manager user name.

Mapping rules
Mapping rules are JavaScript code that runs during the authentication flow for
Advanced Access Control and Federation.

Mapping rules can be used for multiple purposes. For Advanced Access Control,
you can modify rules for the Authentication Service, OTP, and OAuth 2.0. For
Federation, you can modify mapping rules to manage identities for OIDC and
SAML 2.0. Use the task topic below that applies to the type of mapping rule you
want to manage.

Note: Support for the importing of a mapping rule into another mapping rule
applies to all mapping rules.

Managing JavaScript mapping rules
Create or edit JavaScript mapping rules.

About this task

When you activate the Advanced Access Control offering, the following mapping
rule types are available:

Chapter 17. Global Settings 259

AuthSvc
Authorization service mapping rule.

OAUTH
OAuth mapping rule.

OTP One-time password mapping rule.

OIDC OpenID Connect mapping rule.

SAML2_0
SAML 2.0 mapping rule.

Procedure
1. Click Secure Access Control.
2. Under Global Settings, click Mapping Rules. All existing mapping rules are

displayed.
3. You can create or modify a mapping rule.
v To create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated
offering are displayed in the list.

e. Click Save.
v To modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

Managing mapping rules
The mapping rules are JavaScript code that run during the authentication flow. Use
the rules to customize the authentication service and the one-time password
generation, delivery, and verification.

Before you begin

Attention: Use extreme care when you replace mapping rules. Any change that
you make to a mapping rule can affect the entire runtime environment. Always
export a copy of the original rule you plan to replace so that you have a backup
copy.

About this task

You can customize several components through JavaScript code. For example, you
can customize the Authentication Service to modify the content of user credential
by modifying the AuthSvcCredential mapping rule.

260 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The JavaScript code is run by the Rhino JavaScript engine. Your JavaScript code
must conform to JavaScript 1.7. Your JavaScript code is not run under a browser
environment. Therefore, you cannot use objects and functions that are available
only in a browser environment. You can, however, use standard JavaScript objects
(such as Math) and functions (such as parseInt). In addition, your JavaScript code
can use white-listed Java classes, which you might need so that you can use
operations that are not supported by standard JavaScript functions. You can find
the list of these Java classes at JavaScript whitelist. To find out more about using
Java classes in JavaScript, see the Rhino documentation https://
developer.mozilla.org/en/docs/Rhino.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control or Secure Federation.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Take one of the following actions:

View a mapping rule:

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the
mapping rule is displayed.

c. Click OK to close the panel.

Export a mapping rule:

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:
Use an existing mapping rule as the basis for the updated mapping
rule.

Attention: When you replace this file, an error in the JavaScript
source might be found immediately after it is replaced or it might not
be found until the file is run.
a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or the Browse button and select a file.

Attention: The name of the mapping rule cannot be replaced. The
name of the uploaded file is ignored.

d. Click OK to upload the mapping rule.

What to do next

When you replace a mapping rule, the appliance displays a message that there are
undeployed changes. Deploy the changes when you are done. For more
information, see Chapter 15, “Deploying pending changes,” on page 193.

Authentication Service Credential mapping rule
The Authentication Service Credential mapping rule is JavaScript code that you can
use to customize the information that is contained in the user credential.

Chapter 17. Global Settings 261

https://developer.mozilla.org/en/docs/Rhino
https://developer.mozilla.org/en/docs/Rhino

During authentication, the Authentication Service gathers information about the
authenticated user, including attributes associated with the user ID. After
successful authentication, the Authentication Service provides this information to
the Authentication Service Credential mapping rule. The main task of the mapping
rule is to modify or add attributes to the user information before it is used to
generate a credential.

Customizing the mapping rule is an advanced way to customize the credential. To
specify basic credential attributes, use an authentication policy and the Credentials
panel in the local management interface instead of creating a custom mapping rule.
See Creating an authentication policy.

If you write your own mapping rule and use it to replace the existing rule, be
aware of the following considerations:
v Credential attributes are string values. For example, user names and lists of

groups are string arrays.
v Do not use spaces, commas, or colons in credential attribute names. Use

alphanumeric characters.

The sample mapping rule provides more descriptions about considerations for
writing your own mapping rule.

A default AuthSvcCredential mapping rule is provided. To review the rule:
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Policy, click Authentication.
4. Click Advanced.
5. Select AuthSvcCredential.

6. Click .
7. Choose a location and save the file.

To review an example of a customized credential mapping rule:
1. Log in to the local management interface.
2. Click Manage System Settings.
3. Click File Downloads.
4. Click access_control > examples > mapping_rules.
5. Select authsvc_credential.js.
6. Click Export to download the file.

If you create your own rule, use it to replace the existing rule. See the replacement
instructions in “Managing mapping rules” on page 86.

OTPGetMethods mapping rule
OTPGetMethods specifies the methods for delivering the one-time password to the
user.

This sample mapping rule sets password delivery conditions for the following
delivery methods:
v By email
v By SMS
v No delivery

262 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Each delivery method includes the following attributes and their corresponding
value:

id Specifies a unique delivery method ID. This value replaces the
@OTP_METHOD_ID@ macro in the OTP Method Selection page. Use a unique
value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The
value must match one of the types in the
DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file.
For example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value
depends on the one-time password provider plug-in for the delivery type.
For example:
v For SMS delivery, the value is the mobile number of the user. For

example, mobileNumber.
v For email delivery, the value is the email address of the user. For

example, emailAddress.
v For no delivery, the value is an empty string.

label Specifies the unique delivery method to the user. For time-based and
counter-based one-time password, use this attribute to specify the secret
key of the user. If label is not specified, the time-based and counter-based
one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in
the OTP Method Selection page.

otpType
Specifies the one-time password provider plug-in that generates and
verifies the password. The value must match one of the types in the
OTPTypesToOTPProviderModuleIds parameter of the OTP response file. For
example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user
information that is required to calculate the one-time password. This
parameter is only required if user information is used for calculation of the
one-time password.

To customize one-time password delivery, you can do one of the following actions:
v Create your own mapping rules that are based on the sample OTPGetMethods

mapping rule.
v Modify the sample OTPGetMethods mapping rule.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPGenerate mapping rule
OTPGenerate mapping rule specifies the generation of the one-time password for
the user.

You can use the OTPGenerate mapping rule in the following configuration:

Chapter 17. Global Settings 263

Modify the one-time password type of the selected method to generate the
one-time password

Indicates the one-time password type to determine the one-time password
Provider plug-in that generates the one-time password for the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPDeliver mapping rule
The OTPDeliver mapping rule specifies the delivery method of the one-time
password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated
with the one-time password. The one-time password hint is displayed in
the One-Time Password Login page. It is also sent to the user together
with the one-time password.

You can customize the way the one-time password hint is generated by
modifying the following section in the default OTPDeliver mapping rule:
var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time
password. The formatted one-time password, instead of the actual one-time
password, is sent to the user. For example, for one-time password hint
abcd, and one-time password 12345678, you can set the formatted one-time
password as abcd-12345678. For one-time password hint efgh, and
one-time password87654321, you can set the one-time password as
efgh#8765#4321.

You can customize the way that the one-time password is generated by
modifying the following section in the sample OTPDeliver mapping rule:
var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time
password

The delivery type specifies the one-time password Delivery plug-in that
delivers the one-time password to the user.

Modify the delivery attribute of the selected method to deliver
The delivery attribute is an attribute that is associated with delivery type.
The meaning of the delivery attribute depends on the one-time password
provider plug-in for the delivery type. For example, for SMS delivery type,
the delivery attribute is the mobile number of the user. For email delivery
type, the delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

264 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

OTPVerify mapping rule
OTPVerify specifies the verification of the one-time password that is submitted by
the user.

You can customize the sample OTPVerify mapping rule to modify the following
verification rules:

Modify the one-time password type of the user
Indicates the one-time password type to determine the one-time Provider
plug-in that verifies the one-time password submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued
that contains the authentication level of the user. You can customize the
authentication level by modifying the following section in the mapping
rule:
var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType

("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",

"urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the
one-time password login page

If a user exceeds the permitted number of times to submit a one-time
password, an error message displays. You can customize the number of
times that the user can submit the one-time password in the one-time
password login page by modifying the following section in the mapping
rule:
var retryLimit = 5;

By default, this option is set to false.

Note: This setting applies only to MAC OTP.

Identify the secret key of a user
When a user registers with a time-based one-time password application,
they are assigned a secret key. Store the secret key in this mapping rule for
verification of the user by modifying the following code:
var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.

Override the one-time password target URL
By default, a user is redirected to a target URL upon completion of an
one-time password flow. That target URL was either the initial cached
request at the WebSEAL or reverse proxy instance or was specified as part
of the one-time password invocation using the Target query string
parameter.

You can use the OTPVerify mapping rule to override this target URL by
adding an attribute called itfim_override_targeturl_attr. This attribute
ensures that at the completion of a successful one-time password flow, the
user is redirected to the override target instead of the initial target.
Example code:

Chapter 17. Global Settings 265

var targetUrl = new java.lang.String("http://www.example.com/url");
var targetUrlAttr = new Attribute("itfim_override_targeturl_attr",
"urn:ibm:names:ITFIM:5.1:accessmanager", targetUrl);
attributeContainer.setAttribute(targetUrlAttr);

To customize one-time password verification, you can do one of the following
actions:
v Create your own verification rules that are based on the sample OTPVerify

mapping rule.
v Modify the sample OTPVerify mapping rule.

You can also customize the mapping rule to use access control context data. For
details see, “Customizing one-time password mapping rules to use access control
context data” on page 92.

Customizing one-time password mapping rules to use access
control context data
Some authentication scenarios require that context data used in making an access
control decision be available during authentication. You can configure Security
Access Manager to capture the content data and make it available to the one-time
password mapping rules.

About this task

You can configure Security Access Manager to perform access control policy
evaluation when a resource is accessed. The access control policy evaluation can
result on a permit with authentication. The required authentication is determined
by the access control policy. Some scenarios require that the context data used to
perform the access control decision be available during the authentication. In order
to provide access to the access control context data, you can persist the context
information for the predefined authentication obligations that perform one-time
password authentication.

Note: The context data available is limited to the attributes referenced by the
access control policy and the request attributes provided by the policy enforcement
point. If the policy relies on the risk score to perform access control, the context
data available also includes the risk-profile attributes.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control > Global Settings > Advanced Configuration.
3. Select attributeCollection.authenticationContextAttributes.

4. Click

for the property.
5. In the text field, enter a list of comma separated attribute names to be collected

during the authorization policy evaluation. For example, if your scenario
requires the authentication level and host of the request the configuration
property, enter authenticationLevel, http:host. The access control context
data is provided to the one-time password mapping rules as context attributes
values. The following format is used:
<stsuuser:Attribute name="AttributeName-AttributeURI"

type=""authn.service.context.attribute.type.AttributeDatatype">
<stsuuser:Value>AttributeValue</stsuuser:Value>
</stsuuser:Attribute>

Where:

266 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v name is the attribute name and attribute identifier separated by a dash (-).
v type is the attribute data type prefixed by

authn.service.context.attribute.type.

For example the authenticationLevel attribute value is added as:
<stsuuser:Attribute name="authenticationlevel-urn-ibm:

security:subject:authenticationlevel"
type="authn.service.context.attribute.type.Integer">

<stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute>

6. Click OK.
7. When you edit a property, a message indicates that there are undeployed

changes. If you have finished making changes, deploy them.
For more information, see Chapter 15, “Deploying pending changes,” on page
193.

8. Configure the mapping rule to use the information collected by this property as
the context attribute.
a. Click Secure Access Control.
b. Under Policy, click Authentication.
c. Click Advanced.
d. Select and export the mapping rule.
e. Use a text editor and modify the rule to access the attributes collected

during the access control policy evaluation in the following format:
var accessControlAttribute =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("AttributeName-AttributeURI",
"authn.service.context.attribute.type.AttributeDatatype");

Where:
v name is the attribute name and attribute identifier separated by a dash (-).
v type is the attribute data type prefixed by

authn.service.context.attribute.type.

For example, the authenticationLevel attribute can be obtained using the
following information:
var accessControlAuthenticationLevel =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("authenticationlevel-urn-ibm:security:subject:authenticationlevel",
"authn.service.context.attribute.type.Integer");

f. Save the mapping rule and take note of its location.
g. In the local management interface, click Secure Access Control.
h. Under Policy, click Authentication.
i. Click Advanced.
j. Select the mapping rule you want to replace.
k. Click Replace. The Replace Mapping Rule panel opens.
l. Click the field or the Browse button and select the file for your saved

mapping rule.
Attention: The name of the mapping rule cannot be replaced. The name of
the uploaded file is ignored.

m. Click OK to upload the mapping rule.

Managing OAuth 2.0 mapping rules
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.

Chapter 17. Global Settings 267

About this task

The OAuth 2.0 and OIDC mapping rules are JavaScript code that run during the
OAuth 2.0 or OIDC flow. You can view, export, and replace OAuth or OIDC
mapping rules.

View the mapping rule if you want to see the content and structure of the
mapping rule. Export the mapping rule if you want to save a copy of the mapping
rule. You can also edit this copy. Replace a mapping rule if you want to use a new
mapping rule.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control > Policy > OpenID Connect and API Protection

or Secure Federation > Manage > OpenID Connect and API Protection.
3. Click Mapping Rules.
4. Perform one or more of the following actions:

View a mapping rule

a. Select a mapping rule.

b. Click . The View Mapping Rule panel opens. The content of the
mapping rule is displayed.

c. Click OK to close the panel.

Export a mapping rule

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:

Note: Use an existing mapping rule as the basis for the updated
mapping rule.
a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or Browse and select a file.
d. Click OK to upload the mapping rule.

5. When you replace a mapping rule, the appliance displays a message that there
are undeployed changes. If you are finished with the changes, deploy them.
For more information, see Chapter 15, “Deploying pending changes,” on page
193.

Related reference:
“OAuth 2.0 and OIDC mapping rule methods” on page 151
You can use Java methods to customize the PreTokenGeneration and
PostTokenGeneration mapping rules.

OAuth 2.0 mapping rule methods
You can use Java methods to customize the PreTokenGeneration and
PostTokenGeneration mapping rules.

268 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The sample mapping rules are oauth_20_pre_mapping.js and
oauth_20_post_mapping.js.

You can access the sample mapping rules from the LMI. Navigate to Manage
System Settings > Secure Settings > File Downloads. Continue to either of the
following locations:
v access_control > examples > mapping rules

v federation > examples > mapping rules

The following limitations affect the attribute keys and values that are associated
with the state_id by using the OAuthMappingExtUtils class:
v Keys cannot be null or empty.
v Values cannot be null but can be empty.
v Associated key-value pairs are read and write-allowed and not-sensitive.
v Some keys are reserved for system use and cannot be modified by this utility.

For example, the keys and values for the API PIN protection.

For more information, see the Javadoc. In the LMI, navigate to Manage System
Settings > Secure Settings > File Downloads. Continue to either access_control >
doc or federation > doc.

See also JavaScript whitelist.

Actions to be performed in mapping rules
For certain grant types, you must perform these actions in the pre-token mapping
rule.

Resource owner password credentials (ROPC) grant type flow

For the ROPC flow, the pre-token mapping rule is responsible for
performing validation of the user name and password. This validation can
be performed in various ways. The pre-defined rule that is included with
the appliance provides the following examples:
v The java class PluginUtils can be used to validate a user name and

password against a configured LDAP.
To configure the LDAP to be used, see “Configuring username and
password authentication” on page 67.

v Validate the user name and password through an HTTP callout. The
mapping rule sends the user name and password to a web service. As
the format of the messages is not fixed, various services (for example,
REST, SOAP, SCIM) can be used for this purpose. Javadoc on the HTTP
client and all other exposed Java classes available in mapping rules can
be downloaded from the appliance File Downloads page under the path
access_control > doc > ISAM-javadoc.zip.

JWT and SAML bearer grant type flow

For the JWT or SAML assertion bearer grant type flows, the pre-token
mapping rule must perform the following actions:
v Validate the assertion, including but not limited to:

– Validate the signature (if signed).
– Decrypt the assertion (if encrypted).
– Check the expiry and "not before" value of the assertion.
– Ensure that the issuer is a trusted party.

Chapter 17. Global Settings 269

v Extract the subject from the assertion and set the USERNAME field of the
STSUU.
The USERNAME field of the STSUU can be set via a call, for example:
// username is a variable containing the subject of the assertion

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("username","urn:ibm:names:ITFIM:oauth:rule:decision", username));

The validation of the assertion can be performed in various ways:
– HTTP callout to a web service. Use the HTTP client to perform this.
– WS-Trust request to the Secure Token Service (STS).

- A chain must be configured to consume the assertion and return
the required information.

- The STSClientHelper will be called to invoke the STS via HTTP. For
more information about this class, see the Javadoc that is
embedded in the appliance.

Any attributes of the assertion can be extracted and associated to the
OAuth grant to be used later. For more information about associating
attributes, see “OAuth 2.0 and OIDC mapping rule methods” on page
151.

v The type of the username attribute added must be
"urn:ibm:names:ITFIM:oauth:rule:decision" to ensure that only a value
populated from the rule is used.

MMFA mapping rule methods
Customize the OAuth PreTokenGeneration and PostTokenGeneration mapping
rules by using these methods.

Sample mapping rules are available from Manage System Settings > Secure
Settings > File Downloads under the access_control > examples > mapping rules
directory.

The following limitations affect the attribute keys and values that are associated
with the state_id by using the MMFAMappingExtUtils class:
v Keys cannot be null or empty.
v Values can only be null or empty when specified.
v Associated key-value pairs are read-only and not case sensitive.
v The push token is read-only and case sensitive.

registerAuthenticator
public static String registerAuthenticator(

String stateId
)

This method performs the final steps of registering an authenticator. Use
the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

These responses come from the runtime after registration.
v The new authenticator's ID if successful.
v Null if not successful.

270 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

savePushToken
public static boolean savePushToken(

String stateId,
String pushToken,
String applicationID
)

This method saves the push token and application ID with the
authorization grant state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

pushToken

The push token the authenticator application has received from its
push notification service provider. This parameter cannot be null or
empty.

applicationID

The application ID of the authenticator application. This parameter
can be null or empty.

These responses come from the runtime.
v True if successful.
v False if not successful.

savePushToken
public static boolean savePushToken(

String stateId,
String pushToken
)

This method saves the push token and application ID with the
authorization grant state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

pushToken

The push token the authenticator application has received from its
push notification service provider. This parameter cannot be null or
empty.

These responses come from the runtime.
v True if successful.
v False if not successful.

saveDeviceAttributes
public static boolean saveDeviceAttributes(

String stateId,
String deviceName,
String deviceType,
String osVersion,
String fingerprintSupport,
String frontCameraSupport,
String tenantId
)

Chapter 17. Global Settings 271

This method saves various device attributes with the authorization grant
state ID. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be
null or empty.

deviceName

The name of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

deviceType

The type of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

osVersion

The OS version of the device the authenticator is installed on. This
parameter can be null or empty. If empty, the value is cleared.

fingerprintSupport

The type of fingerprint sensor that is supported by the device. This
parameter can be null or empty. If empty, the value is cleared.

frontCameraSupport

flag that indicates if the device has a front facing camera. This
parameter can be null or empty. If empty, the value is cleared.

tenantId

The tenant ID for this registration, if the authenticator application
is multi-tenant. This parameter can be null or empty. If empty, the
value is cleared.

These responses come from the runtime.
v True if successful.
v False if not successful.

JavaScript whitelist
Advanced Access Control JavaScript mapping rules and Federation mapping rules
call Java code from JavaScript. The set of classes that can be called is restricted.

Exercise reasonable caution when you call Java code from JavaScript rules to
ensure that accidental damage to appliance resources is avoided.

272 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Common classes allowed in one-time password, OAuth or API protection, dynamic
attributes, and JavaScript PIP, federation mapping rules, and access policies.

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Class
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.reflect.Array
java.lang.Short
java.lang.String
java.lang.System

java.io.ByteArrayInputStream
java.io.ObjectInputStream
java.io.PrintStream

java.math.BigDecimal

java.util.ArrayList **
java.util.Base64
java.util.Base64$Decoder
java.util.Base64$Encoder
java.util.Date
java.util.HashSet **
java.util.HashMap **
java.util.Iterator
java.util.List
java.util.Map
java.util.Set
java.util.UUID

com.ibm.security.access.httpclient.HttpClient
com.ibm.security.access.httpclient.HttpResponse
com.ibm.security.access.httpclient.Headers
com.ibm.security.access.httpclient.Parameters
com.ibm.security.access.scimclient.ScimClient
com.ibm.security.access.scimcleint.ScimConfig
com.ibm.security.access.ciclient.CiClient
com.tivoli.am.rba.attributes.AttributeIdentifier
com.tivoli.am.rba.extensions.RBAExtensions
com.tivoli.am.rba.fingerprinting.ValueContainerIdentifierAdapter
com.tivoli.am.rba.extensions.Attribute$Category
com.tivoli.am.rba.extensions.Attribute$DataType
com.tivoli.am.rba.extensions.Attribute
com.tivoli.am.rba.extensions.PluginUtils

** Inner classes for these classes are not supported. Methods that involve an inner class
implementation of an interface are not available. For example, do not use the following
methods in java.util.HashMap:

v Collection<V> values()

v Set<K> keySet()

v Set<Map.Entry<K,V>> entrySet()

For more information about dynamic attributes, see Dynamic attributes.

For information about federation mapping rules, see Mapping rules.

Chapter 17. Global Settings 273

Additional classes allowed in one-time password, OAuth or API protection mapping
rules, federation mapping rules, and access policies

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.fim.trustserver.sts.modules.http.stsclient.STSClientHelper
com.tivoli.am.fim.trustserver.sts.oauth20.Client
com.tivoli.am.fim.trustserver.sts.oauth20.Grant
com.tivoli.am.fim.trustserver.sts.oauth20.Token
com.tivoli.am.fim.trustserver.sts.STSModuleException
com.tivoli.am.fim.trustserver.sts.STSUniversalUser *
com.tivoli.am.fim.trustserver.sts.utilities.HttpResponse
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtCacheDMAPImpl
com.tivoli.am.fim.trustserver.sts.utilities.InfoCardClaim
com.tivoli.am.fim.trustserver.sts.utilities.MMFAMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.OAuthMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.QueryServiceAttribute
com.tivoli.am.fim.trustserver.sts.utilities.USCContextAttributesHelper
com.tivoli.am.fim.trustserver.sts.uuser.Attribute *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeList *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeStatement *
com.tivoli.am.fim.trustserver.sts.uuser.ContextAttributes *
com.tivoli.am.fim.trustserver.sts.uuser.Group *
com.tivoli.am.fim.trustserver.sts.uuser.Principal *
com.tivoli.am.fim.trustserver.sts.uuser.RequestSecurityToken *
com.tivoli.am.fim.trustserver.sts.uuser.Subject *
com.tivoli.am.fim.utils.IteratorWrapper
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
java.mail.internet.InternetAddress

* The white list does not contain any implementation of the interfaces that are defined in
the org.w3c.dom package. For example, you cannot use the method org.w3c.dom.Document
toXML() in com.tivoli.am.fim.trustserver.sts.STSUniversalUser.

Additional classes allowed in JavaScript PIP

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
com.tivoli.am.rba.rtss.AttributeLocatorImpl

For more information about policy information points, see Managing policy information
points.

Additional classes allowed in mapping rules

packages.com.ibm.security.access.user.UserLookupHelper
packages.com.ibm.security.access.user.User

For information on mapping rules, see:

v “Managing OAuth 2.0 and OIDC mapping rules” on page 150

v “Managing mapping rules” on page 86

274 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Additional classes to manage server connections

com.ibm.security.access.server_connections.LdapServerConnection
com.ibm.security.access.server_connections.LdapServerConnection$LdapHost
com.ibm.security.access.server_connections.ServerConnection
com.ibm.security.access.server_connections.ServerConnectionFactory
com.ibm.security.access.server_connections.SmtpServerConnection
com.ibm.security.access.server_connections.WebServerConnection
com.ibm.security.access.server_connections.CiServerConnection

For more information, see “Managing server connections” on page 287.

Classes to use with InfoMap

com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapResult
com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapString

For more information, see “Configuring an Info Map authentication mechanism” on page
77.

Classes to use in Access Policies

com.ibm.security.access.policy.Context
com.ibm.security.access.policy.Cookie
com.ibm.security.access.policy.decision.ChallengeDecisionHandler
com.ibm.security.access.policy.decision.DecisionHandler
com.ibm.security.access.policy.decision.DenyDecisionHandler
com.ibm.security.access.policy.decision.Decision
com.ibm.security.access.policy.decision.DecisionType
com.ibm.security.access.policy.decision.HtmlPageChallengeDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler
com.ibm.security.access.policy.decision.RedirectChallengeDecisionHandler
com.ibm.security.access.policy.decision.RedirectDecisionHandler
com.ibm.security.access.policy.decision.RedirectDenyDecisionHandler
com.ibm.security.access.policy.oauth20.AuthenticationContext
com.ibm.security.access.policy.oauth20.AuthenticationRequest
com.ibm.security.access.policy.oauth20.ProtocolContext
com.ibm.security.access.policy.ProtocolContext
com.ibm.security.access.policy.Request
com.ibm.security.access.policy.saml20.AuthnRequest
com.ibm.security.access.policy.saml20.ProtocolContext
com.ibm.security.access.policy.saml20.RequestedAuthnContext
com.ibm.security.access.policy.Session
com.ibm.security.access.policy.user.Attribute
com.ibm.security.access.policy.user.Group
com.ibm.security.access.policy.user.User

For more information, see Access policies.

Related tasks:
“Managing OAuth 2.0 and OIDC mapping rules” on page 150
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.
“Managing mapping rules” on page 86
The mapping rules are JavaScript code that run during the authentication flow. Use
the rules to customize the authentication service and the one-time password
generation, delivery, and verification.

Managing JavaScript mapping rules
Create, edit, or delete JavaScript mapping rules.

Chapter 17. Global Settings 275

About this task

When you activate the Federation offering, the following mapping rule types are
available:

OIDC OpenID Connect mapping rule.

SAML2_0
SAML 2.0 mapping rule.

Procedure
1. Click Secure Federation.
2. Under Global Settings, click Mapping Rules. All existing mapping rules are

displayed.
3. You can create, edit, or delete a mapping rule.
v To create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list, or

type a name to create your own mapping rule type.

Note: Only the mapping rule types that apply to your current activated
offering are displayed in the list.

e. Click Save.
v To modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

v To delete a mapping rule

Note: Do not delete a mapping rule that is currently used by a SAML 2.0 or
OpenID Connect federation.
a. Select the mapping rule to delete.
b. Click Delete.
c. Confirm the delete operation.

Customizing SAML 2.0 identity mapping
Use mapping rules to map local identities to SAML tokens and to map SAML
tokens to local identities.

You can use an attribute source, such as LDAP, for the identity mapping. See
Managing attribute sources.

You can use an HTTP external user mapping to map a local identity to a SAML
token and to map SAML token to a local identity.

See Managing JavaScript mapping rules for information about how to create or
modify mapping rules.

276 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Mapping a local identity to a SAML 2.0 token
You can map a local identity to a SAML 2.0 token for an identity provider.

The Security Access Manager server places the local user identity information into
an XML document that conforms to the security token service universal user
(STSUUSER) schema. The identity provider issues a SAML 2.0 token to the service
provider. It generates the SAML 2.0 token based on the local identity of the user.
You can customize how the local identity is converted into a SAML 2.0 token by
using a mapping rule.

Security Access Manager first converts the local identity to an STS Universal User.
It then converts this STS Universal User into another STS Universal User by using
a mapping rule that you provide. After that, it converts the latter STS Universal
User to a SAML 2.0 token.

Your mapping rule does not operate directly on local identity or SAML 2.0 token.
Instead, it operates on the STS Universal User. Any modification that you make to
an STS Universal User has an impact on the output SAML 2.0 token.

The mapping rule is responsible for the following tasks:
1. Mapping Principal Attr Name to a Principal Name entry. When the token

module generates the token, this Principal name is not directly used. Instead,
the value in the Name field is sent as input to the alias service. The alias
service obtains the alias name, name identifier, for the principal, and places the
returned alias in the generated token module.
The type must be valid for SAML. For example:
urn:oasis:names:tc:SAML:2.0:assertion

2. Setting the authentication method to the password mechanism. This action is
required by the SAML standard.

3. Setting the audience of the audience restriction condition to the value of the
STSUU element AudienceRestriction. If this STSUU element is not present, the
audience is set to the Provider ID of the federation partner.

4. Populating the attribute statement of the assertion with the attributes in the
AttributeList in the In-STSUU. This information becomes custom information in
the token.
Custom attributes might exist that are required by applications that use
information that is to be transmitted between federation partners.

5. Specifying whether the assertion conditions should contain the
<saml:OneTimeUse></saml:OneTimeUse> element. If so, insert a special context
attribute into the STSUU as shown:

var oneTimeUseAttr = new Attribute("AssertionIncludeOneTimeUse","urn:oasis:names:tc:SAML:2.0:assertion", "true");
stsuu.addContextAttribute(oneTimeUseAttr);

6. Setting the NameID attribute in the assertion with Transient NameId format. This
action is useful when you want to specify a name value to use instead of the
default UUID that is generated by the runtime for Transient NameID format.
To replace the UUID, create a principal name attribute of type
urn:oasis:names:tc:SAML:2.0:nameid-format:transient, with its value
provided by user.
The examples below show the user-provided value UserGeneratedTransientId
but it could be any other value. The value of the specified STSUU principal
name will be set as the NameID in the SAML assertion.
Example mapping rule

Chapter 17. Global Settings 277

importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);
var transientNameId = "UserGeneratedTransientId";
stsuu.addPrincipalAttribute(new Attribute("name",

"urn:oasis:names:tc:SAML:2.0:nameid-format:transient", transientNameId));

Example STSUU values after mapping rule applied
<stsuuser:Attribute name="name" type="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">

<stsuuser:Value>UserGeneratedTransientId</stsuuser:Value>
</stsuuser:Attribute>

Example SAML assertion NameID with Transient NameId formats
<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"

NameQualifier="https://ip-wga/isam/sps/saml20ip/saml20"
SPNameQualifier="https://sp-wga/isam/sps/saml20sp/saml20"
>UserGeneratedTransientId</saml:NameID>

Mapping a SAML 2.0 token to a local identity
You can map a SAML 2.0 token to a local identity for a service provider.

A service provider consumes a SAML 2.0 token that is issued by an identity
provider. It generates the local identity of the user based on a SAML 2.0 token. You
can customize how a SAML 2.0 token is converted into the local identity of the
user by using a mapping rule.

Security Access Manager first converts a SAML 2.0 token to an STS Universal User.
It then converts this STS Universal User into another STS Universal User by using
a mapping rule that you provide. After that, it converts the latter STS Universal
User to a local identity of the user.

Your mapping rule does not operate directly on the local identity or SAML 2.0
token. Instead, it operates on the STS Universal User. Any modifications that you
make on the STS Universal User impacts the output local identity of the user.

STSRequest and STSResponse access using a JavaScript
mapping rule

By using the Default Mapping STS Module and a JavaScript mapping rule, you can
perform identity mapping. The mapping rule can access STSRequest and
STSResponse objects.

The following two implicit objects and the classes required by these two objects
can be exposed (for example, Java DOM, XML classes, and so on):
v STSRequest which represents the WS-Trust request
v STSResponse, which represents the WS-Trust response

Use JavaScript code stsrequest.getRequestSecurityToken().getBase() to get the
input security token from the WS-Trust request. This returns the input security
token as an instance of the Java class org.w3c.dom.Element.

Use JavaScript code
stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken
(outputSecurityToken) to set the output security token in the WS-Trust response.
The outputSecurityToken is the output security token represented as an instance of
Java class org.w3c.dom.Element. By default, WS-Trust response contains only one
output security token. To return additional output security tokens, you can use the
following JavaScript code:
stsresponse.addRequestSecurityTokenResponse().setRequestedSecurityToken(outputSecurityToken)

278 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

The examples in the following topics show the mapping to and from a base64
encoded JSON string. They use the Default Mapping module with a JavaScript
mapping rule. The JavaScript mapping rule accesses the STSRequest and
STSResponse objects and performs the identity mapping.

Mapping a JSON Web Token to a SAML2 token example
You can map a base64 encoded JSON string to a SAML 2 token by using a
JavaScript mapping rule.

About this task

The steps show an end-to-end JSON to SAML2 mapping. STSRequest and
STSResponse access using a JavaScript mapping rule provides a description of this
support.

Procedure
1. Create a JavaScript mapping rule by using the local management interface.

a. Select Secure Federation > Global Settings > Mapping Rules.
b. Click Add.
c. In the Content field, copy and paste the following code:

importClass(com.tivoli.am.fim.base64.BASE64Utility);
importClass(com.tivoli.am.fim.trustserver.sts.uuser.Attribute);

var jwtElement = stsrequest.getRequestSecurityToken().getBase();
var jwtText = jwtElement.getTextContent();
var jwtString = new java.lang.String(BASE64Utility.decode(jwtText), "UTF-8");
var jwt = JSON.parse(jwtString);

for (var name in jwt) {
if (jwt.hasOwnProperty(name)) {

if ("sub".equals(name)) {
stsuu.addPrincipalAttribute(new Attribute("name",

"urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress", jwt[name]));
} else {
stsuu.addAttribute(new Attribute(name,

"urn:oasis:names:tc:SAML:2.0:attrname-format:basic", jwt[name]));
}

}
}

d. In the Name field, enter jwt_saml.
e. In the Category field, select SAML2_0.
f. Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a. Select Secure Federation > Manage > Security Token Service.
b. Click Templates.
c. Click Add and name the template JSON to SAML2. Click OK.
d. Select the JSON to SAML2 template and add the Default Map Module in Map

mode and a Default SAML 2.0 token in Issue mode.
e. Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created
in the previous steps.
a. Within the Security Token Service panel, select Module Chains.
b. Click Add to create the module chain, with the following values:

Chapter 17. Global Settings 279

Table 42. JSON to SAML2 module chain values

Tab: Field Value

Overview: Name JSON to SAML2

Overview: Description base64 encoded JSON string to SAML2
conversion STS chain

Overview: Template JSON to SAML2

Lookup: Request Type Validate

Lookup: Applies to Address jwtappliesto

Lookup: Issuer Address jwtissuer

Properties: Default Map Module (JavaScript
file containing the identity mapping rule

jwt_saml

Properties: Default SAML 2.0 Token (Name
of the organization issuing the assertions)

isam

Properties: Default SAML 2.0 Token
(Amount of time before the issue date that
an assertion is considered valid)

60

Properties: Default SAML 2.0 Token
(Amount of time that the assertion is valid
after being issued)

60

Properties: Default SAML 2.0 Token (List of
attribute types to include)

*

Use the defaults for all of the fields that are not specified in the table.
c. Save and deploy the changes.

4. Use curl to test the chain.
a. Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
<wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">jwtissuer</wsa:Address>

</wst:Issuer>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<wsa:Address>jwtappliesto</wsa:Address>
</wsa:EndpointReference>

</wsp:AppliesTo>
<wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

<JWT>ewogICJlbWFpbCI6ICJqb2huLmRvZUBleGFtcGxlLmNvbSIsIAogICJmYW1pbHlfbmFtZSI6ICJkb2UiLCAK
ICAiZ2l2ZW5fbmFtZSI6ICJqb2huIiwgCiAgImlzcyI6ICJpc2FtIiwgCiAgInN1YiI6ICIwMTIzNDU2Nzg5Igp9</JWT>

</wst:Base>
</ns1:RequestSecurityToken>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold embedded element, <JWT> </JWT>, is the input to the chain. This
is a Base64 encoded JSON string that contains the following data::
{
"email": "john.doe@example.com",
"family_name": "doe",
"given_name": "john",
"iss": "isam",
"sub": "0123456789"

}

b. Save this file as jwt.xml.

280 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

c. Run the following curl command, where jwt.xml is the WS-Trust 1.2
message:
curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@jwt.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-ENV:Header>
<soap:Body>

<wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuidc1288a62-0153-1f8b-bf2a-b4c46f51cd03">

<wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing" xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference>

<wsa:Address>jwtappliesto</wsa:Address>
</wsa:EndpointReference>

</wsp:AppliesTo>
<wst:Lifetime xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

<wsu:Created>2016-03-29T06:56:13Z</wsu:Created>
<wsu:Expires>2016-03-29T06:57:13Z</wsu:Expires>

</wst:Lifetime>
<wst:RequestedSecurityToken>

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ID="Assertion-uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03"
IssueInstant="2016-03-29T06:56:13Z" Version="2.0">

<saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">isam</saml:Issuer>
<saml:Subject>

<saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
0123456789</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

<saml:SubjectConfirmationData NotOnOrAfter="2016-03-29T06:57:13Z"></saml:SubjectConfirmationData>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Conditions NotBefore="2016-03-29T06:55:13Z" NotOnOrAfter="2016-03-29T06:57:13Z">

<saml:AudienceRestriction>
<saml:Audience>jwtappliesto</saml:Audience>

</saml:AudienceRestriction>
</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2016-03-29T06:56:13Z">

<saml:AuthnContext>
<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password
</saml:AuthnContextClassRef>

</saml:AuthnContext>
</saml:AuthnStatement>
<saml:AttributeStatement>

<saml:Attribute Name="given_name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">john</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">john.doe@example.com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute Name="iss" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">isam</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute Name="family_name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">

<saml:AttributeValue xsi:type="xs:string">doe</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>
</saml:Assertion>

</wst:RequestedSecurityToken>

The JSON string is mapped into the SAML assertion, as shown by the
previous bold text. The attributes in the SAML2 assertion are mapped from
JSON attributes.
<wst:RequestedAttachedReference xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<wss:SecurityTokenReference xmlns:wss11="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
wss11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">

<wss:KeyIdentifier xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID">
Assertion-uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03</wss:KeyIdentifier>

</wss:SecurityTokenReference>
</wst:RequestedAttachedReference>
<wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
<wst:Status>

<wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid</wst:Code>
</wst:Status>

</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

</soap:Body>
</soap:Envelope>

Related tasks:

Chapter 17. Global Settings 281

Mapping a SAML2 token to a base64 encoded JSON string example
You can map a SAML 2 token to a base64 encoded JSON string by using a
JavaScript mapping rule.

Mapping a SAML2 token to a JSON Web Token example
You can map a SAML 2 token to a base64 encoded JSON string by using a
JavaScript mapping rule.

About this task

The steps show an end-to-end SAML to JSON mapping. STSRequest and
STSResponse access using a JavaScript mapping rule provides a description of this
support.

Procedure
1. Create a JavaScript mapping rule using the local management interface.

a. Select Secure Federation > Global Settings > Mapping Rules.
b. Click Add.
c. In the Content field, copy and paste the following code:

importClass(com.tivoli.am.fim.base64.BASE64Utility);
importClass(com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils)

var jwt = {};

var it = stsuu.getPrincipalAttributes();
var jt = stsuu.getAttributes();

while (it.hasNext()) {
var attribute = it.next();
var name = new String(attribute.getName());
var value = new String(attribute.getValues()[0]);

if ("name".equals(name)) {
jwt["sub"] = value;

} else {
jwt[name] = value;

}
}

while (jt.hasNext()) {
var attribute = jt.next();
var name = new String(attribute.getName());
var value = new String(attribute.getValues()[0]);

jwt[name] = value;
}

var document = IDMappingExtUtils.newXMLDocument();
var jwtString = JSON.stringify(jwt);
var jwtText = document.createTextNode(BASE64Utility.encode((new java.lang.String(jwtString)).getBytes("UTF-8")));
var jwtElement = document.createElement("JWT");

jwtElement.appendChild(jwtText);

stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken(jwtElement);

d. In the Name field, enter saml_jwt.
e. In the Category field, select SAML2_0.
f. Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.

282 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

a. Select Secure Federation > Manage > Security Token Service.
b. Click Templates.
c. Click Add and name the template SAML2 to JSON. Click OK.
d. Select the SAML2 to JSON template and add the Default SAML 2.0 Token in

Validate mode and a Default Map Module in Map mode.
e. Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created
in the previous steps.
a. Within the Security Token Service panel, select Module Chains.
b. Click Add to create a module chain, with the following values:

Table 43. SAML2 to JSON module chain values

Tab: Field Value

Overview: Name SAML2 to JSON

Overview: Description SAML2 to base64 encoded JSON string
conversion STS chain

Overview: Template SAML2 to JSON

Lookup: Request Type Validate

Lookup: Applies to Address SAML2_AppliesTo

Lookup: Issuer Address SAML2_Issuer

Properties: Default Map Module (JavaScript
file containing the identity mapping rule

saml_jwt

Use the defaults for all of the fields not in the table.
c. Save and deploy the changes.

4. Use curl to test the chain.
a. Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header/>
<SOAP-ENV:Body>
<ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

<wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
<wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">SAML2_Issuer</wsa:Address>

</wst:Issuer>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

<wsa:Address>SAML2_AppliesTo</wsa:Address>
</wsa:EndpointReference>

</wsp:AppliesTo>
<wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
ID="Assertion-uuidbcb46a39-0153-1337-8efa-fec506fb7461" IssueInstant="2016-03-28T10:10:53Z" Version="2.0">

<saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">isam</saml:Issuer>
<saml:Subject>

<saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">0123456789</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
<saml:SubjectConfirmationData NotOnOrAfter="2016-03-28T10:11:53Z"/>

</saml:SubjectConfirmation>
</saml:Subject>
<saml:Conditions NotBefore="2016-03-28T10:09:53Z" NotOnOrAfter="2016-03-29T10:11:53Z">

<saml:AudienceRestriction>
<saml:Audience>jwt_saml</saml:Audience>

</saml:AudienceRestriction>
</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2016-03-28T10:10:53Z">

<saml:AuthnContext>
<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password</saml:AuthnContextClassRef>

</saml:AuthnContext>
</saml:AuthnStatement>
<saml:AttributeStatement>

Chapter 17. Global Settings 283

<saml:Attribute Name="given_name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">john</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">john.doe@example.com</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="iss" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">isam</saml:AttributeValue>

</saml:Attribute>
<saml:Attribute Name="family_name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
<saml:AttributeValue xsi:type="xs:string">doe</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

</saml:Assertion>
</wst:Base>

</ns1:RequestSecurityToken>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The bold element in the SAML2 assertion is mapped to the JSON attributes
in the result.

b. Save this file as saml2.xml.
c. Run the following curl command, where saml2.xml is the WS-Trust 1.2

message:
curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@saml2.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-ENV:Header>
<soap:Body>

<wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wst:RequestSecurityTokenResponse
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuidc1676e30-0153-16a8-86b5-c34fd1aca7a8">

<wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference>
<wsa:Address>SAML2_AppliesTo</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedSecurityToken>
<JWT>eyJzdWIiOiIwMTIzNDU2Nzg5IiwiZ2l2ZW5fbmFtZSI6ImpvaG4iLCJOb3RPbk9yQWZ0ZXIiOiIyMDE2LTAz
LTI5VDEwOjExOjUzWiIsIkF1dGhlbnRpY2F0aW9uTWV0aG9kIjoidXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6MS4w
OmFtOnBhc3N3b3JkIiwiZW1haWwiOiJqb2huLmRvZUBleGFtcGxlLmNvbSIsIkF1ZGllbmNlUmVzdHJpY3Rpb25
Db25kaXRpb24uQXVkaWVuY2UiOiJqd3Rfc2FtbCIsImlzcyI6ImlzYW0iLCJJc3N1ZUluc3RhbnQiOiIyMDE2LT
AzLTI4VDEwOjEwOjUzWiIsImZhbWlseV9uYW1lIjoiZG9lIiwiTm90QmVmb3JlIjoiMjAxNi0wMy0yOFQxMDowO
To1M1oiLCJBdXRoZW50aWNhdGlvbkluc3RhbnQiOiIyMDE2LTAzLTI4VDEwOjEwOjUzWiIsImlzc3VlciI6Iml
zYW0ifQ==</JWT>
</wst:RequestedSecurityToken>
<wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
<wst:Status>

<wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid</wst:Code>
</wst:Status>

</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

</soap:Body>
</soap:Envelope>

The bold embedded element, <JWT> </JWT>) , is the result in a Base64
encoded JSON Web Token:
{

"sub": "0123456789",
"given_name": "john",
"NotOnOrAfter": "2016-03-29T10:11:53Z",
"AuthenticationMethod": "urn:oasis:names:tc:SAML:1.0:am:password",
"email": "john.doe@example.com",
"AudienceRestrictionCondition.Audience": "jwt_saml",
"iss": "isam",
"IssueInstant": "2016-03-28T10:10:53Z",
"family_name": "doe",
"NotBefore": "2016-03-28T10:09:53Z",
"AuthenticationInstant": "2016-03-28T10:10:53Z",
"issuer": "isam“

}

Related tasks:
Mapping a base64 encoded JSON string to a SAML2 token example
You can map a base64 encoded JSON string to a SAML 2 token by using a

284 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

JavaScript mapping rule.

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from
an OpenID Connect Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the
STS, or the mapping can be performed externally via a HTTP request.

OpenID Connect Provider mapping rules
When you write mapping rules for a provider, the primary goal is to augment the
claims that are included in the ID token.

After mapping rule execution, all attributes in the STSUU will be added to the
id_token as a claim, where the attribute key is the key in the id_token, and the
value is the value of the attribute. If there are several attributes with the same key,
then an array containing each attribute will be added to the claim. Some context
information is made available to the user when writing mapping rules; the context
attributes of the passed in STSUU will contain attributes with the type
“urn:ibm:ITFIM:oidc:provider:context”, which can be used to make decisions on
what claims are added, or if any other actions are performed.

These context attributes include:
v The client ID of the client making the request.
v The federation name of the provider servicing the request.
v The redirect URI sent in the request.
v The response type of the request.
v The state parameter of the request.
v The user-consented scopes for the request.

OpenID Connect Relying Party mapping rules
When you write mapping rules for a Relying Party, the resulting STSUU is turned
into a PAC that is used to authenticate the user to a Reverse Proxy via EAI.

The attributes that are included in that PAC will be the attributes of the STSUU,
and the principal will be the first principal which was in the STSUU. When
writing mapping rules for a Relying Party, the values of the id_token will be made
available as Attributes in the STSUU. Some additional context is made available to
the user via the STSUU's context attributes. These attributes will have the types
“urn:ibm:ITFIM:oidc:client:idtoken:param” and
“urn:ibm:ITFIM:oidc:client:token:param”.

These context attributes include:
v All of the claims inside the id_token.
v The raw JWT.
v Any issued access or refresh tokens.
v All of the properties of the issued bearer token if an authorization code flow is

used.
v All of the parameters issued in the response if an implicit flow is used.

Attribute sources
Both OpenID Connect Providers and Relying Parties can be configured to use an
attribute source.

Chapter 17. Global Settings 285

For an OpenID Connect Provider, this can be used instead of a mapping rule.
However for an OpenID Connect Relying Party a mapping rule must still be
present, this mapping rule is required to construct the principal used in the
iv-cred.

For more information about attribute sources, see Managing attribute sources.

Import a mapping rule from another mapping rule
You can reuse mapping rules by importing a mapping rule from another mapping
rule.

When you want to create a new mapping rule, or customize an existing mapping
rule, you can reuse JavaScript code from a previously defined mapping rule. With
this feature, you can define a mapping rule once and then reuse it in other
mapping rules.

Use the function importMappingRule() to specify a mapping rule to import. For
example, you can define a mapping rule that is called Utility.js that contains
functions for obtaining an HTTP header and an HTTP cookie.
function getHeader(name) {

// function for getting HTTP header
}

function getCookie(name) {
// function for getting HTTP cookie

}

If you have another mapping rule that is called Credential.js, which also needs to
obtain HTTP headers, use the following code to include the functions from the
Utility.js mapping rule:
importMappingRule("Utility");
var host = getHeader("Host");
// do something with the host header
var sessionID = getHeader("PD-SESSION-ID");
// do something with the session ID

The function importMappingRule() accepts a list of mapping rule names and
imports each of the mapping rules. For example:
importMappingRule("Utility","Credential","UserIdentity");

Alternatively, you can also make multiple calls to importMappingRule() within one
script. For example:
importMappingRule("Utility");
importMappingRule("Credential");
importMappingRule("UserIdentity");

The JavaScript engine throws an error if you do not specify a mapping rule name,
or if you specify the name of a mapping rule that does not exist.

Use the Local Management Interface (LMI) to view existing mapping rules that are
defined on your system. Select Secure Federation > Global Settings > Mapping
Rules, or Secure Advanced Access > Global Settings > Mapping Rules.

Note:

286 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

On the LMI menu, the icon Import is for importing mapping rules into IBM
Security Access Manager, not for importing a mapping rule into an existing
mapping rule. Use the Edit icon to add the importMappingRule() function to an
existing mapping rule.

Managing Distributed Session Cache
In a clustered appliance environment, session information is stored in the
Distributed Session Cache. To work with these sessions, use the Distributed Session
Cache management page.

About this task

The Distributed Session Cache feature replaces the Session Management Server.
The Session Management Server (SMS) is not supported on IBM Security Access
Manager for Web Version 8 and later.

Procedure
1. From the top menu, select the menu for your activation level.
v Secure Web Settings > Manage > Distributed Session Cache

v Secure Access Control > Global Settings > Distributed Session Cache

v Secure Federation > Global Settings > Distributed Session Cache

All replica set names and the number of sessions in each replica set are
displayed.

2. You can then view the replica set server list and manage sessions in a
particular replica set.
a. To view a list of the servers that are registered with a replica set, select the

replica set and then click Servers.
b. To manage the sessions in a replica set, select the replica set and then click

Sessions.

Tip: Typically, the list of sessions contains many entries. You can locate a
session or a user faster by using the filter in the upper left corner.

Delete a specific session

1) Select the session to delete.
2) Click Delete.
3) In the confirmation window, click Delete Session.

Delete all sessions for a user

1) Select any session for that user.
2) Click Delete.
3) In the confirmation window, click Delete User.

Managing server connections
To use data from outside your appliance in your policies, you must define the
server connection to access the data.

Before you begin

Obtain the connection information for the existing database server you want to
define for your policy information point.

Chapter 17. Global Settings 287

About this task

You can create server connections to data sources, such as Oracle, DB2, solidDB,
PostgreSQL, LDAP, SMTP, Web Service, Cloud Identity, and ISAM Runtime. You
can have multiple servers for an LDAP connection.

Procedure
1. Log in to the local management interface.
2. Click Secure Access Control.
3. Under Global Settings, click Server Connections.
4. Take one of the following actions:

Filter server connections:

a. In the Quick Filter field, type one or more characters. For example,
enter g to search for all server connection names that contain g or
G.

b. Press Enter.

Add a server connection:

a. Click the

drop-down button.
b. Select Oracle, DB2, SolidDB, PostgreSQL, LDAP, SMTP, Web

Service, Cloud Identity or ISAM Runtime.
c. Complete the properties for the new server connection.

Modify an existing server connection:

a. Select a server connection.

b. Click .
c. Complete the properties for the server connection.

Delete a server connection:

Note: Do not delete a server connection if it returns attributes that are
used in a policy or risk score.
a. Select a server connection.

b. Click .
5. Optional: For LDAP connections, take one of the following actions in the

Servers tab.

Add a server connection:

a. Click the

drop-down button.
b. Complete the properties for the new server connection.

Modify an existing server connection:

a. Click .
b. Complete the properties for the server connection.

Delete a server connection:

a. Select a server connection.

b. Click .

Move a server connection:

288 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

||905||

||905||
||905||

a. Select a server connection.

b. Click

or .

What to do next
v For information on server properties, see “Server connection properties.”
v After you define a server connection to a data source, you can create a policy

information point to access this data and use it in policies. See
../admin/task/managingpolicyinformationpoints.dita.

Server connection properties
To access a data source outside of the appliance, define the properties of the server.

The Server Connection properties table describes the properties on the Server
Connections panel for the Advanced Access Control and Federation module
activation levels.
v Advanced Access Control: Configure LDAP, database, web service, or Cloud

Identity server connections so that you can set up policy information points. You
can configure any of the server connection types.

v Federation: Configure an LDAP server as an attribute source for attribute
mapping. Federation does not configure any of the other database server
connection types.

Table 44. Server Connection properties

Property Description

Name Specifies the name for the server connection. Ensure that
the name is unique. Select this name when you define the
policy information point.
Note: The server connection name must begin with an
alphabetic character. Do not use control characters, leading
and trailing blanks, and the following special characters ~ !
@ # $ % ^ & * () + | ` = \ ; " ' < > ? , [] { } / anywhere in
the name.

Description Describes the server connection. This property is optional.

Type Shows the server connection type. (Read only)

JNDI ID (Oracle, DB2,
solidDB, PostgreSQL only)

Specifies the JNDI ID that the server uses. Ensure that the
ID is unique. Use only alphanumeric characters: a-b, A-B,
0-9

Server name (Oracle, DB2,
solidDB, PostgreSQL, SMTP
only)

Specifies the name or IP address for the server.

Port (Oracle, DB2, solidDB,
PostgreSQL, LDAP, SMTP
only)

Specifies the port number where the connection to the
server can be made.

URL (Web Service only) Specifies the URL where the connection to the server can be
made.

User name (Oracle, DB2,
solidDB, PostgreSQL, SMTP,
and Web Service only)

Specifies the user name that has the correct permissions to
access the resources.

Password (Oracle, DB2,
solidDB, PostgreSQL, SMTP,
and Web Service only)

Specifies the password to access the server.

Chapter 17. Global Settings 289

	905	
	905	
	905	

	905	
	905	
	905	

||905||
||905||

||905||||905||
||905||

	905	
	905	
	905	

||905||
||905||

Table 44. Server Connection properties (continued)

Property Description

SSL Specifies whether SSL is used for connecting to the server.
Select True or False. The default value is True.

Driver type (Oracle only) Specifies the driver type. Select Thin or OCI. The default
value is Thin.

Service name (Oracle only) Specifies the name of the service.

Database name (DB2,
PostgreSQL only)

Specifies the name of the database.

Host name (LDAP only) Specifies the host name or IP address of the LDAP server.

Bind DN (LDAP only) Specifies the LDAP distinguished name (DN) that is used
when binding, or signing on, to the LDAP server.
Note: If this value is set to "anonymous", the appliance uses
an anonymous bind to the LDAP directory server. Typically
the bind-dn has significant privileges so that it can be used
to modify LDAP registry entries, such as creating users and
resetting passwords via pdadmin or the Registry Direct
Java API. Using an anonymous connection to LDAP
typically comes with very limited access, perhaps at most
search and view of entries, at the least no access at all. If
anonymous access has sufficient privileges, then it might be
usable for the WebSEAL level of access on users and
groups. This access includes the permission for a user to
change password if "bind-auth-and-pwdchg = yes" is set
("ldap.bind-auth-and-pwdchg = true" for Registry Direct
Java API).

Bind Password (LDAP only) Specifies the password for the LDAP bind DN.
Note: If bind DN (bind-dn) is set to anonymous, you can use
any non-empty string as the value of bind password
(bind-pwd).

Administration hostname
(Cloud Identity only)

Specifies the administration hostname of the Cloud Identity
subscription.

Client ID (Cloud Identity
only)

Specifies the client ID of an API Client on Cloud Identity.

Client Secret (Cloud Identity
only)

Specifies the client secret of an API Client on Cloud
Identity.

SSL Truststore (LDAP, Web
Service, and Cloud Identity
only)

Specifies the truststore that verifies the credentials.

SSL Mutual Authentication
Key (LDAP, Web Service,
and Cloud Identity only)

Label of the client certificate to be presented when
connecting to the LDAP. This property is sourced from SSL
Truststore.
Note: This field is required only if mutual SSL
authentication is required by the server.

Note: For information on SSL configuration, see Configuring SSL connections.

The properties in the following table are connection manager properties. The
defaults that are listed are the current known defaults. All tuning properties are
optional.

290 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

	905	
	905	
	905	
	905	

	905	
	905	
	905	

	905	
	905	
	905	
	905	

Table 45. Tuning properties

Property Description

Aged timeout (seconds)
(Oracle, DB2, solidDB,
PostgreSQL only)

Specifies the amount of time, in seconds, before a physical
connection is discarded by pool maintenance. Specify -1 to
disable this timeout. The default is -1.

Connection timeout
(seconds)

Specifies the amount of time, in seconds, after which a
connection times out.

For Oracle, DB2, solidDB, PostgreSQL, and SMTP, specify
-1 to disable this timeout. The default is 30 seconds.

For LDAP, specify only integers, 1 or greater. The default is
120 seconds.

Max Idle Time (seconds)
(Oracle, DB2, solidDB,
PostgreSQL only)

Specifies the maximum amount of time, in seconds, after
which an unused or idle connection is discarded during
pool maintenance. Specify -1 to disable this timeout. The
default is 1800 seconds.

Max Idle Time (seconds)
(LDAP only)

Specifies the amount of time, in seconds, after which an
established connection is discarded as idle. Set this to a
value lower than the connection idle timeout on the LDAP
server.
Note: This is only applicable for performing Attribute
Mapping from an LDAP server.

Reap time (seconds) (Oracle,
DB2, solidDB, PostgreSQL
only)

Specifies the amount of time, in seconds, between runs of
the pool maintenance thread. Specify -1 to disable pool
maintenance. The default is 180 seconds.

Max pool size (Oracle, DB2,
solidDB, PostgreSQL only)

Specifies the maximum number of physical connections for
a pool. Specify 0 for unlimited. The default is 50.

Max pool size (LDAP only) Specifies the maximum number of connections that are
pooled.
Note: This is only applicable for performing Attribute
Mapping from an LDAP server.

Min pool size (Oracle, DB2,
solidDB, PostgreSQL only)

Specifies the minimum number of physical connections to
maintain in a pool. The aged timeout can override the
minimum.

Purge policy (Oracle, DB2,
solidDB, PostgreSQL only)

Specifies which connections to delete when a stale
connection is detected in the pool. Select from the following
options:

Entire pool

When a stale connection is detected, all
connections in the pool are marked stale, and
when no longer in use, are closed. This is the
default option.

Failing connection only

When a stale connection is detected, only the
connection that was found to be bad is closed.

Validate all connections

When a stale connection is detected, connections
are tested and the ones that are found to be bad
are closed.

Max connections per thread
(Oracle, DB2, solidDB,
PostgreSQL only)

Specifies the limit of open connections on each thread.

Chapter 17. Global Settings 291

	905	
	905	
	905	
	905	
	905	
	905	
	905	
	905	

	905				905	
	905					
	905					
	905					

Table 45. Tuning properties (continued)

Property Description

Cache connections per
thread (Oracle, DB2, solidDB,
PostgreSQL only)

Specifies the number of cache connections for each thread.

Point of contact profiles
Use the local management interface to work with your point of contact profiles.

You can perform the following point of contact profile tasks:
v “Creating a point of contact profile”
v “Updating or viewing a point of contact profile” on page 293
v “Deleting a point of contact profile” on page 293
v “Setting a current point of contact profile” on page 294

Creating a point of contact profile
Create a point of contact server profile to capture the information needed for the
runtime to communicate with the point of contact server.

About this task

You can create point of contact profiles with the Federation module or the
Advanced Access Control module.

Three point of contact profiles provided by Security Access Manager are ready for
use.

When you want to create your own profile that is similar to an existing one, use
Create Like to save time. If you do not want to reuse any of the existing
specifications, create a brand new one with Create. The details are in the following
procedure.

Procedure
1. From the local management interface, select Secure Federation or Secure

Access Control. Then, Global Settings > Point of Contact. A list of point of
contact server profiles displays. The list includes three preconfigured profiles
and any other custom profiles that you created.

2. Take one of the following actions:
v Click Create to create a custom point of contact profile.
v Select a profile from the list and click Create Like to start with values similar

to an existing profile.
3. On the Profile Name page, enter the name of the profile. The first character of

the profile name must be alphanumeric. The maximum number of characters is
200.

4. Optional: Enter a description.
5. Specify the parameter information:
v Enter the information on each tabbed page, and click Next.
v In the Callback Parameters section on each page, click Create to open a

window to add a set of parameter name and value pairs. Click Save when
complete.

292 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

v Add as many parameters as you need. The Value field might be empty for
some parameters.

v To delete a parameter name from the list, select the parameter and click
Delete.

6. At the Summary page, if everything is correct, click Finish.
7. Deploy the pending changes.

What to do next
v See “Callback parameters and values” on page 294 for descriptions.
v You might want to change the current point of contact profile. See “Setting a

current point of contact profile” on page 294.

Updating or viewing a point of contact profile
Update or view a point of contact server profile.

About this task

You cannot update the preconfigured point of contact profiles.

Procedure
1. From the local management interface, select Secure Federation or Secure

Access Control. Then, Global Settings > Point of Contact. A list of point of
contact server profiles displays.

2. Perform one of the following actions:
v Update

a. Select a profile from the list that is not a preconfigured profile and click
Update to change the configuration details.

b. Click Next to see each page and make updates if necessary.
c. On the Summary page, click Finish to save your changes.
d. Deploy the changes

v View
a. Select a profile from the list and click Properties to look at the

configuration details without making updates.
b. Click on each tab to see the information.
c. Click OK when finished.

What to do next

See “Callback parameters and values” on page 294 for more information about the
properties.

Deleting a point of contact profile
Use the local management interface to remove a point of contact profile.

About this task

You cannot delete the following profiles:
v A preconfigured point of contact profile.
v A profile that is set as the current profile. Select another profile as the current

one, if necessary.

Chapter 17. Global Settings 293

See “Setting a current point of contact profile.”

Procedure
1. From the local management interface, select Secure Federation > Global

Settings > Point of Contact or Secure Access Control > Global Settings >
Point of Contact. A list of point of contact server profiles displays.

2. Select a profile from the list, that is not a preconfigured profile, and click
Delete. The details of the selected profile display.

3. Review the profile to ensure that it is the one you want to delete.
4. Click Finish.
5. Click OK to confirm.
6. Deploy the change.

Setting a current point of contact profile
Set a point of contact profile as the current one so that the federation runtime
communicates with the point of contact server using the correct set of
specifications.

Procedure
1. From the local management interface, select Secure Federation > Global

Settings > Point of Contact or select Secure Access Control > Global Settings
> Point of Contact. A list of point of contact server profiles displays. The list
includes three preconfigured profiles and any other custom profiles that you
created. The green dot indicates the current profile.

2. To change the current profile, select the profile you want to use as the current
one and click Set As Current. The current profile indicator displays next to the
profile you selected.

3. Deploy the changes.

Callback parameters and values
Specify the callback parameters and values when you define a point of contact
profile.

Sign In callbacks

fim.user.request.header.name
The name of the header that contains the user name of the user.

Data type: String

Example: iv-user

fim.attributes.response.header.name
The name of the header that contains the attributes of the user.

Data type: String

Example: am-fim-eai-xattrs

fim.groups.response.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: fim.groups

fim.server.response.header.name
The name of the header that contains the hostname that authenticates the user.

294 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Data type: String

Example: fim.server

fim.target.response.header.name
The name of the header that contains the redirect URL.

Data type: String

Example: am-fim-eai-redir-url

fim.user.response.header.name
The name of the header that contains the user name of the user.

Data type: String

Example: am-fim-eai-user-id

fim.user.session.id.response.header.name
The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.cred.response.header.name
The name of the header that contains the IVCred of the user.

Data type: String

Example: am-fim-eai-pac

url.encoding.enabled
Indicates whether the EAI header names and values are URL encoded. The
default setting for this property is false. The EAI header names and values are
not URL encoded.

Data type: Boolean

Example: false

Sign Out callbacks

fim.user.session.id.request.header.name
The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

Local ID

fim.attributes.request.header.name
The name of the header that contains the attributes of the user.

Data type: String

Example: fim.attributes

fim.cred.request.header.name
The header that contains the IVCred of the user.

Chapter 17. Global Settings 295

Data type: String

Example: iv-creds

fim.groups.request.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: iv-groups

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

Authenticate

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

authentication.macros
A list of macros that defines contextual information to pass to the web reverse
proxy login page. The macros you specify can customize an authentication
login page for a specific service provider. For more information, see
Customizing the SAML 2.0 login form.

Data type: String

Example: If an identity provider wants to display the provider ID and target
URL of a partner, specify the following macros:

%PARTNERID%,%TARGET%

296 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

Index

A
access token OAuth 99
Advanced Access Control

point of contact profile 292
advanced configuration

category filter 199
property descriptions 199

API definition
API definition

attaching to resource 134
publishing 134

API protection
client 131, 133
definition 126

API protection client
managing 133
registering 131

API protection definition
creating 125
managing 126
PreTokenGeneration mapping rule

update 7
appliances

clusters 287
application interface

manage 15
attribute IDs

version 7.0
usage 24

attributes
oauthScope 137

authentication
client 114
configuring 52

authentication mechanism
configuring

end user license agreement 72
configuring consent to device

registration 71
configuring HTTP redirect 70
configuring username and

password 67
authentication service

configuration 49
authorization code OAuth 99
authorization grant OAuth 99

B
backward compatibility mode

one-time password 6

C
callback parameters

point of contact profile 294
certificate authentication 21
certificates

client
See client certificates

client
managing API protection 133
registering API protection 131

client authentication
OAuth 2.0 token endpoint 114
types 114

client certificate authentication 21
clients

OAuth 99
cluster

cluster configuration management
page

LMI 28
configuration 28
master nodes

configure 28
registration 28
unregistration 28

cluster signature file
export 28
import 28

clusters
Distributed Session Cache 287

compliance
NIST SP800-131a 41

configuration
advanced 198
Knowledge Questions authentication

mechanism 81
Consent to Federate Page

customization 255
description 255

custom domain
defining 191
policy attachments 191

D
database configuration

upgrade 1
DB2

server connection 287
server connection properties 289

DB2 database
upgrade 4

defining a custom domain 191
definition

creating API protection 125
managing API protection 126

deploying changes 193
device fingerprints

managing 164
distributed session cache 195
Distributed Session Cache (DSC)

managing 287
DSC 195

E
endpoints

OAuth
definitions 102
URLs 102

error messages
OAuth HTTP 164

event pages
customization overview 244
overview 245

F
federation

OAuth 2.0
endpoint definitions 102
naming 102
URIs 102

OAuth configuration 125
point of contact profile 292

G
getting started

configure 13

H
HTML pages

SAML 2.0 245

I
identity mapping

SAML 2.0 token, local user 278
identity provider mapping

SAML 2.0 token, local user 277
isamcfg

command line reference 30
overview 25
reference 30
WebSEAL point of contact 27

isamcfg tool 32
appliance 25
external machine 26
reverse proxy instance 26
WebSEAL configuration 34

isamcfg worksheet 32
WebSEAL 34

L
LDAP

server connection 287
server connection properties 289

listening interfaces 39

297

LMI
cluster configuration management

page 28
local user identity mapping

from 277
to 278

login form
customizing (overview) 244

M
macros

HTML pages for SAML 2.0 245
mapping rules

custom
one-time password 272

customizing for context data 92, 266
managing 86, 260
OTPDeliver 90, 264
OTPGenerate 89, 263
OTPGetMethods 88, 262
OTPVerify 91, 265
PostTokenGeneration 151, 269
PreTokenGeneration 7
SAML 2.0 token to local identity 277

N
NIST SP800-131a compliance 41

O
OAuth

API protection client 131
endpoints 102
federation configuration 125
HTTP error responses 164
reverse proxy configuration 119

OAuth 2.0
about 105
authorization code 99
concept 105
endpoint

definitions 102
URLs 102

overview 105
state management 116
template page types 161
token endpoint client

authentication 114
trusted clients management 117
workflow 105

OAuth STS interface 165
Oauth support 99
oauth_20_pre_mapping.js mapping rule

file 7
oauthScope attributes 137
OIDC

reverse proxy configuration 119
one-time password

backward compatibility mode 6
configuring an RSA mechanism 59
configuring delivery 63
configuring HOTP 53
configuring MAC 58
configuring TOTP 56

one-time password (continued)
delivery method 88, 151, 262, 269
managing mapping rules 86, 260

Oracle
server connection 287
server connection properties 289

Oracle database
upgrade 5

OTP
backward compatibility mode 6

OTPDeliver
usage 90, 264

OTPGenerate
usage 89, 263

OTPGetMethods
usage 88, 262

OTPVerify
usage 91, 265

P
page identifiers

HTML for SAML 2.0 245
pages, event

SAML 2.0 245
pending changes 193
point of contact

token endpoint 114
point of contact profile

callback parameters 294
creating 292
current 294
deleting 293
updating 293

policy
policy

attaching to resource 134
publishing 134

policy attachments 191
PostgreSQL

server connection 287
server connection properties 289

PostTokenGeneration
usage 151, 269

PreTokenGeneration mapping rule 7
protected resource OAuth 99

R
replica sets

management 287
resource owner OAuth 99
resource server OAuth 99
reverse proxy

OAuth configuration 119
OIDC configuration 119

reverse proxy instance
isamcfg 27

runtime component
configure 17
manage 17

runtime listening interfaces 39
runtime security services

attribute ID changes 24
configure for client certificate

authentication 21

S
SAML 2.0

Consent to Federate Page
customization 255

event pages 245
local user mapping 277, 278
page identifiers 245
responses 255

scenarios
authentication configuration 50

scope attributes
OAuth 137

server connection
properties 289
tuning properties 289

server connections
DB2 287
LDAP 287
Oracle 287
PostgreSQL 287
SMTP 287
solidDB 287

servers
OAuth 99

service provider mapping
SAML 2.0 token, local user 278

sessions
information 287

single sign-on
event pages 244
HTML pages 245

SMTP
server connection 287
server connection properties 289

solidDB
server connection 287
server connection properties 289

solidDB database
upgrade 3

specifications OAuth 99
starting configuration

steps 13
state management OAuth 2.0 116
step-up authentication

configuring 50

T
template files 224

macros 256
template files root

manage 224
template pages

consent to authorize 161
WAYF page 254

tool
isamcfg 25

trusted clients management
overview 117

U
upgrade

database configuration 1
DB2 database 4
Oracle database 5

298 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

upgrade (continued)
solidDB database 3

user self-administration 164
username and password authentication

configuring 67

V
version 7.0

attribute ID updates 24

W
WAYF page

template 254
WebSEAL

configuring 115
point of contact 115
token endpoint 115
use 7.0 attribute IDs 24

WebSEAL policy enforcement point
isamcfg 27

Where Are You From (WAYF) page
See WAYF page

Index 299

300 IBM Security Access Manager Version 9.0.5 March 2018: Advanced Access Control Configuration topics

IBM®

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Upgrading configuration
	Upgrading external databases with the dbupdate tool (for appliance at version 9.0.0.0 and later)
	Upgrading a SolidDB external database (for appliance versions earlier than 9.0.0.0)
	Upgrading a DB2 external runtime database (for appliance versions earlier than 9.0.0.0)
	Upgrading an Oracle external runtime database (for appliance versions earlier than 9.0.0.0)
	Setting backward compatibility mode for one-time password
	Updating template files
	Updating PreTokenGeneration to limit OAuth tokens
	Reviewing existing Web Reverse Proxy instance point of contact settings
	Upgrading the signing algorithms of existing policy servers

	Chapter 2. Getting started with Advanced Access Control
	Chapter 3. Managing application interfaces
	Chapter 4. Managing the runtime component
	Chapter 5. Managing user registries
	Chapter 6. Runtime security services external authorization service
	Configuring runtime security services for client certificate authentication
	Permitting access decisions when runtime security services cannot be contacted
	Retaining the version 7.0 attribute IDs in existing policies

	Chapter 7. Using the isamcfg tool
	Configuring an appliance reverse proxy instance from the appliance
	Configuring an appliance reverse proxy instance from an external machine
	Configuring a WebSEAL instance
	Configuring WebSEAL in a highly available environment
	isamcfg reference
	isamcfg command line reference
	isamcfg Security Access Manager appliance configuration worksheet
	isamcfg WebSEAL configuration worksheet

	Using a response file

	Chapter 8. Adding runtime listening interfaces
	Chapter 9. Support for compliance with NIST SP800-131a
	Chapter 10. Authentication
	Authentication Service configuration overview
	Authentication configuration scenarios
	Configuring step-up authentication
	Configuring authentication

	Configuring an HOTP one-time password mechanism
	Configuring a TOTP one-time password mechanism
	Configuring a MAC one-time password mechanism
	Configuring an RSA one-time password mechanism
	Configuring one-time password delivery methods
	Configuring username and password authentication
	Configuring an HTTP redirect authentication mechanism
	Configuring consent to device registration
	Configuring an End-User License Agreement authentication mechanism
	Configuring an Email Message mechanism
	HTML format for OTP email messages

	Configuring the reCAPTCHA Verification authentication mechanism
	Configuring an Info Map authentication mechanism
	Embedding reCAPTCHA verification in an Info Map mechanism
	Available parameters in Info Map
	Embedded Cloud Identity API calls in an Info Map mechanism

	Configuring a Knowledge Questions authentication mechanism
	Configuring a FIDO Universal 2nd Factor authentication mechanism
	Enabling or disabling authentication policies
	Managing mapping rules
	Authentication Service Credential mapping rule
	OTPGetMethods mapping rule
	OTPGenerate mapping rule
	OTPDeliver mapping rule
	OTPVerify mapping rule
	Customizing one-time password mapping rules to use access control context data

	One-time password and authentication template files
	Push notification registration
	Obtaining the required authentication credentials to configure push notification for IBM Verify

	Cloud Identity API Integration
	Cloud Identity JavaScript
	Authentication flow
	User Self Care flow

	Chapter 11. OAuth 2.0 and OIDC support
	OAuth and OpenID Connect concepts
	OAuth 2.0 concepts
	OpenID Connect concepts

	OAuth 2.0 endpoints
	OAuth 2.0 and OIDC workflows
	Client authentication considerations at the OAuth 2.0 token endpoint
	Configuring an authenticated token endpoint with WebSEAL as the point of contact

	State management
	Trusted clients management
	Proof Key for Code Exchange support
	Reverse proxy configuration for OAuth and OIDC provider
	Configuring a reverse proxy for OAuth and an OIDC Connect provider
	Viewing a reverse proxy log for an automated configuration
	Example reverse proxy log for OAuth and OIDC configuration
	Removing reverse proxy configuration for OAuth and OIDC provider

	Configuring API protection
	Creating an API protection definition
	Managing API protection definitions
	API Protection token management properties
	API Protection OpenID Connect Provider properties
	PIN policy
	Registering an API protection client
	Managing registered API protection clients
	Managing policy attachments
	Using oauthScope attributes in an access control policy
	Uploading OAuth response files
	OAuth introspection
	OAuth revocation endpoint

	OIDC Claims customization
	Client authentication to /token through an incoming JSON Web Token
	Passing parameters through JWT in a request to /authorize
	Mapping rules for OAuth and OIDC
	Managing OAuth 2.0 and OIDC mapping rules
	OAuth 2.0 and OIDC mapping rule methods
	OAuth and OIDC mapping rules files
	OAuth and OIDC mapping rules actions
	Customizing OAuth tokens by updating the sample PreTokenGeneration mapping rule
	OpenID Connect mapping rules
	OpenID Connect Provider mapping rules
	OpenID Connect Relying Party mapping rules
	Attribute sources
	Updating mapping rules when enabling OIDC

	Device flows verification uri

	OAuth 2.0 template files
	OAuth 2.0 template page for consent to authorize
	Error responses
	User self-administration tasks for OAuth
	Managing OAuth 2.0 authorization grants

	OAuth STS Interface for Authorization Enforcement Points
	API Protection form post response mode
	Access policy for OAuth or OIDC
	Making an OAuth or OIDC consent decision using access policy

	OIDC Dynamic Clients
	OIDC Dynamic Clients- Authentication and deployment
	OIDC Dynamic Clients- Register a client
	OIDC Dynamic Clients- Clients Management
	OIDC Dynamic Clients- Custom Identifiers

	Chapter 12. Mobile Multi-Factor Authentication
	Authenticator registration
	Authentication method enrollment
	Configuring Mobile Multi-Factor Authentication
	MMFA mapping rule methods

	Chapter 13. Access control policies
	Defining a custom application for policy attachments
	Invoking the RTSS XACML engine
	ContextId JSON example
	ApplicationId JSON example
	resource-id JSON example

	Chapter 14. Defining a custom domain for policy attachments
	Chapter 15. Deploying pending changes
	Chapter 16. Options for handling session failover events
	Option 1: No handling of failover events
	Option 2: The distributed session cache

	Chapter 17. Global settings
	Managing advanced configuration
	Advanced configuration properties

	Managing user registries
	Tuning runtime application parameters and tracing specifications
	Template files
	Managing template files
	Customizing the consent page
	Template page scripting
	Template files reference
	Consent to register device template files
	User self-care template files
	Authentication process
	Authentication mechanisms
	Authentication error template files
	OAuth template files
	Customizing SAML 2.0 pages

	Template file macros

	Mapping rules
	Managing JavaScript mapping rules
	Managing mapping rules
	Authentication Service Credential mapping rule
	OTPGetMethods mapping rule
	OTPGenerate mapping rule
	OTPDeliver mapping rule
	OTPVerify mapping rule
	Customizing one-time password mapping rules to use access control context data

	Managing OAuth 2.0 mapping rules
	OAuth 2.0 mapping rule methods

	Actions to be performed in mapping rules
	MMFA mapping rule methods
	JavaScript whitelist
	Managing JavaScript mapping rules
	Customizing SAML 2.0 identity mapping
	Mapping a local identity to a SAML 2.0 token
	Mapping a SAML 2.0 token to a local identity

	STSRequest and STSResponse access using a JavaScript mapping rule
	Mapping a JSON Web Token to a SAML2 token example
	Mapping a SAML2 token to a JSON Web Token example

	OpenID Connect mapping rules
	OpenID Connect Provider mapping rules
	OpenID Connect Relying Party mapping rules
	Attribute sources

	Import a mapping rule from another mapping rule

	Managing Distributed Session Cache
	Managing server connections
	Server connection properties

	Point of contact profiles
	Creating a point of contact profile
	Updating or viewing a point of contact profile
	Deleting a point of contact profile
	Setting a current point of contact profile
	Callback parameters and values

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

