
IBM InfoSphere Classic Federation Server for z/OS
Version 11 Release 3

Guide and Reference

���

IBM InfoSphere Classic Federation Server for z/OS
Version 11 Release 3

Guide and Reference

���

Note
Before using this information and the product that it supports, read the information in “Notices” on page 527.

This edition applies to InfoSphere Classic Federation for z/OS (program number 5655-IM4) and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Chapter 1. Overview of product capabilities

With IBM® InfoSphere® Classic Federation Server for z/OS®, you gain many
features that help you access and manipulate data across many System z® data
sources.

Introduction to Classic federation
Classic federation supports information management initiatives that require
accurate, trusted mainframe data integration.

Classic federation delivers the non-relational data on mainframes that you need to
stay competitive in a global economy. To keep pace with shifting requirements and
accelerating rates of change, an enterprise-scale business must integrate
information in diverse proprietary systems on demand. Classic federation delivers
up-to-date mainframe data to your data management solutions.

Classic federation provides the latest information to people, processes, or
applications. Continue to use your mainframe data as you always have, while
sharing it with the rest of your information infrastructure. Whether your business
requires mainframe data in e-Business, business intelligence, or data integration
solutions, use Classic federation to deliver and manage mainframe information as
you need it, when you need it:
v Derive maximum value from information assets across your organization.
v Ensure that mainframe information assets readily participate in all

information-dependent initiatives, regardless of format.
v Increase productivity by reducing dependence on the many proprietary APIs

that define the mainframe data environment.
v Provide data currency (latency) at the precise level that your business

applications require, whether that latency is real-time, yearly, or anything in
between.

v Accelerate time to value and time to market with one consistent approach to
integrating mainframe data with the processes, methodologies, and tools that
you choose.

Classic federation capabilities and features
Classic federation provides direct mainframe data access to meet your
information-driven enterprise needs.

Direct mainframe data access

Use Classic federation to query or update mainframe data by mapping it to logical
relational tables in a Classic data server. Classic federation uses SQL-based access,
which means that you can use standard applications and interfaces, such as ODBC
or JDBC, without moving your data from the source database or file system.
Federated queries enable you to join data or update transactions across different
source databases or file systems, such as IMS™ and CA-Datacom.

Downstream deployments that can access your data include e-commerce Web sites,
enterprise self service portals, business intelligence systems, and data warehousing
solutions.

© Copyright IBM Corp. 2003, 2015 1

Classic federation can query, update, or transfer mainframe data in the following
z/OS databases or file systems:
v IMS
v CA-IDMS
v Adabas
v VSAM

Classic federation also supports the following mainframe data sources:
v DB2® for z/OS
v CA-Datacom
v Transactional VSAM (TVS)
v Sequential (SAM)

SQL support

Classic federation provides standards-based relational access to non-relational
mainframe data by using applications and tools that use SQL.

By using SQL you can read from and write to mainframe data sources. You can
return SQL result sets to federated queries or update the data at the source. Classic
federation provides secure and reliable SQL query and update support for reading
and writing your data. In addition, Classic federation takes advantage of
multi-threading with native drivers for scalable performance.

Query and update data from multiple source systems as if they were one system.
Examples include transactional updates across multiple systems, such as

Web sites Web portals Self-service
portals

Business
intelligence systems

Logical relational tables

Classic federation

DB2
For z/OS

VSAM,
TVS, IAM, and

sequential

IMS Software AG
Adabas

CA
Datacom

CA
IDMS

Figure 1. Classic federation with InfoSphere Classic Federation Server for z/OS

2 Guide and Reference

Transactional VSAM and CA-Datacom. The level of update support depends on
the capabilities of the source database management system (DBMS).

Metadata-driven SQL access

Classic federation makes use of metadata mappings in logical tables to make
mainframe data appear as an ODBC- or JDBC-compliant relational data source.
You set up Classic federation by mapping relational table structures to your
existing physical mainframe databases and files.

You can use the graphical user interface (GUI) in the Classic Data Architect tool to
prototype your queries. By mirroring the queries that your applications use, you
can verify that the queries retrieve the correct data. You can then develop your
applications concurrently and refine your definitions to optimize query
performance. Your relational tools then have standards-based access with ODBC,
JDBC, or call-level interface (CLI) interfaces.

Classic federation and IBM information management products
Classic federation provides IBM information management products with seamless
access to your z/OS data sources.

InfoSphere Information Server tools dynamically import the logical table, column,
and view definitions on your Classic data server into their own metadata stores or
repositories. After the metadata is available, the tools access your z/OS data by
using their native abilities to access relational databases. This automated metadata
and operational integration ensures reusability while maintaining the
independence and integrity of each solution.

InfoSphere DataStage® uses Classic federation to extract, transform, and repackage
z/OS data as you need it before delivering it to one or more target databases. In
addition to the flexible model that supports SQL-based access, Classic federation
provides a unique interface for InfoSphere DataStage that optimizes data
transformation flow while minimizing the use of z/OS resources. This special
interface shifts the reformatting of the z/OS data from the Classic data server that
runs on z/OS to the InfoSphere Information Server engine on Linux, UNIX, or
Microsoft Windows.

Scenario for mainframe data access
The following business scenario describes a real-world solution that use Classic
federation, based on stories about a fictitious company named JK Life & Wealth.

Existing infrastructure

The insurance division of JK Life & Wealth wants to deploy an interactive voice
response (IVR) system and self service Web sites.

JK Life & Wealth wants to reduce call volume at the call center, where
representatives take calls from agents who deal with clients directly. The call center
processes policy management data in an IMS system that consists of 1000 IMS
transactions. In addition to the IMS data, the call center works with claims and
billing data in VSAM and IBM DB2 systems.

The existing mainframe environment relies on a complex application deployment
that represents decades of investment and evolution. JK Life & Wealth wants to
leverage that investment and continue to take advantage of the transactional speed,

Chapter 1. Overview of product capabilities 3

security, and reliability of the mainframe systems.

Requirements

After the company deploys the interactive voice response system and the self
service environment, the mainframe data sources must continue to support the
existing call center with minimal disruption. The company wants a staged solution
that shows value every 3 - 6 months, and the solution must deliver performance
and accuracy that maintains credibility with customers.

The self service Web sites run on IBM WebSphere® Application Server. The agents,
providers, and customers who visit the sites need an easy-to-use interface. These
users do not have the more specialized skills of the call center representatives, who
understand the character-based interfaces that are specific to each mainframe data
source.

Traditional solutions

Typical solutions are too complex and costly. Some approaches rely on
point-to-point architectures, where each data source has its own client interface. A
change to a business rule might require modifications to multiple applications,
leading to duplication of effort, inconsistencies, and substantial delays before
enforcement.

The figure shows a different approach that relies on mainframe programs to extract
the data to a relational database and Web-based tools to call the mainframe
transactions directly. Some information management professionals call this
approach tightly coupled integration:

4 Guide and Reference

This solution transfers the mainframe data to an Oracle database that the
interactive voice response system can then query by using standard tools. This
approach requires an extract-transform-load (ETL) solution that relies on COBOL
extract applications, and has the following disadvantages:
v Because of the large volume of data, you can refresh the Oracle database only

once every 36 hours.
v The stale data leads to errors and customer dissatisfaction.
v Workload increases on the source mainframe systems.
v The hardware and software for the ETL solution costs millions of dollars.

For the self service project, the company considered calling mainframe transactions
directly by using Web-based transaction management tools. This approach requires
an enterprise application integration (EAI) project and also has significant
limitations:
v Enterprise application integration projects are costly because they rely on expert

mainframe skills.
v Tightly coupled integration increases the workload on the source system.
v Repurposing the native transactions requires too much maintenance overhead.

For example, the company might devote 10 person hours per transaction to
repurpose the IMS transactions for Web-based integration. With 1000 IMS
transactions, the company might invest in excess of ten thousand person hours
in a solution that produces 1000 points of integration to maintain. This approach
does not reuse the data effectively.

IMS

Call center

Policy
management

Added workload on
the source z/OS system

VSAM

Claims

Billing

AIX

Self-service
Web sites

Windows

Doctors

Agents

Customers

Agents
Customers

Oracle

IVR system

DB2

COBOL extract applications

Tightly coupled integration

Queries

Queries

Web-based tools
call transactions

Hand coded
programs

extract data

Restaged relational data
combines sources into

a common format

Figure 2. Traditional solution that integrates the data by using mainframe programs and
transaction management tools.

Chapter 1. Overview of product capabilities 5

Solution

After evaluating the options, the company chose Classic federation to provide
direct access to the mainframe data.

In the first stage of implementation, Classic federation connects the interactive
voice response system directly to the account and claim information in the IBM
DB2 and VSAM systems and the policy management data in IMS. Classic
federation leverages the inherent SQL capabilities of the tools in the interactive
voice response system to make the mainframe data appear to be an
ODBC-compliant data source. Customers and agents can now retrieve information
about their accounts and the status of their claims from the interactive voice
response system, thereby decreasing the volume of more costly inquiries at the call
center.

The interactive voice response solution demonstrates value in the first 3 - 6
months. The insurance division decides to move ahead with the second stage and
integrate the same data with the self service Web sites.

IMS

Call center

Policy
management

z/OS

VSAM

Claims

DB2

Billing

Windows

IVR system

Classic
federation

Agents
Customers

IVR solution

Figure 3. Architecture of the interactive voice response solution.

6 Guide and Reference

Classic federation now connects IBM WebSphere Application Server directly with
IBM DB2, VSAM, and IMS data, with minimal processing overhead on the
mainframe. Self service customers can now process billing, policies, and claims
accurately, accessing up-to-the-minute data in a single, friendly Web interface.
Users access the data transparently, regardless of its location on the mainframe.

In this example, the integration was complete in 200 person hours, compared to
the ten thousand person hours that the traditional solutions required. The
investment of skilled time and resources was minimal. Classic support for
industry-standard interfaces made it simpler to migrate later to a J2EE
development environment by switching to the Classic JDBC client.

Release notes for IBM InfoSphere Classic Federation Server for z/OS,
version 11.3

The Release Notes® include information about new functionality included in
Version 11.3 and changes in existing functionality.

Contents
v “What's New”
v “Migration considerations” on page 8

What's New
The following items are key new features in Version 11.3.

Metadata catalog improvements

IMS

Call center

Policy
management

z/OS

VSAM

Claims

DB2

Billing

AIX

Self-service
Web sites

Windows

IVR system

Classic
federation

Classic
federation

Doctors

Agents

Customers

Agents
Customers

IVR solution

Self-service

Figure 4. Architecture of the self service solution.

Chapter 1. Overview of product capabilities 7

v Performance improvements reduce the time needed to access objects in
the metadata catalog. The time to needed to run the catalog maintenance
utility processes and the run time access to catalog objects is reduced.

v Improved metadata catalog access time eliminates the need to use a
linear metadata catalog. The new catalog is faster than linear catalog
access and provides full update capability to the catalog.

v Using the zFS file system to store metadata catalog files increases catalog
capacity.
– The zFS file system permits very large numbers of objects to be

described. For example, a 4GB metadata catalog can accommodate
approximately five million column definitions spread across three
thousand table definitions.

– The maximum supported size of the zFS resident data component of
the metadata catalog is approximately 254GB, approximately 127
times larger than the largest supported sequential file system
(QSAM/BSAM) resident catalog . At this size the catalog can describe
approximately 75 million tables of 300 columns each.

Migration considerations
The following migration considerations apply to version 11.3 of Classic federation.

Upgrading the metadata catalog
An upgrade is required for the metadata catalog. The installation
customization process includes the steps required to upgrade the metadata
catalog. For more information, see Upgrading metadata catalogs.

Migrating configuration files
An EXPORT/IMPORT operation is required to migrate configuration files.
The installation customization process includes the steps required to export
the configuration and to import the configuration into a new configuration
file that includes all new configuration parameters and their default values.
For more information, see Installing Classic data servers.

Release notes for InfoSphere Classic Data Architect, Version 11.3
Updated information for Version 11.3 of InfoSphere Classic Data Architect is
provided in release notes.

Migrating the workspace from a previous version of CDA
If you are migrating from a previous version of Classic Data Architect you might
have to migrate your workspace the first time you start Classic Data Architect. The
new views and perspective changes are not displayed until after the migration.
The procedure for migrating from an older version of Classic Data Architect varies
depending on the version you are migrating from:

Migrating from CDA Version 11.1
If you are using the Data perspective you need to open it the first time you
use version 11.3 of CDA by selecting Window > Open Perspective > Data.

Migrating from CDA Version 10.1

v The first time you start the new version of Classic Data Architect, a
dialog box will appear asking you to confirm the migration of the
workspace. Classic Data Architect will restart when the migration
completes.

8 Guide and Reference

v If you are using the Data perspective you need to open it the first time
you use version 11.3 of CDA by selecting Window > Open Perspective
> Data.

Migrating from CDA Version 9.5

v Reset the Data perspective by selecting Window > Reset Perspective.
v Display the new default perspective by selecting Window > Open

Perspective > Replication.
v If you are using the Data perspective you need to open it the first time

you use version 11.3 of CDA by selecting Window > Open Perspective
> Data.

v Recreate your data source connections in the Data Source Explorer.

When the workspace is migrated, the new views, the Replication perspective, and
the Data perspective are available.

Overview of IBM InfoSphere Classic Federation Server for z/OS
InfoSphere Classic Federation Server for z/OS is a complete, high-powered
solution that provides SQL access to mainframe databases and files without
mainframe programming.

Using the key product features, you can:
v Read from and write to mainframe data sources using SQL.
v Map logical relational table structures to existing physical mainframe databases

and files.
v Use the Classic Data Architect graphical user interface (GUI) to issue standard

SQL commands to the logical tables.
v Use standards-based access with ODBC, JDBC, or CLI interfaces.
v Take advantage of multi-threading with native drivers for scalable performance.

The architecture of IBM InfoSphere Classic Federation Server for z/OS consists of
the following major components:
v Data server
v Data connectors
v Classic Data Architect
v Metadata catalog
v Clients (ODBC, JDBC, and CLI)
v Stored procedure connectors

Classic data servers
A Classic data server runs in its own address space.

Classic data servers perform the following functions:
v Determine the type of data to access
v Create relational result sets from native database records
v Maintain the environment
v Process SQL queries by performing SQL functions that include:

– Accepting SQL queries from clients
– Transforming SQL queries into the native file or database access language

Chapter 1. Overview of product capabilities 9

– Optimizing queries
– Processing post-query result sets as needed

A Classic data server accepts connection requests from client applications. Client
applications can access a Classic data server using the ODBC, JDBC, or CLI client
that InfoSphere™ Classic Federation Server for z/OS provides.

The architecture of a Classic data server is service-based. The Classic data server
consists of several components, or services.

Services and their functions
When a Classic data server is created during the installation customization process,
the services required for the Classic data server are pre-configured.

Configuration definitions include the following server-wide and individual service
categories:
v Server-wide, or global, definitions that affect all services within the Classic data

server
v Federation-specific service definitions that consist of unique configuration

information that affects each service individually.

Each service is a member of a service class. Services also have a service name and
a task name.

service class

The type of service, such as the query processor service (QP or QPRR).

service name

The unique name that references a specific instance of a service in a Classic
data server, such as additional instances of a query processor service to
improve performance.

task name

The load module that is associated with services of a service class, such as
CACQP for the query processor service class.

A service class contains a specific set of configuration parameters. The values of
the configuration parameters define a service instance and the behavior of that
service.

Critical services

A critical service is a service that is critical to the operation of the Classic data
server. The Classic data server cannot continue running when one or more services
that are critical to the operation of the server are stopped or stop abnormally.

The following service is a critical service:

Logger service

The logger service receives messages from all services in the Classic data
server and coordinates writing the messages to common logs.

You cannot stop a critical service. If you attempt to stop a critical service by
issuing a STOP,SERVICE command or a STOP,TASKID command, a warning
message is issued.

10 Guide and Reference

Detailed information describes each service that runs in the Classic data server,
each service configuration parameter, and configuration methods for
administrating the configurations for the Classic data server.

Region controller:

The region controller monitors and controls the other services that run within the
data server.

The region controller directly or indirectly activates each service based on the
configuration parameters that you define in a the service definition for the region
controller service. The region controller starts, stops, and monitors the other tasks
that run within the data server.

The region controller also includes a z/OS MTO (Master Terminal Operator)
interface that you can use to monitor and control a data server address space.

Connection handlers:

The connection handler listens for connection requests from client applications and
routes them to the appropriate query processor task.

The connection handler task can load the following communication protocols:
v TCP/IP
v z/OS cross-memory services

A local client application can connect to a data server using any of these methods.
Remote client applications use TCP/IP to communicate with a remote server.

Query processors:

The query processor is the subcomponent of the data server that processes SQL
requests. The SQL requests can access a single database or file system or reference
multiple types of databases or file systems.

There are two types of query processors:

Single-phase commit query processor (CACQP)
Accesses and joins information from multiple data sources and performs
updates to a single data source.

Two-phase commit query processor (CACQPRRS)
Accesses and joins information from multiple data sources and performs
updates to multiple data sources. The two-phase commit query processor
uses z/OS Resource Recovery Services to coordinate the data source
updates. This query processor can participate in distributed transactions by
using a JDBC client and a distributed transaction manager (such as
WebSphere Application Server).

The two-phase commit query processor supports the CA-Datacom, DB2 for
z/OS, IMS, and transactional VSAM data sources.

You cannot mix these two types of query processors within a single data server.

The data server configuration must include a service definition for a query
processor.

Chapter 1. Overview of product capabilities 11

The query processor handles requests from the Classic JDBC, ODBC, and CLI
clients in form of SQL. It invokes one or more connectors to access the target
database, file system, or stored procedures that are referenced in a SQL request
from the client.

By using native database and file facilities, the query processor maintains the
structural integrity and the performance characteristics of the data source.

Initialization services:

Initialization services are special tasks that initialize different types of interfaces to
underlying database management systems and z/OS system components.

Initialization services prepare the data server execution environment. For example,
an initialization service is provided to activate the DRA interface that the IMS DRA
connector uses to access IMS data.

The following table lists the initialization services that provide access to specific
data sources.

Table 1. Initialization services for specific data sources.

Data source Initialization services

CA-Datacom
CA-Datacom

Initializes the data server for connections to the
CA-Datacom Multi-User Facility (MUF).

DB2 for z/OS
Call Attachment Facility (CAF)

Connects to a DB2 for z/OS subsystem to
access and update DB2 data using the DB2 Call
Attachment Facility.

IMS
IMS DRA

Initializes the DRA interface and connects to an
IMS DBCTL region to access IMS data using the
DRA interface.

IMS BMP/DBB
Initializes the IMS region controller to access
IMS data using the BMP or DBB interface.

VSAM
VSAM Initializes the region controller to access VSAM

data.

The following table lists the initialization service that provides access to z/OS
system components.

Table 2. Initialization services that access z/OS system components.

z/OS system components Initialization services

z/OS Workload Manager (WLM)
Workload Manager

Initializes the z/OS Workload Manager
subsystem using the WLM system exit to enable
query processing in WLM goal mode.

The Language Environment® initialization service is deprecated in Version 10.1.

12 Guide and Reference

Logger:

The logger service is a task for system monitoring and troubleshooting. The logger
reports data server activities and is used for error diagnosis.

Optimizing memory consumption for a Classic data server
(guidelines)
To optimize memory consumption, estimate initial memory settings in the job
control language (JCL) for your Classic data server and then evaluate them in a
test environment.

Procedure
1. Estimate initial values for REGION in the JCL for the Classic data server and for

the MESSAGEPOOLSIZE configuration parameter.
v For smaller environments, try the default values for the Classic data server:

– REGION=96MB
– MESSAGEPOOLSIZE=64MB

v Consider larger values for REGION and MESSAGEPOOLSIZE for larger
deployments that require more resources. For example, you can begin with
values that are larger than needed at first. Then you can define your
environment and work toward reducing these values by monitoring the
environment and running reports such as the output from the
DISPLAY,MEMORY command.
Consider factors that contribute to resource consumption:
– Fixed overhead per Classic data server outside message pool storage:

- C runtime library functions (LE)
- Added threads, such as an additional query processor service

– The number of concurrent client connections
– The number of cached statements
– The size of SQL statements

2. Experiment with different configurations in a test environment to verify that
your Classic data server has sufficient resources for the size of your
environment.
a. Specify a region size that is at least 8 MB lower than the site limit, and use

the greater of these values:
v 8 MB higher than the message pool
v 20% higher than the message pool

If the 8 MB gap between the region and the message pool is still not
sufficient, increase this difference in increments of 8 MB.

b. Set the MESSAGEPOOLSIZE parameter to the greater of these values:
v 20% less than the region size
v 8 MB below the REGION value or 8 MB below any site limit imposed by

exits.
If you increase the value of the MESSAGEPOOLSIZE parameter, set the region
size higher to maintain the 8 MB gap.

3.

Chapter 1. Overview of product capabilities 13

Memory consumption on a Classic data server:

If default settings on the Classic data server are insufficient for the size of your
environment, you might have to evaluate different configurations in a test
environment.

REGION and MESSAGEPOOLSIZE

You specify a REGION size in the JCL for the Classic data server to define the
maximum amount of memory that the server can allocate for 24-bit
(below-the-line) and 31-bit (above-the-line) addresses. MESSAGEPOOLSIZE is a global
configuration parameter for the Classic data server that defines the amount of
storage that the Classic data server reserves and manages for its application
requirements.

Site limits can restrict region size. If your site specifies a limit, the Classic data
server cannot allocate more, regardless of the REGION setting in the JCL. When a
Classic data server initializes, it allocates storage for MESSAGEPOOLSIZE memory first.
The Classic data server cannot access more message pool storage than the limit
that you set for REGION, regardless of the value of the MESSAGEPOOLSIZE parameter.

System exits
A set of system exits are subcomponents of the data server and the query
processor. The system exits are designed to run in a multi-user environment and
perform security, accounting, and workload management functions to support
large numbers of concurrent users.

The following table lists the system exits.

Table 3. System exits.

System exit Purpose

SAF security exit Authenticates the user ID and password to the z/OS
system.

The SAF exit can also perform the following functions:

v Authenticate the TCP/IP address of client connections
at when a connection is esatablished.

v Verify authority to access a physical file or PSB
referenced in an SQL query.

v Verify authority to run a stored procedure program.

v Pass the user IDs and passwords to CA-Datacom to
verify user authorization to access CA-Datacom table
references in an SQL query.

You activate the SAF exit with the SAFEXIT
configuration parameter.

SMF accounting exit Generates SMF user records that report the CPU time
and elapsed time for an individual user session that is
connected to a query processor service.

You activate the SMF exit with the SMFEXIT
configuration parameter.

14 Guide and Reference

Table 3. System exits. (continued)

System exit Purpose

CPU resource governor exit Restricts the amount of CPU time that a user can
consume for a unit-of-work.

You activate the CPU resource governor exit with the
CPUGOVERNOR configuration parameter.

Workload Manager (WLM) exit Places queries under the control of the Workload
Manager in WLM goal mode. With WLM goal mode, the
WLM controls the amount of resources that are available
for the query to use. With WLM compatibility mode,
you can use monitoring reports to examine resource
usage in comparison to site-defined goals.

You activate the Workload Manager exit with the
configuration parameters defined for the WLM service.

DB2 thread management exit Validates the user ID before establishing connections to
DB2 for z/OS by using the CAF initialization service. A
SAF RACROUTE call validates the user ID and
establishes the primary authorization ID prior to
connecting to DB2 for z/OS.

You activate the DB2 thread management exit by
following the procedure described in Activating the DB2
thread management exit.

Record processing exit Modifies record characteristics to make it easier to
process VSAM and sequential data.

You activate the record processing exit by defining a
table mapping for a VSAM or sequential file with the
Classic Data Architect.

Data connectors
The query processor dynamically loads one or more data connectors to access the
target database or file system that is referenced in an SQL request.

The data connectors provide access to the following data sources:

Adabas
Provides access to Adabas files.

CA-Datacom
Provides access to CA-Datacom files.

CA-IDMS
Provides access to CA-IDMS files.

DB2 for z/OS
Provides access to DB2 for z/OS tables.

IMS Provides access to IMS data using the IMS DRA interface or the IMS
BMP/DBB interface.

Sequential
Provides access to sequential files or members.

VSAM
Provides access to native VSAM files, VSAM files under the control of
CICS®, and VSAM files under the control of DFSMStvs.

Chapter 1. Overview of product capabilities 15

Classic Data Architect
To process SQL data access requests, data definitions must be mapped to logical
tables. The Classic Data Architect is the administrative tool that you use to perform
this mapping.

The purpose of the Classic Data Architect is to administer the logical table
definitions, views, and SQL security information that are stored in the metadata
catalog. You can also use the Classic Data Architect to administer the configuration
of the data server and its services.

The key benefits that the Classic Data Architect tool provides make it easier for
you to perform the following tasks:
v Define tables, columns, primary keys, indexes, stored procedures, and views.
v Specify user authorization for all objects.
v Import existing physical definitions from copybooks, CA-IDMS schemas, and

IMS database descriptors (DBDs).
v Generate DDL for the objects that you create that can be run directly on a server

or saved to a script file.
v Generate DDL script from objects already defined in the catalog and export DDL

scripts to a data set on the server for use with the metadata utility.
v Connect directly to a Classic data source and view the objects in the system

catalog.
v Connect from the Console Explorer to a data server configuration. You can view,

modify, import, and export the configuration.

Metadata catalog
The information that you generate from the Classic Data Architect is stored in
metadata catalogs. A metadata catalog is a set of relational tables that contain
information about how to convert data from non-relational to relational formats.
The data server accesses the information stored in these catalogs.

Metadata catalogs emulate relational database catalogs. The metadata defines
business-oriented relational mappings.

You can use the catalog initialization and maintenance utility to create or perform
operations on a metadata catalog.

In addition, the metadata utility accepts DDL that is generated from the Classic
Data Architect. The metadata utility must successfully connect to a data server
before running any DDL statements. The utility updates the system catalogs with
the contents of the DDL statements.

Clients
InfoSphere Classic Federation Server for z/OS provides the ODBC, JDBC, and CLI
clients. The clients enable client applications or tools to submit SQL queries to the
data server.

The ODBC and CLI clients are based on the ODBC 3.5 standard. The JDBC client is
based on a JDBC 3.0 driver.

16 Guide and Reference

The clients use TCP/IP communication protocols to establish a connection with a
target data server. When your application connects to a data source, the connection
handler activates the appropriate communication protocol based on configuration
parameters.

SQL statements can be executed using ODBC, JDBC and CLI APIs to access the
databases and files that the data server supports. The components that support the
APIs include JDBC drivers, ODBC drivers, and CLI drivers.

The ODBC, JDBC, and CLI drivers process function calls, submit SQL requests to a
specific data source, and return results to the application.
v For ODBC, a client application links to the ODBC Driver Manager which loads

the Classic ODBC driver and calls the driver APIs.
v For CLI, the client application links directly against the Classic CLI driver

library. The CLI and ODBC drivers reside in the same library which supports all
APIs for both specifications that you can use under both environments.

Stored procedure connectors
The query processor dynamically loads a stored procedure connector when a client
issues a CALL statement.

The stored procedure connector manages the processing of the stored procedure. A
stored procedure connector instance manages all stored procedures that a
particular query processor task processes. It coordinates asynchronous execution of
the stored procedure in particular by forwarding the request to a stored procedure
service that runs the stored procedure. By doing so, a query processor can process
other queries while the stored procedure is being processed.

Chapter 1. Overview of product capabilities 17

18 Guide and Reference

Chapter 2. Installing Classic federation

Installing Classic federation consists of installing mainframe components and the
Classic Data Architect, preparing your installation environment, and customizing
the installation to create a functional runtime environment.

The following table lists the major tasks required for Classic federation installation
with a link to where to find information about each task. Perform the tasks in the
following recommended order.

Task Reference

1 Perform the SMP/E tasks to
install the components required
for Classic federation on the
mainframe.

“Installing Classic federation on the mainframe”
on page 20

2 Prepare for the installation
customization process by
completing the tasks in the
checklist for setting up the
installation environment.
Obtaining items such as required
authorizations and port numbers
will prepare you for the
customization procedure.

Setting up the installation environment

3 Customize the server installation
environment by completing the
tasks in the installation
customization process for the type
of server that you want to
customize.

Customizing the installation environment

4 Install the Classic Data Architect
client application to manage
server connections and
subscriptions, monitor metrics,
and perform configuration tasks.

Installing Classic Data Architect

5 Install the ODBC/CLI and JDBC
clients

“Installing the ODBC/CLI and JDBC clients” on
page 49

System Z Classic federation scenario
IBM InfoSphere Classic Federation Server for z/OS provides SQL access to System
Z data sources, such as DB2, IMS, VSAM, Software AG Adabas, CA-Datacom,
CA-IDMS, and sequential files.

© Copyright IBM Corp. 2003, 2015 19

About this task

Installing Classic federation on the mainframe
The IBM InfoSphere Classic Federation Server for z/OS product is included on
tape and the installation instructions are detailed in the product program directory.

About this task

The Program Directory details the system requirements and installation
instructions for InfoSphere Classic Federation Server for z/OS.

Setting up the installation environment
After you complete the mainframe SMP/E installation, the next step in the
installation process is to set up the installation environment. Setting up the
installation environment is a prerequisite to the installation customization process.

The following table provides a checklist of tasks needed to set up the installation
environment for Classic data servers.

Table 4. Checklist of installation environment setup for Classic data servers

Task Reference

Obtain APF library authorizations for
the installation load library
SCACLOAD

Obtaining library authorizations for the authorized
program facility (APF)

Assign port numbers for
communication for Classic data
servers.

Obtaining ports for communication for Classic data
servers

Set up resources profiles and security
classes for security for Classic data
servers.

Securing a Classic data server

z/OS

Classic
Federation
Server

Data source

Data source

Classic
Data
Architect

ODBC/CLI
and JDBC
client

Linux

UNIX

Windows

Linux or Windows

20 Guide and Reference

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GI10898301
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/com.ibm.swg.im.iis.clz.comm.config.doc/topics/iiyitoiapfauth.dita
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/com.ibm.swg.im.iis.clz.comm.config.doc/topics/iiyitoiapfauth.dita

Table 4. Checklist of installation environment setup for Classic data servers (continued)

Task Reference

Ensure that you have the
authorization required to run the
Administrative Data Utility
(IXCMIAPU). You need this
authorization before you run the
utility to define the Classic event log
and the diagnostic z/OS log streams.

Administrative Data Utility

Customizing the installation environment
The goal of the installation customization process is to simplify the setup of your
runtime environment by providing a central place for you to specify the
site-specific information that is needed to configure your environment.

The information that you provide is then used as input for generating all JCL and
configuration data needed to build the runtime environment.

Installation customization process
Installation customization is a process that allows you to provide setup and
configuration information to create a customized installation environment.

The installation customization process involves a set of steps that you perform
after you complete the mainframe SMP/E installation. You provide setup and
configuration information that is used to generate all of the sample JCL and
configuration members in the USERHLQ.USERSAMP data set that require edits.
You then run installation customization jobs that are generated based on the
parameters that you specify to create a customized installation environment.

The installation customization process is based on the role of the Classic data
server. The possible roles for a Classic data server are based on the data sources
that you choose to access. You can customize an installation environment for one
or more data sources. You specify the role of a Classic data server with the
SERVERROLE parameter for the installation customization utilities. This parameter
controls the installation components that you customize. You create installation
data sets (USERHLQ.USERSAMP and USERHLQ.USERCONF) that contain the
required components for the type of installation that you choose, and you
customize only the parameters needed for that environment.

When you complete the installation customization process, an operational
environment is established that you can build upon as needed. The environment
includes a functional Classic data server and all of the services required for the
specified role. All services are pre-configured during the customization process.

Overview of installation customization procedure

The installation customization process consists of the following basic steps:
1. The user samples allocation utility creates a working set of the SCACSAMP and

SCACCONF data sets that contain all customized JCL and configuration
members. This working set is referred to as the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets.

2. You gather site-specific configuration information needed to customize the
environment and enter that information in the customization parameters file.

Chapter 2. Installing Classic federation 21

3. The installation customization utility generates customized JCL and
configuration members and stores them in the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets that were created in the first step.

4. You allocate and initialize the following components by using generated
customization jobs:
v z/OS log streams
v Configuration files
v A zFS aggregate that you define and format
v Metadata catalogs

5. You use the generated JCL and configuration members to start the runtime
environment.

Installation customization components

The following table lists the components and sample JCL members that you use
during the installation customization process.

Table 5. Summary of installation customization components distributed in the SCACSAMP data set.

Component name Description

User samples allocation utility Allocates the USERHLQ.USERSAMP and USERHLQ.USERCONF data sets.
Populates the USERHLQ.USERSAMP data set with a copy of the
customization parameters file (CACCUSP2) and the installation
customization utility JCL (CACCUSJ2). The SCACSAMP(CACCUSJ1) JCL
runs this utility.

SCACSAMP(CACCUSJ1) is the JCL that runs the user samples allocation
utility. CACCUSJ1 is the only member in the distributed SCACSAMP data
set that you edit. The JCL comments provide editing instructions.

Installation customization utility Reads the customization parameters file USERHLQ.USERSAMP(CACCUSP2)
and generates the necessary JCL and configuration members in the
USERHLQ.USERSAMP and USERHLQ.USERCONF partitioned data sets.
The USERHLQ.USERSAMP(CACCUSJ2) JCL runs this utility.

USERHLQ.USERSAMP(CACCUSJ2) is the generated JCL that submits the
installation customization utility and generates all necessary JCL and
configuration members.

Customization parameters file Contains the installation and customization information that you specify in
the form of parameter and value pairs to complete an installation and
establish an initial functioning environment. This file is located in
USERHLQ.USERSAMP(CACCUSP2).

USERHLQ.USERSAMP(CACCFSLS) Generated JCL that runs the Administrative Data Utility (IXCMIAPU) to
define the z/OS event log stream and a log stream for the diagnostic log for
the Classic data server.

For VSAM data sources, this member also creates a simple replication log for
the IVP VSAM file when CDCRLGST is specified.

USERHLQ.USERSAMP(CECCRZCT) Generated JCL to define and format a new zFS aggregate to use for a USS
file system resident version of the system catalogs.

Although you can continue using sequential data set resident system
catalogs, zFS file system resident catalogs are recommended.

USERHLQ.USERSAMP(CACCATFG) Generated JCL that allocates and initializes the configuration files and the
metadata catalog for the Classic data server.

USERHLQ.USERSAMP(CACDS) Generated JCL to start the Classic data server.

22 Guide and Reference

Table 5. Summary of installation customization components distributed in the SCACSAMP data set. (continued)

Component name Description

USERHLQ.USERSAMP(CACCUSVF Generated JCL to validate the installation.

User samples allocation utility
The user samples allocation utility allocates the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets and populates the USERHLQ.USERSAMP data set
with a copy of the customization parameters file and the installation customization
utility.

The user samples allocation utility performs these functions:
v Allocates the USERHLQ.USERSAMP and USERHLQ.USERCONF data sets.

These data sets are created with the same characteristics as the distributed
SCACSAMP and SCACCONF data sets.
If you run the utility again, the USERHLQ.USERSAMP or
USERHLQ.USERCONF data sets that already exist are reused. The utility
replaces the customization parameters file and customization utility JCL
members. All other members remain the same.

v Generates the customization parameters file USERHLQ.USERSAMP(CACCUSP2)
and the installation customization utility JCL
USERHLQ.USERSAMP(CACCUSJ2). All input parameters specified for the
samples allocation utility are populated in the generated CACCUSP2 and
CACCUSJ2 members.

You use the SCACSAMP(CACCUSJ1) job to run the allocation utility. The JCL
contains comments with editing instructions. You specify the following input as
parameters:

CACINHLQ=CAC.V11R1M00
The value specified for the CACINHLQ keyword must be the high-level
qualifier of the installation data sets that the SMP/E installation produces.

CACUSHLQ=USER.V11R1M00
The value specified for the CACUSHLQ keyword must be the high-level
qualifier for the USERHLQ.USERSAMP and USERHLQ.USERCONF data
sets that the samples allocation utility creates or updates.

CACDUNIT=SYSALLDA
The value specified for the CACDUNIT keyword identifies the disk unit
that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter.

CACDVOLM=
The value specified for the CACDVOLM keyword identifies the disk
volume that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter.

CACSTGCL=
The value specified for the CACSTGCL keyword identifies the SMS storage
class that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter.

CACMGTCL=
The value specified for the CACMGTCL keyword identifies the SMS
management class that is used when allocating the USERHLQ.USERSAMP
and USERHLQ.USERCONF data sets. This is an optional parameter.

Chapter 2. Installing Classic federation 23

ISPFHLQ=ISP
The value specified for the ISPFHLQ keyword identifies the high-level
qualifier for ISPF installation. The samples allocation utility runs a TSO
batch application and uses TSO functions.

ISPFLANG=ENU
The value specified for the ISPFLANG keyword identifies the language
prefix for the ISPF installation.

SERVERROLE=(role-name, ...)
The value of the SERVERROLE keyword specifies that the server
environment being installed and customized contains the components
required for the Classic data server environment. You can specify one or
more roles for your Classic data server. If you specify multiple role names,
you must separate the names with commas and enclose the names in
parentheses.

CF_ADABAS
Specify this value to install the components required for a Adabas
access.

CF_DATACOM
Specify this value to install the components required for
CA-Datacom access.

CF_DB2
Specify this value to install the components required for DB2
access.

CF_IDMS
Specify this value to install the components required for CA-IDMS
access.

CF_IMS
Specify this value to install the components required for IMS
access.

CF_SEQ
Specify this value to install the components required for sequential
file access.

CF_VSAM
Specify this value to install the components required for VSAM
access.

The samples allocation utility produces a summary report that is written to the
SYSTSPRT DD specified in the JCL. The report lists the status for allocating the
USERHLQ.USERSAMP and USERHLQ.USERCONF data sets and lists the members
updated in the USERHLQ.USERSAMP data set.

The following figure shows sample output written to SYSTSPRT.

24 Guide and Reference

Installation customization utility
The installation customization utility generates the JCL and configuration members
needed in the USERHLQ.USERSAMP and USERHLQ.USERCONF data sets based
on the values that you provide in the customization parameters file.

The installation customization utility performs these functions:
v Captures the customization settings that you provide in the customization

parameters file USERHLQ.USERSAMP(CACCUSP2).
v Applies the customization parameters to all JCL members associated with the

specified SERVERROLE parameter and places the customized members in the
USERHLQ.USERSAMP data set.

v Applies the customization parameters to all configuration members associated
with the specified SERVERROLE parameter and places the customized members
in the USERHLQ.USERCONF data set.

**************** Samples Allocation ****************
Summary Report

CACCUSX1 compiled on 2012-09-13 15:31:02 by REXX370 3.48
Execution timestamp: 2012-09-13 15:31:02 MVS Product ID: z/OS 01.10.00 SMF ID: ABC System ID: ABC

Effective Parameters:

CACDUNIT: SYSALLDA
CACDVOLM:
CACINHLQ: CEC.V11R1M00
CACMGTCL:
CACSTGCL:
CACUSHLQ: USER.V11R1M00.CF_IMS
ISPFHLQ: ISP
ISPFLANG: ENU
SERVERROLE: CF_IMS

Data set ’USER.V11R1M00.CF_IMS.USERSAMP’ successfully allocated.
Data set ’USER.V11R1M00.CF_IMS.USERCONF’ successfully allocated.

Member Status
-------- --------
CACCUSJ2 Processed successfully in DDN(USERSAMP)

Member Status
-------- --------
CACCUSP2 Processed successfully in DDN(USERSAMP)

Summary:
Members Successful: 2
Members in Error: 0
Members Not Replaced: 0
Members Processed: 2

Return Status: 0

Figure 5. Sample output for the samples allocation summary report

Chapter 2. Installing Classic federation 25

You use the USERHLQ.USERSAMP(CACCUSJ2) job to run the installation
customization utility. You specify the following input as parameters:

CACINHLQ=CAC.V11R1M00
The value specified for the CACINHLQ keyword must be the high-level
qualifier for Classic distribution data sets produced by the SMP/E
installation. This value is automatically populated with the value
previously specified as input to the user samples allocation utility.

CACUSHLQ=USER.V11R3M00
The value specified for the CACUSHLQ keyword must be the high-level
qualifier for the USERHLQ.USERSAMP and USERHLQ.USERCONF data
sets that were created or updated by the user samples allocation utility.
This value is automatically populated with the value previously specified
as input to the user samples allocation utility.

MEMBER=(member-name, ...)
This is an optional parameter. The value specified for the MEMBER
keyword identifies a list of one or more member names to process. Only a
subset of the members associated with the specified SERVERROLE
parameter is processed. If you specify multiple member names, you must
separate the names with commas and enclose the names in parentheses.

All members are processed when this parameter is not specified.

OVERWRITE=YES|NO
The value specified for the OVERWRITE keyword indicates how to process
existing members of target data sets, for example the
USERHLQ.USERSAMP and USERHLQ.USERCONF data sets.
v When you specify OVERWRITE=NO, existing members of the target

data sets are not replaced. OVERWRITE=NO is the default.
v When you specify OVERWRITE=YES, existing members of the target

data sets are replaced.

Example: OVERWRITE=NO is in effect. Members CACCFGDS and
CACCFGUT already exist in the target data set. Member CACSX04 does
not exist in the target data set.
Member Status
-------- --------
CACCFGDS CACCFGDS not replaced in DDN(USERSAMP)
CACCFGUT CACCFGUT not replaced in DDN(USERSAMP)
CACSX04 Processed successfully in DDN(USERSAMP)

Example: OVERWRITE=YES is in effect. The processing status for the same
members shown in the previous example appear as follows (whether or
not any of these members previously existed in the target data set):
Member Status
-------- --------
CACCFGDS Processed successfully in DDN(USERSAMP)
CACCFGUT Processed successfully in DDN(USERSAMP)
CACSX04 Processed successfully in DDN(USERSAMP)

The processing summary information produced at the bottom of the report
identifies the number of members that were stored successfully and the
number of members that were not replaced. For example:
Summary:

Members Successful: 90
Members in Error: 0
Members Not Replaced: 0
Members Processed: 90

26 Guide and Reference

SERVERROLE=(role-name, ...)
The value of the SERVERROLE keyword specifies that the server
environment being installed and customized contains the components
required for the Classic data server environment. You can specify one or
more roles for your Classic data server. If you specify multiple role names,
you must separate the names with commas and enclose the names in
parentheses.

CF_ADABAS
Specify this value to install the components required for a Adabas
access.

CF_DATACOM
Specify this value to install the components required for
CA-Datacom access.

CF_DB2
Specify this value to install the components required for DB2
access.

CF_IDMS
Specify this value to install the components required for CA-IDMS
access.

CF_IMS
Specify this value to install the components required for IMS
access.

CF_SEQ
Specify this value to install the components required for sequential
file access.

CF_VSAM
Specify this value to install the components required for VSAM
access.

The utility produces a summary report that is written to the SYSTSPRT DD that is
specified in the JCL. The report lists the partitioned data sets and the data set
members that were processed. The final summary lists the total number of
members processed, the number that were successful, and the number with errors.

The following figure shows sample output written to SYSTSPRT.

Chapter 2. Installing Classic federation 27

******************** Installation Customization ***********************
Summary Report

CACCUSX2 compiled on 2012-08-15 08:46:51 by REXXC370 3.48
Execution timestamp: 2012-08-15 08:49:39 MVS Product ID: z/OS 01.10.00 SMF ID: SYE9 System ID:
--

Effective Parameters:

CACINHLQ: CEC.V11R1M00
CACUSHLQ: USER.V11R1M00.CF
OVERWRITE: No
SERVERROLE: CF_IMS

CF_VSAM

Processing parameters file: USER.V11R1M00.CF.USERSAMP Member: CACCUSP2

Processing Members for Product: All Role: Common
Member Status
-------- --------
CACCFGDS Processed successfully in DDN(USERSAMP)
CACCFGUT Processed successfully in DDN(USERSAMP)
CACPRTLS Processed successfully in DDN(USERSAMP)
CACLGFLT Processed successfully in DDN(USERSAMP)
CACSX04 Processed successfully in DDN(USERSAMP)

Processing Members for Product: Classic Federation Role: Common
Member Status
-------- --------
CACBLDI Processed successfully in DDN(USERSAMP)
CACCATFG Processed successfully in DDN(USERSAMP)
CACCATLG Processed successfully in DDN(USERSAMP)
CACCATMD Processed successfully in DDN(USERSAMP)
CACCATRP Processed successfully in DDN(USERSAMP)
. . .
. . .

Processing Members for Product: Classic Federation Role: CF_IMS
Member Status
-------- --------
CACBMP Processed successfully in DDN(USERSAMP)
CACDBB Processed successfully in DDN(USERSAMP)
CACSVIMA Processed successfully in DDN(USERCONF)
CACSVIMB Processed successfully in DDN(USERCONF)
CACSVIMO Processed successfully in DDN(USERCONF)
CACIMPAR Processed successfully in DDN(USERSAMP)
CACIMROT Processed successfully in DDN(USERSAMP)
. . .
. . .

Processing Members for Product: Classic Federation Role: CF_VSAM
Member Status
-------- --------
CACCDEF Processed successfully in DDN(USERSAMP)
CACSPCCC Processed successfully in DDN(USERSAMP)
CACSPCCR Processed successfully in DDN(USERSAMP)
CACSVVSM Processed successfully in DDN(USERCONF)
CACCAPPL Processed successfully in DDN(USERSAMP)
CACCMODE Processed successfully in DDN(USERSAMP)
. . .
. . .

Summary:
Members Successful: 32
Members in Error: 0
Members Not Replaced: 0
Members Processed: 32

Return Status: 0

28 Guide and Reference

Working with the customization parameters file
These guidelines describe how to enter values in the customization parameters file.

The customization parameters file, USERHLQ.USERSAMP(CACCUSP2), contains
pairs of keyword and value settings used to customize JCL and configuration files
in the USERHLQ.USERSAMP and USERHLQ.USERCONF data sets.

The following sections provide guidelines for entering input into the customization
parameters file, describe how the file is organized, and list the keyword and value
settings that the customization parameters file contains. Other considerations
include the use of job cards, pre-defined variables, and STEPLIB concatenations.

Input guidelines

The following guidelines describe how to enter values in the customization
parameters file:
v Keyword and value pairs:

– You cannot change the keyword component.
– You must delimit the value component with double quotes ("").
– Spaces are allowed before and after the keyword and value.
– Values cannot span multiple lines.

v The minimum required parameters that you must change for a successful
installation are denoted by an asterisk within parentheses at the end of the
comment for that parameter. For example: CACINHLQ="&CACINHLQ" HLQ of
Classic product(*)

v Comments:
– An asterisk (*) in column 1 defines the line as a comment line.
– Any input that you include after the first space after the value component is

treated as comments.

File organization

The following table describes the organization of the customization parameters file.

Table 6. Organization of customization parameters file.

Section name Section content

Common installation Parameters that apply to all installations, such as the
high-level qualifier for the Classic product installation.

Metadata catalog and
configuration files

Parameters associated with the metadata catalog and
configuration files needed for the data server.

Data server communication
parameters

Parameters that define data source name and TCP/IP
connection information needed to communicate with a
Classic data server environment.

z/OS client parameters Classic user ID and password used in files that are input into
the z/OS sample client.

Security parameters Security parameters that control user connections to the
Classic data server.

Migration and upgrade
parameters

Parameters that are specific to the migration of existing
installations for each Classic product.

IMS Parameters specific to installations that access IMS data.

Chapter 2. Installing Classic federation 29

Table 6. Organization of customization parameters file. (continued)

Section name Section content

CICS VSAM Parameters specific to installations that access CICS VSAM
data.

DB2 Parameters specific to installations that access DB2 data.

Adabas Parameters specific to installations that access Adabas data.

CA-IDMS Parameters specific to installations that access CA-IDMS data.

CA-Datacom Parameters specific to installations that access CA-Datacom
data.

Sequential files Parameters in the common section apply to sequential files.

Use of job cards

Job card information is defined in the common installation section of the
customization parameters file. The following two-line job card information is used
as a template when generating JCL members:
CACDJOB1="JOB (CLASSIC),’CLASSIC JOB’,CLASS=A,"
CACDJOB2="MSGCLASS=X,NOTIFY=&SYSUID"

The CACDJOB1 value is placed after the job name in each generated JCL member.
The CACDJOB2 value is provided on the second line of the job card in each JCL
member.

The initial value for the job card keywords is populated from the job card that is
specified on the JCL member.

Use of pre-defined variables

Many of the data set values in the customization parameters file contain
pre-defined variables such as &CAC to reference previously defined high-level
qualifiers. Most of the generated JCL members make use of inline PROC
definitions. These variables reference the actual PROC variables. The following
table describes what each variable defines:

Table 7. Pre-defined variables.

Variable Description

&CAC Classic product installation high-level qualifier

&USERHLQ User SCACSAMP high-level qualifier

&IMS IMS installation high-level qualifier

Library concatenations

For Classic data server parameters that require specific DD data set concatenation
customization such as STEPLIB, parameters are provided for concatenation. You
can specify the same parameter keyword multiple times. The order specified for
the parameter keywords is the order in which the data sets will be included in the
data set concatenation.

30 Guide and Reference

Customization parameters file settings:

The parameter keyword and value pairs in the customization parameters file are
set to default values. You can modify these values to customize your installation.

The following table lists the parameters in each section of the customization
parameters file, the parameter default values, and a description of each parameter.

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2).

Parameter Default value Description

Common section

CACINHLQ CAC.V11R3M00 High-level qualifier of the installation data
sets for the Classic product. This value is
populated with the value specified for the
CACINHLQ input parameter of the
CACCUSJ1 job.

CACUSHLQ USER.V11R3M00 High-level qualifier for the
USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This value
is populated with the value specified for the
CACUSHLQ input parameter of the
CACCUSJ1 job. This value is also the default
high-level qualifier for the metadata catalog
and configuration files for the Classic data
server.

CACDUNIT SYSALLDA Disk unit that is used for the generated jobs
that create data sets such as the configuration
files for the Classic data server. This value is
populated with the value specified for the
CACDUNIT input parameter of the
CACCUSJ1 job. If the value is " ", it is
assumed that the site SMS rules will
determine the data set allocation.

CACDVOLM " " Disk volume that is used for the generated
jobs that create data sets such as the
configuration files for the Classic data server.
This value is populated with the value
specified for the CACDVOLM input
parameter of the CACCUSJ1 job. If the value
is "", it is assumed that the site SMS rules
will determine the data set allocation.

CACSTGCL " " SMS storage class that is used for the
generated jobs that create data sets such as
the configuration files for the Classic data
server. This value is populated with the value
specified for the CACSTGCL input parameter
of the CACCUSJ1 job. If the value is "", it is
assumed that the site SMS rules will
determine the data set allocation.

CACMGTCL " " SMS management class that is used for the
generated jobs that create data sets such as
the configuration files for the Classic data
server. This value is populated with the value
specified for the CACMGTCL input
parameter of the CACCUSJ1 job. If the value
is "", it is assumed that the site SMS rules
will determine the data set allocation.

Chapter 2. Installing Classic federation 31

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

CACDJOB1 " " Pre-populated value from the first line of the
JOBCARD provided on the CACCUSJ1 job.
The value is substituted into all generated
JCL.

CACDJOB2 " " Pre-populated value from the second line of
the JOBCARD provided on the CACCUSJ1
job. The value is substituted into all
generated JCL.

Metadata catalog and configuration files

CACADMUS CACUSER User ID to which to grant SYSADM
privileges are granted in the metadata
catalog.

CATLGMB 150 Megabytes for the primary catalog allocation.
For guidance in determining the actual
number of MB you require, see Estimating
the size of the metadata catalog.

CATPATH /opt/IBM/isclassic111/catalog USS file system path to the metadata catalog
files. The named directory contains the
following file names:

caccat Data component

cacindx
Index component

zFS file system resident catalogs are
recommended (rather than other file systems,
such as physical sequential). When this
parameter is specified, it supersedes
CACCATNM and CACIDXNM and
NEWCATNM and NEWIDXNM.

CACCATNM &USRHLQ..CATALOG Suffix for the Version 11.3 metadata catalog
data file created during the installation
customization process. The &USRHLQ value
is replaced in the generated JCL PROC with
the high-level qualifier specified for the
CACUSHLQ parameter.

CACIDXNM &USRHLQ..CATINDX Suffix for the Version 11.3 metadata catalog
index file created during the installation
customization process. The &USRHLQ value
is replaced in the generated JCL PROC with
the high-level qualifier specified for the
CACUSHLQ parameter.

CACCFGNM &USRHLQ..CACCFGD Suffix for the Version 11.3 configuration data
file created during the installation
customization process. The &USRHLQ value
is replaced in the generated JCL procedure
with the high-level qualifier specified for the
CACUSHLQ parameter.

CACCFGIX &USRHLQ..CACCFGX Suffix for the Version 11.3 configuration index
file created during the installation
customization process. The &USRHLQ value
is replaced in the generated JCL procedure
with the high-level qualifier specified for the
CACUSHLQ parameter.

32 Guide and Reference

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

DIAGLGST CF.DIAGLOG z/OS log stream name for the diagnostic log
for the Classic data server. If a log stream
name is not specified, the log service is
configured to write to the CACLOG DD data
set which is a temporary data set.

DIAGLGDS Y Identifies whether the z/OS log stream
should use DASD or the coupling facility:

v Y: DASD

v N: Coupling facility

This value is valid when DIAGLGST is
specified.

DIAGLGRT 7 Retention period, in days, to retain the log
records before they for they are eligible to be
deleted. This value is valid when DIAGLGST
is specified.

DIAGLGSC STG1 Storage class (STG_DATACLAS) for the log
stream. This value is valid when DIAGLGST
is specified.

DIAGLGSR CCL1 Coupling facility structure name (
STRUCTNAME). This value is valid when
DIAGLGST is specified and the coupling
facility is chosen (DIAGLGDS=”N”).

Classic data server communication parameters

DSDSRCE CACSAMP Data source name for the query processor
service. This is the data source name that
clients use to connect to the Classic data
server.

DSHOST 0.0.0.0 Host name or IP address where the Classic
data server will run.

DSPORT 9087 Port number on which the connection
handler service for the Classic data server
will listen. This listen port is used to
communicate with the CDA and other client
applications.

z/OS client parameters

CLNTUSER CACUSER User ID to use in z/OS client application
samples such as the metadata utility
connection string and the sample SQL file.

CLNTPSWD CACPWD Password associated with the user ID
provided for the CLNTUSER parameter.

Security parameters

CFSAFX CACSX04 SAFEXIT load module that enables security
for the Classic data server. Specifying a value
enables security for the Classic data server. A
value of “ “ disables security for the Classic
data server.

Chapter 2. Installing Classic federation 33

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

CFSAFVLD N VALIDATE=Y/N parameter on the query
processor service for the SAFEXIT, when the
exit is enabled by using the CFSAFX
customization parameter. This value instructs
the service to validate the access authority of
a user by using additional security
parameters:

CFSAFNET - NETACCESS
CFSAFSPC – Stored procedure SPCLASS
CFSAFIMC – IMS PSB schedule class
CFSAFIMP – IMS PSB prefix
CFSAFDCE - CA-Datacom EXCLUDE
CFSAFADC – Adabas ADACLASS

CFSAFNET None NETACCESS parameter on the query
processor service for the SAFEXIT, when the
exit is enabled and the CFSAFVLD
customization parameter = Y. This value
(Y/N) specifies if IP address validation is
enabled.

CFSAFSPC None SPCLASS parameter on the query processor
service for the SAFEXIT, when the exit is
enabled and the CFSAFVLD customization
parameter = Y. This value specifies the name
of a class that is used to check for
RACF-authorized use of stored procedure
names.

Migration and upgrade parameters: The parameters in this section apply to installations that you need to migrate
from a previous release of Classic federation to Version 11.3. If a migration is not required, use the default values.
When migrating or upgrading, new catalog information is obtained from the parameters defined in the 'Metadata
catalog and configuration files' section above.

OLDCAHLQ CAC.V10R1M00 High-level qualifier for the pre-version 11.3
product installation.

OLDCTHLQ CAC.V10R1M00 High-level qualifier for the pre-version 11.3
metadata catalog that is being upgraded.

OLDCPATH None If upgrading an existing zFS 11.3 catalog, use
this parameter. When defined, this parameter
supersedes OLDCATNM and OLDIDXNM.

Specifies the USS file system path to the
metadata catalog files. (for example,
/opt/IBM/isclassic111/catalog).

The named directory contains the following
file names:

caccat Data component

cacindx
Index component

OLDCATNM &OLDCAT..CATALOG Suffix for the pre-version 11.3 metadata
catalog data file. The &OLDCAT value will
be replaced in the generated JCL PROC with
the high-level qualifier specified for the
OLDCTHLQ parameter.

34 Guide and Reference

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

OLDCATIX &OLDCAT..CATINDX Suffix for the pre-version 11.3 metadata
catalog index file. The &OLDCAT value will
be replaced in the generated JCL PROC with
the high-level qualifier specified for the
OLDCTHLQ parameter.

OLDCFHLQ CAC.V10R1M00 High-level qualifier for the pre-version 11.3
configuration files that are being upgraded.

v If this value specifies a release prior to
version 9.5 it will be the HLQ for the
SCACCONF data set.

v If this value specifies a version 9.5 release
it will be the HLQ for the Classic data
server configuration files (CACCFGD and
CACCFGX).

OLDCFGNM &OLDCFG..SCACONF If you are migrating from a release prior to
version 9.5, this value specifies the
SCACCONF data set that contains the
configuration member. This data set is
associated with the VHSCONF DD statement
in the pre-version 9.5 startup JCL for the
Classic data server.

OLDDSCFG CACDSCF If you are migrating from a release prior to
version 9.5, this value specifies the
configuration member name in the
SCACCONF data set. This member is
associated with the VHSCONF DD statement
in the pre-version 9.5 startup JCL for the
Classic data server.

OLDCFGNM &OLDCFG..CACCFGNM Suffix for the post-version 9.1 configuration
data file. The & OLDCFG value is replaced in
the generated JCL PROC with the high-level
qualifier specified for the OLDCFHLQ
parameter.

OLDCFGIX &OLDCFG..CACCFGIX Suffix for the post-version 9.1 configuration
index file. The & OLDCFG value is replaced
in the generated JCL PROC with the
high-level qualifier specified for the
OLDCFHLQ parameter.

NEWCFGNM &NEWCFG..CACCFGNM Suffix for the new version 11.3 configuration
data file. The & NEWCFG value is replaced
in the generated JCL PROC with the
high-level qualifier specified for the
NEWCTHLQ parameter.

NEWCFGIX &NEWCFG..CACCFGIX Suffix for the new version 11.3 configuration
index file. The & NEWCFG value is replaced
in the generated JCL PROC with the
high-level qualifier specified for the
NEWCTHLQ parameter.

IMS parameters: The parameters in this section are specific to Classic data servers that access IMS. See Setting up
access to IMS for details about configuring Classic data servers for IMS access.

Chapter 2. Installing Classic federation 35

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.ims.doc/topics/iiyfcimcstsk.html
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.ims.doc/topics/iiyfcimcstsk.html

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

IMSINHLQ IMS High-level qualifier (HLQ)for THE IMS
installation libraries. This HLQ is applied to
the IMS data sets in the STEPLIB sections of
the generated JCL. It replaces the references
to &IMS.. below in other keyword values
such as IMSSTEPL.

IMSDFPSB DEFPSB Default PSB that the DRA initialization
service or the ODBA service uses to access
IMS.

IMSDRAUS DRAUSER User ID that the DRA initialization service
uses to access IMS.

IMSSSID SSID IMS subsystem ID that the ODBA
initialization service uses

IMSPZPSF 00 DRA startup table suffix (DFSPZPxx) that the
DRA initialization service uses.

IMSSTEPL &IMS..SDFSRESL STEPLIB concatenation for files needed to
access IMS. The IMSTEPL is a keyword that
you can specify multiple times. It provides a
STEPLIB concatenation. The order of the
multiple IMSSTEPL keywords defines the
order in which the files are included in the
STEPLIB concatenation for the generated JCL
members. The &IMS value is replaced in the
generated JCL PROC with the high-level
qualifier specified for the IMSINHLQ
parameter.

IMSDBDLB &CICS..DBDLIB DBDLIB used by the Classic data server to
locate DBDs during CREATE TABLE
processing. The IMSDBDLB is a keyword that
you can specify multiple times. It provides a
DBDLIB concatenation. The order of the
multiple IMSDBDLB keywords defines the
order in which the files is included in the
DBDLIB concatenation for generated the
generated JCL members. The &IMS value is
replaced in the generated JCL PROC with the
high-level qualifier specified for the
IMSINHLQ parameter.

CFSAFIMC " " IMS PSB schedule class parameter on the
query processor service for the SAFEXIT
when the exit is enabled and the CFSAFVLD
customization parameter = Y. This parameter
specifies the name of the RACF® resource
class that is checked to determine whether
the user has authority to schedule or access
the PSBs associated with the tables referenced
in a query

CICS VSAM parameters The parameters in this section are specific to Classic data servers that access CICS VSAM
files. See Setting up access to CICS VSAM for details about configuring Classic data servers for CICS VSAM access.

36 Guide and Reference

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.vsam.doc/topics/iiyfcvscics.html

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

VSCINHLQ CICSTSnn.CICS High-level qualifier (HLQ) for the CICS
libraries. This HLQ is applied to the CICS
data sets in the STEPLIB sections of the
generated JCL. It replaces the references to
&CICS.. below in other keyword values such
as VSCSTEPL and VSCDFHCS.

VSCSTEPL &CICS..SDFHLOAD STEPLIB concatenation for files needed to
access CICS. The VSCSTEPL is a keyword
that you specify multiple times. It provides a
STEPLIB concatenation. The order of the
multiple VSCSTEPL keywords defines the
order in which the files are included in the
STEPLIB concatenation for the generated JCL
members. The &CICS value is replaced in the
generated JCL PROC with the high-level
qualifier specified for the VSCINHLQ
parameter.

VSCDFHCS &CICS.. DBDLIB DFHCSD data set to use when defining the
Classic federation programs and transactions
to CICS.

VSCNETNM CACCICS1 CICS NETNAME to use when defining the
Classic federation programs and transactions
to CICS.

DB2 parameters: The parameters in this section are specific to Classic data servers that access DB2. See Setting up
access to DB2 for z/OS for details about configuring Classic data servers for DB2 access.

DB2INHLQ DB2 High-level (HLQ) qualifier for the DB2
libraries. This HLQ is applied to the DB2
data sets in the STEPLIB sections of the
generated JCL. It replaces the references to
&DB2.. below in other keyword values such
as DB2STEPL.

DB2PLAN CAC10PLN DB2 plan name that the DB2 call attachment
facility (CAF) access service uses.

DB2DSN DSN DB2 subsystem ID that the DB2 CAF access
service uses.

DB2STEPL &DB2..SDSNLOAD DB2 STEPLIB concatenation for files needed
to access DB2. The DB2STEPL is a keyword
that you can specify multiple times. It
provides a STEPLIB concatenation. The order
of the multiple DB2STEPL keywords defines
the order in which the files are included in
the STEPLIB concatenation for the generated
JCL members. The &DB2 value is replaced in
the generated JCL PROC with the high-level
qualifier specified for the DB2INHLQ
parameter.

Adabas parameters The parameters in this section are specific to Classic data servers that access Adabas. See Setting
up access to Adabas databases for details about configuring Classic data servers for Adabas access.

Chapter 2. Installing Classic federation 37

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.db2zos.doc/topics/iiyfcdzctsk.html
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.db2zos.doc/topics/iiyfcdzctsk.html
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.ep.adabascc.doc/topics/iiyeccadocsconfig.html
http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.ep.adabascc.doc/topics/iiyeccadocsconfig.html

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

ADAINHLQ ADABAS High-level (HLQ) qualifier for the Adabas
libraries. This HLQ is applied to the Adabas
data sets in the STEPLIB sections of the
generated JCL. It replaces the references to
&ADA.. below in other keyword values such
as ADASTEPL.

ADAEPSVC 251 SVC number of the Adabas nucleus.

ADAEPDID 32 Default database ID for Adabas.

ADALNK8 Y Version of the Adabas system that is being
accessed. The values are either version 8 or a
prior version.

v Y: Indicates version 8 or higher.

v N: Indicates a version prior to version 8.

ADASTEPL &ADA..LOAD STEPLIB concatenation for files needed to
access Adabas. The ADASTEPL is a keyword
that you can specify multiple times. It
provides a STEPLIB concatenation. The order
of the multiple ADASTEPL keywords defines
the order in which the files are included in
the STEPLIB concatenation for the generated
JCL members. The &ADA value is replaced
in the generated JCL PROC with the
high-level qualifier specified for the
ADAINHLQ parameter.

CFSAFADC None ADACLASS parameter on the query
processor service for the SAFEXIT when the
exit is enabled and the CFSAFVLD
customization parameter = Y.

CA-IDMS parameters: The parameters in this section are specific to Classic data servers that access CA-IDMS. See
Setting up access to CA-IDMS for details about configuring Classic data servers for CA-IDMS access.

IDMINHLQ IDMS High-level qualifier (HLQ) for the CA-IDMS
libraries. This HLQ is applied to the
CA-IDMS data sets in the STEPLIB sections
of the generated JCL. It replaces the
references to &IDMS.. below in other
keyword values such as IDMSYCTL and
IDMSTEPL.

IDMSYCTL &IDMS..SYSCTL CA-IDMS SYSCTL file that the Classic data
server uses to access the CA-IDMS central
version. The &IDMS value is replaced in the
generated JCL PROC with the high-level
qualifier specified for the IDMINHLQ
parameter.

IDMGDMCL GLBLDMCL Global DMCL that the CA-IDMS central
version uses. This value is specified in the
SYSIDMS setting for the Classic data server.
This parameter allows the CA-IDMS client
layer to obtain access to the DDLMSG area to
report errors if necessary.

38 Guide and Reference

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.caidms.doc/topics/iiyfccicstsk.html

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

IDMDCMSG &IDMS..SYSMSG.DDLDCMSG Local data set for the DDLDCMSG area that
the CA-IDMS central version uses. This
parameter allows the CA-IDMS client layer to
obtain access to the DDLMSG area to report
errors if necessary. The &IDMS value is
replaced in the generated JCL PROC with the
high-level qualifier specified for the
IDMINHLQ parameter.

IDMACLIB &IDMS..DISTMAC CA-IDMS MACLIB. This parameter is used
when setting up security for accessing
CA-IDMS from Classic federation to relink a
new IDMSSTRT module. The &IDMS value is
replaced in the generated JCL PROC with the
high-level qualifier specified for the
IDMINHLQ parameter.

IDMSTEPL &IDMS..DBA.LOADLIB STEPLIB concatenation for files needed to
access CA-IDMS. The IDMSTEPL is a
keyword that you can pecify multiple times.
It provides a STEPLIB concatenation. The
order of the multiple IDMSTEPL keywords
defines the order in which the files are
included in the STEPLIB concatenation for
the generated JCL members. The &IDMS
value is replaced in the generated JCL PROC
with the high-level qualifier specified for the
IDMINHLQ parameter.

CA-Datacom parameters: The parameters in this section are specific to Classic data servers that access CA-Datacom.
See Setting up access to CA-Datacom for details about configuring Classic data servers for CA-Datacom access.

DCMINHLQ DCOM High-level qualifier (HLQ) for the
CA-Datacom libraries. This HLQ is applied to
the CA-Datacom data sets in the STEPLIB
sections of the generated JCL. It replaces the
references to &DC.. below in other keyword
values such as DCMACLIB and DCMSTEPL.

DCMACLIB &DC..CAI.DATACOM.THLQ.CAIMAC CA-Datacom MACLIB. This parameter is
used to assemble the sample CACDCURT
User Requirements Table. The &DC value is
replaced in the generated JCL PROC with the
high-level qualifier specified for the
DCMINHLQ parameter.

DCMDDIDT &USRHLQ..SCACSAMP(CACDCID) DDIDENT data set that the Classic data
server uses. It contains a user ID and
password to connect to the CA-Datacom
dictionary search facility. The Classic data
server accesses the CA-Datacom dictionary
during CREATE TABLE processing.

DCMUSER DATACOM-INSTAL CA-Datacom user ID to use when accessing
the CA-Datacom dictionary search facility.
This user ID is placed in the DDIDENT data
set specified by the DCMDDIDT parameter.

Chapter 2. Installing Classic federation 39

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.fed.classic.cadatacom.doc/topics/iiyfccdcstsk.html

Table 8. Parameter and default settings for SCACSAMP (CACCUSP2). (continued)

Parameter Default value Description

DCMPASWD NEWUSER Password for the CA-Datacom user ID to use
when accessing the CA-Datacom dictionary
search facility. This password is placed in the
DDIDENT data set specified by the
DCMDDIDT parameter.

DCMSTEPL &DC..CAI.CAILIB
&DC..DATACOM.CHLQ.CUSLIB
&DC..DATACOM.THLQ.CAILIB

STEPLIB concatenation for files needed to
access CA-Datacom. The DCMSTEPL is a
keyword that you can specify multiple times.
It is provides a STEPLIB concatenation. The
order of the multiple DCMSTEPL keywords
defines the order in which the files are
included in the STEPLIB concatenation for
the generated JCL members. The &DC value
is replaced in the generated JCL PROC with
the high-level qualifier specified for the
DCMINHLQ parameter.

CFSAFDCE None EXCLUDE parameter on the query processor
service for the SAFEXIT when the exit is
enabled and the CFSAFVLD customization
parameter = Y. This parameter specifies that
the query processor service should not
provide an ACEE address in commands sent
to CA-Datacom.

Language Environment (LE) and compiler parameters

CACLEHLQ SYS1 High-level qualifier for the LE runtime
SCEELKED data set.

CACCBCMP IGYCRCTL COBOL compiler name to use when
compiling a stored procedure.

CACCBHLQ SYSL High-level qualifier for the SIGYCOMP data
set.

CACCSTEP &COBOL..SIGYCOMP COBOL libraries to include in the STEPLIB
for compile sample members. CACCSTEP is a
keyword that you can specify multiple times.
This keyword provides a STEPLIB
concatenation. The order of the multiple
CACCSTEP keywords defines the order in
which the files is included in the STEPLIB
concatenation for the generated JCL
members. The &COBOL value is replaced in
the generated JCL PROC with the high-level
qualifier specified for the CACCBHLQ
parameter.

Installing Classic data servers
The installation customization steps that you follow depend on the product that
you are using and if you are creating a new installation or upgrading to Version
11.1 from a previous version of Classic federation.

About this task

Procedure

40 Guide and Reference

Follow the appropriate installation customization steps for either a new installation
or an installation upgrade from an earlier version of Classic federation:

Procedure
v If you are creating a new Version 11.1 installation, follow the installation

customization steps for a new Classic federation installation.
v If you are upgrading to Version 11.1 from a previous version, follow the steps

for upgrading Classic federation.

Installing a new Classic federation data server
You can follow the installation customization process to install and customize a
Classic federation data server.

Before you begin

Before you begin the installation customization process, you must complete the
SMP/E installation and the steps required to “Setting up the installation
environment” on page 20.

About this task

When setting up the metadata catalog, the default configuration creates and
initializes the metadata catalog as a zSeries File System (zFS) file. The z/FS file
provides significant performance and capacity improvements compared to the
sequential or linear data set formats used in releases prior to V11.1.

The topic Creating and initializing zFS metadata catalogs provides more information
about the use of zFS metadata catalogs.

Procedure
1. Edit the user samples allocation utility JCL in the installation samples member

SCACSAMP(CACCUSJ1). Follow the instructions in the JCL to edit the job
card and procedure variables. Then specify input parameters to the samples
allocation utility.You specify the following input parameters:

CACINHLQ=CAC.V11R3M00
The value specified for the CACINHLQ keyword must be the
high-level qualifier of the installation data sets that the SMP/E
installation produces for Classic federation.

CACUSHLQ=USER.V11R3M00
The value specified for the CACUSHLQ keyword is the high-level
qualifier for the USERHLQ.USERSAMP and USERHLQ.USERCONF
data sets that the samples allocation utility creates or updates.

CACDUNIT=SYSALLDA
The value specified for the CACDUNIT keyword identifies the disk
unit that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter. You
do not need to specify a value for CACDUNIT if SMS manages the
data sets.

CACDVOLM=
The value specified for the CACDVOLM keyword identifies the disk
volume that is used when allocating the USERHLQ.USERSAMP and

Chapter 2. Installing Classic federation 41

http://publib.boulder.ibm.com/infocenter/iisclzos/V11R1/topic/com.ibm.swg.im.iis.prod.install.clas.doc/topics/iiypicac-instzos.html

USERHLQ.USERCONF data sets. This is an optional parameter. You
do not need to specify a value for CACDVOLM if SMS manages the
data sets.

CACSTGCL=
The value specified for the CACSTGCL keyword identifies the SMS
storage class that is used when allocating the USERHLQ.USERSAMP
and USERHLQ.USERCONF data sets. This is an optional parameter.
Specify a value for CACSTGCL only when a specific storage class is
required.

CACMGTCL=
The value specified for the CACMGTCL keyword identifies the SMS
management class that is used when allocating the
USERHLQ.USERSAMP and USERHLQ.USERCONF data sets. This is
an optional parameter. Specify a value for CACMGTCL only when a
specific management class is required.

ISPFHLQ=ISP
The value specified for the ISPFHLQ keyword identifies the high-level
qualifier for ISPF installation. The samples allocation utility runs a
TSO batch application and uses TSO functions.

ISPFLANG=ENU
The value specified for the ISPFLANG keyword identifies the
language prefix for the ISPF installation.

SERVERROLE=role-name
The value specified for the SERVERROLE keyword identifies the
server environment to install and customize. The role determines the
JCL members that are customized and the services that are configured
for the Classic data server. The list below contains the possible values.
You can specify multiple values at the same time by using the
following syntax:
SERVERROLE=(role-name1, role-name2)

Valid values for role-name:

SERVERROLE
value

Installs components for ...

CF_ADABAS Adabas access

CF_DATACOM CA-Datacom

CF_DB2 DB2 access

CF_IDMS CA-IDMS access

CF_IMS IMS access

CF_SEQ Sequential file access

CF_VSAM VSAM access

2. Submit SCACSAMP(CACCUSJ1) to allocate the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. Verify that all job steps result in a return
code <= 4. This job populates the USERHLQ.USERSAMP data set with the
necessary objects and the customization parameters file for Classic federation,
CACCUSP2 .

3. Edit the Classic federation customization parameters file
USERHLQ.USERSAMP(CACCUSP2) to provide customization parameters.

42 Guide and Reference

This file will contain only the parameters that apply to the specified
SERVERROLE. See the customization parameters file settings for details.

4. Submit the generated USERHLQ.USERSAMP(CACCUSJ2) customization
utility JCL. Verify that all job steps result in a return code <= 4. The
USERHLQ.USERSAMP data set is populated with the customized JCL and
objects needed to run a Classic data server for the specified SERVERROLE.

5. Optional: Define the z/OS log stream for the diagnostic log for the Classic
federation data server. This step is only needed when the DIAGLGST or
EVENLGST parameter in the CACCUSP2 files specifies a log stream name.
a. Verify that you have the authority required to run the Administrative Data

Utility (IXCMIAPU). The job that defines the logs runs this utility.
b. Submit the generated USERHLQ.USERSAMP(CACCFSLS) JCL to define

the log stream and logs.
c. Verify that all job steps result in a return code = 0.

6. Optional: If the CATPATH value specified that the metadata catalog files will
reside in a new zFS file system aggregate, you must define and format the
new zFS aggregate.
a. Verify that you have the authority required to run the following jobs:

v SAF READ-access level authorization is required for the
SUPERUSER.FILESYS.PFSCTL resource in the UNIXPRIV class to run
the zFS administration command, IOEZADM.

v SAF READ-access level authorization is required for the
SUPERUSER.FILESYS.MOUNT resource in the UNIXPRIV class to
perform MOUNT and UNMOUNT operations against USS file systems.

b. View and edit USERHLQ.USERSAMP(CECCRZCT) job cards.
c. Submit USERHLQ.USERSAMP(CECCRZCT).
d. Verify that all job steps result in a return code = 0.
e. Mount the file systems using the sample MOUNT command provided in

USERHLQ.USERSAMP(CECCRZCT).
7. Submit the generated USERHLQ.USERSAMP(CACCATFG) JCL to allocate and

initialize the metadata catalog and allocate the configuration files for the
Classic data server. This job populates the configuration with the service
definitions required for the specified SERVERROLE.

8. Submit the generated USERHLQ.USERSAMP(CACDS) JCL to start the Classic
data server.

9. Run the validation job in the next step if security is enabled for the Classic
federation data server. If security is not enabled, skip this step and continue
with the next step to run the validation job.
Security is enabled for the Classic data server by setting the CFSAFX
parameter in the installation customization parameters file. If security is
enabled, the following steps are required before you run the validation job in
the final step. If security is not enabled, continue with the next step.
Enabling security requires providing a password for the user access. The
utilities used in the validation job require encrypted passwords to access the
server. Set up the encrypted password for the validation job by following
these steps:
a. Edit the generated USERHLQ.USERCONF(CACPWDIN) member. This

member provides a PASSWORD=value parameter for the password
generator utility. Set the value to the TSO password for the User ID that
you use to run the customization jobs.

Chapter 2. Installing Classic federation 43

b. Submit the generated USERHLQ.USERSAMP(CACENCRP) JCL to run the
password generator utility. This JCL updates the
USERHLQ.USERCONF(CACPWDIN) with the encrypted value of the
password provided in the previous step.

c. Edit the USERHLQ.USERCONF(CACPWDIN) member and copy the hex
string value (x'<16-byte hexadecimal value>') for the ENCRYPTED=
keyword.

d. Edit the generated USERHLQ.USERCONF(CACMUCON) member and
replace the X'.ENCRYP PASSWD..' string with the hex string copied in the
previous step.

e. Edit the generated USERHLQ.USERSAMP(CACQRSYS) member and
replace the second line of the member with the hex string that you copied
to ensure that the hex string starts in the first column

10. Submit the generated USERHLQ.SCACSAMP(CACCUSVF) validation job.
Verify that all job steps result in a return code <= 4.

11. You can now configure the Classic Data Architect to access the Classic data
server, select from the sample tables, and map additional tables.

Upgrading a Classic federation installation
To upgrade a Classic federation environment to Version 11.3 from a previous
version, complete the steps in the update process.

Procedure
1. Edit the user samples allocation utility JCL in the installation samples member

SCACSAMP(CACCUSJ1). Follow the instructions in the JCL to edit the job
card and procedure variables. Then specify input parameters to the samples
allocation utility.You specify the following input parameters:

CACINHLQ=CAC.V11R3M00
The value specified for the CACINHLQ keyword must be the
high-level qualifier of the installation data sets that the SMP/E
installation produces for Classic federation.

CACUSHLQ=USER.V11R3M00
The value specified for the CACUSHLQ keyword is the high-level
qualifier for the USERHLQ.USERSAMP and USERHLQ.USERCONF
data sets that the samples allocation utility creates or updates.

CACDUNIT=SYSALLDA
The value specified for the CACDUNIT keyword identifies the disk
unit that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter. You
do not need to specify a value for CACDUNIT if SMS manages the
data sets.

CACDVOLM=
The value specified for the CACDVOLM keyword identifies the disk
volume that is used when allocating the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. This is an optional parameter. You
do not need to specify a value for CACDVOLM if SMS manages the
data sets.

CACSTGCL=
The value specified for the CACSTGCL keyword identifies the SMS
storage class that is used when allocating the USERHLQ.USERSAMP

44 Guide and Reference

and USERHLQ.USERCONF data sets. This is an optional parameter.
Specify a value for CACSTGCL only when a specific storage class is
required.

CACMGTCL=
The value specified for the CACMGTCL keyword identifies the SMS
management class that is used when allocating the
USERHLQ.USERSAMP and USERHLQ.USERCONF data sets. This is
an optional parameter. Specify a value for CACMGTCL only when a
specific management class is required.

ISPFHLQ=ISP
The value specified for the ISPFHLQ keyword identifies the high-level
qualifier for ISPF installation. The samples allocation utility runs a
TSO batch application and uses TSO functions.

ISPFLANG=ENU
The value specified for the ISPFLANG keyword identifies the
language prefix for the ISPF installation.

SERVERROLE=role-name
The value specified for the SERVERROLE keyword identifies the
server environment to install and customize. The role determines the
JCL members that are customized and the services that are configured
for the Classic data server. The list below contains the possible values.
You can specify multiple values at the same time by using the
following syntax:
SERVERROLE=(role-name1, role-name2)

Valid values for role-name:

SERVERROLE
value

Installs components for ...

CF_ADABAS Adabas access

CF_DATACOM CA-Datacom

CF_DB2 DB2 access

CF_IDMS CA-IDMS access

CF_IMS IMS access

CF_SEQ Sequential file access

CF_VSAM VSAM access

2. Submit SCACSAMP(CACCUSJ1) to allocate the USERHLQ.USERSAMP and
USERHLQ.USERCONF data sets. Verify that all job steps result in a return
code <= 4. This job populates the USERHLQ.USERSAMP data set with the
necessary objects and the customization parameters file for Classic federation,
CACCUSP2 .

3. Edit the Classic federation customization parameters file
USERHLQ.USERSAMP(CACCUSP2) to provide customization parameters.
This file will contain only the parameters that apply to the specified
SERVERROLE. See the customization parameters file settings for details.

4. Submit the generated USERHLQ.USERSAMP(CACCUSJ2) customization
utility JCL. Verify that all job steps result in a return code <= 4. The
USERHLQ.USERSAMP data set is populated with the customized JCL and
objects needed to run a Classic data server for the specified SERVERROLE.

Chapter 2. Installing Classic federation 45

5. Optional: Define the z/OS log stream for the diagnostic log for the Classic
federation data server. This step is only needed when the DIAGLGST or
EVENLGST parameter in the CACCUSP2 files specifies a log stream name
a. Verify that you have the authority required to run the Administrative Data

Utility (IXCMIAPU). The job that defines the logs runs this utility.
b. Submit the generated USERHLQ.USERSAMP(CACCFSLS) JCL to define

the log stream and logs.
c. Verify that all job steps result in a return code = 0.

6. Optional: If the system catalog files reside in a new zFS file system aggregate,
you must define and format the new zFS aggregate.
a. Verify that you have the authority required to run the following jobs:

v SAF READ-access level authorization is required for the
SUPERUSER.FILESYS.PFSCTL resource in the UNIXPRIV class to run
the zFS administration command, IOEZADM.

v SAF READ-access level authorization is required for the
SUPERUSER.FILESYS.MOUNT resource in the UNIXPRIV class to
perform MOUNT and UNMOUNT operations against USS file systems.

b. View and edit USERHLQ.USERSAMP(CECCRZCT) job cards.
c. Submit USERHLQ.USERSAMP(CECCRZCT).
d. Verify that all job steps result in a return code = 0.

7. Submit the generated USERHLQ.USERSAMP(CACCATUP) member to
upgrade the existing metadata catalog.

8. Allocate the configuration files and migrate the configuration.
v If you are migrating from a Version 10.1 release or later, submit the

generated USERHLQ.USERSAMP(CACCFGM1) member.
v If you are migrating from a Version 9.5 release, submit the generated

USERHLQ.USERSAMP(CACCFGMD) member.
v If you are migrating from a pre-Version 9.5 release, submit the generated

USERHLQ.USERSAMP(CACCFGMV) member.

These jobs allocate the configuration files for the Classic data server and run
the configuration migration and maintenance utility, CACCFGUT, to migrate
the configuration.

9. Submit the generated USERHLQ.USERSAMP(CACDS) JCL to start the Classic
data server.

10. Run the validation job in the next step if security is enabled for the Classic
federation data server. If security is not enabled, skip this step and continue
with the next step to run the validation job.
Security is enabled for the Classic data server by setting the CFSAFX
parameter in the installation customization parameters file. If security is
enabled, the following steps are required before you run the validation job in
the final step. If security is not enabled, continue with the next step.
Enabling security requires providing a password for the user access. The
utilities used in the validation job require encrypted passwords to access the
server. Set up the encrypted password for the validation job by following
these steps:
a. Edit the generated USERHLQ.USERCONF(CACPWDIN) member. This

member provides a PASSWORD=value parameter for the password
generator utility. Set the value to the TSO password for the User ID that
you use to run the customization jobs.

46 Guide and Reference

b. Submit the generated USERHLQ.USERSAMP(CACENCRP) JCL to run the
password generator utility. This JCL updates the
USERHLQ.USERCONF(CACPWDIN) with the encrypted value of the
password provided in the previous step.

c. Edit the USERHLQ.USERCONF(CACPWDIN) member and copy the hex
string value (x'<16-byte hexadecimal value>') for the ENCRYPTED=
keyword.

d. Edit the generated USERHLQ.USERCONF(CACMUCON) member and
replace the X'.ENCRYP PASSWD..' string with the hex string copied in the
previous step.

e. Edit the generated USERHLQ.USERSAMP(CACQRSYS) member and
replace the second line of the member with the hex string that you copied
to ensure that the hex string starts in the first column

11. Submit the generated USERHLQ.SCACSAMP(CACCUSVF) validation job.
Verify that all job steps result in a return code <= 4.

12. You can now configure the Classic Data Architect to access the Classic data
server, select from the sample tables, and map additional tables.

Installing the Classic Data Architect
To install the Classic Data Architect you extract an installation zip package and run
IBM Installation Manager.

Before you begin

If you have installed an earlier beta version of the Classic Data Architect (CDA)
Version 11.3, you must uninstall it first. See “Uninstalling the Classic Data
Architect” on page 49.

Ensure that your client computer meets the following minimum system
requirements:

Operating system:

v Microsoft Windows 8.1, 8, and 7

Memory
1024 MB.

Disk space
800 MB for both IBM Installation Manager and the Classic Data Architect.

Procedure

Start the CDA installation as a non-Administrator or as an Administrator.

Method Description

To start the CDA installation as a
non-Administrator

1. Unzip the installation package to a
temporary directory.

2. From the command line, change to the
temporary directory and take one of the
following actions:

v On Windows: Run userinst.exe.

v On Linux: Run userinst.

3. Proceed through the Installation Manager
wizard.

Chapter 2. Installing Classic federation 47

Method Description

To start the CDA installation as an
Administrator

1. Unzip the installation package to a
temporary directory.

2. From the command line, change to the
temporary directory and take one of the
following actions:

v On Windows: Run install.exe.

v On Linux: Run install.

3. Proceed through the Installation Manager
wizard.

Results

When the userinst or install program starts, Installation Manager is installed if it
is not already on your computer and automatically started. Installation Manager is
configured with the location of the repository (installation files) for IBM InfoSphere
Classic Data Architect V11.3.

What to do next

You can launch the product:
v From Windows: Start > Programs > IBM Classic Data Architect > IBM

InfoSphere Classic Data Architect V11.3. Alternatively, from a command line
run <installRoot>/eclipse.exe.

v From Linux: Applications > IBM Classic Data Architect > IBM InfoSphere
Classic Data Architect V11.3. Alternatively, from a command line run
<installRoot>/eclipse.

Starting IBM Installation Manager
If you start the Classic Data Architect installation from the downloadable image,
IBM Installation Manager starts automatically.

About this task

When you start the installation of Classic Data Architect from the downloadable
image, either by running the install or userinst program, IBM Installation Manager
automatically starts. If Installation Manager is not installed, it will be installed and
automatically started.

If you already installed Installation Manager, you can start it by using one of the
methods in the following procedure.

Procedure

Start the Installation Manager from Windows or Linux.

Method Description

To start the Installation Manager from
Windows

Click Start > All Programs > IBM
Installation Manager > IBM Installation
Manager.

48 Guide and Reference

Method Description

To start the Installation Manager from
Linux

Click Applications > IBM Installation
Manager > IBM Installation Manager or
alternatively change to Installation
Manager directory /eclipse and run IBMIM.

Uninstalling the Classic Data Architect
You can uninstall the Classic Data Architect by using the IBM Installation Manager.

Before you begin

To uninstall the IBM InfoSphere Classic Data Architect product package, you must
log in to the system by using the same user account that you used to install the
product package. You must close the programs that you installed by using IBM
Installation Manager.

About this task

You can use the Uninstall option in IBM Installation Manager to uninstall the IBM
InfoSphere Classic Data Architect product package from a single installation
location. You can also uninstall all of the installed packages from every installation
location.

To uninstall the CDA product package, complete the steps in the following
procedure.

Procedure
1. Start IBM Installation Manager.
2. On the Start page, click the Uninstall button.
3. On the Uninstall Packages page, from the Installation Packages list, select IBM

InfoSphere Classic Data Architect version 11.3.0, and click Next.
4. On the Summary page, review the list of packages that will be uninstalled. The

Complete page displays after the packages are removed.
5. Click Finish.

Installing the ODBC/CLI and JDBC clients
Install the ODBC driver and CLI, the JDBC client, or both on Linux, UNIX, and
Windows systems to connect workstation client applications to the IBM InfoSphere
Classic products on the mainframe.

Before you begin

Uninstall all beta versions of Classic ODBC/CLI and JDBC.

About this task

The ODBC/CLI and JDBC clients support both 32-bit and 64-bit operating systems
on most platforms. Exceptions are noted on the following list:
v AIX®

v HP-UX IA64 (64–bit only)
v Linux x86

Chapter 2. Installing Classic federation 49

v zLinux
– Red Hat Enterprise Linux
– SUSE Linux Enterprise Server

v Solaris
v Windows

The following table lists the installation programs for ODBC/CLI and JDBC clients.

Table 9. ODBC/CLI and JDBC installation programs

Installation program Operating system

cac111ax AIX

cac111hpia64 HP-UX IA64

cac111lx Linux

cac111zlx zLinux

cac111so Solaris

cac111wn.exe Windows

To install the ODBC/CLI and JDBC clients:

Procedure
1. Log in as a user with administrator authority (user root on UNIX and Linux).

A non-root user can also install the client programs, but can update and
uninstall only that user's instance.

2. Run the installation wizard.

Restriction:

If you do not use the default installation path, ensure that the directory you
choose does not contain prior versions of the ODBC/CLI client.

The default installation paths are as follows:

Linux: /opt/ibm/isclassic111
UNIX: /opt/IBM/isclassic111
Windows: C:\Program Files\IBM\ISClassic111

If you install the client programs as a non-root user on UNIX or Linux, the
default installation path is $HOME/isclassic111.

50 Guide and Reference

Method Steps

From CD
Windows:

1. Insert the Classic ODBC/CLI and JDBC client CD.

2. If autorun is enabled, the wizard will start automatically. If
the wizard does not start, you can launch the wizard from a
command prompt.

CD_drive:\cac111wn.exe

UNIX and Linux:

1. Insert and mount the Classic ODBC/CLI and JDBC client CD.

2. Start the wizard using the installation program that
corresponds to the operating system as listed in Table 9 on
page 50.

/mounted_volume/installation_program

From
ibm.com®

1. On your system, create a temporary directory with at least 150 MB of
free space.

2. Download the installation program that corresponds to the operating
system into the temporary directory.

3. On Linux and UNIX systems, add execute permission to the
installation program.

4. Start the wizard using the installation program that corresponds to the
operating system as listed in Table 9 on page 50.

v Windows:

Drive:\path_to_tempdir\cac95wn.exe

v UNIX and Linux:

cd
/path_to_tempdir/installation_program

chmod 755 ./cac111xx ./cac111xx

Results

If you need to troubleshoot an install session, log information is available:

Windows:
install_path_log\install.log

UNIX, Linux:
install_path/_log/install.log

You can run the installation program with the following optional program
arguments:
- help or -? for help (UNIX, Linux only)
- r to generate a response file
- f to input response file

Chapter 2. Installing Classic federation 51

Installing the ODBC and JDBC drivers from the command
prompt

You can install the Classic ODBC and JDBC drivers without launching the graphic
interface. The two alternate installation methods are called silent and console.

About this task

The console method is useful if you want to interact with the installation program
but you do not have a system capable of displaying the graphic interface (for
example, if you are accessing the system remotely in a secure shell).

The silent method, which is not interactive, is useful if you are accessing the
systems remotely. The silent method can use settings that you provide in a
response file, and enables you to run unattended installations or installations on
multiple systems that require the same settings.

In the following steps, installation_program refers to one of the following programs:

Scenario Program name

Installing IBM Classic ODBC/CLI and JDBC
clients on a Windows system from CD:

CD_drive:\cac111wn.exe

Installing IBM Classic ODBC/CLI and JDBC
clients on a Windows system from a
download:

Hard_Drive:\path_to_tempdir\cac111wn.exe

Installing IBM Classic ODBC/CLI and JDBC
clients on a Linux or UNIX system from CD:

/mounted_cd_volume/cac111os

Installing IBM Classic ODBC/CLI and JDBC
clients on a Linux or UNIX system from a
download:

/path_to_tempdir/cac111os

To install the ODBC and JDBC drivers from the command line:

Procedure
v Console method:

1. Run the installation program with the -console parameter.
– ODBC/CLI and Java™ client for Windows, UNIX, or Linux:

installation_program -i console

v Silent method:

1. Optional: Create a response file to use for the silent installation.
You can create a response file by running the installation program in GUI or
console mode with a form of the -options switch. You can edit the created
response file in a text editor.
– Using the installation wizard to create a response file only (for use in a

later installation):
installation_program -options-template full_pathname_to_responsefile

– Using the installation wizard to create a response file and install the
product locally:
installation_program -options-record full_pathname_to_responsefile

2. Run the installation program with the -silent parameter.
– ODBC/CLI and Java client for Windows, UNIX, or Linux:

52 Guide and Reference

installation_program -i silent

3. You can run the installation program with the following optional program
arguments:

- help or -? for help
- r to generate a response file
- f to input response file

For example on Windows, UNIX or Linux:
installation_program -i console -r <path><properties.txt>

Results

If you need to troubleshoot an install session, log information is available:

Windows:
install_path_log\install.log

UNIX, Linux:
install_path/_log/install.log

Uninstalling the Classic client components
Each Classic client component comes with an uninstall program. The uninstall
program for the ODBC/CLI and JDBC clients can be run in interactive mode or
silently.

Uninstalling the ODBC/CLI or JDBC client
You can uninstall the ODBC/CLI client and JDBC client by using the included
uninstall facility.

About this task

To uninstall the ODBC/CLI or JDBC client:

Procedure

Run the uninstall wizard:
v Windows: Run the uninstall program. You can run it interactively or in silent

mode. (The examples depict the default installation directory.)
– Interactive wizard: Open the Add/Remove Programs Control panel, select

IBM InfoSphere ODBC Administrator, and click Change/Remove.
– Interactive text-based console:

cd C:\Program Files\IBM\ISClassic111\
_uninst\uninstaller.exe -is:javaconsole -console

– Non-interactive or silent:
cd C:\Program Files\IBM\ISClassic111\
_uninst\uninstaller.exe -silent

v Linux and UNIX: As root user:
1. Change to the directory where the ODBC/CLI or JDBC client is installed.
2. Run the uninstall program. You can run it interactively or in silent mode.

(The examples depict the default installation directory for Linux.)
– Interactive wizard:

Chapter 2. Installing Classic federation 53

cd/opt/IBM/isclassic111/_uninst
./_uninst/uninstaller.bin

– Interactive text-based console:
cd/opt/IBM/isclassic111_uninst
./_uninst/uninstaller.bin -console

– Non-interactive or silent:
cd/opt/IBM/isclassic111_uninst
./_uninst/uninstaller.bin -silent

If you installed the client programs as a non-root user, substitute the following
path for /opt/ibm/isclassic111/_uninst:
$HOME/isclassic111/_uninst

Results

If you need to troubleshoot an uninstall session, logs are available in the following
locations:

Windows:
installation_path_log\uninstall.log

Linux and UNIX:
installation_path/_log/uninstall.log

54 Guide and Reference

Chapter 3. Configuring

Configuring Classic federation involves planning your configuration, configuring
data servers and the services that run in them, configuring access to data sources,
mapping tables, configuring communications, and configuring clients.

Overview of configuring Classic federation
The main factors that determine how to configure Classic federation are the type of
data server and the type of client that you use.

The Classic federation data server is designed for continuous operation. You can
add new data sources and services as your use of the Classic federation expands,
without affecting existing applications. You can also perform tuning and
troubleshooting without stopping a data server.

To configure clients, you define the data sources that your application uses and
you can define additional tuning and debugging parameters. Client configuration
is straightforward. For example, to configure the ODBC client, you use the ODBC
Administrator.

To establish communication, you configure a communication service that each data
source will use to communicate with a data server.

Gathering information and securing your environment
Classic federation requires initial setup tasks, such as obtaining library
authorizations and port assignments and securing your Classic data servers.

Obtaining library authorizations for the APF
Classic federation requires APF authorization for the installation load library.

About this task

The Classic data servers and utility programs use z/OS facilities and services that
require APF authorization. The load library data sets must be defined to z/OS as
APF authorized.

Procedure

Before setting up and configuring the data servers, ensure that the installation load
library SCACLOAD is APF authorized.

Obtaining ports for Classic data server communication
Classic federation uses TCP/IP to communicate between various components,
which requires a port number.

Before you begin

Obtain the port assignments that you need from your network administrator to
ensure that you are using dedicated ports for the exclusive use of Classic
federation.

© Copyright IBM Corp. 2003, 2015 55

About this task

Work with your network administrator to ensure that Classic data servers have
authorization to use the assigned ports.

Procedure

You must obtain a port assignment for each of the following communication
channels on the source server. You must define a port number as part of the
COMMSTRING configuration parameter for the INIT service on the source server.
Obtain a port assignment for each of the following communication channels on the
Classic data server.
1. A port for connections with the Classic Data Architect and other clients.

You define this port number as part of the COMMSTRING configuration
parameter for the INIT service. 9087 is the well-known and reserved port for
connections between the Classic Data Architect and other clients and a
connection handler service (INIT) that runs in the source server.

Securing a Classic data server
To secure your Classic data server, create security classes and profiles in your
external security manager (ESM) and configure service-level parameters in the
server.

About this task

Work with your Security Administrator to determine the appropriate levels of
security for your site. For best results, secure as many operations as you can while
maintaining site standards and performance. You can secure administrative
connections to your Classic data server, remote operator commands, monitoring,
table mapping, and catalogs.

When you secure the configuration data sets, use the following table to locate
them. You specified high level qualifiers for these data sets in the customization
parameters file when you performed the installation customization process.

Table 10. High level qualifiers and corresponding data sets.

High level qualifier (HLQ) Function

CACCFGNM=&CAC..CACCFGD

CACCFGIX=&CAC..CACCFGX

Configuration data sets

CACCATNM="&USRHLQ.CATALOG

CACIDXNM="&USRHLQ.CATINDX

Metadata catalog data sets

Procedure
1. Determine which users require access to your Classic data servers and the level

of access that each user requires.
Decide whether each user requires READ or CONTROL access to
administrative functions, and remote console commands.

2. Ensure that each user has a valid z/OS user account.
3. If you grant different levels of access to system resources for multiple users,

follow these steps.

56 Guide and Reference

a. Ask your System Administrator to define the profiles and classes that you
require by using the System Authorization Facility (SAF).
Follow the remaining steps for each applicable service:
v Operator service (OPER)
v Query processor service (QP)

b. Ensure that VALIDATE=Y for the SAFEXIT parameter.
VALIDATE=Y is the default setting, so omitting the keyword has the same
effect as specifying VALIDATE=Y.
If you use SAFEXIT with VALIDATE=N then the Classic data server only
validates that each user has a valid user account and password.

c. Optional: Override the default class and profile names in the xxxCLASS and
xxxPROF parameters.

Security
To implement security, work with your Security Administrator to define any
required classes and profiles, and then secure your Classic data servers and
catalogs.

Use these different layers to secure your Classic federation environment:
v “z/OS-level security”
v “Server security”

z/OS-level security

The System Authorization Facility (SAF) is a z/OS interface that programs use to
communicate with an external security manager (ESM), such as the Resource
Access Control Facility (RACF). SAF and your ESM work together to grant access
rights to system resources, such as the following:
v Classic data servers
v Services
v Catalogs

RACF classes organize profiles into groupings of related system resources. Profiles
define security for specific users, groups, and protected resources. Your security
administrator creates classes and profiles, then grants users or groups READ or
CONTROL access to the resources in the profiles.

For more information about z/OS security, see the z/OS Security Server RACF
Security Administrator's Guide.

Server security

The following table describes specific tasks on a Classic data server and the
required SAF access that a user needs to perform them. A user with CONTROL
access automatically has READ access.

Table 11. Tasks and required user access

Task Service to configure Minimum required access

Monitor metrics Monitoring service READ

Issue remote console commands Operator service READ

The SAFEXIT service parameter

Chapter 3. Configuring 57

Secure your Classic data server by using the SAFEXIT service parameter.
The following services have a SAFEXIT parameter:
v Monitoring service (MAA)
v Operator service (OPER)
v Query processor service (QP)

SAFEXIT and protected resources

If you define the SAFEXIT parameter by specifying the SAFEXIT value
CACSX04,VALIDATE=N the Classic data server performs user ID and
password authentication only. No other user validation takes place.

Use the SAFEXIT value CACSX04,VALIDATE=Y to grant multiple users
different levels of access to system resources based on classes and profiles.
For each of these services, you can override the default class and profile by
specifying different z/OS class or profile names as values for service
parameters. Your ESM then authenticates user access by checking the
specified profiles.

Table 12. Default classes and profiles per service, with override service parameters

Service name Default class Default profile
Override class
parameter

Override profile
parameter

Monitoring
service*

SERVAUTH CEC.MONITOR MONCLASS MONPROF

Operator service SERVAUTH CEC.OPER OPRCLASS OPRPROF

Query processor
service

Not applicable Not applicable Not applicable Not applicable

* See the 'Monitoring service' section below for additional information.

You can supply values for these parameters during the installation
customization process or by setting them in the Console Explorer in the
Classic Data Architect. For example:
SAFEXIT="CACSX04,VALIDATE=Y,ADMCLASS=xxxxxxxx,ADMPROF=yyyy.yyyyy"

Monitoring service

The monitoring service secures access to metrics.

A Classic data server provides different ways of accessing monitoring
information, depending on your solution. Data Replication for

The Classic Data Architect accesses monitoring information by using the
same user account that connected with the Classic data server.

Query processor service

The query processor service uses the SAF exit to authenticate users who
map tables and run test queries.

Operator service

The operator service authenticates users who run remote console
commands on the Classic data server, including the MTO command files
run from the Classic Data Architect. Console users are generally system
operators who make z/OS system console requests to a Classic data server.

The operator service does not secure operator commands that you enter
from a z/OS console or equivalent interface, such as the System Display
and Search Facility (SDSF). When you issue commands to the console you
have implied authority to issue commands to the Classic data server, so

58 Guide and Reference

you must secure these command interfaces to prevent unrestricted access.
Ensure that users who run remote operator commands have READ access
to connect the data server and to issue the DISPLAY command, and
CONTROL access for all other commands.

SAF exit
You can use the SAF exit for security validations. The SAF exit verifies access for
user and client connections and controls the operations that a user can perform.

The SAF exit controls access to system resources based on classes and profiles.

For detailed information about activating the SAF exit and the SAF exit API, see
Security: SAF exit.

Basic configurations for Classic federation for all data sources
This section contains procedures for creating basic configurations that apply to all
data sources. You can follow these procedures step-by-step or use them as aids for
creating more complex configurations.

Configuring data servers
When you configure a data server, you must also configure a query processor and
the appropriate communication services so that your client applications can
communicate with the data server.

Before you begin

To configure a data server for Classic federation, you must first create one or more
basic data servers. You do this by following the installation customization process.
You can also migrate a data server from a previous version.

About this task

You can modify the global parameters of your data server in the Console Explorer
in the Classic Data Architect.

The data server might need more memory, depending on how many users are
concurrently connected, how many queries are running concurrently, and whether
the queries contain an ORDER BY clause or other predicates that require sorting.
To increase the number of concurrent users that a single data server can support,
raise the value of the MESSAGEPOOLSIZE parameter.

The resulting data server that results from the installation customization process
has all of these required services. Each service is pre-configured. You can then
modify a service to fit your application as needed.

Query processors

This documentation sometimes refers to the query processor as the data source. The
service name for the query processor must match the name of the data source that
you specify when you configure the clients.

You can configure different types of query processors, depending on whether you
want to use z/OS resource recovery services (RRS) to perform two-phase commit
operations:

Chapter 3. Configuring 59

v A single-phase commit query processor (CACQP)
v A two-phase commit query processor (CACQPRRS)

Define a separate data server for each of these query processor types. They cannot
coexist in the same data server.

A service definition for a single-phase query processor is in the sample member
User.SCACCONF(CACSVQP). A service definition for a two-phase commit query
processor is in the sample member User.SCACCONF(CACSVRRS).

You can add or modify query processors in the Console Explorer in the Classic
Data Architect. Alternatively, you can issue the z/OS operator command ADD to
create a new query processor service or the SET command to modify an existing
query processor service.

Connection handlers

To set up a TCP/IP connection handler to communicate with client applications,
you need the host name or IP address where the data server runs and a unique
port number.

To set up cross-memory services for developing client applications on the same
z/OS system, you must configure a unique dataspace name and queue name.

To configure data servers:

Procedure
v Determine the number of data servers that your applications require.
v Customize your installation so that you have a basic data server on the LPAR.
v Configure a query processor. The query processor is pre-configured during

installation customization. These guidelines provide additional information
about configuration parameter settings for the query processor.
1. The values of the following configuration parameters identify the number of

query processor tasks and user connections that the query processor will
service:

INITIALTHREADS

Specifies how many query processor tasks to start during data server
initialization.

MAXTHREADS

Specifies the maximum number of query processor tasks to start.

MAXUSERS

Specifies the number of user connections that the query processor
services.

The following example sets the INITIALTHREADS parameter to 6 for the query
processor service MY_QP:
SET,CONFIG,SERVICE=MY_QP,INITIALTHREADS=6

2. Optional: Create service override records to contain override parameters for
specific users.
The following example creates a service override record for the user
TESTUSER and the query processor service MY_QP:
ADD,CONFIG,USER=TESTUSER,SERVICE=MY_QP

60 Guide and Reference

3. Optional: Issue SET commands against the user override record to specify
override parameters for that user.
The following example sets the value of the MAXTHREADS parameter to 15 for
the user TESTUSER:
SET,CONFIG,USER=TESTUSER,SERVICE=MY_QP,MAXTHREADS=15

4. Activate the system exits that you need for security, accounting, record
processing, and managing DB2 processing.

v Configure a connection handler.
v Start the data server.
v Repeat these steps for each additional data server that you require.

Mapping tables for Classic federation
In the Classic Data Architect, create relational tables that map to the data source
you need to access.

About this task

You create the relational tables and views in a project in Classic Data Architect.
Then, you promote these objects to a data server. You can also create stored
procedures, modify PCB selection for IMS tables or indexes, and define occurs
processing.

Procedure
1. Configure Classic Data Architect by creating prerequisite objects, creating

connections to data servers, setting preferences, importing reference files, and
granting privileges. See Configuring Classic Data Architect.

2. Create objects for specific data sources. See Mapping data for Classic federation
topics.

Configuring client applications
Before you can run your application, you must configure the client. Client
configuration depends on the operating system and the communication protocol
that you use.

About this task

All clients support TCP/IP. To configure a client to communicate with the data
server, perform the configuration steps for one of the clients.

Procedure
v Configure the JDBC client. See Establishing connections from JDBC client

applications to data servers.
v Configure the ODBC client. See Configuring ODBC data sources.
v Configure a CLI client depending on the operating system that you use.

– Configure the CLI client for UNIX. See Configuring the UNIX, Linux, and
Windows CLI client.

– Configure the CLI client for native z/OS. See Configuring native z/OS CLI
clients.

– Configure the CLI client for USS. See Configuring the USS CLI client.

Chapter 3. Configuring 61

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfcjdbcestablishconn.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfcjdbcestablishconn.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfcodbcconfig.dita
http://publib.boulder.ibm.com/infocenter/iisclzos//v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfccliconfig.html
http://publib.boulder.ibm.com/infocenter/iisclzos//v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfccliconfig.html
http://publib.boulder.ibm.com/infocenter/iisclzos//v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics /iiyfcclicfgzos.html
http://publib.boulder.ibm.com/infocenter/iisclzos//v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics /iiyfcclicfgzos.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r5/topic/com.ibm.swg.im.iis.fed.classic.clients.doc/topics/iiyfcclicfguss.html

Configurations for Classic federation for specific data sources
In addition to configuring the basic components required for Classic federation,
setup requirements vary by data source. For example, additional configuration is
required to setup the interface to some data sources, to configure initialization
services, and to customize data server JCL and configuration parameters.

About this task

The following procedure provides general guidelines for configuring specific data
sources and for setup steps that are common to all data sources:

Procedure
1. Follow the configuration steps for the setup requirements that are specific to

the data source that you need to access.
v For Adabas setup, see “Setting up access to Adabas databases.”
v For CA-Datacom, see Setting up access to CA-Datacom.
v For CA-IDMS setup, see Setting up access to CA-IDMS.
v For DB2 for z/OS setup, see Setting up access to DB2 for z/OS.
v For IMS setup, see Setting up access to IMS.
v For sequential file setup, see Setting up access to sequential files.
v For VSAM setup, see Setting up access to VSAM.

2. Follow the configuration tasks that are common to all data sources.
a. Optional: Create or upgrade a metadata catalog. A default set of metadata

catalogs is created and initialized during the installation customization
process. You need to define a new set of metadata catalogs if you set up a
second data server. See Creating and initializing sequential metadata
catalogs.

b. Configure logging for data servers. See “Defining logger services” on page
87.

c. Configure a TCP/IP connection handler to communicate with the Classic
Data Architect. See “Configuring TCP/IP connection handlers” on page 88.

d. The basic configuration steps to configure communication for clients, start
the data server, and map tables occur at this stage of configuration. See
“Basic configurations for Classic federation for all data sources” on page 59.

e. Optional: Copy the content of your sequential metadata catalog into a
Version 11.3 linear metadata catalog. See Creating and initializing linear
metadata catalogs.

Configuring access to Classic federation data sources
This section contains procedures for configuring access to the Classic federation
data sources.

Setting up access to Adabas databases
To set up access to Adabas databases, you must configure the data server to work
with the ADARUN program and point to the Adabas runtime libraries.

62 Guide and Reference

About this task

After you configure your data server to access Adabas, you can then use the
Classic Data Architect to validate the tables and views that you map to your
Adabas databases.

Classic data servers use an Adabas link routine that includes a Classic before call
exit. You must run the sample JCL in User.SCACSAMP(CACADAL) to build the
required modules. The supplied sample User.SCACSAMP(CACADADD) provides
control card information to the ADARUN program, which Adabas uses to manage
access by user programs such as the Classic data server.

If you use the installation customization process to set up your initial data server,
that process configures CACADAL and CACADADD for you. If you set up the
data server by a different method, configure these sample members manually
before you perform the steps.

Modify the CACADAL job to select one of the following two statements,
depending on whether you are using an Adabas link routine at version 8 or above.
The example specifies version 8:
// SET ADALNKV8=Y ADALNK AT OR AFTER V8
//* SET ADALNKV8=N ADALNK PRIOR TO V8

Set the following parameters in CACADADD:

SVC

Set SVC to the supervisor call (SVC) number of the Adabas nucleus.

DBID

Set DBID to the default database identifier in Adabas.

LNKGNAME

If you are accessing Adabas by using a version 8 or higher Adabas link
routine, set LNKGNAME=CACAGBL to indicate that the data server requires
the Classic version (CACAGBL) of the Adabas link globals module.

PROG

If you are accessing Adabas by using a version 8 or higher Adabas link
routine, set PROG=RENTUSER to indicate that the data server requires the
reentrant version of the Adabas link routine.

You configure access to Adabas in the JCL that runs your data server. You can find
sample JCL in the sample member User.SCACSAMP(CACCDS).

Procedure
1. Run the sample JCL in User.SCACSAMP(CACADAL).
2. Add the Adabas runtime libraries to the STEPLIB concatenation.
3. Point to the sample User.SCACSAMP(CACADADD) in the DDCARD DD

statement.

Examples

The first example shows a STEPLIB concatenation that points to the Adabas
runtime libraries:

Chapter 3. Configuring 63

//STEPLIB DD DISP=SHR,DSN=&CAC..V11R3M00.SCACLOAD
// DD DISP=SHR,DSN=&ADA..LOAD

The next example shows how to reference CACADADD in the DD statement.
//DDCARD DD DISP=SHR,DSN=&CAC..SCACSAMP(CACADADD)

Setting up access to CA-Datacom
You need to configure the data server to enable access to CA-Datacom data.
Optionally, you can also set up security.

Procedure
1. Define the CA-Datacom access service for the data server. See “Access service

for CA-Datacom.”
2. Ensure that the CA-Datacom Multi-User Facility is authorized. See “Multi-User

Facility authorization and CA-Datacom” on page 70.
3. Optional: Set up security for CA-Datacom access. See “CA-Datacom security”

on page 70.
4. Configure the data server for validation. See “CA-Datacom setup for dynamic

discovery from the Classic Data Architect” on page 71.

Access service for CA-Datacom
The Datacom access service creates and manages connections to CA-Datacom
databases.

To access CA-Datacom databases, you must add and configure the Datacom access
service.

Defining task areas:

To access CA-Datacom databases, you must first configure the Datacom access
service.

About this task

Set these parameters to define connections with CA-Datacom databases:

URTPOOL

Specifies whether the Datacom access service manages a pool of user
requirements tables (URTs) or manages each user requirements table separately.
The possible values are TRUE or FALSE, and the default value is FALSE.

TASKAREASACQ

Specifies the maximum number of task areas that the Datacom access service
can acquire, initialize, and maintain for the use of the query processor. The
value of this parameter determines the number of concurrent connections with
CA-Datacom.

Possible values range from 1 to 200.

TASKAREASRES

Specifies the number of task areas to reserve for the use of modification
queries, which perform insert, update, or delete operations. The task areas that
remain can perform modification queries or read-only queries.

64 Guide and Reference

You can change the configuration of the CA-Datacom access service in the Classic
Data Architect or by issuing z/OS operator commands. The following example
shows how to change the configuration by using the z/OS operator command
SET,CONFIG:
F Job-Name,SET,CONFIG,SERVICE=Service-Name,Parameter-Name=Value

In the following example, you set the value of URTPOOL to TRUE for a Datacom
access service with the service name DCOMIS. The job name of the data server is
DS2.
F DS2,SET,CONFIG,SERVICE=DCOMIS,URTPOOL=TRUE

Restart the Datacom access service to put configuration changes into effect. The
data server does not recognize configuration changes that you make while the
Datacom access service is running.

For information about connecting to CA-Datacom databases and how these
parameters interact, see the topic “Database access to CA-Datacom”.

Procedure

1. Set a value for URTPOOL.
2. Set a value forTASKAREASACQ.
3. Set a value for TASKAREASRES.

Database access to CA-Datacom:

The query processor and the Datacom access service manage access to
CA-Datacom data for a Classic data server. Pre-allocated task areas provide the
actual database connections.

The query processor converts SQL queries into native CA-Datacom commands.
You can join the results of these queries with queries against other data sources,
such as VSAM. To set up access to CA-Datacom databases, configure the Datacom
access service to conform with site requirements:
v Whether to use pooled or non-pooled user requirements tables
v The number of connections with CA-Datacom

Restriction: The query processor services within in a single data server must
access the same Multi-User Facility in CA-Datacom. Accessing a different
Multi-User Facility requires a second data server that references a different
CA-Datacom control library.

Pooled and non-pooled user requirements tables

Consider using pooled user requirements tables to improve the performance and
throughput of your environment.

Pooled user requirements tables

Choose this option to reduce the number of times that the Datacom access
service opens and closes user requirements tables. On completion of a
query, pooled user requirements tables remain open for the duration of the
related instance of the Datacom access service. All queries and stored
procedures that reference a given user requirements table share the same
instance of that table.

Chapter 3. Configuring 65

If you deploy pooled tables, the Datacom access service launches multiple
task areas on a single, multi-threaded connection. Each concurrent
transaction uses a separate thread as though it were an independent
connection, while the Multi-User Facility in CA-Datacom recognizes only
one connection.

Pooled user requirements tables have the following advantages:
v Reduced processing overhead related to repeated cycles of opening and

closing user requirements tables
Alternatively, the CA-Datacom start up option OPTIMIZE can mitigate this
issue.

v Reduced message traffic on the console related to opening and closing
user requirements tables
Alternatively, you can disable the display of messages DB00101I and
DB00102I at the CA-Datacom Multi-User Facility level.

Non-pooled user requirements tables

In a non-pooled environment, the Datacom access service closes the user
requirements table when each transaction finishes processing. This
approach launches an independent connection for each task area instead of
a single, multi-threaded connection for all task areas. Transactions that
reference the same user requirements table can share the same task area.

The URTPOOL parameter determines whether you use pooled or non-pooled user
requirements tables:

URTPOOL

Specifies whether the Datacom access service manages a pool of user
requirements tables or manages each user requirements table separately. The
default value is FALSE.

TRUE

The Datacom access service opens a user requirements table the first
time a query or stored procedure references it. The user requirements
table remains open and until one of the following events occurs:
v You issue a CLOSE command against the user requirements table
v The Datacom access service stops
v The Classic data server stops

FALSE

The Datacom access service closes a user requirements table when the
query or stored procedure that references it finishes processing.

Connections to CA-Datacom

You can minimize resource contention and improve overall throughput by
specifying the maximum number of concurrent connections in the service
definition for the Datacom access service. Other components can also impose limits
on the number of connections:
v The query processor in the Classic data server
v The Multi-User Facility (MUF) in CA-Datacom

66 Guide and Reference

The way you configure these components depends on the impact on the
Multi-User Facility and the databases. Work with your Datacom administrator to
determine the number of concurrent connections that is appropriate for your site.

The query processor, the Datacom access service, or the Multi-User Facility can
reject connection requests that exceed the maximum number of available task areas
and issue an error message.

Query processors and concurrency management

Assuming that the settings in the query processor and the Multi-User Facility are
not a limiting factor, the value that you specify for the TASKAREASACQ parameter
determines the maximum number of concurrent connections that the data server
can open with the Multi-User Facility.

To ensure that your query processor configurations are not a limiting factor,
calculate the maximum number of concurrent queries in the service definition for
the query processor:
Maximum-Number-Of-Queries = MAXTHREADS * MAXUSERS

The MAXTHREADS parameter represents the maximum number of query processor
instances per service. The MAXUSERS parameter represents the maximum number of
user connections to the query processor.

Workload analysis and concurrency management

A task area processes both read-only queries and modification queries. Read-only
queries generate minimal contention because they require access to task areas for
very short periods of time. Because they have less impact on the database,
read-only queries that use the same user requirements table can share a single task
area. Modification queries, which perform inserts, updates, and deletes, require
exclusive control of a task area for the full duration of the query, and therefore
cannot share a connection.

After you identify and analyze the mix of read-only queries and modification
queries that you expect, specify a number of task areas that supports that
workload and avoids resource contention.

The following configuration parameters for the Datacom access service determine
the number of connections and their purpose:

TASKAREASACQ

Specifies the maximum number of task areas to acquire for accessing
CA-Datacom. The behavior of this setting differs slightly, depending on the
setting of URTPOOL:

URTPOOL=TRUE

The Datacom access service opens one connection to CA-Catacom to
manage processing. TASKAREASACQ specifies the maximum number
of threads that the Datacom access service uses on this single
connection.

URTPOOL=FALSE

The Datacom access service opens a separate connection to
CA-Datacom for each concurrent transaction, up to the maximum
number of connections that you specify.

Chapter 3. Configuring 67

TASKAREASRES

Specifies the number of task areas to reserve for modification queries.
Reserving some of the tasks areas for update queries reduces contention for
task areas between read-only and modification queries.

If all reserved connections are actively processing modification queries, the
Datacom access service can then assign modification queries to unreserved
connections. Read-only queries use only the unreserved connections.

RRS processing

The Datacom access service treats an RRS-enabled query the same way as a
modification query, in that RRS processing requires the exclusive use of a
connection and cannot share it. The service closes each user requirements table on
completion of an RRS-enabled query, so setting URTPOOL to TRUE has no effect on
RRS processing.

For more information about configuring the Datacom access service, see the topic
“Defining task areas”.

Examples

The examples are valid for any type of configuration except RRS. The examples
assume that the query processor is not a limiting factor on the number of
connections. In each example, TASKAREASACQ=5 and TASKAREASRES=2.

Example 1: Read-only queries reference different user requirements tables

The maximum number of concurrent connections to CA-Datacom is three,
because read-only queries that reference different user requirements tables
cannot share the same task area. In this scenario, the Datacom access
service does not use the two tasks that you reserve for update queries.

Example 2: Read-only queries reference the same user requirements table

The maximum number of concurrent connections to CA-Datacom is 3 *
32767. In this scenario, the maximum number of tasks that you define in
the Multi-User Facility determines the upper limit on the concurrent
connections.

Read-only queries that reference the same user requirements table can
share the same task area. In this scenario, the Datacom access service does
not use the two tasks that you reserve for update queries.

Example 3: Modification queries that reference different user requirements
tables

The maximum number of concurrent connections to CA-Datacom is five.
Modification queries cannot share the same task area.

Example 4: Modification queries that reference the same user requirements table

The maximum number of concurrent connections to CA-Datacom is five.

Modification queries cannot share tasks areas, even when they reference
the same user requirements table. The Datacom access service can use all
task areas for modification queries, but uses the reserved tasks areas first if
they are available.

Example 5: Three modification queries are running

68 Guide and Reference

The Datacom access service uses the two reserved tasks plus one
unreserved task, leaving two task areas free for additional queries.

The maximum number of possible read-only queries depends on the user
requirements tables that the queries reference.
v Possible number of read-only queries that reference different user

requirements tables: 2
v Possible number of read-only queries that reference the same user

requirements table: 2 * 32767

Opening and closing user requirements tables for database maintenence:

Before a CA-Datacom administrator takes a databases offline for maintenance, you
might have to close user requirements tables that the Datacom access service
opened.

About this task

You cannot take a database offline from a CA-Datacom Multi-User Facility (MUF)
if applications, such as a Classic data server, have pooled user requirements tables
(URTs) opened against the database. You must close pooled user requirements
tables because they remain open after your queries run.

Use z/OS operator commands to close the required user requirements tables or to
stop the Datacom access service. After maintenance is complete, you can reopen
the user requirements tables.

A user requirements table can have any of the following statuses:

OPEN

The user requirements table is physically open.

CLOSED

The user requirements table is physically closed. You cannot access the
closed user requirements table with new SQL statements until you restart
the Datacom access service or issue an OPEN command against the user
requirements table.

CLOSING

The user requirements table is in the process of closing, and physically
closes when all SQL statements that reference it finish processing. When
processing completes, the Use Count is zero and you can no longer access
the user requirements table.

READY

The user requirements table is ready to open. You issued an OPEN
command against the user requirements table, and no SQL statements
physically opened the table yet.

Perform the steps in the following procedure to open and close user requirements
tables for database maintenance:

Procedure

1. To display information about user requirements tables that the Datacom access
service processed, issue the DISPLAY,URT command.
/f Job-Name,CMD,Service-Name,’DISPLAY,URT=[URT-Name|ALL]’

Chapter 3. Configuring 69

Where Job-Name is the name of the job or started task for the data server,
Service-Name is the name of the Datacom access service, and URT-Name is the
name of the user requirements table. The job name is CACDS for Classic
federation.
Specify the ALL option to display all user requirements tables that this instance
of the Datacom access service processed.
The following example describes the command output:
CACK009I DATACOM ACCESS SERVICE URT ACCESSED LIST
******** URT ACCESSED LIST *********
URT Name Status Use Count
-------- -------- ---------
URT1 OPEN 0
URT2 CLOSED 0

2. Close the required user requirements tables.
a. To close a user requirements table that you specify, issue the CLOSE,URT

command:
/f Job-Name,CMD,Service-Name,’CLOSE,URT=URT-Name’

The following example describes the command output:
CACK010I URT CLOSE INITIATED FOR URT ’URT1’ USE COUNT (0)
CAC00200I CMD,MYDCI,"CLOSE,URT=URT1"
CACK011I URT CLOSE COMPLETED FOR URT ’URT1’
* URT MUST BE RE-OPENED TO ENABLE ACCESS

The command takes take effect when all outstanding SQL statements that
access the user requirements table finish processing.

b. To close all pooled user requirements tables, stop the Datacom access
service by issuing the STOP,SERVICE command. :
F Job-Name,STOP,SERVICE=Service-Name

3. If shutdown operations are timing out, raise the value of the RESPONSETIMEOUT
parameter against the controller service to enable you to close a larger number
of pooled user requirements tables without exceeding the timeout limit.
SET,CONFIG,SERVICE=CNTL,RESPONSETIMEOUT=Time

Express the value of Time as nMS (n milliseconds), nS (n seconds), or nM (n
minutes), for example, 2S.

4. To open a user requirements table that you specify, issue the OPEN,URT
command.
/f Job-Name,CMD,Service-Name,’OPEN,URT=URT-Name’

The following sample describes the command output:
CACK012I URT OPEN COMPLETED FOR URT ’URT1’

The physical open of the user requirements table actually occurs on the next
SQL statement that references the user requirements table.

Multi-User Facility authorization and CA-Datacom
The CA-Datacom load library requires authorization because certain Multi-User
Facility options are operational only when the Multi-User Facility is authorized.

If authorization is not present when the Multi-User Facility is started, the
Multi-User Facility issues the following message: DB00210I - MULTI-USER NOT
RUNNING AUTHORIZED.

CA-Datacom security
Your choices for security include internal CA-Datacom security (less secure),
external security, or no security at all.

70 Guide and Reference

About this task

Data servers run as either a z/OS-started task or a batch job. The primary
authorization ID is the user of the started task or batch job. In many installations,
you specify the user for started tasks as plus signs (’++++++++’). Because the data
server is a multiuser system, access to CA-Datacom under the authorization ID of
the data server does not provide adequate security for your data.

For added security, use an external security package, such as RACF, ACF-2, or Top
Secret, where each user must have a unique identity. During the connection
process, the security system at your site verifies the user ID and password that you
supply when you connect to the data server. The user ID in the accessor
environment element (ACEE) authorizes database processing.

Restriction: All query processors in the data server must have the same SAFEXIT
configuration. Deploying multiple query processors that have different
configuration settings can cause the Datacom access service to reject your queries.

Procedure
v Specify SAFEXIT=CACSX04 in the service definition for all query processor

services in the dataserver.
v Optional: Enable user-level security checking for each database request.
v Choose one of the following options, depending on whether you enable security

checking for each request:

Option Description

Check security for each database request The accessor environment element that the
SAF exit creates must be available outside
the exit. Request a Computer Associates
software solution and install that solution on
your CA-Datacom system. Contact
CA-Datacom Technical Support and request
one of the following solutions:

v Solution TB10727 (CA-Datacom Version
9.0 only)

v Solution TB20202 (CA-Datacom Version
10.0 only)

v Solution TB31027 (CA-Datacom Version
11.0 only)

Do not check security for each database
request

If the SAF exit is active in the data server,
you must configure the SAF exit not to send
an accessor environment element. Set the
value of the EXCLUDE parameter to 2 in the
SAF exit configuration file entry.

CA-Datacom setup for dynamic discovery from the Classic Data
Architect
When a CREATE TABLE or CREATE INDEX statement that references a
CA-Datacom table is executed, the CA-DATACOM Datadictionary Service Facility
(DSF) is invoked to perform validation processing.

Chapter 3. Configuring 71

Procedure
v Ensure that the STEPLIB DD statement of the link-pack area provides access to

the DSF load modules and the DDSRTLM (CA-Datacom System Resource Table).
The required modules are located in the following CA-Datacom load libraries:
– CAI.CAILIB
– CAI.DATACOM.CHLQ.CUSLIB
– CAI.DATACOM.THLQ.CAILIB

Replace CHLQ and THLQ with the applicable high-level qualifier.
v Update the data server JCL to include a DDIDENT DD statement that references

a text-data set or PDS member that contains DSF user ID and password
information. A sample DDIDENT PDS member is located in SCACSAMP
member CACDCID. The file referenced by the DDIDENT DD statement contains
parameters that identify the user ID and password that allow access to DSF:

USER
Identifies an ENTITY-OCCURRENCE-NAME of a PERSON that is in
production status. If no USER information is supplied, the DSF assumes
there is no authorization.

PASSWORD
Identifies a QUALIFIER attribute that specifies the password for the
PERSON that is identified in the USER parameter.

These access-information parameters are entered free form, in a standard-text
file. You can enter the parameters on the same line, separated by a comma, or
enter each parameter on a separate line. If a single parameter is entered more
than once, the last occurrence of that parameter is used when accessing the
Datadictionary Service Facility. The number of leading and trailing blanks or the
number of spaces before and after the equal sign, is inconsequential. As with
any file containing sensitive information, this access information file must be
secured according to site specifications.

v Ensure that the CA-Datacom access service is active in the data server.
v Ensure that the URT load module that is identified on the ACCESS USING URT

clause on the CREATE TABLE statement exists and is loadable by the data
server.

Setting up access to CA-IDMS
You need to configure the data server to communicate with one or more CA-IDMS
central versions to enable access to CA-IDMS data and to process CREATE TABLE
and CREATE INDEX statements.

About this task

The CA-IDMS access component runs under the query processor in the data server.
This component supports multiple users and does not require initialization
services.

The batch access module, IDMS, provides access to CA-IDMS. This module can
access CA-IDMS data in either central version or local mode. By default, all JCL
and examples are configured to access CA-IDMS in central-version mode. If you
have a specific need for local-mode access, see the CA-IDMS documentation about
the necessary JCL changes to allocate and access CA-IDMS databases.

72 Guide and Reference

Procedure
1. Verify that the CA-IDMS MAXERUS setting is sufficient to support the data

server access to CA-IDMS. See “Setting the maximum number of run units.”
2. Set up APF authorization of the CA-IDMS LOADLIB. See “Setting up APF

authorization.”
3. Pass the correct user context to CA-IDMS run units. See “Setting up security for

CA-IDMS access” on page 74.
4. Set up access to multiple CA-IDMS central versions. See “Accessing multiple

CA-IDMS central versions from a single data server” on page 74.
5. Update the data server JCL to access any CA-IDMS central versions. See

“Configuring the data server to access CA-IDMS central version” on page 75.
6. Update the data server JCL to be notified correctly when the CA-IDMS central

version is not available. See “Configuring the data server for notification of
central version shutdown” on page 76.

Setting the maximum number of run units
In central version mode, the CA-IDMS access component in the data server
connects to the CA-IDMS system as an external run unit. The number of external
run units available in a single CA-IDMS central-version region is a CA-IDMS
configurable value.

An external run unit is established when the client issues an SQL OPEN to access a
CA-IDMS-mapped table. An external run unit is also started when processing a
CREATE TABLE or CREATE INDEX statement that references a CA-IDMS mapped
table. The run unit is used to extract schema and subschema information from the
CA-IDMS dictionary which is used to validate the CREATE TABLE and CREATE
INDEX statements.

Each central version has a MAXERUS (maximum external run-units) value that
limits the number of concurrent external connections. This value governs all
external connection sources, such as batch jobs and CICS.

Setup and configuration of the data server requires the analysis of the MAXERUS
value for CA-IDMS central versions accessed. Generally, when the data server
accesses and updates CA-IDMS data, the number of query processor services
running in a data server is the maximum number of concurrent run units that are
active to CA-IDMS at any point in time.

Set the MAXERUS setting high enough to accommodate additional run-units that
are opened due to the following data server processing:
v CREATE TABLE processing
v CREATE INDEX processing
v Select processing
v Update processing
v Delete processing
v Insert processing
v Join processing: each table referenced in the join has a separate run unit.

Setting up APF authorization
Cross-memory services and the SAF security exit require the STEPLIB for the data
server to be APF authorized.

Chapter 3. Configuring 73

About this task

The CA-IDMS.LOADLIB is not usually APF authorized, and some utility programs
in that library fail if they are run from an APF-authorized STEPLIB concatenation.

Procedure
1. Create a separate, authorized copy of the CA-IDMS.LOADLIB.
2. Create a separate, authorized copy of the CA-IDMS.DBA.LOADLIB.

Setting up security for CA-IDMS access
To establish security for CA-IDMS data, the SAF exit ensures that the user ID and
password combination from the client is an authorized user of the z/OS system. In
addition you need to ensure that the client is passing the correct user context in all
run units that are established with the CA-IDMS central version.

The SAF system exit automatically validates all user IDs and passwords when a
user establishes a connection to the data server. The SAF exit also validates that the
user has read access rights to the catalog when catalog queries are issued.

Establishing the correct user context for CA-IDMS run units:

You must establish the correct user name for each run unit.

About this task

By default, all batch run units connect with a blank user context. Thus, in
CA-IDMS, there is PUBLIC access to the data. To establish the correct user name
for each run unit that is created under the data server, the CA-IDMS.LOADLIB
module IDMSSTRT must be re-linked with a USRIDXIT module. Only the data
server uses this IDMSSTRT module.

Procedure

1. Assemble the CACIDUXS exit source in the SAMPLIB using the CACIDUXT
sample JCL in the SAMPLIB and link-edit the module into a new IDMSSTRT
module.

2. Link the new module into a library that is only used by the data server. Do not
place the module in the CA-IDMS.LOADLIB. If a separate APF-authorized
LOADLIB exists, you can locate the new IDMSSTRT module in that library.

3. Include this library (linked to in the previous step) in the STEPLIB
concatenation of the startup JCL for the data server before the
CA-IDMS.LOADLIB.

What to do next

The creation of an IDMSSTRT module only ensures that all run units that are
established with a CA-IDMS central version have the correct user name associated
with them. The security of the CA-IDMS data is not ensured. For data to be secure,
security enforcement must be active for the central version .

Accessing multiple CA-IDMS central versions from a single data
server
You can access multiple central versions from a single data server.

74 Guide and Reference

About this task

The SYSCTL data set that is allocated to the data server identifies the default
CA-IDMS central version for communication.

You can allocate multiple SYSCTL data sets with unique DD names and select the
data sets on a table-by-table basis. Use the custom built CA-IDMS ACCESS LOADMODs
that reference the appropriate SYSCTL DD name.

Perform the steps in the following procedure to build and reference a
custom-access load module with the name, SYSCTL1:

Procedure
1. Code an assembler CA-IDMSOPTI module that contains the following

assembler macro statement:
IDMSOPTI CENTRAL=YES,SYSCTL=SYSCTL1
END

2. Assemble and link the CA-IDMSOPTI module using the supplied SAMPLIB
member CACIDACM with the following link-edit control cards:
v INCLUDE IDMSLOAD(IDMS)
v ENTRY IDMS
v NAME new-module-name(R)

Create a new name for the CA-IDMS module, because the default module must
be left as-is for other CA-IDMS batch applications. Also, link the new module
into a library that is accessible to the data server startup JCL.

What to do next

CA-IDMSOPTI modules can also manage default databases and other CA-IDMS
specific parameters.

Configuring the data server to access CA-IDMS central version
You must make changes to the startup JCL for the data server to access a
CA-IDMS central version.

Procedure
1. Add the authorized versions of the CA-IDMS.LOADLIB and the

CA-IDMS.DBA.LOADLIB to the STEPLIB concatenation.
2. Add a SYSCTL DD statement for all central versions to which the data server will

connect.
3. If you do not specify the CA-IDMS database to access with the DBNAME

parameter on the CREATE TABLE statement, you need to set up a default
dbnames mapping in the CA-IDMS dbnames table used by the central version.
For example, the following dbname mapping specifies the DBNAME userdb as
the default DBNAME in the dbnames table:
subschema ???????? maps to ???????? dbname userdb;

Example

The CA-IDMS.LOADLIB is a non-APF authorized library that removes
authorization from STEPLIB if allocated to STEPLIB. If the data server is using any
authorized services (cross-memory services and any SAF exits such as CACSX04
and CACSX07), S047 errors occur.

Chapter 3. Configuring 75

Configuring the data server for notification of central version
shutdown
You must make changes to the data server JCL to ensure that the data server is
notified properly when the CA-IDMS central version is not available.

Procedure
1. Include a SYSIDMS DD statement with the following parameters to ensure that

the data server is notified correctly when the CA-IDMS central version is not
available:
CVRETRY=OFF
REREAD_SYSCTL=ON
DMCL=<Specify DMCL name that contains the SYSTEM segment>

2. Include the data set for the DDLDCMSG area in the JCL for the batch job.
3. Ensure that the DMCL load module specified in the SYSIDMS parameter is

available in the STEPLIB for the data server.

Setting up access to DB2 for z/OS
You need to configure the data server and configure the CAF initialization service
or the RRS interface to enable access to DB2 for z/OS.

About this task

The setup requirements for access to DB2 for z/OS data also apply to validation
setup for processing CREATE TABLE and CREATE INDEX statements that
reference a DB2 data source.

To set up access to DB2 for z/OS data, complete the steps in the following
procedure for each DB2 subsystem that you need to access:

Procedure
1. Bind an application plan. Before you access data in DB2 for z/OS, you must

bind an application plan for the CAF service. Running the BIND job requires
BINDADD authority.
a. Edit DB2DSN=DSN and DB2PLAN=CAC10PLN in the customization

parameters file SCACSAMP (CACCUSP2) to specify values for the DB2
subsystem ID and plan name. Change DSN to the appropriate DB2
subsystem ID for your site. If your site requires plan names to match
specific standards, you can change the plan name from CAC10PLN to a
name that fits those standards.

b. Optional: Edit the bind control card CACBCNTL if you need to connect to
additional DSNs, and bind a separate plan for each subsystem.

c. Run the bind job CACBIND. If you specified valid DB2 values in the
customization parameters file, you do not need to edit the bind job
CACBIND. This job uses the provided DBRM (MSLP2EC) to create a plan
CAC10PLN (or the name that you specify in the customization parameters
file).

d. Submit the CACBIND job.
e. Grant EXECUTE authority on the plan to the user ID under which the data

server is running, and to individual users of Classic federation if the DB2
thread management exit is active.

2. Configure the Call Attachment Facility (CAF) initialization service or the
Resource Recovery Services (RRS) interface.

76 Guide and Reference

v To access and update DB2 for z/OS data by using the CAF initialization
service, import the CAF service definition. If you provided DB2 information
in the customization parameters file, you can import the
SCACCONF(CACSVCAF) member to define the CAF service with the MTO
IMPORT command:
IMPORT,CONFIG,FILENAME=DSN:SCACCONF(CACSVCAF)

v To use the RRS interface for two-phase commit processing, see Two-phase
commit.

Setting up access to IMS
You need to configure and enable an IMS interface to access IMS data.

Procedure
1. Decide which IMS interface to use for accessing IMS data. See “Overview of

data server setup for IMS access.”
2. Configure an IMS interface.

v To configure the DRA or ODBA interface, see “Setting up the DRA and
ODBA” on page 78.

v To configure the BMP or DBB interface, see “Setting up a BMP or DBB
interface” on page 82.

3. Configure the data server for validation. See “IMS setup for dynamic discovery
from the Classic Data Architect” on page 83.

4. Run the data server. See “Running the data server” on page 83.

Overview of data server setup for IMS access
Three interfaces are available for accessing IMS data. The setup requirements and
required configuration steps differ for each interface. Understanding the differences
enables you to decide which interface to use. Each interface has its own benefits
and drawbacks, depending on your requirements for distributed transactions.

The data server supports the following interfaces that you can use to access and
update IMS data:
v The DRA interface

The database resource adapter (DRA) interface is similar to the interface that
CICS uses. The DRA is the interface to use when your client applications do not
run distributed transactions with two-phase commit. For the DRA interface, you
must configure and activate an IMS DRA initialization service to access your
IMS data. The data server interfaces directly with IMS when you use the DRA
interface.

v The ODBA interface

You must use the open database access (ODBA) interface when your client
applications run distributed transactions with two-phase commit protocols. The
ODBA interface must be used in conjunction with the two-phase commit query
processor (CACQPRRS), and you need to configure and activate an IMS ODBA
initialization service.
The ODBA interface uses the DRA interface to connect to IMS.

v The BMP and DBB programming interfaces

The BMP/DBB programming interface is a non-scalable interface that is
primarily provided for initial development and testing. With this interface, a
single PSB is used, and all access is serialized through that PSB. With the
BMP/DBB interface, you can access IMS data in a BMP or a DBB environment.
In these environments, you must configure and activate an IMS BMP or DBB

Chapter 3. Configuring 77

initialization service to access your IMS data. When you use any of these
interfaces to access IMS data, the data server JCL requires changes.

There are setup requirements for accessing IMS data by using the DRA or ODBA
interfaces.

DBCTL

DBCTL is an IMS database manager subsystem that runs in its own address space.
DBCTL must be configured and running to use the IMS DRA or ODBA interface.
v DRA is the interface between the data server and DBCTL or between ODBA and

DBCTL.
v ODBA is RRS-enabled to interface to IMS.

You can use an IMS DB/DC subsystem to access and update IMS data. A DB/DC
subsystem is a superset of DBCTL. The environment includes the elements that the
data server needs to access your IMS data by using either a DRA or ODBA
interface.

If DB/DC or DBCTL is installed at your site, you need to perform the
customization steps required to set up and configure the DRA and ODBA
interfaces to access and update your IMS data.

Differences between DRA and ODBA

You can only use a single IMS interface (DRA, ODBA) within a data server address
space.

The key differences between using the DRA or ODBA interfaces to access IMS data
are described in described in the following table:

Table 13. DRA and ODBA interface differences

DRA ODBA

In an update transaction, you can schedule
only a single PSB. Scheduling occurs only if
the transaction does not access any other
data source.

The data server can schedule and update
multiple PSBs as part of a single RRS
transaction and changes to other data sources
that are RRS-enabled.

A transaction can access a single IMS
subsystem only.

Multiple PSBs can be scheduled that access
different IMS subsystems located on the
single image (LPAR) where the data server
resides.

The ODBA interface provides greater
flexibility in PSB scheduling options

The ODBA interface should only be used in
conjunction with distributed transactions

Setting up the DRA and ODBA
To enable the DRA and ODBA, you need to make the DRA startup/router routine
accessible to the data server.

Procedure
1. Copy the DRA startup/router routine (DFSPRRC0) into the SCACLOAD load

library. Follow the instructions for defining the IMS STEPLIB in the
customization parameters file. Use either of the following methods:

78 Guide and Reference

v Copy the routine from the IMS.SDFSRESL library (built by the IMS definition
process).

v Concatenate the IMS.SDFSRESL library to the ODBA STEPLIB.
2. Put the DRA startup table (DFSPZPxx load module) into a load library.

Setting up the DRA interface:

The default load module, DFSPZP00, is in the IMS.SDFSRESL library. The
remainder of the DRA modules reside in a load library that is dynamically
allocated by DFSPRRC0 (the startup).

The default DDNAME and DSNAME of this load library (IMS.SDFSRESL) are
specified in the default startup table DFSPZP00. DFSPZP00 contains default values
for the DRA initialization parameters. You can also create a new startup table to
specify values other than the defaults.

Configuring a new startup table:

You can customize the DRA configuration by creating a new startup table.

Procedure

1. Code a new start-up table. Name it, for example, DFSPZP01. You might want
to use DFSPZP00 as an example.

2. Specify the required values.
3. Copy any unchanged values from the default table.
4. Assemble and link the new module into a load library. If the new module is

named DFSPZP01, the IMS DRA initialization, DRATABLESUFFIX
configuration parameter, specifies a value of 01 in the DRA startup-table suffix.

What to do next

For information about creating a DRA startup table using the DFSPRP macro see
the IMS documentation about the database resource adapter. For information about
using the DRA start-up table to control performance, see the CICS documentation
about performance.

Configuring the DRA interface:

You must configure the data server to access IMS data by using the DRA interface.

Before you begin

You must configure the IMS DRA service in the data server before you can access
IMS data. Only one IMS service can be active in the data server.

About this task

Sample JCL, configuration files, and sample application programs are located in
the SCACSAMP and SCACCONF libraries.

If you receive the message '-4902 The memory limit was exceeded' while using the
IMS DRA interface to connect with IMS, increase the value of the global
configuration parameter MESSAGEPOOLSIZE or the REGION parameter in the
data server JCL.

Chapter 3. Configuring 79

Procedure

1. Provide IMS configuration information in the IMS section of the customization
parameters file.
v DRA user ID: Modify IMSDRAUS=DRAUSER to specify the default DRA

user ID that is used to connect to and register with DBCTL. The
DRAUSERID is the name by which the data server is known to DBCTL.

v Default PSB name: Modify IMSDFPSB=DEFPSB to specify the name of a PSB.
This PSB name is used when an IMS table is referenced by a CREATE TABLE
statement that contains no PSB name.

v DRA startup table suffix: If you want to use the default suffix, you can use
the generated SCACCONF(CACSVIMA) member. Otherwise, edit the
SCACCONF(CACSVIMA) member to specify this value. Specify the last two
characters of the load module name that you created. For the default DRA
startup table load module, specify 00.

2. Import the SCACCONF(CACSVIMA) member to define the DRA service. Issue
the following MTO IMPORT command:
IMPORT,CONFIG,FILENAME=DSN:SCACCONF(CACSVIMA)

You can then specify the configuration parameters DRAUSERID,
DEFAULTPSBNAME, and DRATABLESUFFIX on the DRA service definition by
using the Classic Data Architect.

Setting up the ODBA interface:

To use the ODBA interface, make additional modules accessible. Also, you must set
up startup router tables.

Procedure

1. Make the following modules accessible:

DFSCDLI0
The data server loads this module. DFSCDLI0 also contains the ALIAS
name AERTDLI.

DFSAERG0
DFSCDLI0 loads this module.

DFSAERM0
DFSAERG0 attaches this module in the data server address space.

DFSAERA0
DFSAERM0 attaches this module for initialization to the specified IMS
DB subsystem.

AERTDLI
The data server loads this module DL/I calls by using the ODBA
interface.

2. Follow the procedures described in “Setting up the DRA interface” on page 79
for the DRA startup router table to make these modules available to the data
server.

3. Name the DRA startup router tables that the ODBA interface uses with this
format, DFSxxxx0. The variable xxxx is replaced with the name of the IMS
subsystem identifier of the IMS subsystem that you connect to.

80 Guide and Reference

4. Create a DRA startup router table for each unique IMS subsystem. The
subsystems are identified on the ODBA initialization Service Info Entry, or the
SUBSYSTEM parameter in the CREATE TABLE statement for the IMS tables
that you are accessing.

Configuring the ODBA interface:

You must configure the data server and activate the ODBA initialization service to
access IMS data by using the ODBA interface.

Before you begin

You must configure the IMS DRA service in the data server before you can access
IMS data. Only one IMS service can be active.

About this task

Sample JCL, configuration files, and sample application programs are located in
the SCACSAMP and SCACCONF libraries.

Procedure

1. Provide IMS configuration information in the IMS section of the customization
parameters file.
v Default PSB name: Modify IMSDFPSB=DEFPSB to specify the name of a PSB.

This PSB name is used when an IMS table is referenced by a CREATE TABLE
statement that contains no PSB name.

v Default subsystem ID: Modify IMSSSID=SSID to specify the IMS subsystem
identifier to access,

2. Import the SCACCONF(CACSVIMO) member to define the ODBA service.
Issue the following MTO IMPORT command:
IMPORT,CONFIG,FILENAME=DSN:SCACCONF(CACSVIMO)

You can then specify the configuration parameters PSBPARM and SSNPARM
on the ODBA service definition by using the Classic Data Architect.

Customizing JCL for DRA and ODBA:

You can customize the data server JCL to access IMS data by using the DRA
interface.

Procedure

Provide IMS configuration information in the IMS section of the customization
parameters file.
v High-level qualifier: Modify IMSINHLQ=IMS to specify the high-level qualifier

for IMS data sets.
v SYSOUT class SOUTD: If you want to use the default suffix, you can use the

generated SCACCONF(CACSVIMA) member. Otherwise, edit the SCACSAMP
member CACDS.member to specify this value.

The SCACSAMP (CACDS) member JCL will be updated based on the
customization parameters file. Otherwise, edit the SCACSAMP member
CACDS.member to specify any additional values not included in the customization
parameters file. Specify SYSOUT class SOUT at the beginning of the in-stream
procedure.

Chapter 3. Configuring 81

Setting up a BMP or DBB interface
To use the BMP and DBB interface to access IMS data, you must perform setup
tasks.

Procedure
1. Configure the data server and activate the BMP/DBB initialization service. See

“Configuring the data server for a BMP or DBB interface.”
2. Modify the BMP and DBB data server JCL. See “Modifying BMP and DBB

JCL.”

Configuring the data server for a BMP or DBB interface:

You can configure the data server to access IMS data by using either a BMP or
DBB interface. You must configure the IMS BMP or DBB initialization service in the
data server before you can access data. Only one IMS service can be active in the
data server.

Procedure

1. Provide IMS configuration information in the IMS section of the customization
parameters file.

2. Import the SCACCONF(CACSVIMB) member to define the BMP/DBB service.
Issue the following MTO IMPORT command:
IMPORT,CONFIG,FILENAME=DSN:SCACCONF(CACSVIMB)

Modifying BMP and DBB JCL:

Modify JCL streams to access IMS data with a BMP or DBB interface.

Procedure

v Provide IMS configuration information in the IMS section of the customization
parameters file.
– High-level qualifier: Modify IMSINHLQ=IMS to specify the high-level

qualifier for IMS data sets.
– PSB name: Modify IMSDFPSB=DEFPSB to specify a PSB name.

The SCACSAMP (CACBMP) member JCL and SCACSAMP (CACBMP) member
JCL will be updated based on the customization parameters file. Otherwise, edit
these members to specify any additional values not included in the
customization parameters file.

v For IMS BMP JCL only, modify the JCL for BMP access.
1. Edit the BMP data server JCL stream, SCACSAMP member CACBMP. This

member runs the data server as a batch job that is capable of accessing IMS
data by using a BMP interface.

2. Supply a valid job card.
3. Modify the JCL to conform to site specifications and specify the following

parameters at the beginning of the in-stream procedure: the data server
high-level qualifier (CAC) or SYSOUT class (SOUT).

4. Save the changes.
v For IMS DBB JCL only, edit the DBB data server JCL stream, SCACSAMP

member CACDBB. This member runs the data server as a batch job that accesses
IMS data by using a DBB interface.
1. Supply a valid job card.

82 Guide and Reference

2. Modify the JCL to conform to site specifications. Specify the following
parameters at the beginning of the in-stream procedure:
– The data server high-level qualifier, CAC
– SYSOUT class, SOUT.

3. Supply additional IMS information:
– The correct ACB library for DBB access.
– DD statements for the database files, if you are not using dynamic

allocation (databases not defined to IMS).

Required: When you run DBB with IRLM=Y, IMS requires a non-swappable
address space. IMS makes the address space non-swappable at initialization
time automatically when you set the JCL SWAP parameter to SWAP=N.
Otherwise, IMS automatically makes the region non-swappable when the
first DL/I call is issued. This situation can result in a significant delay in
processing the call. In addition, the IMS batch service definition in the data
server configuration file needs to be placed immediately after the logger
service to ensure the shortest possible timeframe to make the region
non-swappable.

4. Save the changes.

IMS setup for dynamic discovery from the Classic Data Architect
To validate CREATE TABLE and CREATE INDEX statements that reference an IMS
database, you need to update the data server JCL.

Before you begin

The user ID that is associated with the address space requires read permission to
access the files that the DBDLIB DD statement references. The DBD libraries that
the DBDLIB DD statement references do not require APF-authorization.

Procedure

Include a DBDLIB DD statement that references the IMS DBD library. Alternatively,
the DBDLIB DD statement can reference libraries that contain the load module
generated from the IMS DBDGEN. The libraries containing this load module are
created for the databases referenced by the DBD-name in the CREATE TABLE
statement. If the table references an IMS logical database, the physical DBDs
referenced must also be accessible through the DBDLIB DD statement.

Running the data server
You are now ready to run the data server. Before you submit the JCL, ensure that
the operational environment is set up properly.

Procedure
1. Ensure that the SCACLOAD library is APF authorized. If the SCACLOAD

library is not APF authorized, you will receive a S047 abend when you attempt
to run the data server. IMS libraries concatenated to SCACLOAD must also be
APF authorized.

2. Ensure that the user ID that the data server runs with has access and execute
authority for the data sets that are referenced in the data server JCL. Contact
your security administrator to verify the authorizations.

3. Start the data server by submitting the data server job.

Chapter 3. Configuring 83

What to do next

To verify that the data server is operational, select the job while it is running. Look
for the following message near the top of the listing:

CAC00103I DATA SERVER: V11.3 READY

To shut down the data server, you can use the z/OS MTO interface and issue a
STOP command. If you do not have MTO authority, cancel the data server job.

Setting up access to sequential files
You need to configure the data server to enable access to sequential files.

Before you begin

If the SAF exit is enabled and an external security manager such as RACF, ACF2,
or Top Secret is in use, the user ID associated with the data server also requires the
necessary access privileges to process the data sets associated with the data source.
After the end user ID is validated, the server ID is used to manage discrete
operations for those users.

About this task

The setup requirements for access to sequential files also apply to validation setup
for processing CREATE TABLE statements to map sequential files.

Procedure

Ensure that the corresponding DD statement exists in the server JCL that references
the files. The DSN parameter on the DD statement identifies the physical file to be
accessed.

Setting up access to VSAM
You need to configure the data server to enable access to VSAM files through the
CICS VSAM, native VSAM, and DFSMStvs interfaces.

Before you begin

If the SAF exit is enabled and an external security manager such as RACF, ACF2,
or Top Secret is in use, the user ID associated with the data server also requires the
necessary access privileges to process the data sets associated with the data source.
After the end user ID is validated, the server ID is used to manage discrete
operations for those users.

Setting up access to CICS VSAM
To access VSAM data through CICS, the data server establishes a VTAM® LU 6.2
connection to CICS to initiate a transaction when a query begins and uses this
transaction to communicate with CICS during query processing.

About this task

Consider two types of access to CICS VSAM files:
v Federated access
v Stored procedure access

84 Guide and Reference

Federated access
All configurations that require access to CICS VSAM files use federated
access, which provides direct access to the files without performing
functions or data transformations. To set up federated access, you define a
VSAM connector program that runs in the CICS region. The VSAM
connector discovers the attributes of a source VSAM file when you use the
Classic Data Architect to map the relational tables in the data server.

The default name of the VSAM connector program is CACCIVS. Beginning
in Classic federation Version 10.1 PTF rollup 2, this program provides
access to extended-format VSAM data sets with CICS version 3.2 or higher.

Configure your user copy of the sample member CACCDEF in the
USERSAMP data set to create the CICS definitions required for CICS
VSAM support. The default CICS transaction name is EXV1, and if you
change this name you must change it in the CICS definitions as well.
Using the configured sample, your CICS administrator can follow the
instructions in CACCDEF to install the VSAM connector definitions.

Stored procedure access
If you want to run stored procedures to perform functions or transform
data, implement stored procedure access. Many sites implement both types
of access. Stored procedure access requires that you run a bridge program
CACSPBR in the CICS region.

When you set up CICS definitions, you supply a program name in a
program definition. A sample program definition is in the load module
CACSP62 in your user copy of the SCACLOAD data set. Your CICS
administrator then installs the load module in a library that is in the
DFHRPL concatenation.

Procedure
1. Configure VTAM resource definitions and CICS resource definitions to establish

the CICS VSAM environment.
Both federated and stored procedure access require VTAM and CICS
definitions. If you add stored procedure access, the CICS definitions are
different. See the topic about sample VTAM and CICS definitions.

2. Using the sample member CACCDEF, configure the CICS transaction, program,
connection, session, and file definitions and ask your CICS administrator to
install them in the CICS target system.

3. Configure and start the VSAM initialization service in the Classic Data
Architect to establish communications with the target CICS subsystem.
To enable the VSAM service, configure the service definition for the service
class VSMS.

Setting up access to native VSAM
You need to configure the data server to access native VSAM.

About this task

You cannot use the VSAM service to access DFSMStvs.

Procedure
v Define the VSAM initialization service during the installation customization

process by specifying the parameters in the VSAM section of the customization

Chapter 3. Configuring 85

parameters file. Otherwise, you can define the service by using the Classic Data
Architect to add the service or with the MTO ADD command as shown in the
following example.
ADD,CONFIG,SERVICE=VSAMSRV,SERVICECLASS=VSMS

v If you specify a DD name that references a VSAM file in a table definition,
update the data server JCL with the corresponding DD statement.

Setting up access to DFSMStvs
Eligibility to access DFSMStvs files is determined dynamically by the data set
attributes defined in the Integrated Catalog Facility (ICF) catalog.

Before you begin

An RRS query processor is required for access to DFSMStvs.

VSAM Record Level Sharing (RLS) and DFSMStvs with RRS must be installed.

About this task
v DFSMStvs does not support the VSAM service (CACVSMS).
v DFSMStvs support is restricted to access performed at the record level.

DFSMStvs does not support the following VSAM functions:
– Linear data sets
– Control interval processing (CNV)
– KSDS addressed access
– Access to key range data sets
– Access to temporary data sets
– Clusters defined with the IMBED option
– Improved control interval processing

For a complete list of limitations, see the DFSMStvs documentation about
planning.

Procedure
1. Ensure that the installation customization process is completed which defines

the RRS query processor service to the QPRR service class.
2. Use IDCAMS to define recoverable data sets. Use the DEFINE CLUSTER

command for new data sets or use the IDCAMS ALTER command for existing
data sets. To designate a file as recoverable, you must specify the UNDO or the
ALL parameter. DFSMStvs access does not occur if NONE is specified.
Specify one of the following LOG parameters to assign the recovery attribute
for a data set:

LOG
(NONE | UNDO | ALL)

NONE
Data set is non-recoverable. Undo or redo logging is not performed. NONE
is the default

UNDO
Data set is recoverable. Only undo logging is performed.

ALL
Data set is recoverable. Both undo and forward recovery logging are
performed

86 Guide and Reference

If you specify forward recovery with the LOG(ALL) parameter, you must also
define a forward recovery log stream with the LOGSTREAMID parameter.

3. If you specify a DD name that references a VSAM file in a table definition,
update the data server JCL with the corresponding DD statement.

Logging for data servers
The logger service (CACLOG) accepts log messages from the services that are
running in a data server and writes those messages either to a temporary or
permanent data set or to a z/OS log stream.

To view log records without stopping the data server, you can configure the logger
service to print the log messages to the SYSOUT DD by setting the DISPLAYLOG
parameter to TRUE. However, the cost of writing data continuously in this way
leads to high processing and storage overhead in the address space where the data
server is running.

Optionally, store log records in a log stream. This approach also enables you to
view the logs while the data server is running, and has these additional
advantages:
v The log print utility consumes processing cycles only when you view or print

records.
v The processing overhead is outside the data server address space.

You configure the logger service in the Console Explorer in the Classic Data
Architect, or by issuing SET commands against the logger service.

Logging terminology
These basic terms help you to understand how logging works in your Classic
environment.

Definitions

Diagnostic log
A z/OS log stream or data set that the logger service in a Classic data
server uses to store informational, error, console, and trace messages based
on setting of the TRACELEVEL parameter.

When writing to a z/OS log stream, the STREAMNAME parameter for the
logger service defines the log. When writing to a data set, the CACLOG
DD defined to the server or utility JCL defines this log.

Job log
A z/OS log related to a running data server or utility. This log contains
console messages that the utility or the services running in the data server
issue.

Log A file used to record changes made in a system.

Log stream
A sequence of data blocks that provides storage for IBM z/OS operations.
z/OS identifies each log stream by its own unique identifier, or log stream
name.

Defining logger services
You define the logger service by creating a data server during the installation
customization process.

Chapter 3. Configuring 87

Before you begin

If you want the logger service to write log messages to a z/OS log stream, you
must know the name of the log stream.

About this task

When you create a data server during the installation customization process, the
logger service is pre-defined. The configuration parameters are set to the default
values.

If you do not use a z/OS log stream, then the logger service writes log messages to
the data set that the CACLOG DD specifies in the data server definition.

Unlike other services, the default value of the TRACELEVEL parameter for the logger
service is 1. This value controls what other services send to the logger service and
what the logger service writes to the log.

When the DISPLAYLOG parameter is set to TRUE, the logger service writes log records
to the data set in the SYSOUT DD statement. The data server locks the log file, so
this approach enables you to view log messages while the data server is running.
However, using DISPLAYLOG has processing overhead and storage costs related to
formatting and displaying the logs.

To avoid the resource consumption related to using DISPLAYLOG, you can configure
the logger service to write to log streams instead. You can then use the log print
utility to both read and print the logs. Any processing overhead occurs outside the
address space of the data server, and only when the log print utility runs.

To modify the logger service definition, perform the steps in the following
procedure:

Procedure
1. Modify the service definition for the logger service by using the Classic Data

Architect or by issuing the SET configuration command against the service.
2. Follow these guidelines to modify the required configuration parameters:

LOGBUFSIZE
Changes the default size of the log buffer. The default log buffer size is
64 KB. Values can be between 4K and 1000K.

DISPLAYLOG
If you choose the DISPLAYLOG option, set this value to TRUE to mirror
the log records to the data set that you specify in the SYSOUT DD
statement.

STREAMNAME
If you choose to write the log records to a z/OS log stream, specify the
name of the log stream.

3. Restart the data server to put your changes into effect.

Configuring TCP/IP connection handlers
Because Classic Data Architect communicates with the data server through a
TCP/IP connection, you must configure a TCP/IP connection handler in the data
server.

88 Guide and Reference

Before you begin

Before configuring a TCP/IP connection handler service, contact your network
administrator to obtain the host name or IP address where you will be running the
data server. Also, ask your network administrator for a unique TCP port number
that is not being used by any other applications on that z/OS system.

Restrictions:
v The port number or service name must not be in use by any other application.

The port number should be greater than 1024 because numbers 1 through 1024
are often reserved. The default configuration uses the well known port number
9087. If this port is assigned to another application, you need to change the
sample configuration members.

v A z/OS system can support multiple TCP/IP stacks and multiple IP addresses.
It is important that you validate your selected IP address with your network
administrator.

v The sample TCP/IP connection handler definitions use the IP address 0.0.0.0
which normally resolves to the IP address of the local host. In most cases, you
do not need to provide the actual IP address.

About this task

If you specify an IP string and port when you edit the customization parameters
file during the installation customization process, or if you imported a
configuration from another data server, a TCP/IP connection handler is already
running in your data server. Follow these steps to change the address or port, or to
set up a new connection handler.

If you want multiple users to have concurrent access to the data server, you can
also follow these steps to add another connection handler.

You can modify or add connection handlers in the Console Explorer in the Classic
Data Architect. Alternatively, you can issue SET commands against an existing
service, such as the default INIT service, or issue ADD and SET commands against
a new service name.

Procedure
v To modify the default connection handler, issue a SET,CONFIG command

against the INIT service to modify the COMMSTRING parameter. The remaining
default settings for the connection handler are adequate in most situations. The
following example shows how to modify the default connection handler INIT:
SET,CONFIG,SERVICE=INIT,COMMSTRING=TCP/0.0.0.0/9087

The client connection string supports Internet Protocol Version 4 (IPv4) and
Internet Protocol Version 6 (IPv6). This example uses IPv4.

v To add a new connection handler, issue ADD and SET commands and provide a
new service name in place of the default name of INIT. The following example
shows how to add a new connection handler with the name CH:
ADD,CONFIG,SERVICE=CH,SERVICECLASS=INIT

SET,CONFIG,SERVICE=CH,COMMSTRING=TCP/0.0.0.0/9087

Chapter 3. Configuring 89

Understanding Classic data server configuration methods
After completing the installation customization process, you can use Classic Data
Architect to update the definitions of the configurations for the Classic data server.

The initial configuration of a Classic data server is accomplished with the
installation customization process. When you complete the installation
customization process, the installation environment includes an operational Classic
data server and all required services. The services are pre-configured during the
customization process. You can then build upon the operational environment as
needed.

You can use tools to administer the configurations for the Classic data server. In
most cases, you need to stop and then restart the data server for the configuration
updates to take effect.

The tools that you can use include:
v Classic Data Architect—Use Classic Data Architect to modify configurations

while the Classic data server is running.
By using the wizards that Classic Data Architect provides, you can make
updates to a configuration for a Classic data server, including modifying global
configuration parameters that affect server-wide configuration; and adding,
modifying, or deleting configuration settings for services.
Classic Data Architect provides a master terminal operator (MTO) command
interface that you can use to issue MTO commands remotely from the Console
Explorer within Classic Data Architect after you establish an operator connection
to the Classic data server.

v Configuration-related operator commands—Issue the configuration-related
commands by using the z/OS MTO interface. You can use the following
configuration-related MTO commands to administer data server configurations
against a running Classic data server:
– IMPORT and EXPORT commands that you can combine into a command file.

This capability enables you to import and export configurations for a Classic
data server for backup and recovery purposes. Another use of these
commands is to export an existing definition, modify the exported definition,
and then import that definition to another Classic data server. You can also
use these commands to perform migration functions.

– ADD, SET, DELETE, and DISPLAY commands that you can use to update and
display configuration data for a Classic data server.
With these commands, you can update configuration information for global
configuration parameters, services, service classes, and service lists.

v Configuration migration and maintenance utility—Use the CACCFGUT
configuration migration and maintenance utility to update configurations for a
Classic data server offline, when the Classic data server is not running.
The main purpose of the utility is for backup and recovery of configuration
information. You can use the EXPORT and IMPORT commands to restore a
configuration environment to a previous point in time.

XM protocol strings
Define XM protocol strings to specify the cross-memory queues that your
environment uses for communication among Classic federation components that
run on the same image.

90 Guide and Reference

Purpose

Cross-memory communication provides an efficient mechanism for communication
among Classic components that run on the same logical partition (LPAR).

Syntax

To configure cross-memory communication, you specify matching protocol strings
in the configuration settings of both components that use the cross-memory queue.

The syntax of an XM protocol string is as follows:
XM1/Dataspace-Name/Queue-Name/Dataspace-Size

where:

XM1

Indicates that the communication protocol is for cross-memory services. This
segment is the same for all XM protocol strings.

Dataspace-Name

Indicates the name of the cross-memory dataspace that your environment uses
to communicate on this cross-memory queue.

A dataspace name can be up to 16 characters long, can contain only alphabetic,
numeric, and national characters, and cannot start with a numeric character.
The first three characters must be unique within the job or started task that
creates the dataspace.

Queue-Name

Indicates the queue name for this cross-memory queue. A queue name can be
up to 16 characters long.

Dataspace-Size

Indicates the size, in megabytes, of the cross-memory queue that uses the
dataspace.

Example: 2048 Mb = 2 Gb (the maximum size).

You can modify the dataspace name and queue name to conform to site standards.
The dataspace names are valid for the entire LPAR, so avoid naming conflicts with
cross-memory communication that other Classic services use on the same LPAR.

Example

The following example specifies an XM protocol string. The dataspace name is
XSY1 and the queue name is XSYX. The size of the queue is 2048 Mb (2 Gb).
XM1/XSY1/XSYX/2048

Mapping tables for Classic federation
Use Classic Data Architect to create relational tables and views that map to data
sources in supported nonrelational database management systems. With InfoSphere
Classic Federation Server for z/OS, client applications can issue SQL queries
against these tables to access data in the nonrelational databases. Client
applications can also issue INSERT, DELETE, and UPDATE requests against the
tables to modify the data in the nonrelational databases.

Chapter 3. Configuring 91

Before you begin

You must perform the following tasks on the data server where the query
processor will run:
v Create and initialize a metadata catalog.
v Set up the configuration file.
v Start the data server.

About this task

You create the relational tables and views in a project in Classic Data Architect.
Then, you promote these objects to a data server.

Procedure
1. Configure Classic Data Architect by creating prerequisite objects, creating

connections to data servers, setting preferences, importing reference files, and
granting privileges. See “Configuring Classic Data Architect.”

2. Create tables and views that client applications can issue SQL queries and
updates against. See “Mapping data for Classic federation” on page 99.

3. Optional: Modify your tables or views. See “Viewing and modifying objects for
Classic federation” on page 129.

4. Generate and run DDL to promote your tables, views, indexes, and stored
procedures to a data server. See “Generating DDL” on page 142.

5. Optional: If you choose not to run the DDL from Classic Data Architect but
from the metadata utility, export the DDL to a remote z/OS host. See
“Exporting SQL to remote z/OS hosts” on page 142.

Configuring Classic Data Architect
Before you or other users can use Classic Data Architect to create objects and
promote them to data servers, you need to perform several configuration tasks.

Before you begin

You must perform the following tasks on the data server where the correlation
service will run:
v Set up and configure a data server.
v Start the data server.

Procedure
1. Create objects for organizing your work in Classic Data Architect. See “Creating

objects to organize your work” on page 93.
2. Optional: Create a connection to at least one data server. If you are using a DB2

for z/OS database for Classic federation, create a connection to that database.
See “Creating connections to data servers and to DB2 for z/OS” on page 95.
Connections to data servers are required if you plan to:
v Run DDL on a data server directly from Classic Data Architect. If you do not

want to run the DDL from Classic Data Architect, you can export the DDL in
an SQL file for batch processing.

v Use the discovery process in Classic Data Architect to locate in Adabas or
CA-IDMS databases the data structures that you want to map to.

3. Set various preferences. See “Setting preferences” on page 97.

92 Guide and Reference

4. Import Classic reference files into a data design project. See “Importing data
definitions into projects” on page 94.

5. Grant privileges to users to create objects or to run commands on a data server.
See “Granting privileges and privileges for performing actions on data servers”
on page 97.

Migrating the workspace from a previous version of CDA
If you are migrating from a previous version of Classic Data Architect you may
have to migrate your workspace the first time you start Classic Data Architect. The
new views and perspective changes are not displayed until after the migration.

About this task

The procedure for migrating from an older version of Classic Data Architect varies
depending on the version you are migrating from:

Procedure

Migrating from CDA v10.1
v The first time you start the new version of Classic Data Architect a dialog box

will appear, asking you to confirm the migration of the workspace. Classic Data
Architect will restart once the migration completes.

Migrating from CDA v9.5
v Reset the Data perspective by selecting Window > Reset Perspective.

v Display the new default perspective by selecting Window > Open Perspective >
Replication.

v Recreate your data source connections in the Data Source Explorer.

Results

The workspace has been migrated. The new views, as well as the Replication
perspective (previously called the Classic Replication Management perspective)
and the Data perspective (previously called the Classic Integration perspective) are
now available.

Creating objects to organize your work
You organize the tables, views, indexes, and stored procedures that you create in
different containers within Classic Data Architect.

About this task

Workspaces
When you first open Classic Data Architect, you create a workspace that
will contain your work. This workspace is located on your local
workstation, and you do not share it with others. All users who work in
Classic Data Architect have their own workspaces and their own projects
within those workspaces. Within a workspace, there are two types of
objects that you must create: data design projects and physical data
models.

Data design projects
Within a project, you design the tables and views that you eventually will
create in the metadata catalog on the data server. The type of project that
you create in Classic Data Architect is called a data design project. You can

Chapter 3. Configuring 93

create any number of data design projects, using them to organize your
physical data models, or you can put all of your physical data models into
one project.

Physical data models
A physical data model is a collection of schemas that contain the tables
that you create to map to the data in your data sources. Schemas can also
contain views on those tables and stored procedures that you might want
to use to perform operations on the result sets for queries. Instead of
creating your tables directly in the metadata catalog on the data server and
modifying them there, you create and modify your tables in the model and
then promote them to a metadata catalog.

For example, you might have one data server for a test environment and
another for a production environment. In a model, you can create a table
and then run the DDL to create the table in the test data server to test the
table. If you need to modify the table, you can drop the table from the
metadata catalog in the test data server, modify the table in Classic Data
Architect, then re-create the table in the metadata catalog and test it again.
When you have a version of the table that you want to put into
production, you can create the table in the production data server.

Procedure
1. Create a data design project. Open the New Data Design Project wizard by

selecting File > New > Data Design Project from the menu bar at the top of
Classic Data Architect. The data design project appears in the Data Project
Explorer.

2. Create a physical data model with the database type Classic Integration.
Open the New Physical Data Model wizard by right-clicking the data design
project folder and selecting New > Physical Data Model. Select Classic
Integration as the database type, and select the appropriate version. A new
physical data model appears in the Data Models folder of your project. Close
the Diagram1 tab because diagramming is a function in Eclipse but not a
function in Classic Data Architect.

Importing data definitions into projects
Before you can create tables with Classic Data Architect, you must import data
definition files into a data design project. For CA-Datacom, CICS VSAM,
sequential, native VSAM, and IMS, you can import COBOL copybooks, PL/I
include files, and DBDs. For CA-IDMS, you can import schema and subschema
reports.

About this task

If you want to create tables that map to Adabas databases, you do not need to
import files that describe the data structures that you want to map to. When you
create an Adabas table, you provide information that tells Classic Data Architect
how to locate the data structures in the Adabas database that you want to use.

If you want to create tables that map to CA-IDMS databases, you can either import
schema and subschema reports into Classic Data Architect or you can tell Classic
Data Architect how to locate the records and sets that you want to use in the
CA-IDMS database.

When you import files into a project from a local or remote server, the files are
organized into subfolders for that project according to the file types.

94 Guide and Reference

v COBOL copybooks are placed into a subfolder that is called COBOL
Copybooks.

v PL/I include files are placed into a subfolder that is called PL/I Include Files.
v CA-IDMS schema and subschema reports are placed into a subfolder that is

called CA-IDMS Schemas/Subschemas.
– You can also tell Classic Data Architect to discover subschema information

directly from CA-IDMS.
v DBD files are placed into a subfolder called IMS DBDs.
v SQL scripts are placed into a subfolder that is called SQL Scripts.

You can then use the files that you import into a project to create one or more
tables in one or more schemas in your project.

To select the files to import, you can browse the local file system for files or
connect to a z/OS server and browse data sets for members to download using
FTP.

When you import a file from your local file system, the file extension is replaced.
For example, a COBOL copybook mycopybook.fd is imported into the project as
mycopybook.cpy. Imported files are given the following extensions:

Table 14. File types and extensions given when files are imported.

File type Extension

COBOL copybook cpy

PL/I include file inc

Schema1 sch

Subschema1 sub

DBD dbd
1When you create tables using subschemas and schemas, the IDMS table wizard validates
the selected schema and subschema pair to ensure they are related during the actual
mapping process.

Procedure
1. In the Data Project Explorer, right-click the project folder and select Import.
2. Select Classic Data Architect References and click Next.
3. Use the wizard to select the location and verify the contents of the data

definition files that you want to import, select the references, and specify the
folder that you want to import the files into.

4. Optional: If you imported one or more copybooks or include files, you can
validate the data definitions one at a time. In the appropriate folder for the file
type, such as COBOL Copybook or PL/I Include File, right-click a data
definition file and select Validate <file type>. If Classic Data Architect detects
errors, an error dialog directs you to the Problems view, which is located on a
tab in the lower right quarter of the window. Double click an error to open the
file in the Editor with the cursor positioned on the line containing the error.

Creating connections to data servers and to DB2 for z/OS
Several of the tasks that you perform in the Classic Data Architect require
connections to data servers and to DB2 for z/OS databases.

Chapter 3. Configuring 95

About this task

You must connect to a data server to run SQL DDL to promote your tables, views,
and stored procedures to a metadata catalog.

If you plan to use Classic federation to query or update a DB2 for z/OS database,
you must create a connection to that database from Classic Data Architect.

Procedure
v Create connections to one or more data servers. Open the New Connection

wizard by right-clicking the Connections folder in the Data Source Explorer and
selecting New Connection.
If you create a connection to a data server by using IPv6, you might need to
provide a scope if you use a link-local address The scope is typically the
network interface name that you specify following the IPv6 address. The format
is ipv6 address%scope. For example, you can specify the following value in the
host field of the Driver properties window:
fe80::xxxx:xxxx:xxxx:xxxx%eth0

v If you are using a DB2 for z/OS database, create a connection to that database.
Open the New Connection wizard by right-clicking the Connections folder in the
Data Source Explorer and selecting New Connection.

Creating connections to the data server operator
Several of the tasks that you perform in Classic Data Architect require connections
to the data server operator. You can create new operator connections, edit operator
connections, import existing operator connections, export existing operator
connections for use in a different workspace, and copy operator connections from
the Data Source Explorer.

Before you begin

To connect to the server from Classic Data Architect, the operator service must be
running on the data server.

To view server and service configuration information and active services, you must
create a connection to the command operator service on the data server. When you
create an operator connection, Classic Data Architect attempts to connect to the
data server.
v If the connection succeeds, the new connection is added to the Connections

folder in the Console Explorer. You can view connection details in the Properties
view.

v If the connection fails, an explanation for the failure displays in the Properties
View for the connection.

Procedure
v To create a new operator connection: Open the New Operator Connection

wizard by using either of the following options:
– Right-click the Connections folder and select New connection.
– Right-click the New Connection icon in the Console Explorer.

v To edit an existing operator connection: Open the Edit Operator Connection
wizard. Right-click a connection in the Connections folder in the Console
Explorer and select Edit connection.

96 Guide and Reference

v To copy an existing operator connection, version 9.5 or greater, from the Data
Source Explorer: Open the Copy Operator Connections wizard. Right-click the
Connections folder and select Copy Connections.

v To import previously exported operator connections file: Right-click the
Connections folder and select Import Connections to open the Import
Connections dialog. If a connection with the same name already exists, its
properties will be updated.

v To export operator connections to a file for use in a different workspace:
Right-click the Connections folder and select Export Connections to open the
Export Connections dialog.

Setting preferences
You can set various preferences in Classic Data Architect.

Procedure
1. Set global values that Classic Data Architect can use as default values in its

wizards. Open the Classic Data Architect Preferences window by selecting
Window > Preferences then expand the Classic Data Architect section of the
tree.

2. Set the preferences on the various Classic Data Architect pages as needed (for
Adabas, CICS VSAM, Connection Options, and so).

3. You can also specify the locale that the COBOL parser uses when validating
COBOL copybooks that you want to base tables on. Expand the Importer then
COBOL subsection of the Preferences window, and then select the More
COBOL options tab. Set the locale in the Compile time locale name field.

Tip: For more information about COBOL and PL/I import preferences that are
supported by Eclipse, see the preference pages that are associated with the
importer.

Granting privileges and privileges for performing actions on data
servers
If you want users of Classic Data Architect to perform actions in a metadata
catalog on a data server, such as run SQL scripts or view objects, you must grant
privileges to those users. You must also grant system-level privileges to any users
who need to run commands on a data server.

About this task

The Privileges page of the Properties view for a database in a data design project
only lists privileges. Adding privileges to the list does not automatically grant
those privileges on a data server.

To grant a privilege, you must create the privilege in the Privileges page, generate
the GRANT statement for that privilege, and then run the GRANT statement on a
data server.

Procedure
1. Select the database in your data design project.
2. In the Properties view, click the Privileges tab. The table on the Privileges page

lists the users who have one or more privileges.

3. Create a new privilege. Click the yellow icon () In the Grant System or
Database Privilege window and specify these values:

Chapter 3. Configuring 97

Grantee
Type the ID of the user or group that you want to grant the privilege
to, or select PUBLIC to grant the privilege to all users.

Type Select either SYSTEM or one of the following types:

$ADABAS
Allows grantees to create, drop, and view Adabas tables and
views on a data server.

$CFI Allows grantees to create, drop, and view a metadata catalog
on a data server.

$DATACOM
Allows grantees to create, drop, and view CA-Datacom tables
and views on a data server.

$IDMS
Allows grantees to create, drop, and view CA-IDMS tables and
views on a data server.

$IMS Allows grantees to create, drop, and view IMS tables and views
on a data server.

$SEQUENT
Allows grantees to create, drop, and view sequential tables and
views on a data server.

$SP Allows grantees to create, drop, and view stored procedures on
a data server.

$VSAM
Allows grantees to create, drop, and view CICS VSAM and
native VSAM tables and views on a data server.

Privilege
If you selected SYSTEM in the Type field, select one of the following
privileges:

SYSADM
Grants all privileges on all objects that are in a metadata
catalog. Users with this privilege can grant privileges and
privileges to other users.

SYSOPR
Grants remote operator privileges to display reports for and
manage a data server.

DISPLAY
Grants remote operator privileges for displaying reports for a
data server.

4. When you want to promote the privileges to a data server, right-click the
database and select Generate DDL. In the Generate DDL wizard, follow these
steps:
a. On the Options page of the wizard, deselect all check boxes except Fully

qualified names, Quoted identifiers, and GRANT statements.
b. On the Objects page, deselect all of the check boxes.
c. On the Save and Run DDL page, specify the name of the SQL file that the

will wizard will create. Verify that the GRANT statements are correct. Select
the Run DDL on server check box.

98 Guide and Reference

d. On the Select Connection page, select the connection to the data server, or
create a new connection to a data server.

e. On the Summary page, verify the actions that the wizard will perform and
click Finish.

f. In the Data Output view (which is by the Properties view by default), verify
that the SQL statements ran successfully on the data server.

Revoking privileges for performing actions on data servers
Deleting privileges removes them only from a database in a data design project.
Revoking privileges removes them from a data server.

About this task

The Privileges page of the Properties view for a database in a data design project
only lists privileges. Deleting a privilege from that list does not automatically
revoke that privilege from a data server.

Procedure
1. In the Data Project Explorer, right-click the database in which the privilege is

listed.
2. On the Privileges page of the Properties view, select the Revoke check box for

the privilege that you want to revoke.
3. Right-click the database and select Generate DDL. In the Generate DDL

wizard, follow these steps:
a. On the Options page of the wizard, deselect all check boxes except Fully

qualified names, Quoted identifiers, and GRANT statements.
b. On the Objects page, deselect all of the check boxes.
c. On the Save and Run DDL page, specify the name of the SQL file that the

will wizard will create. Verify that the REVOKE statements are correct.
Select the Run DDL on server check box.

d. On the Select Connection page, select the connection to the data server.
e. On the Summary page, verify the actions that the wizard will perform and

click Finish.
f. In the Data Output view (which is by the Properties view by default), verify

that the SQL statements ran successfully on the data server.

Mapping data for Classic federation
Classic federation takes places when client applications query or update data
sources by passing SQL requests to a query processor that is running on a data
server.

The following list shows the tasks that you can perform for mapping data for
Classic federation.

Creating Adabas tables and views for Classic federation
To query or update data in an Adabas database, you must create a relational table
that maps to that database. You can also create a view on the table. You use the
New Adabas Table wizard to create a table and a view.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.

Chapter 3. Configuring 99

v Create a metadata catalog.
v Decide which data structures to map in your database and plan the indexes that

you will need. To ensure optimal performance, you must map the underlying
data correctly. This task includes ensuring that any indexes, keys, or units of
data that are defined in your database are defined to the data server when you
map the data. Almost any column that maps to a field definition table (FDT) or
special descriptor table (SDT) definition can be used for an index.

v Configure a connection between the data server and your Adabas database.
v If you want to use Predict, know the Adabas file number of the Predict

dictionary and the name of the view that you want to map to. If you are not
using Predict, know the number of the Adabas file that you want to map to.

Restrictions

v Each column in the table that you create must be associated with a field in the
file, a superdescriptor, or a subdescriptor.

v If Predict formatting is available, the following Predict formats are supported:
– character (A,AL,AV)
– binary (B) with length of 2 or 4
– date (D, DS, DT)
– floating point (F)
– integer (I)
– logical (L)
– numeric packed and unpacked (N, NS, P, PS, U, US)
– time (T, TS)

If only Adabas field formatting is available, the following formats are supported:
– alphanumeric (A)
– binary (B) with length of 2 or 4
– fixed point (F)
– floating point (G)
– packed decimal (P) and unpacked decimal (U)

About this task

For more information about creating tables and views that map to Adabas
databases, see the related links for Adabas syntax diagrams and for views.

Procedure
1. Optional: Use the Adabas page of the Preferences window to set these default

values:
v The name of the Predict dictionary that you want to use.
v The date format that Classic Data Architect should convert dates to.
v The time format that Classic Data Architect should convert times to.
v The maximum length for VARCHAR data.
v The maximum length for LVARCHAR data.
v The maximum number of occurrences for all fields that occur multiple times

in an Adabas file.
v Whether to use the User Synonym field from the Predict Dictionary when

this field is defined.

100 Guide and Reference

2. Map your Adabas database to a relational table by using the New Adabas Table
wizard.
a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > Adabas table.

b. Select the model and schema in which you want to create the table.
c. Choose whether or not to create a view on the table.
d. Choose whether to connect to your Adabas database through an existing

connection to a data server or whether you want to create a new connection
to a data server. Either data server must be configured to access the Adabas
database.

e. Specify the format of dates and times, the lengths of VARCHAR and
LVARCHAR data types, and the maximum number of occurs. The default
values that appear are either the global defaults that are set for the Adabas
database or the defaults that are set in the Adabas page of the Preferences
window.

f. Specify whether you plan to use the table (and view, if you are creating one)
for queries, updates, or both.

g. Provide either the Predict or Adabas information that is necessary for the
discovery process.

h. Select the Adabas fields that you want to map to columns in your relational
table.

i. Optional: In the ISN name field, provide a name for the column that maps to
the Adabas Internal Sequence Number (ISN).
The default column name is ISN.

j. If you are creating a view, specify the criteria for the WHERE clause.
k. Modify the names of columns and provide null values.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, it also appears under the selected schema.

3. Optional: Modify the table properties or add privileges. Select the table, and
make any changes in the Properties view.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table by

running a test query against your Adabas database. Be sure that the data server
is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.

Chapter 3. Configuring 101

c. Check the Data Output view to determine whether the test query ran
successfully.

6. Optional: If you created a view, you can generate the DDL for the view now or
later. You can also generate a DDL for all of the objects within the same
schema. See “Generating DDL” on page 142.
a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which you want to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to find out whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your Adabas database. Be sure that the data server
is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.

Creating CA-Datacom tables and views for Classic federation
To query or update data in a CA-Datacom database, you must create a relational
table that maps to that database. You can also create a view on the table to filter
record types or to filter rows and columns.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.
v Create a metadata catalog.
v Decide which RECORD entity-occurrence and fields you want to map to.
v Create a URT for accessing the CA-Datacom table.
v Ensure that a COBOL copybook or (on the Windows platform) PL/I include file

that references the database is in the appropriate folder in your data design
project.
COBOL copybooks are stored in the COBOL Copybooks folder, and PL/I
include files are stored in the PL/I Include Files folder.
The CA-Datacom Source Language Generator (SLG) Facility allows you to
generate COBOL copy books for CA-Datacom tables. You can use member
CACDCSLG in the SCACSAMP data set for help with generating these
copybooks. This member invokes the CA-Datacom DDUTILITY.
If you use the CA-Datacom DDUTILITY to generate COBOL copybooks, edit the
resulting copybooks to remove any $ characters that might be present.

v Configure a connection between the data server and your CA-Datacom database,
if you plan to generate and run the DDL to create the table in the metadata
catalog.

Restrictions

v Fields that use the CA-Datacom null indicator are not supported.

102 Guide and Reference

About this task

One or more FIELD entities are associated with a table in a CA-Datacom database.
These FIELD definitions describe the contents of the table. In the CA-Datacom
documentation, FIELD entities are also referred to as columns when the SQL option
is used to access the CA-Datacom table. The online help does not use the term
column to refer to a CA-Datacom FIELD entity.

The table that you map to must have one or more CA-Datacom ELEMENT
definitions associated with it. A CA-Datacom ELEMENT definition refers to one or
more contiguous CA-Datacom FIELD entities and is the unit of data transfer
between Classic federation and a CA-Datacom database.

Use the New CA-Datacom Table wizard to create the table and optionally the view.
For more information about creating tables and views that map to CA-Datacom
databases, see the related links for CA-Datacom syntax diagrams and for views.

Procedure
1. Map your CA-Datacom database to a relational table and optionally a view by

using the New CA-Datacom Table wizard.
a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > CA-Datacom table.

b. Select the copybook or include file that you want to base the table on.
c. Choose whether to use the table for queries, updates, or both.
d. Choose whether to create a view on the table.
e. Provide information about which record entity you want to map to and the

URT for accessing the corresponding CA-Datacom table.
f. Select the fields that you want to map to columns in your relational table.
g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on
page 116.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran
successfully.

5) Choose whether to open the DDL for editing.

Chapter 3. Configuring 103

5. Optional: If you ran the DDL successfully on a data server, validate the table by
running a test query against your CA-Datacom database. Be sure that the data
server is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, you can generate the DDL for the view now or

later. You can also generate the DDL for all of the objects within the same
schema. See “Generating DDL” on page 142.
a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, you can validate the

view by running a test query against your CA-Datacom database. Be sure that
the data server is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.

Creating CA-IDMS tables and views for Classic federation
To query or update data in a CA-IDMS database, you must create a relational table
that maps to that database. You can also create a view on the table to filter record
types or to filter rows and columns. You use the New CA-IDMS Table wizard to
create the table and optionally the view.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.
v Create a metadata catalog.
v Decide which records to map to and the best path through the database to

access the records. The sets that are defined in the subschema for the records
determine the path.

v Configure a connection between the data server and your CA-IDMS database.
The data server must be able to access the CA-IDMS central version that
contains the subschema definitions, schema definitions, and data of the records
that are being mapped.

Restrictions

v The record path in the mapping must be from set owner to set member only.
v The owner DBKEY must be part of each member record that is included in the

path.

104 Guide and Reference

About this task

In the New CA-IDMS Table wizard, you can map a single record or a specific path
to as many as 10 records. You define a path by starting with a single record, and
then navigating sets to additional records defined in the subschema. The
subschema information that you use for mapping determines which records and
sets are available. You can import the subschema information from a combination
of CA-IDMS schema and subschema report files or directly from the CA-IDMS
database by using Classic Data Architect's discovery process.

CA-IDMS schema and subschema reports are produced by running the CA-IDMS
schema and subschema compilers and capturing the punched output into a z/OS
data set. JCL to punch these reports is in the SCACSAMP library with the member
name CACIDPCH.

When the data server returns SQL rows for a logical table that is mapped to a
path, the data server returns an instance of the first record type that is mapped
with each instance of related records down the defined path. See the example
section below.

For more information about creating tables and views that map to CA-IDMS
databases, see the related links for CA-IDMS syntax diagrams and for views.

Procedure
1. Map your CA-IDMS database to a relational table and optionally a view by

using the New CA-IDMS Table wizard.
a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > CA-IDMS table.

b. Select the CA-IDMS schema and subschema to base the table on.
c. Choose whether to use the table for queries, updates, or both.
d. Choose whether to create a view on the table.
e. Provide information about how to access the CA-IDMS database.
f. For each record in the path, specify a COBOL copybook, select an 01 level if

there is more than one 01 level, and then select the elements you that want
to map as columns in your relational table.

g. Select the elements that you want to map to columns in your relational
table.

h. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on
page 116.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.

Chapter 3. Configuring 105

2) Choose to generate DDL for tables. You can also choose to generate
DDL for indexes.

3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine if the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table by

running a test query against your CA-IDMS database. Be sure that the data
server is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, you can generate the DDL for the view now or

later. You can also generate the DDL for all of the objects within the same
schema. See “Generating DDL” on page 142.
a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your CA-IDMS database. Be sure that the data
server is connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.

Example

A path of records might look like this:
PATH IS (EMPLOYEE, SET IS EMPL-DEP, DEPENDENT)

The CA-IDMS might contain these records:
EMPLOYEE DEPENDENTS (in EMPL-DEP set)
----------- ---------
BILL SMITH -> MARTHA -> BILLY -> SALLY
JANE WHELAN
SANRA JONES -> ROBERT

The query to retrieve all the rows in the mapped table returns:

106 Guide and Reference

EMPL_NAME DEPENDENT NAME
BILL SMITH MARTHA
BILL SMITH BILLY
BILL SMITH SALLY
JANE WHELAN ------
SANDRA JONES ROBERT

Creating CICS VSAM tables and views for Classic federation
To query or update data in a CICS VSAM data set, you must create a relational
table that maps to that file. You can also create a view on the table to filter record
types or to filter rows and columns. You use the New CICS VSAM Table wizard to
create the table and optionally the view.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.
v Create a metadata catalog.
v Decide which record elements you want to map in the CICS VSAM data set and

plan the indexes that you will need. To optimize performance, you must map
the underlying data correctly. This task includes ensuring that any indexes, keys,
or units of data that are defined in your file are defined to the data server when
you map the data.

v Configure a connection between the data server and your CICS VSAM data set.
v Ensure that a COBOL copybook or (on the Windows platform) PL/I include file

that references the database is in the appropriate folder in your data design
project.
COBOL copybooks are stored in the COBOL Copybooks folder, and PL/I
include files are stored in the PL/I Include Files folder.

Restrictions

You can map to the following types of VSAM data sets:
v KSDS, ESDS, and RRDS files
v IAM files

About this task

For more information about creating tables and views that map to CICS VSAM
data sets, see the related links for CICS VSAM syntax diagrams and for views.

Procedure
1. Map your CICS VSAM data set to a relational table and optionally a view by

using the New CICS VSAM Table wizard.
a. Open the wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > CICS VSAM table.

b. Select the copybook or include file to base the table on.
c. Choose whether to use the table for queries, updates, or both.
d. Choose whether to create a view on the table.
e. Provide information about which CICS file control table to use and how to

access the CICS VSAM data set.
f. Select the elements that you want to map to columns in your relational

table.

Chapter 3. Configuring 107

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Select the table and, in the Properties view, modify any of its
properties or add privileges.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on
page 116.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table by

running a test query against your CICS VSAM data set. Be sure that the data
server is connected to the system where the file is located.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects
within the same schema. See “Generating DDL” on page 142.
a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which you want to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to find out whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your CICS VSAM data set. Be sure that the data
server is connected to the system where the file is located.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to whether the test query ran successfully.

108 Guide and Reference

Creating tables and views for DB2 for z/OS databases
To query or update data in a DB2 for z/OS source, you must create a relational
table that maps to that data source. You open a connection to a DB2 for z/OS
subsystem and import the table or view into a physical data model. Then, you can
generate and run the DDL.

Before you begin

In your data design project, you must have at least one physical model.

About this task

You can import DB2 tables, views, materialized query tables, and aliases. All of
these objects become tables in a schema in a physical data model.

Dropping a DB2 object into a schema adds the object to that schema. Dropping a
DB2 object into a data design project that has no schema causes Classic Data
Architect to create a schema and add the DB2 object to it. Dropping an entire DB2
schema into a data design project adds that schema to the project and imports all
of the DB2 objects that are in the DB2 schema.

When objects are created, they are created with DB2 column and, if applicable,
indexes.

Columns that are not supported in Classic federation are not added.

Procedure
1. Create a connection to the DB2 for z/OS subsystem. Follow these steps:

a. In the Data Source Explorer, right-click the Connections folder and select
New Connection.

b. In the New Connection wizard, under Select a database manager, expand
DB2 zSeries and select the appropriate version.

c. Provide the connection information and click Finish.
2. In the Data Source Explorer, expand these objects:

a. the database
b. the Schemas folder
c. the schema of the table or view that you want to import
d. the Tables folder or the Views folder for the schema

3. Drag a DB2 object into the Data Project Explorer.
Dropping a DB2 object into a schema adds the object to that schema. Dropping
a DB2 object into a data design project that has no schema causes Classic Data
Architect to create a schema and add the DB2 object to it. Dropping an entire
DB2 schema into a data design project adds that schema to the project and
imports all of the DB2 objects that are in the DB2 schema.

4. In the Available Actions window, ensure that Drop DB2 objects into a Classic
model is selected and click OK.

5. In the Specify DB2 Plan window, specify the name of the plan that contains the
packages for the SQL statements that client applications will make against the
DB2 objects. After you click OK, the DB2 objects appear in the your data
design project.

6. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

Chapter 3. Configuring 109

7. Optional: Open the Generate DDL wizard and generate the CREATE statement
for the table. With this wizard, you can generate the SQL DDL to define the
tables and views and choose to run the DDL on a data server so that the tables
and views are created in the metadata catalog for that data server. You can also
edit the generated DDL before you run it.
After you run the DDL, the tables appear on the data server in the Data Source
Explorer. To see the tables, expand the data server and navigate to Schemas >
table schema name > Tables.
The views appear on the data server under Schemas > view schema name >
Views.
If you want to generate and run the DDL for more than one object at a time,
you can right-click a schema and select Generate DDL. The Generate DDL
wizard will generate the DDL for all of the objects in the schema.

8. Optional: If you created the tables and views on the data server, run a test
query on the tables.
a. In the Data Source Explorer, right-click a table or view and select Data >

Sample Contents.
b. Look in the Data Output view to see the results of the test query.

Results

Creating IMS tables and views for Classic federation
To query or update data in an IMS database, you must create a relational table that
maps to that database. You can also create a view on the table to filter record types
or to filter rows and columns. Use the New IMS Table wizard to create the table
and optionally the view.

Before you begin
v Configure the data server where you plan to run the correlation service that will

process change data from your IMS database.
v Create a metadata catalog.
v Decide which segment you want to map and the required path for navigating to

the segment from a physical root or index.
v Configure a connection between the data server and your IMS database.
v Ensure that the IMS DBDs folder in your project has a database definition file

(DBD) that lists the segments from which you want to select the fields to map to
columns.

v Ensure that a COBOL copybook or (on the Windows platform) PL/I include file
for each IMS segment you want to map to is in the appropriate folder in your
data design project.
COBOL copybooks are stored in the COBOL Copybooks folder, and PL/I
include files are stored in the PL/I Include Files folder.

Restrictions

If you are creating a table that maps to an IMS database, use the table only for
change capture or only for queries and updates. Typical mappings of an IMS
database for queries contain column definitions for all or most of the data in the
segments that are referenced by the table. For updates, restrictions on what can be
inserted or updated can require you to create custom versions of your tables for
updates only.

110 Guide and Reference

About this task

For more information about creating tables and views that map to IMS databases,
see the related links for IMS syntax diagrams and for views.

Procedure
1. Map your IMS database to a relational table and optionally a view by using the

New IMS Table wizard.
a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > IMS table.

b. Select the DBD file that you want to base the table on.
c. Choose whether to use the table for queries, updates, or both.
d. Choose whether to create a view on the table.
e. Provide information about how to access the IMS database.
f. For the each segment that is in the path, specify a COBOL copybook or

include file, select the desired 01 level if there is more than one, and then
select the elements that you want to map as columns.

g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on
page 116.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, validate the table by

running a test query against your IMS database. Be sure that the data server is
connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.
6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects
within the same schema. See “Generating DDL” on page 142.

Chapter 3. Configuring 111

a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your IMS database. Be sure that the data server is
connected to that database.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.

Creating sequential tables and views for Classic federation
To query or update data in a sequential file, you must create a relational table that
maps to that file. You can also create a view on the table to filter record types or
filter rows and columns. You use the New Sequential Table wizard to create the
table and optionally the view.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.
v Create a metadata catalog.
v Decide on the sequential files that you want to map to.
v Ensure that a COBOL copybook or (on the Windows platform) PL/I include file

that references the database is in the appropriate folder in your data design
project.
COBOL copybooks are stored in the COBOL Copybooks folder, and PL/I
include files are stored in the PL/I Include Files folder.

Restrictions

v Sequential data sets cannot be updated.
v Because sequential data sets do not have any native index definitions or keys,

any request to access a sequential data set causes a table scan. You cannot use
Data Architect to create indexes for tables that are mapped to sequential data
sets.

v If you are mapping partitioned sequential data sets, a table must map to a single
member within a partitioned data set.

v SQL access to extended partitioned data sets is not supported.
v When a table references a direct access data set, these data sets are referred to as

BDAM (Basic Direct Access Method) data sets. BDAM data sets can be accessed
using “keys” that consist of track addresses, block numbers, or a combination of
the two. Classic Data Architect does not access a direct access data set using any
of these techniques, but Classic Data Architect can sequentially retrieve the
records that are stored in one of these direct access data sets.

112 Guide and Reference

About this task

Classic federation uses two methods to physically access a sequential file:
v The table definition can refer to the data set name. This method requires the

data server to issue dynamic allocation requests before the file is physically
opened. For Classic Federation to use dynamic allocation, the file must be
cataloged.

v The table definition can reference the file by DD (statement) name. Accessing the
file by DD name requires that the file is statically and permanently allocated to
the server address space because the referenced DD statement must be added to
the server JCL, and the DSN parameter on the DD statement identifies the
physical file to be accessed.

The recommended technique is to use dynamic allocation to access a sequential
file. When a file is dynamically allocated, the file disposition is share mode, which
allows other applications to access the file concurrently, if the applications are not
attempting to access the file in exclusive mode.

For more information about creating tables and views that map to sequential files,
see the related links for sequential syntax diagrams and for views.

Procedure
1. Map your sequential file to a relational table and optionally a view by using

the New Sequential Table wizard.
a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > Sequential table.

b. Select the copybook or include file to base the table on.
c. Choose whether to create a view on the table.
d. Provide information about how to access the sequential file.
e. Select the elements to map to columns in your relational table.
f. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

3. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After running the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
4. Optional: If you ran the DDL successfully on a data server, validate the table by

running a test query against your sequential file. Be sure that the data server is
connected to the system where the sequential file is located.

Chapter 3. Configuring 113

a. In the Data Source Explorer, search your data server for the schema that
you created the table in. Expand the schema and expand the Tables folder.

b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.
5. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects
within the same schema. See “Generating DDL” on page 142.
a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for views.
3) Name the file in which you want to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to find out whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
6. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your sequential file. Be sure that the data server is
connected to the system where the sequential file is located.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to find out whether the test query ran

successfully.

Creating VSAM tables and views for Classic federation
To query or update data in a VSAM data set, you must create a relational table
that maps to that file. You can also create a view on the table to filter record types
or to filter rows and columns. Use the New VSAM Table wizard to create the table
and optionally the view.

Before you begin
v Configure the data server where you plan to run the query processor that will

accept requests from client applications.
v Create a metadata catalog.
v Decide which data structures to map in your data source and plan the indexes

that you will need. To ensure optimal performance, you must map the
underlying data correctly. This task includes ensuring that any indexes, keys, or
units of data that are defined in your file are defined to the data server when
you map the data.

v Ensure that a COBOL copybook or (on the Windows platform) PL/I include file
that references the database is in the appropriate folder in your data design
project.
COBOL copybooks are stored in the COBOL Copybooks folder, and PL/I
include files are stored in the PL/I Include Files folder.

Restrictions

You can map to the following types of VSAM data sets:
v KSDS, ESDS, and RRDS files

114 Guide and Reference

v IAM files

About this task

For more information about creating tables and views that map to VSAM data sets,
see the related links for VSAM syntax diagrams and for views.

Procedure
1. Map your VSAM data set to a relational table and optionally a view by using

the New VSAM Table wizard.
a. Open this wizard by right-clicking either the database in your data design

project or one of the schemas within the database. Select Add Classic
Object > VSAM table.

b. Select the copybook or include file to base the table on.
c. Choose whether to use the table for queries, updates, or both.
d. Choose whether to create a view on the table.
e. Provide information about how to access the VSAM data set.
f. Select the elements that you want to map to columns in your relational

table.
g. If you are creating a view, specify the criteria for the WHERE clause.

When you finish the wizard, the new table appears under the selected schema.
If you created a view, the view also appears under the selected schema.

2. Optional: Modify the table properties or add privileges. Select the table and
make any changes in the Properties view.

3. Optional: Create one or more indexes on the table. See “Creating indexes” on
page 116.

4. Optional: Generate the DDL for the table. You can generate the DDL later, if
you do not want to generate it now. You can also generate the DDL for all of
the objects within the same schema. See “Generating DDL” on page 142.
a. Right-click the table and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE statements.
2) Choose to generate DDL for tables. You can also choose to generate

DDL for indexes.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether you want to open the DDL for editing.
5. Optional: If you ran the DDL successfully on a data server, you can validate the

table by running a test query against your VSAM data set. Be sure that the data
server is connected to the system where the file is located.
a. In the Data Source Explorer, search your data server for the schema that

you created the table in. Expand the schema and expand the Tables folder.
b. Right-click the table and select Data > Sample Contents.
c. Check the Data Output view to find out whether the test query ran

successfully.
6. Optional: If you created a view, generate the DDL for the view. You can

generate the DDL later. You can also generate the DDL for all of the objects
within the same schema. See “Generating DDL” on page 142.

Chapter 3. Configuring 115

a. Right-click the view and select Generate DDL.
b. In the Generate DDL wizard, follow these steps:

1) Choose to generate CREATE and ALTER statements.
2) Choose to generate DDL for views.
3) Name the file in which to save the DDL within your project.
4) Choose whether to run the DDL on a data server. After you run the

DDL, check the Data Output view to determine whether the DDL ran
successfully.

5) Choose whether to open the DDL for editing.
7. Optional: If you ran the DDL successfully on a data server, validate the view by

running a test query against your VSAM data set. Be sure that the data server
is connected to the system where the file is located.
a. In the Data Source Explorer, search your data server for the schema that

you created the view in. Expand the schema and expand the Views folder.
b. Right-click the view and select Data > Sample Contents.
c. Check the Data Output view to determine whether the test query ran

successfully.

Creating indexes
After you define a table, you can define indexes on the table to map existing
indexes on the underlying data. An index identifies columns in a table that
correspond to a physical index that is defined against a data source.

Procedure
1. In the Data Project Explorer, right-click the table that you want to define an

index on and select Add Classic Object > Index. The New Index wizard opens.
2. Name the index, specify whether it should be unique, and select the columns to

base the index on.
3. If the index is for an IMS table, specify the method that Classic federation can

use to select a PCB to access your IMS database.
4. If the index is for a CICS VSAM or native VSAM table, specify the DS or DD

name for the index.

Creating stored procedures
Use the Create Stored Procedure window to define a stored procedure to perform
work that cannot be done with SQL DELETE, INSERT, SELECT, and UPDATE
operations.

Procedure
1. Open the Create Stored Procedure window by right-clicking either the database

in your data model or a schema and selecting Add Classic Object > Stored
Procedure.

2. On the Stored Procedure Definition page, specify where in your project you
want to define the stored procedure and specify values to be used in the DDL
that is generated for the stored procedure.

3. On the Parameter Definition page, specify at least one parameter. You can use
parameters for input, output, or both.

4. Click Finish to add the stored procedure to your project.

116 Guide and Reference

Results

After the stored procedure is listed in your data model, you can select it and edit
any of its properties in the Properties view. You can also set privileges on it.

When the stored procedure is ready, you can generate and run the DDL for
creating the stored procedure in a metadata catalog.

If you need to modify the stored procedure after it exists in a metadata catalog,
you must generate and run the DDL to drop the stored procedure from the
metadata catalog. Then, you can re-create the stored procedure with the modified
settings and generate and run the DDL.

Modifying the PCB selection for IMS tables or indexes
You can modify the PCB selection for an IMS table or IMS index.

Procedure
1. Open the Modify PCB Selection wizard by right-clicking the IMS table or IMS

index and selecting Modify PCB Selection Method.
2. Select how you want Classic federation to select the PCBs that are needed to

access the table.

Mapping tables and views for redefined data
Redefined data uses alternate record layouts for the same storage area, based on
record types.

About this task

To read redefined data, define a table with an associated view for each type of
record. To insert, update, delete, or capture changes to redefined data, define a
separate table for each record type.

Each table you map for redefined data must contain columns that identify common
key information and a column for the type code field. These columns are followed
by type-specific columns.

In the following PL/I example, the UNION attribute defines two alternative record
mappings for the same storage area. The RECORD_TYPE variable specifies
whether the data that follows describes employee information or address
information.
DCL 01 EMPLOYEE_ADDRESS_RECORD,

05 EMP_ID CHAR(6),
05 RECORD_TYPE CHAR(1),
05 RECORD_INFO UNION,

10 EMPLOYEE_INFORMATION,
15 LAST_NAME CHAR(20),
15 FIRST_NAME CHAR(20),
15 DATE_OF_BIRTH PIC ’(8)9’,
15 MONTHLY_SALARY DECIMAL(7,2),
15 FILLER CHAR(48),

10 ADDRESS_INFORMATION,
15 ADDRESS_LINE_1 CHAR(30),
15 ADDRESS_LINE_2 CHAR(30),
15 ADDRESS_CITY CHAR(20),
15 ADDRESS_STATE CHAR(2),
15 ADDRESS_ZIP PIC ’(5)9’;

Chapter 3. Configuring 117

Procedure
1. Map two tables, each with an associated view.

In the example, you define one base table and view for employee information,
and another base table and view for address information.

2. Use the view or the table, depending on whether you query or update the data.
a. To query redefined data, supply filtering information in the view definition

when you map the table. This approach simplifies queries in client
applications, because the queries do not require WHERE clause filtering.

Restriction: You cannot update a view.
b. To insert, update, or delete redefined data, your application must use the

base table name and provide WHERE filtering.
Supply a WHERE clause and use the type code value to filter the records.

What to do next

Tip: To perform change capture on redefined data, mark the view for change
capture when you map the table.

For additional examples of working with redefined data, see Record types in data
definition examples.

Array processing
Groups of repeating fields in a record layout are called record arrays.

If you map a record array into a table, the DDL that is generated for the table
includes the BEGINLEVEL statement to mark the start of a record array and the
ENDLEVEL statement to mark the end of the record array.

The following topics provide guidelines for mapping record arrays:

Record arrays:

A group of data items in a database that have multiple occurrences within a single
record in the database are referred to as record arrays.

Typically, you map tables and views by importing data definitions in COBOL
copybooks or PL/I include files. The copybooks or include files can contain array
definitions. Classic Data Architect maps array definitions that you have not
flattened into columns by converting the definitions to statements within
BEGINLEVEL and ENDLEVEL blocks. The application then generates the Data
Definition Language (DDL) that contains the BEGINLEVEL statements. You run the
DDL on the data server to create a user table.

You can optimize performance when you query array data. If you want to insert,
update, delete, or perform change capture on array data, you must flatten the
structure. See the related array topics for information about working with array
data.

For information about working with COBOL, see the Enterprise COBOL for z/OS
Language Reference and the Enterprise COBOL for z/OS Programming Guide. For
information about working with PL/I, see the WebSphere Developer for System z PL/I
for Windows Language Reference and the Enterprise PL/I for z/OS Programming Guide.

118 Guide and Reference

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.swg.im.iis.fed.classic.sqlref.doc/topics/iiyfcsqlviwrcrdtyping.html
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/topic/com.ibm.swg.im.iis.fed.classic.sqlref.doc/topics/iiyfcsqlviwrcrdtyping.html

Fixed-length arrays

Fixed-length array constructs define an array in which the number of instances
does not change. For example, an employee record can include the employee’s
dependent information (spouse and children). Because an employee can have
multiple dependents, you can declare an array of dependent information within an
employee record by specifying a COBOL OCCURS clause or a PL/I DIMENSION
(DIM) attribute. The following example of a COBOL OCCURS clause defines a
fixed-length array.

05 DEPENDENTS-ARRAY OCCURS 20 TIMES

The array appears 20 times in the source database record, regardless of how many
dependents the employee has.

NULL IS processing

The query processor on the data server skips null array instances as SQL ROW
candidates at runtime. In the example of the dependents array, if an employee has
three dependents and the array occurs 20 times, 17 null instances of the array do
not appear as a row in a result set.

You can include a NULL IS value in DDL to identify a given array instance as null,
based on a comparison value. A comparison value can identify a null array
instance in the following ways:
v The start of the first column in the array instance matches the comparison value

(NULL IS null-value).
v Each character in the array instance matches a single-character comparison value

(NULL IS ALL null-value).
v The start of a specified column in the array matches the comparison value (NULL

IS column-name EQUAL null-value).

In the following example of NULL IS ALL DDL, the single character X is the
comparison value. If each character in the array instance is X, that instance of the
array is null.

MAXOCCURS 20 NULL IS ALL X

Null instances of a record array are not returned as a row in the result set unless
ALL instances of the array are NULL. If all instances of the array are NULL, then
Classic Federation returns a single row for the non-array information in the record
and sets the array data items to NULL. In the dependents array example, the
employee has no dependents.

Variable-length arrays

Another common record array construct defines variable-length data. The number
of array instances is dependent on the value of a data item that precedes the array
in the structure, such as NUMBER-OF-DEPENDENTS. In COBOL, the array
declaration is as follows:

05 NUMBER-OF-DEPENDENTS PIC 9(4) COMP.
05 DEPENDENTS-ARRAY OCCURS 1 TO 20 TIMES

DEPENDING ON NUMBER-OF-DEPENDENTS.

The next example shows a similar array declaration in PL/I that uses the REFER
attribute to point to the variable containing the value for the number of
dependents.

Chapter 3. Configuring 119

5 NUMBER_OF_DEPENDENTS BIN FIXED(15),
5 DEPENDENTS_ARRAY DIM(N1 REFER(NUMBER_OF_DEPENDENTS)),

PL/I has no equivalent syntax for the COBOL DEPENDING ON clause, so the
data server calculates the number of array instances automatically based upon
array offset, array size, and record or segment length. The formula is as follows:

<Number-of-array-instances> = (<record-length> - 1 - <array-offset>)/<array-size>

The number of instances does not appear in the DDL generated by the wizard. The
number is calculated when the data server processes the DDL and validates the
table information prior to creating the table definition in the catalog.

Restrictions

You cannot map a table that is based on nested variable-length arrays or a table
that contains fixed columns after a variable-length array. The reason for this is that
columns subsequent to variable-length array constructs do not appear at a
predictable offset.

The New Table wizard supports PL/I REFER constructs, with the following
restrictions:
v The REFER clause must occur in the first dimension of a multi-dimensional

array.
v The array must have no later siblings, and no parents with siblings.
v The REFER clause must be in the upper bound, and the lower bound must be 1.

The upper bound must reflect the actual count, and contains the actual count
only when the lower bound is 1.

If the PL/I parser encounters a REFER clause that is too complex to process, the
parser ignores the entire structure and the validation process displays an error
related to the array definition.

Performance considerations with multiple record arrays:

When you map tables containing record array definitions, result sets from queries
can return so many rows that performance suffers.

When a table has multiple record array definitions that you map as arrays, queries
that reference the table yield large result sets. To avoid performance problems, do
one of the following:
v Map a separate table for each record array definition.
v Flatten the array structure by mapping a separate column for each field and

instance.

If you map a separate table for each array, federated queries can read the data. If
you flatten the structure, client applications can insert, update, and delete rows.

When you map a record array definition as an array, Classic Data Architectconverts
the data definition to SQL columns. Each instance of the array is combined with
the non-array data items to create SQL rows. For example, if the record in the
database for the employee ID 123456789 contains three dependents, three distinct
rows are returned for that record. The following query returns three rows in the
result set:

120 Guide and Reference

Query:
SELECT EMP_ID, NUMBER_OF_DEPENDENTS, DEP_ID, DEP_NAME FROM
CAC.EMPL WHERE EMP_ID = ’123456789’;

Result set:
EMP_ID NUMBER_OF_DEPENDENTS DEP_ID DEP_NAME
123456789 3 111223333 Depen1
123456789 3 222334444 Depen2
123456789 3 333445555 Depen3

Calculating the size of result sets

You can use a formula to calculate the number of rows in the result set from a
query on a table that contains arrays, before you supply any filtering predicates on
the WHERE clause. The number of rows in the result set is the Cartesian product
of these items:
<Number of instances in each record array> * <Number of physical records>

With variable-length arrays, you can't calculate the number of rows in the result set
unless you know how many instances exist for each array.

Examples

The following example demonstrates how multiple arrays can lead to performance
problems arising from large result sets.
1. An employee has these data items:

v Four dependents
v Two emergency contacts
v Three assignments

2. The database has 200 employee records

A query generates 4 * 2 * 3 = 24 rows for this employee. If all the employee
records have an average Cartesian product of 24 based on the data items stored in
arrays, then a query of all the employee records yields 24 * 200 = 4800 rows in
the result set.

In the next example, a COBOL copybook has two OCCURS clauses that define
arrays that contain data about dependents and professional organizations:

01 EMPLOYEE-RECORD.
...
05 DEPENDENTS-ARRAY OCCURS 20 TIMES.
...
05 ORGS-ARRAY OCCURS 5 TIMES PIC X(10).

If you use the New Table wizard in Classic Data Architect to create a table
definition for this record layout, and you map both arrays to the same table, the
result set for a single employee record is the Cartesian product of
DEPENDENTS-ARRAY and ORGS-ARRAY.

The query processor does not return null array instances. In this example, an
employee has four dependents and two professional organizations. A query
generates 4 * 2 = 8 rows for that employee.

Chapter 3. Configuring 121

Creating a separate table for each record array in a table definition:

You can improve the performance of federated queries that read record array data
if you map a separate table for each record array in the table definition.

Before you begin

Before you run the New Table wizard, import a data definition file into your data
design project that describes the structure of the data in the source database, such
as a COBOL copybook, a PL/I include file, or a CA-IDMS schema with
subschemas. If your source is CA-IDMS or Adabas you can connect to the server to
retrieve the information directly from the source database.

About this task

Each table you map separately consists of a single record array definition that
contains the column definitions unique to a single array instance. Any given
column appears in each instance of the array. For example, if your employee table
has an array that describes employee dependents, the table structure might look
like this:

KEY DEP_LAST_NAME DEP_FIRST_NAME DEP_GENDER DEP_ID DEP_DOB

You can map a separate table for each array by running the New Table wizard in
Classic Data Architect once for each array, or you can copy and edit table objects as
described in the following steps.

To map a separate table for each array in a base table by using the Data Project
Explorer view:

Procedure

1. Run the New Table wizard once to create a parent table object using the array
processing option Create record array.

2. Make one copy of the table object for each record array.
3. Delete columns in each copied table object until the columns that remain

contain the key information and array data that you want.
4. Optional: Delete the columns that contain array definitions from the parent

table if you want to use the non-array data for queries.

Record array definitions for federation and change capture:

Federated queries can read record array data if you create a separate table for each
array. You can insert, update, delete, and capture changes to record array data by
flattening the column structure.

Record array definitions contain column definitions, and possibly additional record
array definitions. To read, manipulate, or capture changes to record array data,
create the required tables or column structure.

To query record array data, map a separate table for each record array in the data
definition. To insert, update, or delete array data, flatten the array structure by
choosing the array processing option Expand occurrences when you map the table
in the New Table wizard.

122 Guide and Reference

A flattened structure provides a separate column for each array instance and field.
For example, you map a record array for employee dependents that contains five
fields:
1. DEP_LAST_NAME
2. DEP_FIRST_NAME
3. DEP_GENDER
4. DEP_ID
5. DEP_DOB

If you want to support up to ten dependents, you must map 50 columns with
names that uniquely identify each instance and field. In this example, the column
names range from DEP_LAST_NAME_1 to DEP_DOB_10.

Restriction: You cannot insert, update, or delete array data when you map the
structure as an array because of mismatched insert and update logic. Adding a
new dependent updates a single record in the source database, but the change
inserts a new row into the logical table on the data server. Flatten the structure of
the table to perform inserts, updates, or deletes.

Change capture

Flatten the structure of a table to capture changes to array data.

You cannot map record array definitions for change capture. An ALTER TABLE
statement on a table containing array structures mapped as arrays will fail, because
change capture must send one notification per change. The mapping must return
exactly one row per physical record to provide an accurate notification to
consuming applications.

Array definition examples:

Use these examples to help you understand COBOL and PL/I array definitions, so
that you can map your tables and views correctly.

When you create relational tables or views on your data server, Classic Data
Architect uses data definitions that are contained in COBOL copybooks or PL/I
include files to generate data definition language (DDL). You then run the DDL on
your data server to create user tables in the metadata catalogs.

COBOL examples

Example: COBOL definition of a fixed-length array.

The DEPENDENTS-ARRAY clause defines an array structure of four fields that has
a fixed length and repeats exactly 20 times. You can use the NULL-IS parameter in
a CREATE TABLE or CREATE VIEW statement to specify a null value for empty
array instances.
01 EMPLOYEE-RECORD.

05 EMP-LAST-NAME PIC X(20).
05 EMP-FIRST-NAME PIC X(20).
05 EMPID PIC 9(9).

....
05 DEPENDENTS-ARRAY OCCURS 20 TIMES

10 DEP-ID PIC 9(9).

Chapter 3. Configuring 123

10 DEP-NAME PIC X(20).
10 DEP-DOB PIC 9(6).
10 DEP-RELATIONSHIP-TO-EMPL PIC X.

Example: COBOL definition of a variable-length array.

The array can appear 1 to 20 times, depending on the value of the variable
NUMBER-OF-DEPENDENTS specified in the DEPENDING ON clause.
01 EMPLOYEE-RECORD.

05 EMP-LAST-NAME PIC X(20).
05 EMP-FIRST-NAME PIC X(20).
05 EMP-ID PIC 9(9).

....
05 NUMBER-OF-DEPENDENTS PIC 9(4) COMP.
05 DEPENDENTS-ARRAY OCCURS 1 TO 20 TIMES

DEPENDING ON NUMBER-OF-DEPENDENTS.
10 DEP-SSN PIC 9(9).
10 DEP-NAME PIC X(20).
10 DEP-DOB PIC 9(6).
10 DEP-GENDER PIC X.

Example: CREATE TABLE statement based on the COBOL copybook.

The DDL maps a subset of the data items:
v Employee ID
v Number of dependents
v Dependent ID
v Dependent name
CREATE TABLE CAC.EMPL

(
EMP_ID SOURCE DEFINITION
DATAMAP OFFSET 40 LENGTH 9 DATATYPE C
USE AS CHAR(9),
NUMBER_OF_DEPENDENTS SOURCE DEFINITION
DATAMAP OFFSET 49 LENGTH 2 DATATYPE H
USE AS SMALLINT,

BEGINLEVEL 1 OFFSET 51 LENGTH 36 OCCURS 20
DEPENDING ON COLUMN NUMBER_OF_DEPENDENTS,
DEP_ID SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 9 DATATYPE C
USE AS CHAR(9),
DEP_NAME SOURCE DEFINITION
DATAMAP OFFSET 9 LENGTH 20 DATATYPE C
USE AS CHAR(20),

ENDLEVEL 1
)

PL/I samples

Example: A PL/I include file that describes an employee record.

The DIMENSION (DIM) attribute defines a fixed-length array structure that
repeats exactly 20 times. You can use the NULL-IS parameter in a CREATE TABLE
or CREATE VIEW statement to specify a null value for empty array instances.
DCL 1 EMPLOYEE_RECORD BASED,

5 EMP_LAST_NAME CHAR(20),
5 EMP_FIRST_NAME CHAR(20),
5 EMPID PIC ’(9)9’,

....
5 DEPENDENTS_ARRAY DIM(20)

124 Guide and Reference

10 DEP_ID PIC ’(9)9’,
10 DEP_NAME CHAR(20),
10 DEP_DOB PIC ’(6)9’,
10 DEP_RELATIONSHIP_TO_EMPL CHAR(1);

Example: A PL/I include file that defines a variable-length array.

The PL/I DIM attribute specifies that the number of dependents determines the
number of array instances. The array can appear 1 to 20 times, depending on the
value of the variable NUMBER_OF_DEPENDENTS specified in the REFER
attribute.
DCL 1 EMPLOYEE_RECORD BASED,

5 EMP_LAST_NAME CHAR(20),
5 EMP_FIRST_NAME CHAR(20),
5 EMPID PIC ’(9)9’,

....
5 NUMBER_OF_DEPENDENTS BIN FIXED(15),
5 DEPENDENTS_ARRAY DIM(N1 REFER(NUMBER_OF_DEPENDENTS)),

10 DEP_ID PIC ’(9)9’,
10 DEP_NAME CHAR(20),
10 DEP_DOB PIC ’(6)9’,
10 DEP_RELATIONSHIP_TO_EMPL CHAR(1);

Example: CREATE TABLE statement based on a PL/I include file.

The DDL maps a subset of the data items:
v Employee ID
v Number of dependents
v Dependent ID
v Dependent name

The data server calculates the number of array instances automatically when you
run the DDL on the data server to create the table. Nevertheless, restrictions on
mapping columns that appear in the structure after variable-length arrays still
apply.
CREATE TABLE "AA"."EMPLOYEE_RECORD" DBTYPE SEQUENTIAL
DS "D"
(

"EMPID" SOURCE DEFINITION
DATAMAP OFFSET 40 LENGTH 9
DATATYPE C
USE AS CHAR(9),
"NUMBER_OF_DEPENDENTS" SOURCE DEFINITION
DATAMAP OFFSET 49 LENGTH 2
DATATYPE H
USE AS SMALLINT,
BEGINLEVEL 1 OFFSET 51 LENGTH 0
OCCURS DEPENDING ON COLUMN "NUMBER_OF_DEPENDENTS",
"DEP_ID" SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 9
DATATYPE C
USE AS CHAR(9),
"DEP_NAME" SOURCE DEFINITION
DATAMAP OFFSET 9 LENGTH 20
DATATYPE C
USE AS CHAR(20),
ENDLEVEL 1);

Chapter 3. Configuring 125

Creating views on existing tables
You can create a view on a table that already exists in a data design project, with
the SQL builder, with the SQL editor, or with the Properties view.

Creating views on existing tables with the SQL builder
To create a view on a table that already exists either only in your project or also in
a metadata catalog, you can use the SQL builder, a graphical utility that builds the
SELECT statement for the view for you. After you create the SELECT statement,
you can add the view to a schema in your project.

Before you begin

Restrictions

If you are creating a view for change capture, these restrictions apply:
v The view cannot reference more than one table. This includes tables in the

FROM clause or the WHERE clause as in the case of sub-selects.
v The view cannot reference another view.
v The view must reference all of the columns in the base table.
v The base table must not map to record arrays.

Procedure
1. In the Data Project Explorer, expand the physical data model in which you are

working. Expand the database in which you are working. Right-click the SQL
Statements folder and select New SQL Statement.

2. In the New SQL Statement window, follow these steps:
a. Ensure that SELECT is selected in the Statement template field.
b. Give the statement a descriptive name.
c. Ensure that the SQL builder radio button is selected.
d. Click OK to open the SQL builder.

The title that appears for the SQL builder is the name that you gave to the
SELECT statement. For example, if your SELECT statement is named TEST,
the title for the SQL builder is TEST.

3. In the SQL builder, add the tables on which to base the SELECT statement for
your view. You can add a table in one of two ways:
v Right-click the middle section of the SQL builder and select Add Table. In

the Add Table window, select a table to add to the SQL builder and click
OK.

v Left-click one of the tables in the schema in which you are creating the view
and drag the table to the middle section of the SQL builder.

4. Build the SELECT statement for the view. For help building a SELECT
statement, press F1 while in the SQL builder and follow the link to the online
help for the SQL builder.

5. Optional: Test the SELECT statement. The tables that are referenced by the view
must already exist on the data server. To test the SELECT statement, right-click
the statement and select Run SQL. Look in the Data Output view to see
whether the statement ran successfully.

6. In the Data Explorer view, generate and name the view::
a. In the SQL Statements folder of your physical data model, right-click the

SELECT statement and select Generate > View. The view appears in the
same schema as the tables that it references.

126 Guide and Reference

b. Click the name of the view once, pause, then click it again to highlight the
name. Give the view the name that you want.

7. Select the view and use the Privileges page of the Properties view to grant
privileges on the view.

8. Optional: Generate the DDL for the view. Right-click the view and select
Generate DDL to open the Generate DDL wizard. With this wizard, you can
generate the SQL DDL to define the view, and you can choose to run the DDL
on a data server so that the view is created in the metadata catalog for that
data server. You can also edit the generated DDL before you run it.
After you run the DDL, the view appears on the data server in the Data Source
Explorer. To see the view, expand the data server and then expand Schemas >
the schema of the view > Views.
If you want to generate and run the DDL for more than one object at a time,
you can right-click a schema and select Generate DDL. The Generate DDL
wizard will generate the DDL for all of the objects in the schema.

9. Optional: If you created the view on the data server, run a test query on the
view.
a. In the Data Source Explorer, right-click the view and select Data > Sample

Contents.
b. Look in the Data Output view to see the results of the test query.

Creating views on existing tables with the SQL editor
To create a view on a table that already exists either only in your project or also on
in a metadata catalog, you can use the SQL editor, a text editor that lets you write
the SELECT statement for the view. After you create the SELECT statement, you
can add the view to a schema in your project.

Before you begin

Restrictions

If you are creating a view for change capture, these restrictions apply:
v The view cannot reference more than one table. This includes tables in the

FROM clause or the WHERE clause as in the case of sub-selects.
v The view cannot reference another view.
v The view must reference all of the columns in the base table.
v The base table must not map to record arrays.

Procedure
1. In the Data Project Explorer, expand the physical data model in which you are

working. Expand the database in which you are working. Right-click the SQL
Statements folder and select New SQL Statement.

2. In the New SQL Statement window, follow these steps:
a. Ensure that SELECT is selected in the Statement template field.
b. Give the statement a descriptive name.
c. Ensure that the SQL editor radio button is selected.
d. Click OK to open the SQL editor.

3. Write the SELECT statement for the view.

Chapter 3. Configuring 127

4. Optional: Test the SELECT statement. The tables that are referenced by the view
must already exist on the data server. To test the SELECT statement, right-click
the statement and select Run SQL. Look in the Data Output view to see
whether the statement ran successfully.

5. In the Data Explorer view generate and name the view:
a. In the SQL Statements folder of your physical data model, right-click the

SELECT statement and select Generate > View. The view appears in the
same schema as the tables that it references.

b. Click the name of the view, pause, then click again to highlight the name.
Give the view the name that you want.

6. Select the view and use the Privileges page of the Properties view to grant
privileges on the view.

7. Optional: Generate the DDL for the view. Right-click the view and select
Generate DDL to open the Generate DDL wizard. With this wizard, you can
generate the SQL DDL to define the view, and you can choose to run the DDL
on a data server so that the view is created in the metadata catalog for that
data server. You can also edit the generated DDL before you run it.
After you run the DDL, the view appears on the data server in the Data Source
Explorer. To see the view, expand the data server and then expand Schemas >
the schema of the view > Views.
If you want to generate and run the DDL for more than one object at a time,
you can right-click a schema and select Generate DDL. The Generate DDL
wizard will generate the DDL for all of the objects in the schema.

8. Optional: If you created the view on the data server, run a test query on the
view.
a. In the Data Source Explorer, right-click the view and select Data > Sample

Contents.
b. Look in the Data Output view to see the results of the test query.

Creating views on existing tables with the Properties view
To create a view on a table that already exists either only in your project or also on
in a metadata catalog, you can create an empty view in your project and then use
the Properties view to create the SELECT statement.

Before you begin

Restrictions

If you are creating a view for change capture, these restrictions apply:
v The view cannot reference more than one table. This includes tables in the

FROM clause or the WHERE clause as in the case of sub-selects.
v The view cannot reference another view.
v The view must reference all of the columns in the base table.
v The base table must not map to record arrays.

Procedure
1. In the Data Project Explorer, expand the physical data model in which you are

working. Expand the database in which you are working. Right-click the
schema in which you want to create the view and select Add Classic Object >
View. In the Data Project Explorer, a view is created under the schema.

2. Name the view.

128 Guide and Reference

3. Select the view, and on the SQL page of the Properties view, type the SELECT
statement.

4. On the Privileges page of the Properties view, grant privileges on the view.
5. Optional: Generate the DDL for the view. Right-click the view and select

Generate DDL to open the Generate DDL wizard. With this wizard, you can
generate the SQL DDL to define the view, and you can choose to run the DDL
on a data server so that the view is created in the metadata catalog for that
data server. You can also edit the generated DDL before you run it.
After you run the DDL, the view appears on the data server in the Data Source
Explorer. To see the view, expand the data server and then expand Schemas >
the schema of the view > Views.
If you want to generate and run the DDL for more than one object at a time,
you can right-click a schema and select Generate DDL. The Generate DDL
wizard will generate the DDL for all of the objects in the schema.

6. Optional: If you created the view on the data server, run a test query on the
view.
a. In the Data Source Explorer, right-click the view and select Data > Sample

Contents.
b. Look in the Data Output view to see the results of the test query.

Viewing and modifying objects for Classic federation
You can view and modify the properties of the different objects that you create in
Classic Data Architect for Classic federation. You can also change the selection of
columns in tables and change the path of records for CA-IDMS tables.

View and modify the properties of tables, columns, indexes, views, and stored
procedures

When you click on an object in the Data Project Explorer, pages that
describe the attributes of the object appear in the Properties view.

Change the selection of columns in tables
For all tables, use the Change Column Selection wizard to replace columns
that exist in a table or to append new columns to a table.

To open this wizard, right-click a table and select Modify Table > Update
Columns.

Change the path of records and sets in a CA-IDMS table and change the name
of the table

Open the Modify CA-IDMS Table wizard by right-clicking a CA-IDMS
table and selecting Modify Table > Modify Table.

Column properties
Column properties are shown in the Properties view. You can use the Properties
view only to view the properties of a column. You cannot modify any of the
properties.

The Properties view for a column contains the following information.

General page
Displays the name of the column.

Type page
Displays the SQL data type that is assigned to the column.

Chapter 3. Configuring 129

Classic Column Info
Displays the SQL data type that is assigned to the column and the position
and length of the column.

Classic Array Info
If the column participates in an array, this page displays information about
all arrays the column belongs to.

Documentation
Lets you add comments to a column.

Database properties
Use the Properties view to view or modify information about the properties of a
database in a data design project.

You can view settings in the Data Source Explorer and modify them in a physical
data model in the Data Project Explorer. Select the icon for the database and
properties that you want to manage.

General page

This page displays the name of the database, as well as the type of the database
and its version. The type is Classic Integration.

Privileges page

This page lists the role-based privileges that apply to different grantees. The
following information is provided for each grantee:

Type The catalog database object to which you are applying security, such as
SYSTEM or $VSAM.

Privilege
The ID associated with the authority level that you are granting, such as
DISPLAY, SYSADM, or DBADM.

Grantable
If checked, indicates that the grantee can grant the privilege to others.

Grantor
The ID of the user or role that grants the privilege for the specified type.

Revoke
If checked, indicates that the grantee can revoke the privilege from others.

Documentation page

Optionally, this page provides additional information about the database.

Annotation page

This page, which is found only in the Data Project Explorer, enables you to add
property and value pairs.

Index properties
Index properties are shown in the Properties view. You can use the Properties view
to view or modify the properties of an index.

130 Guide and Reference

If the index already exists in a metadata catalog on a data server and you want
any changes that you make to the index to be reflected in the metadata catalog,
you must follow these steps:
1. Drop the index from the metadata catalog. You can generate the DDL to drop

the index by right-clicking the index and selecting Generate DDL. In the
Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.
3. Make your changes to the index.
4. Generate the DDL to create the index. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.
5. Run the DDL on the data server.

The Properties view for an index contains the following information:

General page
Allows you to change the name of the index.

If the index is an alternate index for a CICS VSAM table, the FCT name
field displays the name of the CICS table that contains the information
used by CICS file control for accessing the VSAM data set.

In the index is an alternate index for a VSAM table, these controls appear:

DS Specifies that the information from which to create the index is
contained in a data set.

DD Specifies that the information from which to create the index is
contained in a data set with a DD name.

Name Type the name of the data set or DD card in which the information
for the index is located.

Details page
Lists the columns that are in the index. You can modify this list.

PCB selection page (for IMS only)
Displays the method that Classic federation will use to select PCBs for
accessing the index.

Documentation
Lets you add comments to the index.

Stored procedure properties
Stored procedure properties are shown in the Properties view. You can use the
Properties view to modify the properties of a stored procedure.

If the stored procedure already exists in a metadata catalog on a data server and
you want the changes that you make to the stored procedure to be reflected in the
metadata catalog, you must follow these steps:
1. Drop the stored procedure from the metadata catalog. You can generate the

DDL to drop the stored procedure by right-clicking the stored procedure and
selecting Generate DDL. In the Generate DDL wizard, select the DROP
statements check box.

2. Run the generated DDL on the data server.
3. Make your changes to the stored procedure.
4. Generate the DDL to create the stored procedure. You can generate this DDL by

opening the Generate DDL wizard and selecting the CREATE statements check
box.

Chapter 3. Configuring 131

5. Run the DDL on the data server.

The Properties view for a stored procedure contains the following information:

General page

Property Description

Name Type the name of the stored procedure. The name cannot be a
single asterisk, even if you specify it as a delimited identifier
("*").

The name is implicitly or explicitly qualified by a schema. The
name, including the implicit or explicit qualifier, must not
identify an existing stored procedure at the current server.

v The unqualified form of a procedure name is an SQL
identifier. The unqualified name is implicitly qualified with a
schema name according to the following rules:

If the statement is embedded in a program, the schema name
is the authorization ID in the QUALIFIER bind option when
the plan or package was created or last rebound. If
QUALIFIER was not specified, the schema name is the owner
of the plan or package.

If the statement is dynamically prepared, the schema name is
the SQL authorization ID in the CURRENT SQLID special
register.

v The qualified form of the procedure name is an SQL identifier
(the schema name) followed by a period and an SQL
identifier. The schema name can be 'SYSIBM' or 'SYSPROC'. It
can also be 'SYSTOOLS' if you have SYSADM or SYSCTRL
privileges. Otherwise, the schema name must not begin with
'SYS' unless the schema name is 'SYSADM'.

The owner of the procedure is determined by how the CREATE
PROCEDURE statement is invoked:

v If the statement is embedded in a program, the owner is the
authorization ID of the owner of the plan or package.

v If the statement is dynamically prepared, the owner is the
SQL authorization ID in the CURRENT SQLID special
register.

Label Type a label. This label is displayed in visual diagrams, if you
use visual diagrams.

Result set Specifies the maximum number of query result sets that the
stored procedure can return. The default is 0, which indicates
that there are no result sets. The value must be 0 or 1.

Language Specify the language interface convention to which the
procedure body is written:

Assembler
indicates that the stored procedure is written in
Assembler.

C indicates that the stored procedure is written in C or
C++.

COBOL
indicates that the stored procedure is written in
COBOL.

Parameter style Specify the convention to use for passing parameters to and
returning the value from procedures.

132 Guide and Reference

Property Description

External name Type the name of the load module that exists on the data server
for loading the stored procedure.

Deterministic Specifies whether the stored procedure is deterministic or
nondeterministic.

Parameters page
Shows the parameters for the stored procedure. You can add or remove
parameters.

Source page
This page is not supported by Classic Data Architect.

Privileges page
Shows the privileges for the stored procedure. You can grant or revoke the
EXECUTE privilege on the stored procedure.

Documentation
Lets you add comments to a stored procedure.

Table properties
Table properties are shown in the Properties view within Classic Data Architect.
You can use the Properties view to modify the properties of a table.

If the table already exists in a metadata catalog on a data server and you want any
changes that you make to the table to be reflected in the metadata catalog, you
must follow these steps:
1. Drop the table from the metadata catalog. You can generate the DDL to drop

the table by right-clicking the table and selecting Generate DDL. In the
Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.
3. Make your changes to the table.
4. Generate the DDL to create the table. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.
5. Run the DDL on the data server.

The Properties view for a table contains the following information:
v General page
v Columns page
v Source information page
v Source columns page
v Path information page
v Source elements page
v Source fields page
v Segments page
v PCB selection page
v Privileges page
v Documentation page

General page

Chapter 3. Configuring 133

Property Description

Name Type the name of the table.

Schema Displays the schema in the two-part name for the table.

Source DBMS Displays the type of DBMS in which the source data is located.

Change capture (For all data sources except CA-Datacom and DB2 for z/OS)

Changes
Select this value if you want to use the table for change
capture.

None Select this value if you do not want to use the table for change
capture.

XM URL For a native VSAM table that is being used for change capture, the
name of the data space and the name of the cross-memory (XM) queue
to use. The change-capture agent that is capturing changes to the native
VSAM table writes change data to this XM queue.

The format of the XM URL is XM1/name_of_data_space/name_of_queue

Columns page
Lists the columns of the table.

Source information page
The Source information page contains source information for:
v Adabas, Table 15
v CA-Datacom, Table 16
v CA-IDMS, Table 17 on page 135
v CICS VSAM, Table 18 on page 136
v DB2 for z/OS, Table 19 on page 137
v IMS, Table 20 on page 137
v sequential files and native VSAM data sets, Table 21 on page 138

Table 15. Source information for Adabas

Property Description

File DBID Optional: Type the identifier of the database in which the Adabas file is
stored. This Adabas file is either the file that is identified in the File
number field or the file that is referenced by the Predict view. The
default value is 0. The identifier must be between 1 and 65535.

View name Type the name of the Predict view that describes the contents of an
Adabas file that has fields that you want to map to columns. Classic
Data Architect retrieves the Adabas Field Description Table (FDT)
information for the Adabas file that is referenced by the view. If you
want Classic Data Architect to access an Adabas file's FDT directly, do
not provide a view name. Instead, provide the number of the Adabas
file in the File number field.

Table 16. Source information for CA-Datacom

Property Description

Table name Type an identifier of 1 to 32 characters for the CA-Datacom table that
the Classic table definition references. The name follows
CA-Datacom/DB entity naming conventions.

134 Guide and Reference

Table 16. Source information for CA-Datacom (continued)

Property Description

Status/Version Select or type the status and version of the CA-Datacom table that
contains the elements that you want to map to. The status and version
can contain explicit values of TEST, PROD, HIST, or a value that begins
with a T or H followed by a three digit number.

URT name Type the name of the User Requirements Table (URT) that is used to
access the CA-Datacom table that contains the elements that you want
to map to. The name must exist in a data set that is referenced by the
servers STEPLIB DD statement or reside in the link pack area. The
name follows z/OS load module naming conventions.

A URT must be provided on every request for service sent to
CA-Datacom. Every service request is validated against an open User
Requirements Table. This technique provides security (by restricting
access) and efficient allocation of CA-Datacom resources. When you
define your User Requirements Tables, consider the security
implications. You must decide whether you want to have one User
Requirements Table per CA-Datacom table that you map into the
metadata catalog or have only a few User Requirements Tables for all
CA-Datacom tables that you map into the metadata catalog. If you
define only a few User Requirements Tables, you will have more
relaxed security.

Table 17. Source information for CA-IDMS

Property Description

Subschema name Displays the name of the subschema that was obtained through a
remote connection to the CA-IDMS database or from the local
subschema file that you specified.

Schema name Displays the name of the schema that was obtained through a remote
connection to the CA-IDMS database or from the local schema file that
you specified.

Schema version Type a valid 4-digit integer between 0 and 9999 that, together with the
schema name, uniquely identifies a CA-IDMS schema. The schema
version follows CA-IDMS schema version naming conventions.

Data dictionary Type an identifier of 1 to 8 characters for the CA-IDMS database for the
dictionary that contains the schema and subschema definitions. The
data server binds to this dictionary to gather information from the
schema and subschema when the data server creates the logical table.
The identifier follows CA-IDMS database naming conventions.

Data database Type an identifier of 1 to 8 characters for the CA-IDMS database that
contains the user data that the data server will access at runtime.

Access load
module

Type an identifier of 1 to 8 characters for the CA-IDMS batch access
module to be used to communicate with the CA-IDMS central version
that hosts the user data. The CA-IDMS identifier follows z/OS load
module naming conventions.

Chapter 3. Configuring 135

Table 17. Source information for CA-IDMS (continued)

Property Description

VSAM
information RRDS Specifies that a record in the subschema has a mode of VSAM

and is not a member of a VSAM index set.

KSDS Specifies that a record in the subschema either has a mode of
VSAM and is a member of a VSAM key-sequenced data set, or
has a mode of VSAM CALC.

ESDS Specifies that a record in the subschema either has a mode of
VSAM and is a member of a VSAM entry-sequenced data set,
or has a mode of VSAM CALC.

Table 18. Source information for CICS VSAM

Property Description

FCT name Type the name of the CICS file name entry for the VSAM data set.

Local APPLID Type the name, or VTAM APPLID, that identifies the application
program that the data server uses to communicate with its partner
CICS transaction. The LUNAME follows VTAM naming conventions,
and has a maximum of eight characters.

You specify the APPLID in the ACBNAME parameter of a macro
definition that the VTAM administrator uses in the VTAM
configuration. See the sample definitions in SCACSAMP member
CACCAPPL. The sample LUNAME values are CACCICS1 and
CACCICS2, and you can modify them.

The LUNAME must be active on the image where the data server is
running. Issue the following operator command to determine if the
LUNAME is active:

D NET,ID=<APPLID>

You must also define the LUNAME to CICS in the NETNAME
parameter of a CONNECTION definition.

CICS APPLID Type the name of the VTAM APPLID for the CICS region to which you
are connecting. The CICS APPLID must match the value of the APPLID
parameter in the system initialization table (DFHSIT macro) of the CICS
subsystem that hosts the target VSAM data sets. This identifier follows
VTAM naming conventions, and has a maximum length of
eight-characters.

Logmode Type the name of the VTAM logon mode table that controls session
parameters for the VTAM conversation between the local LU and the
CICS LU. The maximum length of this identifier is eight characters. The
logon mode table is a z/OS load module that is accessible to VTAM.
See the sample definition in SCACSAMP member CACCMODE.

Transaction ID Type the name of the partner CICS transaction that the data server uses
to validate the relational tables that you create to map the data. The
maximum length of this identifier is four characters. The CICS
transaction ID must match the value of the TRANSACTION parameter
in the transaction definition. See the sample transaction definition in
SCACSAMP member CACCDEF. The sample CICS transaction ID is
EXV1, and you can modify it.

136 Guide and Reference

Table 18. Source information for CICS VSAM (continued)

Property Description

Record exit Optional: Use the exit name and length parameters to pass control to a
record exit. You can use record exits only for Classic federation.

Type a short native identifier for the name of a record processing exit to
invoke to decompress sequential records when the file is accessed. The
exit must either exist in a data set that is referenced by the server's
STEPLIB DD statement or reside in the link pack area. The exit name
follows z/OS load module naming conventions.

Maximum length Type the maximum length (in bytes) of the buffer that is needed by the
record exit to decompress a record.

Network name Type the name of the network that hosts the CICS subsystem where
you access VSAM data sets. The network name follows VTAM naming
conventions, and has a maximum length of eight characters. The
network name must match the value in the NETWORK VTAM macro
definition on the local image, which identifies the remote SNA network.

Table 19. Source information for DB2 for z/OS

Property Description

Creator Displays the schema of the table.

Table Displays the name of the table.

Subsystem ID Displays the ID of the DB2 subsystem in which the table is located.

Plan Displays the name of the DB2 application plan.

Accessing DB2 data requires binding an application plan for use by the
DB2 Call Attach Facility (CAF) service. You can give the plan whatever
name you want based on site-installation standards.

Type Displays the type of object that the new table is mapped to.

When you import a DB2 table into Classic Data Architect, you are
creating a table that you can create in a metadata catalog. This field
shows that the table is mapped to a DB2 table.

Table 20. Source information for IMS

Property Description

DBD name Displays the name of the IMS DBD (database definition) that the table
references.

DBD type Displays the name of the IMS DBD (database definition) that the table
references.

Leaf segment Displays the name of the leaf segment.

Index root Optional: Type a name for either of these two objects:

v The physical or logical root segment of the IMS database that is
identified by the DBD.

v The perceived root segment of the IMS database of a secondary data
structure that is created by a secondary index definition that exists in
the DBD.

The default index root is the root segment of the physical or logical
database that is referenced by the DBD.

Chapter 3. Configuring 137

Table 20. Source information for IMS (continued)

Property Description

IMS subsystem Optional: Type the 4-character name for the IMS subsystem that is used
by the ODBA interface to access the IMS database that is identified by
the DBD. The IMS subsystem ID is used only when the server is
operating in an RRS two-phase commit environment. The IMS
subsystem ID follows IMS naming conventions for subsystem
identifiers.

The IMS subsystem ID must correspond to the value that is specified on
the IMSID parameter on the IMSCTRL macro in the system definition of
the target online IMS subsystem that is used to access or update the
IMS data.

The IMS subsystem ID value is ignored for other forms of IMS data
access (DRA or BMP/DBB/DLI) and when the table mapping is used
for change capture.

PSB name Optional: Type the name of the PSB that is scheduled to access the IMS
database that is identified by the DBD. This name is used if you are
using a DRA or ODBA interface to access IMS data. The standard PSB
corresponds to a PSB definition that is defined to the IMS online system
that is being accessed. The PSB also corresponds to a PDS member
under the same name in the active ACB library of the source IMS
subsystem. The standard PSB name follows z/OS load module naming
conventions.

Join PSB name Optional: Type the name of the PSB that is scheduled to access the IMS
database that is identified by the DBD. The name is used if you are
using a DRA or ODBA interface to access IMS data. The JOIN PSB
corresponds to a PSB definition that is defined to the IMS online system
that is being accessed. The PSB also corresponds to a PDS member
under the same name in the active ACB library of the target IMS
subsystem. The JOIN PSB name follows z/OS load module naming
conventions. The JOIN PSB is scheduled when an SQL SELECT
statement is executed that contains a JOIN predicate that references
multiple IMS tables and this is the first table referenced in the JOIN.

Table 21. Source information for sequential files and native VSAM data sets

Property Description

DS Specifies that the information from which to create the table is
contained in a data set.

DD Specifies that the information from which to create the table is
contained in a data set with a DD name.

Name Type the name of the data set or DD card in which the information for
the table is located.

Record exit Type the name of a record processing exit that is invoked to
decompress sequential records when the file is accessed. The exit must
exist in a data set that is referenced by the servers STEPLIB DD
statement or reside in the link pack area. The exit name follows z/OS
load module naming conventions.

Maximum length Type the maximum length (in bytes) of the buffer that is needed by the
record exit to decompress a record.

Source columns page
Lists the columns in the table.

138 Guide and Reference

Path information page (for CA-IDMS only)
Lists the records and sets with elements that are mapped to columns in the
table.

Source elements page (for CA-IDMS only)
Lists the elements that are mapped to columns in the table.

Source fields page (for IMS only)
Lists the fields that are mapped to columns in the table.

Segments page (for IMS only)
Lists the segments that contain fields that are mapped to columns in the
table.

PCB selection page (for IMS only)
Displays the method that Classic federation will use to select PCBs for
accessing the table.

Privileges page
Lists that privileges that are granted on the table. Click the add button (

) to add privileges. Click the delete button () to remove
privileges.

Documentation page
Lets you add comments to the table.

View properties
View properties are shown in the Properties view. You can use the Properties view
to display and modify the properties of a view.

If the view already exists in a metadata catalog on a data server and you want any
changes that you make to the view to be reflected in the metadata catalog, you
must follow these steps:
1. Drop the view from the metadata catalog. You can generate the DDL to drop

the view by right-clicking the view and selecting Generate DDL. In the
Generate DDL wizard, select the DROP statements check box.

2. Run the generated DDL on the data server.
3. Make your changes to the view.
4. Generate the DDL to create the view. You can generate this DDL by opening

the Generate DDL wizard and selecting the CREATE statements check box.
5. Run the DDL on the data server.

The Properties view for a view contains the following information:

General page

Name Displays the name of the view in an editable field.

Schema
Displays the schema that contains the view.

Change capture
Sets the DATA CAPTURE flag on the view. This field is available
only if the view meets all three of these criteria:
v The view references only one table.
v The view references all of the columns in the base table.
v The view references an Adabas, CA-IDMS, CICS VSAM, IMS, or

native VSAM table.

Chapter 3. Configuring 139

CHANGES
Specifies to capture changes that are made to the data that
the view references.

NONE
Specifies not to capture changes that are made to the data
that the view references.

Columns page
Lists the columns that are referenced in the view.

SQL page
Displays the SELECT statement for the view in an editable field. Click the
Validate button to check the statement for syntax errors.

Privileges page
Lists that privileges that are granted on the view. Click the add button (

) to add privileges. Click the delete button () to remove
privileges.

Documentation page
Lets you add comments to the view.

Adding or replacing columns in tables based on data definition
files
Use the Append Column wizard to add or replace columns in user tables that are
based on data definition files, such as COBOL copybooks or PL/I include files.

Before you begin

The data definition file that contains the columns that you want to use must be in
the appropriate folder in your project, for example, the COBOL Copybooks folder.

About this task

You can use columns from the data definition file on which the table is based, or
you can use columns from a different file.

Procedure
1. Right-click the table and select Modify Table > Update Columns.
2. On page one of the wizard, select the data definition file that contains the

columns that you want to use.
If the table is for an IMS data source, select the segment for the columns that
you either want to add columns to or that you want to replace with different
columns.

3. On page two of the wizard, select the data that you want to map to new
columns.

4. On the summary page, verify that the table contains the columns that you
want. Click Finish to generate the updated model for the table.

Modifying the selection of records in tables for CA-IDMS
databases
Use the Modify CA-IDMS Table wizard to change the selection of records in an
existing table before the DDL for the table is run on a data server.

140 Guide and Reference

Before you begin

The subschema and schema reports that you select must be identical to the reports
that you used when you created the table. However, the names of the files that
contain those reports can be different from the names of the files that you
originally used.

You can provide the information on which to base the logical table in one of two
ways:
v You can import schema and subschema files that were punched from the

CA-IDMS dictionary and transferred via FTP to your workstation. These files
must be located in the CA-IDMS References folder of your data project.

v You can tell Classic Data Architect to obtain the schema information that is
associated with all records, sets, and areas that are listed in the required
subschema directly from the CA-IDMS dictionary.

You produce CA-IDMS schema and subschema reports by running the CA-IDMS
schema and subschema compilers and capturing the punched output into a z/OS
data set. Sample JCL that you can use to punch these reports is in member
CACIDPCH of the SAMPLIB data set.

Procedure
1. Open the Modify CA-IDMS Table wizard by right-clicking the logical table that

you want to modify and selecting Modify CA-IDMS table.
2. In the wizard, modify the selection of records:

a. On the first page, verify that Classic Data Architect is getting the schema
and subschema information from the correct location. If you are using local
files that contain the subschema and schema reports and you want to use
different files, browse your CA-IDMS References folder for the new files.
The subschema and schema reports in those files must be identical to the
reports that you used when you created the table.

b. On the second page, you can modify the information that helps the data
server locate the data structures in your database, and you can change the
way that the table will be used.

c. On the third page, you can rename the table. You can also modify the path
of up to ten records and sets from which you want to choose the elements
that will constitute the columns in your table.

d. Complete a separate wizard page for every record and set that you include
in the path to select the elements that you want to map to columns in the
table.

e. On the summary page, verify that the table contains the columns that you
want. Click Finish to generate the model for the table.

Populating metadata catalogs
Classic Data Architect can generate the SQL DDL statements that describe the
tables, views, stored procedures, and other objects that you create.

After the DDL statements are generated, you can run them from Classic Data
Architect, or you can export them to the z/OS system where your data server is
located and run the DDL using the metadata utility.

Chapter 3. Configuring 141

Generating DDL
When you finish designing your objects, you generate the DDL that you use to
promote those objects to a metadata catalog on a data server.

Before you begin

If you choose to run the DDL after it is generated, you must first do the following
tasks:
v Open a connection to a data server.
v Create a set of metadata catalogs on the data server.
v Set up connectivity from the data server to your data sources.

About this task

When the DDL is generated, you can choose to run it on a data server. You can
also choose to open the DDL in an editor.

If you do not choose to run the DDL immediately after it is generated, you can run
it later by opening the SQL Scripts folder, right-clicking the file with the DDL, and
selecting Run SQL.

Procedure
1. Open the Generate DDL wizard in either of these two ways:

v Right-click the schema in which the objects are located and select Generate
DDL. You can choose which objects in the schema you want to generate
DDL for.

v Right-click the object that you want to generate DDL for and select Generate
DDL.

2. Follow the pages of the wizard to make these selections:

Which DDL statements to generate
You can generate ALTER, COMMENT ON, CREATE, DROP, and
GRANT statements. You can also choose whether to use fully qualified
names and quoted identifiers.

Which objects to generate DDL for
The available objects depend on which object you right-clicked to open
the Generate DDL wizard.

Where to create the file, which statement terminator to use, whether to run
the DDL on a data server, and whether to open the DDL file for editing

The page on which you make these choices displays the DDL that will
be generated.

3. After reviewing your settings, click Finish.

Exporting SQL to remote z/OS hosts
The DDL that you generate for your tables, views, and stored procedures is saved
to the SQL Scripts folder of your project. You can export the files that contain those
scripts to the z/OS host where your data server is located.

Procedure
1. Open the Export SQL window by right-clicking the file that you want to export

and selecting Export SQL.
2. Provide the connectivity information for connecting to the remote z/OS host,

and provide the location in which you want to save the DDL scripts.

142 Guide and Reference

Results

Then, you can use the metadata utility to run the scripts and populate a metadata
catalog.

Configuring communications between data servers and clients
This section describes the communication configuration options and data server
configuration options that are required for cross-memory services, IBM WebSphere
MQ, and TCP/IP communications.

Communication between data servers and client applications
A data server can accept connections from both local and remote client
applications. Configuration parameters on the data server and on the client
provide for the connections.

The following parameters are required to configure a connection between a client
application and a data server:
v DATASOURCE configuration parameter

This parameter specifies two subparameters:
– Data source name: Identifies which query processor in the data server handles

requests for all client applications connecting to the query processor by means
of the information in the second subparameter. The data server master
configuration file must include a service definition for the query processor.
The service name specified for the query processor must match the data
source name.

– Communications compound address: Establishes a communications path to
the data server that contains the query processor to which the client connects.
The data server configuration must include a service definition for a
connection handler. This connection handler service must specify this
compound address in the COMMSTRING configuration parameter. A data
server configured in this way listens for connections on that address. A client
application then connects to that address and a communication session
results.

v The data server must have a query processor service of class QP or QPRR
defined.

v The data server must have a connection handler service of class INIT defined.

Configuring data servers to use Cross Memory to
communicate with local client applications

If a client application accesses a data server locally, the client application and the
data server have the option to communicate by means of Cross Memory. The
default communication method is TCP/IP.

Before you begin

You need to know the service names of the query processors that will handle the
queries issued by the client applications.

A client application and a data server can also communicate by means of TCP/IP.

Chapter 3. Configuring 143

Procedure
1. Update the definition for the connection handler service to change the

COMMSTRING parameter to use XM as the communications protocol. The
COMMSTRING parameter consists of the following information:
v Protocol identifier: The Cross Memory protocol identifier, XM1.
v Data space name: The name of the data space to use. The name can contain

up to four characters.
Each data space can support up to 400 concurrent client applications,
although in practice this number might be lower due to resource limitations.
To support a larger number of client applications on a data server, configure
multiple connection handler services, each with a different data space name.

v Queue: The name of the queue to use. The name can contain up to four
characters.

v Data space size: The size, in megabytes, of the cross-memory queue that uses
the data space.

Example:
SET,CONFIG,SERVICE=INIT, COMMSTRING=’XM1/CAC/CAC’

2. Update the DATASOURCE parameter for the client configuration to use XM as
the communications protocol. You can use the
USERHLQ.USERCONF(CACINIZ) member as an example. Change the
DATASOURCE parameter as follows to use the same XM definition used on
the connection handler COMMSTRING parameter:
DATASOURCE = CACSAMP XM1/CAC/CAC

3. Activate the connection by using one of the following methods:
v Stop and restart the data server.
v Stop and restart the connection handler service.

TCP/IP for communication between data servers and client
applications

TCP/IP communication requires that you define the IP address of the TCP/IP
communications stack that the data server is running on and specify a listen port
number, in addition to the TCP/IP protocol identifier TCP.

Multiple sessions are created on the specified port. The number of sessions carried
over the port is the number of concurrent users to be supported plus one for the
listen session that the connection handler uses to accept connections from remote
clients. If the TCP/IP implementation that you are using requires the specification
of the number of sessions that can be carried over a single port, you must ensure
that the proper number of sessions are defined. If you do not define the correct
number of sessions, client applications will not be able to connect to the data
server after the defined number of connections are active. A single TCP/IP
connection handler service can accept connections from 2048 concurrent users.

You specify the IP address and port number on the COMMSTRING parameter for
the definition of the connection handler service.

If you specify an incorrect IP address, the connection handler service fails during
initialization. If you specify a port number that is assigned to another application,
unpredictable results occur for both the data server and the application that is
using the port.

144 Guide and Reference

Configuring data servers to use TCP/IP to communicate with
client applications

You can configure the data server to support TCP/IP for communications with
local z/OS client applications or remote client applications.

Before you begin

You need to know the service names of the query processors that will handle the
queries issued by the client applications.

The port number or service name must not be in use by any other application, and
should be greater than 1024. The sample configuration members use port number
5001. If this port is assigned to another application, you need to change the sample
configuration members to reference the port number that your network
administrator assigned for Classic federation.

About this task

A z/OS system can support multiple TCP/IP stacks and multiple IP addresses. It
is important that you validate your selected IP address with your network
administrator.

The sample configuration members use the 0.0.0.0 IP address notation that informs
TCP/IP to resolve this address to the local host IP address where the data server is
running.

Procedure
1. Update the definition for the connection handler service to change the

COMMSTRING parameter to use TCP/IP as the communications protocol. The
COMMSTRING parameter consists of the following information:
v Protocol identifier: The TCP/IP protocol identifier.
v TCP. Host name: The IP address or hostname for the z/OS image on which

the data server is running.
v Port number: The port number to use. The name can contain up to four

characters. Example using Internet Protocol Version 4 (IPv4) :
SET,CONFIG,SERVICE=INIT,COMMSTRING=’TCP/0.0.0.0/9087’;

2. Update the DATASOURCE parameter for the client configuration to use
TCP/IP as the communications protocol. You can use the
USERHLQ.USERCONF(CACINIZ) member as an example. Change the
DATASOURCE parameter as follows to use the same TCP/IP definition used
on the connection handler COMMSTRING parameter:
DATASOURCE = CACSAMP TCP/0.0.0.0/9087

3. Activate the connection by using one of the following methods:
v Stop and restart the data server.
v Restart the TCP/IP connection handler service.

Configuring clients
This section contains procedures for configuring the Classic federation clients:
JDBC, ODBC, and CLI.

Chapter 3. Configuring 145

JDBC client
The JDBC client provides access to the data server from Java and Java-based tools.

The JDBC client is compliant with JDBC 3.0 and requires Java Virtual Machine,
Version 1.3 or later. The JDBC client is distributed as a JAR (Java archive) file.

The JDBC architecture consists of the following components:
v The JDBC application that performs processing and invokes JDBC methods to

submit SQL statements and retrieve results.
v A Type 4 JDBC driver that uses a proprietary protocol to communicate with the

server and process JDBC API calls. The JDBC driver processes JDBC method
invocations, submits data requests to a specific data source, and returns results
to the application.

Establishing connections from JDBC applications to data servers
Your JDBC applications can connect to data servers with TCP/IP.

Procedure
1. Load the driver class, com.ibm.cac.jdbc.Driver.

The following fragment of Java code loads the driver and its supporting
classes:
Class.forName("com.ibm.cac.jdbc.Driver");

2. Connect to the data server by using TCP/IP as the communication protocol in
the URL.
The name of the data source can be a minimum of 1 character and a maximum
of 18 characters. The DATASOURCE name corresponds to the query processor
service name. The service name is defined in the CACQP task entry for the
data server configuration. You can define one or more query processors in the
configuration file. The DATASOURCE name must correspond to the query
processor that the client connects to.
Complete the URL with the following information:
tcp/hostname or IP address/port number or name of service

hostname or IP address
The z/OS system that hosts the data server. This value with the port
number or service name identifies the data server that the JDBC client
connects to. If the z/OS system is registered with your network name
server, you can use the host name. Otherwise, use the IP_address.

port number or name of service
Supplies the host port number or service name of the data server. This
value with the host name or IP address identifies the data server to
which the JDBC client connects. If the data server is registered with a
network name server, you can use the data server name. Otherwise,
you must use the TCP port number, which is the decimal value of the
socket number.

If you try to connect to the data server by using IPv6, you might need to
provide a scope if you are using a link-local address. The scope is typically the
network interface name that you specify following the IPv6 address. The format
is ipv6 address%scope.

146 Guide and Reference

Example

The following fragment of Java code connects to a data server with the data source
name CACSAMP by using TCP/IP. The code returns a connection object that is
named CACConnection:
java.sql.Connection CACConnection =

java.sql.DriverManager.getConnection(
"jdbc:cac:CACSAMP:tcp/192.168.0.132/9087",
"userid",
"password");

The following example shows a URL for the JDBC driver that uses an IPv6
connection:
jdbc:cac:CACSAMP:tcp/fe80::xxxx:xxxx:xxxx:xxxx%eth0/9087

Batch operations, scrollable ResultSets, and SQL warnings with
JDBC
The JDBC client includes support for batch operations, scrollable ResultSets, and
SQL warnings in the JDBC 3.0 specification.

Batch operations

v For java.sql.Statement objects, an executeUpdate, executeQuery, or
execute(sql) method with an UPDATE, DELETE, or INSERT statement
causes the update to be run even when batch operations are pending.

v For java.sql.PreparedStatement objects, an executeUpdate, executeQuery,
or execute() method with an UPDATE, DELETE, or INSERT statement
causes the update to be run even when the batch operations are
pending. The parameter markers are set before the first addBatch
operation on the statement.

v The executeBatch() method returns an array of integers that indicate the
number of rows that are affected. The method stops, if there is an error
in execution of any of the statements, and returns only the number of
integers that are successfully executed. If a statement returns a ResultSet
object, the executeBatch method treats the object as a failure and returns
the array of integers up to that point.

Updatable, scrollable ResultSets

v The ResultSet.deleteRow(), ResultSet.updateRow(), and
ResultSet.insertRow() methods are supported, and their changes are
visible. The changes made by other methods are not visible to the
application after the ResultSet object is created.

v The ResultSet.getXXX() methods work after the values are updated when
an insertRow method is created.

v In the case of the updateRow method, the ResultSet.getXXX() methods
return the new values for the updatedRow method after a
ResultSet.updateXXX() method. Otherwise, the ResultSet.getXXX()
methods return the old values.

The createStatement, prepareStatement, and prepareCall statements are
affected by the scrollable ResultSets feature. The types and concurrencies
supported are as follows:
TYPE_FORWARD_ONLY
TYPE_SCROLL_INSENSITIVE
CONCUR_READ_ONLY
CONCUR_UPDATABLE

Chapter 3. Configuring 147

By default, these statements create a statement that creates a result set that
is TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

SQL warnings
The JDBC driver support for the java.sql.SQLException class supports
SQLWarnings. The SQLWarning objects are especially useful when you use
the JDBC driver to run DDL statements. The following methods can return
multiple SQLWarning objects:
v java.sql.Connection.getWarnings()
v java.sql.Statement.getWarnings()
v java.sql.ResultSet.getWarnings()

The SQLException class and methods return meaningful error messages,
with error substitution, that identify objects with errors more precisely.

ODBC clients
The Microsoft Open Database Connectivity (ODBC) interface allows applications to
use Structured Query Language (SQL) to access data in database management
systems. The ODBC clients provide access to data on servers from Windows,
UNIX, and Linux.

ODBC architecture consists of the following components:
v The ODBC-compliant application performs processing and calls the ODBC

functions to submit SQL statements and retrieve results.
v The driver manager loads drivers on behalf of an application.
v The driver processes ODBC function calls, submits SQL requests to a specific

data source, and returns results to the application.

The driver manager and the client appear to an application as one unit that
processes ODBC function calls.

Configuring ODBC data sources
ODBC data sources are registered and configured by using the Microsoft ODBC
Administrator. Configuration parameters that are unique to each data source are
maintained through this utility.

Before you begin

You must have the following information available when you add and configure
an ODBC data source:
v The data source name.
v TCP/IP information:

– The IP address or the host system where the server runs
– The port number that is assigned to the TCP/IP connection handler in the

service definition of the server

Before you configure the ODBC client, the Windows client must be set up for the
TCP/IP connection handler.

About this task

You can define many data sources on a single system. For example, a single IMS
system can have a data source called MARKETING_INFO and a data source called

148 Guide and Reference

CUSTOMER_INFO. Each data source name needs to provide a unique description
of the data.

Procedure
1. Open the ODBC Data Source Administrator notebook.

a. Select Start > Settings > Control Panel.
b. Double-click Administrative Tools.
c. Double-click Data Sources (ODBC).

2. On the User DSN page, click Add.
3. Select IBM WebSphere Classic ODBC Driver from the list.
4. Click Finish.
5. Select TCP/IP to use with the data source that you are configuring.

The ODBC Driver Setup notebook displays. In the setup notebook, you can
enter the values for the TCP/IP parameters needed for communication with the
data source. These parameters must match the values specified in the
configuration of the data source.
a. Optional: On the Code Pages page, enable client and server code pages. If

you select a bidirectional server and client code page, bidirectional layout
transformation is enabled. Set the configuration parameters for bidirectional
language support:
v SHAPING
v SYMMETRIC SWAPPING
v TEXT ORIENTATION
v TEXT PRESENTATION

If required, override the global converter settings at the data source level.
To override converter settings and bidirectional language options, use the
Advanced tab.

Configuring the ODBC driver on Windows
You can configure the ODBC driver by using the ODBC Administrator by selecting
Start > Programs > InfoSphere Classic Tools V11.1 > InfoSphere Classic ODBC
Administrator.

Configuring the ODBC driver on Linux and UNIX
You must use a configuration file to define ODBC data sources on Linux and
UNIX systems.

About this task

The configuration file resides in the following installation directories:
v For Linux: /opt/ibm/isClassic113/cli/lib/cac.ini
v For UNIX: /opt/IBM/isclassic113/cli/lib/cac.ini
v For the 64-bit version, in the 64-bit lib subdirectories. HP-UX only offers a 64-bit

driver in the default lib directory.

The following configuration example uses the Data Direct driver manager to access
a data source defined as CACSAMP on the host.

Procedure
1. Open the cac.ini file as shown in the following example.

Chapter 3. Configuring 149

* Sample configuration file *

* messages and codes catalog
NL CAT = /opt/IBM/isclassic113/cli/lib
NL = US English
* default datasource location
DEFLOC = CACSAMP
DATASOURCE = CACSAMP tcp/111.111.111.111/nnnn
* performance and memory parameters
FETCH BUFFER SIZE = 32000
MESSAGE POOL SIZE = 1000000

2. Edit the DATASOURCE configuration parameter. If the application
communicates with multiple data servers or with multiple data sources within
a data server, you must define a DATASOURCE configuration parameter for
each data server or data source that you want to access.
Optional: You can enable a DATASOURCE override by specifying the
following parameters:
DATASOURCE = <data source name> <communication protocol>/<ip address>/
<port number>/<server codepage>/<client codepage>/<text presentation value>/
<text orientation value>/<symmetric swapping value>/<shaping value>/

For example:
DATASOURCE = CACSAMPB tcp/111.111.111.112/1112 IBM-420/IBM-1256/VISUAL/RTL/ON/ON

3. Change the communication string for the DATASOURCE parameter to specify
the method to communicate with the data server. You can use TCP/IP from the
client to access the data server. For example, specify the following
DATASOURCE definition for TCP/IP communication:
DATASOURCE = sourcename tcp/hostname/portnumber

4. Optional: Define code page information with the CLIENT CODEPAGE and
SERVER CODEPAGE parameters. If you have data sources for which you want
to use different code pages, you can define the data sources in separate
configuration files. If you select a bidirectional server and client code page,
bidirectional layout transformation is enabled. For bidirectional client and
server code pages, you can set the configuration parameters for bidirectional
language support:
v SHAPING
v SYMMETRIC SWAPPING
v TEXT ORIENTATION
v TEXT PRESENTATION

5. Create an environment variable CAC_CONFIG and set it to point to the cac.ini
configuration file.

6. Create a library environment variable that includes the directories where the
shared libraries are installed. Specify one of the following library environment
variables:
v For AIX: LIBPATH
v For HP-UX: SHLIB_PATH
v For Linux: LD_LIBRARY_PATH
v For Solaris: LD_LIBRARY_PATH

7. Run the CLI application in this environment. For example, in AIX, run the
following export statement:
export CAC_CONFIG=/opt/IBM/isclassic113/cli/lib/cac.ini
export LIBPATH=/lib:/opt/IBM/isclassic113/cli/lib
program1

150 Guide and Reference

8. Edit the odbc.ini file to add a new data source for the UNIX, Linux and USS
client. The odbc.ini file is located in the CLI software directory for the
application where the driver manager resides. The data source name must
correspond to a query processor name defined on the data server and a
DATASOURCE name defined in the client configuration. For example:
[ODBC data sources]
CACSAMP=InfoSphere Classic Federation client
.
.
.
[CACSAMP]
client=/opt/IBM/isclassic113/cli/cacsqlcli.so

You can specify one of the following clients:
v AIX: cacsqlcli
v HP-UX: libcacsqlcli.sl
v Linux: libcacsqlcli.so
v Solaris: libcacsqlcli.so
You must add a data source definition for each data source that you want to
access.

CLI clients
InfoSphere Classic Federation Server for z/OS supports Call Level Interface (CLI)
clients for UNIX and Linux, native z/OS, and USS.

You can develop 32-bit and 64-bit CLI client applications.
v 32-bit CLI drivers are available on AIX, Linux, zLinux, and Solaris but not

available on HP-UX.
v 64-bit CLI drivers are available on AIX, Linux, zLinux, Solaris, and HP-UX.

You can use the following sample applications:
v clisamp for testing connectivity and SQL calls on the Windows, UNIX and Linux

operating systems
v CACSAMP for testing connectivity and SQL calls on z/OS and USS

The CLI clients communicate with a Classic data server by connecting to a
connection handler service that is defined to the data server. The connection
handler service routes client requests to query processor services. The query
processor services access the various Classic federation data sources. Each
connection handler service instance can service multiple client applications
concurrently.

The Classic client drivers are multithreaded. Multithreaded client applications can
spawn multiple concurrent connections to the Classic data server. Also, similar to
the connection handler, a query processor can serve multiple clients. The
connections are handled at the user level and each physical connection is
represented by a user in the Classic data server.

A query processor can serve multiple physical connections from one client
application or from multiple client applications. You can also configure a query
processor to only serve one user to avoid any interference.

The CLI architecture consists of the following components:
v The CLI-compliant application, which performs processing and calls the CLI

functions to submit SQL statements and retrieve results.

Chapter 3. Configuring 151

v CLI function calls, that submit SQL requests to a specific data source and return
results to the application.

You define a data source to identify the data that you want to access. The data
source name is equivalent to the query processor service name defined to the data
server. Defining a data source consists of defining the service name and
communication parameters (TCP/IP) to determine the data server with which the
client is communicating.

You can also configure ODBC driver managers on the UNIX and Linux operating
systems to load the ODBC driver.

CLI client for UNIX, Linux, and Windows
With the CLI clients for UNIX, Linux, and Windows, applications use SQL to
access data in both relational and non-relational database management systems.

These CLI clients provide access from a UNIX, Linux, or Windows client
application or tool to data servers.

Configuring the UNIX, Linux, and Windows CLI client:

To configure the UNIX, Linux, and Windows CLI clients, you edit and customize
client configuration parameters.

About this task

The configuration file resides in the following installation directories:
v For Linux: /opt/ibm/isclassic113/cli/lib/cac.ini.
v For UNIX: /opt/IBM/isclassic113/cli/lib/cac.ini.
v For Windows: C:\Program File\IBM\ISClassic113/ODBC/lib/cac.ini.
v For the 64-bit version on AIX, Linux, zLinux, and Solaris: the configuration file

resides in the 64-bit lib subdirectories.

Procedure

1. Open the cac.ini file as shown in the following example.

* Sample configuration file *

* messages and codes catalog
NL CAT = /opt/IBM/isclassic113/cli/lib
NL = US English
* default datasource location
DEFLOC = CACSAMP
DATASOURCE = CACSAMP tcp/111.111.111.111/nnnn
* performance and memory parameters
FETCH BUFFER SIZE = 32000
MESSAGE POOL SIZE = 1000000

2. Edit the DATASOURCE configuration parameter. If the application
communicates with multiple data servers or with multiple data sources within
a data server, you must define a DATASOURCE configuration parameter for
each data server or data source that you want to access.
Optional: You can enable a DATASOURCE override by specifying the
following parameters:
DATASOURCE = <data source name> <communication protocol>/<ip address>/
<port number>/<server codepage>/<client codepage>/<text presentation value>/
<text orientation value>/<symmetric swapping value>/<shaping value>/

152 Guide and Reference

For example:
DATASOURCE = CACSAMPB tcp/111.111.111.112/1112 IBM-420/IBM-1256/VISUAL/RTL/ON/ON

3. Change the communication string for the DATASOURCE parameter to specify
the method to communicate with the data server. You can use TCP/IP from the
client to access the data server. For example, specify the following
DATASOURCE definition for TCP/IP communication:
DATASOURCE = sourcename tcp/hostname/portnumber

4. Optional: Define code page information with the CLIENT CODEPAGE and
SERVER CODEPAGE parameters. If you did not install into the default
directory, you need to update the NL CAT parameter.
If you have data sources for which you want to use different code pages, you
can define the data sources in separate configuration files. If you select a
bidirectional server and client code page, bidirectional layout transformation is
enabled. For bidirectional client and server code pages, you can set the
configuration parameters for bidirectional language support:
v SHAPING
v SYMMETRIC SWAPPING
v TEXT ORIENTATION
v TEXT PRESENTATION

5. Create an environment variable CAC_CONFIG and set it to point to the cac.ini
configuration file.

6. Create a library environment variable that includes the directories where the
shared libraries are installed. Specify one of the following library environment
variables:
v For AIX: LIBPATH
v For HP-UX: SHLIB_PATH
v For Linux: LD_LIBRARY_PATH
v For Solaris: LD_LIBRARY_PATH
v For Windows: PATH

7. Run the CLI application in this environment. For example, in AIX, run the
following export statement:
export CAC_CONFIG=/opt/IBM/isclassic113/cli/lib/cac.ini
export LIBPATH=/lib:/opt/IBM/isclassic113/cli/lib
program1

CLI client for native z/OS
With the CLI client for native z/OS, you can build client applications by using the
IBM C runtime environment.

Building native z/OS CLI applications:

For native z/OS, you need to build and link CLI applications for the IBM C
runtime environment.

Compiling and linking with IBM C

The sample JCL CACBLDI is provided for compiling and linking a CLI application
on native z/OS in the IBM C runtime environment. The CACBLDI sample is
located in the USERHLQ.USERSAMP data set. The CLI application is named
MYCLIAPP in the following example:

Chapter 3. Configuring 153

//**
//*
//* CACBLDI
//* IBM C - COMPILE AND LINK A SAMPLE APPLICATION MYCLIAPP
//* WHICH USES STANDARD EDCCL JCL PROCEDURE
//*
//* 1) PROVIDE A JOB CARD THAT IS VALID FOR YOUR SITE
//* 2) CHANGE CACINHLQ REFERENCES TO INSTALLED HLQ
//* 3) CHANGE USERHLQ REFERENCES TO USER HLQ
//* 4) CHANGE your REFERENCES TO IDENTIFY THE SOURCE AND *
//* TARGET LOCATIONS OF YOUR APPLICATION
//*
//* NOTE: THE CLI/ODBC HEADER FILE CACCLI WILL BE INCLUDED FROM
//* USERHLQ.USERSAMP DURING COMPILATION
//*
//**
//*
//CCIBM EXEC EDCCL,
// INFILE=’your.source.library(MYCLIAPP)’,
// OUTFILE=’your.target.loadlib,DISP=SHR’,
// CPARM=’DLL’,
// LPARM=’DYNAM=DLL’
//*
//COMPILE.SYSLIB DD DISP=SHR,DSN=UserHLQ.USERSAMP
//LKED.SYSDEFSD DD DISP=SHR,DSN=CACINHLQ.SCACSIDE
//LKED.SYSIN DD *

INCLUDE SYSDEFSD(CECCLI)
INCLUDE SYSDEFSD(CECVHS)
INCLUDE SYSDEFSD(CECSQL)
NAME MYCLIAPP(R)

/*

Configuring native z/OS CLI clients:

You need to create JCL and create a configuration file to configure the native z/OS
CLI client.

Procedure

1. Create JCL that specifies the following DD names:

STEPLIB
Points to the data set where the load modules reside. Includes the
Classic federation installation load library to load the necessary CLI
DLL load modules.

MSGCAT
Points to the Classic federation message catalog.

VHSCONFIG
Points to a data set that contains the CLI configuration parameters. You
can use USERHLQ.USERSAMP(CACCLNT) as a JCL sample.

2. Use the sample configuration file CACINIZ. The CACINIZ sample is located in
the USERHLQ.USERCONF data set. The following example shows a
configuration file that the VHSCONFIG DD name refers to:
NL CAT = DD:MSGCAT
NL = US English
* default datasource location
DEFLOC = CACSAMP
DATASOURCE = CACSAMP tcp/n.nn.nnn.nn/9087
* performance and memory parameters
FETCH BUFFER SIZE = 32000
MESSAGE POOL SIZE = 4000000

154 Guide and Reference

TRACE LEVEL = 4
* Logger thread:
SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 1 5M 5M DISPLAY

CLI client for USS
With the CLI client for USS, you can build client applications by using the IBM C
runtime environment.

Building USS CLI applications:

The sample file CACMAKEU is provided for compiling and linking a USS CLI
client application. The CACMAKEU sample is located in the
USERHLQ.USERSAMP data set.

Example: The application is named mycliapp in this example:
1. Replace the CACINHLQ with the high-level qualifier for the Classic federation

installation.
2. Copy the CACCLI header file from UserHLQ.USERSAMP into the relative path

../include, and rename it to caccli.h
PASSCC = cc
CC = $(PASSCC) $(XCFLAGS) -I include
CFLAGS = -W c,dll -DMVS -DUNIX -DBIGENDIAN -D_POSIX_C_SOURCE
XCFLAGS = $(CFLAGS) -D_POSIX_SOURCE -DCOMPILE_EXTERNAL_TASK

mycliapp : mycliapp.o
cc -o $@ -W l,dll mycliapp.o "//’CACINHLQ.SCACSIDE(CECCLI)’"

mycliapp.o : mycliapp.c
$(CC) -c mycliapp.c

Configuring the USS CLI client:

You need to define the necessary environment variables and create a configuration
file to configure the native USS CLI client.

Before you begin

The authorization ID needs search authority for the directory that contains the
configuration file and read permissions.

Procedure

1. Define the following environments variables:

CAC_CONFIG
Point to the configuration file. For example, the following export
statement refers to the file cac.ini in the current working directory:
export CAC_CONFIG=./cac.ini

STEPLIB
Specify the load library where the Classic federation load modules are
located. For example:
export STEPLIB=CAC.V11R3M00.SCACLOAD

2. Define configuration parameters for the CLI client on USS. Use the sample USS
configuration file CACINIU to create the configuration file. The CACINIU
sample is located in the USERHLQ.USERSAMP data set.
NL CAT = //CAC.V11R3M00.SCACMSGS
NL = US English
* default datasource location

Chapter 3. Configuring 155

DEFLOC = CACSAMP
DATASOURCE = CACSAMP tcp/x.x.x.x/9087

* performance and memory parameters
FETCH BUFFER SIZE = 32000
MESSAGE POOL SIZE = 16000000
TRACE LEVEL = 4
TASK PARAMETERS = CACLOG=/u/test/caclog

In this example:
v The NL CAT configuration parameter points to the message catalog in the

Classic federation installation data set.
v When the TRACE LEVEL configuration parameter is set, the CLI driver starts

the logger task. The CACLOG parameter indicates the file where the logger
should write the log messages.

Running the cacprtlg utility:

The logger generates a binary log file. You can use the cacprtlg utility to format the
binary log file. The cacprtlg utility reads the binary log files and writes the
formatted log records to standard output.

Before you begin

The authorization ID needs execute permissions to run the cacprtlg utility.

Procedure

1. Define the following environments variables:

CAC_CONFIG
Points to the configuration file. For example, the following export
statement refers to the file cac.ini in the current working directory:
export CAC_CONFIG=./cac.ini

ddn_CACLOG
Points to the logger output as shown in the following example:
export ddn_CACLOG=./caclog

STEPLIB
Specify the load library where the Classic federation load modules are
located. For example:
export STEPLIB=CAC.V11R3M00.SCACLOAD

2. Create a file in the path named cacprtlg in the HFS file system. Creating this
file informs the runtime loader to look for cacprtlog in the STEPLIB variable.
Use the following commands to create the file:
touch cacprtlog
chmod 755 cacprtlog
chmod +t cacprtlog

3. Optional: Define the ddn_CACFILTER environment variable. This variable
points to a text file that contains filter information to limit the output that the
cacprtlg utility produces. Use the following command to define the filter file:
Export ddn_CACFILTER=./filter.txt

Recommendation: Redirect the cacprtlg output to a file. Then download and
view the file on a different operating system.

156 Guide and Reference

Chapter 4. Administering

After you install and configure your Classic federation environment, you typically
perform administration tasks on an ongoing basis.

Administering data servers
Included with IBM InfoSphere Classic Federation Server for z/OS is a z/OS MTO
(Master Terminal Operator) interface that you can use to monitor and control data
server operations.

Classic data servers are designed to run continuously. With the MTO interface, you
can issue commands to display the different services that are active within a data
server, the number of users that are currently using a data server or enterprise
server, and the amount of memory that is available. You can also issue commands
to start services and stop non-critical services.

You can run commands in the following format:
F name_of_job,command

v F is the abbreviation for the z/OS MODIFY command.
v name_of_job is the name of the started task to communicate with.
v command is the command to pass to the started task.

In Classic federation, if the started task is a data server that was started for an
enterprise server, specify the fully-qualified task name in the following format:
name_of_data_server.stepname

To send the command to all data servers that are managed by an enterprise server,
you can use an asterisk instead of stepname.

For example, the first of the following commands is issued for the data server
t9396840, and the second command is issued for all of the data servers that were
started by the enterprise server:
F CACDS.t9396840,display,users
F CACDS.*,display,config=master

You can also update your data server configuration by using the Classic Data
Architect or the master terminal operator (MTO) interface. With both methods, you
make configuration updates against a running data server.

The commands reference section describes each administration and configuration
command that you can use to administer data servers.

System exits
System exits are programs that the system calls at predefined processing points to
provide security and accounting functionality for Classic federation.

The data server is a multi-threaded implementation designed to service large
numbers of concurrent users. To optimize performance in the data server's
multi-tasking environment, all of the system exits are written in Assembler

© Copyright IBM Corp. 2003, 2015 157

language, with the exception of the record processing exit. They are assembled as
re-entrant. Additionally the exits are link-edited as AMODE 31 RMODE ANY and
REF, RENT, RU.

Restriction: If you customize an exit, ensure that your version also meets these
criteria.

Security: SAF exit
You can use the SAF exit for security validations. The SAF exit verifies access for
user and client connections, to stored procedures, and to specific references in
queries.

The SAF exit controls access to system resources based on classes and profiles. The
exit authenticates user passwords at connection time. In addition, you can
configure the exit to perform the following functions:
v Validate user authorization to access metrics data or run remote console

commands.
v Authenticate the TCP/IP address of client connections at connection time
v Verify authority to access a physical file or PSB referenced in an SQL query
v Verify authority to execute a stored procedure program
v Pass user IDs and passwords to CA-Datacom to verify user authorization to

access CA-Datacom table references in an SQL query

Recommendation: Use the supplied sample exit module (CACSX04) in the
SAMPLIB data set. If you choose to modify or replace the supplied exit source
code, you must assemble and bind the module as described in the overview of the
SAF exit API.

In the first implementation of the SAF exit, the SAFID field within the principal
data structure presented to the SAF exit (DSECT SAF mapped by the CACSXPL4
macro) is defined as a four-character field that contains the character string “SAF”.
In all subsequent implementations, SAFID is defined as a three-character field that
contains the character string “SAF ” followed by a single character that denotes the
version (or level) of the structure (the SAF DSECT field). Some functional features
of the interface are present only when the SAFVER field is greater than or equal to
a particular version value, for example, the presence of the IP address of a
connected client. The comments within the “SAF”DSECT explain these
dependencies.

User-written code contained within the SAF exit must account for these structure
version dependencies before attempting to reference (for example, fetch from or
store into) version-dependent fields. Otherwise, unpredictable results can occur,
including the potential abnormal termination (abend) of the unit-of-work that
activated the SAF exit.

Restriction: The SAF exit invokes services that require APF authorization.
Therefore, the SAF exit must reside in an APF-authorized library. The exit routine
must not contain the AC(1) attribute.

Activating the SAF exit
To activate the SAF exit, you set up security resources and define configuration
parameters during the installation customization process.

158 Guide and Reference

Before you begin

Ensure that the STEPLIB DD statement for the data server JCL references the
library where the SAF exit load module (CACSX04) is located. The library must be
APF-authorized.

About this task

Ensure that only valid z/OS users can access resources by setting
SAFEXIT=CACSX04 for the operator service, monitoring service, and query
processor services. After authentication, users do not need authorization for each
individual resource.

You can configure the supplied SAF exit CACSX04 by using the following
configuration parameters. You can supply configuration parameters only when you
use the IBM-supplied version of the SAF exit CACSX04.

IMS CLASS=Class Name
Specifies the name of the resource class that is checked to determine
whether the user has authority to schedule or access the PSBs associated
with the tables referenced in a query. The Class Name can be up to eight
characters long. This sub-parameter is required when accessing IMS data.

PSB PREFIX=Prefix
Specifies a value to prefix the PSB name when forming the resource name.
For example, if PSB PREFIX=IMSP is specified and the PSB name is PSB1,
the resource name becomes IMSPPSB1.

If you are planning to access IMS data, you might need to modify the IMS
CLASS subparameter to define the resource class where IMS PSBs are
defined at your site.

To use a PSB, a user ID must have at least CONTROL access to that PSB's
corresponding profile within the class.

If you are using RACF, the combination of the length of the PSB name and
the length of the prefix must be eight characters or less. If a larger PSB
name or prefix combination is encountered, an error message is issued.

ADACLASS=Facility
Specifies the name of a class used to check for authorized use of ADABAS
view names. The operand can be up to eight characters in length. There is
no default value for this parameter. The security administrator must define
each ADABAS view name as a resource in the class and grant CONTROL
access to each user ID that uses that view name. If the ADABAS view
name is not defined, or the user ID is not granted access, the following
message is returned on the attempt to pull data from the ADABAS table
defined with a view name:

Access Denied

If the ADABAS table is only defined with a file number (no Predict view
name), you will receive the same error message as shown above, and the
server log contains the following message:

CACL010E NO ADABAS VIEW NAME IN USE GRAMMAR

SPCLASS=FACILITY
Specifies the name of a class used to check for authorized use of stored
procedure names that are defined in the metadata catalogs. These names

Chapter 4. Administering 159

are stored in the SYSIBM.SYSROUTINES system table. The operand can be
up to eight characters in length. There is no default value for this
parameter.

The external security manager (ESM) administrator must define each
stored procedure as a resource in this class and grant ALTER access to each
user ID that will invoke the stored procedure. If the stored procedure is
not defined to ESM or the user ID is not granted access, -5046295 is
returned on the attempt to use a stored procedure and message
CACL006W is issued.

EXCLUDE=n
Indicates the query processor should not provide an ACEE address in
commands sent to CA-Datacom. When the SAF exit is active, the address
of an ACEE is obtained during SAF exit initialization. This ACEE address
is normally passed to CA-Datacom in each database request and
CA-Datacom authenticates the request using information within the ACEE.

Whenever the SAF exit is active and you want to avoid database level
security checking in CA-Datacom, you must indicate the query processor
should exclude the ACEE from the database requests that are sent to
CA-Datacom. Set the value of n to 2 (heterogeneous query processor
CA-Datacom connector). This setting will not provide the ACEE address in
the call parameters.

VALIDATE=Y/N
Indicates whether the exit should validate that the user ID has authority to
access or use a protected resource. Examples of protected resources
include, but are not limited to, data sets, IMS PSBs, and databases. Use
both SQL security and the SAF exit in conjunction with your site security
package to restrict access to your data.

Specify an operand of Y to indicate that the exit routine should validate
access rights to protected resources. Typically, access rights validation is
accomplished by running a RACROUTE macro which invokes a security
system, such as IBM RACF, to perform the necessary validation tasks.
Specify an operand of N to indicate that the exit routine should not
perform access rights validation.
The exit routine is invoked for access rights checking regardless of the Y or
N value of the operand. The default value for VALIDATE is Y.

This parameter helps you to control access with greater precision:
v Ensure that only valid users can access resources by setting

VALIDATE=Y against the operator, monitoring, or query processor
services.
VALIDATE=Y authenticates each individual resource.

v Eliminate the overhead of verifying that the user has authority to access
a resource by setting VALIDATE=N against the operator, monitoring, or
query processor services.
Do this if you have elected to use SQL security to control access to tables
and stored procedures. This setting is also useful in a test or
development environment if you trust any user with a valid z/OS user
ID to access the data. For example, you might not want to use DB2
privileges or use RACF to verify each resource.

NETACCESS=Y/N
Indicates whether the exit should validate the IP address of the connected
client to authenticate access to the data server.

160 Guide and Reference

Set the value to Y when the IP address of the connected client is known
and the SERVAUTH parameter of the RACROUTE REQUEST=VERIFY
invocation is supplied. The RACROUTE operation is successful when the
associated user ID has at least READ-level access rights to the network
security zone resource. If the security system indicates that it cannot make
a decision in response to the request because a corresponding network
security zone resource profile does not exist, the SAF exit regards the
response as Access Denied.

A value of N indicates that the SERVAUTH parameter is omitted from the
RACROUTE REQUEST=VERIFY invocation. This is the default.

MONCLASS=monitor-class-name
Indicates the name of the security class that contains a profile that provides
access authentication.

This parameter is valid if VALIDATE=Y on the monitoring service for the
SAF exit. If this parameter is not specified, SERVAUTH is the default name
of the operator security class.

MONPROF=monitor-profile-name
Indicates the name of the resource profile that provides access
authentication.

This parameter is valid if VALIDATE=Y on the monitor service for the SAF
exit. If this parameter is not specified, CEC.MONITOR is the default profile
name.

OPERCLASS=operator-class-name
Indicates the name of the security class that contains a profile that provides
access authentication.

This parameter is valid if VALIDATE=Y on the operator service for the
SAF exit. If this parameter is not specified, SERVAUTH is the default name
of the operator security class.

OPERPROF=operator-profile-name
Indicates the name of the resource profile that provides access
authentication.

This parameter is valid if VALIDATE=Y on the operator service for the
SAF exit. If this parameter is not specified, CEC.OPER is the default profile
name.

If you want to modify the supplied exit to add capabilities that the existing
configuration parameters do not provide, deploy a custom exit as described in the
topic about security and the SAF exit.

To configure the SAF exit and verify that it is working:

Procedure
1. Edit the sample SAF exit (SCACSAMP member CACSX04) if you need to

customize CACSX04.
2. Add any required SAFEXIT configuration parameters in the service definition

for the monitoring, operator, or query processor service classes (OPER, MAA,
QP, or QPRR). by using the Classic Data Architect or MTO SET,CONFIG
command.

3. After changing the SAF definition for any services that you need to secure, stop
and restart the data server.

Chapter 4. Administering 161

Example

Ensure that only a valid z/OS user can connect to the operator and monitoring
services by using the following command. This command runs the supplied SAF
exit with the default values:
F <Data-Server-Name>,SET,CONFIG,SERVICE=<Service-Name>,SAFEXIT=CACSX04

If you want to take advantage of the flexibility of the exit by using SAF exit
parameters against a monitoring service, add name/value pairs to the command,
as follows:
F <Data-Server-Name>,SET,CONFIG,SERVICE=<Monitor-Service-Name>,
SAFEXIT="CACSX04,VALIDATE=Y"

The first value of the SAFEXIT parameter must be the exit name. You must enclose
the SAFEXIT values in double quotes.

SAF exit: API overview
The parameters passed to the SAF exit are defined by the CACSXPL4 member
located in the SCACMAC library. The SAF exit is called for one of three functions:
initialization, validation, or termination.

The CACSXPL4 macro describes the interface to the SAF exit. The comments
provided in the CACSXPL4 macro describe the SAF structure fields and their
intended usage. Comments contained within the CACSX04 source code describe
the interface to and the intended behavior of the SAF exit.

Assembling and binding the SAF exit

Member CACALX04 in the USERSAMP data set contains a JCL stream that you
can use to assemble and bind the sample SAF exit, CACSX04.

Requirements for assembling and binding CACSX04:
v You must direct the assembler to produce Extended Format (GOFF) object code.

Specifying the assembler options GOFF,OBJ,NODECK satisfies this requirement
and directs the assembler to write the object code to the file referenced by the
SYSLIN DD statement.

v The CACSX04 executable module (a program object) must reside in a PDSE that
is included in the list of APF-authorized libraries.

v The traditional load module format is not supported.
v You must direct the z/OS Program Management Binder to produce a program

object at the z/OS V1R10 level or higher with support for mixed-case external
symbol names. The resultant program object must contain the re-entrant
attribute and must not contain the AC(1) attribute.

Specifying the binder options RENT,CASE=MIXED,COMPAT=ZOSV1R10 meets
these requirements.

For more information about assembler options, see the High Level Assembler
documentation in the z/OS product documentation.

For more information about the z/OS binder options see the z/OS MVS™ Program
Management documentation in the z/VM product documentation.

162 Guide and Reference

SAF exit: initialization:

The initialization function is used to initialize the SAF environment for a user
when the user connects to the query processor.

The SAFNAME field contains a pointer to a null-terminated character string that
consists of the exit initialization parameters. When no initialization parameters are
supplied to the exit, the pointer value itself can be binary zeros or the referenced
area can consist of an effectively empty string (zero or more blanks followed by a
terminating null byte). The input parameters are specified on the SAF exit
configuration parameter used to invoke the SAF exit. On the SAF exit parameter
additional sub-parameters can be placed after the name of the exit.

The SAFUSERI and SAFUSERP fields contain the user ID and password of the user
that is connecting to the service.

The exit performs initialization processing and allocates storage or other resources
that are required for validation processing. A pointer to the anchor for these
resources can be placed in the SAFUSER field of the parameter list. This pointer is
preserved and passed to the exit on subsequent invocations.

For example, the SAF exit validates that the user ID and password are valid and
constructs an ACEE for the user. In the SAF structure field SAFACEE, the SAF exit
is required to return the address of the ACEE representing the user, or binary zeros
to indicate that an ACEE pointer is not provided.

Subsequently, server processes and the SAF exit use the referenced ACEE when
performing activities on behalf of the user when those activities might need to
access or operate upon protected resources.

If the optional input subparameter EXCLUDE= is included in the SAF exit
configuration parameters, the specified value is returned to the caller in the
SAFEXCLD field of the parameter list. This field is used in conjunction with the
SAFACEE field when performing database-level security checking within
CA-Datacom.

Additionally, the SAF exit inspects the ACEEGRPL field in the ACEE. If the length
field is greater than zero, the contents of the ACEEGRPN field is copied to the
SAFCGRP for subsequent use in SQL security processing.

If the exit returns a non-zero return code, query processor initialization for the user
is halted, the user is disconnected, and the return code issued by the exit is
returned to the client application.

SAF exit: validation:

The validation function is used to verify a user's authority against objects such as
PSBs, Adabas files, and stored procedures.

The SAFTYPE field identifies the type of validation to be performed.

SAFIMS
For IMS access using a DBB or BMP connector interface the exit is called
immediately before PCB selection logic is invoked. The name of the PSB
that is referenced by the SAFNAME field is the PSB specified in the data
server’s JCL. The exit should verify that the user has authority to use the
specified PSB name identified in the SAFNAME field.

Chapter 4. Administering 163

When you use the DRA interface to access IMS data, the exit can be called
at two different points. The exit is always called immediately before a PSB
is to be scheduled. The exit should validate that the user has authority to
use the PSB referenced by the SAFNAME field.

If the exit returns a non-zero return code, the PSB is not scheduled,
processing for the query is terminated, any other PSBs that have been
scheduled for the query are unscheduled, and the return code issued by
the exit is returned to the client application. The application can still issue
other SQL requests.

The exit can also be called when the query contains a join. In this situation,
the DRA interface schedules the JOIN PSB specified in the metadata
grammar for a table referenced in the query. The exit is invoked as
previously described. For subsequent tables in the join, the connector
checks to determine whether the PSBs that have already been scheduled
contain a PCB that can be used to access the table. If a usable PCB is
located, the SAF exit is called with the name of the primary PSB (as
specified in the metadata grammar for the table that is referenced in the
query). This PSB is not scheduled, however, an authorization check is
performed to verify that the user has authority to access the primary PSB
(referenced by the SAFNAME field) associated with the table.

If the exit returns a non-zero return code, the other PSBs that have been
scheduled for the query are unscheduled and the return code issued by the
exit is returned to the client application. The application can still issue
other SQL requests.

There is no indication of which of the three processing sequences invoked
the exit.

SAFVSAM and SAFSEQ
When a query references a sequential or local VSAM file, the exit is called
immediately before the file is opened. The exit validates that the user has
authority to access the file name referenced by SAFNAME. When a PDS
member is referenced, the name of the member is not passed to the exit.

If the exit returns a non-zero return code, the file is not opened, processing
for the query is terminated, and the return code issued by the exit is
returned to the client application. The application can still issue other SQL
requests.

SAFSP
For stored procedures, the SAF exit is invoked immediately before the
application program associated with a stored procedure definition is
loaded for execution. The SAF exit validates that the user has authority to
execute the program. This validation is performed indirectly based on the
stored procedure table name referenced by the SAFNAME.

If the exit returns a non-zero return code, the program is not loaded or
executed, processing for the stored procedure request is terminated, and
the return code issued by the exit is returned to the client application. The
application can still issue other SQL requests.

SAFADAB
When a query references an ADABAS database, the exit is called
immediately before the database is accessed. The exit validates that a view
name is provided in the SAFNAME field and that the user has authority to
access the identified view.

164 Guide and Reference

If the exit returns a non-zero return code, the database is not accessed,
processing for the query is terminated, and the return code issued by the
exit is returned to the client application. The application can still issue
other SQL requests.

SAF exit: termination:

The termination function is called when a user disconnects from the query
processor. At this time, the exit can perform any termination processing necessary,
and must free any resources it has allocated.

SAF exit: System access control - examples
When a user accesses the data server through a TCP/IP connection, the IP address
associated with that user is presented to the SAF exit. This information can be used
during SAF exit initialization, for example, to restrict access by specific users or
groups connecting to the data server from specific IP addresses.

TCP/IP uses the SAF SERVAUTH resource class to control access to a large variety
of network resources. The implementation of the sample CACSX04 exit exploits a
resource type known as a network security zone as the entity to protect.

You define a network security zone to TCP/IP by using the NETACCESS
configuration control statement. Each network security zone that you define must
have a SAF SERVAUTH profile for the resource named
EZB.NETACCESS.sysname.tcpname.zonename.

sysname
The name of the z/OS system. This is the value associated with the
&SYSNAME system symbol.

tcpname
Name of the TCP/IP stack. This is the name of the JCL procedure used to
start the TCP/IP address space which is equivalent to the TCPIPJOBNAME
parameter in the TCP/IP control statement set.

zonename
Name of the security zone.

In general, network security zone RACF profiles are defined with a Universal
Access (UACC) of NONE. Individual users or groups who are to be permitted to
access the network security zone are then granted READ access to the
corresponding resource profile.

You set the SAF exit NETACCESS parameter to control the behavior of the SAF
exit based on the IP address of the connected client.

See the z/OS Security Server documentation for more information about network
security zones and RACF commands.

Example: Prevent access to the data server

In this example, you want to prevent inbound access to the data server that is
running with user ID SAM by any clients in security ZONEB. The following steps
are required to prevent access:
v Define the IP addresses that comprise security zone ZONEB to TCP/IP by using

NETACCESS configuration control statements with the INBOUND qualifier.

Chapter 4. Administering 165

v Define the SAF resource profile for security ZONEB to RACF with a universal
access of READ. The resource profile name is of the form:
EZB.NETACCESS.sysname.tcpname.ZONEB. For example:
RDEFINE SERVAUTH EZB.NETACCESS.sysname.tcpname.ZONEB UACC(READ)

v Deny user SAM access to resource EZB.NETACCESS.sysname.tcpname.ZONEB in the
SERVAUTH class. For example:
PERMIT SERVAUTH EZB.NETACCESS.sysname.tcpname.ZONEB CLASS(SERVAUTH)
ID(SAM) ACCESS(NONE)

As a result, TCP/IP prevents any dispatchable unit running with user ID SAM
from receiving any inbound traffic from a client whose IP address is in ZONEB.

Example: Permit access to the data server

In this example, you want to permit access to the data server running with user ID
SAM to specific clients with specific user IDs entering the system from security
ZONEB. To permit access, the following steps are required:
v Define the IP addresses that comprise security ZONEB to TCP/IP by using

NETACCESS configuration control statements with both the INBOUND and
OUTBOUND qualifiers.

v Define the SAF resource profile for security ZONEB to RACF with a universal
access of NONE. The resource profile name is of the form:
EZB.NETACCESS.sysname.tcpname.ZONEB. For example:
RDEFINE SERVAUTH EZB.NETACCESS.sysname.tcpname.ZONEB UACC(NONE)

v Grant user SAM and the additional user IDs who are allowed to connect to the
server READ access to resource EZB.NETACCESS.sysname.tcpname.ZONEB in the
SERVAUTH class. For example:
PERMIT SERVAUTH EZB.NETACCESS.sysname.tcpname.ZONEB CLASS(SERVAUTH)
ID(SAM) ACCESS(READ)

PERMIT SERVAUTH EZB.NETACCESS.sysname.tcpname.ZONEB CLASS(SERVAUTH)
ID(other) ACCESS(READ)

Accounting: SMF exit
The SMF exit is used to report wall-clock time and CPU time for an individual
user session with a query processor task. Additionally, if SQL security is active and
an authorization violation is detected by the query processor, the exit is called to
log the violation.

The SMF exit writes out its data as user SMF records. SMF requires that an
application that writes SMF records be run from an APF-authorized library.

Activating the SMF exit
When you activate the SMF exit, you can maintain elapsed time values used by
SQL statements and log authorization violations.

Before you begin
1. Install the data server, perform initial configuration customization, and verify

the installation configuration using the sample application and data.
2. Include the SMF exit load module (CACSX02) in an APF-authorized library

(SCACLOAD).
3. Ensure that the data server JCL references the APF-authorized library in the

STEPLIB DD statement where the SMF exit is located (SCACLOAD).
4. Ensure that any other data sets referenced in the STEPLIB DD statement are

also APF-authorized.

166 Guide and Reference

Procedure
1. Edit the sample SMF exit (SCACCONF member CACSX02).
2. You can supply the following values on the SMFEXIT configuration parameter

when using the IBM-supplied version of the SMF exit.

RECTYPE=nnn
This is a required parameter that defines the SMF user record type.
This parameter contains a numeric value between 128 and 255.

SYSID=xxxx
This is a required parameter that contains the primary JES subsystem
ID. SYSID can be a maximum of four characters.

3. Start the data server.
v If your data server is already running, restart it.
v This operation can also be performed using the MTO Operator Interface.

4. In the SCACSKEL member CACSQL, uncomment the SELECT statements that
reflect the data source you are using.
a. Ensure that the user ID is authorized to access the table that is referenced

in the query.
b. Save the changes after you have completed editing the member.

5. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to reference
the name of the SCACSAMP member that you edited in the previous step.
Save your changes.

6. Submit CACCLNT and review the output.
The query should function normally and return the expected result set.

7. Ensure that the SMF record file exists, for example, SYS1.MAN1.
8. Dump the SMF records related to Classic federation into a data set. Sample

JCL is shown in the following example.
//*INSERT VALID JOB CARD HERE
//STEP1 EXEC PGM=IFASMFDP
//INDD1 DD DISP=SHR,DSN=SYS1.MAN1
//OUTDD1 DD DISP=(NEW,CATLG),DSN=CAC.SMFDUMP,
// UNIT=SYSDA,VOL=SER=XXXXXX,SPACE=(TRK,(5,5),RLSE),
// DCB=(LRECL=32760,BLKSIZE=27998,RECFM=VBS,DSORG=PS)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
INDD(INDD1,OPTIONS(DUMP))
OUTDD(OUTDD1,TYPE(xxx))

Where Type (xxx) is the record type as specified in the RECTYPE= parameter.
9. Run SAS, IDCAMS, or any other tool that processes SMF records. If you run

IDCAMS, specify the following SYSIN:
//STEP2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PRINT INDATASET(CAC.SMFDUMP)

Where CAC.SMFDUMP is the name of the dump file.
10. Verify the output.

To verify the output, examine the DSECT fields that map the SMF accounting
routine output data from the SMF exit.

Verifying SMF exit output:

DSECT fields map the output data from the SMF exit accounting routine.
Understanding the field definitions enables you to verify this output data.

Chapter 4. Administering 167

The following tables describe the DSECT fields associated with the SMF exit
accounting routine, and related authorization violation type codes.

Table 22. SMF accounting file DSECT field definitions

Field Definition
Length (in
bytes)

CACSXSMF
DSECT

Data structure for the SMF record. N/A

RDWLEN DS H Length of the record. 2

RDWSPAN DS H Reserved for system use. 2

FLG DS X Reserved for SMF use. 1

RECTYPE DS AL1 Value specified in the RECTYPE= parameter. This is the
SMF record type.

1

ENTIME DS BL4 Time in BIN format from TIME macro. This is the time the
event ended.

4

ENDATE DS PL4 Date in BIN format from the TIME macro. This is the date
the event ended.

4

SYSID DS CL4 JES subsystem ID from the SYSID= * Parameter. 4

USRTYPE DS BL2
Zero

for CPU time and elapsed time.

Type code
for authorization violation.

2

USERID DS CL8 SQL ID from AXPLSQID. Padded with blanks. 8

STTIME DS BL4 Time in BIN format from the TIME macro. This is the time
the event started.

4

STDATE DS PL4 Date in BIN format from the TIME macro. This is the date
the event started.

4

AGCPU DS BL4 Total CPU time used since the event started. The value is
represented in milliseconds.

4

RECLEN EQU
*-CACSXSMF

Length of the standard SMF reporting record.

ORG STTIME Alternate record definition for authorization violation
reporting.

OBJNAME DS
CL27

Name of the object for which the user is not authorized to
access, define, grant, or revoke authority for.

27

TOTLEN EQU
*-CACSXSMF

Length of the authorization violation SMF record.

Table 23. Authorization violation type codes

Type Code Authorization violation type

101 User is not authorized to issue a DROP TABLE for the requested table.

102 User is not authorized to issue a DROP INDEX for the requested table.

103 User is not authorized to issue a DROP VIEW for the requested view.

104 User is not authorized to issue a DROP PROCEDURE for the requested stored procedure.

200 User is not authorized to create the requested table.

201 User is not authorized to create the requested index

202 User is not authorized to issue the CREATE VIEW statement.

168 Guide and Reference

Table 23. Authorization violation type codes (continued)

Type Code Authorization violation type

203 User is not authorized to issue the CREATE PROCEDURE statement

300 User is not authorized to issue a SELECT statement for the requested table or view.

301 User is not authorized to issue an UPDATE statement for the requested table.

302 User is not authorized to issue an INSERT statement for the requested table.

303 User is not authorized to CALL the requested stored procedure.

403 User is not authorized to issue a DELETE statement against the requested table.

500 User is not authorized to issue the requested GRANT statement.

501 User is not authorized to issue the requested REVOKE statement.

SMF exit: API overview
The SMF exit parameter list uses an AVA (Access Validation and Accounting)
interface. The macro CACSXPL that is found in the SCACMAC library maps the
parameters.

The AXPLFUNC field indicates the function you are calling:
v Initialization
v Accounting
v Authorization violations
v Termination

Table 24. SMF exit field definitions

Field Definition

&DSECT=YES Used to control whether a DSECT definition is generated or whether the fields are
generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated if &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DSECT=YES is not specified.

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area of
the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Available for SMF exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub-type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement or the name of the object
for which authorization failed).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Validation and accounting.

Chapter 4. Administering 169

Table 24. SMF exit field definitions (continued)

Field Definition

AXFNTERM EQU 8 Termination.

SMF exit: initialization:

The SMF exit initialization function is called immediately after the exit is loaded
during initialization of the query processor task when a user connects to the
service.

The AXPLPENV parameter points to an (optional) input parameter string that can
be passed to the exit. The input parameters are specified on the SMFEXIT
configuration parameter used to invoke the SMF exit. Additional sub-parameters
can be placed on the SMFEXIT parameter after the name of the exit.

The exit performs initialization processing and allocates any storage or other
resources that are required for validation and accounting processing. A pointer to
the anchor for these resources can be placed in the AXPLUSER field of the
parameter list. This pointer is preserved and passed to the exit on subsequent
invocations. Upon initialization, the AXPLSQID parameter contains the user ID of
the user connecting to the query processor. The contents of the other fields in the
parameter list are indeterminate.

If the exit returns a non-zero return code, query processor task initialization is
stopped, the user is disconnected, and the return code issued by the exit is
returned to the client application.

SMF exit: validation and accounting:

This section describes SQL statement types client applications can use, correlations
between SQL statement types and SMF parameters, and validation and accounting
activities the SMF function performs.

This SMF exit function is called at predetermined processing points. The
AXPLETYP, AXPLESUB, and AXPLESEQ fields uniquely identify each processing
point. The SMF exit is called to process SQL events that are identified by an
AXPLETYP value of 3. The AXPLESUB field identifies the type of SQL statement
that the client application has issued. The client application can issue the following
types of SQL statements:

Table 25. SQL statement types

AXPLESUB value Equate value Type of SQL statement

1 DYNEXEC Dynamic execute. When called at this point, the AXPLTEXT and
AXPLTXTL fields will be zero.

2 CLOSE Close cursor. When called at this point, the AXPLTEXT and AXPLTXTL
fields will be zero.

3 DESCRIBE Describe. When called at this point, the AXPLTEXT and AXPLTXTL
fields will be zero.

4 EXECIMED Execute immediate. When called at this point, the AXPLTEXT field will
reference the statement being executed, and the AXPLTXTL field will
identify the statement length.

170 Guide and Reference

Table 25. SQL statement types (continued)

AXPLESUB value Equate value Type of SQL statement

5 EXECUTE Execute. When called at this point, the AXPLTEXT field will reference
the statement being executed, and the AXPLTXTL field will identify the
statement length.

6 FETCH Fetch cursor. When called at this point, the AXPLTEXT and AXPLTXTL
fields will be zero.

7 OPEN Open cursor. When called at this point, the AXPLTEXT field will
reference the statement being executed, and the AXPLTXTL field will
identify the statement length if the client application is using static SQL.
If the application is using dynamic SQL, the AXPLTEXT and
AXPLTXTL fields will be zero.

8 PREPARE Prepare statement. When called at this point, the AXPLTEXT field will
reference the statement being executed and the AXPLTXTL field will
identify the statement length.

9 SLCTINTO Select into. When called at this point, the AXPLTEXT field will reference
the statement being executed and the AXPLTXTL field will identify the
statement length.

The AXPLESEQ field identifies whether the exit is being called before (1)
(AXPLEBEF) or after (2) (AXPLEAFT) the SQL statement has been processed. The
exit is called for each SQL statement issued by the client application. The user has
control of the query processor service for the duration of the SQL statements
execution.

Therefore, when the exit is called before the SQL statement is processed, it should
obtain the TCB time for the current TCB. When called after the SQL statement has
been processed, the exit should obtain the current TCB and compute the difference
between the after and before SQL statement processing times. This value must be
added to an aggregate value that the exits need to maintain for all SQL statements
issued by the client application.

Example: The following sequence of SQL statements are issued for a dynamic SQL
SELECT query:
v PREPARE
v OPEN
v DESCRIBE
v FETCH (until a SQLCODE of 100 is returned)
v CLOSE

To obtain the correct CPU time for the query, the exit needs to compute the CPU
time used for each of these statements and add them together. Depending on the
type of client application, you can issue different types of SQL statements. In the
case of a client application that has more than one cursor open at a time, the
individual SQL statements that are issued by the client application will be
interleaved.

For this exit, the type of SQL statement being issued is not important unless the
exit captures the text of the SQL statement being issued by the client application.

If the exit returns a non-zero return code, query processor task processing of the
query is stopped and the return code issued by the exit is returned to the client
application.

Chapter 4. Administering 171

SMF exit: authorization violations:

This function processes authorization violations when SQL security is active and
the query processor detects an authorization violation.

The AXPLETYP contains a value of 5. The AXPLESUB field identifies the type of
authorization exception. The AXPLTEXT field identifies the name of the object for
which authorization failed, and the AXPLTXTL field contains the length of the
name in AXPLTEXT.

The exit reports the violation exception, and generates the alternate form of the
SMF record shown in Table 22 on page 168.

SMF exit: termination:

This exit function performs any termination processing necessary and frees any
resources it has allocated when the user disconnects from the service task. The
termination function is called during query processor task termination processing.

For example, the SMF exit generates the SMF user record to report the CPU time
used in milliseconds. The SMF record also contains the time and date when the
user connected to and disconnected from the query processor task.

CPU resource governor
The CPU resource governor exit restricts the amount of CPU time that a user
consumes for a particular unit of work.

Execution governor limits are based on the number of data rows examined (which
is the number of calls issued to the connector interface) and the number of rows
returned in a result set after all query post-processing is complete. The governors
IBM delivers are fairly coarse. Depending on the query, a large amount of CPU
time can be expended before one of these limits is reached.

On activation, the system passes the CPU resource governor exit the allowed CPU
time for the user. Periodically, the CPU resource governor exit is called to check to
see how much CPU time has been used. After exceeding the allotted time, the exit
returns a return code that stops the query. The system controls the frequency at
which it calls the exit.

The CPU resource governor exit is responsible for determining the unit of work
based upon the series of SQL statements that the client application issues.

For example, the CPU GOVERNOR exit observes the following rules:
v The unit of work is from the first received PREPARE until all cursors have been

closed. For a typical client application that only issues one query at a time, the
unit of work is the duration of a single query. If multiple cursors are opened the
unit of work persists until all cursors have been closed. Any additional SQL
statements issued by the client while a query is active (for example, a SELECT
INTO) are treated as part of the unit of work.

v If no queries are active, the exit treats any other SQL request as a single unit of
work. For example, if no cursors are open, the exit treats requests such as
SELECT INTO and EXECUTE IMMEDIATE as a single unit of work.

172 Guide and Reference

Activating the CPU resource governor exit
By configuring, activating, and validating the CPU resource governor exit, you can
restrict the amount of CPU time that a user can consume for a unit of work.

Before you begin
v Install the product, perform initial configuration customization, and verify the

installation configuration using the sample application and data.
v Include the CPU resource governor exit load module (CACSX03) in the load

library that the data server is using.

Although the CPU resource governor exit does not require APF authorization, the
SAF, SMF, and Workload Manager exits do. If you are running any of the latter
exits, the CPU resource governor exit must also be placed in an APF-authorized
load library.

About this task

The steps in the following procedure describe how to configure, activate, and
validate the CPU resource governor exit:

Procedure
1. Edit the sample CPU governor exit (SCACCONF member CACSX03).
2. You can supply the following values on the CPUGOVERNOR configuration

parameter.
a. Specify the CPU resource governor exit name.
b. Specify Maximum CPU Time.

This field specifies the maximum amount of CPU time that a single query
can take (or a group of queries can take) in a multiple cursor situation.
The following are valid values:

nS The number of seconds, where n = number is a value between 1
and 6000.

nM The number of minutes, where n = number is a value between 1
and 6000.

c. Uncomment the CPUGOVERNOR parameter.
d. Save your changes.

3. Start the data server.
v If the data server is already running, stop and restart the query processor

service for data source CACSAMP. This can be done using the MTO
Interface.

4. Uncomment any SELECT statements in SCACSKEL member CACSQL that
reflect the data source you are using.
a. Ensure that the user ID is authorized to access the table that is referenced

in the query.
b. Save your changes.

5. Edit SCACSAMP member CACCLNT by setting the SQLIN parameter to
reference CACSQL, and save the member.

6. Submit CACCLNT and review the output.
The query should function normally and return the expected result set. You
are ready to validate the CPU resource governor exit.

Chapter 4. Administering 173

7. Set the CPU time limit specified in the CPUGOVERNOR parameter artificially
low, to induce a timeout.
a. Save your changes.

8. Stop and restart the data server, then submit CACCLNT.
v Alternatively, you can restart the query processor service for data source

CACSAMP using the MTO interface.
The query should not return a result set, and the following error message
should appear:
CPU time exceeded.

If the time limit is not exceeded you will see the normal result set.
9. Increase the CPU limit specified on the CPUGOVERNOR parameter or

comment out the CPU GOVERNOR parameter, so you can run normal
queries.

10. Stop the data server and restart it.
v Alternatively, you can stop and restart the query processor service for data

source CACSAMP using the MTO interface.

CPU resource governor exit: API overview
This API passes field values in a parameter list to the CPU resource governor exit.
The table lists and describes the fields.

The parameter list uses an AVA (Access Validation and Accounting) interface and
is mapped by the macro CACSXPL, which is found in the SCACMAC library. The
AXPLFUNC field indicates the function you are calling:
v Initialization
v Accounting
v Termination

Table 26. CPU resource governor exit fields and descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether the fields are
generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area of
the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Words available for CPU resource governor exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is completed.

AXPLFUNC DS H Function identifier flag.

174 Guide and Reference

Table 26. CPU resource governor exit fields and descriptions (continued)

Field Description

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Validation and accounting.

AXFNTERM EQU 8 Termination.

CPU resource governor exit: initialization:

This function performs initialization processing and allocates any storage or other
resources that are required for validation processing. The initialization function is
called when a user connects to the service, immediately after the exit is loaded
during initialization of the query processor task.

The AXPLPENV parameter points to an optional input parameter string that can
be passed to the exit. The input parameters are specified on the CPUGOVERNOR
configuration parameter that is used to invoke the CPU resource governor exit. On
the CPUGOVERNOR parameter additional sub-parameters can be placed after the
name of the exit.

A pointer to the anchor for required resources can be placed in the AXPLUSER
field of the parameter list. This pointer is preserved and passed to the exit on
subsequent invocations. Upon initialization, the AXPLSQID field contains the user
ID connecting to the query processor. The contents of the other fields in the
parameter list are indeterminate.

If the exit returns a non-zero return code, query processor task initialization is
halted, the user is disconnected, and the return code issued by the exit is returned
to the client application.

CPU resource governor exit: validation and accounting:

The validation and accounting function captures and computes aggregated CPU
time and stops query processing when queries have exceeded the time limit for the
prescribed unit of work.

The function is called at predetermined processing points. The AXPLETYP,
AXPLESUB, and AXPLESEQ fields uniquely identify each processing point. The
exit is called for each SQL statement issued by the client application. These events
are identified by an AXPLETYP of 3. The different types of SQL statements are
identified in the AXPLESUB field. The AXPLESEQ field identifies whether the exit
is called before (1) or after (2) the SQL statement has been processed.

Exits that are called for SQL events must determine (based on the SQL statement
type) whether the client application is beginning a unit of work, ending a unit of
work, or is in the middle of a unit of work.

The exit performs the following actions:
v Start unit of work: Reset aggregate CPU time, capture current CPU time, and

enter the middle of the unit of work.
v End unit of work: Reset aggregate CPU time and prepare to start the next unit

of work.
v Middle of unit of work: After the exit determines that it is in the middle of a

unit of work, the current CPU time should be obtained before the SQL statement

Chapter 4. Administering 175

is issued . After the SQL statement has been executed, the exit is called and
captures the current CPU time and computes the amount of time taken by that
SQL statement. The exit maintains an aggregate CPU time for the unit of work,
which represents the sum of the individual SQL statement execution times. The
exit checks this aggregate time after an SQL statement has been processed to
determine whether the CPU time limit has been exceeded.

When called to process SQL statements, the exit behaves in the following ways:
v If the exit has already generated a CPU time exceeded error when it was called

during machine execution (described below), it does not generate another error.
The exit will still be called to perform after SQL statement processing and sets a
flag that indicates an error has been reported.

v If, after an SQL OPEN statement has been processed, the AXPLSQLC field
contains a non-zero value indicating that an error was detected, the system does
not call the exit to close the cursor associated with the statement that failed.
Typically this will be a –204 or –206 error, or might be an error generated by any
system exit. In these situations the exit must check to see what state the unit of
work is in to determine whether it should reset its unit-of-work state. If there are
no other cursors open, the exit needs to perform end unit-of-work processing.

The exit will also be called while the SQL program (that was generated for the
query) is executing. The AXPLETYP field will contain a 4 in these situations.
Currently, the exit is called at the two points where the MAX ROWS EXAMINED
and MAX ROWS RETURNED governor checks are performed. The AXPLESUB
field contains the machine instruction number that identifies the instruction being
executed, and the AXPLESEQ contains a 1.

The exit does not consider the instruction type being executed. When called with
an AXPLETYP value of 4, the exit should capture the current CPU time and
compute how much time has elapsed since processing of the SQL statement
started. This value should be (temporarily) added to the aggregate CPU time for
the current unit of work. If the time limit is exceeded, the exit issues a return code
to halt query processing.

The CPU resource governor exit uses an AVA interface, which is more complex
than a custom interface like the SAF interface. An AVA interface accommodates
additional call points.

If the exit returns a non-zero return code, the query processor task terminates
execution of the current query, and the return code issued by the exit is returned to
the client application.

CPU resource governor exit: termination:

The termination function performs any termination processing necessary, and frees
any resources it has allocated. The termination function is called during query
processor task termination processing when the user disconnects from the service
task.

Workload Manager exit
The WLM exit tracks units of work and manages that work in goal or
compatibility mode.

The Workload Manager (WLM) exit is used to interface with the z/OS Workload
Manager.

176 Guide and Reference

A unit of work is the execution of an SQL statement that a client application issues.
Table 25 on page 170 identifies the different types of SQL statements that a client
application can issue. When the client issues one of these SQL statements, that user
has control of the query processor service thread for the period that the query
processor takes to service that SQL statement.

The WLM exit supports most of the parameters accepted by the IWMCLSFY macro
in order to identify the service class that will be used to manage and/or report on
the individual units of work. The WLM exit classifies these units of work based on
the query processor service definition during query processor TCB initialization
processing. Therefore, all users being serviced for a data source are managed in the
same service class. Exit points are available at the user connection level that enable
a customized exit to manage individual users of a query processor service, but the
WLM exit performs no processing at these exit points.

Required: The WLM macros require that you execute the WLM exit from an
APF-authorized load library. Therefore, the data server and all associated load
modules must also reside in an APF-authorized load library.

Activating the WLM exit
The Workload Manager exit reports unit-of-work activities and manages queries in
WLM goal mode.

Before you begin
v Install the product, perform initial configuration customizaiton, and verify the

installation and configuration using the sample application and data.
v Include the WLM exit load module (CACSX06) in the load library that the data

server is using. Based on the previous examples, the WLM exit must be in an
APF-authorized library (SCACLOAD).

v Ensure that the data server JCL references the APF-authorized library in the
STEPLIB DD statement where the WLM exit is located (SCACLOAD). Ensure
that any other data sets referenced in the STEPLIB DD statement are also
APF-authorized.

About this task

The WLM exit is activated by defining the WLM service. The WLM exit must be
able to handle all of the users accessing the data server concurrently.

Procedure
1. Define the WLM service during the installation customization process by

specifying the parameters in the WLM section of the customization
parameters file.
Otherwise, you can define the service by using the Classic Data Architect to
add the service or with the MTO ADD command as shown in the following
example:
ADD,CONFIG,SERVICE=WLMSERV,SERVICECLASS=WLM

2. The following guidelines apply to defining values for some of the
configuration parameters for the WLM service.

Exit name
Specifies the name of the WLM exit to be invoked. The WLM exit
name is CACSX06. Any parameters that the exit needs can be
specified in the task data field (after the exit name). The exit name
and its input parameters must be separated by a space or comma.

Chapter 4. Administering 177

SUBSYSTYPE
It is preferable to define a subsystem type to WLM. SUBSYSTYPE can
be up to four bytes in length and must conform to WLM subsystem
types. Modify the subsystem type to a type that is valid on your
system. Examples are: IMS, CICS, JES, and STC. If the address space
of the query processor is a started task, STC might be a good choice.

SUBSYSNAME
This name and the subsystem type are used to connect to WLM and
classify work received. Using IMS as an example:

SUBSYSTYPE=IMS SUBSYSNAME=IMSA

The WLM service cannot be stopped if any query processor services
are active. When the WLM service is stopped, the address space-level
control block is freed. During normal shutdown, the data server stops
tasks in LIFO (last-in, first-out) sequence. The WLM service must be
defined before any query processor services to allow the WLM service
to terminate after all query processor tasks have completed
termination processing.

a. Uncomment the WLM service definition and supply the following sub
parameters in the task data field. Parameters are specified using a
keyword=value format and are comma delimited.

Exit name
Specifies the name of the WLM exit to be invoked. The WLM exit
name is CACSX06. Any parameters that the exit needs can be
specified in the task data field (after the exit name) on the WLM
service definition. The exit name and its input parameters must be
separated by a space or comma.

SUBSYS=xxxx
Specifies the generic subsystem type under which the unit of work
is reported in WLM. It is preferable to define a subsystem type to
WLM. The SUBSYS type can be up to four bytes in length and
must conform to WLM subsystem types. Modify the subsystem
type to a type that is valid on your system. Examples are: IMS,
CICS, JES, and STC. If the address space of the query processor is
a started task, STC might be a good choice.

SUBSYSNM=xxxxxxxx
Specifies the name of the subsystem that the unit of work is
reported under in WLM. The SUBSYSNM name can be up to eight
bytes in length. This name and SUBSYS (subsystem type) are used
to connect to WLM and classify work received. Using IMS as an
example:

SUBSYS=IMS SUBSYSNM=IMSA

The WLM service definition must come before any query processor
service definitions. Failure to do so will result in a S0C4 abend
when the data server is stopped. Additionally, the WLM service
definition cannot be stopped if any query processor services are
active. If the WLM service is stopped and a query processor
service (task) is active, a S0C4 abend occurs when the query
processor task is stopped. These abends occur when the WLM exit
is called during WLM service initialization processing, which
allocates and references an address space-level control block when
the WLM exit is called from a query processor task. When the
WLM service is terminated, the address space-level control block is

178 Guide and Reference

freed. During normal shutdown, the data server terminates tasks
in LIFO (last-in, first-out) sequence. The WLM service definition
must be defined before any query processor service definitions to
allow the WLM service to terminate after all query processor tasks
have completed termination processing.

b. Save your changes.
3. Edit the service configuration member SCACCONF member CACSWLM.

a. Uncomment the WLM UOW parameter and specify any desired
subparameters. Subparameters are specified using a keyword = value format
and are comma delimited. The following optional subparameters are
supported by the WLM exit:

ACCTINFO=xxx...
Specifies accounting information. A maximum of 143 characters of
accounting information can be supplied. The default is
NO_ACCTINFO.

COLLECTION=xxx...
Specifies a customer-defined name for a group of associated
packages. The maximum collection name that is supported is 64
characters long. The default is NO_COLLECTION.

CORRELATION=xxx...
Specifies the name associated with the user or program creating
the work request, which resides within the network. The
maximum correlation name that is supported is 64 characters long.
The default is NO_CORRELATION.

LUNAME=xxxxxxxx
Specifies the name of the local LU name associated with the
requestor. The maximum LU name is 8 characters long. The
default is NO_LUNAME.

NETID=xxxxxxxx
Specifies the network identifier associated with the requestor. The
maximum identifier is 8 characters long. The default is
NO_NETID.

PACKAGE=xxxxxxx
Specifies the package name for a set of associated SQL statements.
The maximum package name is 8 characters long. The default is
NO_PACKAGE.

PERFORM=xxxxxxxx
Specifies the performance group number (PGN) associated with
the work request. If specified, the performance group number
value must be within the range of 1-999, represented as character
data, left-justified, and padded with blanks. The default is
NO_PERFORM.

PLAN=xxxxxxxx
Specifies the name of an access plan for a set of associated SQL
statements. The maximum plan name is 8 characters long. The
default is NO_PLAN.

PRCNAME=xxxxxxxxxxxxxxxxxx
Specifies the name of a DB2 stored procedure associated with the
work request. The maximum name that can be supplied is 18
characters long. The default is NO_PRCNAME.

Chapter 4. Administering 179

PRIORITY=nnnnnnnnnn
Specifies the priority associated with the work request. The
priority is specified as a decimal number. The maximum permitted
value is 2147483647. The default is NO_PRIORITY (x80000000).

SUBSYSPM=xxx...
Specifies character data related to the work request. This
information is passed to the workload manager for use in
classification. A maximum of 64 characters of information can be
supplied. The default is NO_SUBSYSPM.

TRXCLASS=xxxxxxxx
Specifies a class name within the subsystem that the workload
manager recognizes. The maximum transaction class name that can
be supplied is 8 characters long. The default is NO_TRXCLASS.

TRXNAME=xxxxxxxx
Specifies a transaction name for the work request that the
workload manager recognizes. The maximum transaction name
that can be supplied is 8 characters long. The default is
NO_TRXNAME.

b. Save the service configuration member.

Restriction: In WLM goal mode, a maximum of 254 characters of input
parameters can be specified on the WLMUOW configuration parameter.
The priority for units of work should be less than VTAM and IMS. The
discretionary goal might result in very slow response times. Performance
periods allow you to define a high number of service units for short
transactions and a smaller number for long-running transactions.
See the z/OS documentation about workload management for information
about how to define service classes and classification rules.

4. Start the data server.
v If the data server is already running start the WLM service, restart the

query processor service for data source CACSAMP using the MTO
interface.

5. Uncomment the SELECT statements in SCACSKEL member CACSQL that
reflect the data source you are using.
a. Ensure that the user ID is authorized to access the table that is referenced

in the query.
b. Save your changes.

6. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to reference
the SCACSAMP member CACSQL, and save your changes.

7. Start RMF™ data gathering if it is not already active.
a. Enter START RMF from the system console.

See z/OS documentation for information on using RMF.
b. Start data gathering with Monitor III ISPF panel from TSO.

8. Start the RMF Monitor III report before you start the sample query. This
report processes data written to VSAM data sets by RMF.
a. Access RMF Monitor III interactively from an ISPF panel.

The SYSRTD report option reports response time distribution by service
class and period. You should see the query response time in this report by
the service class you selected.

9. Submit CACCLNT and review the output.

180 Guide and Reference

The query should function normally and return the expected result set.
A snapshot of how WLM is managing this workload can be obtained by
running the RMF postprocessor workload activity report during execution
while the sample is running.

10. Run the RMF Monitor II interactive report.
a. Enter RMF from a TSO session.
b. Select option 2 for RMF Monitor II from the menu.

This report displays the activity only as it occurs, so the query must be a
long one to see its activity.

11. Optional: Run the SYSSUM Sysplex summary report.
This report shows goals versus actual for service class periods when the
system is in goal mode.

WLM exit: API overview
This API passes fields in a parameter list to the Workload Manager exit. The table
lists and describes the fields.

The parameter list passed to the WLM exit uses an AVA (Access Validation and
Accounting) interface and is mapped by the macro CACSXPL, which is found in
the SCACMAC library. The AXPLFUNC field indicates the function you are
calling:
v Initialization
v Management and reporting
v Termination

Table 27. WLM exit fields and descriptions

Field Description

&DSECT=YES Controls whether a DSECT definition is generated or whether the fields are
generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal storage area
of the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Words available for CPU Resource Governor exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is
completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

Chapter 4. Administering 181

Table 27. WLM exit fields and descriptions (continued)

AXFNVALI EQU 4 Management and Reporting.

AXFNTERM EQU 8 Termination.

WLM exit: initialization
This function performs initialization processing and allocates any storage or other
resources that are required for subsequent processing. The initialization function is
called by the WLM initialization service during data server address space
initialization.

The AXPLTEXT parameter points to any additional parameters that were specified
in the TASKPARM configuration parameter. The AXPLTXTL parameter identifies
the length of the input parameters. If no parameters are supplied, the AXPLTEXT
and AXPLTXTL field values are zero.

The WLM exit might be called multiple times to perform initialization and
termination processing, if the WLM initialization service is stopped and then
restarted using the MTO Interface.

The exit also registers itself with WLM and receives a WLM token that the exit
passes on subsequent calls. You can place a pointer to the anchor for these
resources in the AXPLUSER field of the parameter list. This pointer is preserved
and passed to the exit on subsequent invocations. Upon initialization, the contents
of the other fields in the parameter list are indeterminate.

The AXPLUSER field consists of three fullwords that the exit can store anchor
blocks in. The intent is to allow the exit to store an anchor for address-space-level
storage acquired during initialization processing. The second fullword should be
used to store an anchor block for storage that was acquired during query processor
service initialization. This storage is TCB-level storage and should be allocated for
each instance of a query processor service. The third fullword is available if the
exit needs to allocate additional storage to manage an individual user.

When the exit is called to perform TCB initialization the AXPL storage area passed
for initialization processing is cloned and the new copy is passed to the exit. If the
exit stores an anchor block in one of the AXPLUSER fullwords, that address is
local to the TCB being serviced. Similarly, when the exit is called to service a
connection request, a copy of the TCB-level AXPL storage area is cloned and the
new copy is passed to the exit. This copy is passed on subsequent calls to the exit
to service individual SQL statements issued by the client application.

If the exit returns a non-zero return code, the WLM initialization service is
terminated and a message written to the log. No additional call will be made to
the WLM exit.

WLM exit: management and reporting
This overview lists the processing points where WLM exit management and
reporting functions can be called and the type of processing they perform.

The WLM exit is called at predetermined AXPLETYP, AXPLESUB and AXPLESEQ
processing points.

182 Guide and Reference

TCB initialization and termination:

The WLM exit initialization and termination functions perform TCB-level
initialization and termination processing.

The WLM exit is called with an AXPLETYP value of 1 (AVAETCB) during query
processor initialization and termination for each query processor TCB.

The AXPLESUB field identifies whether the exit is being called for:
1. Initialization processing (TCBINIT) or
2. Termination (TCBTERM).

The AXPLTEXT field contains a pointer to the WLM UOW configuration parameter
value. The AXPLTXTL field contains the length of the configuration parameter
input. The AXPLPENV field contains a point to the data source name of the query
processor being activated. The AXPLSQID is blank.

For example, on TCB initialization the WLM exit runs the WLM classify macro
(IWMCLSFY) using the Workload Manager unit of work (WLM UOW) parameters
supplied (if any). The WLM exit then runs the macro IWMECREA to create an
enclave TCB environment. On the IWMECREA macro the FUNCTION_NAME
parameter is set to the first eight characters of the data source name. At TCB
termination the exit issues an IWMEDELE to delete the enclave.

If the exit allocates a TCB-level control block and stores it in the AXPLUSER area
on initialization processing, then this storage must be freed when the exit is called
to perform TCB termination processing.

On initialization processing, if the exit issues a non-zero return code, service
initialization is stopped and the service is not started. On termination processing,
the return code is ignored and normal termination process is continued. In either
case, the return code value is logged.

The TCB initialization call is actually deferred until the first user connects to a
query processor task. This allows the exit to perform the IWMCLSFY and
IWMECREA calls and not violate the WLM recommendation that these two calls
should be issued in rapid succession followed by an IWMEJOIN call to associate a
unit of work with the enclave. Because these calls are not issued when a query
processor task is physically started (only when the first user connects), the user
typically issues an SQL request immediately, which causes an IWMEJOIN call to be
issued.

The exit might defer creating an enclave environment until a user connect call is
issued (discussed next). However, if the query processor is running in multi-user
mode (Max. Users greater than 1) the exit has to manage context switches between
users when the client application issues SQL statements.

User connect and disconnect:

The WLM exit functions described in this document perform user-level processing
when you connect or disconnect from a query processor service.

The WLM exit is called with an AXPLETYP value of 2 (AVAEUSR) when a user
connects or disconnects from a query processor service. The AXPLESUB field
identifies whether the exit is being called for connect processing (CONNECT) or
disconnect processing (DISC).

Chapter 4. Administering 183

The AXPLTEXT field contains a pointer to the WLMUOW configuration parameter
value. The AXPLTXTL field contains the length of the configuration parameter
input. The AXPLPENV field has a value of zero. The AXPLSQID contains the user
ID of the user connecting to or disconnecting from the service.

The sample exit does not perform any processing for these call points.

If the exit issues a non-zero return code on initialization processing, the user is
disconnected from the service and the return code is returned to the client
application. On disconnect, the return code is ignored and all user related
resources are freed, however, the return code is returned to the client application.
In either situation, the WLM-generated return code is logged.

SQL statement processing:

The WLM exit performs any required actions to manage the unit of work that the
SQL statement represents. For example, the WLM exit treats each SQL statement as
a single unit of work and joins the enclave before the SQL statement is processed,
then leaves the enclave after the statement has completed processing.

The AXPLESEQ field identifies whether the exit was called before (AXPLEBEF) or
after (AXPLEAFT) the query processor has processed the SQL statement. The user
has control of the query processor TCB (thread) for the duration of the SQL
request. If running in multi-user mode, another user can be serviced on the next
SQL statement received by the query processor. The WLM exit is called with an
AXPLETYP value of 3 (AVAESQL) when a client application issues an SQL
statement. The AXPLSQID field contains the user ID of the client issuing the SQL
statement.

The duration of an SQL statement varies based on the type of SQL statement being
issued and other configuration parameter values. The configuration parameter that
has the most impact is PDQ. When PDQ is not active or when a query cannot be
processed in PDQ mode, then the OPEN SQL statement will execute the longest
because the entire result set is staged for fetch processing. In these instances any
describe, fetch, and close cursor requests will execute very quickly. When running
in PDQ mode the work is more evenly distributed between the open and the
fetches because the result set is incrementally built based on the number of rows
that can fit into the result set buffer.

If the exit issues a non-zero return code, processing for the query is stopped and
the return code is returned to the client application. The application can still issue
another SQL request. There are situations where the exit-generated return code will
not be reported to the client. This occurs when the exit is called to perform after
processing, but an error code has been reported by another exit or generated by
the system. In these cases the original error code takes precedence. In either case,
the WLM-generated return code is logged.

WLM exit: termination
The WLM exit termination function performs any required termination processing
and frees allocated resources. The function is called during WLM termination
processing, before the data server address space is shut down.

If the exit allocated an address space level control block and stored it in the
AXPLUSER area, that storage must be freed.

184 Guide and Reference

The WLM exit can be called multiple times to perform initialization and
termination processing, if the WLM initialization service is stopped and then
restarted using the MTO Interface.

DB2 thread management exit
The DB2 thread management exit enables you to validate clients before you
establish connections to DB2 using CAF and control the duration of these CAF
connections.

The DB2 thread management and security exit modifies the default behavior of
connecting to and disconnecting from DB2. In addition, the thread management
exit performs SAF calls to validate the user ID of the client and establishes the
correct primary authorization ID for the client in DB2.

The DB2 thread management exit issues RACROUTE calls and must be run from
an APF-authorized library. Additionally, when issuing the RACROUTE calls, the
exit enters key zero supervisor state. The exit reverts back to user key problem
state immediately after each RACROUTE call returns.

The DB2 thread management exit runs under the DB2 Call Attachment Facility
(CAF) service in the data server. The CAF service runs as a z/OS subtask under
the data server, whose sole responsibility is to create and manage CAF connections
to DB2. One instance of the subtask is required for each concurrent DB2 user.

Required: A minor modification to the DB2-supplied authorization exit
DSN3SATH is required to establish the correct primary authorization ID in DB2.

By default, connections to DB2 itself using CAF are created when a client connects
to DB2 and remains active until the data server is shut down. While this
maximizes re-usability of the DB2 connections, the DB2 primary authorization ID
for all connections is based on the data server’s started task or job name. In many
cases, this level of security checking will not be adequate for your particular
installation.

After activation, the DB2 thread management and security exit is invoked to
perform the following functions:
v Initialization is called once at initial subtask start up.
v Client Connection is called each time a new client has acquired the CAF subtask.
v Another Connection to DB2 is called after each attempt is made to connect to

DB2.
v Client Disconnection is called each time a client has released its connection to

the CAF subtask.
v Termination is called once at subtask termination.

The exit CACSX07 performs the following functions at each of these invocation
points:
v Initialization requires no processing. The exit returns a successful return code.
v Client Connection validates that the user ID and password for the incoming

client are valid using a SAF call and establishes an ACEE control block for the
TCB so the DB2 identified authorization exit can establish the correct primary
authorization ID prior to requesting a connection to DB2.

v After Connection to DB2, the exit deletes the ACEE that was established when
the client connection request was issued.

v Termination requires no processing. The exit returns a successful return code.

Chapter 4. Administering 185

Activating the DB2 thread management exit
When you configure the DB2 thread management exit you can validate clients
prior to connecting to DB2 using CAF and control the duration of the connections.

Before you begin
v Install the data server, perform initial configuration customization, and verify

the installation and configuration.
v Ensure that the DB2 thread management exit load module CACSX07 is in an

APF-authorized library (SCACLOAD).
v Ensure the data server JCL references the APF-authorized library in the STEPLIB

DD statement where the DB2 thread management exit is located (SCACLOAD).
Also ensure that any other data sets referenced in the STEPLIB DD statement are
also APF-authorized.

Procedure
1. Edit the sample exit in SCACCONF member CACSX07.
2. Define values for the THREADMGMTEXIT configuration parameter on the

CAF service.
3. Update the DB2-supplied sample identify authorization exit DSN3SATH and

insert the assembler logic, found immediately before the label SATH019 in the
SCACSAMP member CACSXDSN.

4. Reassemble the identity authorization exit DSN3SATH.
//*DSN3ADD PROVIDE VALID JOB CARD
//*
//DSN3ADD PROC CAC=’CAC’, CAC HIGH-LEVEL QUAL
// DB2=’DB2’ DB2 HIGH-LEVEL QUAL
//ASSEMBLE EXEC PGM=ASMA90,PARM=’LIST,NODECK,RENT’
//SYSLIB DD DISP=SHR,DSN=&DB2..MACLIB
// DD DISP=SHR,DSN=&DB2..ADSNMACS
// DD DISP=SHR,DSN=&DB2..AMODGEN
// DD DISP=SHR,DSN=&CAC..SCACMAC
//SYSLIN DD DISP=SHR,DSN=&&TEMP
//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(1700,(2000),,,ROUND)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DISP=SHR,DSN=&DB2..ASM(DSN3SATH)
//*
//LINK EXEC PGM=IEWL,COND=(4,LT),
// PARM=’LIST,OL,RENT,REUS,AMODE=31,RMODE=ANY’
//SYSLIN DD DISP=SHR,DSN=&&TEMP
// DD *

NAME DSN@SATH(R)
//SYSLMOD DD DISP=SHR,DSN=&DB2..SDSNEXIT(DSN@SATH)
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(120,120),,,ROUNT),DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//

5. If your DB2 SDSNEXIT library is in the z/OS linklist, refresh the linklist with
the z/OS F LLA,REFRESH command.

6. Start the data server.
v If the data server is already running, restart it.

7. Verify the exit is working correctly by running a client that issues DB2 queries.
v While the client is active, you can view the client's connection to DB2 by

issuing the DB2 command -DIS THD (*) from a z/OS console or SDSF.

The z/OS LOG output from the command should display the data server as
the ID of the thread owner and the client-supplied user ID as the primary
authorization ID.

186 Guide and Reference

Customizing the DB2 thread management exit
Customizing the DB2 thread management exit enables you to validate clients and
control the duration of CAF connections.

If your installation has special processing requirements that can be addressed by a
DB2 thread management exit, you can update the exit IBM delivers or create a
custom exit of your own. The following table describes the DB2 thread
management parameter list and processing options for developing your own
custom DB2 thread management exit.

The DB2 thread management exit is called to perform the following functions:
v Initialization: Each time a new DB2 CAF service is started from the region

controller, an initialization call is made to perform any one-time initialization
processing for the started task. If your exit must allocate any storage for use
throughout the life of the task, your exit can allocate the storage in this call and
place the address of that storage in the user field DB2TUSRW supplied in the
exit parameter structure.

v Client Connection: Called each time a new client has acquired a CAF subtask.
Typically, this call is made immediately before connecting to DB2 on behalf of
the client. The one exception is when the exit is set to leave connections to DB2
active even when clients disconnect.

v After Connection to DB2: Called after each attempt is made to connect to DB2.
This call is made regardless of whether the connect was successful. The
parameters field DB2STAT indicates whether the connection attempt was
successful.

v Client Disconnection: Called each time a client has released its connection to the
CAF subtask.

v Termination: Called once at subtask termination. If you allocated any exit
memory at initialization, this is when it needs to be freed.

The parameters listed in the following table are located in the PDS member
CACSXPL7 of the SCACMAC library:

Table 28. DB2 thread management exit parameters

Field Description

DB2TUSRW Initialized to binary zeros prior to the
initialization call and left unchanged after
that point in processing. Use of this field is
determined by the user exit.

DB2TUSRP Points to a NULL terminated user parameter
as defined on the service definition for the
DB2 CAF task. This parameter includes any
text included after the exit name itself in the
task data field. For example, to pass the
string USERPARM to the exit from the
service definition, the task data for the exit
is:

CACPLAN,CACSX07 USERPARM

Chapter 4. Administering 187

Table 28. DB2 thread management exit parameters (continued)

Field Description

DB2TSSN Points to the four-character subsystem name
as defined in the Service Name field of the
service definition the task. In most cases, this
field is for informational purposes only.
However, the exit can change this field on
client connection calls to designate a new
subsystem to connect to, if necessary. If this
field is updated, it will remain updated until
the thread disconnects from DB2. At that
point, it will be changed back to its original
service information entry value.

DB2TPLAN Points to the 8-character DB2 PLAN name as
defined in the Task Data field of the service
definition for the task. In most cases, this
field is for informational purposes only.
However, the exit can change this field on
client connection calls to designate a new
DB2 PLAN to open a DB2 connection. If this
field is updated, it remains updated until the
thread disconnects from DB2. At that point, it
is changed back to its original service
definition value.

DB2TUID Points to the user ID provided by the client
when the client connected to the data server.
This field is binary zeros on initialization and
termination calls, as no user is available
when these calls are issued. This field is for
reference purposes only and must not be
changed by the exit.

DB2UPWD The DB2UPWD field points to the user
password provided by the client when it
connected to the data server. This field is
binary zeros on initialization and termination
calls, as no user is available when these calls
are issued. This field is used for reference
purposes only and must not be changed by
the exit.

DB2TSTAT The DB2TSTAT field identifies whether a
current CAF connection exists to DB2. This
field is used for reference purposes only.

DB2TFUNC The DB2TFUNC field identifies the function
of the call as described previously. Defined
values for this field are:

v DB2TINIT: Initialization function

v DB2TCCON: Client Connection function

v DB2TDB2C: DB2 Post Connection/Plan
Open function

v DB2TCDIS: Client Disconnect function

v DB2TTERM: Termination function

188 Guide and Reference

Table 28. DB2 thread management exit parameters (continued)

Field Description

DB2TRFNC The DB2TRFNC field can be used by the exit
to:

v Explicitly request connection or
reconnection to the DB2 subsystem.

v Explicitly request disconnection from the
DB2 subsystem.

v Notify the system that a user ID or
password validation error has occurred.

The field is used to alter the default DB2
subsystem connection and disconnection
behavior in the DB2 CAF service. The
default behavior is to connect to DB2
when the first user requests DB2 access
and disconnect from DB2 at data server
shutdown. The exit should set this field on
each call to one of the following values:

v DB2TRDFL: Do default connection
processing

v DB2TRCON: Connect to DB2. If a
connection already exists, terminate that
connection and create a new connection
using the subsystem and plan name in the
fields DB2TSSN and DB2TPLAN. This
value is valid for Initialization and Client
Connection functions.

v DB2TRDIS: Disconnect from DB2 if a
connection exists. This value is valid for
the Client Disconnect function.

v DB2TRUER: User or password information
is invalid. This value can be returned on
the Client Connection function to return an
Access Denied error to the requesting
client.

The return code (register 15 value) for successful completion of the user exit
should always be set to 0. Any other value causes an error message to be returned
to the requesting client.

Activating a customized exit

You can follow the instructions for activating the DB2 thread management exit to
activate your customized exit with the following modifications:
v Replace the system default exit name CACSX07 with the name of your

customized exit.
v If your exit does not create a TCB level ACEE for the DB2 primary authorization

ID setting, skip the instructions for updating and reassembling DSN3SATH.

Record processing exit
Use the record processing exit to modify the characteristics of a record to meet
specific processing requirements. These requirements might include modifying
record data or calling external programs.

Chapter 4. Administering 189

Purpose

The record processing supports the following activities:
v Modifying VSAM records before publishing
v Compressing, decompressing, encrypting, and decrypting VSAM records
v Query filtering
v Calling external programs
v Processing sequential files

While it is possible to filter VSAM records with the record processing exit, it is best
to define views on your tables for this purpose. See the topics “Creating native
VSAM tables and views for change capture” and “Creating CICS VSAM tables and
views for change capture”.

Programming considerations

A sample exit, CACSX08, is supplied in the sample library. The exit must be
re-entrant, AMODE(31), RMODE(ANY). Registers must be saved on entry and restored
on exit. The exit performs initialization, processing, and termination functions.
Errors in the exit routine might affect the operation of the product as a whole.

The exit can be written in any language, so consider the performance of the chosen
language because the data server calls the exit for each record.

Register contents at entry to the exit routine are as follows:
v R1 contains a pointer to a parameter list
v R13 points to a register save area in standard format
v R14 contains the return address
v R15 contains the entry point of the routine

Restore all other registers upon return from the exit. For information about input
parameters, see the topic “Input parameters for the record processing exit”.

If you make changes to the exit, you must stop and restart the data server before
the changes take effect.

Input parameters for the record processing exit
Programs that call the record processing exit pass address pointers to the
parameters listed in the table.

Table 29. Record processing exit input parameters

Field Description Length

Function INIT, UPDATE, PROCESS, or TERM. These
values are padded on the right with spaces.

7 bytes

Table description Name of the table being processed. 18 bytes

Input record Record that was read.

Input record length Length of the input record. Binary fullword

Output record Record that the application is to process.

Output record length Length of the output area. Binary fullword

190 Guide and Reference

Table 29. Record processing exit input parameters (continued)

Field Description Length

Return code Completion code of the exit call. A return
code set to zero indicates processing
completed normally. A return code less than
zero terminates the query. A return code
greater than zero skips processing of the
current record and reads the next record.

Binary fullword

User word A word passed to the exit that can be used
to anchor additional information.

Binary fullword

Record processing exit: initialization
Initialization processing can acquire any required system resources, such allocating
persistent memory or calling and initializing a decompression routine.

When the data server opens a table, the initialization function acquires the
resources that your environment needs for later processing. Initialization
processing occurs once for each query.

Record processing exit: process
The process function carries out the operations that you want to perform for each
record.

In a Classic federation environment, the record processing exit calls the process
function after the query processor reads a record. The query processor passes the
record to the exit, which then modifies the record and rebuilds it in the output
record area.

The output format of the record must match the metadata grammar that maps the
table.

Record processing exit: termination
The data server calls the termination function when it closes a table, before it
unloads the exit from memory.

The exit releases acquired resources and performs any required clean up tasks.

SQL updates to application data
When you update application data in a secure transaction environment, changes to
data can be aggregated and committed as a single logical unit of work and can
also be rolled back under application control or in the event of unexpected
application errors.

You can use a set of SQL statements to update data and manage transactions. How
each data source processes transactions varies based on the capabilities of the data
source.

Transaction processing
A transaction is a sequence of one or more SQL statements that together form a
logical unit of work. A transaction automatically begins with the first SQL
statement that is run within a client connection to the data server.

Chapter 4. Administering 191

Transactions continue through subsequent SQL statements until one of the
following conditions occur:
v A client COMMIT statement ends the transaction and makes any database

changes permanent.
v A client ROLLBACK statement aborts the transaction and backs out any

database changes.
v A client disconnect occurs that results in a transaction commit.
v An unexpected client disconnect occurs that results in a transaction rollback. In

addition to committing or rolling back changes, all open cursors that are
associated with the transaction are closed and any prepared statements are freed.

After a transaction is completed by a commit or a rollback, a new transaction starts
with the next SQL statement that the SQL client issues.

Some clients support an autocommit mode of processing that makes each SQL
statement its own transaction by automatically issuing an explicit COMMIT
statement after each SQL statement. In applications that require bundling multiple
updates in the same transaction, this feature must be deactivated.

Transaction processing depends on the capabilities of the underlying connectors. In
some cases, the connector does not allow an update because the data source does
not support a method of committing or rolling back database changes.

The CA-Datacom, DB2 for z/OS, and IMS data sources support two-phase commit
capabilities.

In general, it is good practice to issue a ROLLBACK statement when the data
server returns a negative SQLCODE.

Attention: Database transactions automatically lock database resources and
prevent concurrent access to other database users. Applications that issue updates
must keep update transactions as short as possible to avoid contention for database
resources.

SQL update statements
This topic describes the SQL statements used to update application data and
manage transactions in the data server. Each of these statements can be
dynamically prepared and executed or executed immediately by client applications.

With the exception of COMMIT and ROLLBACK, you can run prepared update
statements multiple times within the same transaction.

INSERT
The INSERT statement inserts one or more rows in an application
database.

INSERT statement syntax

��

�

INSERT INTO table-name
,

(column-name)

�

192 Guide and Reference

� �

,

VALUES (constant)
host-variable
NULL
special-register

subselect

��

If you omit the column names from the statement, the values or subselect
list must include data for all columns of the inserted table.

UPDATE
The UPDATE statement updates one or more rows in an application
database.

UPDATE statement syntax

�� UPDATE table-name
correlation-name

�

� �

,

SET column-name = expression
NULL WHERE search-condition

��

DELETE
The DELETE statement deletes one or more rows in an application
database.

DELETE statement syntax

�� DELETE FROM table-name
WHERE search-condition

��

COMMIT
The COMMIT statement commits a transaction and makes any pending
database changes permanent. In addition, all open cursors associated with
the transaction are closed and all prepared statements are freed.

COMMIT statement syntax

�� COMMIT
WORK

��

ROLLBACK
The ROLLBACK statement rolls back a transaction and backs out any
pending database changes. In addition, all open cursors associated with the
transaction are closed and all prepared statements are freed.

ROLLBACK statement syntax

�� ROLLBACK
WORK

��

Chapter 4. Administering 193

SQL updates and mapped tables
Tables that are mapped from nonrelational and relational databases to the metadata
catalog contain some mapping constructs with special meaning that you need to be
aware of when you update mapped tables.

Mappings that contain multiple records
With some connectors, such as IMS and CA-IDMS, you can map multiple records
or segments in a database path to a single logical table in the metadata catalog.
When you update these mappings with SQL update statements, updates are
applied to only the last record that is mapped in the path.

Example: This mapping involves two different record types: EMPLOYEE and
PAYCHECK.
EMPLOYEE RECORD:

SSN CHAR(9)
LAST_NAME CHAR(20)
FIRST_NAME CHAR(20)

PAYCHECK RECORD:
PAY_DATE DECIMAL(8,0)
GROSS_PAY DECIMAL(15,2)
NET_PAY DECIMAL(15,2)
FED_TAX DECIMAL(7,2)
STATE_TAX DECIMAL(7,2)
FICA DECIMAL(7,2)

In this example, an EMPLOYEE_PAY table maps the EMPLOYEE database path to
PAYCHECK. The table also returns each employee record combined with each of
the paycheck records for each employee in a standard SQL query. In the case of an
update call, the updates apply to only the PAYCHECK record.

The following SQL statement inserts a new paycheck record:
INSERT INTO EMPLOYEE_PAY (SSN, PAY_DATE, GROSS_PAY, NET_PAY,

FED_TAX, STATE_TAX, FICA)
VALUES('012339920', 10311999, 4200.00, 3300.00,

800.00, 75.00, 25.00);

In this case, a value is provided for SSN even though the EMPLOYEE record itself
is not updated. For INSERT statements, values that are provided for any records
other than the last record in the mapping are used to qualify the parent or owner
record under which the values are inserted.

These values are treated like foreign keys in a relational database. For example, if
the employee with SSN 012339920 does not exist in a record in the database,
SQLCODE -530 is returned because a nonvalid foreign (positioning) key is
supplied.

Restriction: Inserts with subselects are not supported for multiple-record mapping.

The same concepts apply to UPDATE and DELETE statements. However, because
both UPDATE and DELETE support WHERE clauses, foreign key qualification is
placed in the WHERE clause itself.

For updates, SET statements must not include columns from any record other than
the last record in the mapping. Otherwise, SQLCODE -4903 is returned.

194 Guide and Reference

Positions of inserted records
The position of inserted records is determined by any values that are supplied for
records other than the last record in a mapped database path.

In single record mappings and multiple record mappings where no path
information is supplied, the position of new records is determined by the
underlying database system. Before you permit insert access on a mapped table,
consider the underlying insert behavior to ensure that unqualified insert
positioning by the database produces the desired results.

Record inserts with full and partial mapping
Database record mappings can include columns for all or only part of the
underlying database record. When you insert records that contain partial
mappings, the areas of the database record that are not mapped are initialized to
binary zeros.

In cases where mapped columns from a target database record are omitted from an
INSERT statement, the underlying data in the record is initialized as follows:
v NULL IS specification (if supplied)
v One of the following data type values:

– SPACES for underlying character types
– ZERO for numeric data types
– Binary zeroes for VARCHAR data types

Updates and deletions of database records
The UPDATE and DELETE statements apply changes to all database records that
meet the WHERE clause criteria specified. You need to specify WHERE criteria
correctly, because unqualified updates and deletes change all instances of the target
record in the database.

Updates and NULL records
UPDATE statements only update existing records in the database.

When you retrieve rows for tables that are mapped to multiple database records,
SQL rows are returned even when the last record that is mapped in the table does
not exist in the database within the mapped path. UPDATE statements are not
applied to rows in which the last record is returned as all NULLs due to the lack
of a database record in the database.

Mappings that contain record arrays
SQL updates are not supported on tables that contain record array mappings of
OCCURS clauses. If you need to update records that contain multiple occurrences
of data items, each occurrence must be mapped as a separate column to allow
updates.

Group items and overlapping fields
Do not issue INSERT statements on table mappings that contain group items or
overlapping fields. Inserts on tables that map group items or overlapping fields
can produce unpredictable results due to initialization of unspecified columns in
the underlying database record.

A group item refers to a single data item that is broken down into sub-items. For
example, the group item ZIP-CODE can be subdivided into ZIP-FIRST-5 and
ZIP-LAST-4 with the following COBOL definition:

Chapter 4. Administering 195

05 ZIP-CODE.
10 ZIP-FIRST-5 PIC X(5).
10 ZIP-LAST-4 PIC X(4).

Unpredictable results are likely to occur when overlapped columns are defined
with different SQL data types.

Update processing recommendations
When you set up update processing, consider using separate table mappings to
define security and using the NULL IS parameter to define the string length for a
column.

Usually, separate table mappings for update purposes are better than general
mappings for both query and update. You should secure non-update mappings to
prevent accidental use of those mappings for update.

When specifying NULL IS on columns in an update table, the NULL IS value
should be the same length as the underlying database field to ensure proper
initialization on INSERT.

Adabas updates
When you make SQL updates to Adabas data sources, use NISNHQ for large
transactions.

If a single query updates a large number of records, ensure that the Adabas
parameter NISNHQ is large enough to handle the number of records.

DB2 for z/OS updates
When you make SQL updates to DB2 for z/OS data sources, ensure you set up the
appropriate authorization.

If you run the DB2 thread management exit, you must grant DB2 table update
authority to each user ID that connects to the data server. Otherwise, you need to
grant update authority to the data server task.

If an authorization problem causes DB2 to return an error, SQLCODE-9999 is
returned with a message that the DB2 error is in the SQLEXT field. The SQLEXT
field contains the value E551 that indicates a -551 error.

CA-Datacom updates
For CA-Datacom to support the rollback of transactions that update your source
data, you need to configure your CA-Datacom data source.

About this task

You can specify INSERT, DELETE, or UPDATE statements to update CA-Datacom
tables. To modify a table, the User Requirements Table in use when the update
occurs must allow modifications to the specified table. You need to include the
parameter UPDATE=YES on the DBURTBL macro for the table being modified.

SQL modification subsequently requires either a commit or rollback to delineate a
unit of recovery. The commit or rollback can be explicit or implicit. The program or
script that is run can issue an explicit COMMIT or ROLLBACK. The database
generates an implicit COMMIT at the normal end of the process. The database
generates an implicit ROLLBACK at the abnormal end of the process.

196 Guide and Reference

Enabling the rollback requires several additional steps.

To enable rollback in CA-Datacom, perform the steps in the following procedure.

Procedure
1. Enable the CA-Datacom logging system.
2. Identify the tables that are candidates for transaction backout. Transaction

backout requires logging of all update (INSERT, DELETE, and UPDATE)
transactions that affect a specific table.

3. Specify LOGGING=YES in the CA-Datacom Data Dictionary for all tables
identified in the previous step, and catalog the definitions to the CA-Datacom
Directory (CXX).

4. Specify TXNUNDO=YES in the DBURSTR macro for all User Requirements
Tables used by programs that require transaction backout.

5. Assemble and link-edit all affected User Requirements Tables.

What to do next

To verify the that the rollback is successful, you must issue an SQL statement to
modify (INSERT, DELETE, or UPDATE) a CA-Datacom table, and then issue an
explicit ROLLBACK statement. The ROLLBACK process issues message DB00103I
that contains a return code value on the system log. Return code RC=Y indicates
that the rollback completed successfully after backing out modified data.

Another way to verify the rollback is to query (SELECT) the row before
modifications and after the ROLLBACK and compare the results. The rows should
be identical.

CA-IDMS updates
With the CA-IDMS data connector, you can update CA-IDMS data by issuing
standard SQL update statements to the data server.

Updates that are issued to CA-IDMS mapped tables apply to only the last record
that is mapped in the database path.

Navigating CA-IDMS records requires the data server to issue the CA-IDMS
@READY command for all database areas needed to access the CA-IDMS records
mapped in the table. The CA-IDMS records mapped in the table and the system
indexes defined for the first and last CA-IDMS records in the mapping determine
the areas readied for processing a mapped table.

Updates of CA-IDMS data
An update to a CA-IDMS table results in an @MODIFY of the last record type
mapped in the table. CA-IDMS processes a modify by implicitly updating any set
connections for the modified record.

Inserts of CA-IDMS data
An insert to a CA-IDMS table results in an @STORE of the last record type that is
mapped in the table. CA-IDMS processes a store operation by implicitly connecting
the stored record to all sets in which the record is defined as an automatic member.

To automatically connect stored records, a record position for each owner record
type must be established for each automatic set to which the stored record belongs.

Chapter 4. Administering 197

If more than one record is mapped in the path, and if the last record is a member
of multiple automatic set relationships (common in junction records), every
OWNER record of the last record must be mapped in the defined path. In
addition, define the set names among all records in the path as _NONE_ so that
positioning occurs for each OWNER record independent of whether the record
belongs to any particular set.

Owner records are positioned by searching for the first owner record that matches
insert values provided for columns defined in the owner record. You must be
careful about providing enough qualification information to uniquely identify the
correct owner of the record to be inserted. Otherwise, the resulting owner assigned
might not be the owner intended.

When mapping owner records, elements that make up the CALC key of each
owner record must be mapped for positioning purposes. Specify CALC KEY
mapped elements in the INSERT clause to prevent area scans from occurring when
you position owner records. Other elements can also be mapped for positioning
qualification purposes, if necessary.

The order of owner records in a table mapped for insert purposes is not relevant.
However, if an owner record lacks a CALC key and has a usable system index for
positioning purposes, that owner should be the first record in the mapping. The
use of system indexes is supported in the first record of a mapping only.

Attempts to insert records without establishing required automatic owner positions
results in SQLCODE 0x005700F7.

Before you attempt to issue an INSERT statement to insert CA-IDMS records,
review the CA-IDMS schema definition of the candidate record to determine the
sets for which the record is an automatic member.

Important: You should use tables mapped with a set relationship of _NONE_ for
SQL INSERT only. Querying these tables produces a Cartesian product of every
instance of the owner record type with every instance of the member record type.
You can use SQL security to prevent accidental use of these tables for purposes
other than inserts.

Delete considerations
A delete from an CA-IDMS table results in an @ERASE PERMANENT of the last
record type that is mapped in the table. CA-IDMS automatically cascades the
ERASE statement to members of mandatory sets and disconnects members of
optional sets when CA-IDMS issues this type of ERASE.

You might not be able to delete some records in the schema due to the number of
set relationships they participate in and the amount of cascading that is needed to
accomplish the delete.

IMS updates
The IMS connector supports updates to IMS data by issuing standard SQL update
statements to the data server. Updates that are issued to IMS-mapped tables apply
to only the leaf segment that is mapped in the database path.

IMS updates are supported in both the DRA (DBCTL) and DBB/BMP access
modes. However, in DBB/BMP mode, you must manage updates. DBB/BMP mode
requires update management because:

198 Guide and Reference

v Client connections attempting an update enqueue the whole PSB for update
purposes.

v The same client connections lock out IMS access for all other users.

Users that are locked out of the PSB receive SQLCODE -9999 and the error
message: ALL PCBS are in use. To avoid lock outs, use DRA mode for updating
IMS data.

If you plan to update IMS databases in DBB mode, the data server requires these
configurations:
v An IMS database log (IEFRDER) that is allocated to disk storage
v The IMS BKO parameter set to Y in the data server JCL

These configurations allow database changes to be backed out in the event of a
client rollback request. If a DBB is started without database backout support,
attempts to update the database fail with SQLCODE -5701659 and the message:
Update not supported by connector.

IMS can change the JOBSTEP name for a data server when the data server runs
IMS access with an IMS log file. In this case, operator console commands to the
data server must be issued to the JOBSTEP name that is created by IMS. Because
the DBB data server allocates the databases, the user ID that is associated with the
data server requires CONTROL authority in RACF.

Attention: Do not update an IMS database that accesses the DBD through a
secondary index, especially in the case of an inverted hierarchy.

IMS and PSB
To create PSBs for use with data servers, you must complete planning that is
similar to PSB definitions for any IMS batch or online applications.

Unlike batch or online programs in which database and segment sensitivity and
access options are based on a specific application program, the following factors
determine PSB requirements for a data server:
v DBB versus DRA access
v Table mappings (segment sensitivity)
v Join requirements for one or more databases
v Query and update requirements within a data server transaction (PCB

PROCOPT)

If you plan to access IMS data by using DBB or BMP access, the access PSB must
have enough PCBs to support all users of the data server who access the database
at a single point-in-time. In general, the number of PCBs required for each
database must minimally equal the maximum number of query processor services
that run in the data server at any point in time.

Restriction: An IMS PSB defined with the PSBGEN option LANG=PL/I prevents access
to an IMS table. The valid options are LANG=ASSEM or LANG=COBOL.

IMS single transactions and PSBs

If your application needs to issue both query and update requests to IMS
databases in a single transaction, all mapped tables must be accessible through a
single PSB.

Chapter 4. Administering 199

Queries that occur after an update request automatically use the scheduled update
PSB to access the IMS data. If a PCB that is needed to satisfy the query request is
not found, SQLCODE -9999 is returned with the message: Cannot access a PCB
for the database requested.

PCB processing options for IMS data

When you map tables for IMS updates, verify that all PSBs that are defined in the
mapping include the correct PCB processing options to insert, update, and delete
IMS segments. Failure to do so results in -9999 errors and the message: Unexpected
IMS status code received.

VSAM updates
The same database functions are performed to access and modify CICS VSAM and
native VSAM data. Like direct access to VSAM data sources, you can select, insert,
update, and delete from a CICS VSAM data source.

Classic federation supports the following VSAM file types:
v Entry-sequenced data set (ESDS)
v Key-sequenced data set (KSDS)
v Relative record data set (RRDS)

Support for these file types does not include VSAM linear data sets and relative
record data sets in variable-length record format.

Beginning in Version 10.1 PTF rollup 2, Classic federation supports
extended-format VSAM data sets. You can define VSAM data sets for all of the
supported VSAM files types in basic and extended formats.

Extended-format VSAM data sets can include any combination of the following
characteristics:
v Data striping, referred to as a striped data set.
v Data compression, referred to as a DFSMS compressed-format data set.
v Extended addressability, which applies to data sets greater than 4GB in size.

You can select, insert, update, and delete data in a table that references any of the
supported VSAM data set types.

Native VSAM provides transactional capabilities using the Data Facility Storage
Management Subsystem Transactional VSAM (DFSMStvs). DFSMStvs supports the
same VSAM file types and supports alternate indexes with path access. VSAM
limitations also apply to VSAM files opened using DFSMStvs.

Native VSAM also supports update access without the transactional capabilities
provided by commit and rollback.

Restriction: Because DFSMStvs and CICS use different sync point managers, a
single transaction must not combine both CICS and DFSMStvs operations.
Commits and backouts cannot be coordinated between the two environments.

CICS provides logging, which provides support for transactional capabilities. CICS
VSAM files need to be recoverable to participate in logging. With CICS support for
transactions, you can perform commit and rollback operations.

200 Guide and Reference

Inserts performed against native VSAM and CICS VSAM RRDS files result in
appending new records to the end of the data set.

VSAM limitations apply to CICS VSAM:
v Deletes are not supported on ESDS VSAM files due to the flat file format of

ESDS.
v Rollbacks are not supported on the ESDS file, because deletes are performed on

insert.

CICS also uses alternate indexes that are defined against a VSAM ESDS or KSDS
data set. You can issue SELECT statements to the alternate index for both ESDS
and KSDS data sets. You can issue UPDATE and DELETE statements to the
alternate index when it is defined for a KSDS data set. UPDATE and DELETE
statements that reference an alternate index on an ESDS data set are not supported.

Transport protocol for CICS VSAM transactions

Classic federation uses LU6.2 to transmit and return data between the data
connector and the provided CICS transaction, EXV1.

Starting CICS transactions

The data server starts a CICS EXV1 transaction and sends the transaction a file
name. The EXV1 CICS transaction issues an EXEC CICS INQUIRE FILE. If the file
is not opened, it issues an EXEC CICS SET FILE OPEN and reissues the EXEC
CICS INQUIRE FILE. Information such as MaxRecLen, KeyLen, KeyOff, and file
type is returned.

The data server also starts an EXV1 CICS transaction for each table open. The data
server sends an Open command to the EXV1 transaction, which gets information
about the file. Depending on the query, commands such as Seek, Search, Read
Next, Insert, Update, Delete, Commit, and Rollback are sent to the EXV1
transaction and the EXV1 transaction issues the EXEC CICS native calls.

Monitoring federated queries
You can monitor queries that are run by Classic federation users. This monitoring
can be useful when queries are taking a long time to run or using a large amount
of system resources.

Before you begin

To monitor queries using this Classic Federation Metrics view, you must be
connected to a version 10.1 or greater Classic Federation server with both a query
processor and monitoring service running.

About this task

When you update the metrics, they are displayed in two categories and listed by
user. The first category of metrics is a summary of all queries for a given user
broken out by statement type. The second category of metrics shows information
about statements currently being run (equivalent to the DISPLAY,QUERIES MTO
command). The metrics that are collected are for all the query processor service
classes (QP, QPRR and QPLD).

Chapter 4. Administering 201

Procedure
1. To open the view, select Window > Show View > Classic Federation Metrics.
2. Collect metrics from the connected servers.

a. Select the connected server that you want to poll. If the desired server is not
shown, connect to the server from the Console Explorer view.

b. Click Update metrics. The metrics are updated only when you click Update
metrics to allow you time to study the results and determine yourself when
you want to update the display again with the latest information.

Two-phase commit
Two-phase commit enables you to update multiple, disparate databases within a
single transaction, and commit or roll back changes as a single unit-of-work.

As a transaction manager, InfoSphere Classic Federation Server for z/OS prohibits
updates to more than one database system in a single unit-of-work. There is no
guarantee that changes to all databases will be committed or rolled back together.
Without two-phase commit, a successful commit to one database followed by a
failed commit (and thus a rollback) to another database would create a partial
update, and therefore cause the databases to be out-of-sync.

In general, all database systems that support transactions act as a syncpoint
manager for changes made to application data. As a syncpoint manager, these
databases maintain a log of changes and can roll back one or more changes to data
if the application requests a rollback. In two-phase commit processing, the role of
syncpoint manager is moved to an external agent, and each database manager acts
as a participant in the two-phase commit process. In two-phase commit processing,
applications request commit or rollback processing from the external syncpoint
manager instead of the database system itself.

To ensure database integrity, external syncpoint managers must keep a separate log
of database activity so that database transactions can be committed or rolled back
in the event of a system failure. Because failures can occur at any point during
two-phase commit processing, the syncpoint manager must be able to restart at
any future point-in-time and know exactly where the two-phase process ended at
the time of the failure.

In some cases, the state of a transaction might be classified as in-doubt and require
a manual decision to determine if the transaction should be committed or rolled
back. This is particularly true if the failure occurred somewhere in the middle of
phase one processing. In this case, the transaction is in a state where a commit
might still be able to proceed, but the application has the option of rolling back.

Recoverable Resource Manager Services (RRS) support
Recoverable Resource Manager Services (RRS) is a syncpoint manager for
two-phase commit processing across multiple database management systems.
Using RRS, you can ensure that changes to all databases will commit or roll back
together.

Classic federation supports the Recoverable Resource Manager Services (RRS) in
the z/OS environment. RRS support is implemented for the following databases:
v DB2 for z/OS
v IMS
v CA-Datacom

202 Guide and Reference

v VSAM DFSMStvs

As a syncpoint manager, RRS maintains a log of all transactions. Application
commit and rollback requests are issued to RRS instead of the native database
systems. RRS, in turn, issues commit requests in two phases to all database
participants in each transaction.

RRS-enabled query processors
A query processor enabled for RRS functions differently than a standard query
processor.

Each query processor task running in a data server processes requests for one or
more user connections. When a client or user connects to the server, a specific
query processor task is assigned to the connection until the client disconnects from
the server. For each client connection, the query processor also maintains a
separate transaction. A new transaction is implicitly started whenever the client
issues a data access call after either connecting to the server, or ending a previous
transaction with a syncpoint (commit or rollback) request.

Tip: Consider the following factors when determining if an RRS-enabled query
processor is needed at your site:
v When you use an RRS-enabled query processor, all transactions are sent through

RRS, not just updates.
v RRS-enabled query processors are not as fast as non-RRS-enabled query

processors.

Configuring query processors for RRS
To enable a query processor for two-phase commit processing in an RRS
environment, you need to configure the query processor for RRS.

About this task

In the RRS environment, each transaction is assigned to an RRS context for
two-phase commit processing. The query processor creates and maintains an RRS
context for each transaction associated with a client connection.

At startup, the CACQPRRS module automatically registers itself with RRS, using
the name XDI.RRSWMN.CAC.jjjjjjjj,' where jjjjjjjj is the 1-8 character job or started
task name (such as XDIPROD).

The RRS query processor dynamically loads the RRS interface modules.

Recommendation: Within a given data server, use RRS-enabled query processors
only or use non-RRS-enabled query processors only. Avoid combining both types
of query processors within the same data server which might lead to unpredictable
results.

Procedure
1. Specify CACQPRRS as the load module on the service definition for the query

processor.
2. Ensure that you can access the library that contains the RRS interface modules

(usually SYS1.CSSLIB) from either the link-list or from the STEPLIB JCL
statement for the data server.

Chapter 4. Administering 203

What to do next

For more information about the RRS environment, see the z/OS MVS
documentation about programming resource recovery.

Performance impact of RRS-enabled query processors
RSS-enabled query processors can slow performance, because the transactions are
single-threaded.

To prevent deadlocks in a query processor task, all transactions are single-threaded
when running with RRS. Performance with an RRS-enabled query processor will
be slower than with a non-RRS-enabled query processor. The difference in
performance depends on the type and volume of transactions. If possible, you
should run a query processor without RRS support.

Single-threaded transactions do not prevent additional user connections to the
query processor. However, single threaded transactions automatically cause data
requests to be queued on the internal pending queue until an in-flight transaction
for another client is committed. The performance impact is significant, particularly
in applications that mix SQL requests that return medium to large result sets with
update transactions.

DB2 for z/OS two-phase commit considerations
DB2 for z/OS uses the RRSAF interface.

When you use an RRS-enabled query processor, you do not use the DB2 Call
Attach Facility (CAF), as you do with a standard query processor.

Important: Do not combine DB2 access from an RRS-enabled query processor and
a non-RRS-enabled query processor within the same data server.

The CAF provided two pieces of information to the standard query processor that
you need to provide to the RRS-enables query processor:
v The plan name to open when connecting to DB2 for z/OS
v The DB2 thread management exit

For more information about RRSAF, see the DB2 for z/OS documentation about
application programming.

Creating the plan name
An RRS-enabled query processor uses the plan name stored in the system catalog.

The plan name is set based on the plan used to import DB2 tables for a particular
subsystem. You can create a plan named CACPLAN in DB2. CACPLAN is the
default plan name used for pre-existing tables in the system catalog that do not
have a plan name.

RRS and system exits
The RRS interface works with the security exit to establish DB2 connections.

The RRS DB2 connector automatically connects with information from CACSX04 if
CACSX04 is active in the security environment. The connector uses the
authorization ID of the data server job name or the started task name.

204 Guide and Reference

IMS two-phase commit considerations
To set up two-phase commit processing for IMS, you need to initialize the IMS
RRS environment, define IMS tables for the RRS environment, and define IMS
subsystems.

Initializing the RRS environment
The CACRRSI service initializes the IMS RRS environment.

About this task

Only one IMS environment service is allowed when you configure the data server
for IMS access. Combining RRS and non-RRS access in a single data server is not
supported.

Procedure
v Provide IMS configuration information in the IMS section of the customization

parameters file.
– Default PSB name: Modify IMSDFPSB=DEFPSB to specify the name of a PSB.

This PSB name is used when an IMS table is referenced by a CREATE TABLE
statement that contains no PSB name.

– IMS subsystem ID: Modify IMSSSID=SSID to specify the IMS subsystem to
access.

v Import the SCACCONF(CACSVIMO) member to define the IMS RRS service.
Issue the following MTO IMPORT command:
IMPORT,CONFIG,FILENAME=DSN:SCACCONF(CACSVIMO)

v Define the IMS RRS service before any query processors in the configuration file
to ensure that the RRS service is started before any query processor tasks, and
stopped after all query processor tasks.

v Ensure that the AERTDLI is available from either the link-list or from the
STEPLIB JCL statement for the data server. Both the IMS data connector and the
IMS RRS initialization service dynamically load AERTDLI.

Defining tables for the RRS environment
The IMS connector uses the Open Database Access (ODBA) callable interface to
IMS. ODBA uses the IMS AIB interface. All tables mapped for the RRS
environment must include a PCBPREFIX or PCBNAME definition for named PCB
lookup.

Ensure that all of your IMS mapped tables define a PCBPREFIX before using an
RRS-enabled query processor. Accessing a table through an RRS-enabled query
processor that does not have a PCBPREFIX defined results in the error
IMS_ERR_STATUS (0x00570047) and AIB return and reason codes 0x0104 and
0x0108 which are written to the data server log.

Specifying IMS subsystems for communication with multiple IMS
subsystems
The IMS RRS interface supports communication with more than one IMS
subsystem. To support this capability, the CREATE TABLE and CREATE INDEX
statements include an optional SUBSYSTEM parameter for identifying the name of
the subsystem to connect to.

If the DDL used to create the IMS table definition does not contain a SUBSYSTEM
clause, the value specified for the SSNPARM configuration parameter is used when
scheduling the PSB and identifying the IMS subsystem to use.

Chapter 4. Administering 205

CA-Datacom two-phase commit considerations
Support for two-phase commit using RRS facilities is implemented in CA-Datacom
Version 10.0 SP02 (Service Pack 2) and later.

When deciding whether to use RRS for two-phase commit processing and
determining how to enable RRS, consider the following factors:
v Existing CA-Datacom facilities fully protect CA-Datacom database-only jobs.

Therefore, two-phase commit protection is not needed for these jobs.
v Within a single data server, you must use either an RRS-enabled query processor

or a non-RRS-enabled query processor. Combining both types of query
processors within the same data server might lead to unpredictable results.

For additional information about the two-phase commit functionality that
CA-Datacom supports, see the CA-Datacom documentation about database and
system administration.

Enabling CA-Datacom for two-phase commit
The startup parameters supplied at the time the Multi-User Facility (MUF) is
started enable CA-Datacom for two-phase commit processing.

Before you begin

User requirements tables must link to CA-Datacom macros in Version 10 or later.
Attempting to link a user requirements table to an earlier CA-Datacom Version
results in error message 00570115.

Procedure
1. Specify the required parameters and data set definition when you start the

MUF. For information about setup requirements, see the CA-Datacom
documentation about two-phase commit processing.

2. Assemble and link-edit all user requirements tables used in two-phase commit
processing with the appropriate CA-Datacom macro library. The CA-Datacom
macros generate a new version identifier and new table definitions.

VSAM DFSMStvs two-phase commit considerations
VSAM DFSMStvs uses RRS as the syncpoint manager for two-phase commit
processing for VSAM files accessed through DFSMStvs.

VSAM DFSMStvs access runs in the RRS environment which requires an RRS
query processor.

For DFSMStvs access, use of the VSAM service is not valid.

A single transaction should not combine both CICS operations and DFSMStvs
operations. DFSMStvs and CICS use different syncpoint managers. As a result,
commits and rollbacks cannot be coordinated between the two environments.

Stored procedures
A stored procedure is an application program that performs work that SQL
SELECT, INSERT, UPDATE, and DELETE operations cannot perform. A client
application invokes a stored procedure application by issuing an SQL CALL
statement.

206 Guide and Reference

Stored procedures are written in C, COBOL, or Assembler. The main entry point
name for the stored procedure module must be the same as its load module name.
By default, the stored procedures are expected to be compliant with Language
Environment (LE). If the stored procedure does not follow LE conventions, the
CREATE PROCEDURE definition for the stored procedure must specify RUN
OPTIONS ‘NO_LE'.

This section provides an overview of stored procedure processing, the
environments in which a stored procedure runs, and the interfaces and support
routines that the stored procedure can call to perform specific tasks during
execution.

Overview of stored procedure processing
A stored procedure is a form of a remote procedure call that operates in a
client-server environment. The application program associated with the stored
procedure that is referenced on the CALL statement runs in the address space of
the server.

When a CALL statement is issued, the query processor verifies that the following
requirements are met:
v The stored procedure identified in the CALL statement exists in the metadata

catalog.
v The correct number of parameters and all required parameters are supplied.
v For each parameter for which data was supplied, the data type supplied by the

client application is compatible with its defined data type.

The query processor forwards the CALL request to the stored procedure connector
for processing. When the stored procedure is defined, you specify the name of a
z/OS load module that the stored procedure connector executes when a CALL
statement for that stored procedure is received.

The stored procedure connector determines if an executable copy of the stored
procedure is already loaded in memory. If not, the connector loads the requested
program in the server address space. The stored procedure connector then enters
the stored procedure application program, passing a standard parameter list that
contains the data values that were sent from the client application. The stored
procedure performs any requested processing, and on completion, returns control
to the stored procedure connector.

If the stored procedure updates any databases, the application should explicitly
issue a commit to apply any changes made by the application before control is
returned to the stored procedure connector. Alternately, if the stored procedure
detects an error during processing, it should issue a rollback to ensure that any
changes that have been made are backed out. If the stored procedure accesses or
updates a file (for example, a VSAM file) it must open the file upon entry and
ensure that it is closed when control is returned to the stored procedure connector.

When defining the parameters that are passed to the stored procedure application
program, you identify the SQL data type for each parameter. You also define if the
parameter will be used as an input parameter, an output parameter, or both.

These parameters are passed to the stored procedure in a standard SQLDA format.
The stored procedure extracts these parameters from the SQLDA. Based on the
parameter values, it performs the processing that the stored procedure application
is designed to perform.

Chapter 4. Administering 207

While executing, the stored procedure can update the contents of output and
input-output parameters that were passed to the application. After control has
returned from the stored procedure, the query processor accesses the parameter list
passed to the stored procedure application program, extracts the contents of any
non-null output and input-output parameters. All of the original input parameters
and the original or updated output and input-output parameters are then returned
to the client application that issued the CALL statement.

In addition to passing the parameters supplied by the client application, the stored
procedure is also passed an SQLCA structure that the stored procedure can update
with an error SQLCODE that the query processor will return to the client
application. Alternatively, if the stored procedure returns a non-zero return code to
the stored procedure connector, the return code will be returned as the SQLCODE
of the CALL statement to the client application. The SQLCODE from the SQLCA
takes precedence over the stored procedure return code.

Stored procedures can also return an SQL result set in addition to returning input
and output parameters. A callable interface supports creation of a result set and the
insertion of data rows into a result set. The columns in a result set are defined in
the processing logic of the stored procedure and can vary from one client
invocation to the next if necessary.

Stored procedure execution environment
A stored procedure runs in the address space of the data server and competes with
the data server and other stored procedure applications for resources in the
address space.

At the time that the stored procedure runs, the data server has already allocated
the memory it needs for the message pool. Any memory that the stored procedure
allocates is therefore memory that the data server does not manage. Any allocated
memory needs to be freed before the stored procedure returns control to the stored
procedure connector.

The load module for the stored procedure also uses memory that the data server
does not manage. Because it is likely that you execute multiple copies of the stored
procedure simultaneously, these applications must be written as re-entrant and
should be link-edited as re-entrant, reusable, and refreshable (RENT,REUS,REFR).

Resident and non-resident stored procedure programs:

Before running the stored procedure, the stored procedure connector determines if
a copy of the stored procedure application program needs to be loaded. You can
use the STAY RESIDENT parameter to control this processing behavior when you
define the stored procedure. The behavior is referred to as residency.

You can specify the following values for the STAY RESIDENT parameter.
v STAY RESIDENT = NO: The stored procedure is non-resident. Each time a CALL

statement is issued, the stored procedure connector loads a copy of the stored
procedure and when control is returned an unload is issued.

v STAY RESIDENT = YES: The stored procedure is resident.

For resident-stored procedures, the stored procedure connector maintains a list of
currently-loaded stored procedure application programs. When a CALL statement
is issued, the stored procedure connector checks the list of currently loaded
applications. A stored procedure application program that is not on the list is
loaded and added to the list before it is called.

208 Guide and Reference

Resident stored procedures remain loaded until the query processor is terminated.
Each active query processor instance maintains its own list of resident stored
procedures. If the stored procedure application program is re-entrant, one copy of
the stored procedure application program can be loaded. However, its use count
can be greater than one (if multiple query processor instances are executing). In
these situations, the stored procedure is not physically unloaded from memory
until all query processor instances that issued a load for the stored procedure
application program terminate processing.

In addition, the stored procedure connector loads multiple copies of the stored
procedure if the stored procedure (for example, the load module name) is
associated with multiple stored procedure definitions. Currently, there is no
method to determine how many stored procedure applications programs are
loaded within the server or how many have been loaded by a particular query
processor or stored procedure connector.

When you develop a stored procedure you need to define the stored procedure as
non-resident. After testing is completed, change the stored procedure to be resident
for performance purposes.

Recommendation: While testing a stored procedure application program defined
as resident, if you run the stored procedure once and then modify it, you need to
shut down the query processor instance to re-test it. By stopping the query
processor instance that ran the stored procedure application program the first time,
you can load the updated copy of the stored procedure application program
Because this situation occurs frequently, display a version identifier during initial
development so that you can easily ascertain which version of your stored
procedure the stored procedure connector is running.

LE execution environment:

Generally, a stored procedure is developed using a high-level language, such as
COBOL. The IBM-supplied high-level languages use the z/OS Language
Environment (LE). Language Environment provides common memory allocation,
error reporting, and other services the high-level languages or Assembler Language
programs can use.

Stored procedures that are LE-compliant run within the LE environment of the
Classic data server.

Important: You cannot use LE-compliant stored procedures with the NO_LE
option, otherwise abends can occur. The NO_LE option was supported in previous
releases of Classic federation. This option is not supported in Version 10.1 or
higher. If you had LE-compliant stored procedure definitions with the NO_LE
option in a previous release, you must manually redefine those stored procedures
without specifying the NO_LE option.

Overview of CICS interface for stored procedures
With the CICS interface, stored procedures can open CICS conversations, execute a
CICS application program, and update VSAM files.

If you need to create a stored procedure that updates a VSAM file, you might find
that CICS has exclusive control of the file and that it cannot be updated from the
data server address space. For these situations, and potentially others, facilities are
provided that enable you to invoke a CICS application program.

Chapter 4. Administering 209

The client application that issued the CALL statement passes a copy of the data to
the CICS application program. Like a stored procedure application running within
the address space of the data server, the CICS application program can update the
values for output and input-output parameters for return to the client application.

Unlike stored procedures running in the address space of the data server, the CICS
application program does not have accessibility to an SQLCA structure for error
reporting. Instead, it has addressability to an application return code that is
returned to the stored procedure application program running in the data server
address space and is automatically returned to the client application. If a CICS
abend is detected it is sent back to the stored procedure, and by default, to the
client application.

Overview of IMS interface for stored procedures
With the IMS interface, stored procedure programs can access IMS data, schedule
and unschedule PSBs, and issue a series of standard DL/I calls.

The CACTDRA interface module allows a stored procedure to access IMS data
locally (within the data server address space) using the DRA interface. The
CACTDRA interface allows a stored procedure application program to schedule a
PSB, issue a series of standard DL/I calls, and then unschedule the PSB. The
CACTDRA interface allows access and updates to full function IMS databases such
as HDAM or HIDAM, and Fast Path DEDB databases.

Using the CACTDRA interface allows the stored procedure to safely access and
update IMS data and supports transaction isolation from other stored procedures
that might also be accessing IMS data. Using the CACTDRA interface, the stored
procedure can perform in a similar way to an IMS/DC online transaction program.

Overview of CA-Datacom interface for stored procedures
With the CA-Datacom interface, stored procedure programs can use native
CA-Datacom commands and control blocks to access CA-Datacom data within the
data server address space.

If your stored procedure needs to access or update CA-Datacom data, you can use
the CACTDCOM interface load module. The CACTDCOM interface module allows
a stored procedure to access CA-Datacom data within the server address space.
Using the CACTDCOM interface allows the stored procedure to safely access and
update CA-Datacom data, and supports transaction isolation from other stored
procedure application programs that might also be accessing CA-Datacom data.

The CACTDCOM interface requires a stored procedure to open a User
Requirements Table (URT). After the URT is open, any series of CA-Datacom
commands can be issued. When the stored procedure application program
completes processing, the URT must be closed.

Support routines
In addition to the CICS, CA-Datacom, and IMS interfaces, your stored procedure
application program can call the support routines CACSPGRO, CACSPGPW, and
CACSPGUI to copy parameters and values to the application storage area. You can
retrieve RUN OPTIONS values and the user ID and password of the logged-on
user.

The following table identifies the name and the purpose of each subroutine.

210 Guide and Reference

Table 30. Support routines

Routine name Purpose

CACSPGRO Copies the value of the RUN OPTIONS parameter into an application storage area.

CACSPGPW Copies the value of the user password into an application storage area. The user password
was captured when the client application connected to the server.

CACSPGUI Copies the value of the user ID into an application storage area. The user ID was captured
when the client application connected to the server.

Unlike the CICS, CA-Datacom, and IMS interfaces that are distributed as load
modules, these support routines are supplied in object-module form for direct
inclusion in your stored procedure. These routines are written in Assembler
Language and use standard OS linkage conventions. All routines are passed two
parameters. The first parameter must be the address of the SQLDA parameter
passed to the stored procedure. The second parameter is an address where the
value is copied.

Stored procedure samples
You can use sample stored procedures to help you develop your own process.

The stored procedure samples are located in the SCACSAMP library. Most of the
samples are written in COBOL. For each sample, the following table identifies the
member name and provides a short description.

Table 31. Stored procedure samples

Member name Description

CACSPCCC Sample compile and link deck for stored procedure applications calling CACSPBR.

CACSPCCD Sample compile and link deck for the sample stored procedure using the CACTDCOM
interface.

CACSPCCL Sample compile and link deck for sample local stored procedure.

CACSPCCR Sample compile and link deck for the sample CICS stored procedure.

CACSPCOM Generic stored procedure to invoke a CICS application program.

CACSPCP Sample stored procedure definitions containing a parameter definition for each
supported data type.

CACSPCPY COBOL definitions for the argument data passed to the stored procedure. This should be
included in your stored procedure application. Sample local stored procedure application
using the IMS DRA interface.

CACSPDC1 Sample local stored procedure using the interface module CACTDCOM to access
CA-Datacom. Statically link module CACTDCOM with CACSPDC1.

CACSPLCL Sample local stored procedure application.

CACSPREM Sample remote stored procedure application executing in CICS.

CACSPDFH COBOL version of the CICS communications area passed to a CICS application invoked
by CACSP62.

CACSPGRO Get RUN OPTIONS support routine object module.

CACSPGPW Get Password support routine object module.

CACSPGUI Get User ID support routine object module.

CACSPSCA COBOL SQLCA structure for inclusion in your stored procedure application program.

CACSPSDA COBOL SQLDA structure for inclusion in your stored procedure application program
and/or CICS application program.

CACSPVTM COBOL APPC function and data structures for interfacing with CACSPBR.

Chapter 4. Administering 211

Table 31. Stored procedure samples (continued)

Member name Description

CACSPRSS Sample COBOL stored procedure that creates a result set.

Defining stored procedures
You can use the Classic Data Architect to define stored procedures. You specify the
stored procedure definition by using the CREATE PROCEDURE statement.

General stored procedure information is stored in the SYSIBM.SYSROUTINES
system table. The parameters that are supplied by the client application and passed
to the stored procedure are stored in the SYSIBM.SYSPARMS system table.

When the stored procedure is run in an LE environment, you can use the RUN
OPTIONS parameter on the CREATE PROCEDURE statement to supply custom LE
runtime options during environment initialization. In addition, extended use of the
RUN OPTIONS parameter enables you to deactivate the LE environment for a
particular stored procedure. The RUN OPTIONS parameter also allows you to
specify CICS transaction scheduling information for CICS interfacing or
CA-Datacom resource information for CA-Datacom interfacing.

CREATE PROCEDURE
Using the Classic Data Architect, you can create a stored procedure definition with
the CREATE PROCEDURE statement.

After the stored procedure is defined, you can generate and run the DDL for
creating the stored procedure in a metadata catalog.

CREATE PROCEDURE

�� CREATE PROCEDURE procedure-name �

,

(parameter-declaration) �

� option-list ��

parameter-declaration:

IN
OUT
INOUT parameter-name

parameter-type

option-list:

RESULT SET 0

RESULT SET integer
SETS

EXTERNAL
NAME 'string'

identifier

LANGUAGE �

212 Guide and Reference

� ASSEMBLE
C
COBOL

STAY RESIDENT YES
NO

�

�
RUN OPTIONS 'run-time-options'

The table that follows describes each of the parameters you can specify using the
CREATE PROCEDURE statement.

Table 32. CREATE PROCEDURE parameters and descriptions

Parameter Description

CREATE PROCEDURE procedure-name A required keyword phrase that defines a stored procedure. procedure-name
names the stored procedure. The name is implicitly or explicitly qualified
by an owner. The name, including the implicit or explicit qualifier, must
not identify an existing stored procedure at the current server. To explicitly
specify an owner, use the syntax owner-name.procedure-name. The
owner-name can be 1-to-8 characters long and the procedure-name can be
1-to-18 characters long. If an owner-name is not specified, the implicit
owner-name is the TSO user ID of the person that runs the metadata utility
to define the stored procedure.

parameter-declaration Specifies the parameters that are passed to the stored procedure application
program and that must be supplied by the client application when the
stored procedure is invoked. At least one parameter must be defined for a
stored procedure. There is no fixed upper limit on the number of
parameters that can be defined for a stored procedure. The maximum
number of parameters that can be defined is dependent on the size of the
resultant SQLDA. The maximum data size for all data and indicator
variables is 32767-bytes. You can use a stored procedure parameter for
input, output or both input and output. The options are:

v IN: The default. It identifies the parameter as an input parameter to the
stored procedure. The parameter contains its original value when the
stored procedure returns control to the client application.

v OUT: Identifies the parameter as an output parameter. The stored
procedure application program returns a value to the client application
or a null-indicator that indicates no value is being returned.

v INOUT: Identifies the parameter as both an input and an output
parameter. The client application must supply a value for an INOUT
parameter, because upon return the stored procedure might have
changed this value.

parameter-name The parameter-name specifies the name of the parameter in the
parameter-declaration. The name can be up to 30 characters long, must be
unique within the stored procedure definition and cannot be IN, OUT, or
INOUT. Parameter names are optional, but specifying a parameter-name is
highly recommended. When initially testing your stored procedure your
client application might receive various SQL codes indicating that an
incompatible data type was passed, a NULL parameter is not allowed, or
other similar codes. To resolve these problems you can activate tracing in
the data server. When activated, a log message is generated for the
parameter in error and the information identifies the parameter-name, its
data type, and length. Naming your parameters, therefore, makes problem
resolution easier in these situations.

parameter-type Required keyword that identifies the SQL data type of the parameter.

option-list List of options to be used for the stored procedure.

Chapter 4. Administering 213

Table 32. CREATE PROCEDURE parameters and descriptions (continued)

Parameter Description

RESULT SET(S) integer The value of integer represents the number of result sets that can be
returned by the stored procedure. Currently, this value can be set to 0 or 1.

EXTERNAL NAME ‘string' or identifier Specifies the z/OS load module of the application program that the Server
should load to satisfy a call for the stored procedure. If you do not specify
the NAME clause, NAME procedure-name is implicit. The procedure-name
is limited to 8 characters. When an explicit name is specified it can be from
1-to-8 characters long and can be supplied either as a quoted string or as
an identifier. A quoted string is required if the application program name
matches any of the keywords supplied on the CREATE PROCEDURE
statement.

LANGUAGE Required parameter that identifies the programming language in which the
stored procedure was written. All programs should be designed to run in
IBM's Language Environment (LE). Valid values are:

v ASSEMBLE: Assembler Language

v COBOL: IBM COBOL

v C: IBM C Language

STAY RESIDENT Identifies whether the stored procedure connector should unload the stored
procedure after it has been executed. Options are:

v NO: Unload the program after each execution. When initially testing
your stored procedure you should use this option. This allows you to
modify your stored procedure and re-test it without having to shutdown
the query processor that received the client application request to
execute your stored procedure.

v YES: Do not unload the stored procedure after it has completed
execution. For performance purposes, YES should be specified after your
stored procedure has been tested.

RUN OPTIONS run-time-options Specifies the Language Environment run-time options to be used for the
stored procedure. You must specify run-time-options as a character string
no longer than 254 bytes. If you do not specify RUN OPTIONS or pass an
empty string, the stored procedure connector passes a value of
ALL31(OFF).

Additionally, the product has extended the use of the RUN OPTIONS
parameter to disable executing a stored procedure in an LE environment
and to supply CICS transaction scheduling information or CA-Datacom
resource information.

RUN OPTIONS information must be supplied on a single input line. To
specify a RUN OPTIONS string that exceeds 80 characters, use a variable
length file.

A stored procedure parameter can be defined as one of the types listed in the
following table.

Table 33. Stored procedure supported data types

Supported data types Description (n is always a decimal integer)

INTEGER Fullword signed hexadecimal, 32-bits, no decimal point.

SMALLINT Halfword signed hexadecimal, 16-bits, no decimal point.

DECIMAL(p[,s]) Packed decimal 1≤p≤31 and 0<s<p where:

v p is the precision (total number of digits) and

v s is the total number of digits to the right of the decimal point.

214 Guide and Reference

Table 33. Stored procedure supported data types (continued)

Supported data types Description (n is always a decimal integer)

FLOAT 4-byte single precision floating point number.

DOUBLE 8-byte double precision floating point number.

CHAR (n) Fixed-length character string of length n where 1<n<254.

VARCHAR (n) Variable-length character string where 1≤n≤32704.

GRAPHIC (n) Fixed-length, double-byte character set (DBCS) string where 1<n<127.
The value of n specifies the number of DBCS characters. For example,
GRAPHIC(10) specifies a parameter that occupies 20 bytes of storage.

VARGRAPHIC (n) Variable-length, DBCS string where 1≤n≤16351. The value of n
specifies the number of DBCS characters. For example,
VARGRAPHIC(10) specifies a parameter that occupies 20 bytes of
storage.

DROP PROCEDURE
Use the DROP PROCEDURE statement to remove an existing stored procedure
from a metadata catalog. The DROP PROCEDURE statement is also required when
you replace an existing stored procedure with a stored procedure of the same
name.

DROP PROCEDURE

�� DROP PROCEDURE procedure-name ��

The following table describes the supplied parameters of the DROP PROCEDURE
statement.

Table 34. DROP PROCEDURE parameters and descriptions

Parameter Description

DROP PROCEDURE Statement that removes an existing stored procedure from the
metadata catalogs.

procedure-name Identifies the stored procedure to be dropped. The name must
identify a stored procedure that has been defined with the
CREATE PROCEDURE statement at the current server. When a
procedure is dropped, all privileges on the procedure are also
dropped.

Deactivating the Language Environment
If your stored procedure cannot run in a Language Environment (LE), deactivate it.

For example, if a stored procedure is written in Assembler, and not using LE
services, specify NO_LE on the RUN OPTIONS parameter.

Important: The following rules apply to stored procedures and the Language
Environment:
v If your stored procedure runs in a Language Environment, do not specify the

keyword NO_LE. Use of the keyword NO_LE for an LE-compliant stored
procedure can result in an abend.

v You can use stored procedures that are not LE-compliant only if the stored
procedure entry point can be directly accessed from an LE program. For stored

Chapter 4. Administering 215

procedures that are not LE-compliant, you must specify the NO_LE option on
the RUN OPTIONS parameter, otherwise abends can occur.

Writing stored procedures
When you create your own stored procedures, consider programming language,
passed parameters, and SQL data types. Passed parameters enable you to specify
SQLCA structures and SQLDA structures, including SQLVAR structures associated
with the SQLDA.

A stored procedure is invoked using standard Assembler Language linkage
conventions. You can write stored procedures in C, COBOL or Assembler
Language. The stored procedure is always passed two parameters: an SQLDA
structure and an SQLCA structure. The following figure shows how these
parameters are passed. All parameters and the data and indicator values contained
in the SQLDA are 31-bit addresses.

Upon return from the stored procedure, Register 15 is assumed to contain a return
code value. If a non-zero value is found in Register 15, it will be returned to the
client application unless there is a non-zero value in the SQLCODE field in the
SQLCA.

Required: Your stored procedure must be coded as a subroutine and must not
issue a function call that causes the run-time environment to be terminated. For
example, a COBOL stored procedure must not issue STOP RUN and must instead
return control using the GOBACK statement. If you terminate the run-time
environment (for example, using STOP RUN in COBOL), this causes the query
processor task to also be terminated.

The SQLDA structure consists of a 16-byte header followed by a variably-occurring
array of SQLVAR structures. Each SQLVAR represents a parameter-declaration from
the CREATE PROCEDURE statement. The SQLVARs are passed in the sequence
defined on the CREATE PROCEDURE statement. Each SQLVAR structure is
44-bytes long.

The sample member CACSPSDA is a COBOL copybook that shows the structure
and contents of the SQLDA structure. The following figure shows the contents of
the SQLDA header.

The SQLDA structure is as follows:
01 ARG-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.

Parameter 1

Address ofRegister

SQLDA

Parameter 2 SQLCA

Figure 7. Parameters passed to the stored procedure

216 Guide and Reference

05 ARG-SQLD PIC 9(4) COMP.
05 ARG-SQLVAR OCCURS 1 TO 2000 TIMES

DEPENDING ON ARG-SQLN.
10 ARG-SQLTYPE PIC 9(4) COMP.

88 ARG-SQL-VARCHAR VALUE 449.
88 ARG-SQL-CHAR VALUE 453.
88 ARG-SQL-VARGRAPHIC VALUE 465.
88 ARG-SQL-GRAPHIC VALUE 469.
88 ARG-SQL-FLOAT VALUE 481.
88 ARG-SQL-DECIMAL VALUE 485.
88 ARG-SQL-INTEGER VALUE 497.
88 ARG-SQL-SMALLINT VALUE 501.

10 ARG-SQLLEN PIC 9(4) COMP.
10 ARG-SQLDATA POINTER.
10 ARG-SQLIND POINTER.
10 ARG-SQLNAME.

20 ARG-NAME-LEN PIC 9(4) COMP.
20 ARG-NAME-LABEL PIC X(30).

The following table describes the format and contents of the SQLDA header.

Table 35. SQLDA header contents

COBOL name SQL data type Description

ARG-SQLDAID CHAR(8) Signature that identifies the structure as an SQLDA. Always
contains the value “SQLDA” followed by three spaces.

ARG-SQLDABC INTEGER Identifies the length of the SQLDA structure and is computed as
16 + (SQLN * 44).

ARG-SQLN SMALLINT Identifies the number of SQLVAR entries contained in the SQLDA.

ARG-SQLD SMALLINT Identifies the number of SQLVAR entries contained in the SQLDA.
Same as ARG-SQLN.

The following table describes the format and contents of the SQLVAR structure.

Table 36. SQLVAR contents

COBOL name SQL data type Description

ARG-SQLTYPE SMALLINT Identifies the type of data that is referenced by field
ARG-SQLDATA.

ARG-SQLLEN SMALLINT Identifies the length of the data that is referenced by field
ARG-SQLDATA.

ARG-SQLDATA INTEGER Pointer to the argument data. Before using this pointer value
you must check the 2-byte data value referenced by
ARG-SQLIND to determine whether the argument data is null
(for example, a value was not supplied by the client
application). If the argument data is null, the data referenced is
low-values and should not be referenced. If the data is not null,
the size of the data referenced is identified by ARG-SQLLEN.

ARG-SQLIND INTEGER Pointer to a 2-byte (half-word - SMALLINT) indicator field that
identifies whether ARG-SQLDATA is null or not. If the indicator
field contains zeros, the data referenced by ARG-SQLDATA is
not null and contains valid data matching the SQL data type
identified in ARG-SQLTYPE. If the indicator field contains -1
(x’ffff’) then the data referenced by ARG-SQLDATA is binary
zeros and should not be referenced.

Chapter 4. Administering 217

Table 36. SQLVAR contents (continued)

COBOL name SQL data type Description

ARG-SQLNAME VARCHAR(30) The parameter-name specified in the CREATE PROCEDURE
statement for this parameter. If no parameter-name was specified,
ARG-NAME-LEN is zeros and ARG-NAME-LABEL is
low-values. If a parameter-name was specified, ARG-NAME-LEN
identifies how long parameter-name is and ARG-NAME-LABEL
contains the parameter-name left justified and padded with
blanks.

The following table describes the SQL data types that can be passed to the stored
procedure and the length of the data referenced by ARG-SQLDATA for each data
type.

Table 37. SQL data type descriptions

COBOL name Value
Value in ARG-SQLLEN and corresponding length of data
referenced by ARG-SQLDATA

ARG-SQL-VARCHAR 449 Identifies that ARG-SQLDATA references a variable length
character field. ARG-SQLLEN identifies the maximum length
of the variable length character field, excluding the 2-byte
length field. The actual size of the data is identified in the
2-byte length field.

ARG-SQL-CHAR 453 Identifies that ARG-SQLDATA references a fixed length
character field. ARG-SQLLEN identifies the length of the
character field.

ARG-SQL-VARGRAPHIC 465 Identifies that ARG-SQLDATA references a variable length
graphic field. ARG-SQLLEN identifies the maximum length (in
DBCS characters) that the variable length graphic field can be,
excluding the 2-byte length field. The actual size of the data (in
DBCS characters) is identified in the 2-byte length field.

ARG-SQL-GRAPHIC 469 Identifies that ARG-SQLDATA references a fixed length graphic
field. ARG-SQLLEN identifies the length of the graphic field in
DBCS characters.

ARG-SQL-FLOAT 481 Identifies that ARG-SQLDATA references a floating point
number. The field is a single precision floating point number
that is 4-bytes long if FLOAT was specified on the
parameter-declaration on the CREATE PROCEDURE statement.
If DOUBLE was specified, then the field is a double-precision
floating point number that is 8-bytes long.

ARG-SQL-DECIMAL 485 Identifies that ARG-SQL-DATA references a signed packed
decimal field. The first byte of ARG-SQL-LEN identifies the
scale (number of digits) in the decimal field. The second byte
of ARG-SQL-LEN identifies the precision (implied decimal
point) of the decimal data. If the scale is an even number, the
physical length of the decimal data is scale / 2. If the scale is
an odd number, the physical length of the data is (scale +1)/2.

ARG-SQL-INTEGER 497 Identifies that ARG-SQL-DATA references a signed full-word
field that is 4-bytes long.

ARG-SQL-SMALLINT 501 Identifies that ARG-SQL-DATA references a signed half-word
field that is 2-bytes long.

The SQLCA structure is much simpler than the SQLDA. Sample member
CACSPSCA is a COBOL copybook that shows the structure and contents of the
SQLCA structure. The following sample code shows the contents of this copy book.

The SQLCA structure is as follows:

218 Guide and Reference

01 ARG-SQLCA
05 ARG-SQLCAID PIC X(8).
05 ARG-SQLCABC PIC 9(8) COMP.
05 ARG-SQLCODE PIC 9(8) COMP.

Table 38. SQLCA contents

COBOL name SQL data type

ARG-SQLCAID CHAR(8) Signature that identifies the structure as an SQLCA. Always
contains the value “SQLCA” followed by three spaces.

ARG-SQLCABC INTEGER Identifies the length of the SQLCA structure.

ARG-SQLCODE INTEGER Full-word 32-bit signed integer that is returned to the client
application when SQLCODE contains a non-zero value.

The ARG-SQLCABC field reports a length that is longer than the structure's
contents identified above. A full DB2-style SQLCA is passed to your stored
procedure. These additional fields are not being documented, as they are not
inspected by the stored procedure connector or the query processor and are not
returned to the client application.

Sample member CACSPCP provides a sample stored procedure definition that
contains parameter definitions for the different SQL data types that can be passed
to a stored procedure. Its contents are shown in the following sample DROP and
CREATE PROCEDURE definition:
DROP PROCEDURE CAC.DATA_TYPES;
CREATE PROCEDURE CAC.DATA_TYPES
(IN DT_SMALLINT SMALLINT,
IN DT_INTEGER INTEGER,
IN DT_CHAR CHAR(10),
IN DT_VARCHAR VARCHAR(20),
IN DT_FLOAT FLOAT,
IN DT_DOUBLE DOUBLE,
IN DT_DECIMAL DECIMAL(9,2),
IN DT_GRAPHIC GRAPHIC(10),
IN DT_VARGRAPHIC VARGRAPHIC(20))
EXTERNAL NAME CACSPDAT
LANGUAGE COBOL
STAY RESIDENT NO;

This sample shows that the stored procedure name is CACSPDAT and it is written
in COBOL. For a COBOL program, the field definitions for the actual data values
and their associated indicator variables must be defined in the LINKAGE
SECTION.

While the COBOL field names do not have to match the parameter names
specified on the stored procedure CREATE PROCEDURE definition statement, it is
a good practice. Establish a standard for naming null indicator variables.

In COBOL, addressability to the data associated with a parameter and its null
indicator field is established by using the SET ADDRESS OF statement.

You should also establish addressability to a parameter’s null indicator and test to
see whether the value is not null before establishing addressability to its data
value. Likewise, after addressability is established before referencing a data value,
check its associated null indicator before attempting to manipulate a data value.
This practice should be done even if you know that a value does not contain a null
value. This practice prevents abends at a later date, if another team performs
maintenance on the client application and does not follow the rules.

Chapter 4. Administering 219

The following section contains sample COBOL data and indicator definitions:
LINKAGE SECTION.
COPY CACSPSDA.
COPY CACSPSCA.

01 DT-SMALLINT PIC S9(4) COMP.
01 DT-=SMALLINT-IND PIC S9(4) COMP.

01 DT-INTEGER PIC S9(9) COMP.
01 DT-INTEGER-IND PIC S9(4) COMP.

01 DT-CHAR PIC X(10).
01 DT-CHAR-IND PIC S9(4) COMP.

01 DT-VARCHAR.
05 DT-VARCHAR-LEN PIC 9(4) COMP.

05 DT-VARCHAR-DATA PIC X(1)
OCCURS 20 TIMES
DEPENDING ON DT-VARCHAR-LEN.

01 DT-VARCHAR-IND PIC S9(4) COMP.

01 DT-FLOAT COMP-1.
01 DT-FLOAT-IND PIC S9(4) COMP.

01 DT-DOUBLE COMP-2.
01 DT-DOUBLE-IND PIC S9(4) COMP.

01 DT-DECIMAL PIC S9(7)V99 COMP-3
01 DT-DECIMAL-IND PIC S9(4) COMP.

01 DT-GRAPHIC PIC G(10)
USAGE DISPLAY-1.

01 DT-GRAPHIC-IND PIC S9(4) COMP.
01 DT-VARGRAPHIC.

05 DT-VARGRAPHIC-LEN PIC 9(4) COMP.
05 DT-VARGRAPHIC-DATA PIC G(1)

USAGE DISPLAY-1
OCCURS 20 TIMES
DEPENDING ON DT-VARGRAPHIC-LEN.

01 DT-VARGRAPHIC-IND PIC S9(4) COMP.

Establishing addressability

The following shows how to establish addressability:
PROCEDURE DIVISION USING ARG-DATA, ARG-SQLCA.

SET ADDRESS OF DT-SMALLINT-IND TO ARG-SQLIND(1).
IF DT-SMALLINT-IND = ZEROS

SET ADDRESS OF DT-SMALLINT TO ARG-SQLDATA(1).

SET ADDRESS OF DT-INTEGER-IND TO ARG-SQLIND(2).
IF DT-INTEGER-IND = ZEROS

SET ADDRESS OF DT-INTEGER TO ARG-SQLDATA(2).

SET ADDRESS OF DT-CHAR-IND TO ARG-SQLIND(3).
IF DT-CHAR-IND = ZEROS

SET ADDRESS OF DT-CHAR TO ARG-SQLDATA(3).

SET ADDRESS OF DT-VARCHAR-IND TO ARG-SQLIND(4).
IF DT-VARCHAR-IND = ZEROS

SET ADDRESS OF DT-VARCHAR TO ARG-SQLDATA(4).

SET ADDRESS OF DT-FLOAT-IND TO ARG-SQLIND(5).
IF DT-FLOAT-IND = ZEROS

220 Guide and Reference

SET ADDRESS OF DT-FLOAT TO ARG-SQLDATA(5).

SET ADDRESS OF DT-DOUBLE-IND TO ARG-SQLIND(6).
IF DT-DOUBLE-IND = ZEROS

SET ADDRESS OF DT-DOUBLE TO ARG-SQLDATA(6).

SET ADDRESS OF DT-DECIMAL-IND TO ARG-SQLIND(7).
IF DT-DECIMAL-IND = ZEROS

SET ADDRESS OF DT-DECIMAL TO ARG-SQLDATA(7).

SET ADDRESS OF DT-GRAPHIC-IND TO ARG-SQLIND(8).
IF DT-GRAPHIC-IND = ZEROS

SET ADDRESS OF DT-GRAPHIC TO ARG-SQLDATA(8).

SET ADDRESS OF DT-VARGRAPHIC-IND TO ARG-SQLIND(9).
IF DT-VARGRAPHIC-IND = ZEROS

SET ADDRESS OF DT-VARGRAPHIC TO ARG-SQLDATA(9).

Your stored procedure must not modify the contents of the SQLDA structure. Your
program can modify the contents of the data referenced by ARG-SQLDATA and
ARG-SQLIND fields. Data that is modified for output or input-output fields is
returned to the client application.

When your application modifies an SQLIND indicator field to indicate that the
corresponding data is null, then any modifications to the corresponding data field
are not returned to the client application. Additionally, your application should not
modify an SQLIND indicator field that identifies the corresponding data field as
being null to indicate that the data field (upon return from your stored procedure)
now contains valid data. Such a modification is likely to cause problems in the
client application because the client application is not expecting to receive data for
a parameter that it knows is null.

Your stored procedure can call other stored procedure application programs or one
or more of your existing application programs. However, if you call existing
applications ensure that these are written as subroutines.

If you are not using the supplied CICS, CA-Datacom, IMS, or result set creation
interfaces, compile and link your stored procedure application program using the
standard procedures for the language that the application program is written in. If
you are using the CICS, CA-Datacom, IMS, and/or result set creation interfaces,
the procedures are slightly modified so that the interface load modules are
included in the link step.

After you have linked an executable copy of your stored procedure, either copy it
into one of the load libraries referenced in the data server JCL or update the data
server JCL to include the library that your application resides in on the STEPLIB
DD statement. Also, add any additional DD statements to the Server JCL that your
stored procedure references.

Start the data server after you have performed these modifications. You are now
ready to start testing your stored procedure. You will need to do this from a client
application. Descriptions of the techniques that you can use to invoke a stored
procedure are provided in related topics.

Invoking stored procedures
The clients invoke your stored procedure application program. All clients support
the SQL CALL statement.

Chapter 4. Administering 221

This section describes the CALL statement syntax that you use to invoke a stored
procedure, how to obtain metadata about stored procedures, and the
connector-specific APIs that you can use to issue the CALL statement.

CALL statement
This topic provides information about the syntax and usage of the CALL
statement.

Important: Client applications using ODBC or JDBC clients cannot use the USING
DESCRIPTOR form of this statement and cannot use indicator host-variables. They
use parameter markers instead.

CALL statement

�� CALL procedure-name
host-variable

(,)
host-variable
constant
null

USING DESCRIPTOR descriptor-name

��

The following table describes the CALL statement parameters.

Table 39. CALL statement parameters

Parameter Description

procedure-name or host-variable Identifies the name of the stored procedure to be executed. The name should
generally be specified in the form owner.name. If an owner is not specified, the
connected user’s user ID is used for the owner. If a user ID is not supplied on
connect the owner is PUBLIC. You can either specify the name of the stored
procedure explicitly as an identifier procedure-name, or you can use a
host-variable reference, where host-variable contains the name of the stored
procedure to be executed.

host-variable The name of a host-variable that, for input or input-output parameters contains
the data that is passed to the stored procedure application program. For output
parameters, the host-variable identifies a storage location that will be updated
with the value supplied by the stored procedure application program upon
return from the CALL statement.

The host variables data type must be compatible with the data type defined for
the parameter.

If a null indicator variable is specified it can only contain a -1 for an output
parameter.

constant A numeric or string constant that is passed to the stored procedure application
program. Constants can only be specified for input parameters. Additionally,
the constant must match the data-type for the parameter. That is, a numeric
constant of the appropriate scale and precision must be supplied for INTEGER,
SMALLINT, DECIMAL, FLOAT and DOUBLE parameter types. For CHAR or
VARCHAR parameters, the constant must be in single quotes. Constants cannot
be specified for GRAPHIC or VARGRAPHIC data types.

NULL Identifies that no value is being supplied for the parameter. NULL can only be
specified for input parameters.

This causes the parameter's associated null indicator to be set to -1 when the
stored procedure application program is called.

222 Guide and Reference

Table 39. CALL statement parameters (continued)

Parameter Description

USING DESCRIPTOR
descriptor-name

Identifies that the parameters to be passed to the stored procedure application
program are contained in the SQLDA structure referenced by descriptor-name.
The correct number and types of parameters must be contained in the SQLDA.
Additionally, SQLN must identify the number of parameters being passed and
SQLDABC must contain the correct value - (SQLN * 44) + 16.

ODBC stored procedure support
The ODBC client implements the standard ODBC API interfaces used to invoke
and obtain metadata information about the stored procedures defined for the data
source that the ODBC client is connected to.

Some differences exist between the implementation of the ODBC client and the
ODBC standard.

Using the SQLProcedures call, you can obtain the list of stored procedures that are
defined for a data source in the metadata catalogs. To retrieve parameter
information about one or more stored procedure definitions, you use the
SQLColumnProcedures call. The ODBC client implementation supports the
following syntax and options for these calls:
v Qualifier names are not supported. szProcQualifier should always be null and

cbProcQualifier should always be zero.
v When retrieving the result sets from these calls, TABLE_QUALIFIER is always

null.
v The REMARKS field is always spaces.
v For SQLProcedure calls, PROCEDURE_TYPE is always SQL_PT_UNKNOWN.
v When retrieving the result set from the SQLProcedureColumns call, the

COLUMN_TYPE will only be one of the following values:
– SQL_PARAM_INPUT
– SQL_PARAM_INPUT_OUTPUT
– SQL_PARAM_OUTPUT

v RADIX is always 10.
v NULLABLE is always set to SQL_NULLABLE_UNKOWN.

To invoke a stored procedure use the SQLExecDirect call. The ODBC client
supports the following two formats of the CALL statement that can be supplied on
the SQLExecDirect call:
v The shorthand syntax: “{[?=]call procedure-name(parameter,[parameter],...)}”
v “CALL procedure-name(parameter,[parameter],...)”

Before issuing the SQLExecDirect call you might have to issue one or more
SQLBindParameter calls for any parameter markers that are contained in the CALL
statement.

The following rules apply to parameter markers:
v For output or input-output parameters, parameter must be a parameter marker.
v For input parameters, parameter can be a literal, a parameter marker or NULL.
v For the short format, the return value must be a parameter marker.
v For procedure-name, you can supply an identifier or a parameter marker.

Chapter 4. Administering 223

Unlike the ODBC standard, all parameters defined for the stored procedure must
be supplied on the CALL statement.

If you use the second format of the CALL statement or the shorthand format
without a return value and your stored procedure application returns a non-zero
return code (or the stored procedure sets a non-zero value for SQLCODE in the
SQLCA) then:
v The RETCODE will either be set to SQL_ERROR or

SQL_SUCCESS_WITH_INFO, depending on the return code (or SQLCODE)
value, or you will need to

v Issue the SQLError call and inspect the pfNativeError parameter to obtain the
return code (or SQLCODE) value.

If you want to use the shorthand version of the CALL and specify a return code
value, follow these rules when you define the stored procedure:
v The first parameter-declaration must be OUT.
v The first parameter-declaration parameter-name must be RC.
v The first parameter-declaration parameter-type must be INTEGER.

Required: If your stored procedure application program uses non-zero return code
values to report warning conditions that are not errors, you must use the
shorthand format specifying an RC value if you want to inspect any data returned
from the stored procedure application program. When a non-zero return code is
encountered, the query processor will not update the SQLDA returned to the client
with any updated output or input-output parameters that the stored procedure
modified. If you specify an RC parameter and a non-zero return code is
encountered, the stored procedure connector updates the RC parameter with the
return code value and returns zeros to the query processor. This enables the stored
procedure to return any updated values to the client and the SQLExecDirect call to
report SQL_SUCCESS.

For more information about the SQLExecDirect and SQLBindParameter calls, see
the Microsoft information about ODBC APIs..

Creating result sets in stored procedures
Result sets extend the capability of output parameters by allowing multiple rows
of data to be returned in a single invocation of a stored procedure.

The creation of result sets does not preclude the use of output parameters. You can
build procedures that return both output parameters and results sets. You can only
use result sets from stored procedures that are compliant with Language
Environment (LE).

When a stored procedure returns a result set, the result set is automatically in an
open state after a successful call to the procedure. This means the application can
immediately begin fetching the result set rows, just as it does after opening a
prepared cursor. The main difference between opening a cursor and executing a
stored procedure that returns a result set is that the description of the result set
cannot be determined until the procedure is successfully called.

Stored procedures can return only one result set per application call. The number,
names, and SQL types of the columns in a result set are determined by the stored
procedure itself, and can vary from call to call if there is an application reason to
do so.

224 Guide and Reference

To create a result set, the stored procedure must be defined in the system catalog
as capable of returning a result set. To do this, the procedure must be specified
with RESULT SETS 1 in the CREATE PROCEDURE statement that defines it.

The interface routines CACRSCR, CACRSIN, and CACSADDR enable your stored
procedure to create result sets. The routines are callable by any language used to
implement a stored procedure.

CACRSCR interface routine
The CACRSCR interface routine enables your stored procedure to create result sets.
The routine creates an empty result set using an SQLDA that describes the
columns in the result set.

With this routine, the developer of the stored procedure can optionally designate
ascending or descending columns to order by. The routine is callable by any
language used to implement a stored procedure.

Parameters

The parameters for the routine CACRSCR are:
v The SQLDA passed to the stored procedure on invocation. This SQLDA

describes the original parameters passed to the procedure.

Important: Failure to pass this parameter first can result in an abend in the
result set processing logic.

v An SQLDA that describes the columns in the result set. Read this topic and
related topics for more information on defining a result set SQLDA.

v A list of sorting criteria. This list is an array of halfword subscripts for SQLVAR
entries in the SQLDA to be sorted. The list is terminated with an entry
containing the value 0.

Example: To sort on the first column in ascending sequence, the array contains
the entries 1 and 0. Descending sorting is specified with a negative subscript
value. To sort on the third column in descending sequence, the array contains
the values -3 and 0.

Return codes

CACRSCR returns the following return codes:

0 An empty result set was successfully created.

1 The SQLDAID field does not contain the literal string ‘SQLDA.’

2 The count field SQLD is invalid. It is either less than or equal to 0 or does
not match the value in the SQLN field.

3 The stored procedure is not defined in the System Catalog as returning a
result set. The grammar defining the stored procedure must specify
RESULT SETS 1.

4 A result set has already been created in the current invocation of the stored
procedure. Only one result set is allowed per invocation.

5 The stored procedure was called by a client EXEC IMMEDIATE request. A
result set cannot be returned when EXEC IMMEDIATE is used.

6 The sorting list passed is invalid. One of the values in the list exceeds the
number of columns in the result set.

Chapter 4. Administering 225

101-199
An invalid name was passed for sqlvar rc-100.

201-299
An invalid sqltype was specified for sqlvar rc-200.

301-399
An invalid sqllen was specified for sqlvar rc-300

>1000 Internal error. Contact IBM Technical Support

Sample

Sample COBOL usage of CACRSCR.
WORKING-STORAGE SECTION.

* DEFINE THE RESULT SET SQLDA
01 RESULT-SET-SQLDA.

05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.
* SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)

05 RS-SQLDABC PIC 9(08) COMP VALUE 60.
* SQLN AND SQLD ARE THE NUMBER OF COLUMNS

05 RS-SQLN PIC 9(04) COMP VALUE 1.
05 RS-SQLD PIC 9(04) COMP VALUE 1.
05 RS-SQLVAR1.

10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.
10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.
10 RS-SQLDATA1 PIC S9(8) COMP.
10 RS-SQLIND1 PIC S9(8) COMP.
10 RS-SQLNAME1.

20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.
20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

* DO AN ASCENDING SORT ON THE CHAR8 COLUMN
01 SORTING-LIST.

05 SORT-FIRST-ASCENDING PIC S9(4) COMP VALUE 1.
05 END-OF-SORTING-LIST PIC S9(4) COMP VALUE 0.

LINKAGE SECTION.
01 ARG-SQLDA.

.

.

.
PROCEDURE DIVISION USING ARG-SQLDA, ARG-SQLCA

.

.

.
* CREATE THE RETURN RESULT SET

CALL ’CACRSCR’ USING ARG-SQLDA, RESULT-SQLDA, SORTING-LIST.
.
.
.

CACRSIN interface routine
The CACRSIN interface routine Inserts a single row into a previously-created result
set. Like CACRSCR, this routine receives the column information in the form of an
SQLDA structure.

Parameters

The parameters for the routine CACRSIN are:

226 Guide and Reference

v The SQLDA passed to the stored procedure on invocation. This SQLDA
describes the parameters passed to the procedure.

Tip: Failure to pass this parameter first can result in an abend in the result set
processing logic.

v An SQLDA describing the columns and data to be inserted into the result set.
When inserting rows in the result set, the sqldata and sqlind variables for each
column must be set to the address of the column data to insert. This SQLDA
must be the same SQLDA structure used to create the result set.

Return codes

CACRSIN returns the following return codes:

0 A new row was successfully inserted into the result set.

1 The SQLDAID field does not contain the literal string SQLDA.

2 The count field SQLD is invalid. It is either less than or equal to 0 or does
not match the value in the SQLN field.

3 The SQLDA address passed is not the same as the SQLDA used to create
the result set.

4 The number of sqlvars in the SQLDA passed is not the same as the
number passed when the result set was created.

201-299
An invalid sqltype was specified for sqlvar rc-200.

301-399
An invalid sqllen was specified for sqlvar rc-300.

401-499
The data passed in sqldata is invalid for sqlvar rc-400.

501-599
The indicator passed in sqlind is invalid for sqlvar rc-500.

>1000 Internal error. Contact IBM Technical Support.

Sample

Sample COBOL usage of CACRSIN.
WORKING-STORAGE SECTION.
* DEFINE THE RESULT SET SQLDA
01 RESULT-SET-SQLDA.

05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.
* SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)

05 RS-SQLDABC PIC 9(08) COMP VALUE 60.
* SQLN AND SQLD ARE THE NUMBER OF COLUMNS

05 RS-SQLN PIC 9(04) COMP VALUE 1.
05 RS-SQLD PIC 9(04) COMP VALUE 1.
05 RS-SQLVAR1.

10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.
10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.
10 RS-SQLDATA1 PIC S9(8) COMP.
10 RS-SQLIND1 PIC S9(8) COMP.
10 RS-SQLNAME1.

20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.
20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

* DO AN ASCENDING SORT ON THE CHAR8 COLUMN
01 SORTING-LIST.

Chapter 4. Administering 227

05 SORT-FIRST-ASCENDING PIC S9(4) COMP VALUE 1.
05 END-OF-SORTING-LIST PIC S9(4) COMP VALUE 0.

01 CHAR8-COLUMN-DATA PIC X(8).

01 CHAR8-NULL-IND PIC S9(4) COMP VALUE 0.

LINKAGE SECTION.
.
.
.

PROCEDURE DIVISION USING ARG-SQLDA, ARG-SQLCA
.
.
.

* CREATE THE RETURN RESULT SET
CALL ’CACRSCR’ USING ARG-SQLDA, RESULT-SQLDA, SORTING-LIST.

* SET THE SQLDATA AND SQLIND POINTERS IN THE RESULT SET
* SQLDA

CALL ’CACSADDR’ USING RS-SQLDATA1, CHAR8-COLUMN-DATA,
RS-NULL-IND.

* INSERT 2 ROWS INTO THE RESULT SET
MOVE ’ROW 1’ TO CHAR8-COLUMN-DATA.
CALL ’CACRSIN’ USING ARG-SQLDA, RESULT-SQLDA.
MOVE ’ROW 2’ TO CHAR8-COLUMN-DATA.
CALL ’CACRSIN’ USING ARG-SQLDA, RESULT-SQLDA.
.
.
.

CACSADDR interface routine
The CACSADDR interface routine is used by COBOL programs to set the
addresses of sqldata and sqlind data items in an SQLVAR.

Parameters

The parameters for the routine CACSADDR are:
v The address of an sqldata variable to be set.
v The address of the column data to be placed in sqldata.
v The address of and indicator variable to be placed in the sqlind variable that

immediately follows sqldata. This parameter is optional if an sqlind variable is
not needed.

Sample

Sample COBOL usage of CACSADDR:
* SET RS-SQLDATA1 TO THE ADDRESS OF CHAR8-COLUMN-DATA AND
* RS-SQLIND1 TO THE ADDRESS OF RS-NULL-IND

CALL ’CACSADDR’ USING RS-SQLDATA1, CHAR8-COLUMN-DATA,
RS-NULL-IND.

* SET RS-SQLDATA2 TO THE ADDRESS OF INTEGER-DATA
CALL ’CACSADDR’ USING RS-SQLDATA2, INTEGER-DATA.

Modifying a COBOL stored procedure to return a result set
To create a result set in a COBOL stored procedure, define an SQLDA and pass the
result set that the SQLDA creates to the CACRSCR routine.

228 Guide and Reference

The application logic that is necessary to create a result set is relatively
straightforward. The stored procedure program first defines an SQLDA that
describes the result set and passes the result set to the CACRSCR routine. A
sample SQLDA for a three column result set is shown in the following code
sample:
Table 5x Sample COBOL SQLDA.

01 RESULT-SET-SQLDA.
05 RS-SQLDAID PIC X(08) VALUE ’SQLDA’.

* SQLDABC IS CALCULATED AS 16 + (NBR COLUMNS * 44)
05 RS-SQLDABC PIC 9(08) COMP VALUE 148.

* SQLN AND SQLD ARE THE NUMBER OF COLUMNS
05 RS-SQLN PIC 9(04) COMP VALUE 3.
05 RS-SQLD PIC 9(04) COMP VALUE 3.
05 RS-SQLVAR1.

10 RS-SQLTYPE1 PIC 9(04) COMP VALUE 453.
10 RS-SQLLEN1 PIC 9(04) COMP VALUE 8.
10 RS-SQLDATA1 PIC S9(8) COMP.
10 RS-SQLIND1 PIC S9(8) COMP.
10 RS-SQLNAME1.

20 RS-SQLNAME1-LEN PIC 9(4) COMP VALUE 5.
20 RS-SQLNAME1-NAME PIC X(30) VALUE ’CHAR8’.

05 RS-SQLVAR2.
10 RS-SQLTYPE2 PIC 9(04) COMP VALUE 497.
10 RS-SQLLEN2 PIC 9(04) COMP VALUE 4.
10 RS-SQLDATA2 PIC S9(8) COMP.
10 RS-SQLIND2 PIC S9(8) COMP.
10 RS-SQLNAME2.

20 RS-SQLNAME2-LEN PIC 9(4) COMP VALUE 8.
20 RS-SQLNAME2-NAME PIC X(30) VALUE ’LARGEINT’.

05 RS-SQLVAR3.
10 RS-SQLTYPE3 PIC 9(04) COMP VALUE 501.
10 RS-SQLLEN3 PIC 9(04) COMP VALUE 2.
10 RS-SQLDATA3 PIC S9(8) COMP.
10 RS-SQLIND2 PIC S9(8) COMP.
10 RS-SQLNAME3.

20 RS-SQLNAME3-LEN PIC 9(4) COMP VALUE 8.
20 RS-SQLNAME3-NAME PIC X(30) VALUE ’SMALLINT’.

In addition to defining the result set SQLDA, the stored procedure must define a
sorting list to pass to the result set creation entry CACRSCR. If no sorting is
necessary, the list needs only one variable as shown below:

01 NO-SORTING.
05 END-OF-LIST PIC S9(4) COMP VALUE 0.

After you define the result set and sorting list, the stored procedure calls
CACRSCR to create the result set, and makes one call to CACRSIN for each row of
data to be added to the result set.

Linking the result set interface into a z/OS load module
When you dynamically call or statically link interface modules that define result
sets into your stored procedure load module, you can then return a result set to
your calling application. You can also use static calls.

If you use static calls, you must include the load module CACSPRS in the link step
of a stored procedure compile and link job. This module is delivered in the
SCACLOAD distribution library.

Chapter 4. Administering 229

Defining the stored procedure to the metadata catalog
To return a result set to your calling application, you must include a RESULT SETS
specification in the CREATE PROCEDURE statement for your stored procedure
that enables your stored procedure to return a result set.

Stored procedures defined with a RESULT SETS specification other than 0 are not
required to return result sets, but have the option of creating a result set when
necessary. A sample definition of a stored procedure that is enabled for result sets
follows:

CREATE PROCEDURE CAC.SP001
(IN INPUT_PARM CHAR(8),

OUT OUTPUT_PARM CHAR(8))
RESULT SETS 1
EXTERNAL NAME ’SP001’
LANGUAGE COBOL
STAY RESIDENT YES;

Pass the CREATE PROCEDURE statement as input to the metadata utility to add
the definition to the metadata catalog.

Client application and result set interaction
The ODBC, CLI, and JDBC clients can check for result sets. The client program is
responsible for closing any result set that is opened by a stored procedure call.

Client applications that call stored procedures must be aware of the procedures
that return result sets. ODBC and CLI clients can check for the existence of a result
set by calling the ODBC function SQLNumResultCols after executing a stored
procedure. If SQLNumResultCols returns any number other than 0, then a result
set is open and ready for fetching.

JDBC clients can invoke the CallableStatement method ExecuteQuery when the
stored procedure always returns one and only one result set. If there is any doubt,
clients must call the Execute method. The Execute method returns true if a
procedure returns a result set, and the client retrieves the result set by calling the
getResultSet method.

Support routines for stored procedures
You can use support routines in your stored procedures to fetch user IDs,
passwords, and run option values.

The Classic federation implementation passes more information to your stored
procedure than the SQLDA structure. A hidden area precedes the SQLDA that the
product uses to establish and maintain communications with other Classic
federation components.

The support routines enable you to get a copy of the connected user ID and
password, and a copy of the RUN OPTIONS parameter in the CREATE
PROCEDURE statement. Unlike the CICS and IMS DRA interface, these support
routines are in object form for direct inclusion in your stored procedure. These
support routines are written in assembler language and accept the following
parameters:
v The SQLDA structure
v The address of an output field where the requested information is moved

Unlike the CICS, CA-Datacom, and IMS interfaces that are distributed as load
modules, these support routines are supplied in object-module form for direct

230 Guide and Reference

inclusion in your stored procedure. These routines are written in Assembler
Language and use standard linkage conventions. All routines are passed two
parameters.
v The first parameter must be the address of the SQLDA parameter passed to the

stored procedure.
v The second parameter is an address where the value is copied.

Exception: Like the CICS and IMS DRA interface, these support routines are
written to accept 31-bit addresses. However, unlike the CICS and IMS DRA
interfaces, these support routines do not perform validation checks to confirm that
the first parameter is a pointer to the SQLDA. Failure to pass the SQLDA as the
first parameter generally results in some form of addressing exception abend.

Get RUN OPTIONS (CACSPGRO) calling conventions
The support routine CACSPGRO copies the RUN OPTIONS parameter specified
on the CREATE PROCEDURE statement into a 254-byte work area that your stored
procedure application program supplies.

The following figure shows the calling conventions used to invoke CACSPGRO.

CACSPGRO always issues a return code of zeros. Upon return, the area that
parameter 2 references contains a copy of the RUN OPTIONS parameter padded
with blanks.

To link-edit CACSPGRO into your stored procedure application, concatenate the
SCACSAMP library into the SYSLIB DD statement on the link step and include the
following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGRO)

Get user ID (CACSPGUI) calling conventions
The CACSPGUI support routine copies the user ID of the connected user into an
8-byte work area that your stored procedure supplies.

The following figure shows the calling conventions that are required to invoke
CACSPGUI.

Register 1

Address of

Parameter 1 SQLDA

Parameter 2 254-Byte Work Area

Figure 8. CACSPGRO calling conventions

Chapter 4. Administering 231

CACSPGUI always issues a return code of zeros. Upon return, the area that
parameter 2 references contains a copy of the user ID padded with blanks. If no
user ID is supplied, the output area contains spaces.

To link-edit CACSPGUI into your stored procedure application, concatenate library
SCACSAMP into the SYSLIB DD statement on the link step and include the
following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGUI)

Get user password (CACSPGPW) calling conventions
The CACSPGPW support routine copies the connected user password into an
8-byte work area that your stored procedure supplies.

The following figure shows the calling conventions that are required to invoke
CACSPGPW.

CACSPGPW always issues a return code of zeros. Upon return, the area referenced
by parameter 2 contains a copy of the user password padded with blanks. If no
password is supplied, the output area contains spaces.

To link-edit CACSPGPW into your stored procedure application, concatenate
library SCACSAMP into the SYSLIB DD statement on the link step and include the
following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGPW)

CICS interface for stored procedures
The CICS interface enables stored procedures that run in the data server address
space to communicate with CICS and execute a CICS application program.

Register Address of

Parameter 1

Parameter 2 8-Byte Work Area

SQLDA

Figure 9. CACSPGUI calling conventions

Register Address of

Parameter 1

Parameter 2 8-Byte Work Area

SQLDA

Figure 10. CACSPGPW calling conventions

232 Guide and Reference

The stored procedure CACSPVCM is supplied for basic operations. CACSPVCM
uses the CICS interface bridge CACSPBR to initiate an APPC conversation with
CICS. The RUN OPTIONS parameter for CACSPVCM links to a user-written CICS
application that performs the actual processing. The following operations take
place:
v CACSPVCM sends the SQLDA that is supplied by the client application to the

CICS application.
v The CICS application sends CACSPVCM an updated version of the SQLDA.
v CACSPVCM deallocates the APPC conversation and returns the SQLDA to the

client application.

In most situations, CACSPVCM is a sufficient stored procedure application
program. If CACSPVCM does not meet your needs, you can use the CACSPVTM
copybook which is provided for writing your own stored procedure application
program. CACSPVCM, uses this interface to communicate with CACSPBR. Writing
your own stored procedure to interface with CICS is required in the following
situations:
v You need to invoke two or more CICS applications.
v You need to run programs in the data server address space and then run a CICS

application.

CACSPVCM is written in assembler, and source code is not available. To help you
understand how to interface with CACSPBR, a COBOL version of CACSPVCM is
provided in the sample library SCACSAMP (CACSPCOM).

Specifying CICS transaction scheduling information
For the CACSPVCM stored procedure to communicate with CICS, you need to use
the RUN OPTIONS parameter to specify the information that CACSPVCM needs
to communicate with CICS and invoke the CICS transaction.

If you are writing your own stored procedure to communicate with CICS, then you
should specify the CICS communication information using the RUN OPTIONS
parameter instead of hard coding it in your stored procedure. Doing so allows you
to drop the stored procedure definition, update the CREATE PROCEDURE
statement, and redefine the stored procedure when your environment changes,
without requiring program changes.

CICS transaction scheduling information is identified by the _CICS keyword in the
RUN OPTIONS parameter. The format of the _CICS keyword is:

_CICS(Local-LU-Name,CICS-Applid,Logmode-Table-Name,Transaction-ID,Program-
Name)

All subparameters must be supplied, comma delimited as shown, and must not
contain any spaces.

The following table describes the size and purpose of each sub-parameter.

Chapter 4. Administering 233

Table 40. CICS transaction scheduling subparameters

Subparameter name
Maximum
length Description

Local-LU-Name 8 Identifies the name of a pool of VTAM logical units that can be used by
CACSPBR to communicate with CICS, such as CACPPC0*.

In the above example, CACSPBR initially attempts to open an ACB for
LU name CACPPC00. If an ACB open error is returned, or a CNOS
negotiation error is reported by CICS, then CACSPBR attempts to open
an ACB named CACPPC01. If that fails LU names CACPPC02-
CACPPC09 are tried until no errors are reported or all names have been
attempted.

Only one set of wildcard characters can be specified (for example,
CAC*PC0* is invalid). Up to seven wild card characters can be supplied
(not recommended).

CICS-Applid 8 Identifies the APPLID of the CICS target subsystem.

Logmode-Table-Name 8 Identifies the VTAM logmode table entry to be used. This name must
identify an entry in the Logon Mode Table definition, in the Local LU
Name APPL definitions and in the CICS SESSIONS definitions.

Transaction-ID 4 Identifies the name of the CICS transaction that has been defined for
CACSP62 to allow communications between the Server and CICS. This
name must be 4 characters long.

Program-Name 8 Identifies the name of the CICS program that CACSP62 is to LINK to.
This name must be defined as a PROGRAM to CICS.

Stored procedure and CICS communication
Communications with CICS is performed using VTAM LU 6.2 with the VTAM
connection handler.

An API interface load module, CACSPBR, is provided. A stored procedure
application running in the data server address space that communicates with the
VTAM connection handler can call CACSPBR to perform these tasks:
v Establish a session with CICS
v Send data
v Receive data
v Perform address translation for the updated parameter list returned from the

CICS application program
v End the session

The system also supplies a CICS LU 6.2 application, CACSP62, which is the
partner for CACSPBR. This application is responsible for these tasks:
v Performing address translation for the parameter list being passed to the CICS

transaction
v Invoking the specified CICS application program via an exec CICS link
v Sending return code or CICS abend codes back to the server
v Deallocating the session in the case of a CICS abend

The CACSPBR interface allows a stored procedure to send and receive multiple
transmissions between itself and CICS. In normal situations, only a single send and
receive is required. For these situations, the system supplies an Assembler
Language stored procedure (CACSPVCM) that sends the client parameter list to
CICS and receives (a possibly) updated parameter list from CICS. For most

234 Guide and Reference

situations, using CACSPVCM eliminates the need for you to develop your own
stored procedure to invoke a CICS application program.

The following figure shows the processing flow when the stored procedure
application program interfaces with CICS.

In addition, extensions to the RUN OPTIONS parameter enable you to specify the
required CICS transaction scheduling information to invoke your user-defined
CICS application program.

Important: If you write your own stored procedure application program and
specify CICS transaction scheduling information on the RUN OPTIONS parameter,
the information you supply overrides values that might be set in your stored
procedure application.

CACSPBR interface
The API interface to the CICS interface bridge enables stored procedures to open
CICS conversations and execute a CICS application program.

Windows/UNIX

Client Application

SQL CALL Statement

Mainframe

Data Server

Query Processor

Stored Procedure
Data Connector

Stored Procedure
Application Program

CACSPBR

VTAM Connection Holder

CACSP62

User-Written CICS Transaction

CICS

Figure 11. CICS processing flow

Chapter 4. Administering 235

The CICS interface bridge (CACSPBR) is distributed as a separate load module that
you can dynamically call or statically link to from your stored procedure.

The CACSPBR interface uses standard assembler linkage conventions. Stored
procedures pass CACSPBR three parameters:
v An APPC function structure
v An APPC data structure
v The SQLDA that is passed to the stored procedure

Figure 12 shows how your stored procedure must pass parameters to CACSPBR.
Additionally, your stored procedure must call CACSPBR by using
variable-argument list calling conventions. Variable-argument list calling
conventions are standard for most high-level languages, such as COBOL. Set the
high-order bit of the SQLDA to a value of 1.

Additionally, CACSPBR is linked as an AMODE(31) RMODE(ANY) application.
Stored procedures must pass all addresses to CACSPBR in 31-bit addressing mode.

Upon return from CACSPBR, Register 15 contains a return code value that
indicates whether the requested function completed successfully or not.

Sample member CACSPVTM is a COBOL copybook that shows the structure and
contents of both the APPC function and APPC data structures.

01 APPC-FUNCTION.
05 APPC-REQUEST PIC X(8).

01 APPC-DATA.
05 APPC-DATA-IDENTIFIER PIC X(8).
05 LOCAL-LU-NAME PIC X(8).
05 CICS-SYSTEM-APPLID PIC X(8).
05 APPC-MODE-ENTRY-NAME PIC X(8).
05 CICS-TRANSACTION-ID PIC X(4).
05 CICS-SP-PROGRAM-NAME PIC X(8).
05 CICS-SP-RETCODE PIC 9(8) COMP.
05 CICS-SP-ABENDCODE

REDEFINES CICS-SP-RETCODE PIC X(4).
05 COMM-RETCODE PIC S9(8) COMP.

The following table describes the contents of the APPC function structure.

Parameter 1

Address ofRegister

APPC Function

Parameter 2 APPC Data

Parameter 3 SQLDA

Figure 12. Parameters passed to CACSPBR

236 Guide and Reference

Table 41. APPC function structure contents

COBOL name SQL data type Description

APPC-REQUEST CHAR(8) Identifies the function that CACSPBR needs to perform. Valid
functions are:

v OPEN - Start a conversation with CICS

v SEND - Send the SQLDA to CICS

v RECEIVE - Receive an updated copy of the SQLDA from
CICS

v CLOSE - Deallocate the CICS conversation

The following table describes the contents of the APPC data structure.

Table 42. APPC data structure contents

COBOL name SQL data type Description

APPC-DATA-IDENTIFIER CHAR(8) Signature field that identifies the structure as the
APPC data structure. Must contain the value
“APPCDATA”.

LOCAL-LU-NAME CHAR(8) Identifies the name of a pool of VTAM logical units
(LUs) that can be used by CACSPBR to
communicate with CICS, for example, CACPPC0*.

In Figure 12 on page 236, CACSPBR initially
attempts to open an ACB for LU name CACPPC00.
If an ACB open error is returned, or a CNOS
negotiation error is reported by CICS, then
CACSPBR attempts to open an ACB named
CACPPC01. If that fails LU names
CACPPC02-CACPPC09 are tried until no errors are
reported or all names have been attempted.

You can specify only one set of wildcard characters.
(For example, CAC*PC0* is invalid.) You can use up
to seven wild card characters, but supplying
multiple wild cards is not a recommended practice.

CICS-SYSTEM-APPLID CHAR(8) Identifies the APPLID of the CICS target subsystem.

APPC-MODE-ENTRY-NAME CHAR(8) Identifies the VTAM logmode table entry. This name
must identify an entry in the Logon Mode Table
definition, in the Local LU Name APPL definitions
and in the CICS SESSIONS definitions.

CICS-TRANSACTION-ID CHAR(4) Identifies the name of the CICS transaction that is
defined for CACVT62 to allow communications
between the server and CICS. This name must be
4-characters long.

CICS-SP-PROGRAM-NAME CHAR(8) Identifies the name of the CICS program that
CACVT62 links to. This name must be defined as a
PROGRAM to CICS.

CICS-SP-RETCODE INTEGER CICS error return code. The value is zero if no CICS
errors are reported. If CICS-SP-RETCODE is less
than zero, then a CICS error has occurred. The
stored procedure should then inspect
CICS-SP-ABENDCODE for the error code.

CICS-SP-ABENDCODE CHAR(4) Abend code that CICS returns.

Chapter 4. Administering 237

Table 42. APPC data structure contents (continued)

COBOL name SQL data type Description

COMM-RETCODE INTEGER When CACSPBR detects a communications error,
COMM-RETCODE contains a return code.

Typically, you can supply a value of spaces for the LOCAL-LU-NAME,
CICS-SYSTEM-APPLID, APPC-MODE-ENTRY-NAME, CICS-TRANSACTION-ID,
and CICS-SP-PROGRAM-NAME fields. Define the information associated with
these parameters in the RUN OPTIONS parameter of the CREATE PROCEDURE
statement instead. CACSPBR gives precedence to information you supply in RUN
OPTIONS over information supplied in the APPC data fields.

Each time your stored procedure calls CACSPBR, the CICS-SP-RETCODE and
COMM-RETCODE must contain zeros. Upon return from CACSPBR, your stored
procedure must perform the following checks:
v Is the RETURN-CODE (Register 15) non-zero? If so, COMM-RETURN code

might contain a data server communications return code.
v Inspect CICS-SP-RETCODE for a non-zero value. If the value is less than zero,

inspect CICS-SP-ABENDCODE to determine the error code that CICS reports.
If your stored procedure receives a non-zero CICS-SP-RETCODE or
COMM-RETURN, CACSPBR reports it to the client application. You can
suppress sending these return codes to the client application by setting the
SQLCODE field in the SQLCA structure to a non-zero value.

Call CACSPBR with the APPC-REQUEST field values set in the following
sequence.
1. OPEN
2. SEND
3. RECEIVE
4. CLOSE

The call can issue multiple sends and receives, but should do so only when you
need to run multiple CICS applications. The stored procedure must pass to
CACSPBR the SQLDA structure that the client application passed to the stored
procedure. Additionally, you cannot alter the SQLDA structure contents. You can
change only the data referenced by ARG-SQLDATA and the associated null
indicators referenced by ARG-SQLIND. The following table provides an overview
of the processing that CACSPBR and its counterpart CACSP62 perform for each
APPC-REQUEST function.

238 Guide and Reference

Table 43. Processing overview by function

FUNCTION CACSPBR actions CACVT62 actions

OPEN Attempts to open a VTAM ACB based on the
information supplied in the following fields:

v LOCAL-LU-NAME

v CICS-SYSTEM-APPLID

v APPC-MODE-ENTRY-NAME

v CICS-TRANSACTION-ID

If the ACB open fails and LU pooling
information was supplied in the field
LOCAL-LU-NAME, the OPEN function
generates a new name and makes another
attempt until the OPEN function has tried all
available LU names.

In addition, the OPEN function passes the user
ID and password to CICS for security
checking. If the connected user that is running
the stored procedure supplied no user ID, the
OPEN function sends the value NO_USER and
a blank password to CICS.

Saves the conversation ID supplied by CICS and
allocates work buffers.

SEND Sends the CICS-SP-PROGRAM-NAME and the
SQLDA to CICS.

Receives a copy of the SQLDA and performs
address translation so that the CICS application
program can access the contents of the SQLDA
ARG-SQLDATA and ARG-SQLIND fields that are
referenced in the SQLDA.

Issues a LINK for the program name that is
contained in CICS-SP-PROGRAM-NAME, waits
for control to return, and sends the copy of the
SQLDA back to CACSPBR.

If CICS reports an abend, the abend code is sent
back to CACSPBR.

RECEIVE Receives a copy of the SQLDA from CICS and
performs address translation so that the new
copy is referenced by the stored procedure
application program.

CLOSE Closes the VTAM ACB, which terminates the
conversation with CICS.

Receives a deallocation request and frees resources
that are allocated when the conversation begins.

Parameters passed to the CICS application program
When you execute CICS application programs, use the parameters that CACSP62
passes to a CICS application program to establish communication.

CACSP62 passes three parameters that are found in the communications area to
CICS application programs. Sample member CACSPDFH is a COBOL copybook
that defines the communications area. The following example shows the contents
of that copybook:
01 DFHCOMMAREA.

05 APP-RETURN-CODE PIC 9(8) COMP.
05 ARG-DATA-POINTER POINTER.
05 ARG-DATA-LENGTH PIC 9(8) COMP.

Chapter 4. Administering 239

The following table describes the contents of each of the fields in the
communications area. Your application program must establish addressability to
the SQLDA before inspecting or updating its contents.

For example, in COBOL you issue:

SET ARG-DATA TO ARG-DATA-POINTER .

The above example assumes that you included a copy of SCACSAMP member
CACSPSDA in the linkage section of your CICS application program.

Table 44. Communication area contents

COBOL name SQL data type Description

APP-RETURN-CODE INTEGER The fullword return code value that the CICS application
uses to report whether processing was successful or not.
The contents of this field are placed in the
CICS-SP-RETCODE field in the APPC data area for
inspection by your stored procedure running in the data
server’s address space. This return code percolates to the
client application program, unless your stored procedure
overrides this code by using the SQLCODE in the SQLCA.

ARG-DATA-POINTER INTEGER The address of the copy of the SQLDA that was sent to
CICS. Your CICS application program must not modify this
field.

ARG-DATA-LENGTH INTEGER The length of the SQLDA passed to your CICS application
program. Your CICS application program must not modify
this field.

After your CICS application program establishes addressability to the SQLDA, the
CICS program establishes addressability to the data and null indicator values in
the SQLDA.

Compiling and linking applications that use CACSPBR
Use the following sample job stream to guide you when you use a supplied JCL to
compile and link applications that use CACSPBR.

About this task

The member CACSPCCC in the SCACSKEL library is a sample job stream that
demonstrates how to compile and link CACSPCOM including CACSPBR. The
following example is a copy of CACSPCCC.

To compile and link CACSPCOM by using the supplied Job Control Language
(JCL):
1. Supply an appropriate job card.
2. Modify the PROC parameters (LE, COBOL, SOUT, and so on) to specify correct

values for your site.
3. Modify the COMPILE step SYSIN DD statement to specify the correct source

library.
4. Modify the LKED step OBJ DD statement to specify the correct object library.
5. Modify the LKED step SYSLMOD DD statement to specify the correct load

library.
6. Modify the PROC statement to specify the correct high level name of the

application libraries.

240 Guide and Reference

CACSPBR return codes
If CACSPBR detects an error, or an error is reported by the VTAM LU 6.2
communication handler, CACSPBR returns a negative return code.

The following table provides a brief description of each return code, possible
methods to resolve the problem, and whether a more detailed explanation of the
error condition can be found in the server’s output log.

Table 45. CACSPBR return codes

Return code Description Logged

-102 Invalid buffer version identifier. Either your stored procedure did not pass the
SQLDA that was passed to your application as the third parameter to
CACSPBR, or the SQLDA was corrupted. Verify that your stored procedure
passed SQLDA to CACSPBR as the third parameter. If you are passing the
SQLDA as the third parameter, then contact IBM Technical Support.

No

-116 Invalid stored procedure internal identifier. See the description of return code
-102 for problem resolution information.

No

-117 Invalid sqln value in the SQLDA. See the description of return code -102 for
problem resolution information.

No

-121 Your stored procedure passed an incorrect number of parameters to CACSPBR.
Verify that your program is passing the correct number of parameters to
CACSPBR. If the correct number of parameters are passed, contact IBM
Technical Support.

No

-122 Invalid APPC function was passed. Valid functions are OPEN, SEND,
RECEIVE, and CLOSE.

No

-123 Invalid local LU name was passed to CACSPBR. Probable cause is that the LU
name contains multiple sets of LU pooling wildcard characters or that too
many wildcard characters were supplied. Verify that a correct local LU name
was passed.

No

-131 CACSPBR's attempt to register itself with the VTAM LU 6.2 connection handler
failed. Review the data server output log for the error that is reported.

Yes

-132 Error reported by the VTAM LU 6.2 connection handler while processing the
OPEN function. Review the data server output log for the error that is
reported.

Yes

-141 Error reported by the VTAM LU 6.2 connection handler while processing the
SEND function. Review the data server output log for the error that is reported.

Yes

-151 Error reported by the VTAM LU 6.2 connection handler while processing a
RECEIVE function. Review the data server output log for the error that is
reported.

Yes

-152 Disconnect reported when processing the RECEIVE function. If the disconnect
is reported due to an error condition, then the error condition is logged in the
data server output. If the disconnect occurred because CACSP62 decided to
deallocate the conversation, then no error is logged.

For some cases.

-162 Error reported by the VTAM LU 6.2 connection handler while processing the
CLOSE function. Review the data server output log for the error that is
reported.

Yes

CACSP62 abend codes
When a user-defined stored procedure requests communication with a CICS
system, CACSP62 abend codes can occur.

The stored procedure implementation provides a CICS- based LU6.2
communication program, CACSP62. This program is needed when a user-defined

Chapter 4. Administering 241

stored procedure program requests communication with a CICS system by using
the data server. The communication functions that this program performs are
specialized, and designed to support the stored procedure implementation.

This CICS program executes as a transaction. The transaction is initiated when the
user-defined stored procedure program tells the data server to OPEN a
communication session with a specific CICS system, identifying this program by
transaction name. You assign the transaction name when the software is installed
in the CICS system.

Certain failures might occur within this communication process. The user is
notified of failures in this communication processor with standard CICS abends.
Each error is assigned a specific abend code for easier problem determination.
Normal CICS abend handling is allowed to produce diagnostic materials as
defined by the user site. The abend code format is SPnn, where nn is replaced by
alphanumeric characters. The abend code prefix SP is fixed and not
user-configurable. The following table describes abends that can occur and the
causes of these abends.

Table 46. CACSP62 abend codes

Code Description

SP01 The transaction was initiated by a means other than an ALLOCATE from the data server. The
transaction is designed to execute as a communications server using a specific protocol that the
stored procedure implementation uses. Do not attempt to initiate the transaction by any other
means.

SP02 An error condition has occurred during an LU6.2 RECEIVE operation. The data server that sent
the message terminated. CICS resources are freed and this abend is issued to generate a
transaction dump. EIB error information from the failing RECEIVE is captured for diagnostic
purposes. If the cause of the failure cannot be independently determined by reviewing the reason
the data server terminated, contact IBM Technical Support. IBM Technical Support will ask you for
the transaction dump and associated output, including data server output.

SP03 An error condition has occurred during an LU6.2 RECEIVE operation. The data server was
notified of the error and the data server issued a DEALLOCATE, effectively terminating the
communication session. CICS resources are freed and this abend is issued to generate a transaction
dump. EIB error information from the failing receive is captured for diagnostic purposes. Contact
IBM Technical Support. IBM Technical Support will ask you for the transaction dump and
associated output, including data server output.

SP04 An error condition has occurred during an LU6.2 RECEIVE operation. The data server was
notified of the error and the data server issued an ISSUE ERROR, effectively indicating the
communication session should be terminated. The data server was sent an ISSUE ABEND. CICS
resources are freed and this abend is issued to generate a transaction dump. EIB error information
from the failing receive is captured for diagnostic purposes. Contact IBM Technical Support. IBM
Technical Support will ask you for the transaction dump and associated output, including data
server output.

SP05 An error condition occurred during an LU6.2 RECEIVE operation. The data server was notified of
the error and it asked for additional information. The attempt to SEND EIB error information to
the data server also failed. The data server sent an ISSUE ABEND. CICS resources are freed and
this abend is issued to generate a transaction dump. EIB error information from both the failing
RECEIVE and the failing SEND is captured for diagnostic purposes. Contact IBM Technical
Support. IBM Technical Support will ask you for the transaction dump and associated output,
including data server output.

SP06 An LU6.2 SYNCPOINT request was detected. The stored procedure LU6.2 communications
program does not support SYNCPOINT processing. The communication partner was sent an
ISSUE ABEND. Verify the communication partner is a data server. If the cause of the failure
cannot be resolved, contact IBM Technical Support. IBM Technical Support will ask you for the
transaction dump and associated output, including data server output.

242 Guide and Reference

Table 46. CACSP62 abend codes (continued)

Code Description

SP07 An LU6.2 SYNCPOINT ROLLBACK request was detected. The stored procedure LU6.2
communications program does not support SYNCPOINT ROLLBACK processing. The
communication partner was sent an ISSUE ABEND. Verify the communication partner is a data
server. If the cause of the failure cannot be resolved, contact IBM Technical Support. IBM Technical
Support will ask you for the transaction dump and associated output, including data server
output.

SP08 An LU6.2 ISSUE SIGNAL request was detected. The stored procedure LU6.2 communications
implementation does not support ISSUE SIGNAL processing. The communication partner was sent
an ISSUE ABEND. The stored procedure LU6.2 connection handler program is designed to
support the product's stored procedure communications with a data server. Verify the
communication partner is a data server. If the cause of the failure cannot be resolved, contact IBM
Technical Support. IBM Technical Support will ask you for the transaction dump and associated
output, including data server output.

SP09 An error condition occurred during an LU6.2 RECEIVE operation. An illogical condition between
incomplete data received and no data received was detected. The data server was sent an ISSUE
ABEND. CICS resources are freed and this abend is issued to generate a transaction dump. EIB
error information from the failing receive is captured for diagnostic purposes. Contact IBM
Technical Support. IBM Technical Support will ask you for the transaction dump and associated
output.

SP10 An LU6.2 RECEIVE operation completed normally but was accompanied by a DEALLOCATE
indicator. This means the data server is not in RECEIVE mode, thereby preventing the CICS
component from returning (SENDing) any processed information to the data server. The CICS
resources have been freed and this abend is issued to generate a transaction dump. EIB error
information is captured for diagnostic purposes. If the reason the data server issued a
DEALLOCATE cannot be independently determined, contact IBM Technical Support. IBM
Technical Support will ask you for the transaction dump and associated output, including data
server output.

SP11 An LU6.2 RECEIVE operation completed normally, but no data was received and the data server
issued a DEALLOCATE. This means the data server is not in RECEIVE mode, which prevents the
CICS component from returning (SENDing) any processed information to the server. The CICS
resources are freed and this abend is issued to generate a transaction dump. EIB error information
is captured for diagnostic purposes. If the reason the data server issued a DEALLOCATE cannot
be independently determined, contact IBM Technical Support. IBM Technical Support will ask you
for the transaction dump and associated output, including data server output.

SP12 The user-defined stored procedure program that executes in CICS receives a COMMAREA that
contains the address of a pointer to the argument data buffer and the length of that buffer. The
buffer cannot be moved or lengthened. The user-defined stored procedure program can specify a
shorter argument data buffer for return to the data server by changing the buffer length field in
the COMMAREA. This abend is issued to generate a transaction dump. You must request CLOSE
to terminate the communication session and release the CICS resources. Modify the user-defined
stored procedure program to prevent moving the argument data buffer.

SP13 An error condition has occurred during an LU6.2 SEND operation. The data server was sent an
ISSUE ABEND. CICS resources have been freed and this abend was issued to generate a
transaction dump. EIB error information from the failing send is captured for diagnostic purposes.
If the cause of the failure cannot be independently determined, contact IBM Technical Support.
You will be asked for the transaction dump and associated output. You will also be asked for data
server output.

SP14 An LU6.2 RECEIVE operation completed normally. The data received is not the expected
argument data buffer. The format and content of the data is unknown. No further processing can
be performed. This abend was issued to generate a transaction dump. You must request CLOSE to
terminate the communication session and release the CICS resources. If the reason incorrect data
was received cannot be independently determined, contact IBM Technical Support. IBM Technical
Support will ask you for the transaction dump and associated output, including data server
output.

Chapter 4. Administering 243

Table 46. CACSP62 abend codes (continued)

Code Description

SP15 An LU6.2 RECEIVE operation completed normally. The argument data buffer received was not
identified correctly. Either the buffer storage was corrupted or a data server did not create this
buffer. The format and content of the data are suspect. No further processing can be performed.
This abend is issued to generate a transaction dump. You must request CLOSE to terminate the
communication session and release the CICS resources. If the reason the buffer is incorrectly
identified cannot be independently determined, contact IBM Technical Support. IBM Technical
Support will ask you for the transaction dump and associated output, including data server
output.

SP16 An LU6.2 RECEIVE operation completed normally. The argument data buffer is not compatible
with the connection handler transaction program that issued this abend. No further processing can
be performed. This abend is issued to generate a transaction dump. You must request CLOSE to
terminate the communication session and release the CICS resources. If you have recently
upgraded your product suite, verify all components have been correctly installed. If the reason the
buffer is incompatible cannot be independently determined, contact IBM Technical Support. IBM
Technical Support will ask you for the transaction dump and associated output, including data
server output.

CA-Datacom interface for stored procedures
The CACTDCOM interface enables you to perform CA-Datacom database
operations within the local data server address space. The interface provides
equivalent functionality to batch programs that access or update CA-Datacom
systems.

The User Requirements Table (URT) name is available from the RUN OPTIONS
statement in your stored procedure definition rather than from the LOADNAM=
parameter in the DBURINF macro. (The interface macro DBURINF is not included
when generating a User Requirements Table.) The stored procedure application
program requirement to open and close the URT is the same as coding the
OPEN=USER parameter in the DBURINF macro for your batch application.

The CACTDCOM interface requires that the CA-Datacom access service is active
on the data server. CACTDCOM interfaces with the CA-Datacom access service to
connect to and communicate with the CA-Datacom Multi-User Facility, which
enables CACTDCOM to log errors. If the CA-Datacom access service trace level is
set to a value less than three, additional diagnostic information is also available
when an error occurs.

The CACTDCOM interface module allows you to open your URT from within the
data server address space and issue CA-Datacom calls to the database. Before
exiting your stored procedure application, you must call the CACTDCOM interface
module one last time to close the URT.

By default, when you close the URT, any changes that your stored procedure
application program made are committed to the database. Otherwise, the stored
procedure should issue a ROLLBACK call before closing the URT.

Specifying CA-Datacom resource information
When you provide CA-Datacom resource information by defining a User
Requirements Table (URT), you enable your stored procedure to communicate
effectively with CA-Datacom. A URT provides security by restricting database
access. A URT is also needed for efficient allocation of CA-Datacom resources.

244 Guide and Reference

When writing your own stored procedure to communicate with CA-Datacom, you
should specify the User Requirements Table name using the RUN OPTIONS
parameter instead of hard coding it in your stored procedure application program.
Doing so allows you to simply drop the stored procedure definition (DROP
PROCEDURE), update the stored procedure definition and then re-catalog the
stored procedure definition (CREATE PROCEDURE) when your environment
changes, without requiring any changes to your stored procedure application
program.

You can also supply the User Requirements Table name programmatically. The
sample stored procedure for CA-Datacom demonstrates how this can be done.

CA-Datacom resource information is identified by the _DATACOM keyword in the
RUN OPTIONS parameter. The complete format of CA-Datacom resource
information entry is:

_DATACOM(urt-name)

The CA-Datacom resource information entry is separated from preceding keyword
entries by a comma. Order of the keyword entries is not mandated. The following
examples show RUN OPTIONS statements with keyword entries specified in
differing order. Regardless of the order, the resultant stored procedure processing is
identical.

Example 1:

RUN OPTIONS '_DATACOM(urt-name),_CICS(transaction-scheduling-info)'

RUN OPTIONS '_CICS(transaction-scheduling-info),_DATACOM(urt-name)'

Example 2:

RUN OPTIONS '_DATACOM(urt-name),_CICS(transaction-scheduling-info)'

RUN OPTIONS '_CICS(transaction-scheduling-info),_DATACOM(urt-name)'

Stored procedure and CA-Datacom communication
The CACTDCOM interface load module communicates with the CA-Datacom
access service to connect with CA-Datacom for opening and closing your URT and
issuing your application calls.

The following figure shows the processing flow when your stored procedure
application program needs to access CA-Datacom data.

Chapter 4. Administering 245

To make using the CACTDCOM interface module easier, the CA-Datacom call
formats are identical to the call syntax used by native CA-Datacom. An exception
is that the first parameter in the parameter list passed to the CACTDCOM interface
module must be the address of the SQLDA parameter passed to your stored
procedure application program by the stored procedure data connector. Calls to
CA-Datacom are performed as if the program were written for direct access to
CA-Datacom.

For example, processing can occur as follows:
v To open a URT you must provide:

– A properly formatted User Information Block (UIB)
– A Request Area containing the command OPEN

v To begin reading records using Set At A Time commands, you must provide:
– A properly formatted User Information Block (UIB)
– A Request Area containing the command SELFR along with the table name

and DBID if required
– A work area to receive the retrieved data
– An element list describing the data to be retrieved

Windows / UNIX

Client Application

SQL CALL Statement

Mainframe

InfoSphere Classic
Federation Server for z/OS

CACQP Query Processor

Stored Procedure Connector

Stored Procedure
Application Program

CACTDCOM

CACDCI Init Service

Multi-User Facility
(MUF)

CA-Datacom

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

Client Configuration File

Data Server Configuration File

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

Figure 13. CA-Datacom processing flow

246 Guide and Reference

– A Request Qualification Area containing selection criteria and other
parameters

v To close a URT you must provide:
– A properly formatted User Information Block (UIB)
– A Request Area containing the command CLOSE

Success or failure of every command is returned in the Request Area Return Code
and Internal Return Code.

CACTDCOM interface
You can use the supplied CACTDCOM interface with your stored procedures to
perform CA-Datacom database operations within the local server's address space.

The CACTDCOM interface is distributed as a separate load module that you can
dynamically call or statically link into your stored procedure.

You call the CACTDCOM interface by using a parameter list. The first parameter
that you pass is the SQLDA argument that you pass to the stored procedure. The
remaining entries in the parameter list are the normal parameters you use to access
CA-Datacom data. Each database operation requires from two to five parameters.

For a description of the required parameters, an explanation of how parameters are
used, and what information they contain for the call or upon return, see the
CA-Datacom documentation about commands.

You must call CACTDCOM by using variable-argument list calling conventions.
That is, you must set the high-order bit of the last parameter to one.
Variable-argument list is the standard calling convention for most high-level
languages, including COBOL. CACTDCOM is linked as an AMODE(31)
RMODE(ANY) application. You pass all addresses to CACTDCOM in 31-bit
addressing mode.

Register 1

Address of Parameter List

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

SQLDA

User Information Block

Request Area

Command Specific - Work Area

Command Specific - Element List

Command Specific - Request Qualification Area

Figure 14. Parameters passed to CACTDCOM

Chapter 4. Administering 247

As indicated by the diagram above, parameters 4, 5, and 6 are conditional, based
upon the type of CA-Datacom command specified in the Request Area.

The first call that any stored procedure issues must be to OPEN the User
Requirements Table. Opening the URT enables you to access any table the URT
specifies, and you can also update those tables defined with UPDATE=YES. The
following code example shows how to issue the OPEN command in a COBOL
stored procedure. Included below is the portion of the stored procedures DATA
DIVISION and the LINKAGE SECTION that is referenced in the executable code
and the executable code to prepare for and issue the OPEN command.

All code examples shown here are hard-coded to process the table DEMO-DEM-POH.
The CA-Datacom installation process provides this table. In this example, the
stored procedure opens the User Requirements Table that you specified in the RUN
OPTIONS of the cataloged stored procedure, because you supply no override
_DATACOM keyword.
WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
.
.

LINKAGE SECTION.
01 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
.
.

* BUILD REQUEST AREA AND OPEN URT
9300-OPEN-URT.

MOVE "MYPROGID" TO USER-INFO-BLOCK.
MOVE "OPEN" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* IF YOUR URT CONTAINS MULTIPLE "POH" TABLES, SUPPLY THE
* DATABASE ID WHERE TABLE "DEMO-DEM-POH" IS INSTALLED.
* THIS IS NORMALLY DATABASE 1 (DBID=00001).
* MOVE 1 TO POH-REQ-DATABASE-ID.

* TO OVERRIDE THE URT IN THE METADATA "RUN OPTIONS",
* SUPPLY A URT NAME IN THE WORK AREA AND PASS THE WORK AREA
* ADDRESS AS THE FOURTH PARAMETER ON THE CALL THAT FOLLOWS.
* MOVE "_DATACOM(URTNAME)" TO POH-WORK-AREA.

DISPLAY "CACSPDC1 CALLING CACTDCOM TO OPEN URT."
UPON CONSOLE.

CALL "CACTDCOM" USING SQLDA-DATA,
USER-INFO-BLOCK,
POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES
PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS

248 Guide and Reference

DISPLAY "CACSPDC1 OPEN URT ERROR. RC=" RETURN-CODE
UPON CONSOLE

GOBACK
END-IF.

After the URT opens, the stored procedure can issue any CA-Datacom command
against the database. The following sample code shows how to issue the ADDIT
command for the table DEMO-DEM-POH in a COBOL stored procedure. The code
sample shows a portion of the stored procedure's DATA DIVISION, the LINKAGE
SECTION that is referenced in the executable code, and the executable code to
prepare and issue the ADDIT command:
WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
.
.

01 POH-WORK-AREA PIC X(20).
01 POH-RECORD REDEFINES POH-WORK-AREA.

02 POH-PO PIC X(5).
02 POH-LI PIC X(3).
02 POH-RECORD-UPDATE.

03 POH-VENDR PIC X(3).
03 POH-TPVAL PIC X(8).
03 POH-LATE PIC X.

01 POH-ELEMENT-LIST.
02 POH-ELM1 PIC X(5) VALUE "PO".
02 POH-SEC-CD1 PIC X VALUE " ".
02 POH-ELM2 PIC X(5) VALUE "LI".
02 POH-SEC-CD2 PIC X VALUE " ".
02 POH-ELEMENT-LIST-UPDATE.

03 POH-ELM3 PIC X(5) VALUE "VENDR".
03 POH-SEC-CD3 PIC X VALUE " ".
03 POH-ELM4 PIC X(5) VALUE "TPVAL".
03 POH-SEC-CD4 PIC X VALUE " ".
03 POH-ELM5 PIC X(5) VALUE "LATE".
03 POH-SEC-CD5 PIC X VALUE " ".
03 END-OF-ELEMENTS PIC X(5) VALUE SPACES.

LINKAGE SECTION.
01 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
.
.

* BUILD CONTROL BLOCKS AND ISSUE ADDIT COMMAND TO INSERT RECORD
2200-ISSUE-ADDIT.

MOVE "ADDIT" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.
DISPLAY "CACSPDC1 CALLING CACTDCOM TO ADDIT." UPON CONSOLE.
CALL "CACTDCOM" USING SQLDA-DATA,

USER-INFO-BLOCK,
POH-REQUEST-AREA,
POH-RECORD,

Chapter 4. Administering 249

POH-ELEMENT-LIST.
IF POH-REQ-RETURN-CODE NOT EQUAL SPACES

PERFORM 9900-DISPLAY-RC
END-IF.

IF RETURN-CODE NOT EQUAL ZEROS
PERFORM 10000-ERROR-CLOSE-URT
DISPLAY "CACSPDC1 ADDIT ERROR. RC=" RETURN-CODE

UPON CONSOLE
GOBACK

END-IF.

After the database is modified, issue a COMIT command. If the database
modification is determined to be unsuccessful or incorrect, issue a ROLBK
command to reverse all database modifications done after the last COMIT or
ROLBK command. If the stored procedure has issued neither COMIT nor ROLBK,
all database modifications done after the OPEN command are reversed. Issuing a
CLOSE command executes an implied COMIT, so the actual COMIT command can
be bypassed. Follow your site standards and procedures regarding the use of
explicit or implicit COMIT processing.

When the processing completes, the last call that the stored procedure issues must
be to CLOSE the User Requirements Table. The following code sample shows how
to issue the CLOSE command in a COBOL stored procedure. The sample shows a
portion of the stored procedure's DATA DIVISION, the LINKAGE SECTION that is
referenced in the executable code, and the executable code that prepares and issues
the CLOSE command:
WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
.
.

LINKAGE SECTION.
02 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
.
.

* BUILD REQUEST AREA AND CLOSE URT
9500-CLOSE-URT.

MOVE "CLOSE" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* NO NEED FOR URT NAME HERE. IT IS REMEMBERED FROM THE OPEN.

DISPLAY "CACSPDC1 CALLING CACTDCOM TO CLOSE URT."
UPON CONSOLE.

CALL "CACTDCOM" USING SQLDA-DATA,
USER-INFO-BLOCK,
POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES
PERFORM 9900-DISPLAY-RC

END-IF.

250 Guide and Reference

IF RETURN-CODE NOT EQUAL ZEROS
DISPLAY "CACSPDC1 CLOSE URT ERROR. RC=" RETURN-CODE

UPON CONSOLE
GOBACK

END-IF.

Compiling and linking applications that use CACTDCOM
Your stored procedure is compiled (or assembled) by using your site standard
procedures.

Include the following control statement in your link edit input stream to link the
CACTDCOM interface by using your site standard procedures:

INCLUDE LOAD(CACTDCOM)

where LOAD is the name of a DD statement supplied in your link edit JCL to
identify the location of the CACTDCOM load module. Typically, this DD statement
identifies your installation load library.

Sample JCL USERHLQ.SCACSAMP(CACSPCCD) is provided for compiling and
linking a stored procedure that uses the CACTDCOM interface.

CACTDCOM return codes
CACTDCOM returns return code 0 in normal situations. If CACTDCOM detects an
error, a non-zero return code is returned. Database errors that CA-Datacom reports
are returned directly to the stored procedure application in the Request Area and
are not intercepted or interpreted by the CACTDCOM interface.

The following table identifies the possible return code values and information you
can find in the output log for the server when one of these errors is detected.

Recommendation: The CACTDCOM interface uses return code values between
101 and 199. To eliminate any confusion regarding the source of an error code, the
stored procedure can use return codes starting at the number 200.

Table 47. CACTDCOM return code information

Value Description Log information

101 An invalid number of parameters were passed to CACTDCOM. Additional
calls can be issued to CACTDCOM. This error should occur during
development of the stored procedure.

Message 5701813
(0x005700B5) is generated.

102 The first parameter passed to CACTDCOM cannot be identified as an
SQLDA or no parameter was passed to CACTDCOM. Additional calls to
CACTDCOM should not be issued. This error should occur only during
development of the stored procedure.

None. The information
necessary to issue log calls
is not available.

103 The identifier in the internal control block used to manage stored procedure
processing by the CACTDCOM interface has been corrupted. Additional
calls to CACTDCOM should not be issued. This is an internal error. Contact
IBM Technical Support.

None. The information
necessary to issue log calls
is not available.

104 The length in the internal control block used to manage stored procedure
processing by the CACTDCOM interface is corrupted. Additional calls to
CACTDCOM should not be issued. This is an internal error. Contact IBM
Technical Support.

None. The information
necessary to issue log calls
is not available.

Chapter 4. Administering 251

Table 47. CACTDCOM return code information (continued)

Value Description Log information

105 The buffer version in the internal control block that is used to manage
stored procedure processing by the CACTDCOM interface is not correct.
Additional calls to CACTDCOM should not be issued. This error indicates
that stored procedures of a prior release are installed with the current
release of the product. Any prior stored procedure applications must be
re-linked by using the new CACTDCOM interface.

None. The information
necessary to issue log calls
is not available.

106 CACTDCOM environment not properly initialized. Either the Stored
Procedure Data Connector control block pointer is zero or the CA-Datacom
Service anchor pointer is corrupted. Additional calls to CACTDCOM should
not be issued. This is an internal error. Contact IBM Technical Support.

1. None. The information
necessary to issue log calls
is not available if the
control block pointer is 0
or 2. Message 5701890
(0x00570102) is generated if
the anchor pointer is
corrupted.

107 CACTDCOM environment not initialized. Either the global system anchor
pointer is zero or the CA-Datacom Service anchor pointer is zero. Additional
calls to CACTDCOM should not be issued. This is an internal error. Contact
IBM Technical Support.

1. None. The information
necessary to issue log calls
is not available if the
global system anchor
pointer is zero, or 2.
Message 5701889
(0x00570101) is generated if
the CA-Datacom Service
anchor pointer is zero.

108 The stored procedure is attempting to issue a second OPEN command. Only
one User Requirements Table can be open at a time. Additional calls can be
issued to CACTDCOM. This error should occur only during development of
the stored procedure.

Message 5701816
(0x005700B8) is generated.

109 CACTDCOM was unable to allocate memory for internal control blocks.
Additional calls to CACTDCOM should not be issued. This error should
only occur when the server is not configured properly.

Message 5701793
(0x005700A1) is generated.

110 No User Requirements Table name was provided to CACTDCOM. Either the
RUN OPTIONS statement from the catalog or the programmatic override
did not contain the keyword _DATACOM, or the _DATACOM keyword was
not followed immediately by a (urtname) clause. Additional calls to
CACTDCOM should not be issued. This error should occur only during
development of the stored procedure.

Message 5701814
(0x005700B6) is generated.

111 The User Requirements Table name provided to CACTDCOM was less than
one character or greater than eight characters in length. Additional calls to
CACTDCOM should not be issued. This error should occur only during
development of the stored procedure.

Message 5701815
(0x005700B7) is generated.

112 The User Requirements Table program could not be loaded. Additional calls
to CACTDCOM should not be issued. The URT program must be in a load
library that is included in the STEPLIB concatenation of the server.

Message 5701817
(0x005700B9) is generated.

113 The User Requirements Table program that was loaded does not appear to
be a known format. Additional calls to CACTDCOM should not be issued.
A portion of the URT is dumped in binary to the server log when the trace
level is set to 4 or less. Review the URT content and determine if it is valid.
Changes in the format of User Requirement Tables require code changes in
CACTDCOM. Contact IBM Technical Support if you believe that the
CACTDCOM interface requires code changes.

Message 5701818
(0x005700BA) is generated.

252 Guide and Reference

Table 47. CACTDCOM return code information (continued)

Value Description Log information

114 An attempt to connect with the CA-Datacom access service has failed. One
of the error messages shown in the column to the right has been logged.
Additional calls to CACTDCOM should not be issued. This probably
indicates the CA-Datacom access service module is not active.

1.Message 5701897
(0x00570109) is generated
2. Message 5701903
(0x0057010F) is generated
3. Message 5701905
(0x00570111) is generated

115 An error has occurred while attempting to send an OPEN command to
CA-Datacom. Additional calls to CACTDCOM should not be issued. The
User Information Block (UIB) and the Request Area (RA) passed to
CACTDCOM are dumped in binary to the server log when the trace level is
set to 2 or less. Review the control blocks and determine if they contain
valid data. Depending upon the return code information that is logged, this
might be an internal error that should not occur, or it might be an error that
can occur only during development of the stored procedure.

Raw system return code
information is logged.

116 Resources required to communicate with CA-Datacom are not available. All
retries have been exhausted. Additional calls to CACTDCOM should not be
issued. The CA-Datacom control blocks passed to CACTDCOM are dumped
in binary to the server log when the trace level is set to 2 or less. This is an
internal error. Contact IBM Technical Support.

Message 5701819
(0x005700BB) is generated

117 The stored procedure has called CACTDCOM with a database command
without first OPENing the URT. Additional calls can be issued to
CACTDCOM. This error should occur only during development of the
stored procedure.

Message 5701820
(0x005700BC) is generated

118 A CACTDCOM interface environment pointer is zero. Additional calls to
CACTDCOM should not be issued. This is an internal error. Contact IBM
Technical Support.

Message 5701821
(0x005700BD) is generated

119 An error has occurred while attempting to send a CLOSE command to
CA-Datacom. Additional calls to CACTDCOM should not be issued. The
User Information Block (UIB) and the Request Area (RA) passed to
CACTDCOM are dumped in binary to the server log when the trace level is
set to 2 or less. Review the control blocks and determine if they contain
valid data. Depending upon the return code information that is logged, this
might be an internal error that should not occur, or it might be an error that
can occur only during development of the stored procedure.

Raw system return code
information is logged.

120 The CACTDCOM interface was processing a command other than OPEN or
CLOSE when it received a signal from the query processor to immediately
terminate processing. The query processor is probably being stopped.

Message 5701894
(0x00570106) is generated

121 An error has occurred while attempting to send a command other than
OPEN or CLOSE to CA-Datacom. Additional calls to CACTDCOM can be
attempted to COMIT or ROLBK as required by the stored procedure
application program. Success of any subsequent call is dependent upon the
type of error that occurred previously. The CA-Datacom control blocks
passed to CACTDCOM are dumped in binary to the server log when the
trace level is set to 2 or less.

This is an internal error. Contact IBM Technical Support.

Raw system return code
information is logged.

122 The User Requirements Table contains at least one table enabled for update
processing. When the OPEN command was sent by the stored procedure
application program, the Internal Return Code field in the Request Area was
coded with the letter N, indicating no update processing was to be allowed.
The stored procedure has sent an ADDIT, DELET or UPDAT command
which has been rejected. Additional calls can be issued to CACTDCOM.
This error should occur only during development of the stored procedure.

Message 5701822
(0x005700BE) is generated

Chapter 4. Administering 253

IMS interface for stored procedures
The CACTDRA interface enables your stored procedures to perform database
operations on IMS databases.

Stored procedures cannot use DL/I calls to access or update IMS data. A stored
procedure does not have addressability to a PSB and the list of PCBs that a PSB
contains.

The CACTDRA interface allows you to schedule a PSB and returns a pointer to the
list of PCBs in the PSB. You can then establish addressability to one or more of
these PCBs and issue ISRT, GU, GHU, and REPL DL/I calls against the PCB.
Before exiting your stored procedure you call CACTDRA one last time to
unschedule the PSB.

By default, when you unschedule the PSB any changes your stored procedure
application program made are committed to IMS.

Recommendation: You should not issue a ROLLBACK call from your stored
procedure unless it is necessary. Issuing a ROLLBACK causes an abend in the data
server.

The CACTDRA interface uses the IMS DRA initialization service to request PSB
scheduling, issue DL/I calls and finally unschedule the PSB. The IMS DRA
initialization service must be active within the data server. The service allows
CACTDRA to log errors and, if the trace level for the IMS DRA initialization
service is set to a value less than three, to log the DL/I calls that are issued by the
stored procedure that calls CACTDRA.

The following figure shows the processing flow when your stored procedure
application program needs to access IMS data.

254 Guide and Reference

To make using the CACTDRA easier, the DL/I call formats are identical to
CBLTDLI call syntax with the exception that the first parameter in the parameter
list must be the address of the SQLDA parameter passed to your stored procedure.
Additionally, CACTDRA uses two other DL/I function codes:
v SCHD: Identifies the name of a PSB to be scheduled.
v TERM: Unschedules the PSB.

CACTDRA interface
The CACTDRA interface enables you to perform IMS database operations within
the local server address space. The functionality of this interface is equivalent to
using DL/I functions.

The CACTDRA interface is distributed as a separate load module that you can
dynamically call or statically link into your stored procedure.

IMS

PSB

DBCTL

IMS DRA Init Service

CACTDRA

Stored Procedure
Application Program

Stored Procedure Connector

Query Processor

WebSphere Classic
Federation Server for z/OS

Mainframe

SQL CALL Statement

Client Application

Windows/UNIX

SERVICE INFO ENTRY = CACSAMP...
SERVICE INFO ENTRY = ...XM1/CAC/CAC

Data Server Configuration File

DEFLOC = CACSAMP
DATA SOURCE = CACSAMP\XM1/CAC/CAC

Client Configuration File

Figure 15. IMS DRA processing flow

Chapter 4. Administering 255

The CACTDRA interface uses calling conventions that resemble the way a standard
program accesses IMS data. The primary difference is that the first parameter that
is passed to CACTDRA must be the SQLDA argument list that is passed to the
stored procedure.

The CACTDRA interface must be called using variable-argument list calling
conventions. The high-order bit of the last parameter must be set to 1.
Variable-argument list is the standard calling convention for most high-level
languages, for example COBOL. Additionally, CACTDRA is linked as an
AMODE(31) RMODE(ANY) application. All addresses passed to the CACTDRA
interface must be passed in 31-bit addressing mode.

The actual number of parameters that need to be passed to the CACTDRA
interface depends on the type of DL/I function being issued and the structure of
the database being accessed. The first call that is issued to the CACTDRA interface
is a CICS-like SCHD call that schedules a PSB. This call differs slightly from a
standard DL/I call because:
v The name of the PSB is passed in the I/O area
v The CACTDRA interface returns the address of the list of PCBs that are defined

within the PSB.

One of these PCBs is passed on subsequent calls to the CACTDRA interface to
access or update IMS data. You can also pass the I/O PCB to issue checkpoint or
rollback calls.

The following example shows how to issue the SCHD call in a COBOL stored
procedure. The example shows the stored procedure's DATA DIVISION, part of the

Parameter 1

Address ofRegister

SQLDA

Parameter 2 DLI Function Code

Parameter 3 PCB or PCB List

Parameter 4 IO Area

Parameter 5 SSA 1

Parameter 19 SSA 15

Figure 16. Parameters passed to CACTDRA

256 Guide and Reference

LINKAGE section, and how to prepare for and issue the SCHD call. In the
following examples, the SQLDA is named ARG-DATA.

WORKING-STORAGE SECTION.
01 PSB-NAME PIC X(8) PROCEDURE DIVISION

VALUE "DFSSAM09". USING ARG-DATA, ARG-SQLCA.
01 DLI-FUNC-CODE PIC X(4). MOVE "SCHD" TO DLI-FUNC-CODE.
01 DRA-PCB-LIST POINTER. CALL "CACTDRA" USING ARG-DATA,
01 DRA-PCB-LIST POINTER. DLI FUNC CODE,
10 SSA-SEG-NAME PIC X(9) DRA-PCB-LIST

VALUE "PARTROOT". PSB-NAME.
01 IO-AREA. IF RETURN-CODE NOT EQUAL ZEROS
10 PART-KEY PIC X(17). ERROR OCCURED
10 DESCRIPT PIC X(20). GOBACK
10 FILLER PIC X(13). ELSE
LINKAGE SECTION. SET ADDRESS OF PCB-LIST
COPY CACSPSDA. TO DRA-PCB-LIST
COPY CACSPSCA. SET ADDRESS OF RET-PCB
01 PCB-LIST. TO DB-PCB1.

05 IO-PCB POINTER.
05 DB-PCB1 POINTER.
05 DB-PCB2 POINTER.

01 RET-PCB.
10 PCB-DBD PIC X(8).
10 PCB-SEG-LVL PIC 99.
10 PCB-STATUS-CODE PIC XX.
10 PCB-PROCOPT PIC X(4).
10 FILLER PIC X(4).
10 PCB-SEG-NAME PIC X(8).
10 PCB-KFBA-LEN PIC 9(8) COMP.
10 PCB-SENSEGS PIC 9(8) COMP.
10 PCB-KFBA PIC X(33).

In the preceding example, the DFSSAM09 IMS sample PSB is scheduled. This PSB
allows updates on all segments of the DI21PART IMS sample database. After the
PSB is successfully scheduled, the stored procedure can obtain addressability to
one or more of the PCBs in the PSB and issue standard DL/I calls against any of
the PCBs that are available.

The following sample is a singlet of code from a COBOL program that shows how
to insert a new root segment in the DI21PART database in a COBOL program.

Like normal DL/I calls, up to 15 SSAs can be passed to CACTDRA. In the same
manner, DL/I calls must be issued in the proper sequence. For example, to update
a segment a GHU call must be issued first, followed by a REPL call.

After all of the access and update DL/I calls are issued, a CHKP call is not
required. When the PSB is unscheduled, a CHKP call is automatically issued. If the
stored procedure decides that any updates should not be applied a ROLLBACK
call can be issued. The stored procedure should not issue a ROLLBACK call that
causes an abend. If such a ROLLBACK call is issued, the query processor task
servicing the stored procedure becomes unusable.

The following sample code is for an ISRT call:
SET ADDRESS OF RET-PCB TO DB-PCB1.

MOVE SPACES TO IO-AREA.
* GET ADDRESSABILITY TO SQLDA PARAMETERS AND INITIALIZE
* IO-AREA FOR INSERT

MOVE "ISRT" TO DLI-FUNC-CODE.

CALL "CACTDRA" USING ARG-DATA,
DLI-FUNC-CODE,

Chapter 4. Administering 257

RET-PCB,
IO-AREA,
SSA.

IF RETURN-CODE NOT EQUAL ZEROS
MOVE RETURN-CODE TO ORIG-RC
ERROR HAS OCCURED

ELSE
IF PCB-STATUS-CODE NOT = SPACES

ERROR REPORTED BY IMS.

After the final DL/I call is issued, the CACTDRA interface must be called a final
time to unschedule the PSB by using a CICS-like TERM call. The following sample
code shows how to unschedule the DFSSAM09 PSB in a COBOL program:
MOVE "TERM" TO DLI-FUNC-CODE.

CALL "CACTDRA" USING ARG-DATA,
DLI-FUNC-CODE.

IF RETURN-CODE NOT EQUAL ZEROS
DISPLAY "TERM CALL RC " RETURN-CODE.

GOBACK.

Compiling and linking applications that use CACTDRA
To compile and link your stored procedure to use the CACTDRA interface, modify
the CICS CACSPCCC sample to compile and link JCL so that the ICCS
CACSPCCC sample includes the CACTDRA interface instead of CACSPBR.

Provide configuration information in the LE/compile section of the customization
parameters file. This information is used to generate the JCL to compile and link a
CICS stored procedure.

Compile and link CACSPCOM using the supplied member CACSPCCC in the
SCACSKEL library. (Sample JCL to compile and link a stored procedure that uses
the CACTDRA interface is not supplied.)

Before submitting the job, modify the statement:

INCLUDE LOAD(CACSPBR)

to:

INCLUDE LOAD(CACTDRA)

If your stored procedure needs to both access and update IMS data and invoke a
CICS application program, include both of the above statements in the link step.

CACTDRA return codes
CACTDRA returns a zero return code in normal situations. If CACTDRA detects
an error, or an error is reported by DRA, a non-zero return code is returned.

CACTDRA issues 11 error return codes. Return code values between 1 and 100 are
reserved for use by the CACTDRA interface. Application return codes must be
higher than the reserved error return codes.

The application should also check DL/I status codes in addition to any errors that
might be reported by the standard DL/I status codes placed in an IMS PCB.

The following table identifies the return code values and the information you can
find in the output log for the data server when the system detects an error.

258 Guide and Reference

Table 48. CACTDRA return code information

Value Description Log information

1 An invalid number of parameters were passed to CACTDRA.
You can issue additional calls to CACTDRA. This error
should only be received during development of the stored
procedure.

Message 5701825 (0x005700C1) is
generated.

2 CACTDRA was unable to allocate memory for internal
control blocks. Additional calls to CACTDRA should not be
issued. This error should be received only when the data
server is not properly configured.

Message 5701793 (0x005700A1) is
generated.

3 IMS DRA initialization service not active. Additional calls to
CACTDRA should not be issued. This error should be
received only when the data server is not properly
configured.

Message 5701717 (0x00570055) is
generated.

4 CACTDRA environment not properly initialized. Additional
calls to CACTDRA should not be issued. This is an internal
error that should never occur.

None. The information necessary to issue
log calls is not available.

5 The requested PSB could not be scheduled. The stored
procedure application program can try to schedule another
PSB. This error can occur during development of the stored
procedure, in production situations when the data server has
not been properly configured (for example, not enough DRA
threads), and when the IMS Stage 1 gen. was not set up
properly for the scheduled PSB.

Message 5701708 (0x0057004C) is
generated.

6 DL/I call failed. You can issue additional calls to CACTDRA.
This error should be received only during development of the
stored procedure.

Message 5701715 (0x00570053) is
generated.

7 An error occurred during TERM processing. Additional calls
to CACTDRA should not be issued. This error should
generally only be received if something has happened to IMS.

Message 5701711 (0x0057004F) is
generated.

8 The first parameter passed to CACTDRA is not the SQLDA
or the SQLDA has been corrupted. Additional calls to
CACTDRA should not be issued. This error should only be
received during development of the stored procedure
application program.

None. The information necessary to issue
log calls is not available.

9 The SQLDA is corrupted. Additional calls to CACTDRA
should not be issued. This is an internal error that you
should never encounter.

None. The information necessary to issue
log calls is not available.

10 The application issued a SCHD call, but a PSB had already
been scheduled. This error should be received only during
development of the stored procedure.

Message 5701826 (0x005700C2) is
generated.

11 The application issued a standard DL/I or a TERM call, but
no PSB was scheduled. This error should be received only
during development of the stored procedure.

Message 5701827 (0x005700C3) is
generated.

Invoking existing IMS transactions from a stored procedure
To execute existing IMS transactions from a stored procedure, the stored procedure
uses an APPC/MVS interface instead of the CACTDRA interface.

APPC/MVS communicates with APPC/IMS. APPC/IMS schedules the requested
IMS transaction and returns the output messages that the IMS transaction
generates and sends to the calling APPC/MVS application program (the stored
procedure).

Chapter 4. Administering 259

APPC/IMS overview:

The APPC/IMS interface communicates with Standard DL/I applications, modified
standard DL/I applications, and CPI communication-driven applications.

The IMS Transaction Manager is normally implemented as an IMS DB/DC
subsystem, but it can be implemented as an IMS DC subsystem.

APPC/IMS supports interfacing with the following types of IMS application
programs:

Standard DL/I applications
Existing IMS applications that are unaware that they are not
communicating with an LU 2 terminal. APPC/IMS converts the APPC data
streams into the appropriate input messages, sends them to the IMS
transaction, waits for an output message from the IMS application, and
sends the output message to the invoking application as an LU 6.2 data
stream. In most instances, the existing IMS transaction requires no
modifications.

Modified standard DL/I applications
Existing IMS application that have been modified to issue CPI
Communications calls, as well as normal DL/I calls that the application
initially issued.

CPI communication-driven applications
IMS applications that use CPI communications calls to communicate with
the partner program. They participate in the two-phase commit process by
issuing SSRCMIT or SSRBACK CPI calls. These types of applications can
issue database-related DL/I calls to access and update full-function, DEDB,
MSDB, and DB2 databases.

For information about how these types of application are designed, see the IMS
documentation about application programming. For information about message
flows and using sync-point conversations, see LU 6.2 documentation about partner
program design.

APPC/MVS overview: The APPC/MVS interface is an extension to APPC/VTAM
that allows MVS/ESA applications to use the full capabilities of LU 6.2.
APPC/MVS provides a set of high-level language callable services that allows
applications that use these APIs to communicate with other applications through
the communications protocols provided by the SNA network.

The APPC/MVS API combines several CPI calls into single APPC/MVS API calls,
and allows for state transitions that normally require individual CPI calls.
APPC/MVS allows applications to be abstracted from the network definitions by
using such things as symbolic destination names and selection of default outbound
LUs.

Depending on the version of APPC/MVS installed, some of these APIs have
different names and parameter lists. For information about writing APPC/MVS
applications and the APPC/MVS APIs, see the z/OS documentation about
APPC/MVS.

Configuring APPC/IMS and APPC/MVS:

When you set up an environment for a stored procedure you need to configure
changes to IMS, create VTAM definitions, and install and configure APPC/MVS.

260 Guide and Reference

For information about installing and configuring APPC/MVS, see the z/OS
documentation about APPC/MVS.

Application design requirements:

When you design your stored procedure application to invoke existing IMS
transactions, define input and output message formats to enable your stored
procedure to exchange messages with IMS.

To design a stored procedure that invokes an existing IMS transaction, you do not
need to know the business logic that is implemented by the IMS transaction, but
you do need to know the message flow and input and output message formats
that the IMS transaction expects to receive.

Typically, the IMS transaction uses Message Format Service (MFS), so you should
use the message input descriptor (MID) and message output descriptor (MOD)
definitions to determine the input and output message formats. If the IMS
transaction is implemented in COBOL, the COBOL program contains copy books
or data structures that the IMS transaction uses.

If you use MFS MID and MOD definitions to identify the input and output
messages formats that the transaction uses, you need to define a parameter for
each unique input and output field defined in the MID and the MOD. The
parameter length is for the length of the MID or MOD field, and the data type is
usually CHAR. Use the following guidelines to determine what type of parameter
to use in the CREATE PROCEDURE definitions:
v Identify fields that only appear in the MID as INPUT parameters.
v Identify fields that only appear in the MOD as OUTPUT parameters.
v Identify fields that occur in both the MID and the MOD as INOUT parameters.

When you develop stored procedures, consider that the input and output message
formats that are sent to APPC/IMS do not exactly match the formats that the IMS
transaction is expecting. The standard format for an IMS input message is:
v LL: Length of the message, including LL and ZZ
v ZZ: Zeros
v Data: The input fields that the transactions expect

APPC communications use unmapped conversations, so the send message format
is:
v APPC LL
v IMS LL
v Data

The output messages generated by an IMS transaction have the same format as the
input messages. However, APPC/IMS strips off the LL and ZZ fields, so these do
not need to be defined in the received (output message) definition—just the APPC
LL field.

Restriction: APPC/IMS automatically inserts the IMS transaction code at the
beginning of the data portion of the message. As a result, invoking IMS
transactions that do not expect the transaction code at the beginning of the input
message require modifications to the existing IMS transaction. This problem should
not occur if the transaction design specifies that all input messages begin with the
8-byte transaction code.

Chapter 4. Administering 261

Stored procedure limitations for IMS transactions:

When you develop a stored procedure application that invokes an IMS
conversational transaction, you need to define the conversation ID in hexadecimal
format.

You can develop a stored procedure that invokes an IMS conversational transaction
that returns multiple screens of data. When you allocate a conversation, an 8-byte
conversation ID is returned. You must use this ID in subsequent APPC/MVS calls.
The conversation ID is associated with the address space and can be used by any
TCB in the address space until the system deallocates the conversation.

Therefore, if you add an additional input or output parameter to the stored
procedure definition for a given conversation ID, it is possible to write a stored
procedure that is called multiple times, each time returning one or more screens of
data. If you take this approach, define the input or output conversation ID
parameter as CHAR(16). Then the system converts the conversation ID to
hexadecimal format for data exchanges with the client application.

Recommendation: Because stored procedures can only return a limited amount of
information, create stored procedures by invoking IMS transactions to perform
updates or to return a single screen of data.

Testing APPC/MVS stored procedures:

When you test your APPC/MVS stored procedure, you can activate IMS tracing
and get trace output to verify that you are formatting input messages correctly.

About this task

Testing an APPC/MVS stored procedure is not difficult because APPC/MVS
returns useful information from the APPC/MVS Error_Extract API. The API
includes the message text that is usually displayed on the console, including error
message numbers, which help you diagnose and debug APPC/MVS-related errors.

APPC/MVS supports very good tracing and debugging facilities, which enable
you to get message flows and contents to help you determine whether the input
messages are formatted correctly.

Recommendation: Tracing the actual APPC/MVS message flows and content is
generally not necessary, unless the stored procedure is attempting to interface with
a very complicated IMS transaction.

An alternate approach is to use the IMS trace facilities. With this approach, IMS
logs the DL/I calls that are generated by the transaction. By inspecting the SSAs
that are generated and the data returned, you can determine whether the input
messages are formatted correctly. However, you need some knowledge about the
IMS transaction to determine whether the call patterns and returned information is
correct.

To activate IMS tracing and get trace output:

Procedure

1. Activate IMS tracing by issuing the command:
/TRACE SET ON PSB (PSB-Name)

262 Guide and Reference

where PSB-Name is the name of the PSB associated with the IMS transaction
being tested.

2. For each test run, perform the following steps:
a. Run a client application that invokes the stored procedure.
b. After the stored procedure completes, issue the IMS /CHECKPOINT command

to flush the IMS log buffers to disk.
c. Run the IMS trace log print utility DFSERA10. Reference the online logs for

your IMS system.
d. Review the output from DFSERA10 to see if the DL/I calls look

appropriate.

Sample stored procedures for IMS transactions:

You can use stored procedure samples to test conversational and
non-conversational transactions with IMS.

The following sample stored procedures interface with two of the IMS IVP sample
transactions. The stored procedures are located in the SCACSAMP library:
v CACSPTNO—Interfaces with the IMS IVTNO non-conversational transaction
v CACSPTCV—Interfaces with the IMS IVTCV conversational transaction

In addition, member CACSPMPP contains the CREATE PROCEDURE syntax for
these two sample stored procedures.

The sample IMS transactions are very simple, and provide QUERY, INSERT,
UPDATE and DELETE functions to a sample employee database. IVTNO expects a
single message with a command code, and the database is immediately updated
and a single message is returned. IVTCV performs the same operation, but the
changes are not committed until you send an END message to IVTCV.

The sample stored procedures are simplified, in that they do not use security or
sync-point control. The processing flow for the CACSPTNO stored procedure is as
follows:
1. Establish addressability to the input/output parameters it was passed
2. Allocate the conversation using hard-coded values.
3. Format the input message buffer.
4. Send the message to IMS.
5. Wait for the output message from IMS.
6. Update any output or input/output parameters.
7. De-allocate the conversation.

The CACSPTCV stored procedure is similar to the CACSPTNO stored procedure,
and includes additional send and receive steps to send the END message and wait
for the response.

Both samples contain limited error detection and reporting. If an error is reported,
the APPC/MVS Error_Extract service (API) is called to obtain detailed information
about the error condition. The error information is displayed on the console and a
general error return code is returned to the calling application. This approach was
taken because after the stored procedure is tested, errors should not occur in
production operations. Another reason is that end-users probably will not know
what to do with the detailed information that is provided when an APPC/MVS
error is reported.

Chapter 4. Administering 263

Adding transaction security:

You can use supplied subroutines to secure the sample stored procedures that test
IMS transactions.

The sample stored procedures that test IMS transactions are unsecured
transactions, and do not pass a user ID or password in the allocate call. To use
secured transactions, the stored procedure can use the CACSPGUI (Get User ID)
and CACSPGPW (Get Password) subroutines to obtain the ID and password of the
current user for inclusion in the allocate call.

Sync-point conversations:

You can issue calls that use LU 6.2 sync-point protocols to communicate with
APPC/IMS.

These calls are less complex than the ones that the sample stored procedures
contain to allocate the conversation, send and receive messages, de-allocate the
conversation, and obtain error information. For information about sync-point
control flows and the formats of the calls that you need to issue, see the IMS
documentation about application programming design.

264 Guide and Reference

Chapter 5. Tuning

Table definition techniques and query writing techniques can help ensure optimal
performance.

When you map data, the indexes, keys, and columns for the database or file
system must be defined to the data server. All other optimization built into the
data server depends on these mappings.

Performance varies based on the type of data accessed and how the data is
accessed. Query optimization also varies based on how the data servers and client
applications are tuned. Another important factor is the service definition for the
query processor.

Query optimization techniques
The query processor optimizes queries that are written on the databases. However,
this optimization is limited to the information that the query processor knows
about in the databases and the organization of the databases.

Write effective queries and define logical tables to maximize query performance.
Query optimization is based on the extent to which the database or file system
performs the filtering that is required to obtain the final result set.

Example: A three-segment IMS HIDAM DBD contains 10,000 instances of the
lowest level segment (also called the leaf segment).
v If the query processor can build a segment search argument (SSA), which contains

a search argument for every segment, a single access is required. In this case, the
query processor retrieves the final result set, and the connector or the query
processor does not need to perform additional filtering.

v If the query processor cannot build an SSA, 10,000 IMS GET commands are
issued. In this case, the connector or the query processor must filter the
intermediate result set to obtain a single row result set.

The full retrieval of the mapped segments (or an entire VSAM file) is called a full
table scan. The IMS retrieval of the single row is faster if the SSA contains primary
or secondary index fields. The scenario is the same for VSAM access that involves
primary and alternate indexes rather than SSAs.

If the TRACELEVEL configuration parameter for the query processor service is set
to 2, the filtering information that obtains the final result set is written to the log.
For IMS, you use the TRACELEVEL configuration parameter for the IMS service.

Keys to optimize queries
Use keys in your queries when possible to optimize query performance.

To identify keys, include index definitions on logical tables. When you define index
information, front-end tools access the data server to create optimized queries.
These queries are based on the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS
information in the metadata catalogs. These index definitions do no actually index
the data. Instead, the definitions describe the existing physical indexes on the data.

© Copyright IBM Corp. 2003, 2015 265

The entire logical table is scanned in these instances:
v Queries without qualifying WHERE clause information on indexes
v Queries without qualifying information on non-indexed columns

To perform these scans, the query processor must read the entire portion of the
database or file that the table defines. The scanning process can result in poor
performance on large databases, particularly when an SQL join is performed and
an inner table must be scanned multiple times.

When a new application uses existing data, add additional indexes to your data to
meet the needs of Classic federation queries. Review your queries to determine
whether new indexes can improve performance without impact to another
application that needs to use the data.

Join operations to optimize queries
Join processing uses the nested-loop access method for all queries that contain
joined columns.

Nested-loop processing for a two-table join involves reading an outer table and, for
each row selected in that table, reading the inner table to join with that row, based
on the join columns.

Join processing applies to every row of the inner table where the value of its join
columns satisfies the specified relational conditions with the correlating join
columns of the selected row of the outer table. This processing involves these
actions:
v Creates a row in the result table with the requested columns of both the inner

and outer tables.
v Selects the next row of the outer table and repeats this process until there are no

more rows to select from the outer table.

Example 1. Join query to avoid:
SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B

The query processor reads all rows in TABLE1 by default. The query processor
then reads all rows in TABLE2 to join every row in TABLE1 with every row in
TABLE2. If TABLE1 has 100 rows and TABLE2 has 100 rows, the result set contains
10,000 rows for this query.

The number of rows is calculated as follows:
(number of rows in TABLE1) x (number of rows in TABLE2)
100 x 100 = 10,000

The actual number of database reads is 10,100. 100 reads are for the outer table and
10,000 (100 x 100) reads are for the inner table. While this type of Cartesian join is
not commonly performed in SQL queries, it demonstrates the type of join queries
to avoid.

Example 2. Change the previous query as follows:
SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B
WHERE A.COL_A1 = B.COL_B1

This query might return a small number of rows. However, because there are no
other qualifications for TABLE1 or TABLE2, nested-loop join processing might

266 Guide and Reference

require reading every row from TABLE1 and matching it with every row of
TABLE2 (10,100 reads). This is especially true if the join column in the inner table
(COL_B1 in TABLE2) is not indexed.

If COL_B1 in TABLE2 is a uniquely indexed column, the number of necessary
reads is reduced from 10,100 to 200. Each row in the outer table (TABLE1) is read
once and a single indexed read is performed on the inner table (TABLE2).

Example 3. A unique index is defined on COL_B1 in TABLE2, and the outer and
inner tables are switched as follows:
SELECT B.COL_B1, A.COL_A1 FROM TABLE2 B, TABLE1 A
WHERE B.COL_B1 = A.COL_A1

The column COL_A1 in TABLE1 is not indexed. 10,100 rows are read because the
inner table, which is now TABLE1, must be scanned for each row in the outer table
TABLE2. Again, COL_A1 is not an indexed column in TABLE1, whereas COL_B1
in TABLE2 is indexed.

When a query includes a join table, the query optimizer determines ordering
optimization that is based on information in the WHERE clause. This optimization
is attempted in phases:
1. The optimizer checks if the default outer table in the join contains any WHERE

clause information that is not part of a join condition with a column in another
table. If there is no non-join WHERE information, the optimizer checks the
remaining tables in the query and uses the first table with non-join WHERE
information as the outer table in the join.

2. The optimizer runs additional optimization if the first phase reorders the
default outer-inner table processing of the join and more than two tables are
referenced in the join. The optimizer attempts to order all of the inner tables of
the join such that each processed inner table contains a column that is joined
with a table that precedes it in the outer to inner order. Filtering of rows from
outer-to-inner table processing is maximized to keep the number of access
reads to a minimum.

Query processor optimization
The query processor optimizes SQL queries based on information in the WHERE
clause, index information, and configuration parameters that activate optimization.

Connectors and query processor interaction
During query processing, the query processor runs SQL queries, accesses the
metadata catalogs, and calls connectors.

A connector uses the information in the WHERE clause of a query to attempt to
access the database or file with optimum performance. The query processor
inspects the data that the connector returns to determine if the data meets the
WHERE qualification, if specified. The data that remains is then staged so that
query results are not returned to the client until the complete result set is built.
After all the data is read and staged, the required post-processing is performed,
and those results are staged. Post processing includes sorting when an ORDER BY
clause is specified and when evaluating rows for aggregate functions. After the
query processor finishes processing the staged results, the final result set is
returned to the client application.

Chapter 5. Tuning 267

The connectors optimize query processor performance using index information. If
the connector cannot optimize access to the database or file, the connector attempts
another optimization method. The connector filters the number of records returned
to the query processor by analyzing the WHERE clause on the data that is
returned from the database or file system. If the connector can successfully filter
the records that are returned, the connector notifies the query processor not to run
the corresponding filtering instructions at the query processor level.

Configuration parameters for optimization
Use the configuration parameters to improve query processing performance.

Use the configuration parameters to activate the following optimization strategies:
v STATICCATALOGS for static catalog access
v BTREEBUFFS, FETCHBUFSIZE, and TEMPFILESPACE for result set staging

The success of these optimization strategies depends on the query that is issued
and on the size of the expected result set.

Static catalogs
You can identify the metadata catalogs that the query processor accesses as static
to optimize the compiler process. You can activate static catalog processing with
the STATICCATALOGS parameter.

Typically, the query processor opens and closes the metadata catalogs for each
logical table that a query references during the compile process. Locks must be
established to prevent updates when a query processor is processing a request
from the Classic Data Architect or the metadata utility. A lock prevents one query
processor instance from updating catalog data that another query processor
instance is using. All locks are requested by a query processor.

When the catalogs are static, the metadata catalog files are opened once when you
first issue a query and closed when you disconnect from the query processor. After
catalogs are defined as static, updates are not permitted from another source while
the data server is active.

Static catalog processing improves query performance when client applications
issue several queries that return small result sets. You can also create linear
versions of the metadata catalog files to optimize the compiler process.

Creating a linear catalog:

You create and access linear catalogs in memory rather than on disk. The sample
JCL member, CACLCAT, contains JCL to allocate a linear version of the system
catalog. CACLCAT is located in the SCACSAMP data set.

About this task

You can populate a linear system catalog by copying the contents from a
previously populated sequential or linear catalog. The INIT operation of the
catalog initialization and maintenance utility is not used to initialize a linear
system catalog.

Procedure

1. Allocate a sequential catalog.
2. Use the INIT function to initialize and populate the catalog.

268 Guide and Reference

3. Start the data server using the sequential catalog.
4. Populate the sequential catalog with the necessary table mappings using the

metadata utility or the Classic Data Architect.
5. Shut down the server.
6. Allocate the linear catalog.
7. Use the COPY function to populate the linear catalog.
8. Update the data server configuration to set STATIC CATALOGS = 1.
9. Start the data server using the linear catalog.

Result set staging
A set of configuration parameters help you to make choices between virtual
storage and disk resources to stage data. You can tune the space for staged result
sets with the BTREEBUFFS, FETCHBUFFSIZE, and TEMPFILESPACE parameters.

If you do not activate immediate return of data processing, or if this processing
cannot be applied to a query, the result set is staged before it is returned to the
client application. Most of the columns in a result set row are written to a B-tree
file. If you activate immediate return of data processing, staging occurs but the
staged result set size is reduced because data is being read and deleted as new
data is added.

This set of parameters control the number of B-tree buffer caches in use and the
physical type, size, and temporary storage in use after all memory in the cache is
exhausted. The temporary storage can be hiperspace or disk storage.

Recommendation: Use hiperspace space to avoid physical I/Os. If you configure
TEMPFILESPACE to use hiperspace, the number of btree buffers (in-core buffers)
has less effect on optimization. When hiperspace is enabled, you should use the
BTREEBUFFS default.

IMS access optimization
You can optimize access to IMS data with optimizing methods for queries,
Program Communication Block (PCB) selection options, and Program Specification
Block (PSB) scheduling.

Keyed access techniques, SSA, and IMS optimization
You can optimize native access to your IMS databases by using the keyed access
techniques that IMS provides.

Optimized access to the database relies on the IMS index and Segment Search
Argument (SSA). You can use primary indexes, secondary indexes, and search
fields.

For optimum performance, the columns that a WHERE clause references need to
supply a key value or multiple key values. Similarly, in join operations, the inner
tables in a join need to include key information so that a qualified SSA call can
optimize access. A qualified SSA is only generated for either condition when index
information is available in the catalogs for the logical tables that an SQL statement
references.

Chapter 5. Tuning 269

Primary indexes for IMS optimization
Define columns that map to the primary index field in an IMS database. This
technique optimizes queries that contain the WHERE and JOIN qualification on
those columns.

Qualified SSAs are created when a query meets the following criteria:
v The WHERE clause of the query contains the key values.
v Tables from the outer loops in a join operation supply a unique key for the

subqueries in the inner loop.

Optimizing HDAM databases

Hierarchical Direct Access Method (HDAM) databases do not contain a primary
index. Instead, they use a key-hashing technique to gain fast access to data. Logical
tables mapped to an HDAM database might not be retrieved in ascending key
sequence, because the key sequence is a function of the HDAM randomizer, which
is an IMS user exit. You can order keys in an HDAM database either by specifying
an ORDER BY clause in the SELECT statement or by specifying the name of a
column that maps an XDFLD statement that contains the HDAM primary key as
its source.

Tip: An XDFLD statement is associated with the target segment. XDFLD specifies
the name of an indexed field, the name of the source segment, and the field used
to create the secondary index from the source segment. You can use XDFLD
statements only when a secondary index exists.

Secondary indexes for IMS optimization
When you define secondary indexes for a table with the CREATE INDEX
statement, the query optimizer uses secondary indexes to optimize each query
based on information in the WHERE clause.

If both a primary sequence field and a secondary index are available when the
query accesses IMS data, the primary sequence field is given precedence.

Required: If you define an IMS secondary index with a CREATE INDEX
statement, the PSB used to access the target table must contain one or more PCBs
with the correct processing sequence (PROCSEQ). If the PSB does not contain one
or more PCBs, a runtime error occurs when the query processor selects the
mapped index for keyed processing.

CREATE INDEX statement for IMS optimization
You can use the CREATE INDEX statement to define IMS indexes, with certain
processing requirements and restrictions.

You can use the CREATE INDEX statement to define the primary sequence field on
a Hierarchical Indexed Direct Access Method (HIDAM) database. You cannot use
the CREATE INDEX statement to define the sequence field on a Hierarchical Direct
Access Method (HDAM) database. You can use XDFLD statements for either
HIDAM or HDAM databases. Specific limitations on keyed access in HDAM can
mislead optimization algorithms if the primary sequence field is defined as an
index. However, HDAM keyed access is used when possible.

When you define an IMS index, the columns in the CREATE INDEX statement
must match either the sequence field for a HIDAM root segment or the SRCH
fields for an XDFLD statement in the DBD. The metadata utility validates all

270 Guide and Reference

CREATE INDEX statements on the DBD by matching column offset and length
information with the offset and length information for sequence and SRCH fields
within the DBD. This matching is only performed on the root segment for the
defined table. The validation is based on the INDEXROOT clause in the CREATE
TABLE statement. If the INDEXROOT value is not specified, the physical ROOT
default is used.

The order of the columns in a CREATE INDEX statement is significant during the
matching process. The validation flags as an error columns that match sequence or
SRCH fields, but are not in the CREATE INDEX order.

The columns in a CREATE INDEX statement can sub-define sequence or SRCH
fields in the DBD. For example, you can map a primary HIDAM sequence field
defined as 8 bytes as two 4-character columns.

Search fields for IMS optimization
You can use an IMS search field to optimize access to your IMS data. If you define
a search field as a column in the metadata grammar and then reference that
column in a WHERE clause, a Segment Search Argument (SSA) is generated that
contains the WHERE qualification for the search field.

The WHERE clause in a query needs to refer to the columns that are associated
with the root segment primary index or to a secondary index that maps to the root
segment of the database. When using a secondary index, the DBD hierarchy might
be inverted. For optimum performance, include a WHERE qualification on
subordinate segment key fields or normal search fields in the root or subordinate
segments.

Include a WHERE qualification to build a single SSA. As a result, IMS returns only
the segments that match the qualification in the WHERE clause, which eliminates
or minimizes any query processor and connector filtering required.

Partial keys for IMS optimization
The partial key information in a WHERE clause helps optimize access to IMS data.

You can map multiple columns to an IMS field. The columns can be the primary
key or a secondary index (XDFLD). When you map multiple columns to a single
IMS field and a WHERE clause references a subset of those columns, the resulting
condition is known as a partial key.

Optimization is accomplished by generating a key range based on the parts of the
key in the WHERE clause. The key range specifies the lowest and highest key
values of the columns in the WHERE clause. To optimize the query and generate
SSAs, specify partial keys in the sequence in which they map to the IMS field.

Example: An IMS field named FIELD1 is 10 bytes long. You map three columns to
the IMS field in the following sequence:
v COLUMN1 = bytes 1-3
v COLUMN2 = bytes 4-5
v COLUMN3 = bytes 6-10

You then issue the following query:
WHERE COLUMN1 = 'abc' and COLUMN2 = '00'

The following SSA is generated:
FIELD1 >= abc00(low values) & FIELD1 =< abc00(high values).

Chapter 5. Tuning 271

In this example, IMS only returns the segments that match the WHERE
qualification. However, if you specify a WHERE clause that only references
COLUMN2 or COLUMN3, the query processor cannot generate an SSA. Instead,
the query processor or connector must retrieve all of the mapped segments and
perform all filtering logic.

Restriction: Multiple part field mapping applies to IMS root segment sequence
fields and secondary index keys only. Partial field mapping is not recognized for
ordinary IMS segment fields that are not part of a key.

Path calls for IMS optimization
Path calls access data sources when WHERE qualification criteria exists for
segments at levels other than the root of the hierarchy.

Path calls can significantly reduce the number of Data Language Interface (DL/I)
calls required in such cases. To use path calls, PSBs that access IMS databases must
contain PCBs that are defined with a PROCOPT value that includes the value P.

Example:
PCB DBDNAME=dbdname,PROCOPT=GOTP

If you are not certain whether your specific PSBs support path calls, review the
PSBs in question with your IMS database administrator.

IMS optimization for HIDAM, HDAM, and DEBD
Optimizing access to IMS data involves considerations that are specific to the
HIDAM, HDAM, and DEBD databases.

HDAM and HIDAM optimization
Optimizing access to IMS data with HDAM and HIDAM databases primarily
focuses on DBDs. In addition, optimization differs when accessing HIDAM and
HDAM databases and HDAM databases impose some limitations.

With HIDAM databases, SSAs are built when the following conditions are met:
v WHERE clauses contain columns that map to fields.
v Reads on fields contain the EQ, LT, LE, GT, or GE operators with any

combination of AND and OR conditions against any combination of mapped
segments in the database.

With HDAM database, queries are optimized under the following conditions:
v Simple keyed reads with the EQ operator and no AND or OR conditions for the

key field
v AND and OR conditions for other fields in any mapped segment as described

for HIDAM databases

HDAM restrictions

SSA support for HDAM databases is restrictive due to IMS restrictions. For
optimization to occur, the WHERE clause cannot result in the request for a range
of HDAM keys.

A limitation of IMS HDAM processing affects full table scans. For many HDAM
queries, full table scans can occur. The default HDAM RANDOMIZER might not
store keys in sequenced order. For example, a segment with a key field of 4 is not

272 Guide and Reference

necessarily ordered in sequence following a segment with a key field of 3. While
IMS allows OR conditions on an HDAM key qualification in the SSA, IMS might
not return the correct result set. IMS might not return rows that satisfy the WHERE
clause.

Result set processing

Classic federation ensure that the correct result set is returned by taking one of the
following actions:
v Not including qualification information in generated SSAs, thus forcing a full

table scan.
v Accessing the database through a secondary index on the primary root key. The

secondary index provides direct access to the correct result set, and is subject to
the same optimization rules as a HIDAM secondary index.

For further information on HDAM processing, see the IMS documentation about
application programming.

DEDB optimization
You can access IMS Fast Path DEDB databases by using a Bean-Managed
Persistence (BMP) service or by using the Database Resource Adapter (DRA)
interface.

Disabling high-speed sequential processing:

When accessing DEDBs as a Bean-Managed Persistence (BMP) service, you must
disable high-speed sequential processing (HSSP) to successfully process databases.

About this task

About this task

PCBs are defined as HSSP when the PROCOPT keyword parameter includes the
value H.

Procedure

To disable HSSP in a BMP:

Include a DFSCTL JCL statement in the data server startup JCL with a SETO
control statement.

Example SETO statement:
//DFSCTL DD *
SETO DB=IVPDB3,PCB=HSSP,NOPROCH

Failure to disable PROCOPT=H PCBs results in an FY status call when you access
the DEDB, and in an unexpected DLI status error message.

Setting Fast Path buffers:

Fast Path buffers must be available to process DEDB databases.

About this task

About this task

Chapter 5. Tuning 273

If IMS runs out of buffers during a query, an FR status code is returned when it
processes a Data Language Interface (DL/I) call. The client returns an unexpected
status code error message.

Procedure

To set the Fast Path buffers:
v BMP environment: Set the NBA and OBA keyword parameters in the data server

JCL to pass to IMS at BMP startup time.
v DRA environment: Define the CNBA and FPBxx parameters in the DFSPRP

macro when you generate the DRA startup table that the data server uses.

PCB selection options for IMS optimization
The query processor selects a PCB to access the segments that are mapped by a
logical table or column. To optimize performance, you can perform IMS PCB
selection by using an explicitly named PCB or by using ordinal PCB numbers.
Otherwise, the query processor uses the PCB by verification method.

The PCBPREFIX is an optional clause on the CREATE TABLE and CREATE INDEX
statements that you can use to specify a set of candidate PCB names and sets and
ranges of PCB numbers that are eligible to use for accessing the IMS database. If a
PCBPREFIX is specified on an IMS table definition, you should also specify the
PCBPREFIX clause on the CREATE INDEX statement.

You can use the Classic Data Architect to modify the PCB selection for IMS tables
or indexes.

PCB selection by name
When you use PCB selection by name, you need to carefully coordinate the PCB
definitions and the related table definitions.

About this task

PCB selection by name selects the PCB by using a partial or full PCB name that is
associated with a logical table or index. Specifying PCB names is useful when you
use the AIBTDL/I interface to select the PCB used to access the IMS database but
the PCB names do not match the naming conventions required for selection using
the PCBPREFIX option.

Important: Ensure that the named PCB can access the defined tables. Use the same
PCB prefix name for all logical tables that access the same logical or physical DBD
by using the same primary or secondary index.

If the PCB selected does not have the correct IMS path access for the table
(SENSEGs), an error is returned from the query.

PCB selection by number
PCB selection by number requires knowledge about the PSB being used to access
the IMS database and can be impacted by changes to the contents of a PSB.

Specifying PCB numbers is useful when you want to eliminate any IMS call before
the database is accessed to process the SQL statement.

When using PCBNUM, you specify the actual number of the PCB that you want to
use to access the IMS database. You can also specify ranges of PCBs that are

274 Guide and Reference

eligible for use and specify multiple ranges of PCB numbers for use when the
same PSB is used in SQL queries that contain references to multiple tables that use
the same PSB to access the IMS database. The first PCB in the PSB is numbered
one.

PCB selection by verification
PCB selection by verification is the default method that the query processor uses to
select a PCB for processing.

With this method, the query processor issues DL/I calls to verify that the PCB
selected can successfully access the database path that the logical table will access.
The correct PROCSEQ must be specified if a column that maps to an XDFLD is
specified in a WHERE clause.

PSB scheduling for IMS optimization
PSBs contain PCBs. A program specification block (PSB) is the unit of access that a
given program uses to interface with IMS. The process of interfacing with IMS is
known as PSB scheduling.

You can use the ASMTDLI interface or the DRA interface for PSB scheduling.
Depending on which IMS interface is used, the processes involved in scheduling a
PSB for a data server and how you specify which PSB a data server uses differ.

Use the DRA interface to access IMS data when possible.

BMP and DBB interfaces for PSB scheduling
The BMP and DBB interfaces enable the data server instance to access IMS as a
BMP, DBB, or DL/I region. But, this interface can require significant use of IMS
resources.

Use the DRA interface to access IMS data when possible. If you cannot use the
DRA interface, then configure data servers with the BMP or DBB interface as
single-user servers. A smaller number of PCBs are required to be defined within
the PSB. A smaller PSB requires significantly less resources for the data server
instance.

The BMP and DBB interfaces limit access to IMS data to a single PSB for a data
server instance. The IMS region controller only permits a single PSB to be
scheduled and has a limit of one instance of an IMS region controller per z/OS
address space.

The PSB scheduled in this environment must contain enough PCBs to support all
concurrent user access to the IMS data if you plan on take any of the following
actions:
v Access multiple DBDs
v Perform joins of IMS data
v Support multiple users

Very large PSBs require significant use of IMS resources.

DRA interface for PSB scheduling
With DRA, you can schedule multiple PSBs from a single data server. DRA also
can support multiple user connections at the same time.

Chapter 5. Tuning 275

The ability to schedule multiple PSBs enables the PSBs to be small in size. Small
PSBs reduce the IMS resources that are required for a query of IMS data.

With the CREATE TABLE statement for an IMS logical table, you can use
SCHEDULEPSB parameter to associate two PSBs with each logical table. The first
PSB that you specify is referred to as the standard PSB. The second PSB that you
specify is the join PSB.

Standard PSB
The standard PSB is scheduled to service queries between two or more
IMS logical tables that do not contain a join operation. This PSB only needs
to contain a single PCB. The PCB is sensitive to the segments that make up
the IMS path to which the IMS logical table maps.

Join PSB
The join PSB is scheduled for queries where the query contains a join
between two or more IMS logical tables. A join PSB is specified for the first
table in the join. The join PSB typically contains multiple PCBs, at least one
for each IMS logical table that the join references.

Before subsequent PSBs are scheduled, the currently scheduled PSBs are
inspected to determine if they contain a PCB that can be used to service
the query.
v If a PCB is available, another PSB is not scheduled. Instead, the available

PCB issues IMS calls for access to the referenced table.
v If a PCB is not available and a join PSB is specified for this table, that

join PSB is scheduled.
v If a PCB is not available and a join PSB is not specified, the standard

PSB that is associated with that logical table is scheduled.

Default PSB
You can use the DEFAULTPSBNAME configuration parameter to specify a
default PSB. If a standard PSB is not defined for an IMS logical table, the
default PSB is scheduled. The default PSB is inspected to determine if a
PCB exists that can be used to service the query. If a default PSB is
scheduled, it contains PCBs for all IMS databases, segment paths, and
secondary indexes that need to be accessed. The default PSB for the DRA
interface is similar to the PSB for the BMP and DBB interfaces.

To set up the DRA interface:
v Create standard PSBs for all IMS logical tables if you plan to use the DRA

interface and join IMS data with composite join PSBs. The need to schedule
multiple PSBs for join operations is eliminated.

v You do not need to create individual PSBs for each logical table. You can share
the same standard PSB or join PSB among multiple logical tables. In addition, if
you use multiple logical tables to access multiple paths in the same IMS
database, you can create a single PSB that contains one or more PCBs that map
all paths in the DBD to be accessed. You can then associate this PSB with all of
the logical tables that are mapped to that database. Similarly, share the PSB for
all of the logical tables that map to a DBD that uses the same secondary index.

VSAM access optimization
You can optimize access to VSAM data by using keyed access techniques,
configuration parameters, and the VSAM service.

276 Guide and Reference

The techniques that you can use to optimize access to VSAM data only apply to
VSAM KSDS data sets.

With ESDS and RRDS data sets, the entire contents of the files must be read to
process a query. You cannot access the data directly, with the exception of accessing
an ESDS data set through an alternate index.

Keyed access techniques for VSAM optimization
You can use a primary index, an alternate index, or partial keys to optimize access
to VSAM data.

Primary and alternate indexes for VSAM optimization
The query processor supports both primary and alternate indexes when it
processes SQL requests of VSAM data. You can use the Classic Data Architect to
define a primary VSAM index or an alternate VSAM index.

Although these indexes are usually transparent, the performance of queries that
use primary or alternate indexes improves when you retrieve data from large
VSAM files. Performance particularly improves during join processing.

Primary indexes:

The query processor determines the use of primary indexes at run time.

The query processor identifies primary indexes that are based on the following
criteria:
v Existence of index information that defines the columns that contain the key
v Key values that are supplied in the SQL WHERE clause

The query processor automatically performs keyed reads of the data set, if
possible.

Alternate indexes:

The query processor can use alternate indexes. The use of an alternate index refers
to ESDS or KSDS alternate indexes.

An alternate index is used to satisfy an SQL query if the following conditions are
met:
v A column in the WHERE clause maps to an alternate index field.
v The data server can access the VSAM alternate index path data set or DD name

that was supplied in the CREATE INDEX definition.

Partial keys for VSAM optimization
When you map multiple columns to an index, and a WHERE clause references a
subset of those columns, the resulting condition is known as a partial key. The
query processor attempts to optimize VSAM access by using the partial key
information supplied in the WHERE clause.

The query processor generates a key range that is based on the parts of the key in
the WHERE clause. The key range specifies the lowest and the highest key values
based on the values for those columns in the WHERE clause. The query processor
can only perform this optimization when the columns of the partial key are
specified in the sequence in which they are mapped to the index.

Chapter 5. Tuning 277

Example: A primary index is 10 bytes long. You map three columns to the index in
the following sequence:
v COLUMN1 = bytes 1-3
v COLUMN2 = bytes 4-5
v COLUMN3 = bytes 6-10

You then issue the following query:
WHERE COLUMN1 = 'abc' and COLUMN2 = '00'

As a result, the following key is generated: ’abc00x’ that is padded to the right
with low values (X’00’) for the key length. This key is used for the initial read of
the VSAM file. Processing of the VSAM file then continues sequentially. The key of
each returned record is compared to a high key value that is generated. In this
example, the high key value is ’abc00x’ padded to the right with high values
(X’FF’) for the length of the key. The records are read until the key of the returned
record exceeds this generated value or until the end of the file is reached.

Assume that you specify a WHERE clause that only references COLUMN2 or
COLUMN3, or both, and does not reference COLUMN1. In this case, a key range
cannot be generated. Instead, the entire VSAM file must be processed sequentially,
and any record filtering is performed within the connector or the query processor.

Configuration parameters for VSAM optimization
You can use the VSAMAMPARMS parameter to optimize access to your VSAM
files.

With VSAMAMPARMS, you can specify the number of in-core buffers to cache
VSAM index and data components and the overall amount of memory that VSAM
can use for buffer caching.

If a large number of records will be read, increase the size of the VSAM data buffer
pool to substantially improve query performance because more of the VSAM data
can be cached in core.

VSAM service for optimization
The VSAM service enables multiple concurrent users to share opened files with
either the local VSAM or CICS VSAM.

This service reduces overhead because files are opened and closed less often. The
VSAM service is particularly useful in join situations where a VSAM file is joined
to itself.

Data server optimization
You can improve query performance with the dispatching priority of the data
server and the Workload Manager (WLM) exit.

The dispatching priority at which the data server runs can have a strong affect on
query performance. In addition, you can use the WLM system exit to place
individual queries in WLM goal mode to control query resources.

278 Guide and Reference

Dispatching priority for query optimization
The dispatching priority set for a data server can significantly improve
performance.

The data server runs most efficiently at lower dispatching priorities. In general,
you can follow these guidelines to set the dispatching priority:
v For the data server, set the dispatching priority greater than the TCP/IP

subsystems that communicate with remote clients.
v Set the dispatching priority at or above the dispatching priorities of the CICS,

IMS, or DB2 subsystems that run at your z/OS site.

Consult your data center administrator to select an appropriate dispatching
priority that does not adversely affect the other applications that run at your z/OS
site.

WLM exit for query optimization
You can use the goal mode and the service class of the Workload Manager (WLM)
exit to improve query performance.

With the sample WLM exit, you can place individual queries in WLM goal mode.
In goal mode, WLM controls the amount of resources that are available for the
query to use.

With the WLM exit, you can also use service classes. Each service class can have
different rules for the amount of resources that z/OS assigns to run the query.
With a service class, z/OS applies period switching rules for each query that is
run. Typically, in goal mode with period switching, the longer a query runs the
less resources it uses.

Small queries
You can set up a service class for small queries that need to run quickly
and therefore be given more resources.

Longer running queries
You can assign different DATASOURCE names to longer running queries.
You can also assign these queries to a different service class. With different
service classes, z/OS reduces the amount of resources that these queries
use as they run longer, without impacts to the small high-performance
queries.

Chapter 5. Tuning 279

280 Guide and Reference

Chapter 6. Integration with IBM InfoSphere Information Server

IBM InfoSphere Classic Federation Server for z/OS integrates with InfoSphere
Information Server. The Classic federation extract programs enables integration of
Classic federated data with InfoSphere DataStage. From InfoSphere DataStage you
can connect to the Classic data server for direct access to z/OS files.

Classic federation and InfoSphere DataStage integration
Classic federation provides an extract program, caccfxt.exe, that enables integration
of Classic federation data with IBM InfoSphere DataStage.

The caccfxt program is a Classic federation Call Level Interface (CLI) client that
runs in any environment that supports the Classic federation ODBC/CLI driver.
The extract program uses the column definitions that are defined in Classic
federation table mappings. The definitions are imported into DataStage as table
definitions that can be loaded into the External Source stage for reference purposes.

You can run the caccfxt program in data extract mode or in schema generation
mode.

Data extract mode
The caccfxt program issues a native query to a Classic federation server
and streams the data to the standard ouput (stdout) file. This file is then
processed directly by the External Source stage of DataStage.

Schema generation mode
The client program connects to a Classic federation server and queries the
system catalog to generate a schema description for a specific catalog table.
Schema information is written to the stdout file in the orchestrate schema
syntax that DataStage uses. You can place the schema information into a
file and import the file into DataStage separately to use for reference while
designing DataStage jobs.

Configuring the CLI client for the caccfxt program
CLI client configuration is required to use the caccfxt extract program.

You can use the caccfxt extract program in any environment that supports both the
Classic federation ODBC/CLI driver and IBM InfoSphere DataStage.

Configuration setup is required for CLI clients on supported operating systems.
The supported operating systems include AIX, HP/UX, Solaris, Microsoft
Windows, and Linux on IBM System z. To configure a CLI client, follow the setup
steps described for the CLI client on the appropriate operating system:
v CLI client for UNIX, Linux, and Windows
v CLI client for native z/OS
v CLI client for UNIX System Services (USS)

As a CLI client, the caccfxt program does not require an ODBC driver manager.
Configuration setup is not required for ODBC.

© Copyright IBM Corp. 2003, 2015 281

Designing a InfoSphere DataStage job that uses the caccfxt
program

You use the External Source stage to design a IBM InfoSphere DataStage job that
calls the caccfxt extract program to generate a schema.

Before you begin

Before you use the caccfxt program, you must map data by using the Classic Data
Architect. Table mappings are required to define the column mappings that are
used in InfoSphere DataStage jobs.

About this task

You can use the caccfxt extract program in any environment that supports both the
Classic federation ODBC/CLI driver and InfoSphere DataStage.

The caccfxt program is required in both the Windows DataStage designer
environment and the DataStage server environment.
v In the designer environment, the caccfxt program generates orchestrate schema

definitions for import purposes.
v In the server environment, the caccfxt program streams data into the external

source stage when the InfoSphere DataStage job runs.

Restriction: The IBM z/OS floating point data type is supported on the IBM AIX,
UNIX System Services (USS), and Linux on IBM System z operating systems. In
other environments, you must use the Classic federation stage of InfoSphere
DataStage for tables that contain floating point columns.

Procedure
1. In the DataStage Administrator, add the environment variable CAC_CONFIG to

point to the cac.ini file as shown in the following example: C:\Program
Files\IBM\ISClassic113\ODBC\lib\cac.ini.

2. Generate a schema definition to a file. When you run the caccfxt program to
generate the schema, direct the output of the program to a file on the local file
system to use when importing into the InfoSphere DataStage Designer client.

3. Import the schema definition into InfoSphere DataStage. Use the InfoSphere
DataStage Designer client to import the table definition. Select the Import >
Table Definitions > Orchestrate Schema Definitions > Import Orchestrate
Schema menu options to choose the file that you want to import.

4. Build and test the InfoSphere DataStage job. Choose External Source as the
initial stage in the InfoSphere Classic Federation Server for z/OS job.
v Select caccfxt as the program to call from the External Source stage by using

the -output data option.
v Select Specific Program from the Source Method dropdown list.
v Load the table definition that was imported from generating the schema as

output to the External Source stage.
v Define record-level formatting options when copying an imported schema

into the External Source stage by selecting the Format tab. When you define
columns to the external store stage, describe the record formatting options of
those columns. These are the same columns that you originally mapped by
using the Classic Data Architect.
The formatting options include:

282 Guide and Reference

– Record level:
- Final delimiter = none
- Record prefix = 2

– Field defaults:
- Delimiter = none
- Quote = none

– General Type defaults:
- Character set = EBCDIC
- Byte order = native-endian
- Data format = binary

v Remove position information in downstream stages when copying column
information to avoid any problems. Position information is always generated
because sparse mapping (that is, mappings that can leave out data elements)
of mainframe records is supported. Position information ensures that the
InfoSphere DataStage import process manages the data correctly in the
External Source stage. In some cases, removing column position information
might require a Copy or Transform stage.

Classic federation extract program: caccfxt
The caccfxt program is a command line program that extracts data from Classic
federation into InfoSphere DataStage.

Syntax

�� caccfxt -table table-name �

�
data

-output schema -prefix none -dsname data source-name

�

�
-user user-id -pwd user-password -where "where clause"

��

Parameters

table table-name

Defines a table or view name to process in data or schema output mode. The
table parameter is required.

The format of the table parameter is single token with no embedded spaces
that contains a two-part name separated by the period (.) character.

output [data|schema]

Controls the mode of operation for the caccfxt program. The output parameter
is optional.

In data mode, the result set for the query is streamed to the standard output
(stdout) file for InfoSphere DataStage processing. The data is streamed in
binary mode. Each record contains a two-byte prefix in native-endian format,
unless you specify the prefix none parameter.

In schema mode, the caccfxt program generates an orchestrate schema
definition for the table that is identified by the table parameter. The output is

Chapter 6. Integration with IBM InfoSphere Information Server 283

streamed to a file on the local file system and is imported separately into
InfoSphere DataStage for reference during the design of a InfoSphere
DataStage job.

prefix none

Removes all record prefixes from the mainframe data streamed to the stdout
file.

The caccfxt program places a two-byte prefix in native-endian format in each
row of data that is returned in the result set for a table extract. This prefix is
created from the length field that is returned in RAW_DATA() queries for
mainframe information.

In some cases, this prefix can complicate working with the data and is not
necessary for delineation between records in a mainframe database or file. This
is particularly true if the mainframe records are fixed length. By including the
prefix none parameter, all record prefixes will be removed from the mainframe
data streamed to the stdout file.

dsname data-source-name

Identifies which data source to use in the configuration file when connecting to
the data server.

As a CLI client, the caccfxt program is configured by using a separate
configuration file that can contain more than one data source definition for
different data servers in an installation.

user user-id
Identifies the user name to send to the data server. The user parameter accepts
a single token.

pwd password
Identifies the user password to send to the data server. The password
parameter accepts a single token. To ensure security, store this value as an
encrypted job variable in InfoSphere DataStage jobs.

where "where clause"

Defines an optional where clause for filtering extracted information from the
mainframe table or view. This parameter consists of column names and
comparison operators that you can append to the where keyword in the query.

Example

To generate a schema definition for the table named IMSADMIN.EMPLOYEES and
filter the output, you can issue the following command:
-table IMSADMIN.EMPLOYEES -output schema -where “BRANCH_OFFICE = '305’
AND SALARY > 50000”

InfoSphere DataStage and z/OS file access
The z/OS File stage enables direct access from InfoSphere DataStage to the Classic
data server to access z/OS files.

z/OS File stage
Use the z/OS File stage to identify and define file-level information about a z/OS
file.

284 Guide and Reference

About this task

The z/OS File stage within InfoSphere DataStage works with IBM InfoSphere
Classic Federation Server for z/OS to provide direct access to z/OS sequential files
and VSAM files from all operating systems that InfoSphere DataStage supports.

IBM InfoSphere Classic Federation Server for z/OS reads records from and writes
records to the z/OS file. TCP/IP is used to pass blocks of records back and forth
between IBM InfoSphere DataStage and Classic federation data server.

Procedure

Configure the Classic federation data server environment. If you are configuring a
new Classic federation environment, you need to customize the data server. See
Installing a new Classic federation data server.

What to do next

For detailed information about z/OS File stage, see the IBM InfoSphere
Information Server documentation.

Log messages for file access service requests
When you connect from InfoSphere DataStage to the Classic data server to access
z/OS sequential files, error information is communicated in the InfoSphere
DataStage job log and in Classic system log messages.

When a file access request does not complete successfully, the set of related
messages that the z/OS allocation services produce are included in the InfoSphere
DataStage job log and included in the Classic system log. The number of messages
that the z/OS allocation services produce for a given request varies.

z/OS error messages are written to the system log in the from of trace records.

Examples

The following examples show messages in the Classic system log and possible
messages in the InfoSphere DataStage log. The log includes the following
messages:
v x00DA0201 – The log includes one occurrence of this message that includes the

following information:
– Parameters string presented to the z/OS allocation service
– Error information feedback items that the z/OS allocation service returns.

These are the S99ERROR, S99INFO, and S99ERSN items in the message.
v x00DA0214 – The log includes one or more occurrence of this message for each

allocation services message that z/OS returns.

Example 1: Results of attempting to allocate a data set that is not cataloged.

InfoSphere DataStage log messages:
[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0201.
ALLOC error, rc=4, reason=5896(0x00001708), info=2(0x00000002)

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IKJ56228I DATA SET USER.STORPROC.XCL NOT IN CATALOG OR CATALOG CAN NOT BE ACCESSED

Chapter 6. Integration with IBM InfoSphere Information Server 285

Classic system log messages:
2009/09/30 14:50:10:0964 RC(08), SpcRC(00da0214), Data(00000000,00000000)

Node(51), Task(9217672)
QP, func dynAlloc, line 335 in //DSN:USER.TEMP.SOURCE(AARCSPDA)
’osdynalloc() string: ’
’retddn=?,retdsn=?,retvolume=?,reason=?,InfoReason=?,smsreason=?, ’
’emsgp=?,msgcount=?,dsn=USER.STORPROC.XCL,disp=SHR ’
’------------------------------ ’
’S99ERROR=0x00001708 S99INFO=0x00000002 S99ERSN=0x00000FD6 ’

2009/09/30 14:50:10:0964 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(51), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:USER.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 1 of 1 ’
’IKJ56228I DATA SET USER.STORPROC.XCL NOT IN CATALOG OR CATALOG ’
’CAN NOT BE ACCESSED ’

Example 2: Results of attempting to create a data set with a space quantity that is
not sufficient.

InfoSphere DataStage log messages:
[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0201.
ALLOC error, rc=4, reason=38668(0x0000970c), info=0(0x00000000)

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IKJ56893I DATA SET SYSUID.STORPROC.HUGE NOT ALLOCATED+

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IGD17273I ALLOCATION HAS FAILED FOR ALL VOLUMES SELECTED FOR DATA SET

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
SYSUID.STORPROC.HUGE

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IGD17277I THERE ARE (25) CANDIDATE VOLUMES OF WHICH (25) ARE ENABLED OR QUIESCED

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IGD17290I THERE WERE 1 CANDIDATE STORAGE GROUPS OF WHICH THE FIRST 1

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
WERE ELIGIBLE FOR VOLUME SELECTION.

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
THE CANDIDATE STORAGE GROUPS WERE:DEVELOP

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IGD17279I 25 VOLUMES WERE REJECTED BECAUSE THEY DID NOT HAVE SUFFICIENT
SPACE (041A041D)

Classic system log messages:
2009/09/30 14:29:41:6934 RC(08), SpcRC(00da0214), Data(00000000,00000000)

Node(59), Task(9217672)
QP, func dynAlloc, line 335 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’osdynalloc() string: ’
’retddn=?,retdsn=?,retvolume=?,reason=?,InfoReason=?,smsreason=?, ’
’emsgp=?,msgcount=?,dsn=SYSUID.STORPROC.HUGE,disp=NEW,ndisp=CATLG, ’
’unit=SYSALLDA,cyl,primary=4000 ’
’------------------------------ ’
’S99ERROR=0x0000970C S99INFO=0x00000000 S99ERSN=0x00004379 ’

2009/09/30 14:29:41:6936 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 1 of 8 ’

286 Guide and Reference

’IKJ56893I DATA SET SYSUID.STORPROC.HUGE NOT ALLOCATED+ ’

2009/09/30 14:29:41:6936 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 2 of 8 ’
’IGD17273I ALLOCATION HAS FAILED FOR ALL VOLUMES SELECTED FOR DATA ’
’SET ’

2009/09/30 14:29:41:6937 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 3 of 8 ’
’SYSUID.STORPROC.HUGE ’

2009/09/30 14:29:41:6937 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 4 of 8 ’
’IGD17277I THERE ARE (25) CANDIDATE VOLUMES OF WHICH (25) ARE ’
’ENABLED OR QUIESCED ’

2009/09/30 14:29:41:6938 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 5 of 8 ’
’IGD17290I THERE WERE 1 CANDIDATE STORAGE GROUPS OF WHICH THE FIRST’
’ 1 ’

2009/09/30 14:29:41:6939 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 6 of 8 ’
’WERE ELIGIBLE FOR VOLUME SELECTION. ’

2009/09/30 14:29:41:6940 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 7 of 8 ’
’THE CANDIDATE STORAGE GROUPS WERE:DEVELOP ’

2009/09/30 14:29:41:6941 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 8 of 8 ’
’IGD17279I 25 VOLUMES WERE REJECTED BECAUSE THEY DID NOT HAVE ’
’SUFFICIENT SPACE (041A041D) ’

Example 3: Results of attempting to create a new data set with a name that
duplicates the name of an existing cataloged data set.

InfoSphere DataStage log messages:
[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0201.
CREATE error, rc=4, reason=38668(0x0000970c), info=0(0x00000000)

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IKJ56893I DATA SET SYSUID.STORPROC.JCL NOT ALLOCATED+

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
IGD17101I DATA SET SYSUID.STORPROC.JCL

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
NOT DEFINED BECAUSE DUPLICATE NAME EXISTS IN CATALOG

[IS Classic][ODBC/CLI Driver][Data Server] SQLExecute - Error code: x00DA0214.
RETURN CODE IS 8 REASON CODE IS 38 IGG0CLEH

Chapter 6. Integration with IBM InfoSphere Information Server 287

Classic system log messages:
2009/10/08 14:29:38:3741 RC(08), SpcRC(00da0214), Data(00000000,00000000)

Node(59), Task(9217672)
QP, func dynAlloc, line 335 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’osdynalloc() string: ’
’retddn=?,retdsn=?,retvolume=?,reason=?,InfoReason=?,smsreason=?, ’
’emsgp=?,msgcount=?,dsn=SYSUID.STORPROC.JCL,member=SEQNEW,disp=NEW ’
’------------------------------ ’
’S99ERROR=0x0000970C S99INFO=0x00000000 S99ERSN=0x000042CD ’

2009/10/08 14:29:38:3742 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 1 of 4 ’
’IKJ56893I DATA SET SYSUID.STORPROC.JCL NOT ALLOCATED+ ’

12009/10/08 14:29:38:3743 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 2 of 4 ’
’IGD17101I DATA SET SYSUID.STORPROC.JCL ’

2009/10/08 14:29:38:3744 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 3 of 4 ’
’NOT DEFINED BECAUSE DUPLICATE NAME EXISTS IN CATALOG ’

2009/10/08 14:29:38:3744 RC(08), SpcRC(00da0214), Data(00000000,00000000)
Node(59), Task(9217672)
QP, func dynAlloc, line 386 in //DSN:SYSUID.TEMP.SOURCE(AARCSPDA)
’DYNALLOC message 4 of 4 ’
’RETURN CODE IS 8 REASON CODE IS 38 IGG0CLEH ’

288 Guide and Reference

Chapter 7. Troubleshooting and support

To isolate and resolve problems with your IBM software, you can use the
troubleshooting and support information, which contains instructions for using the
problem-determination resources that are provided with your IBM products.

Troubleshooting a problem
Troubleshooting is a systematic approach to solving a problem. The goal of
troubleshooting is to determine why something does not work as expected and
how to resolve the problem.

The first step in the troubleshooting process is to describe the problem completely.
Problem descriptions help you and the IBM technical-support representative know
where to start to find the cause of the problem. This step includes asking yourself
basic questions:
v What are the symptoms of the problem?
v Where does the problem occur?
v When does the problem occur?
v Under which conditions does the problem occur?
v Can the problem be reproduced?

The answers to these questions typically lead to a good description of the problem,
which can then lead you a problem resolution.

What are the symptoms of the problem?

When starting to describe a problem, the most obvious question is “What is the
problem?” This question might seem straightforward; however, you can break it
down into several more-focused questions that create a more descriptive picture of
the problem. These questions can include:
v Who, or what, is reporting the problem?
v What are the error codes and messages?
v How does the system fail? For example, is it a loop, hang, crash, performance

degradation, or incorrect result?

Where does the problem occur?

Determining where the problem originates is not always easy, but it is one of the
most important steps in resolving a problem. Many layers of technology can exist
between the reporting and failing components. Networks, disks, and drivers are
only a few of the components to consider when you are investigating problems.

The following questions help you to focus on where the problem occurs to isolate
the problem layer:
v Is the problem specific to one platform or operating system, or is it common

across multiple platforms or operating systems?
v Is the current environment and configuration supported?

© Copyright IBM Corp. 2003, 2015 289

If one layer reports the problem, the problem does not necessarily originate in that
layer. Part of identifying where a problem originates is understanding the
environment in which it exists. Take some time to completely describe and
document the problem environment, including the following items:
v Operating system
v Product version
v All corresponding software and versions, hardware information, and any

maintenance that was applied
v The product that you are accessing (for example IMS, Adabas, CA-Datacom) and

the product version
v The client application that you are using, if applicable. If you are using a client

application other than Classic Data Architect or the sample application clisamp,
confirm if you can successfully run the query using either the Classic Data
Architect or clisamp.

Confirm that you are running within an environment that is a supported
configuration; many problems can be traced back to incompatible levels of
software that are not intended to run together or have not been fully tested
together.

When does the problem occur?

Develop a detailed timeline of events leading up to a failure, especially for those
cases that are one-time occurrences. You can most easily develop a timeline by
working backward: Start at the time an error was reported (as precisely as possible,
even down to the millisecond), and work backward through the available logs and
information. Typically, you need to look only as far as the first suspicious event
that you find in a diagnostic log.

To develop a detailed timeline of events, answer these questions:
v Does the problem happen only at a certain time of day or night?
v How often does the problem happen?
v What sequence of events leads up to the time that the problem is reported?
v Does the problem happen after an environment change, such as upgrading or

installing software or hardware?

Responding to these types of questions can give you a frame of reference in which
to investigate the problem.

Under which conditions does the problem occur?

Knowing which systems and applications are running at the time that a problem
occurs is an important part of troubleshooting. These questions about your
environment can help you to identify the root cause of the problem:
v Does the problem always occur when the same task is being performed?
v Does a certain sequence of events need to occur for the problem to surface?
v Do any other applications fail at the same time?

Answering these types of questions can help you explain the environment in
which the problem occurs and correlate any dependencies. Remember that just
because multiple problems might have occurred around the same time, the
problems are not necessarily related.

290 Guide and Reference

Can the problem be reproduced?

From a troubleshooting standpoint, the ideal problem is one that can be
reproduced. Typically, when a problem can be reproduced you have a larger set of
tools or procedures at your disposal to help you investigate. Consequently,
problems that you can reproduce are often easier to debug and solve. However,
problems that you can reproduce can have a disadvantage: If the problem is of
significant business impact, you do not want it to recur. If possible, re-create the
problem in a test or development environment, which typically offers you more
flexibility and control during your investigation.
v Can the problem be re-created on a test system?
v Are multiple users or applications encountering the same type of problem?
v Can the problem be re-created by running a single command, a set of

commands, or a particular application?
v Can the problem be re-created by issuing a specific query?

Searching for messages
You can search for messages in the information center.

In the search box that is located in the top-left toolbar of this information center,
enter the message number; for example, enter: 0x00670014.

Important: You need to enter the search string in the format of the full message
number, in this example 0x00670014. Do not specify partial message numbers or
wild cards (* or ?) in the search string.

Searching knowledge bases
You can often find solutions to problems by searching IBM knowledge bases. You
can optimize your results by using available resources, support tools, and search
methods.

About this task

You can find useful information by searching the information center, but
sometimes you need to look beyond the information center to answer your
questions or resolve problems.

Procedure

To search knowledge bases for information that you need, use one or more of the
following approaches:
v Find the content that you need by using the IBM Support Portal.

The IBM Support Portal is a unified, centralized view of all technical support
tools and information for all IBM systems, software, and services. The IBM
Support Portal lets you access the IBM electronic support portfolio from one
place. You can tailor the pages to focus on the information and resources that
you need for problem prevention and faster problem resolution.
Familiarize yourself with the IBM Support Portal by viewing the demo videos
about this tool. These videos introduce you to the IBM Support Portal, explore
troubleshooting and other resources, and demonstrate how you can tailor the
page by moving, adding, and deleting portlets.

v Search for content by using one of the following additional technical resources:

Chapter 7. Troubleshooting and support 291

http://www.ibm.com/support/entry/portal/Overview
https://www.ibm.com/blogs/SPNA/entry/the_ibm_support_portal_videos

– APARs (problem reports). You can locate APARs on the IBM Support site or
by using an external search engine. To locate APARs on the IBM Support site:
1. Select Information Management in the Choose support type box.
2. Select a Classic product in the Choose product box.
3. Enter an APAR number in the Search box.
Tip: To narrow the search for Classic products only, specify the component
identifier “5697I8200” for Classic products.

– Information management forums. This page lists a variety of forums about
specific IBM Information Management products.

v Search for content by using the IBM masthead search. You can use the IBM
masthead search by typing your search string into the Search field at the top of
any ibm.com page.

v Search for content by using any external search engine. If you use an external
search engine, your results are more likely to include information that is outside
the ibm.com domain. However, sometimes you can find useful problem-solving
information about IBM products in newsgroups, forums, and blogs that are not
on ibm.com.

Tip: Include “IBM” and the name of the product in your search if you are
looking for information about an IBM product.

Getting fixes
A product fix might be available to resolve your problem.

About this task

Procedure
v To find and install fixes:

1. Access downloads and fixes:
– If you know a PTF number, go to Download specific fixes. You might

know a PTF number from a technote or APAR description that you found
by entering keywords for a search of the product support web site.

– If you do not know a PTF number, go to the IBM Support Portal. From
there, you can search for fixes for your product. If you have not visited
the IBM Support Portal in the past, you can customize it so that you can
view Support-related information for the specific products that you use.
Alternatively, visit the Get zSeries related fixes web site.

2. Follow the instructions at the eServer™ zSeries website to locate a fix that
might solve your problem.

3. When you find a fix that you are interested in, click the name of the fix to
read its description. If you believe that the fix can resolve your problem,
download the fix and apply it.

4. Optional: Subscribe to receive weekly email notifications about fixes and
other IBM Support information.

v To find a list of fixes for a product rollup, see the Release Notes for the rollup
that you need.

v To find fixes for the Classic Data Architect, run the IBM Installation Manager.
See Applying maintenance to the Classic Data Architect for instructions.

292 Guide and Reference

http://www.ibm.com/support
http://www.ibm.com/developerworks/forums/im_forums.jspa
http://www-947.ibm.com/systems/support/z/zos/downloading.html
http://www-947.ibm.com/support/entry/portal/Overview/Software/Software_support_(general)
https://www14.software.ibm.com/webapp/set2/ordermedia/shopCart?ptfs=UK46433

Contacting IBM Support
IBM Support provides assistance with product defects, answering FAQs, and
performing rediscovery.

Before you begin

After trying to find your answer or solution by using other self-help options such
as technotes, you can contact IBM Support. Before contacting IBM Support, your
company must have an active IBM maintenance contract, and you must be
authorized to submit problems to IBM. For information about the types of
available support, see the Support portfolio topic in the Software Support Handbook.

Procedure

Complete the following steps to contact IBM Support with a problem:
1. Define the problem, gather background information, and determine the severity

of the problem. For more information, see the Getting IBM support topic in the
Software Support Handbook.

2. Gather diagnostic information.
3. Submit the problem to IBM Support in one of the following ways:

v Online through the IBM Support Portal: You can open, update, and view all
your Service Requests from the Service Request portlet on the Service
Request page.

v By phone: For the phone number to call in your country, see the Directory of
worldwide contacts web page.

Results

If the problem that you submit is for a software defect or for missing or inaccurate
documentation, IBM Support creates an Authorized Program Analysis Report
(APAR). The APAR describes the problem in detail. Whenever possible, IBM
Support provides a workaround that you can implement until the APAR is
resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support
website daily, so that other users who experience the same problem can benefit
from the same resolution.

Exchanging information with IBM
To diagnose or identify a problem, you might need to provide IBM Support with
data and information from your system. In other cases, IBM Support might
provide you with tools or utilities to use for problem determination.

Collecting diagnostic information
You can use Classic Data Architect to collect diagnostic information from all
connected servers. These diagnostics can be exported to a file for evaluation.

About this task

When you start collecting diagnostic information, all of the information is stored in
Classic Data Architect cached memory. You can set the frequency at which
diagnostic information is collected from the servers and the maximum number of
results to be cached in memory. These options are available on the Window >
Preferences > Classic Data Architect > Diagnostic Metric Options panel.

Chapter 7. Troubleshooting and support 293

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www.ibm.com/software/support/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

The information is also displayed in the Diagnostic Metric view. The metrics that
have been collected from the selected server are displayed in this view, sorted by
timestamp. Previous results (up to the maximum that you specify) and results for
non-selected servers are still available in cached memory and can be exported to a
file.

Procedure
1. To display the Diagnostic Metric view, select Window > Views > Diagnostic

Metric view.
2. To start collecting diagnostics, right-click in the Diagnostic Metric view and

select Start Diagnostic Metric Collection.
3. Select a server to view the most up-to-date metrics for a particular server.

When you select an object in the tree, the diagnostic information to the right is
updated dynamically with the latest results collected.

4. To export diagnostic information to a file, right-click the Diagnostic Metric view
and select Export Diagnostic Metrics. The metrics are exported as
comma-separated values (CSV) to a file of your choosing. You can export the
metrics currently displayed in the view or all metrics cached in memory.
Metrics exported from the view are exported in the order that they are
displayed. Metrics exported from memory are sorted by timestamp.

5. To clear all collected diagnostics, including those stored in memory, right-click
the Diagnostic Metric view and select Clear Diagnostic Metric History.

Sending information to IBM Support
To reduce the time that it takes to resolve your problem, you can send trace and
diagnostic information to IBM Support.

Procedure

To submit diagnostic information to IBM Support:
1. Open a problem management record (PMR).
2. Collect the diagnostic data that you might need, either manually or

automatically, depending on the data. Diagnostic data helps reduce the time
that is spent resolving your PMR. For example, having access to any relevant
messages, error codes, log data, all data server output, trace output, or dump
output, can speed the resolution process.

3. Compress the files by using one of the following methods, depending on the
file type.
v Use the AMATERSE program, which is a tool that is available for products

that run in a z/OS environment. For more information about what z/OS
versions support this program, search for either program name on ibm.com.

v For UNIX files, use the tar and gzip programs to create compressed archive
files.
a. Run the tar program against the file.
b. Run the gzip program against the file.

For example: tar -cvf - inputfile1 inputfile2 | gzip > file.tar.gz

v For Microsoft Windows files, create a ZIP file.
4. Transfer the files to IBM. You can use one of the following methods to transfer

the files to IBM:
v Service Request tool
v Standard data upload methods: FTP, HTTP

294 Guide and Reference

http://www.ibm.com/support/servicerequest

v Secure data upload methods: FTPS, SFTP, HTTPS
v Email

If you are using a z/OS product and you use ServiceLink/IBMLink to submit
PMRs, you can send diagnostic data to IBM Support in an email or by using
FTP.
All of these data exchange methods are explained on the IBM Support site.

Receiving information from IBM Support
Occasionally an IBM technical-support representative might ask you to download
diagnostic tools or other files. You can use FTP to download these files.

Before you begin

Ensure that your IBM technical-support representative provided you with the
preferred server to use for downloading the files and the exact directory and file
names to access.

Procedure

To download files from IBM Support:
1. Use FTP to connect to the site that your IBM technical-support representative

provided and log in as anonymous. Use your email address as the password.
2. Change to the appropriate directory:

a. Change to the /fromibm directory.
cd fromibm

b. Change to the directory that your IBM technical-support representative
provided.
cd nameofdirectory

3. Enable binary mode for your session.
binary

4. Use the get command to download the file that your IBM technical-support
representative specified.
get filename.extension

5. End your FTP session.
quit

Subscribing to Support updates
To stay informed of important information about the IBM products that you use,
you can subscribe to updates.

About this task

By subscribing to receive updates, you can receive important technical information
and updates for specific Support tools and resources. You can subscribe to updates
by using one of two approaches:

RSS feeds and social media subscriptions
The following RSS feeds and social media subscriptions are available:
v RSS feeds for various Information Management communities. See the

Information Integration section of Information Management community.

Chapter 7. Troubleshooting and support 295

http://www-01.ibm.com/software/support/exchangeinfo.html
http://www.ibm.com/developerworks/data/community/#iis

v RSS feed for developerWorks® resources, such as articles, tutorials,
downloads, and forums. See developerWorks.

For general information about RSS, including steps for getting started and
a list of RSS-enabled IBM web pages, visit the IBM Software Support RSS
feeds site.

My Notifications
With My Notifications, you can subscribe to Support updates for any IBM
product. You can specify that you want to receive daily or weekly email
announcements. You can specify what type of information you want to
receive (such as publications, hints and tips, product flashes (also known
as alerts), downloads, and drivers). My Notifications enables you to
customize and categorize the products about which you want to be
informed and the delivery methods that best suit your needs.

Procedure

To subscribe to Support updates:
1. To subscribe to My Notifications, begin by going to the IBM Support Portal

and clicking My Notifications in the Notifications portlet.
2. If you have already registered for My support, sign in and skip to the next

step. If you have not registered, click Register now. Complete the registration
form using your email address as your IBM ID and click Submit.

3. Click Edit profile.
4. Click Add products and choose a product category; for example, Software. A

second list is displayed.
5. In the second list, select a product segment; for example, Data & Information

Management. A third list is displayed.
6. In the third list, select a product subsegment, for example, Databases. A list of

applicable products is displayed.
7. Select the products for which you want to receive updates.
8. Click Add products.
9. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
10. Select Please send these documents by weekly email.
11. Update your email address as needed.
12. In the Documents list, select the product category; for example, Software.
13. Select the types of documents for which you want to receive information.
14. Click Update.

Results

Until you modify your RSS feeds and My Notifications preferences, you receive
notifications of updates that you have requested. You can modify your preferences
when needed (for example, if you stop using one product and begin using another
product).

Related information

IBM Software Support RSS feeds

Subscribe to My Notifications support content updates

My notifications for IBM technical support

296 Guide and Reference

http://www.ibm.com/developerworks/feeds/index.html
http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/
http://www.ibm.com/software/support/rss/
http://www.ibm.com/software/support/einfo.html
http://www.ibm.com/support/mynotifications

My notifications for IBM technical support overview

Chapter 7. Troubleshooting and support 297

http://www.ibm.com/software/support/viewlet/my_notifications_viewlet_swf.html

298 Guide and Reference

Chapter 8. Reference

The reference for Classic federation includes descriptions of the configuration
parameters for the data server, services, and clients; utilities; SQL information;
programming information about the drivers; and technical details about
multilingual data; sample VTAM and CICS definitions for federated or stored
procedure access; and field procedures.

Services and configuration parameters

Summary of services
The services required for the Classic data server are customized and running when
you complete the installation customization process.

The following table summarizes these services.

Table 49. Summary of services

Service type Task name Service class

CA-Datacom access service CACDCI DCI

Client connection handler service CACINIT INIT

IBM DB2 call attachment facility
(CAF) initialization service

CACCAF CAF

IMS BMP/DBB access service CACIMSIF IMSI

IMS open database access
(ODBA) access service

CACRRSI ODBA

Logger service CACLOG LOG

Monitoring service CECMAA MAA

Query processor service CACQP QP

Region controller service CACCNTL CNTL

Stored procedure service CECSPS SPS

Remote operator command
service

CACOPER OPER

Two-phase commit query
processor service

CACQPRRS QPRR

VSAM access service CACVSMS VSMS

Workload Manager (WLM)
service

CACWLM WLM

The IBM Language Environment initialization service is deprecated in Version 10.1.

Call attachment facility (CAF) service
The CAF service is assigned to the CAF service class. The task name for the CAF
service class is CACCAF.

© Copyright IBM Corp. 2003, 2015 299

The CAF is an initialization service that connects to an IBM DB2 for z/OS
subsystem to access and update DB2 data.

The following table summarizes the configuration parameters that define call
attachment facility services in the CAF service class.

Table 50. Configuration parameters for the CAF service class

Parameter Default value Description

DB2PLANNAME CACPLAN IBM DB2 application plan for accessing DB2
for z/OS data

DB2SUBSYSTEMNAME DSN DB2 for z/OS subsystem name

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a
service remains idle before it polls the local
message queue for messages that are to be
processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during data server
initialization

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 10 Maximum number of user connections

OPTIONALUSERPARM None Optional user parameters

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SEQUENCE 0 Sequence number that is assigned to services

THREADMGMTEXIT None Thread management exit

TRACELEVEL 4 Trace level

CA-Datacom access service
The CA-Datacom access service is assigned to the CA-Datacom initialization (DCI)
service class. The task name for the DCI service class is CACDCI.

The CA-Datacom service initializes the Classic data server for connections to the
CA-Datacom Multi-User Facility (MUF).

The following table summarizes the configuration parameters that define
CA-Datacom access services in the DCI service class.

Table 51. Configuration parameters for the DCI service class

Parameter Default value Description

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a
service remains idle before it polls the local
message queue for messages that are to be
processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 50 Maximum number of user connections

300 Guide and Reference

Table 51. Configuration parameters for the DCI service class (continued)

Parameter Default value Description

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SEQUENCE 0 Sequence number that is assigned to services

URTPOOL FALSE Specifies whether the Datacom access service
acquires pooled user requirements tables. The
default value of FALSE repeatedly opens and
closes user resource tables when each query
runs. Set this parameter to TRUE to open a user
requirements table once, and keep it open for
the life of the Datacom access service. The user
requirements table remains open until the
Datacom access service or the Classic data
server stops, or until you close the user
requirements table.

TASKAREASACQ 1 The total number of CA-Datacom task areas to
acquire for accessing CA-Datacom. If you enable
pooled user requirements tables, the Datacom
access service provides an independent group of
task areas for RRS processing.

TASKAREASRES 0 The total number of CA-Datacom task areas
reserved for modification queries, which
perform inserts, updates, and deletes. If you
enable pooled user requirements tables, this
parameter has no effect on the task areas that
perform RRS processing.

TRACELEVEL 4 Trace level

Connection handler service
The connection handler service is assigned to the INIT service class. The task name
for the INIT service is CACINIT.

A connection handler listens for connection requests from client applications and
routes the requests to the appropriate monitoring, operator, and query processor
tasks. The connection handler task can load the following communication
protocols:
v TCP/IP IBM z/OS
v Cross-memory services

A local client application can connect to a Classic data server by using any of these
protocols. Remote client applications use TCP/IP to communicate with a Classic
data server.

The following table summarizes the configuration parameters that define
connection handler services in the INIT service class.

Table 52. Configuration parameters for the INIT service class

Parameter Default value Description

COMMSTRING TCP/0.0.0.0/
9087

Client connection listen string

Chapter 8. Reference 301

Table 52. Configuration parameters for the INIT service class (continued)

Parameter Default value Description

IDLETIMEOUT 5M The amount of time that a service remains idle
before it polls the local message queue for
messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 100 Maximum number of user connections

RESPONSETIMEOUT 5M Maximum amount of time to wait for response
before terminating a connection

SEQUENCE 0 Sequence number that is assigned to services.

TRACELEVEL 4 Trace level

IMS BMP/DBB access service
The IBM IMS BMP/DBB access service is assigned to the IMSI service class. The
task name for the IMSI service class is CACIMSIF.

The IMS BMP/DBB service initializes the IMS region controller to access IMS data
by using the BMP or DBB interface.

The following table summarizes the configuration parameters that define IMS
BMP/DBB access services in the IMSI service class.

Table 53. Configuration parameters for the IMSI service class

Parameter Default value Description

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a
service remains idle before it polls the local
message queue for messages that are to be
processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 10 Maximum number of user connections

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SEQUENCE 0 Sequence number assigned to services

TRACELEVEL 4 Trace level

IMS open database access (ODBA) access service
The IBM IMS open database access (ODBA) access service is assigned to the ODBA
service class. The task name for the ODBA service class is CACRRSI.

302 Guide and Reference

The ODBA service enables client applications to run distributed transactions with
two-phase commit protocols. The ODBA interface must be used in conjunction
with the two-phase commit query processor. The QPRR service class defines
two-phase commit query processor.

The ODBA interface uses the DRA interface to connect to IMS.

The following table summarizes the configuration parameters that define IMS
ODBA access services in the ODBA service class.

Table 54. Configuration parameters for the ODBA service class

Parameter Default value Description

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a
service remains idle before it polls the local
message queue for messages that are to be
processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 1 Maximum number of user connections

PSBPARM None PSB parameter

RESPONSETIMEOUT 60000 MS (1
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SEQUENCE 0 Sequence number that is assigned to services

SSNPARM None Subsystem name (SSN) parameter

TRACELEVEL 4 Trace level

Logger service
The logger service is assigned to the LOG service class. The task name for the LOG
service class is CACLOG.

The logger service receives messages from all services in the data server and
coordinates writing the messages to a common log. The logger also reports data
server activities and is used for error diagnosis.

Restriction: A single logger task can run within a data server.

When the logger service is initialized, the configuration parameters in the LOG
service class are defined with the parameter default values. You can modify the
default values as needed.

The following table lists the configuration parameters that apply to the LOG
service class.

Table 55. Configuration parameters for the LOG service class

Parameter Default value Description

CONSOLELEVEL 4 The amount of event messages that data server
tasks record in the event log

DISPLAYLOG FALSE Display log

Chapter 8. Reference 303

Table 55. Configuration parameters for the LOG service class (continued)

Parameter Default value Description

EIFEVENTSERVERS* None The service list for URL values that identifies
the event server to which Event Integration
Facility (EIF) events will be sent

EVENTLOG None The name of the event message log that is
defined to the logger service

IDLETIMEOUT 5M The amount of time that a service remains idle
before it polls the local message queue for
messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during data server
initialization

LOGBUFSIZE 65536 Log buffer size

LOGURL None Log URL that provides a method of moving
logging storage outside of the address space
MESSAGEPOOLSIZE storage and into a data
space.

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 100 Maximum number of user connections

MSGLIST None Represents a message list that is maintained as
a service list.

RESPONSETIMEOUT 5M Maximum amount of time to wait for response
before terminating a connection

SEQUENCE 0 Sequence number that is assigned to services

STREAMNAME None Stream name used for the diagnostic log

TRACELEVEL 1 Trace level

* The EIFEVENTSERVERS parameters does not apply to Classic federation.

Monitoring service
The monitoring service is assigned to the MAA service class. The task name for the
MAA service class is CECMAA.

The monitoring service provides management functions that include reporting,
receiving display and report commands, and producing the reports needed from
runtime information.

The following table lists the configuration parameters that apply to the MAA
service class.

Table 56. Configuration parameters for the MAA service class.

Parameter Default value Description

IDLETIMEOUT 5M The amount of time that a service remains idle
before it polls the local message queue for
messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of the
Classic data server

304 Guide and Reference

Table 56. Configuration parameters for the MAA service class. (continued)

Parameter Default value Description

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 100 Maximum number of user connections

NMICOMMSTRING None The communication path for the Network
Management Interface (NMI) AF_UNIX domain
socket.

RESPONSETIMEOUT 3S Maximum amount of time to wait for response
before terminating a connection

SAFEXIT None Name of the System Authorization Facility (SAF)
system exit

SEQUENCE 0 Sequence number that is assigned to services

TRACELEVEL 4 Trace level

Operator service
The command operator service is assigned to the OPER service class. The task
name for the OPER service class is CACOPER.

The operator service supports a command operator interface for distributed client
applications.

The operator service also handles communications between the Classic data server
and the configuration support in the Classic Data Architect. To use the
configuration support in the Classic Data Architect, the operator service must be
running on the Classic data server.

The following table summarizes the configuration parameters that define command
operator services in the OPER service class.

Table 57. Configuration parameters for the OPER service class

Parameter Default value Description

IDLETIMEOUT 5M The amount of time that a service remains idle
before it polls the local message queue for
messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of the
Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 100 Maximum number of user connections

RESPONSETIMEOUT 5M Maximum amount of time to wait for response
before terminating a connection

SAFEXIT None Name of the System Authorization Facility (SAF)
system exit

SEQUENCE 0 Sequence number that is assigned to services

SMFEXIT None Name of the System Management Facility (SMF)
accounting exit that reports clock time and CPU
time for a user session

Chapter 8. Reference 305

Table 57. Configuration parameters for the OPER service class (continued)

Parameter Default value Description

SQLSECURITY FALSE Determines the level of access privilege
verification that will be performed on operator
commands

TRACELEVEL 4 Trace level

Query processor service
The single-phase commit query processor service is assigned to the QP service
class. The task name for the QP service class is CACQP.

The query processor is the subcomponent of the Classic data server that processes
SQL requests. The SQL requests can access a single database or file system or
reference multiple types of databases or file systems.

The single-phase commit query processor accesses and joins information from
multiple data sources and performs updates to a single data source.

The following table summarizes the configuration parameters that define query
processor services in the QP service class.

Table 58. Configuration parameters for the QP service class

Parameter Default value Description

BTREEBUFFS 4 Number of in-memory B-tree buffer caches
used before data is written out

CPUGOVERNOR None CPU governor

IDLETIMEOUT 5M The amount of time that a service remains
idle before it polls the local message queue
for messages that are to be processed

INITIALTHREADS 5 Number of instances of this service that the
region controller starts during initialization
of the Classic data server

JOINTABLES 4 Join optimization

MAXROWSEXAMINED 0 Maximum rows examined

MAXROWSEXCACTION 1 = RETURN Maximum rows exceeded action

MAXROWSRETURNED 0 Maximum number of rows returned

MAXTHREADS 10 Maximum number of instances of this
service that the region controller is allowed
to start

MAXUSERS 20 Maximum number of user connections

RESPONSETIMEOUT 5M Maximum amount of time to wait for
response before terminating a connection

SAFEXIT None System Authorization Facility (SAF) system
exit

SEQBUFNO 0 Effective BUFNO value for a given file.

SEQBUFNOCALC 0 Method to use for determining the BUFNO
value when accessing sequential files.

SEQUENCE 0 Sequence number that is assigned to services

306 Guide and Reference

Table 58. Configuration parameters for the QP service class (continued)

Parameter Default value Description

SMFEXIT None System Management Facility (SMF)
accounting exit that reports clock time and
CPU time for a user session

STMTRETENTION 0 =
SYNCPOINT

Statement retention that defines the behavior
of a prepared statement when a commit or
rollback operation occurs

TEMPFILESPACE HIPERSPACE,
INIT=8M,
MAX=2048M,
EXTEND=8M

Temporary file space in megabytes

TRACELEVEL 4 Trace level

USERSUBPOOLMAX 8192 User pool maximum

VSAMAMPARMS None VSAM buffering information for VSAM files

WLMUOW None Workload Manager (WLM) unit of work
activities

Region controller service
The region controller service is assigned to the CNTL service class. The task name
for the CNTL service class is CACCNTL.

The region controller service monitors and controls the other services that run
within the Classic data server.

The region controller directly or indirectly activates each service according to the
configuration parameters that you define. The region controller starts, stops, and
monitors the other tasks that run within the Classic data server.

The region controller also includes an IBM z/OS MTO (master terminal operator)
interface that you can use to monitor and control an address space for a Classic
data server.

The following table lists the configuration parameters for the CNTL service class.

Table 59. Configuration parameters for the CNTL service class

Parameter Default value Description

DBCSCODEPAGE* 0 Double-byte CCSID that the z/OS operating
system uses where the Classic data server is
running.

HOSTCODEPAGE 37 Host code page of the Classic data server

IDLETIMEOUT 5M The amount of time that a service remains
idle before it polls the local message queue
for messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 100 Maximum number of user connections

Chapter 8. Reference 307

Table 59. Configuration parameters for the CNTL service class (continued)

Parameter Default value Description

RESPONSETIMEOUT 5M Maximum amount of time to wait for
response before terminating a connection

SEQUENCE 0 Sequence number that is assigned to services

TRACELEVEL 4 Trace level

* The DBCSCODEPAGE parameter does not apply to Classic federation.

Two-phase commit query processor service
The two-phase commit query processor service is assigned to the QPRR service
class. The task name for the QPRR service class is CACQPRRS.

The two-phase commit query processor accesses and joins information from
multiple data sources and performs updates to multiple data sources. This query
processor supports the CA-Datacom, IBM DB2 for z/OS, IBM IMS, and
transactional VSAM (TVS) data sources.

The two-phase commit query processor uses z/OS Resource Recovery Services to
coordinate the data source updates. This query processor can participate in
distributed transactions by using a JDBC client and a distributed transaction
manager (such as IBM WebSphere Application Server).

The following table summarizes the configuration parameters that define
two-phase commit query processor services in the QPRR service class.

Table 60. Configuration parameters for the QPRR service class

Parameter Default value Description

BTREEBUFFS 4 Number of in-memory B-tree buffer caches
used before data is written out

CPUGOVERNOR None CPU governor

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a
service remains idle before it polls the local
message queue for messages that are to be
processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization
of the Classic data server

JOINTABLES 4 Join optimization

MAXROWSEXAMINED 0 Maximum rows examined

MAXROWSEXCACTION 1 = RETURN Maximum rows exceeded action

MAXROWSRETURNED 0 Maximum number of rows returned

MAXTHREADS 1 Maximum number of instances of this
service that the region controller is allowed
to start

MAXUSERS 20 Maximum number of user connections

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SAFEXIT None System Authorization Facility (SAF) system
exit

308 Guide and Reference

Table 60. Configuration parameters for the QPRR service class (continued)

Parameter Default value Description

SEQBUFNO 0 Effective BUFNO value for a given file.

SEQBUFNOCALC 0 Method to use for determining the BUFNO
value when accessing sequential files.

SEQUENCE 0 Sequence number that is assigned to services

SMFEXIT None System Management Facility (SMF)
accounting exit that reports clock time and
CPU time for a user session

STMTRETENTION 0 =
SYNCPOINT

Statement retention that defines the behavior
of a prepared statement when a commit or
rollback operation occurs

TEMPFILESPACE HIPERSPACE,
INIT=8 M,
MAX=2048 M,
EXTEND=8 M

Temporary file space in megabytes

TRACELEVEL 4 Trace level

USERSUBPOOLMAX 8192 User pool maximum

VSAMAMPARMS None VSAM buffering information for VSAM files

WLMUOW None Workload Manager (WLM) unit of work
activities

Stored procedure service
The stored procedure service is assigned to the SPS service class. The task name for
the SPS service class is CECSPS.

The stored procedure service runs a stored procedure program on behalf of a
query processor service. Upon receiving a stored procedure request from a client
application, the query processor service passes the request to the stored procedure
connector. The stored procedure connector then coordinates its asynchronous
processing with the stored procedure service which frees the query processor
service to handle other requests while the stored procedure is running and
improves performance.

The region controller automatically starts the stored procedure service on behalf of
the stored procedure connector. When a stored procedure is called and a service
configuration does not exist for service class SPS, the service is automatically
defined and started. The service definition persists in the configuration of the
Classic data server.

You can start, stop, or delete the stored procedure service.
v If the Classic data server is restarted with a persistent definition of the stored

procedure service, the stored procedure service is started.
v If the service is stopped and a stored procedure service configuration exists,

when a query processor issues a stored procedure call, the service is started
automatically.

v If you delete the service and later call a stored procedure, the services is defined
again because it is required to run the stored procedure.

Because the stored procedure service is automatically defined and administered
when a stored procedure is called, you do not need to start and configure the

Chapter 8. Reference 309

service. However defining, configuring, starting and stopping the stored procedure
service is allowed. You can access the service definition in Classic Data Architect.

The following table summarizes the configuration parameters that define stored
procedure services in the SPS service class.

Table 61. Configuration parameters for the SPS service class

Parameter Default value Description

IDLETIMEOUT 300000 MS (5
MIN)

The amount of time in milliseconds that a service
remains idle before it polls the local message
queue for messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 30 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 20 Maximum number of user connections

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

TRACELEVEL 4 Trace level

USERSUBPOOLMAX 262144 User pool maximum

VSAM access service
The VSAM access service is assigned to the VSMS service class. The task name for
the VSMS service class is CACVSMS.

The VSAM service enables multiple users to share access to an open file.

Note: This service does not apply to Classic CDC for IMS.

The following table summarizes the configuration parameters that define VSAM
access services in the VSMS service class.

Table 62. Configuration parameters for the VSMS service class

Parameter Default value Description

CLOSEONIDLE FALSE Close on idle

IDLETIMEOUT 5M The amount of time that a service remains idle
before it polls the local message queue for
messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of the
Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 50 Maximum number of user connections

RESPONSETIMEOUT 5M Maximum amount of time to wait for response
before terminating a connection

SEQUENCE 0 Sequence number that is assigned to services

TRACELEVEL 4 Trace level

310 Guide and Reference

Workload Manager (WLM) service
The IBM z/OS WLM service is assigned to the WLM service class. The task name
for the WLM service class is CACWLM.

The WLM service initializes the z/OS Workload Manager subsystem using the
WLM system exit to enable query processing in WLM goal mode.

The following table summarizes the configuration parameters that define WLM
services in the WLM service class.

Table 63. Configuration parameters for the WLM service class

Parameter Default value Description

EXITNAME None Name of the WLM exit to invoke

IDLETIMEOUT 0 the amount of time in milliseconds that a service
remains idle before it polls the local message
queue for messages that are to be processed

INITIALTHREADS 1 Number of instances of this service that the
region controller starts during initialization of
the Classic data server

MAXTHREADS 1 Maximum number of instances of this service
that the region controller is allowed to start

MAXUSERS 10 Maximum number of user connections

RESPONSETIMEOUT 300000 MS (5
MIN)

Maximum amount of time in milliseconds to
wait for response before terminating a
connection

SEQUENCE 0 Sequence number that is assigned to services

SUBNAME None Name of the subsystem that the unit of work is
reported under in WLM. This name and
subsystem type are used to connect to WLM and
classify work received.

SUBTYPE None Generic subsystem type under which the unit of
work is reported in WLM

TRACELEVEL 4 Trace level

Configuration parameters for Classic data servers and
services

Configuration parameters define settings for Classic data servers and for the
services required for Classic data servers.

The global configuration parameters define server-wide settings. Standard
configuration parameters define settings that are common to most services. All
other configuration parameters are service-specific.

Global parameters for Classic data servers
Global parameters define configuration values that affect the entire Classic data
server. Unlike other configuration parameters, global parameters are not related to
a single service.

The following table summarizes the global configuration parameters and lists
parameter default values.

Chapter 8. Reference 311

Table 64. Global configuration parameters

Parameter Default value Description

DATACONVERRACT 0 Data conversion action

DATAVALIDATEACT 0 Data validation action

DECODEBUFSIZE 8192 Decode buffer size

FETCHBUFSIZE 32000 Size of the result set buffer returned to a
client application

MESSAGEPOOLSIZE 16777216 Message pool size. This value is set during
the installation and customization process.

REPORTLOGCOUNT 0 Log record limit for badly-formed data or
conversion errors

STATICCATALOGS 0 Activates static catalog processing

TASKPARM None Specifies runtime options that are passed to
subtasks through the IBM z/OS ATTACH
macro

DATACONVERRACT:

The DATACONVERRACT parameter identifies the action for the Classic data
server to take if a conversion error occurs when it converts numeric data between
zoned and packed decimal formats and between binary and packed decimal
formats.

Specification

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 0 = FAIL

Valid values: 0 - 2

0 = FAIL
Specifies that the query ends with a -4908 return code that indicates non-valid
mapped data.

1 = REPAIR
The Classic data server changes non-valid data to -99...99s, and the SQL
statement ends successfully with a SQL_SUCCESS_WITH_INFO return code.
One or more 002f0002 warning messages are also returned to the client
application. A 002f0002 warning message is returned for each column each row
that is changed to a value of -99..999s. The Classic data server does not write
any log messages to indicate that conversion errors occurred.

Example: The Classic data server changes nonvalid data to the highest possible
negative value for the column precision. A column with a precision of
DECIMAL(3,0) changes to a value of -999, and a column with a precision of
DEC(3,2) changes to a value of -9.99. If you sort the result set, rows with
nonvalid data appear last.

2 = REPAIR REPORT
The Classic data server processes the conversion error as the REPAIR option

312 Guide and Reference

describes. The Classic data server also writes the data conversion error
message x002f0001 to the server log for each row that contains one or more
conversion errors.

DATAVALIDATEACT:

The DATAVALIDATEACT parameter enables additional validation of data types
that are not converted from source data to a different SQL data type. This
parameter controls whether additional data type validation occurs and identifies
the action for the Classic data server to take if a validation error occurs due to
badly-formed data.

Specification

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 0 = NO VALIDATION

Valid values: 0 - 3

0 = NO VALIDATION
The data is not checked. This is the default

1 = REPAIR
The Classic data server changes non-valid data as described in the table below,
and the SQL statement ends successfully with a SQL_SUCCESS_WITH_INFO
return code. One or more 002f0002 warning messages are also returned to the
client application. A 002f0002 warning message is returned for each column
and each row that is changed. The Classic data server does not write any log
messages to indicate that conversion errors occurred.

2 = REPAIR REPORT
The Classic data server processes the validation error as the REPAIR option
describes. The Classic data server also writes the data conversion error
message x002f0001 to the server log for each row that contains one or more
conversion errors.

3 = FAIL
The query ends with a -4908 return code that indicates non-valid mapped data.

Table 65. Data type validation

Data type
value SQL data type Data validated Repair value

P DECIMAL Packed decimal data -9

V VARCHAR Field length 0: For a negative length
value

Maximum length: If the
length is greater than the
maximum length of the
field

Chapter 8. Reference 313

Table 65. Data type validation (continued)

Data type
value SQL data type Data validated Repair value

VB VARBINARY Field length 0: For a negative length
value

Maximum length: If the
length is greater than the
maximum length of the
field

UP DECIMAL Packed positive number -9

UF INTEGER Value between 0 and
X'7FFFFFFF'

-9

UH SMALLINT Value between 0 and X'7FFF' -9

DECODEBUFSIZE:

DECODEBUFSIZE defines the size of the DECODE buffer. This buffer is a staging
area that decodes data from the network format into the host local data format.

Description

Data is taken from the FETCH buffer in pieces that are the size that is specified for
the DECODE buffer. The data is converted until a single row of data is completely
processed and returned to the application. For optimum use, set the DECODE
buffer to a size that is at least equivalent to a single row of data.

The DECODEBUFSIZE and FETCHBUFSIZE parameters work together. If the
DECODEBUFSIZE is omitted, its value is set to the value of FETCHBUFSIZE. If a
value higher than the FETCHBUFSIZE is used, the value of DECODEBUFSIZE is
set to the FETCHBUFSIZE. Thus, coordinate the settings of the DECODEBUFSIZE
and FETCHBUFSIZE parameters.

Specifications

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 8192

Valid values: 4096 - 64000

FETCHBUFSIZE:

The FETCHBUFSIZE parameter specifies the size of the result set buffer that is
returned to a client application. You specify this parameter in the configuration file
for the client application.

Description

Regardless of the specified size of the fetch buffer, federation always returns a
complete row of data in this buffer. When you set the fetch buffer size to 1, single
rows of data are returned to the client application.

314 Guide and Reference

An appropriate FETCHBUFSIZE depends upon the average size of the result set
rows that are sent to the client application and the optimum communication packet
size. To improve performance, pack as many rows as possible into a fetch buffer.
The default fetch buffer size is generally adequate for most queries.

If FETCHBUFSIZE is set smaller than a single result set row, the size of the actual
fetch buffer that is transmitted is based on the result set row size. The size of a
single result set row in the fetch buffer depends on the number of columns in the
result set and the size of the data that is returned for each column.

The FETCHBUFSIZE and DECODEBUFSIZE parameters work together. If the
DECODEBUFSIZE is omitted, its value is set to the value of FETCHBUFSIZE. If a
value higher than the FETCHBUFSIZE is used, the value of DECODEBUFSIZE is
set to the FETCHBUFSIZE.

You can use the following calculations to determine the size of a result set row in
the buffer:
fetch buffer row size = (number of data bytes returned) x

(number of columns * 6)

Each fetch buffer has a fixed overhead. You can compute the overhead as follows:
fetch buffer overhead = 100 + (number of columns * 8)

If your applications routinely retrieve large result sets, contact your network
administrator to determine the optimum communication packet size. Then, set the
FETCHBUFSIZE to a size that accommodates large result sets.

Specifications

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 32000

Valid values: 1 - 524288

MESSAGEPOOLSIZE:

The MESSAGEPOOLSIZE parameter specifies the size of the memory region in bytes
for most memory allocation.

Description

Specify a region size that is at least 8 MB lower than the site limit, and use the
greater of these values:
v 8 MB higher than the message pool
v 20% higher than the message pool

If the 8 MB gap between the region and the message pool is still not sufficient,
increase this difference in increments of 8 MB.

Set the MESSAGEPOOLSIZE parameter to the greater of these values:
v 20% less than the region size
v 8 MB below the REGION value or 8 MB below any site limit imposed by exits.

Chapter 8. Reference 315

If you increase the value of the MESSAGEPOOLSIZE parameter, set the region size
higher to maintain the 8 MB gap.

Specification

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 16777216

Valid values: 1048576 - upper limit not applicable

REPORTLOGCOUNT:

The REPORTLOGCOUNT parameter sets the maximum number of messages
written to the log for badly-formed data or conversion errors.

Description

This parameter value prevents excessive logging to the log file for the Classic data
server when a large amount of badly-formed data records are processed. The count
controls the number of rows in the result set that generate the log messages for a
given access to a table or view.

Specification

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 0 = No logging limit

Valid values: 0 - 100000

STATICCATALOGS:

The STATICCATALOGS parameter activates static catalog processing for the
system catalog data sets that are referenced by the Classic data server.

Description

With static catalog processing, the system catalog files are opened once for a query
processor task. The system catalog files remain open until that Classic data server
is shut down. In normal operating mode, the system catalogs are closed after the
required table and column information is retrieved in order to process a query, for
each query that is processed by the query processor.

Activate static catalog processing to substantially improve query performance in
outer cursor and inner cursor situations when a large number of queries are issued
serially.

Close the static catalog when the system is not updating catalogs information. Use
this parameter when the Classic data server operates in production mode and the
system catalogs are static.

316 Guide and Reference

Specification

Use: Global configuration parameter for the Classic data server.

Data type: INT

Default: 0

Valid values: 0 - 1

0 Close system catalog files and establish read locks for each query.

1 Close system catalog files when the Classic data server is shut down.

TASKPARM:

The TASKPARM parameter specifies IBM C runtime options that are passed to
system child tasks through the z/OS ATTACH macro.

Description

One common use of this parameter is to pass TCP/IP information to the
Communications Interface task. IBM Software Support can provide a current value.

Specifications

Use: Global configuration parameter for the Classic data server.

Data type: CHAR(64)

Default: None

Standard parameters for services
Standard service parameters are available in more than one service, but like
service-specific parameters, you can define values separately for each service.

IDLETIMEOUT:

IDLETIMEOUT indicates idle time out.

Description

The IDLETIMEOUT value specifies the amount of time that a service remains idle
before it polls the local message queue for messages that are to be processed.

Specification

Use: Configuration parameter for the Classic data server that applies to services
that close connections after a specific time period.

Data type: TIME

Default values:
v 5M

Valid formats:

Chapter 8. Reference 317

nMS n milliseconds

nS n seconds

nM n minutes

nH n hours

Setting the value to zero (0) indicates no time out. However, the setting the value
to 0 is not recommended.

INITIALTHREADS:

INITIALTHREADS identifies minimum tasks.

Description

The value of INITIALTHREADS specifies the number of instances of this service
that the region controller starts during initialization of the Classic data server. You
can use the MTO START command to start an occurrence when needed, unless the
service already has MAXTHREADS instances.

The default settings for this parameter are adequate for a default data server
configuration. It is important to be cautious when you set the INITIALTHREADS
parameter to a value that is greater than the default value. The region controller
might not be able to start as many threads as the number specified due to system
resource restrictions.

Specification

Use: Configuration parameter for the Classic data server that applies to all services.

Data type: INT

Default values:
v 1: For all services (exception: query processor service)
v 5: For the query processor service only

Valid values: 0 and above.

1 If a service must be limited to a single occurrence.

0 Indicates to the region controller that occurrences of this service must not be
started during initialization of the Classic data server.

MAXTHREADS:

MAXTHREADS identifies the maximum number of instances for a service.

Description

The value of MAXTHREADS specifies the maximum number of instances of this
service that the region controller can start.

The default settings for this parameter are adequate for a default data server
configuration.

318 Guide and Reference

Specification

Use: Configuration parameter for the Classic data server.

Data type: INT

Default values:
v 1: For all services (exception: query processor service)
v 10: For the query processor service only

Valid values: 0 and above.

1 If a service must be limited to a single instance.

0 The currently deployed number of threads remains the same. A new instance is
not started.

MAXUSERS:

MAXUSERS identifies the maximum number of connections per task.

Description

The MAXUSERS value is the maximum number of connections that are allowed
per instance of this service. Set this field to 1 to disable multi-tasking for all
instances of this service.

Specification

Use: Configuration parameter for the Classic data server that is common to all
services.

Data type: INT

Default value: Varies by service.

1 ODBA

10 CAF
DRA
IMSI
WLM

20 QP

QPRR

50 DCI
VSMS

100 CNTL
INIT
LOG
MAA
OPER

Valid values: 1 and above

Chapter 8. Reference 319

RESPONSETIMEOUT:

RESPONSETIMEOUT specifies the maximum amount of wait time for an expected
response.

Specification

Use: Configuration parameter for the Classic data server.

Data type: TIME

Default values:
v 5M: For all federation services (exception: ODBA service)
v 1M: For the ODBA service only

Valid formats:

nMS Number of milliseconds

nS Number of seconds

nM Number of minutes

If you set the RESPONSETIMEOUT value to zero (0), the response timeout
function is disabled.

SEQUENCE:

Each service in the Classic data server is assigned a SEQUENCE number. The
SEQUENCE parameter controls the order in which the region controller starts
services in the Classic data server.

Description

The controller service starts first and is assigned a SEQUENCE value of 1. The
logger service starts next and is assigned a SEQUENCE value of 2. You cannot
modify the values of these core services.

When you add a service, that service is assigned the next available SEQUENCE
value of 3 or higher. You can change the order in which services start by using
SEQUENCE to reassign sequence numbers to services. You can modify these
SEQUENCE values.

The non-core services can be assigned the same SEQUENCE number value. If this
occurs, the services with the same SEQUENCE value will be started in alphabetical
order based on service name.

SEQUENCE also affects termination processing for the Classic data server. Services
stop in the reverse order that they start.

Specification

Use: Configuration parameter for the Classic data server that is common to all
services.

Data type: INT

320 Guide and Reference

Default value: 0

Valid values:
v 1: Assigned to controller service
v 2: Assigned to logger service
v 3 - 999: Services are assigned the next available SEQUENCE value in the range

of 3 - 999 when the service is added. You can modify these SEQUENCE values.

TRACELEVEL:

The TRACELEVEL parameter regulates the amount of information that tasks in the
Classic data server record in the trace log.

Specification

Use: Configuration parameter that is common to all services.

Data type: INT

Default values:
v 4: For all services (exception: logger service)
v 1: For the logger service only. This value controls what other services send to the

logger service and what the logger service writes to the log.

Valid values: 0 - 20:

20 No trace information generated

12 Identify non-recoverable error conditions

8 Identify all recoverable error conditions

4 Generate warning messages

3 Generate debugging information

2 Generate a detailed trace, but do not include binary buffers.

1 Generate function call information

0 Trace all

Important: Change this parameter only at the request of IBM Software Support.
Settings lower than 4 cause response time degradation and higher CPU costs.

Service-specific parameters
Service-specific parameters pertain to a single service, so the values that you define
affect only that service.

This section provides an explanation of each configuration parameter. “Summary
of services” on page 299 summarizes the configuration parameters associated with
each service.

BTREEBUFFS:

The BTREEBUFFS parameter determines the number of B-tree buffer caches in
memory that are used before spooling the staged result set to hiperspaces or to
physical files.

Chapter 8. Reference 321

Description

You can set BTREEBUFFS to override the default value of four. If sufficient
memory is available in the MESSAGEPOOLSIZE memory pool, this parameter can
be increased, and performance might improve, depending on the size of the result
set and whether the result set is ordered or grouped.

Specification

Use: Configuration parameter for the QP and QPRR services.

Data type: INT

Default value: 4

Valid values: 4 - 214730

COMMSTRING:

The COMMSTRING parameter specifies the protocol identifier and address for
communication.

Description

The connection handler supports TCP/IPand XM protocols. The COMMSTRING
value defines the protocol followed by the protocol specific information
v For developing remote client applications with a TCP/IP connection handler,

you need the protocol identifier TCP, followed by the IP address of the machine
that the Classic data server is running on, and the port number that is assigned
to this server as a listen port. For example: TCP/host-name/port-number.
The client connection string supports Internet Protocol Version 4 (IPv4) and
Internet Protocol Version 6 (IPv6). For example:
SET,CONFIG,SERVICE=INIT,COMMSTRING=’TCP/0.0.0.0/9087’; (IPv4)
SET,CONFIG,SERVICE=INIT,COMMSTRING=’TCP/::/9087’; (IPv6)

If you try to connect to the data server by using IPv6, you might need to
provide a scope if you are using a link-local address. The scope is typically the
network interface name that you specify following the IPv6 address. The format
is ipv6 address%scope. For example:
SET,CONFIG,SERVICE=INIT,COMMSTRING=’TCP/fe80::xxxx:xxxx:xxxx:xxxx%INTF0001/9087’;

v For developing client applications on the same z/OS system with a connection
handler that uses cross-memory services, you define a unique dataspace name
and queue name. For example: XM1/Dataspace-Name/Queue-Name. XM1 is the
cross-memory protocol identifier, Dataspace-Name is the name of the dataspace to
use, and Queue-Name is the name of the XM queue. The dataspace or queue
name can contain up to 4 characters.

Specification

Use: Configuration parameter for the connection handler service.

Service class: INIT

Service task: CACINIT

Data type: CHAR(64)

322 Guide and Reference

Default: TCP/0.0.0.0/9087

CONNECTINTERVAL:

The CONNECTINTERVAL parameter defines the frequency at which the DRA
service retries connecting to IMS when IMS is not available.

Description

The default value for this parameter is 15S (seconds). This value indicates that the
DRA service will retry failed connections to IMS every 15 seconds.

Specifications

Use: Configuration parameter for the DRA service.

Service class: DRA

Service task: CACDRA

Data type: TIME

Default: 15S

Valid values:

nMS n milliseconds

nS n seconds

nM n minutes

nH n hours

CONSOLELEVEL:

CONSOLELEVEL is a required parameter that controls when event messages are
sent to the z/OS console.

Description

All event messages are written to the event log and the system trace. The value of
the CONSOLELEVEL parameter controls when event messages are also routed to
the z/OS console. When the trace level of an event message equals or exceeds the
value specified for the CONSOLELEVEL parameter, that message is sent to the
console.

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Task name: CACLOG

Data type: INT

Default: 4

Chapter 8. Reference 323

Valid values:

20 Generates no event messages to the console. Messages are written to the
event log.

4 Generates the following event messages:
v Stream activation and destruction messages issued from the log reader

service

Specifying a value less than 4 generates more console messages and
increases the number of messages in the console buffers.

3 Generates the following event messages:
v Table, view, and DBMS object cache operation messages issued from the

administration service
v SSID start and stop messages issued from the IMS log reader service

0 Writes all event messages to the console.

CPUGOVERNOR:

The CPUGOVERNOR parameter specifies the name and the time limit for the exit
to implement a CPU resource governor. If this parameter is omitted, there is no
limit to the amount of CPU time for query processing.

Specifications

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: CHAR(64)

Default: None

DEFAULTPSBNAME:

The DEFAULTPSBNAME parameter identifies a default PSB name.

Description

The PSB name is used when a CREATE TABLE statement references an IMS table
that contains no PSB name.

Specification

Use: Configuration parameter for the DRA access service.

Service class: DRA

Task name: CACDRA

Data type: CHAR(8)

Default value: NOPSB

324 Guide and Reference

DISPLAYLOG:

The DISPLAYLOG parameter allows you to view log messages for the logger
service.

Description

This parameter controls whether log records are mirrored to the data set that is
specified in the SYSOUT DD statement. The default data set is the system output
data set (SYSOUT).

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Task name: CACLOG

Data type: Boolean

Default: FALSE

DRATABLESUFFIX:

The DRATABLESUFFIX parameter identifies the suffix of the DRA startup table.

Description

Use DRATABLESUFFIX to specify the suffix of the load module name that you
created for IMS DRA initialization.

Specification

Use: Configuration parameter for the IMS DRA access service.

Service class: DRA

Task name: CACDRA

Data type: CHAR(3)

Default value: None

DRAUSERID:

The DRAUSERID parameter identifies the DRA user ID.

Description

Use DRAUSERID to specify the default DRA user ID to use for connecting to and
registering with DBCTL. The DRA user ID is the name by which the Classic data
server is known to the IMS database manager subsystem, DBCTL.

Chapter 8. Reference 325

Specification

Use: Configuration parameter for the IMS DRA access service.

Service class: DRA

Task name: CACDRA

Data type: CHAR(9)

Default value: None

EVENTLOG:

EVENTLOG is an optional parameter identifies the name of the event message log
that is defined to the logger service.

Description

The logger service writes event messages to the log specified in the EVENTLOG
parameter. This parameter identifies a z/OS system log stream. The event log file
cannot be shared among multiple Classic data servers. You can use one event log
file with one Classic data server.

If you do not specify the EVENTLOG parameter, event messages are not captured.
Event messages will not be available for retrieval by the Classic Data Architect. In
this case, the Classic data server formats event messages to SYSPRINT and incurs
processing overhead at runtime.

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Task name: CACLOG

Data type: CHAR (26)

Default: None

HOSTCODEPAGE:

The HOSTCODEPAGE parameter identifies the CCSID that the z/OS operating
system uses where the data server is running.

Specification

Use: Configuration parameter for the region controller service.

Service class: CNTL

Service tasks: CACCNTL

Data type: INT

326 Guide and Reference

Default: 37

Valid values: 0 - 99999

JOINTABLES:

The JOINTABLES parameter determines the optimization method in queries that
contain join operations.

Description

The estimated reads analysis evaluates all possible combinations of table
processing order. The number of possible combinations for analysis is a factorial of
the number of tables in a join.

Recommendation: To optimize performance, use a value no greater than 4. For a
value of 4, the count is factorial 4, or 24 (1 * 2 * 3 * 4). For a value of 5, the count is
factorial 5, or 120 (1 * 2 * 3 * 4 * 5). The latter value specifies that the estimated
reads analysis evaluate 120 table combinations.

Join queries that include more than the specified number of tables automatically
use the simple optimization method. The maximum value is 15 because the
maximum number of tables in a SQL statement is 15. While the parameter has no
fixed limit on the value, the query processor treats any higher value as equivalent
to 15.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: INT

Default: 4

Valid values: 0 - 15

0 Bypasses the join optimization method and the query is processed as is.

1 Indicates that the simple join optimization method is applied to all joins.

Greater than 1
Identifies the maximum number of tables in the join that are evaluated by the
estimated reads analysis.

LOGBUFSIZE:

The LOGBUFSIZE parameter defines the size of the log buffer.

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Chapter 8. Reference 327

Task name: CACLOG

Data type: INT

Default: 65536

Valid values: 4096 - 1024000

LOGURL:

The LOGURL parameter identifies the communication protocol for the logger
service.

Description

You can use LOGURL to override the protocol defined for local queues. This
parameter is typically used for XM queues.

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Task name: CACLOG

Data type: CHAR(32)

Default: None

Example

The following sample command sets the value of the LOGURL parameter for a logger
service with the name LOG.
F <Data-Server-Name>,SET,CONFIG,SERVICE=LOG,LOGURL=XM1/DSLG1/LOGQ1/256

MAXROWSEXAMINED:

The MAXROWSEXAMINED parameter implements the governor.

Description

MAXROWSEXAMINED provides protection from excessive resource use that
inefficient or erroneous queries cause. The governor limits the number of examined
rows. In the examination phase, a restriction on the number of examined rows is
put into effect after native retrieval is performed and before additional filtering
takes place to satisfy any WHERE clause specifications.

In general, you should set the value of MAXROWSEXAMINED to the default
value or to meet the requirements of the table size. You can use a larger value of
roughly 10000 in a test environment.

328 Guide and Reference

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: INT

Default: 0

Valid values: 0 - 2147483647

MAXROWSEXCACTION:

The MAXROWSEXCACTION parameter determines the behavior of the governor
when the MAXROWSEXAMINED or the MAXROWSRETURNED governor limits
are reached.

Description

The MAXROWSEXCACTION parameter tests a query to ensure that the query
returns the correct result set and does not expend large amounts of resources. This
test is performed before the full query is run.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: INT

Default: 1

Valid values: 0 - 1

Valid values and results:

0 = ABORT
Stops the query when a governor limit for MAXROWSEXAMINED or
MAXROWSRETURNED is reached. The -9999 return code is issued.

1 = RETURN
Returns a normal result set when a governor limit is reached. A truncated
result set is returned to the client. The result might not be complete, and there
is no indication that the governor limit is reached.

MAXROWSRETURNED:

The MAXROWSRETURNED parameter specifies the maximum number of rows a
query can return to the client. The governor imposes the restriction you specify
after any WHERE clause is fully processed, but before the result table is returned
to the application.

Chapter 8. Reference 329

Description

MAXROWSRETURNED provides protection from excessive resource use that
inefficient or erroneous queries cause.

Specifications

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: INT

Default: 0

Valid values: 0 - 2147483647

NMICOMMSTRING:

The NMICOMMSTRING parameter specifies the communication path for the
Network Management Interface (NMI) AF_UNIX domain socket.

Description

The value of the NMICOMMSTRING configuration parameter defines the
fully-qualified path and file name of the AF_UNIX domain socket that is used for
NMI client connections to the NMI. You specify this value in the following format:
NMICOMMSTRING=’/var/sock/uniqueName’

where ’/var/sock/uniqueName’ is the path and unique name of the file. The
maximum length that you can specify is 60 characters.

Recommendation: Use single quotes to preserve the case (uppercase or lowercase)
of the characters in the AF_UNIX domain socket path. The case of the characters
specified for this value must match the case of the Unix System Services file
system path.

You can dynamically set or change the value of the NMICOMMSTRING
configuration parameter by using the Classic Data Architect or the MTO
SET,CONFIG,SERVICE command. The change takes affect when you stop and
restart the monitoring service or the Classic data server.

Specification

Use: Configuration parameter for the monitoring service.

Service class: MAA

Service task: CECMAA

Data type: CHAR

Default: None

330 Guide and Reference

RECONNECTWAIT:

The RECONNECTWAIT parameter defines the minimum amount of time that the
DRA service waits after an IMS disconnect before attempting to reconnect to IMS.

Description

This wait time ensures that the DRA service does not try to reconnect to IMS while
IMS is still in the process of stopping and prevents abends in the DBCTL interface.

The RECONNECTWAIT parameter is enforced when the console message
CAC00137W is issued to ensure that IMS has enough time to stop before the DRA
service attempts to reestablish a connection.

The default value for this parameter is 1M (minute). This value indicates that the
DRA service will start trying to connect to IMS one minute after a disconnect is
received from IMS and message CAC00137W is issued.

Specifications

Use: Configuration parameter for the DRA service.

Service class: DRA

Service task: CACDRA

Data type: TIME

Default: 1M

Valid values:

nMS n milliseconds

nS n seconds

nM n minutes

nH n hours

SAFEXIT:

The SAFEXIT parameter specifies the System Authorization Facility (SAF) system
exit that performs authorization checks for the monitoring and console connections
to the Classic data server.

Description

The values that you specify for the SAFEXIT parameter control the actions that a
user can perform when connected to a Classic data server for the following types
of connections:
v Monitoring connections established by the Classic Data Architect. These

connections are authenticated at the z/OS host. Monitoring connections also
include Network Management Interface (NMI) connections to the z/OS data
server. You use NMI connections to retrieve metrics data and for access to
subscription states or statuses.

v Console connections from the Classic Data Architect that allow remote operators
to issue console commands to the Classic data server.

Chapter 8. Reference 331

v Query processor connections that use the SAF exit to authenticate users who
map tables and run test queries.

You specify the optional parameters for the SAF exit in the following format:
CACSX04{,optional-parameters...}

If you do not specify any optional parameters, the SAF exit load module CACSX04
activates user ID and password authentication when a user connects to a Classic
data server. The optional parameters provide additional security checking that the
monitoring service, operator service, and query processor service perform.

All connections

The following optional parameter for validation of IP addresses applies to all
connections:

NETACCESS=Y/N
Indicates whether the exit should validate the IP address of the connected
client to authenticate access to the Classic data server.

Set the value to Y when the IP address of the connected client is known
and the SERVAUTH parameter of the RACROUTE REQUEST=VERIFY
invocation is supplied. The RACROUTE operation is successful when the
associated user ID has at least READ-level access rights to the network
security zone resource. If the security system indicates that it cannot make
a decision in response to the request because a corresponding network
security zone resource profile does not exist, the SAF exit regards the
response as Access Denied.

A value of N indicates that the SERVAUTH parameter is omitted from the
RACROUTE REQUEST=VERIFY invocation. This is the default.

Monitoring connections

The following optional parameters for the monitoring service activate security
checking for client connections from the Classic Data Architect:

VALIDATE=Y/N
Indicates whether the SAF exit should perform resource class checking for
each connected user. If Y is specified, resource access checking occurs when
users make requests to retrieve metrics information. READ level access is
checked. If N is specified, resource class checking is not performed. This is
the default.

MONCLASS=monitor-class-name
Indicates the name of the security class that contains a profile that requires
access authentication.

This parameter is valid if VALIDATE=Y on the monitoring service for the
SAF exit. If this parameter is not specified, SERVAUTH is the default class
name.

MONPROF=monitor-profile-name
Indicates the name of the resource profile that requires access
authentication.

This parameter is valid if VALIDATE=Y on the monitor service for the SAF
exit. If this parameter is not specified, CEC.MONITOR is the default profile
name.

332 Guide and Reference

Console connections

The following optional parameters for the operator service activate security
checking for client connections from the Classic Data Architect for issuing console
commands:

VALIDATE=Y/N
Indicates whether the SAF exit should perform resource class checking for
each connected user. If Y is specified, CONTROL level access is checked
when users issue console commands through the remote operator. If N is
specified, resource class checking is not performed. This is the default.

OPERCLASS=operator-class-name
Indicates the name of the security class that contains a profile that requires
access authentication.

This parameter is valid if VALIDATE=Y on the operator service for the
SAF exit. If this parameter is not specified, SERVAUTH is the default class
name.

OPERPROF=operator-profile-name
Indicates the name of the resource profile that requires access
authentication.

This parameter is valid if VALIDATE=Y on the operator service for the
SAF exit. If this parameter is not specified, CEC.OPER is the default profile
name.

Query processor connections

The following optional parameters for the query processor service activate
authorization checks for data server connections.

VALIDATE=Y/N
Indicates whether the exit should validate that the user ID has authority to
access a specified database, file, stored procedure, or PSB name. Use both
SQL security and the SAF exit in conjunction with your site security
package to restrict access to your data.

Set a value of Y to use RACF security and issue RACROUTE validation
calls for specified resource names. Set a value of N to suppress validation
processing for resources. The default value for VALIDATE is Y.

This parameter helps you to control access with greater precision:
v Ensure that only valid users can access resources by setting

VALIDATE=Y against the QP or QPRRS service.
VALIDATE=Y authenticates each individual resource in the QP.

v Eliminate the overhead of verifying that the user has authority to access
a resource by setting VALIDATE=N against the QP or QPRRS service.
Do this if you have elected to use SQL security to control access to tables
and stored procedures. This setting is also useful in a test or
development environment if you trust any user with a valid z/OS user
ID to access the data. For example, you might not want to use DB2
privileges or use RACF to verify each resource.

IMS CLASS=Class Name
Specifies the name of the RACF resource class that is checked to determine
whether the user has authority to schedule or access the PSBs associated

Chapter 8. Reference 333

with the tables referenced in a query. The Class Name can be up to eight
characters long. This sub-parameter is required when accessing IMS data.

PSB PREFIX=Prefix
Specifies a value to prefix to the PSB names before a RACF authorization
call is issued. If specified, the PSB name is appended to the Prefix value,
for example, IMSPPSB1 where the Prefix is IMSP and the PSB name is
PSB1.

If you are planning to access IMS data, you might need to modify the IMS
CLASS subparameter to define the RACF class where IMS PSBs are
defined at your site.

To use a PSB, a user ID must have at least CONTROL access to that PSB's
corresponding RACF profile within the class.

The combination of the length of the PSB name and the length of the prefix
must be eight characters or less. This is a RACF restriction. If a larger PSB
name or prefix combination is encountered, an error message is issued.

ADACLASS=Facility
Specifies the name of a class to be used to check for authorized use of
ADABAS view names. An ADACLASS name can be up to eight characters
long. In this example the IBM-supplied class of FACILITY is used. You can
define an installation class specifically for ADABAS views. Use the
FACILITY class as an example and specify the length of the resource name
as 32. Replace FACILITY with the name of the new class. The security
administrator must define each ADABAS view name as a resource in the
class and grant CONTROL access to each user ID that uses that view
name. If the ADABAS view name is not defined, or the user ID is not
granted access, the following message is returned on the attempt to pull
data from the ADABAS table defined with a view name:

Access Denied

If the ADABAS table is only defined with a file number (no Predict view
name), you will receive the same error message as shown above, and the
server log contains the following message:

CACL010E NO ADABAS VIEW NAME IN USE GRAMMAR

SPCLASS=FACILITY
Specifies the name of a class to be used to check for RACF-authorized use
of stored procedure names that are defined in the metadata catalogs. These
names are stored in the SYSIBM.SYSROUTINES system table. An SPCLASS
name can be up to eight characters in length.

This example uses the IBM-supplied class of FACILITY. You can define an
installation class specifically for stored procedures to RACF. Use the
FACILITY class as an example and specify the length of the resource name
as 39. Replace FACILITY with the name of the new class.

The RACF administrator must define each stored procedure as a resource
in this class and grant ALTER access to each user ID that will invoke the
stored procedure. If the stored procedure is not defined to RACF or the
user ID is not granted access, -5046295 is returned on the attempt to use a
stored procedure and message CACL006W is issued.

EXCLUDE=n
Indicates the query processor should not provide an ACEE address in
commands sent to CA-Datacom. When the SAF exit is active, the address
of an ACEE is obtained during SAF exit initialization. This ACEE address

334 Guide and Reference

is normally passed to CA-Datacom in each database request and
CA-Datacom authenticates the request using information within the ACEE.

Whenever the SAF exit is active and you want to avoid database level
security checking in CA-Datacom, you must indicate the query processor
should exclude the ACEE from the database requests that are sent to
CA-Datacom. Set the value of n to 2 (heterogeneous query processor
CA-Datacom connector). This setting will not provide the ACEE address in
the call parameters.

Specification

Use: Configuration parameter for the monitoring, operator, query processor, and
two-phase commit query processor services.

Service classes: MAA, OPER, QP, QPRR

Service tasks: CECMAA, CACOPER, CACQP, CACQPRRS

Data type: CHAR

Default: None

SMFEXIT:

SMFEXIT reports clock time and CPU time for an individual user session with a
query processor task.

Description

You can supply the following values for the SMFEXIT parameter:

RECTYPE=nnn
This is a required parameter that defines the SMF user record type. This
parameter contains a numeric value between 128 and 255.

SYSID=xxxx
This is a required parameter that contains the primary JES subsystem ID.
SYSID can be a maximum of four characters.

Specification

Use: Configuration parameter for the operator and query processor services.

Service classes: OPER, QP, QPRR

Service tasks: OPER, CACQP, CACQPRRS

Data type: CHAR(64)

Default value: None

SQLSECURITY:

The SQLSECURITY parameter determines the level of access privilege verification
that will be performed on operator commands.

Chapter 8. Reference 335

Description

When SQLSECURITY is set to TRUE, user access privileges are checked in the
system catalog for DISPLAY and SYSOPER privileges. If no privileges are found,
operator requests are not allowed in the Classic data server to which the user is
connected.

Specification

Use: Configuration parameter for the command operator services.

Service class: OPER

Service task: CACOPER

Data type: Boolean

Default: FALSE

Valid values:

FALSE
Authenticated users can enter all valid commands. Valid commands
include the STOP command that you can issue to stop the Classic data
server. This setting also allows the Classic data server to run without
defining a set of metadata catalogs.

TRUE Allows different levels of access level privileges for each user. For example,
you can allow all users to issue the DISPLAY command but allow only a
subset of users to issue the STOP command. If TRUE is specified, the
server JCL must contain DD statements for the metadata catalogs.

STMTRETENTION:

The STMTRETENTION parameter defines the behavior of a prepared statement
when a commit or rollback operation occurs.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: INT

Default: 0

Valid values: 0 - 2

0 = SYNCPOINT
Release the statement whenever a COMMIT or ROLLBACK is issued.

1 = ROLLBACK
Release the statement only when a ROLLBACK syncpoint is issued.

336 Guide and Reference

2 = DISCONNECT
Release the statement only when the user disconnects from the Classic data
server. All prepared statements are retained across both COMMIT and
ROLLBACK calls.

STREAMNAME:

The STREAMNAME parameter identifies the name of the log stream that is
defined in the z/OS system logger.

Description

The logger service writes log records to the z/OS log stream specified in the
STREAMNAME parameter. The log stream is used for the diagnostic log that runs
in the Classic data server.

Specifications

Use: Configuration parameter for the logger service.

Service class: LOG

Task name: CACLOG

Data type: CHAR(26)

Default: None

TEMPFILESPACE:

TEMPFILESPACE defines a temporary data set that is dynamically allocated by a
Classic data server to store the intermediate result set. How you define the
TEMPFILESPACE value varies by service.

Description: QP, QPRR

Temporary data set information is a set of parameters separated by commas.
Parameters not specified are set to the defaults. Set this parameter so that the
resulting file is large enough to hold any intermediate result sets that are generated
from a typical query that runs on a particular Classic data server. If your site has a
storage unit name for VIO storage, specify VIO.

Hiperspace places temporary data files, such as spill files, in expanded storage.
Hiperspace improves performance and mainly affects complex queries, for
example, queries that contain the ORDER BY clause. Hiperspace requires
Authorized Program Facility (APF) authorization.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: CHAR(64)

Chapter 8. Reference 337

Default value: HIPERSPACE,INIT=8M,MAX=2048M,EXTEND=8M

Valid values:

ALCUNIT = BLOCK|TRK|CYL
Specifies a unit of space allocation in block, track, or cylinder units. The
default value is TRK.

SPACE = bytes
Specifies the primary amount of space to allocate. The default value is 15.

EXTEND = bytes
secondary amount of space to allocate. The default value is 5.

VOL = VOLSER
Specifies the volume serial number. The default is the z/OS default for your
site.

UNIT = unit name
Specifies a DASD allocation group name or the VIO group name, if it exists.
The default unit name is the z/OS default for your site.

RECFM = F|V|U
Specifies the record format to allocate that corresponds to a z/OS Record
Format (RECFM) of FB, VB, or U. The default is V.

RECLEN = nnn
Specifies the record length. For variable format records, z/OS LRECL
(maximum record length) is set to the fixed record length RECLEN +4. Default
is 255.

BLKSIZE = nnn
Specifies the block size. The default is 6144.

Example: DASD

Here are example entries for DASD:
TEMPFILESPACE = ALCUNIT=TRK,SPACE=15,VOL=CACVOL
TEMPFILESPACE = ALCUNIT=CYL,SPACE=2
TEMPFILESPACE = ALCUNIT=CYL,SPACE=2,EXTEND=1,UNIT=VIO

Specification for hiperspace

Valid values:

INIT
Initial region size for the hiperspace

MAX
Maximum region size for the hiperspace.

EXTEND
Unit of growth when INIT is exceeded

In general, you should specify these sizes in megabytes (for example, 8M). You can
use other units for the query processor.

The estimate for determining these values is related to system installation limits
and expected query types. Roughly, make the maximum size equivalent to that of
the regular temporary space file as described for the non-hiperspace
TEMPFILESPACE setting.

338 Guide and Reference

Example: hiperspace

To specify hiperspace, specify the TEMPFILESPACE parameter as follows:
TEMPFILESPACE = HIPERSPACE,INIT=16M,MAX=24M,EXTEND=8M

USERSUBPOOLMAX:

The USERSUBPOOLMAX parameter determines the maximum size of a user sub
pool.

Description

Each user that connects to a Classic data source is assigned a user sub pool. A
query processor task is assigned to a user connection. The USERSUBPOOLMAX
parameter limits the size of the memory pool that a query processor task can use
to optimize the use of system resources.

A user sub pool can grow to 256 times the USERSUBPOOLMAX value, resulting in
the maximum user sub pool size in bytes. For example, if you set
USERSUBPOOLMAX to the default value of 8192, the memory requirements for all
of your queries for the current connection cannot exceed 2MB.

Recommendation: For complex queries, or in environments that process many
queries simultaneously per user connection, set USERSUBPOOLMAX to a value
greater than 8192. If you have many users simultaneously connecting to the data
source, you might need to increase the value of the MESSAGEPOOLSIZE
parameter because each user sub pool is allocated out of the main message pool.

Configure this parameter carefully to avoid using too much data server storage.

Specification

Use: Configuration parameter for the QP and QPRR service classes.

Data type: INT

Default value: 8192

Valid values: 4 - 4294967296

VSAMAMPARMS:

VSAMAMPARMS supplies VSAM buffer and memory-tuning parameters when a
VSAM file is opened. The VSAMAMPARMS parameter specifies tuning parameters
that are applied to all VSAM files that are opened when a single cursor is open.

Description

The VSAMAMPARMS parameter takes the form of a string of comma delimited
parameters that are passed to the IBM C afopen call that accesses VSAM files.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Chapter 8. Reference 339

Service tasks: CACQP, CACQPRRS

Data type: CHAR(256)

Default value: None

Valid values:

BUFND
Specifies the number of data I/O buffers that VSAM uses. This parameter is
equivalent to coding the BUFND value on a DD statement. A data buffer is the
size of a control interval in the data component of a VSAM cluster. The default
number of data buffers is the number of strings plus one. If you use the VSAM
service, the default number of buffers is 11. If you do not use the VSAM
service, the default number of buffers is two.

Generally with sequential access, the optimum value for the data buffers is six
buffers or the size of the control area, whichever is less. When skip-sequential
processing (random keyed read access) is performed, specifying two buffers is
optimum. Specify a larger BUFND value when the VSAM file is scanned
during query processing. The larger value generally yields performance
improvements. In keyed access situations, specifying a larger BUFND might
not show performance improvements or might degrade query performance by
tying up large amounts of virtual storage and causing excessive paging.

BUFNI
Specifies the number of index I/O buffers that VSAM uses. This parameter is
equivalent to coding the BUFNI value on a DD statement. An index buffer is
the size of a control interval in the index component of a keyed VSAM cluster.
If you use the VSAM service, the default number of index buffers is 10. If you
do not use the VSAM service, the default number of index buffers is 1.

For keyed access, the optimum BUFNI specification is the number of high-level
(non-sequence set) index buffers + 1. You can determine this number by
subtracting the number of data control areas from the total number of index
control intervals within the data set. You can accommodate most VSAM files
having reasonable index control interval and data control area sizes using an
upper bound BUFNI specification of 32. This BUFNI setting can accommodate
cylinder-allocated data component sizes up to the 4 GB maximum. A large
BUFNI value incurs little or no performance penalty, unless the value is
excessively large.

BUFSP
Specifies the maximum number of bytes of storage that VSAM uses for file
data and index I/O buffers. This parameter is equivalent to coding the BUFSP
value on a DD statement. A data or index buffer is the size of a control interval
in the data or index component.

A valid BUFSP specification generally overrides any BUFND or BUFNI
specification. However, the VSAM rules for specifying an optimum BUFSP
value are fairly complex. Consult the information about the ACB macro to
determine the rules for specifying a BUFSP value.

Example
VSAMAMPARMS = BUFND=20,BUFNI=15

340 Guide and Reference

WLMUOW:

The WLMUOW parameter specifies the Workload Manager (WLM) unit-of-work
activities and manages queries in WLM goal mode.

Description

Define a subsystem type and classification rules for the workload that is processed
by the query processor. For an existing subsystem type, select which of these
parameters fits that subtype. For example, the z/OS Started Task Control (STC)
type supports user ID and TRANNAME. Job Entry Subsystem (JES) supports user
ID, TRANNAME, and TRANCLASS.

For information about how to define service classes and classification rules, see the
description of z/OS Workload Manager in the CICS product information for WLM
goal mode. The priority for units of work need to be less than VTAM and IMS.
The discretionary goal might result in very slow response times. Performance
periods allow you to define a high number of service units for short transactions
and a smaller number for long running transactions.

Specification

Use: Configuration parameter for the query processor services.

Service classes: QP, QPRR

Service tasks: CACQP, CACQPRRS

Data type: CHAR(64)

Default: None

Configuration parameters for clients
The client configuration parameters define settings for the JDBC, ODBC, and Call
Level Interface (CLI) clients.

The following table lists the client configuration parameters and whether the
parameter is required or optional.

Table 66. Summary of client configuration parameters

Parameter Required/Optional

CLIENT CODEPAGE Optional

DATASOURCE Required

DEFLOC Optional

FETCH BUFFER SIZE Optional

MESSAGE POOL SIZE Optional

NL CAT Required

RESPONSE TIME OUT Optional

SERVER CODEPAGE Optional

SERVICE INFO ENTRY Required

SHAPING Optional

Chapter 8. Reference 341

Table 66. Summary of client configuration parameters (continued)

Parameter Required/Optional

SYMMETRIC
SWAPPING

Optional

TASK PARAMETERS Optional

TEXT ORIENTATION Optional

TEXT PRESENTATION Optional

TRACE LEVEL Optional

CLIENT CODEPAGE
CLIENT CODEPAGE is an optional parameter that specifies the client code page
value so that ICU4C can translate between the code pages for the server and client.

Description

This parameter corresponds to the code page converter names and aliases for the
CCSID that are used on the client and on the server. ICU4C provides conversion
between code pages.

Specifications

Use: UNIX CLI client

Example
CLIENT CODEPAGE = IBM-970

DATASOURCE
DATASOURCE is a required parameter for clients that specifies the name of the
data source that a client attempts to connect to.

Description
v Field 1: The name of the remote data source that matches the service name of

the service definition for the query processor.
v Field 2: The address identifies how this client connects to the named data source.

This field consists of three parts separated by the forward slash (/) character.
This value must match the service definition of the for the connection handler
on the data server.

Specification

Maximum value: 18 characters for data source name, 64 characters for address field

Minimum value: 1 character for data source name, address field depends on the
protocol

Default: None

Use: UNIX CLI client

Example: Address field for TCP/IP protocol
DATASOURCE = CACSAMP tcp/111.111.111.11/2222

342 Guide and Reference

This example defines an address field for TCP/IP protocol that uses the data
source name CACSAMP. Field 2 contains the following parts:
v The first part of the field must be set to tcp.
v The second part of the field is the host name (string) of the server or the IP

address of the server. If an IP address is specified, it must be defined in dot
notation (123.456.789.10).

v The third part of the field is the port number (decimal value) or service name on
which the server is listening for connection requests.

If you try to connect to the data server by using IPv6, you might need to provide a
scope if you are using a link-local address. The scope is typically the network
interface name that you specify following the IPv6 address. The format is ipv6
address%scope. For example:
DATASOURCE = CACSAMP tcp/fe80::xxxx:xxxx:xxxx:xxxx%eth0/9087

Example: Address field for cross-memory protocol
DATASOURCE = CACSAMP XM1/CAC/CAC

This example defines an address field for the cross-memory protocol that uses the
data source name CACSAMP. field 2 contains these parts:
v The first part of the field must be set to XM1.
v The second part of the field is the data space name, CAC. The maximum length is

four characters. This name must be the same as the data space name defined for
the COMMSTRING parameter of the connection handler service.
If the data server was configured to directly connect to a query processor
without going through a connection handler service, the protocol string is the
service name for the query processor. In this case, the data space name must
match the name of the data space specified in the service definition of the query
processor.

v The third part of the field is the queue name, CAC. The maximum length is four
characters. This name must be the same as the queue name defined for the
COMMSTRING parameter of the connection handler service.
If the data server was configured to directly connect to a query processor
without going through a connection handler service, the protocol string is the
service name for the query processor. In this case, the queue name must match
the name of the queue specified in the service definition of the query processor.

DEFLOC
DEFLOC is an optional parameter that specifies the default data source if a
SELECT statement or a CONNECT statement does not specify where the data
resides.

Specification

Maximum value: 18 characters

Minimum value: 1 character

Default: None

Use: Client

Example
DEFLOC = CACSAMP

Chapter 8. Reference 343

FETCH BUFFER SIZE
FETCH BUFFER SIZE is an optional parameter that specifies the size of the result
set buffer that is returned to a client application. You specify this parameter in the
configuration file for the client application.

Description

Regardless of the specified size of the fetch buffer, federation always returns a
complete row of data in this buffer. When you set the fetch buffer size to 1, single
rows of data are returned to the client application.

An appropriate FETCH BUFFER SIZE depends upon the average size of the result
set rows that are sent to the client application and the optimum communication
packet size. To improve performance, pack as many rows as possible into a fetch
buffer. The default fetch buffer size is generally adequate for most queries.

If FETCH BUFFER SIZE is set smaller than a single result set row, the size of the
actual fetch buffer that is transmitted is based on the result set row size. The size
of a single result set row in the fetch buffer depends on the number of columns in
the result set and the size of the data that is returned for each column.

You can use the following calculations to determine the size of a result set row in
the buffer:
fetch buffer row size = (number of data bytes returned) x

(number of columns * 6)

Each fetch buffer has a fixed overhead. You can compute the overhead as follows:
fetch buffer overhead = 100 + (number of columns * 8)

If your applications routinely retrieve large result sets, contact your network
administrator to determine the optimum communication packet size. Then, set the
FETCH BUFFER SIZE to a size that accommodates large result sets.

Specifications

Maximum value: 1 - 524288

Minimum value: 1

Default: 32000

Use: Windows and UNIX CLI client.

Example
FETCH BUFFER SIZE = 64000

MESSAGE POOL SIZE
MESSAGE POOL SIZE is an optional parameter for ODBC and CLI clients that
specifies the size of the memory region in bytes for all memory allocation.

344 Guide and Reference

Description

Set the actual workable maximum value to 2 MB less than the region size. If the
specified value is less than 1 MB, 1 MB is used. If the amount of storage that can
be obtained is less than the specified value, the maximum amount available is
obtained.

Recommendation: Set the value of MESSAGE POOL SIZE to at least 4 MB for
32-bit clients and to at least 8 MB for 64-bit clients.

Specification

Maximum value: 1 GB or more, depending on operating system.

Minimum value: 1048576 (1 MB)

Default value: 1048575 (1 MB)

Use: Data server, ODBC and UNIX CLI clients

Example
MESSAGE POOL SIZE = 16777216

NL CAT
NL CAT is a required parameter that points to a language catalog that contains
messages in a specified language and encoding.

Description

You typically define NL CAT on the data server and the native z/OS client by
using a data definition (DD) statement in startup procedures. You can also define
NL CAT on the client by specifying one of the following:
v A path
v A data set name

On a USS client, you typically specify a data set name.

The following table describes the location of the NL CAT statement in supported
environments.

Table 67. Location of NL CAT statement by environment

Environment Location of NL CAT statement

Linux and UNIX /opt/IBM/ISClassic113/CLI/lib/cac.ini

Windows The Windows registry. Do not specify NL CAT on
Windows.

z/OS CACINIZ in SCACCONF

USS CACINIU in SCACCONF

Localization functions native to the operating system supply a localization code
that identifies the language locale to the database driver. The driver accesses the
language catalog based on the locale. If the functions do not return a code that the

Chapter 8. Reference 345

driver recognizes, the driver accesses the US English version of the language
catalog. The following table describes supported language locales and localization
codes.

Table 68. Language locales and localization codes

Language locale Localization codes returned (Linux, UNIX,
Windows)

English (United States) us

en_US

en_US.UTF-8

Japanese ja

ja_JP

ja_JP.UTF-8

Simplified Chinese zh

zh_CN

zh_CN.UTF-8

zh_SG

zh_SG.UTF-8

Traditional Chinese zh

zh_TW

zh_TW.UTF-8

zh_MO

zh_MO.UTF-8

zh_HK

zh_HK.UTF-8

The database drivers access the message catalogs for your locale and encoding by
referencing a fixed filename you cannot change. In some cases, you can have more
than one version of the message catalog, each supporting a different encoding. If
you are using CLI or ODBC drivers and have multiple choices of encoding for
your locale, you must rename the message catalog for the encoding you are using
to the fixed filename.

Example: The Japanese message catalog file is cacmsg_ja_JP.cat. The Japanese
catalogs are distributed in SJIS and eucJP encodings. If you are running Shift-JIS,
rename cacmsg_ja_SJISJP.cat to cacmsg_ja_JP.cat. If you are running eucJP, rename
cacmsg_ja_eucJP.cat to cacmsg_ja_JP.cat. In a UNIX environment, you can create a
link to the appropriate file that uses the fixed filename.

The following table describes supported encodings and related file names.

Table 69. Encodings and language catalogs

Language Encoding Encoded file name Fixed file name

English Latin Not applicable cacmsg_us_EN.cat

346 Guide and Reference

Table 69. Encodings and language catalogs (continued)

Language Encoding Encoded file name Fixed file name

UTF-81 cacmsg_UTF8.cat cacmsg_us_EN_UTF8.cat

Japanese Shift-JIS cacmsg_ja_JP.cat cacmsg_ja_JP.cat

EUCJP cacmsg_ja_eucJP.cat cacmsg_ja_JP.cat

UTF-81 Driver loads fixed filename
directly

cacmsg_ja_JP_UTF8.cat

Simplified
Chinese

EUC-CN Not applicable cacmsg_zh_CN.cat

UTF-81 Driver loads fixed filename
directly

cacmsg_zh_CN_UTF8.cat

Traditional
Chinese

Big-5 cacmsg_zh_BIG5TW.cat cacmsg_zh_TW.cat

EUC-TW cacmsg_zh_eucTW.cat cacmsg_zh_TW.cat

UTF-81 Driver loads fixed filename
directly

cacmsg_zh_TW_UTF8.cat

1 UTF-8 is supported on only Linux and UNIX.

Exception: If you are using JDBC drivers, you do not need to rename message
catalog files. The JAR file contains all messages.

Specification

Valid values:

/Path
Where Path is the path of the language catalog file (Linux, UNIX, Windows).

DD:DDName
Where DDName is the name of a data definition, typically MSGCAT (data server,
native z/OS client).

//dsn:DatasetName
Where DatasetName is the name of the message catalog data set SCACMENU
(data server, USS client).

Examples

Linux
NL CAT = /opt/ibm/isclassic113/cli/lib

UNIX
NL CAT = /opt/IBM/isclassic113/cli/lib

Windows
NL CAT = C:\\Program Files\\IBM\\ISClassic113\\ODBC\\lib

Data server, native z/OS client
NL CAT = DD:MSGCAT

USS client
NL CAT = //dsn:CAC.V11R3M00.SCACMSGS

Chapter 8. Reference 347

RESPONSE TIME OUT
RESPONSE TIME OUT is an optional parameter that specifies the maximum
amount of time that the ODBC client waits for an expected response before the
client terminates a connection.

Specification

Maximum value: 1000MS, 60S, and 60M respectively

Minimum value: 0MS

Default: 6M

Use: ODBC client

Formats

Valid formats:

nMS Number of milliseconds

nS Number of seconds

nM Number of minutes

Example
RESPONSE TIME OUT = 10M

SERVER CODEPAGE
SERVER CODEPAGE is an optional parameter that specifies the server code page.
ICU4C uses this parameter to translate between code pages for the client and
server.

Description

This parameter corresponds to the code page converter names and aliases for the
CCSID that is used on the client and on the server. ICU4C provides conversion
between code pages.

Specification

Use: UNIX CLI client

Example
SERVER CODEPAGE = IBM-933

SHAPING
SHAPING is an optional parameter for bidirectional language transformation that
indicates if text shaping is required when text is rendered.

Description

The SHAPING option is for the server code page IBM-420, which encodes
characters in their shaped forms. When Arabic text contains these kinds of
characters in shaped forms, the shaping API is called to replace them with abstract
characters when the server converts to the client code page or to replace them with
shaped forms when converting from the client to the server.

348 Guide and Reference

If the text on the server contains Arabic letters in abstract form, set the SHAPING
option to OFF to improve performance.

Specification

Valid values: ON and OFF

Default: ON

Use: ODBC and CLI clients

SYMMETRIC SWAPPING
SYMMETRIC SWAPPING is an optional parameter for bidirectional language
transformation that ensures text is preserved in a logical order.

Description

Some characters, such as the greater-than sign or a left parenthesis, have an
implied directional meaning. Within a text segment that is presented from right to
left, these characters must be replaced to ensure that the correct meaning is
preserved. This replacement is called symmetrical swapping. When SYMMETRIC
SWAPPING is set to ON, these characters are replaced by their mirror image.
Symmetric swapping is not performed for text that is in logical order.

Specifications

Valid values: ON and OFF

Default: ON

Use: ODBC and CLI clients

TASK PARAMETERS
TASK PARAMETERS is an optional parameter that specifies IBM C runtime
options that are passed to system child tasks through the z/OS ATTACH macro.

Description

One common use of this parameter is to pass TCP/IP information to the
Communications Interface task.

Specifications

Default: None

Valid values:

You can specify as values any valid variables that are preceded by the equal (=)
sign.

TCPIP_PREFIX
This variable sets the high-level qualifier (hlq) for finding the TCP/IP system
data sets. It can be set to use the installation-defined data sets or a
user-defined data set.

The default value is TCPIP.

Chapter 8. Reference 349

TCPIP_MACH
This variable sets the address space name/subsystem name of the TCPIP stack
for Interlink. For IBM's TCP/IP system utilizing the Berkeley Socket interface,
this parameter can also be specified in the hlq.TCPIP.DATA file under the
parameter TCPIPUSERID.

The default value is TCPIP.

TZ The Time Zone environment variable must be set for each job on z/OS. The
variable sets the time zone in which the task will start, for example Pacific
Standard Time (PST).

For information about other valid TZ settings, see the IBM C compiler
documentation.

Examples
TASK PARAMETERS= =TCPIP_PREFIX=TCPIP =TCPIP_MACH=TCPIP

TASK PARAMETERS = =MI =TZ=PST8PDT

This example sets the time zone to PST plus 8 hours from Greenwich mean time
(8) and Pacific daylight time (PDT).

Using the same example for Eastern standard time (EST), enter the following
information:
TASK PARAMETERS = =MI =TZ=EST5EDT

TEXT ORIENTATION
TEXT ORIENTATION is an optional parameter for bidirectional language
transformation that specifies where bidirectional text begins.

Description

When data moves from the client to the server, text in SQL statements is always
marked as Left-To-Right (LTR). To ensure that text is processed correctly, encode
text into a host variable by binding parameters with the SQLBindParameter API.
The following example shows a statement with a bound parameter:
SELECT * FROM BIDITAB WHERE NAME = ?;

Specifications

Valid values:

LTR
Marks the text as left-to-right.

RTL
Marks the text as right-to-left.

DLTR
The direction of the paragraph is set to the direction of the first strong
character found. If no strong character exists, the direction is set to LTR.

DRTL
The direction of the paragraph is set to the direction of the first strong
character found. If no strong character exists, the direction is set to RTL.

Default: LTR

Use: ODBC and CLI clients

350 Guide and Reference

TEXT PRESENTATION
TEXT PRESENTATION is an optional parameter for bidirectional language
transformation that determines the text type on the server.

Specification

Valid values:

LOGICAL
No reordering occurs when this option is set. The values of TEXT
ORIENTATION and SYMMETRIC SWAPPING are ignored. LOGICAL is the
default setting for bidirectional code pages.

VISUAL
Text that is stored in visual order is the same as text that displays on a screen.
Visual text is transformed in logical order by setting the TEXT
PRESENTATION parameter to the VISUAL attribute. The output depends on
the TEXT ORIENTATION parameter that must be set to the DLTR value.

VISUALLTR
Transforms text in visual typing order from left to right. The output depends
on the TEXT ORIENTATION parameter that must be set to the DRTL or the
DLTR value. DRTL is the default. In addition, the SYMMETRIC SWAPPING
parameter must be set to ON.

Default: LOGICAL

Use: ODBC and CLI clients

TRACE LEVEL
The TRACE LEVEL is an optional parameter that regulates the amount of
information that data server tasks record in the trace log.

Specification

Valid values: 0 - 20:

20 No trace information generated

16 Identify fatal error conditions

8 Identify all recoverable error conditions

4 Generate warning messages

3 Generate debugging information

1 Generate function call information

0 Trace all

Default: 4

Use: ODBC client

Important: Change this parameter only at the request of IBM Software Support.
Settings lower than 4 cause response time degradation.

Chapter 8. Reference 351

USERID
USERID is an optional parameter that is the default SQL ID. The default SQL ID is
needed if no ID is present on a CONNECT statement or if a dynamic CONNECT
statement is issued because the client application does not issue a CONNECT
statement.

Description

The USERID value is used when the first line in the SQL input file is blank.

Specification

Maximum value: 7 characters with no spaces. If more than 7 characters are
specified, only the first 7 are used.

Default: None

Use: UNIX CLI client configuration

Example
USERID = CACUSER

USERPASSWORD
USERPASSWORD is an optional parameter that is the default SQL ID password.
The default SQL ID password is needed if no password is present on a CONNECT
statement or if a dynamic CONNECT statement is issued because the client
application did not issue a CONNECT statement.

Description

The USERPASSWORD value is used when the first line in the SQL input file is
blank.

Specification

Maximum value: 8 characters with no spaces

Default: None

Use: UNIX CLI client configuration

Example
USERPASSWORD = CACPWD

Command reference
Look up syntax and explanations for commands that help you to manage
subscriptions, Classic data servers, and configurations.

Classic data server administration commands
Use these commands to start and stop Classic data servers and services, list
connected users, cancel user sessions, and view or print log messages.

352 Guide and Reference

Starting a data server
When you start a Classic data server, you start all of the services defined in the
configuration file for the Classic data server.

About this task

You can perform either of the steps described in the following procedure to start a
Classic data server. All services start if the value of the INITIALTHREADS
configuration parameter is greater than 0.

Procedure
v Issue a console command to start the JCL procedure for the Classic data server:

S procname

where procname is the 1-8 character PROCLIB member name to be started. When
you issue commands from the SDSF product, prefix all operator commands with
the forward slash (/) character.

v Submit a batch job.

STOP command
Stopping a Classic data server stops all of the services that are running within it.

About this task

The purpose of the STOP,ALL command is to shutdown the data server. The data
server stops after the services running in the data server complete their required
processing.

If the shutdown process does not complete after issuing a STOP,ALL command,
you can issue the STOP,ALL,IMMEDIATE command. For example, the shutdown
process might not complete if a service encounters a problem and cannot complete
its quiesce processing. In this case, you can issue the STOP,ALL,IMMEDIATE
command to bypass service quiesce processing and stop the data server.

Procedure
v To stop a Classic data server, issue the following command in an MTO interface:

F name,STOP,ALL

name The name of the started task or batch job for the Classic data server.
v To stop a Classic data server immediately, issue the following command in an

MTO interface:
F name,STOP,ALL,IMMEDIATE

name The name of the started task or batch job for the Classic data server.

START,SERVICE command
You can start an instance of a service that is defined in the configuration for the
Classic data server.

About this task

You can use this command when you want to start a service without stopping and
restarting the Classic data server. The service instance starts if the number of
instances already active is less than the value of the MAXTHREADS configuration
parameter.

Chapter 8. Reference 353

Procedure

Issue the following command in an MTO interface, where name_of_job is the name
of the started task for the Classic data server:
F name_of_job,START,SERVICE=name_of_service

STOP,SERVICE command
You can stop an instance of a non-critical service that is defined in the
configuration for the Classic data server.

About this task

Important: You should not issue the STOP,SERVICE command regularly. When a
data server is configured, you typically do not need to start and stop the services
that run in the data server individually.

The STOP command cancels any user activity in a service and disconnects all
active users from that service.

Restriction: You cannot stop a critical service. The logger service is critical to the
operations of a Classic data server. If you attempt to stop a critical service by
issuing a STOP,SERVICE command or a STOP,TASKID command, a warning
message is issued.

Procedure
v To stop a service by means of its task ID, issue this command:

F server_name,STOP,TASKID=task_ID

server_name
The name of the task or batch job started by the Classic data server. This
name is CACDS for Classic federation.

v To stop a service by means of its name, issue this command:
F server_name,STOP,SERVICE=name_of_service

server_name
The name of the task or batch job started by the Classic data server. This
name is CACDS for Classic federation.

DISPLAY,ALL command
The DISPLAY,ALL command outputs a formatted list of the current usage
information about a data server.

Procedure

To display current usage information about services, users, configurations, and the
memory pool, issue the DISPLAY,ALL command:
F name,DISPLAY,ALL

name The name of the task or batch job started by the data server.

DISPLAY,MEMORY command
The DISPLAY,MEMORY command outputs a formatted list of usage information about
data server memory.

354 Guide and Reference

Procedure

To display the current use of the memory pool in the data server, issue the
DISPLAY,MEMORY command:
F name,DISPLAY,MEMORY

name The name of the task or batch job started by the data server.

The following information is displayed about overall data server memory usage:

TOTAL MEMORY
The total size in kilobytes of the message pool that was allocated.

USED The amount of memory that is currently being used out of the message
pool. This value is expressed in kilobytes followed by the percentage of the
current message pool that is being used.

MAX USED
The maximum amount of the message pool that was ever used. This value
is expressed in kilobytes followed by the percentage of the message pool
that was ever used.

DISPLAY,SERVICES command
The DISPLAY,SERVICES command outputs a formatted list of information about the
services running in a data server.

Procedure

To display a list of all running services in the data server, issue this command:
F name,DISPLAY,SERVICES

name The name of the task or batch job started by the data server.

When information is requested about the services that are active within a data
server, a WTO display message is generated for each service that is active. For each
service, the following information is displayed:

SERVICE
Service name.

TASKID
TCB address (in decimal notation) of the service instance that is displayed.

TASKNAME
Same as TYPE.

STATUS
One of the values that is displayed in the table below.

USER The user ID that is currently being serviced. Generally, this value is blank.

The following table lists the most common statuses:

Table 70. States and descriptions

Status Description

QUIESCE Unused.

READY Idle and waiting for requests.

RECEIVING Receiving a request.

RESPONDING Sending a response.

Chapter 8. Reference 355

Table 70. States and descriptions (continued)

Status Description

STOP Processing a STOP,ALL request.

DISPLAY,USERS command
You can list all of the users that are connected to a Classic data server.

Procedure

To list users, issue this command in an MTO interface:
F name,DISPLAY,USERS

name The name of the started task or batch job for the Classic data server.

Results

When information is requested about active users, a WTO display message is
generated for each user that is connected to the Classic data server. For each user,
the following information is displayed:

USER The user ID that was supplied when the client application connected to the
server.

TASKID
The TCB address of the query processor service that the client connected
to.

SERVICE
The first 8 characters of the data source name that the client application
connected to. This value corresponds to one of the names of a query
processor service definition.

SESSIONID
The address (in decimal format) of a control block that is used to track the
user.

HOSTNAME
The name of the host computer where the connection originated.

PROCESSID
The process ID on the host computer that the client application is
executing in.

THREADID
The thread identifier on the host computer that the client application is
executing in.

STMTS
This is a two-part value that is separated by a forward slash (/). The first
value identifies the number of statements that the user currently has active.
The second number identifies the maximum number of statements that
were active.

MEMORY
This is a two-part value that is separated by a forward slash (/). The
values are in kilobytes. The first value identifies the amount of memory
that is currently being used to process the active statement. The second
value identifies the maximum amount of memory that was used to process
all statements that were issued by the user.

356 Guide and Reference

CANCEL command
You can cancel particular user sessions or all sessions for particular users.

About this task

You can find out which users are currently connected by issuing the
DISPLAY,USERS command. The output of this command gives you the IDs of
users and the IDs of the user sessions.

The cancel command takes effect when the query processor is not actively
processing a query for the user that is being canceled. Users are notified upon
completion of any action of theirs that follows the issuing of the command.

To disconnect users and user sessions, issue either of the following commands by
using the MTO interface.

Procedure
v To cancel a particular user session, issue this command:

F name,CANCEL,SESSIONID=session ID

v To cancel all sessions for a particular user, issue this command:
F name,CANCEL,USER=user ID

DISPLAY,QUERIES command
You can list all of the queries that the query processors in a Classic data server are
currently processing.

About this task

With the information provided in the output, you can issue the CANCEL,QUERY
command to cancel a particular query.

Procedure

To list queries, issue this command in an MTO interface:
F name,DISPLAY,QUERIES

name The name of the started task or batch job for the Classic data server.

Results

When information is requested about the queries that are being tracked by the
Classic data server, a WTO display message is generated for each query. For each
query, the following information is displayed:

QUERY
The SQL statement name that is assigned by the client application or
JDBC/ODBC Driver to track the query.

USER The user ID that issued the query.

SESSONID
The user control block address (in decimal format) of the user that issued
the query.

SERVICE
The first 8-characters of the service name that is processing the query.

Chapter 8. Reference 357

TASKID
The TCB address (in decimal format) of the query processor that is
handling the query.

TYPE One of the following values that indicates the type of query that is being
processed:

XQRY
SELECT statement

XJOI SELECT statement that contains a join condition

XUNI SELECT statement that contains a union

XINS INSERT statement

XUPD
UPDATE statement

XDEL DELETE statement

CALL CALL statement

STATE
One of the following values that indicates the state that the query is in:

INITIAL
Statement is created and not yet prepared.

PREPARED
Statement is prepared.

OPENED
Statement is opened.

EXECUTING
Statement is being executed.

FETCHED
Result sets are being fetched.

WAITING
Statement is waiting to be executed.

SUSPENDED
Statement is suspended.

CLOSED
Statement is closed.

MEMORY
This is a two-part value that is separated by a forward slash (/). The
values that are displayed are in kilobytes. The first value identifies how
much memory the query is currently using. The second value identifies the
maximum amount of memory that has been allocated to process the
statement.

CANCEL,QUERY command
You can cancel queries that are running on a Classic data server or enterprise
server.

Before you begin

Before issuing this command, issue the DISPLAY,QUERIES command to get the name
and session ID for the query that you want to cancel.

358 Guide and Reference

About this task

The cancel command takes effect when the query processor is not actively
processing the query to be canceled. Users are notified upon completion of any
action of theirs that follows the issuing of the command.

To cancel a query, issue the following command using the MTO interface:
F name,CANCEL,QUERY=name,SESSIONID=session ID

Classic data server configuration commands
After a Classic data server is created and running as a result of the installation
customization process, you can modify the configuration for the Classic data server
as needed by using a set of operator commands.

You use configuration commands for the following actions:
v Updating and displaying configuration data for a Classic data server.

The commands include ADD, SET, DELETE, and DISPLAY.
v Importing and exporting configuration data for a Classic data server.

The commands include EXPORT and IMPORT.

You can issue the configuration-related commands by using the master terminal
operator (MTO) interface. You can also use the Classic Data Architect to update
your configuration for a Classic data server. With both the Classic Data Architect
and the MTO interface, you make configuration updates against a running Classic
data server.

The configuration migration and maintenance utility, CACCFGUT, also supports
the EXPORT and IMPORT commands and provides a REPORT command. You can
use the CACCFGUT utility to issue the commands offline, when the Classic data
server is not running. For example, the utility supports the EXPORT and IMPORT
commands that enable you to restore a configuration environment to a previous
point in time.

Commands for updating and displaying configurations for
Classic data servers
You use the ADD, SET, DELETE, and DISPLAY configuration commands to update
configuration information for services, service lists, global configuration
parameters, and user-specific configurations.

When you add a service with the ADD command, you add the service to the
configuration for the Classic data server. Adding the service does not automatically
start the service. A service starts automatically during the next startup of the
Classic data server if the value of the INITIALTHREADS configuration parameter
is set to a value of 1 or greater. Otherwise, if you do not restart the Classic data
server, you must issue a START,SERVICE command to start the service.

After a service is added, you cannot update the name of the service. To change a
service name, you must delete the existing service and then add a new service
with the new service name.

Basic validation occurs when you modify configuration parameters with the SET
command. These validations are limited to general parameter data type and
numeric range checks. The individual services validate specific configuration
parameters to verify parameter content and relationships during service startup.

Chapter 8. Reference 359

In addition to services configurations, you can add and modify service lists. A
service list is a type of parameter that represents list values.

You use the ADD, SET, and DELETE commands to maintain these parameters.

To update a service list entry, you must delete the existing entry and then add a
new entry.

ADD, DELETE, and DISPLAY service list commands:

You can use the ADD and DELETE commands to add and remove service list
entries. You can use the DISPLAY command to display service lists.

Description

A service list is a type of parameter that represents list values. A single service list
can contain an unlimited number of entries.

A service list is always associated with a specific service.

You use the ADD and DELETE commands to maintain these parameters. To
update a service list entry, you must delete the existing entry, and then add a new
entry. You cannot use the SET command to update a service list entry.

Adding service list entries

You can add a service list entry with the following ADD command:
ADD,CONFIG,SERVICELIST=listname,SERVICE=servicename,VALUE=value

Deleting service list entries

You can delete entries from a service list with the following DELETE command:
DELETE,CONFIG,SERVICELIST=listname,SERVICE=servicename,VALUE=value

Displaying service list entries

Service list information is displayed when you display configuration information
for the related service.

Parameters

listname
The service list name.

servicename
The service name associated with the service list name.

value
List value.

ADD configuration command:

You can use the ADD command to add new service definitions, user-specific
definitions, and service lists to a configuration.

360 Guide and Reference

Adding services

Adding a new service typically occurs during the installation customization
process. Otherwise, you can add a service by using the ADD configuration
command.

When you add a service, you specify the service name and select the service class
for the new service. The service class is predefined.

The following table lists the service classes and the service type that each service
class defines.

Table 71. Service classes.

Service class Service type

CAF IBM DB2 call attachment facility (CAF) initialization service

CNTL Region controller service

DCI CA-Datacom access service

DRA IBM IMS database resource adapter (DRA) access service

GLOB Global service

IMSI IMS BMP/DBB access service

INIT Client connection handler service

LOG Logger service

MAA Monitoring service

ODBA IMS open database access (ODBA) access service

OPER Remote operator command service

QP Single-phase commit query processor service

QPRR Two-phase commit query processor service

SPS Stored procedure service

VSMS VSAM resource management service

WLM Workload Manager (WLM) service

You can add services with the following ADD command:
ADD,CONFIG,SERVICE=servicename,SERVICECLASS=serviceclass

Example

To add a new database resource adapter service named DRA2 to the configuration,
issue the following command:
ADD,CONFIG,SERVICE=DRA2,SERVICECLASS=CACDRA

In this example, the configuration parameters for the DRA2 service are created
with the default values for the CACDRA service class.

Adding user-specific configurations

When you add a user-specific configuration, you must specify a user ID. The user
ID is associated with a defined service. You can override the default values for the
configuration parameters for the service that you specify. In version 9.5, you can
define user-specific configurations for query processor services only.

Chapter 8. Reference 361

Command format:
ADD,CONFIG,USER=userid,SERVICE=servicename

Example

To add a new user record for TESTUSER to the configuration for service TESTV10,
issue the following command:
ADD,CONFIG,CONFIG,USER=TESTUSER,SERVICE=TESTV10

Parameters

serviceclass
The name of the service class that the service is associated with.

servicename
When adding a service, specify the name of the service to create. When adding
a user-specific configuration, specify the name of the service to override. The
maximum length allowed for the name is 64 bytes.

userid
For a user-specific configuration, the user logon ID used to connect to the
Classic data server. The maximum length allowed for the user ID is 8 bytes.

DELETE configuration command:

You can use the DELETE command to remove service definitions, service list
entries, and user-specific definitions from a configuration.

Deleting services

To delete a service, you must specify the name of the service to delete. If a service
is running, you must stop the service before you delete the service. When a service
configuration is deleted, any associated user-specific configuration is also deleted.

You cannot delete the core default services — the controller service and the logger
service. You also cannot delete the GLOBAL service name which represents global
parameters.

You can remove a non-core service with the following DELETE command:
DELETE,CONFIG,SERVICE=servicename

Example

To delete the service TESTV10 from the configuration, issue the following
command:
DELETE,CONFIG,SERVICE=TESTV10

Deleting user-specific configurations

To delete a user-specific configuration, you must stop the associated service. You
specify the user logon ID that is used to connect to the Classic data server.

DELETE command format:
DELETE,CONFIG,USER=userid,SERVICE=servicename

Example

362 Guide and Reference

To delete the user configuration for user ID TESTUSER related to service CACLOG
from the configuration, issue the following command:
DELETE,CONFIG,USER=TESTUSER,SERVICE=CACLOG

Parameters

servicename
When deleting a service, specify the name of the service to delete. When
deleting a user-specific configuration, specify the name of the related service.

userid
The user ID of the user to delete.

DISPLAY configuration command:

You can use the DISPLAY command to display configuration information about
services, service lists, user-specific configurations, and global configuration
parameters.

Displaying all configuration information

You can display all configuration information for a Classic data server with the
following DISPLAY command:
DISPLAY,CONFIG,ALL

During startup of the Classic data server, the contents of the configuration file are
written to the first entry in the diagnostic log for the Classic data server.

Displaying service information

You can display configuration information about a specific service with the
following DISPLAY command:
DISPLAY,CONFIG,SERVICE=servicename

Example

To display all configuration parameters in the service named TESTV10, issue the
following command:
DISPLAY,CONFIG,SERVICE=TESTV10

Displaying user-specific configuration information

You can display user-specific configuration information about a specific user
configuration, a specific user, or all users with the following DISPLAY commands.
v Display a user-specific configuration for the specified service:

DISPLAY,CONFIG,USER=userid,SERVICE=servicename

Example

To display all parameters in user configuration for USER1 and service
CACSAMP, issue the following command:
DISPLAY,CONFIG,USER=USER1,SERVICE=CACSAMP

v Display all user-specific configurations across all services that contain the
specified user ID:
DISPLAY,CONFIG,USER=userid,SERVICE=ALL

Example

Chapter 8. Reference 363

To display all parameters in all user configurations for USER1, issue the
following command:
DISPLAY,CONFIG,USER=USER1,SERVICE=ALL

v Display all user-specific configurations across all services:
DISPLAY,CONFIG,USER=ALL

Parameters

servicename
The name of the service to display. To display global parameters, specify
GLOBAL as the service name.

userid
The user ID of the user-specific configuration.

SET configuration command:

You can use the SET command to modify parameter values defined for an existing
service, a user-specific configuration, and global parameters.

Modifying service information

You can use the following SET commands to modify parameters in a single service,
modify all services within a given service class, and modify all services across all
service classes.

You can also use the SET command to reset the values of a configuration
parameter value to the parameter default value.
v For a specific service, use the following SET command:

SET,CONFIG,SERVICE=servicename,parm=value

Example

To set the TRACELEVEL parameter in service TESTV10 to 8, issue the following
command:
SET,CONFIG,SERVICE=TESTV10,TRACELEVEL=8

v To reset a parameter value to the default for specific service, use the following
SET command:
SET,CONFIG,SERVICE=servicename,parm=DEFAULT

Example

To set the TRACELEVEL parameter in service TESTV10 to the default value (4),
issue the following command:
SET,CONFIG,SERVICE=TESTV10,TRACELEVEL=DEFAULT

v For services within a given service class, use the following SET command:
SET,CONFIG,SERVICECLASS=serviceclass,parm=value

Example

To set the TRACELEVEL parameter in all monitoring services to 3, issue the
following command:
SET,CONFIG,SERVICECLASS=MAA,TRACELEVEL=3

v For all services, use the following SET command:
SET,CONFIG,SERVICE=ALL,parm=value

Example

To set the value of the TRACELEVEL parameter in all services to 2, issue the
following command:

364 Guide and Reference

SET,CONFIG,SERVICE=ALL,TRACELEVEL=2

Modifying user-specific configuration information

You can set the value of a specific parameter in a user-specific configuration with
the following SET command.
SET,CONFIG,USER=userid,SERVICE=servicename,parm=value

Example: Set the value of the TRACELEVEL parameter in the user-specific
configuration for USER1 for TEST95 to 2.
SET,CONFIG,USER=USER1,SERVICE=TEST95,TRACELEVEL=2

You can also use the DEFAULT keyword on the SET command to return a
parameter to its default value.

Parameters

parm
The name of the configuration parameter to modify.

serviceclass
The service class of the service to modify.

servicename
The name of the service that contains the configuration parameter to modify.
For global parameters, specify GLOBAL as the service name. The maximum
length allowed for the name is 64 bytes.

userid
The name of the user logon ID. The maximum length allowed for the user ID
is 8 bytes.

value
The new parameter value.

Usage notes

The following rules apply to specifying lowercase and uppercase character values
for the SET command:
v Character strings that contain embedded spaces or special characters must be

enclosed in either single or double quotation marks.
– For double quotation marks (“), the character string is set to uppercase.
– For single quotation marks ('), values specified in lowercase are saved as

lowercase.

Commands for importing and exporting configurations for a
Classic data server
An export does not affect an existing configuration for a Classic data server. The
EXPORT command creates a snapshot of the configuration in a command file that
contains ADD and SET commands. The command file can be used as input to the
IMPORT command.

You can use the IMPORT and EXPORT commands to perform the following
functions:
v Back up and restore a current configuration environment. The EXPORT

command creates a command file that consists of ADD and SET commands

Chapter 8. Reference 365

based on the current environment that can later be imported into a Classic data
server with newly initialized configuration files to complete the restore process.
Important: Frequently back up configuration files by copying them or by using
the EXPORT command.

v Apply updates to the current configuration environment. You can use the
IMPORT command to apply updates to the current configuration environment in
multiple updates or single updates. You can use the EXPORT command to create
a command file or create a command file manually.

v Save different versions of a configuration environment. You can use exported
configuration output to create a clone of the existing configuration for a Classic
data server. For example, the EXPORT command is useful in a test environment
where you can rebuild the configuration required for a specific test scenario by
importing the saved configuration. The EXPORT and IMPORT commands can
also be an effective mechanism for cloning Classic data servers.

Example

You can use the EXPORT and IMPORT process to restore a specific configuration
environment to a previous point in time. By using the EXPORT command, you can
create a command file that is based on the configuration environment of a running
Classic data server. You can then use this command file to update a different
configuration file by using the IMPORT command.

For example, you can use the EXPORT command to generate a command file, and
then IMPORT that command file on a server that is running with a newly
initialized configuration file.

To build a new configuration environment that is identical to an existing
configuration environment, export the source configuration to the desired target
file. Then run the configuration migration and maintenance utility CACCFGUT to
import the original source configuration to the new target environment.

You can also issue the IMPORT command while a Classic data server is running to
update parameter settings in the current configuration environment.

EXPORT configuration command:

The EXPORT command is useful for multiple purposes, such as backing up
configuration information and cloning a configuration for a Classic data server.

Description

You can use the EXPORT and IMPORT process to restore a specific configuration
environment to a previous point in time. By using the EXPORT command, you can
create a command file that is based on the configuration environment of a running
Classic data server. You can then use this command file to update a different
configuration file by using the IMPORT command.

The target of the EXPORT command is a PDS member or a sequential file. If the
file or member that you specify in the EXPORT command already exists, it is
rewritten. If the file or member does not exist, it is created.

If you predefine the EXPORT target:
v The minimum record length is 80 bytes.
v The format can be either fixed or variable length records.

366 Guide and Reference

The EXPORT command does not support GDGs.

The owner ID associated with the Classic data server job must have authorization
with an external security manager (ESM), such as the Resource Access Control
Facility (RACF), to create or access the EXPORT target data set (sequential file or
PDS member).

When a PDS member is specified as the target of the EXPORT command, an
attempt to run the EXPORT command fails if another user or job accesses the PDS
member at the same time. To avoid this situation, you create a PDS member to use
for the IMPORT and EXPORT process only.

Exporting configuration information

EXPORT command format:
EXPORT,CONFIG,FILENAME=DSN:dsname | DSN:dsname(member) | DDN:ddname
| DDN:ddname(member)

Example

The following example shows sample file contents of an EXPORT file:
--SET,CONFIG,SERVICE=GLOBAL,MESSAGEPOOLSIZE=67108864;
--SET,CONFIG,SERVICE=GLOBAL,DATACONVERRACT=1;
--SET,CONFIG,SERVICE=GLOBAL,FETCHBUFSIZE=32000;
--SET,CONFIG,SERVICE=GLOBAL,DECODEBUFSIZE=8192;
--SET,CONFIG,SERVICE=GLOBAL,STATICCATALOGS=0;
--SET,CONFIG,SERVICE=GLOBAL,TASKPARM=’’;
--SET,CONFIG,SERVICE=GLOBAL,DATAVALIDATEACT=0;
--SET,CONFIG,SERVICE=GLOBAL,REPORTLOGCOUNT=0;
ADD,CONFIG,SERVICE=CNTL,SERVICECLASS=CNTL;
--SET,CONFIG,SERVICE=CNTL,INITIALTHREADS=1;
--SET,CONFIG,SERVICE=CNTL,MAXTHREADS=1;
--SET,CONFIG,SERVICE=CNTL,MAXUSERS=100;
--SET,CONFIG,SERVICE=CNTL,TRACELEVEL=4;
--SET,CONFIG,SERVICE=CNTL,RESPONSETIMEOUT=5M;
--SET,CONFIG,SERVICE=CNTL,IDLETIMEOUT=5M;
SET,CONFIG,SERVICE=CNTL,SEQUENCE=1;

In the example, the export operation produces a command file of all overridden
parameters as active SET commands. SET commands are also generated for all
parameters that use default values. These particular SET commands are generated
as comments. The prefix "– –" in the first two columns of the command identifies
comments.

Parameters

ddname
The DD statement defined in the JCL that starts the Classic data server. The
DD name points to the target of the EXPORT command.

dsname
The name of the EXPORT data set.

Usage notes

The following rules apply to the format of command files:
v Commands must end with a semicolon.
v A comment begins with two dashes ("– –") in columns 1 and 2.

Chapter 8. Reference 367

v A single command can span multiple lines. You can break a line after a comma
or a space. You cannot break a keyword or value across multiple lines. For
example:
SET,CONFIG,SERVICE=XM1/CRAR/QRAR/2048/8,TEMPFILESPACE=
’HIPERSPACE,INIT=2048M,MAX=2048M,EXTEND=0M’;

Example

This EXPORT command creates the file USER.TEST.FILE if the file does not already
exist.
EXPORT,CONFIG,FILENAME=DSN:USER.TEST.FILE

IMPORT configuration command:

You can use the IMPORT command to apply multiple updates or single updates to
the configuration file for a running Classic data server. You can also use the
IMPORT command to perform recovery operations to restore configuration
information.

Description

The updates that the IMPORT command processes must reside in an existing IBM
z/OS PDS member or sequential file. You can use either of the following methods
to build the input file:
v Manually create the file and populate it with a defined set of commands.

When you manually create a command file, you can specify any valid format of
the ADD, SET, or DELETE configuration commands.

v Issue the EXPORT command to generate an IMPORT command file.

All commands in the file are processed whether or not a single command fails.
Any errors encountered during the IMPORT process are displayed on the operator
console. For example, unknown commands or incorrect command syntax can cause
errors. Attempting to add a service that already exists can also cause an error. A
status message is displayed when the process is complete.

You can use the IMPORT command at any time to change configuration parameter
settings for existing services on a running Classic data server.

Importing configuration command files

IMPORT command format:
IMPORT,CONFIG,FILENAME=DSN:dsname | DSN:dsname(member) | DDN:ddname
| DDN:ddname(member)

The data that you import must be in the command file format as described for the
EXPORT command.

Example:

The following sample shows the contents of a sample IMPORT command file:
ADD,CONFIG,SERVICE=TEST10,SERVICECLASS=QP;
SET,CONFIG,SERVICE=IMSLRS,TRACELEVEL=3;

When this command file is imported, these changes occur:
v A new service named TEST10 is added

368 Guide and Reference

v The value of TRACELEVEL is set to 3 for the QP service

Parameters

ddname
The DD statement defined in the JCL that starts the Classic data server. The
DD name points to the source IMPORT command file.

dsname
The name of the IMPORT data set.

Example

This IMPORT command imports the file USER.PDS.FILE.
IMPORT,CONFIG,FILENAME=DSN:USER.PDS.FILE(USER1)

IMPORT,CONFIG,MIGRATE configuration command:

You can use the IMPORT,CONFIG,MIGRATE commands to migrate the master
configuration member, query processor override members, and user configuration
members from a previous release to a new version 11.3 configuration.

Description

Recommendation: Use the configuration migration and maintenance utility,
CACCFGUT, to migrate an existing configuration when the Classic data server is
not running. The utility issues the commands described below.

You must issue the commands to migrate the master configuration before you
migrate the override members and user configurations.

Importing the master configuration and query processor override members

These formats of the IMPORT command convert the master configuration member,
and all query processor override members that it references, to the new version 9.5
configuration.
IMPORT,CONFIG,MIGRATE,ALL,FILENAME=DSN:pds(member) | DDN:ddname(member) | member

IMPORT,CONFIG,MIGRATE,FILENAME=DSN:pds(member) | DDN:ddname(member) | member

All configuration members related to the existing configuration must reside in the
same PDS.

Importing the master configuration

This format of the IMPORT command migrates the master configuration only.
Query processor definitions that refer to query processor override members are
migrated along with master configuration values.
IMPORT,CONFIG,MIGRATE,MASTERCONFIG,FILENAME=DSN:pds(member) | DDN:ddname(member)
| member

Importing a query processor override member

This format of the IMPORT command migrates a query processor override
member. You can migrate the override member for a specific query processor or for
all query processors that are defined in the current configuration. For example, this
command migrates all query processors.

Chapter 8. Reference 369

IMPORT,CONFIG,MIGRATE,OVERRIDEMEMBER= DSN:pds(member) | DDN:ddname(member) |
member, SERVICE=servicename | ALL

Importing a user-specific configuration

This format of the IMPORT command migrates a user-specific configuration. For
this command, query processors must already be added or migrated to a new
version 9.5 configuration file. The user configuration can either be applied to a
specific query processor task or to all query processor tasks in the new
configuration.
IMPORT,CONFIG,MIGRATE,USER= DSN:pds(member) |
DDN:ddname(member) | member, SERVICE=servicename | ALL

Parameters

ddname
The DD statement defined in the JCL that starts the Classic data server. The
DD card points to the configuration file from the previous version.

member
The source PDS member name of the master configuration, query processor
override member, or user override member.

pds
The name of the configuration PDS from the previous version.

servicename
The name of the query processor service for the related user override.

Usage note

You can specify FILENAME, OVERRIDEMEMBER, or USER values as a DSN, a
DD statement, or a PDS member name. When you specify a PDS member name,
the migration process defaults to a PDS referred to by the VHSCONF DD card
from the previous version. All configuration members related to the existing
configuration must reside in the same PDS.

Example

This example shows how to use the member name only when a VHSCONF DD
statement is defined.
v IMPORT,MIGRATE command:

F CACDS,IMPORT,CONFIG,MIGRATE=CACDSCF

Where CACDS is the job name for the Classic data server and CACDSCF is the
name of the configuration member that will be migrated

v VHSCONF DD statement in the job control language (JCL) for the Classic data
server:
//VHSCONF DD DISP=SHR,DSN=CAC.V11R3M00.SCACCONF

v The data is migrated from here:
CAC.V11R3M00.SCACCONF(CACDSCF)

370 Guide and Reference

Utilities reference
To manage the metadata catalog on a Classic data server, use the catalog
initialization and maintenance utility (CACCATUT) and the z/OS metadata utility.
To work with configurations from a previous version, monitor data server
configurations, or for backup and recovery purposes, use the configuration
migration and maintenance utility.

The catalog initialization and maintenance utility (CACCATUT)
The catalog initialization and maintenance utility (CACCATUT) is a z/OS batch job
that creates or performs operations on a metadata catalog when the data server is
stopped.

The catalog-related JCL is customized during the installation customization
process. You can configure the standalone CACCATUT JCL to perform one of the
following operations when it runs:
v Create and initialize a version 11.3 zFS metadata catalog
v Create and initialize a version 11.3 sequential metadata catalog
v Create and initialize a version 11.3 linear metadata catalog
v Upgrade an existing pre-version 11.3 sequential metadata catalog to a version

11.3 zFS or sequential metadata catalog.
v Upgrade an existing pre-version 11.3 linear metadata catalog to a version 11.3

zFS or sequential metadata catalog.
v Report on space utilization, the contents of a zFS or sequential metadata catalog,

and any corruptions that might exist within the metadata catalog.
v Reorganize the contents of a zFS or sequential metadata catalog to reclaim

unused space and, where possible, correct any corruptions that might exist.
v Create a version 11.3 zFS or sequential copy of a version 11.3 zFS, sequential, or

linear metadata catalog.
v Load system objects into the metadata catalog.

You can set up your metadata catalogs manually. See the guidelines for estimating
the size of the metadata catalog for detailed information.

The catalog initialization and maintenance utility is distributed in library
SCACLOAD as member name CACCATUT.

Estimating the size of the catalog initialization and maintenance
utility
You can use the guidelines provided with the formula in this topic to estimate the
size of the metadata catalog.

During the installation customization process you provide input to estimate the
size of the metadata catalog. This estimate is used to allocate the file space that
will store the metadata catalogs. The estimate is based on the formula below.

You can also use the formula if you set up your metadata catalogs manually. This
is a generous estimate because an accurate size determination is not feasible and
there is no guarantee to fully store a catalog. In the unlikely event that you run out
of file space, you will receive an explicit error message providing further
instructions.

ESTIMATED CATALOG OBJECT SIZE in Bytes = 314572800

+ <number of expected tables> * 3710

Chapter 8. Reference 371

+ <number of expected tables> * <maximum or average number of expected columns per table> * 776

+ <number of expected views> * 3086
+ <number of expected views> * <maximum or average number of expected columns per view> * 776

+ <number of expected indexes> * 1278
+ <number of expected indexes> * <maximum or average number of expected columns per index> * 264

+ <number of expected stored procedures> * 1543
+ <number of expected stored procedures> * <maximum or average number of parameters per stored procedure> * 264

TOTAL ESTIMATED CATALOG SIZE in Bytes = ESTIMATED CATALOG OBJECT SIZE

+ <user-defined reserved space in bytes>

TOTAL ESTIMATED CATALOG SIZE in Megabytes = TOTAL ESTIMATED CATALOG SIZE in Bytes / 1048576

Notes:
v You supply the number in brackets based on your planned usage of the catalog.
v A conservative user would use the maximum number instead of the average

number in the formula.
v Minimally, you should reserve an additional 1/3 of the calculated catalog object

size.
v Indexes are typically used in Classic Federation for IMS, VSAM, DB2, and

Adabas data sources only.
v Because stored procedures are rarely used, it is likely that you can ignore

providing input for them.
v A reserve for GRANT authorities is included in the formula which should be

sufficient, even for the largest catalog.

Creating and initializing zFS metadata catalogs
The zSeries File System (zFS) metadata catalog is initialized as part of the
installation customization process.

Before you begin

The zFS format of the metadata catalog is the default. This format is the
recommended configuration for the metadata catalog that provides significant
performance and capacity capabilities in comparison to the sequential or linear
data set formats used in releases prior to version 11.3. The sequential and linear
formats continue to be supported for compatability.

Using the zFS format of the metadata catalog requires the definition of a z/FS file
system. The data set that contains the zFS file systems is call a zFS aggregate. This
data set will contain the files and directories for the file system and is mounted
into the z/OS UNIX hierarchy.

You must create and mount the file system before trying to create the metadata
catalog. To mount the file system, the user issuing the MOUNT command must
have the following Unix privileges:
v SAF READ-access level authorization is required for the

SUPERUSER.FILESYS.PFSCTL resource in the UNIXPRIV class to run the zFS
administration command, IOEZADM.

v SAF READ-access level authorization is required for the
SUPERUSER.FILESYS.MOUNT resource in the UNIXPRIV class to perform
MOUNT and UNMOUNT operations against USS file systems

For more information about zFS files, see Distributed File Service, SMB, and zFS and
z/OS UNIX System Services in the z/OS product documentation.

372 Guide and Reference

The installation customization provides steps to setup the files system and an
example for mounting the file system in addition to the steps included below.

About this task

zFS metadata catalogs provide improved performance and capacity compared to
sequential and linear metadata catalogs. You can update a zFS metadata catalog
and eliminate the need to maintain both an updatable sequential catalog and a
non-updatable linear catalog. With zFS support, catalogs can be greater than 4GB
in size in contrast to the 2GB limitation for sequential and linear catalogs.

Recommendation: Use the sizing formula during the installation customization
process to estimate the required catalog size. See the topic 'Estimating the size of
the catalog initialization and maintenance utility.

Procedure
1. Define and format a zFS aggregate by using

USERHLQ.USERSAMP(CECCRZCT).
2. Mount the file system using the sample MOUNT command provided in

USERHLQ.USERSAMP(CECCRZCT). Ensure that the user issuing the MOUNT
command has the necessary privileges.

3. Follow the installation customization process. During the customization
process, the CACCATLG member in the SCACSAMP data set is customized.
The zFS metadata catalog is initialized as part of the installation customization
process.

4. Optional: To initialize additional catalogs as needed, customize and run JCL
member CACCATLG. Member CACCATLG in the SCACSAMP data set
contains JCL to run CACCATUT with the INIT option. The INIT operation of
the catalog initialization and maintenance utility (CACCATUT) initializes USS
file system files for a version 11.3 zFS metadata catalog and creates the SYSIBM
and SYSCAC system tables for the metadata catalog.
a. Provide a job card that is valid for your site.
b. Change the value of the CAC parameter to your high-level qualifier.
c. Change the value of the DISKU parameter to a valid DASD unit type for

your site.
d. Change the value of the DISKVOL parameter to identify the volume where

you want to locate the system catalog.

Results

When the catalog initializes, it grants SYSADM privileges to the user ID that
creates the catalog.

Creating and initializing sequential metadata catalogs
The sequential metadata catalog is initialized as part of the installation
customization process.

Before you begin

Important: The zFS format of the metadata catalog is the default. This format is the
recommended configuration for the metadata catalog that provides significant
performance and capacity capabilities in comparison to the sequential data set
format.

Chapter 8. Reference 373

To grant ownership privileges for the catalog, ensure that each TSO user ID is
assigned a unique OMVS UID. Set an automatically generated UID for the user IDs
that you are using in RACF:
ALTUSER USER01 OMVS(NOUID)
ALTUSER USER01 OMVS(AUTOUID)

Procedure
v Follow the installation customization process. The CACCATLG member in the

SCACSAMP data set is customized. The sequential metadata catalog is
initialized as part of the installation customization process.

v Optional: To initialize additional catalogs as needed, customize and run JCL
member CACCATLG. Member CACCATLG in the SCACSAMP data set contains
JCL to run CACCATUT with the INIT option. The INIT operation of the catalog
initialization and maintenance utility (CACCATUT) initializes data sets for a
version 11.3 sequential metadata catalog and creates the SYSIBM and SYSCAC
system tables that make up the metadata catalog.
1. Provide a job card that is valid for your site.
2. Change the value of the CAC parameter to your own high level qualifier.
3. Change the value of the DISKU parameter to a valid DASD unit type for

your site.
4. Change the value of the DISKVOL parameter to identify the volume where

you want the system catalog located.

Results

When the catalog initializes, it grants SYSADM privileges to the user ID that
creates the catalog automatically.

Creating and initializing linear metadata catalogs
To use a linear metadata catalog, you first create a sequential metadata catalog,
populate it with the tables and other objects that you create with Classic Data
Architect or the metadata utility, and then copy the content to a linear metadata
catalog.

Before you begin

A sequential metadata catalog must exist on the z/OS LPAR where the Classic data
server is located. To create a sequential metadata catalog, see “Creating and
initializing sequential metadata catalogs” on page 373.

The sequential metadata catalog must contain the final versions of all of the
mapped tables and other objects that you plan to use. You cannot directly update
the content of a linear metadata catalog. To modify a mapped table or any other
object in a linear metadata catalog, you must update the object in a sequential
metadata catalog and then copy the content of the sequential metadata catalog into
your linear metadata catalog.

About this task

Prior to version 11.1, you could use linear metadata catalogs to improve
performance. However, they are dependent on a sequential metadata catalog
because linear metadata catalogs cannot be updated.

Important: The zFS format of the metadata catalog is the default. A zFS metadata
catalog is updatable and its performance matches, if not exceeds, the performance

374 Guide and Reference

of a linear metadata catalog. zFS also accommodates a catalog size greater than
4GB, making it the most flexible metadata catalog option.

Procedure
1. Stop the Classic data server.
2. Customize and run member CACLCAT in the SCACSAMP data set.

a. Provide a job card that is valid for your site.
b. Change the data set names and volsers in the IDCAMS definition to match

your requirements.
3. Copy the content of your sequential metadata catalog into the linear metadata

catalog. See “Copying metadata catalogs” on page 376.
4. In the configuration file for the Classic data server, set the value of the

configuration parameter STATICCATALOGS to 1.
5. Update the JCL for the Classic data server to point to the linear metadata

catalog.
6. Start the Classic data server.

Upgrading metadata catalogs
You can upgrade a sequential or zFS metadata catalog to a new version of the
metadata catalog.

About this task

You can upgrade metadata catalogs from:
v A previous version of a sequential metadata catalog to a new version of a

sequential or zFS metadata catalog.
v A current version of a sequential metadata catalog to a new version of a zFS

metadata catalog.
v A previous version of a zFS metadata catalog to a new version of a zFS

metadata catalog.

The UPGRADE operation copies an existing metadata catalog to a new version of
the metadata catalog. For an UPGRADE operation, the CACCAT and CACINDX
DD statements refer to the new USS file system path of the zFS metadata catalog
or to sequential metadata catalog data sets. These statements identify the target
metadata catalog. The INCAT and ININDX DD statements refer to the old version
of the metadata catalog.

During the UPGRADE operation, the user objects in the source metadata catalog
are copied to the target metadata catalog. All user tables, indexes, views, and
stored procedure definitions are copied to the target metadata catalog. Also, all
security authorizations that exist in the source metadata catalog, including all
security authorizations that apply to the system tables, are copied to the target
metadata catalog.

After the UPGRADE operation completes, the CACCATUT utility generates a
summary analysis report that identifies the contents of the metadata catalog and
current space utilization.

Note: When you upgrade a metadata catalog that contains table mappings for
CA-IDMS that are flagged for data capture, CACCATUP verifies that these tables
have an explicit database name defined. If such a table does not have a database

Chapter 8. Reference 375

name defined, CACCATUP changes the value of the DATA CAPTURE flag to a
space and issues warning message 0x00760022.

Procedure
1. Follow the installation customization and migration process. The CACCATUP

member in the SCACSAMP data set is customized. The sequential metadata
catalog is upgraded as part of the installation customization and migration
process. See Customizing installation environments.

2. To update the catalog as needed after the installation customization and
migration process, customize and run member CACCATUP.
a. Provide a job card that is valid for your site.
b. Change the CAC parameter to installed high level qualifier.
c. Change the OLDCAT parameter to identify the high level qualifier of the

input metadata catalogs.
d. Change the DISKU parameter to a valid DASD unit type for your site.
e. Change the VOLSER parameter to identify the volume where you want the

metadata catalog located.
3. Update the JCL for the Classic data server to point to the new metadata

catalog.

Copying metadata catalogs
You can create a copy of a metadata catalog.

About this task

The COPY operation copies the contents of an existing metadata catalog into a new
metadata catalog for the same release as the Classic Federation data server.

The INCAT and ININDX DD statements are required and identify the metadata
catalog that is to be copied into the target metadata catalog identified by the
CACCAT and CACINDX DD statements. The INCAT and ININDX DD statements
cannot refer to the same data sets names that CACCAT and CACINDX DD
statements refer to.

During the COPY operation, you can modify the size and organization of the
target metadata catalog so that it differs from that of the input metadata catalog.
For example, you can change the data set organization from sequential to linear or
vice versa. You can also increase or decrease the size of the target metadata catalog.

After processing finishes, a summary report is generated. This report identifies the
contents of the metadata catalog and current space utilization of the created
metadata catalog.

Note: If the target metadata catalog is not large enough, CACCATUT issues
informational message 0x00710401.

Procedure
1. Customize and run member CACCATUT of the SCACSAMP data set.

a. Provide a job card that is valid for your site.
b. Change the CAC parameter to installed high level qualifier.
c. Change the OLDCAT parameter to identify the high level qualifier of the

input system catalogs.
d. For the PARM keyword of the EXEC statement, specify COPY.

376 Guide and Reference

http://publib.boulder.ibm.com/infocenter/iisclzos/v10r1/com.ibm.swg.im.iis.clz.comm.install.doc/topics/iiypiictasks.dita

2. Update the JCL for the Classic data server to point to the target metadata
catalog.

Reorganizing metadata catalogs
You can reorganize a zFS or sequential metadata catalog to reclaim wasted disk
space.

About this task

You can reorganize zFS and sequential metadata catalogs. You cannot reorganize
linear metadata catalogs.

The REORG operation compresses the contents of an existing metadata catalog by
moving the metadata catalog. The new version of the metadata catalog does not
contain the fragmented space that occurs as tables and other objects are dropped
from the metadata catalog.

In this operation, the INCAT and ININDX DD statements reference the metadata
catalog that is being reorganized and the CACCAT and CACINDX DD statements
refer to the new metadata catalog that the REORG operation will create. If these
statements reference an existing metadata catalog, the REORG operation replaces
the content of this catalog.

If corruptions are detected in the source metadata catalog, the REORG operation
attempts to minimize the loss of data when transferring the corrupted definitions
from the source metadata catalog into the target metadata catalog.

After processing finishes, a summary analysis report is generated. This report
identifies the contents of and the current space utilization of the new metadata
catalog.

Note: If the target metadata catalog is not large enough, CACCATUT issues
informational message 0x00710401.

Procedure
1. Customize and run member CACCATUT of the SCACSAMP data set.

a. Provide a job card that is valid for your site.
b. Change the CAC parameter to installed high level qualifier.
c. Change the OLDCAT parameter to identify the high level qualifier of the

input metadata catalogs.
d. Change the NEWCAT parameter to identify the high level qualifier of the

output metadata catalogs.
e. For the PARM keyword of the EXEC statement, specify REORG.

2. Update the JCL for the Classic data server to point to the new metadata
catalog.

Loading system objects into metadata catalogs
You can load system objects into the metadata catalog.

About this task

The METALOAD operation populates new system objects in the catalog such as
stored procedures and table definitions.

Chapter 8. Reference 377

The catalog that the CACCAT and CACINDX DD statements point to is updated
with the most current object definitions.

Procedure
1. Run member CACCATMD. The customized CACCATMD member provides an

example of how to run the METALOAD command. CACCATMD is available in
the SCACSAMP data set.

2. For the PARM keyword of the EXEC statement, specify METALOAD.

Results

Message 0x00760205 is written to SYSPRINT for each system object that is
successfully loaded.

Generating reports about metadata catalogs
Use member CACCATRP in the SCACSAMP data set to generate an analysis
report that identifies the contents of a sequential metadata catalog that is
referenced by the CACCAT and CACINDX DD statements. You can specify an
additional command line parameter that identifies the level of detail to include in
the report and the amount of validation to be performed on the contents of the
metadata catalog.

About this task

These options are available for the reports that you generate:

SUMMARY
Generates a summary report that identifies general information about the
metadata catalogs, space usage within the metadata catalog and summary
information about the number and types of objects stored in the metadata
catalog. This is the default type of report.

DETAIL
Generates a summary report and produces a detail report that identifies all
objects stored in the metadata catalog and identifies the structural linkages
between the different metadata catalog objects.

VALIDATE
Generates a detail report and validates the structural linkages for each
metadata catalog object.

v For more information on summary reports, see “Summary reports.”
v For more information on detail reports, see “Object detail reports” on page 382.

Procedure

Run member CACCATRP. The customized CACCATRP member is available in the
SCACSAMP data set.
For the PARM keyword of the EXEC statement, specify either SUMMARY,
DETAIL, or VALIDATE.

Summary reports:

After the catalog initialization and maintenance utility (CACCATUT) performs
UPGRADE, REORG, REPORT, and COPY operations, it generates system catalog
analysis reports. All such reports include a summary report.

378 Guide and Reference

Summary information is printed on a single page. The following example shows
the contents of the summary report that is written to SYSPRINT when an
UPGRADE, REORG or COPY operation is performed, or when any kind of
REPORT is requested.
Date: yyyy/mm/dd metadata catalog Analysis Report Page 1
Time: hh:mm:ss Summary

Index Component Information
Dataset name: Data-Set-Name
Version identifier: Version
Date created: yyyy/mm/dd hh:mm:ss
Last updated: yyyy/mm/dd hh:mm:ss
Last copied: yyyy/mm/dd hh:mm:ss
Space used: number-of-bytes
Maximum node ID: number
Deleted objects: number
Data file size used: number

Data Component Information
Dataset name: Data-Set-Name
Version identifier: Version
Catalog identifier: Identifier
Date created: yyyy/mm/dd hh:mm:ss
Last updated: yyyy/mm/dd hh:mm:ss
Last copied: yyyy/mm/dd hh:mm:ss
End-of-file: number-of-bytes
Highest valid RID: number

Space Utilization Summary Information
Object Type Records Space

Tables 189 314496
Columns 5245 4028160
Fragments 282 134144
Indexes 447 457728
Keys 552 141312
Views 2 768
View dependents 2 512
Routines 32 32768
Parameters 127 32512
DB authorizations 10 1280
Table authorizations 183 46848
Routine authorizations 32 8192
User authorizations 15 1920
Indexing 33 135168
Catalog identifier 1 128
Free space 2 14976
Total 7134 5350912

The summary report has two main categories:
v Information about the index component of the metadata catalog.
v Information about the data component and the different kinds of objects that are

stored in the data component.

The following fields give information about the index component of the metadata
catalog:

Dataset name
The name of the data set for the index component.

Version identifier
The version of the metadata catalog. For a V11.3 metadata catalog, the
version identifier is reported as 11.03.00.

Chapter 8. Reference 379

Date created
The date and time that the index component of the metadata catalog was
created. The date and time are displayed in US English format. The
creation date and time displayed for the data component should match the
date and time that the index component was created.

Last updated
The date and time the index component was last updated, which
corresponds to the date and time the last DDL statement was successfully
executed for this metadata catalog. The date and time are displayed in US
English format. The last update date and time displayed for the data
component should match the date and time that the index component was
last updated.

Last copied
The date and time that the index components contents was last replaced by
a copy operation, or N/A if the metadata catalog has never been the target
of a copy operation. The date and time are displayed in US English format.
The value displayed for the data component should match the value
displayed for the index component.

Space used
Identifies how much of the index component has been used, in bytes. The
number is not related to the data set allocation size or the current physical
size of the index component (that is, primary space allocation and extents).
The space used is computed based on the number of logical records that
exist within the index component. Each logical record is 64-bytes long, so
that total spaced used should be divisible by 64.

Maximum node ID
The maximum node ID value identifies how many logical records exist in
the index component. Each logical record is referred to as a node.

Deleted objects
The index component is used to track the number of metadata catalog
objects (tables, views, indexes, and so on) that have been deleted from the
metadata catalog. The deleted objects count identifies how many deleted
metadata catalogs objects exist in the metadata catalog. You can use the
REORG function to physically reclaim this unused space.

Data file size used
The data file size used number identifies how many bytes in the data
component are currently being used. Used in this context means the space
is either being actively used for an existing object, or represents “free
space” because the object has been deleted. Like the space used value, the
data file size used value has no relationship to the current physical DASD
allocation size of the data component.

The following fields give information about the data component of the metadata
catalog:

Dataset name
The name of the data set for the data component.

Version identifier
The version of the metadata catalog. For a V11.3 metadata catalog, the
version identifier is reported as 11.03.00.

380 Guide and Reference

Catalog identifier
A string value that is stored in the first logical record of the data
component that identifies which version of the software was used to create
the metadata catalog.

The following values can appear:
v V11.3 metadata catalog – IBM InfoSphere Classic V11.3 build-date

v V11.1 metadata catalog – IBM InfoSphere Classic V11.1 build-date

v V10.1 metadata catalog – IBM InfoSphere Classic V10.1 build-date

v V9.5 metadata catalog – IBM InfoSphere Classic V9.5 build-date

v V9.1 metadata catalog – IBM WebSphere Classic V9.1 build-date

The build-date takes the form mmddyyyy and is updated for major releases
and roll-up PTFs.

Date created
The date and time that the data component of the metadata catalog was
created. The date and time are displayed in US English format. The
creation date and time displayed for the data component should match the
date and time that the index component was created.

Last updated
The date and time the data component was last updated, which
corresponds to the date and time the last DDL statement was successfully
executed for this metadata catalog. The date and time are displayed in US
English format. The last update date and time displayed for the data
component should match the date and time that the index component was
last updated.

Last copied
The date and time that the data components contents was last replaced by
a copy operation, or N/A if the metadata catalog has never been the target
of a copy operation. The date and time are displayed in US English format.
The value displayed for the data component should match the value
displayed for the index component.

End-of-file
Number of physical bytes stored in the data component. For V9.1 and later
releases of the system catalogs this value should match the Data file size
used value displayed in the index component section of the report. If it
does not this implies the catalog has been corrupted. For a V8.x version of
the metadata catalog the end-of-file value must not match the value for
Data file size used. The End-of-file value is used to compute the value of the
highest valid RID value.

Highest valid RID
Identifies the highest valid record identifier (RID) that can be used to
reference a record in the metadata catalog. RIDs are used to establish
inter-record relationships within the metadata catalog. When a RID
reference value is larger than the number Highest valid RID number that
RID is identified as being corrupted. It is not valid because it references a
record that does not exist in the metadata catalog.

Space Utilization Summary Information
The space utilization summary information section of the report displays a
table listing the different kinds of objects that are stored in the system
catalog. For each object type, this section displays the number of records
that exist and the total space used for each object type. A summary line is
also printed that identifies the number of records that exist in the data

Chapter 8. Reference 381

component and the total space that is currently being used in the data
component. The total size should match the Data file size used number
printed in the index component section of the summary report.

Object type Description Code

Tables System tables and user tables created by a CREATE
TABLE statement.

TAB

Columns Columns associated with a table or view definition. COL

Fragments Objects that exist within a table to manage record
arrays; or for CA-IDMS tables the records
referenced by the table and for IMS tables the
segments referenced by the table definition.

FRG

Indexes Indexes automatically created for the system tables
and user indexes created by a CREATE INDEX
statement.

IDX

Keys SYSIBM.SYSKEYS rows created when a column is
referenced in a CREATE INDEX statement.

KEY

Views View definitions created using the CREATE VIEW
statement.

VEW

View dependents SYSIBM.SYSVIEWDEP rows created to manage a
CREATE VIEW statement.

VDP

Routines System stored procedure definitions automatically
created in the metadata catalog and user stored
procedure definitions created by a CREATE
PROCEDURE statement.

RTN

Parameters SYSIBM.SYSPARMS rows created when a
parameter is defined in a CREATE PROCEDURE
statement.

PRM

DB authorizations SYSIBM.SYSDBAUTH rows that were created due
to DBMS GRANT/REVOKE statements.

ADB

Table authorizations SYSIBM.SYSTABAUTH rows that were created due
to table GRANT/REVOKE statements.

ATB

Routine
authorizations

SYSIBM.SYSROUTINEAUTH rows that were
created due to routine GRANT/REVOKE
statements.

ART

User authorizations SYSIBM.SYSUSERAUTH rows that were created
due to user GRANT/REVOKE statements.

AUS

Indexing Internally created index records used to optimize
access to the contents of the metadata catalog.

SIX

Catalog identifier Catalog identifier record. This is the first record in
the data component and is used to record creation
and last updated information.

IRD

Free space Free space records that are available for reuse. FRE

Object detail reports:

When you run a REPORT operation and add to the PARM parameter the DETAIL,
VALIDATE, or DEBUG keywords, the metadata catalog analysis report also
includes an object detail report.

382 Guide and Reference

The report lists two lines of information for each logical record that is stored in the
data component of the metadata catalog. Page breaks occur after 50 lines of
information corresponding to about 25 metadata catalog objects.

The following example shows the format of the object details report:
Date: yyyy/mm/dd metadata catalog Analysis Report Page 2
Time: hh:mm:ss Object Detail

Authorization Column Table Frag.
Next Prev Start End / Parm Index Other

------ ------ ------ ------ ------ ------ ------
Record RID Size Type Name

1 0 128 IRD IBM InfoSphere Classic V11.3
N/A N/A N/A N/A N/A N/A N/A

2 1 1664 TAB SYSIBM.SYSTABLES
200 41135 0 0 14 2596 0

3 14 768 COL SYSIBM.SYSTABLES.NAME
20 1 N/A N/A 1 N/A N/A

4 20 768 COL SYSIBM.SYSTABLES.CREATOR
26 14 N/A N/A 1 N/A N/A

5 26 768 COL SYSIBM.SYSTABLES.TYPE
32 20 N/A N/A 1 N/A N/A

6 32 768 COL SYSIBM.SYSTABLES.DBNAME
38 26 N/A N/A 1 N/A N/A

The data component of the metadata catalog is organized as a set of logical
records. Each logical record has a record ID (RID) associated with it and a logical
record number. The minimum logical record size is 128-bytes and all logical
records are an integral multiple of 128. RIDs start at zero and represent 128-byte
increments in the data file. Internally, for inter-object relationships the RID is used
to identify the “source” or “target” record. Therefore, given a RID the physical
starting offset and the logical record can be computed in the data component.

For each logical record two lines of information are displayed. The following
information is displayed on the first line:

Record
Identifies the logical record number for the data component object.

RID Identifies the logical records computed record identifier (RID.) A ‘C' can be
appended after the RID to indicate that corruption has been detected in the
metadata catalog for the record being listed.

Size Identifies the length of the logical record in bytes. This value must be an
integral multiple of 128.

Type Identifies the type of logical record. One of the values shown in the Detail
Type column above in Table 4.12-7.

Name Identifies the external or internal name of the object. The following table
identifies the different types of object names that can be displayed and
their formats.

Object type Name

TAB Qualified table name: owner-name.table-name

COL Qualified column name: owner-name.table-name.column-name

Chapter 8. Reference 383

Object type Name

FRG Depends on the type of fragment, as follows:

v Record Array Fragment Definitions – Fragment ID and level number

v CA-IDMS tables – record name

v IMS tables – segment name

v Table-level fragments for tables other than CA-IDMS or IMS –
Fragment ID and level number

v System fragments – ‘SYSTEM'

IDX Qualified index name: owner-name.index-name

KEY Qualified key name: owner-name.index-name.column-name

VEW Qualified view name: owner-name.view-name

VDP Qualified view name and view dependent number: owner-name.view-
name(number)

RTN Qualified stored procedure name: owner-name.routine-name

PRM Qualified parameter name: owner-name.routine-name.parameter-name

ADB User and database class: user-name.database-class

ATB Qualified table name and user: owner-name.table-name.authorization-ID

ART Qualified stored procedure name and user: owner-name.routine-
name.authorization-ID

AUS Qualified object name and user: owner-name.table-name.authorization-ID

SIX Internal information

IRD Catalog identifier display in Summary section of the report

FRE N/A

The second line of information displayed for a metadata catalog object consists of
structural RID information that is stored in the record. The report lists RID
information that is associated with most types of catalog objects. When there is no
corresponding RID information for the object, the value N/A is displayed. A ‘C'
can be appended to the end of a RID to indicate that the RID value is invalid or a
corruption has been detected in the referenced object.

This information is primarily for use by support personnel. The following RID
information is displayed for each logical record:

Next The next logical RID number that that the logical record points to. Most of
the metadata catalog objects are maintained as some form of linked list
structure.

Prev The previous logical RID number that that the logical record points to.
Most of the metadata catalog objects are maintained as some form of
linked list structure.

Authorization Start & End
Identifies the first and last authorization record RIDs that are used to
manage access to the object.

Column / Parm
Identifies the first RID of the list of columns, keys, or parameters that
make up the owning object.

384 Guide and Reference

Table or Index
Identifies the RID of a related object. For example, the first index
associated with a table or the first view dependent record associated with a
view.

Frag or Other
Identifies the RID of a related object. For example, the first fragment
definition associated with a table, or the first indexing record (SIX)
associated with a system index definition.

The metadata utility
The metadata utility is a z/OS CLI-based application that connects to a Classic
data server and updates the metadata catalogs with the contents of DDL
statements that are read from a SYSIN input stream.

The metadata utility accepts as input the DDL that is generated by Classic Data
Architect.

Running the metadata utility
The metadata utility executes as a z/OS batch job. Sample JCL to execute the
metadata utility is distributed as member name CACMETAU in the SCACSAMP
library. The name of the load module for the metadata utility is CACMETA.

Before you begin

You must know the name of the query processor that you want the metadata
utility to connect to. You must also know the user ID and password required for a
connection.

The query processor that you want to connect to must be running.

About this task

The names of the sample JCL and load modules distributed in V11.3 are the same
as those used in prior releases of the metadata utility. You cannot use an earlier
release of the metadata utility JCL to run V11.3 of the utility without modification.
Use the USERHLQ.USERSAMP(CACMETAU) sample for V11.3.

MSGCAT DD
The metadata utility JCL must contain an MSGCAT DD statement that
references the message catalog. The message catalog is accessed by the CLI
component and the metadata utility to retrieve the text for error messages
reported by the Classic data server and error conditions detected by CLI or
by the metadata utility.

SYSOUT DD
The SYSOUT DD statement is used to record a summary of the processing
performed by the metadata utility.

SYSPRINT DD
As the metadata utility reads input records and executes each statement,
the metadata utility echoes each statement and the execution status of each
statement out to the SYSPRINT DD.

SYSIN DD
The sample JCL uses data set concatenation on the SYSIN DD statement to
provide the CONNECT TO SERVER statement. The metadata utility uses
the statement to configure the run-time environment so that the CLI

Chapter 8. Reference 385

interface can connect to the correct Classic data server to process the DDL
statements. The DDL statements are referenced in the second data set
referenced by the SYSIN DD statement and referenced by the DDLIN
substitution variable. A sample CONNECT TO SERVER statement is
provided in SCACCONF sample member CACMUCON.

The file referenced by the SYSIN DD statement is treated as a text input
stream, and can be in fixed length or variable length format. There is no
restriction on the record length.

DDLOUT DD
The DDLOUT DD statement can be used to support GENERATE DDL
statements. If you specify this statement, the metadata utility will write
DDL to the specified DDLOUT file for any successful GENERATE DDL
statements that are received from SYSIN. If the statement is not specified,
any generated DDL is written to SYSPRINT.

Procedure
1. Open for editing member CACMETAU in the SCACSAMP data set and make

these changes:
a. Provide a job card that is valid for your site.
b. Change the CAC parameter to the installed high-level qualifier.
c. If you are importing DB2 definitions, uncomment the DB2 parameter and

change the parameter to the correct high-level qualifer.
d. Customize the connection statement in member CACMUCON to point to

the Classic data server with the metadata catalog that you want to update.
See “CONNECT TO SERVER statement for the metadata utility” on page
391.

e. Change the DDLIN parameter to the member that contains the DDL
statements to process.

f. If you intend to run GENERATE DDL statements and you want to write the
output to a file, add a DDLOUT DD statement that points to the file that will
contain the generated DDL.

g. If you need to process large DDL statements, change the RGN parameter to
change the region size. Increase the region size in increments of two
megabytes.

2. Submit the job.

Results

As the metadata utility reads input records, it echoes them out to the SYSPRINT
DD statement.

A header is printed for each statement in the SYSIN input file. Each input record
read from SYSIN is echoed in the SYSPRINT file. The line number appears in front
of the statement text. The line numbers increase monotonically. When the SYSIN
data set has a record length that is greater than 80-bytes, the SYSIN input is
wrapped in 80-character increments. Wrapped lines do not have line numbers.

After the statements, the output specifies whether the statements ran successfully
or failed. Next, any error, warning, or information messages associated with the
execution of the statements appear.

386 Guide and Reference

Example

The following example shows sample SYSPRINT output:

The sample output shows that the metadata utility ran four statements. These
statements existed in the SYSIN input stream.

Summary reports that are generated by the metadata utility:

The metadata utility writes error and summary information to the SYSOUT data
set.

LINE NO. STATEMENT
74 CONNECT TO SERVER "CACSAMP" "TCP/0.0.0.0/9087"
75 USERID USER01;

CACM001I SQLCODE = 0, INFO: Statement execution was successful.
LINE NO. STATEMENT

77 DROP TABLE "CAC"."EMPLOYEE";
CACM001I SQLCODE = 0, INFO: Statement execution was successful.
LINE NO. STATEMENT

78
79 CREATE TABLE "CAC"."EMPLOYEE" DBTYPE VSAM
80 DS "USER01.EMPLOYEE"
81 (
82
83 "ENAME" SOURCE DEFINITION
84 DATAMAP OFFSET 0 LENGTH 20
85 DATATYPE C
86 USE AS CHAR(20),
87 "PHONE" SOURCE DEFINITION
88 DATAMAP OFFSET 20 LENGTH 4
89 DATATYPE UF
90 USE AS INTEGER,
91 "MAILID" SOURCE DEFINITION
92 DATAMAP OFFSET 25 LENGTH 6
93 DATATYPE C
94 USE AS CHAR(6),
95 "SALARY" SOURCE DEFINITION
96 DATAMAP OFFSET 31 LENGTH 4
97 DATATYPE P
98 USE AS DECIMAL(7 , 2),
99 "JOBID" SOURCE DEFINITION
100 DATAMAP OFFSET 35 LENGTH 4
101 DATATYPE D
102 USE AS REAL,
103 "EMPID" SOURCE DEFINITION
104 DATAMAP OFFSET 39 LENGTH 4
105 DATATYPE UF
106 USE AS INTEGER,
107 "DEPTID" SOURCE DEFINITION
108 DATAMAP OFFSET 43 LENGTH 2
109 DATATYPE UH
110 USE AS SMALLINT,
111 "DEPARTMENT" SOURCE DEFINITION
112 DATAMAP OFFSET 47 LENGTH 15
113 DATATYPE C
114 USE AS CHAR(15));

CACM001I SQLCODE = 0, INFO: Statement execution was successful.
LINE NO. STATEMENT

115 GRANT DELETE, INSERT, UPDATE, SELECT ON TABLE "CAC"."EMPLOYEE" TO
PUBLIC;

CACM001I SQLCODE = 0, INFO: Statement execution was successful.

Figure 17. Sample SYSPRINT output

Chapter 8. Reference 387

During normal processing, the output written to SYSOUT consists of a two line
“header” that identifies the format of the information displayed. For each
statement processed by the metadata utility, the starting and ending line numbers
from the SYSIN file are reported. The starting line number identifies the actual line
on which the statement started and does not include any comments that might
have been encountered before the statement. The last line of the statement is the
line where the ; is detected and does not take into account any comment lines that
might exist after the statement. Therefore, it is possible to see “jumps” between
ending and starting line numbers.

The third column in the summary report output identifies the statements
processing status. For example, in the SYSPRINT output, the processing status is 0
if no errors were reported, a negative SQL error code value or a hexadecimal form
of a system error message. Additionally, N/A is displayed for generated statements
that were not part of the SYSIN input stream, such as DISCONNECT statements.

After the processing status is the name of the statement that was encountered
followed by the object name that the statement is referencing. Table 72 identifies
the statement types that are supported by the metadata utility. For each entry in
the table, the statement name is followed by the type of object name that is
extracted from the statement. For each entry the statement class is also identified,
which determines how the statement is processed by the metadata utility.

Table 72. Statement types that are supported by the metadata utility

Types of statement Names of objects Class

CREATE TABLE Table name DDL

CREATE INDEX Index name DDL

CREATE PROCEDURE Procedure name DDL

CREATE VIEW View name DDL

COMMENT ON Table name, index name,
column name, or stored
procedure name

DDL

ALTER TABLE Table name DDL

DROP INDEX Index name DDL

DROP TABLE Table name DDL

DROP PROCEDURE Procedure name DDL

DROP VIEW View name DDL

GRANT N/A DDL

REVOKE N/A DDL

CONNECT TO DB2 DB2 subsystem name Connect

CONNECT TO SERVER Data source name Connect

IMPORT DB2 TABLE DB2 table name Import

IMPORT DB2 VIEW DB2 view name Import

IMPORT DB2 INDEX DB2 index name Import

DISCONNECT FROM DB2 DB2 subsystem name Connect

DISCONNECT FROM
SERVER

Data source name Connect

388 Guide and Reference

DB2 object names can be longer than Classic object names. The SYSOUT output is
designed to display in 80-column format. If the object name is greater than an
80-character line, the name is wrapped to the next line of output until the entire
contents of the name displays. For these continued object name lines, the
Processing Status contains a + (plus) sign. The DISCONNECT FROM statement is
a pseudo statement generated by the metadata utility. The DISCONNECT FROM
statement is automatically generated during the metadata termination process
when a connection exists with DB2 or a Classic data server, or when the SYSIN
input stream contains multiple CONNECT TO DB2 or data server statements.

If a statement is encountered that is not in Table 72 on page 388, then the metadata
utility issues error 0x00760002 (Unsupported statement encountered by the
metadata utility: start-of-statement). The first 25 characters of the statement are
displayed in the summary report, and the object name is set to UNKNOWN. The
line numbers that display for this unknown/unsupported statement start with the
first line of the statement. The ending line number is where a ; is encountered or
end-of-file is reached. The contents of this statement are also echoed in SYSPRINT
followed by the 0x00760008 error message text and the first 70 characters of the
statement.

For supported statements, a single line is generated in the SYSOUT summary
report for each statement that was identified in the SYSIN input stream. A single
line is also generated in the SYSOUT summary report for any DISCONNECT or
COMMENT ON statements generated by the metadata utility. For generated
statements, the starting and ending line numbers are identified as N/A. Following
each statement summary line, for statements that either reported errors when they
were executed or if the statement reported one or more warning messages,
information messages, or both, the SYSOUT output echoes the same error,
warning, and information messages that display in the SYSPRINT output stream.

Note: COMMENT ON statements are generated when processing DB2 IMPORT
statements

Return codes for the metadata utility:

The metadata utility uses the z/OS return code to identify the overall success or
failure of its execution.

The following table identifies the return codes that the metadata utility can issue.

Start End Processing
Line # Line # Status Statement Object

1 1 0 CONNECT TO SERVER CACSAMP
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

2 2 -204 DROP TABLE CAC.EMPLOYEE
CACM0002I SQLCODE = -204, ERROR: CAC.EMPLOYEE is an undefined name.

3 22 0 CREATE TABLE CAC.EMPLOYEE
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

N/A N/A 0 DISCONNECT FROM SERVER CACSAMP
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

Figure 18. Sample SYSOUT summary report

Chapter 8. Reference 389

Table 73. List of return codes for the metadata utility

Return code Meaning

20 Environmental setup error detected. Processing is not attempted.

16 Errors detected in the configuration member or while initializing the
run-time environment. Processing is not attempted.

12 Error reported connecting to the Classic data server. Processing is not
attempted.

8 Error reported by the server, CLI, or metadata utility while processing a
statement. Processing continues with the next statement in the SYSIN input
stream.

4 Warning messages issued by the server or metadata utility. Statements were
processed successfully.

0 No errors were reported.

CONNECT statements for the metadata utility
The metadata utility supports two different types of CONNECT statements.

The metadata utility does not check that CICS connection statements are valid.
When it encountered one of these statements, the metadata utility echoes the
statement in the SYSOUT output and displays message CACM010I with the
following information:
0x00760200 - CONNECT TO CICS statement no longer used.

CONNECT TO DB2 statement for the metadata utility:

The CONNECT TO DB2 statement for the metadata utility uses the following
syntax:

�� CONNECT TO DB2 SUBSYSTEM subsystem-name USING PLAN plan-name �

�
ACCESS CATALOG PREFIX prefix

; ��

CONNECT TO DB2
These keywords identify the statement. All subsequent parameters describe
the DB2 system and table owner name that the metadata utility queries for
information during an IMPORT operation. The identified DB2 system and
catalog are used until it is explicitly changed by another CONNECT TO
DB2 statement or until the metadata utility terminates.

SUBSYSTEM subsystem-name
This clause identifies the DB2 subsystem where the DB2 objects which are
referenced in subsequent DB2 IMPORT statements, exist. The subsystem
name identifies the DB2 subsystem to which the connection will be made.
The name cannot exceed 4 characters in length. The characters permitted in
the subsystem name vary with the version of DB2.

USING PLAN plan-name
This clause identifies the DB2 application plan that is used to access the
target DB2 subsystem identified by subsystem-name. plan-name. It cannot
exceed 8 characters in length, and the first character must be alphabetic.
There is no default value.

390 Guide and Reference

Accessing DB2 data requires binding an application plan for use by the
DB2 Call Attach Facility (CAF) that is used by the metadata utility to
access DB2 data. InfoSphere Classic Federation Server for z/OS includes
the DB2 database request module (DBRM) that is required for binding the
necessary plan. SAMPLIB member CACBCNTL contains a sample DB2
bind statement. SAMPLIB member CACBIND contains sample JCL to
process the CACBCNTL input and bind the plan to the Classic supplied
DBRM. The Classic DBRM is supplied in SAMPLIB member CACP2EC.
To bind a plan, follow these steps:
1. Edit CACBCNTL to change the plan name and DB2 DSN name.
2. Edit CACBIND by making the following changes:

v Provide a valid job card.
v Change the CAC variable to the high-level qualifier of your Classic

installation.
v Change the DB2 variable to the high-level qualifier of your DB2

installation.
v Run the CACBIND JCL.

ACCESS CATALOG PREFIX prefix
This optional clause identifies the prefix of the DB2 catalog. Do not enter
this keyword phrase if you want to accept the default value SYSIBM as the
prefix. If importing a table, view, or alias, the metadata utility uses the
prefix to access the DB2 catalog tables ‘prefix.SYSTABLES' and
‘prefix.SYSCOLUMNS'. If importing an index, the metadata utility uses the
prefix to access the DB2 catalog tables ‘prefix.SYSINDEXES' and
‘prefix.SYSKEYS'.

CONNECT TO SERVER statement for the metadata utility:

The metadata utility uses the information in this statement to connect to a query
processor and update the content of a metadata catalog.

The CONNECT TO SERVER statement uses the following syntax:

�� CONNECT TO SERVER datasource-name connection-URL
USERID user-ID

�

�
PASSWORD password

; ��

Parameters

datasource-name
A 1- to 16-character native identifier that names the query processor (data
source) to connect to in the Classic data server identified by
connection-URL. datasource-name is used until it is explicitly changed by
another CONNECT TO SERVER statement or until the metadata utility
terminates.

connection-URL
A native identifier that provides information used to connect to a Classic
data server. The URL must be delimited and match the connection
information of an active TCP/IP connection handler in the Classic data
server.

Chapter 8. Reference 391

USERID user-ID
This optional clause specifies the user ID for connecting to the Classic data
server. The default value is the TSO user ID associated with the metadata
utility job. The user ID is a 1- to 7-character short-native identifier.

PASSWORD password
This clause is required when the Classic data server has the SAF exit
active. password provides authentication information when the connection
with the Classic data server is established. By default, the connection is
established without a password.

If the PASSWORD clause is specified, the password is a 16-character DES
encrypted character string specified in hexadecimal format. This password
needs to be generated using the password generator utility on Windows or
on z/OS.

IMPORT DB2 statements for the metadata utility in Classic
federation
The metadata utility uses the IMPORT DB2 statements to extract the definition of
one or more DB2 objects from a DB2 system, which is identified by a preceding
CONNECT TO DB2 statement. Based on the information that it retrieves, the
metadata utility builds a CREATE TABLE or CREATE INDEX statement that
defines the DB2 object in a metadata catalog.

For each table or index that is created, the metadata utility generates a single
COMMENT ON statement that identifies the name of the DB2 source object.
Individual column level comment information is not created because the DB2 and
Classic column names are identical.

IMPORT DB2 TABLE or VIEW statement for the metadata utility:

Use this statement for importing alias, table, materialized query tables, or view
definitions.

The IMPORT DB2 TABLE or VIEW statement uses the following syntax:

�� IMPORT DB2 TABLE [DB2-owner-name .] DB2-table-name
VIEW

�

�
[RENAME AS owner-name .] table-name WITH INDEXES

��

Parameters

[DB2-owner-name.]DB2-table-name
After identifying the type of DB2 object to import, you specify the name of
that DB2 object. You can specify the name with or without delimiters.

You can qualify the DB2 object with DB2-owner-name. If you do not qualify
the object, the default qualifier is the TSO user ID associated with the
metadata utility job.

DB2-owner-name and DB2-table-name can each be 128-characters long
because the metadata utility supports DB2 Version 8 “long” names.
However, if the DB2 subsystem identified in the CONNECT TO DB2
statement is a version prior to V8, the maximum length that you can
specify for DB2-owner-name is 8 characters. The maximum length you can
specify for DB2-table-name 18 characters. If you supply a long name but are

392 Guide and Reference

using a DB2 subsystem earlier than V8, the IMPORT operation returns no
information for the DB2 object and fails.

RENAME AS [owner-name.]table-name
The RENAME AS clause specifies the name of the table to define in the
metadata catalog for the DB2 object. The name can be up to 18 characters
long. You can specify table-name as a delimited or undelimited identifier.

You can also qualify the name or leave it unqualified. The qualifier can be
up to 8-characters long. The default qualifier is the user ID obtained from
the CONNECT TO SERVER statement that was used to establish the
connection with the Classic data server. If you do not specify the user ID,
the default value is the TSO user ID that is associated with the metadata
utility job. Because the DB2 default owner is based on the TSO user ID that
executes the metadata utility, it is possible for the owner name in this
clause to differ from the DB2 default owner name.

The owner name cannot be SYSIBM or SYSCAC.

You must use the RENAME AS clause when either of the two following
conditions is true:
v The name of the DB2 object already exists in the metadata catalog and

does not refer to a DB2 object, or refers to a different DB2 object.
v The IMPORT DB2 statement refers to a DB2 object with a long name.

The metadata catalog does not support long names.

WITH INDEXES
This clause requests that DB2 index definitions automatically be defined
for the DB2 table in the metadata catalog. Indexes are defined with the
DB2 index name. They are associated with the table name that was
specified in the RENAME AS clause or the DB2 table name, if a RENAME
AS clause was not specified. The automatic creation of indexes is
attempted only if the execution of the CREATE TABLE statement is
successful.

If execution of the CREATE TABLE statement is successful, the metadata
utility internally generates a DB2 IMPORT INDEX statement for each DB2
index that is defined.
If the INDEXES that are associated with the DB2 table contain long names,
you cannot use the WITH INDEXES clause. You must use a separate
IMPORT DB2 INDEX statement with a RENAME clause to import indexes
with long names.

When processing a DB2 IMPORT table statement, the metadata utility access the
DB2 catalog and reads the SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS tables
to gather information for the table to be imported. It also reads the
SYSIBM.SYSINDEXES table if the WITH INDEXES option is specified. From this
information, the metadata utility generates a CREATE TABLE statement and
submits that to the Classic data server to be processed. If the processing is
successful, the metadata utility generates a COMMENT ON statement to document
the original DB2 table name and submits that statement to the Classic data server
for processing.

If the WITH INDEXES option is specified, the metadata utility generates an
IMPORT DB2 INDEX statement for each index that is defined on the original DB2
table. Generating this statement results in a CREATE INDEX and COMMENT ON
statement being generated for each index that is defined on the original table.

Chapter 8. Reference 393

Sample table import SYSPRINT output using a table named DNS8710.EMP:
LINE NO. STATEMENT

1 CONNECT TO SERVER CACSAMP TCP/0.0.0.0/5026
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

2 CONNECT TO DB2 SUBSYSTEM DSN1 USING PLAN CACPLAN;
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

3 IMPORT DB2 TABLE DNS8710.EMP RENAME AS CAC_DB2.EMP WITH INDEXES;
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

CREATE TABLE "CAC_DB2"."EMP" TABLE "DNS8710"."EMP"
SUBSYSTEM "DSN1" USING PLAN "CACPLAN"
("EMPNO" SOURCE DEFINITION COLUMN "EMPNO"

COLTYPE CHAR(6) USE AS CHAR(6) NOT NULL,
"FIRSTNAME" SOURCE DEFINITION COLUMN "FIRSTNAME"
COLTYPE VARCHAR(12) USE AS VARCHAR(12) NOT NULL,
"MIDINIT" SOURCE DEFINITION COLUMN "MIDINIT"
COLTYPE CHAR(1) USE AS CHAR(1) NOT NULL,
"LASTNAME" SOURCE DEFINITION COLUMN "LASTNAME"
COLTYPE VARCHAR(15) USE AS VARCHAR(15) NOT NULL,
"WORKDEPT" SOURCE DEFINITION COLUMN "WORKDEPT"
COLTYPE CHAR(3) USE AS CHAR(3),
"PHONENO" SOURCE DEFINITION COLUMN "PHONENO"
COLTYPE CHAR(4) USE AS CHAR(4),
"HIREDATE" SOURCE DEFINITION COLUMN "HIREDATE"
COLTYPE DATE USE AS DATE,
"JOB" SOURCE DEFINITION COLUMN "JOB"
COLTYPE CHAR(8) USE AS CHAR(8),
"EDLEVEL" SOURCE DEFINITION COLUMN "EDLEVEL"
COLTYPE SMALLINT USE AS SMALLINT,
"SEX" SOURCE COLUMN DEFINITION "SEX"
COLTYPE CHAR(1) USE AS CHAR(1),
"BIRTHDATE" SOURCE COLUMN DEFINITION "BIRTHDATE"
COLTYPE DATE USE AS DATE,
"SALARY" SOURCE COLUMN DEFINITION "SALARY"
COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),
"BONUS" SOURCE COLUMN DEFINITION "BONUS"
COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),
"COMM" SOURCE COLUMN DEFINITION "COMM"
COLTYPE DECIMAL(9,2) USE AS DECIMAL(9,2),

PRIMARY KEY("EMPNO"));
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

COMMENT ON TABLE "CAC_DB2"."EMP"
IS "Source DB2 table is DSN8710.EMP’;

CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

IMPORT DB2 INDEX DSN8710.XEMP1 DEFINED ON TABLE CAC_DB2.EMP;
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

CREATE UNIQUE INDEX “DSN8710”.”XEMP1”

394 Guide and Reference

ON “CAC_DB2”.”EMP”
(“EMPNO” ASC);

CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

COMMENT ON INDEX “DSN8710”.”XEMP1”
IS 'Source DB2 index is DSN8170.XEMP1’;

CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

IMPORT DB2 INDEX DSN8710.XEMP2 DEFINED ON TABLE CAC_DB2.EMP;
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

CREATE INDEX “DSN8710”.”XEMP2”
ON “CAC_DB2”.”EMP”
(“WORKDEPT” ASC);

CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

COMMENT ON INDEX “DSN8710”.”XEMP2”
IS 'Source DB2 index is DSN8170.XEMP2’;

CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

DISCONNECT FROM DB2 DSN1
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

DISCONNECT FROM SERVER CACSAMP;
CACM0001I SQLCODE = 0, INFO: Statement execution was successful.

IMPORT DB2 INDEX statement for the metadata utility:

When you import a DB2 table definition, you can use this statement to request that
the indexes defined on the table in DB2 also be defined within a metadata catalog.

The IMPORT DB2 INDEX statement uses the following syntax:

�� IMPORT DB2 INDEX [DB2-owner-name .] DB2-index-name �

�
RENAME AS index-name

DEFINED ON TABLE table-name ��

Parameters

[DB2-owner-name.]DB2-index-name
You can specify the name of that DB2 index with or without delimiters.

You can also qualify the DB2 index with DB2-owner-name. If you do not
qualify the object, the default qualifier is the TSO user ID associated with
the metadata utility job.

DB2-owner-name and DB2-table-name can each be 128-characters long
because the metadata utility supports DB2 Version 8 “long” names.
However, if the DB2 subsystem identified in the CONNECT TO DB2
statement is a version prior to V8, the maximum length that you can

Chapter 8. Reference 395

specify for DB2-owner-name is 8 characters. The maximum length that you
can specify for DB2-table-name is 18 characters. If you supply a long name
but are using a DB2 subsystem earlier than V8, the IMPORT operation
returns no information for the DB2 index and fails.

RENAME AS index-name
This clause specifies the name of the index to define in the metadata
catalog. The name can be up to 18-characters long. You can specify
index-name as a delimited or undelimited identifier.

You can also qualify the name or leave it unqualified. The qualifier can be
up to 8-characters long. The default qualifier is the user ID obtained from
the CONNECT TO SERVER statement that was used to establish the
connection with the Classic data server. If you do not specify the user ID,
the default value is the TSO user ID that is associated with the metadata
utility job. Because the DB2 default owner is based on the TSO user ID that
executes the metadata utility, the owner name in this clause can differ from
the DB2 default owner name.

The owner name cannot be SYSIBM or SYSCAC.

You must use the RENAME AS clause when either of the following
conditions is true:
v The name of the DB2 index already exists in the metadata catalog and

does not refer to a DB2 index, or refers to a different DB2 index.
v The IMPORT DB2 INDEX statement refers to a DB2 index with a long

name. The metadata catalog does not support long names.

DEFINED ON TABLE [owner-name.]table-name
This clause specifies the name of the logical table that is referenced in the
CREATE INDEX statement. You can specify the table name as a delimited
or undelimited identifier.

You can also qualify the name or leave it unqualified. The qualifier can be
up to 8-characters long. The default qualifier is the user ID obtained from
the CONNECT TO SERVER statement that was used to establish the
connection with the Classic data server. If you do not specify the user ID,
the default value is the TSO user ID that is associated with the metadata
utility job. Because the DB2 default owner is based on the TSO user ID that
executes the metadata utility, the owner name in this clause can differ from
the DB2 default owner name.

GENERATE DDL statement for the metadata utility
To generate DDL from the catalog, you can use Classic Data Architect. You can also
use the metadata utility directly on the z/OS system. The metadata utility can
generate the same kinds of objects that Classic Data Architect can generate.

Table 74. Generated Statements supported for each object type

Generated DDL Object

DROP statements TABLE, VIEW, INDEX, PROCEDURE

CREATE statements TABLE, VIEW, INDEX, PROCEDURE

COMMENT ON statements TABLE, VIEW, INDEX, PROCEDURE

GRANT statements TABLE, VIEW, INDEX, PROCEDURE

ALTER statements TABLE, VIEW

Indexes TABLE

396 Guide and Reference

One situation where you might choose to create DDL from the metadata utility is
in a migration. For example, you could generate DDL for objects on a test system
and import those objects onto a production system. The DDL is output to the
media that you specify for subsequent processing. The generated DDL is formatted
for direct input into the metadata utility for creating or modifying catalog entries.

To generate DDL, the metadata utility first connects to an appropriate Classic data
server specified in a CONNECT TO SERVER statement. Once connected, the
catalog is accessible for queries necessary to gather data for the GENERATE DDL
statements. The generated DDL is printed to SYSPRINT or recorded in the file
associated with the DDLOUT DD in the CACMETAU JCL.

Syntax

�� GENERATE DDL FOR TABLE
INDEX Like-Clause
VIEW
PROCEDURE

�

� Object-Name
With-Options

��

Like-Clause:

LIKE
NOT ESCAPE char

Object-Name:

object-name
schema-name.object-name

With-Options:

WITH �

,

ALL
INDEX
DROP
ALTER
GRANT
COMMENT ON

Parameters

Like-Clause:
LIKE
LIKE ESCAPE charNOT LIKE ESCAPE char

Specify this clause when the object name contains wildcard characters.
When the object name contains an underscore name character, an escape
character must be defined to preserve the context. Once defined, place the
escape character immediately preceding the underscore character to
indicate that it is not a wildcard character.

Chapter 8. Reference 397

GENERATE DDL FOR TABLE LIKE ESCAPE ’!’ "USER1"."IMS!_TAB%"
WITH DROP,INDEX;

Object-Name:
object-name
schema-name.object-name

Specify the object with or without a schema name. If schema name is not
specified, the schema defaults to the user ID assigned to the metadata
utility job. When you specify objects after a like clause, you can use
wildcard characters in the schema or object name. The supported wildcard
characters are the same as those characters that are supported by the
Query Processor (underscore and percent sign).

System catalog objects with a schema name of SYSIBM or SYSCAC cannot
be generated using the GENERATE DDL statement. When the like clause is
used, all system objects that qualify for the like processing are ignored. If
you attempt to generate a specific object in the SYSIBM or SYSCAC
schema, the following error is returned:
CACM004I Non-SQLCODE = 0x0071001E, ERROR: You cannot create or
generate a catalog object with an owner of SYSIBM or SYSCAC.

With-Options:
WITH option

The with options clause is used to describe additional DDL statement types
to be included with the CREATE object statement that is generated. You can
specify additional statement types individually or you can specify ALL,
which generates all additional statement types that are applicable for the
CREATE object statement. The Table 74 on page 396 table shows the valid
additional statement types that can be generated.

A redundant or duplicate specification in the with options clause returns
an error during parsing (for example, if other options are specified with
ALL). A specification of an invalid option returns an error during parsing
(for example, when an index is specified on a view).

Considerations for the DDL output
v By default, the generated DDL is written to SYSPRINT in the standard output

format for the metadata utility report.
If you want to generate the DDL to a file, allocate the file to the DDLOUT DD in
the CACMETAU JCL. When the metadata utility is run, the DDL is written to
the data set referenced by the DDLOUT DD instead of SYSPRINT. And,
SYSPRINT contains the following informational message for each statement:
CACM001I SQLCODE = 0, INFO: The generated DDL was successfully written to

DDLOUT.

v As with other metadata utility statements, you can choose to set up the SYSIN
files for CACMETAU as two concatenated LRECL 80 files. The first file contains
the CONNECT TO SERVER statement and the second contains the statements to
run. For example:
//SYSIN DD DISP=SHR,DSN=&USRHLQ..SCACCONF(&CONNECT)
// DD DISP=SHR,DSN=&USRHLQ..SCACSAMP(&DDLIN)

Note: When concatenating with SYSIN, ensure that the files are consistent in
their LRECL definitions.
The metadata utility can handle a SYSIN of 80 bytes or greater. Cases where you
might require more than 80 bytes:

398 Guide and Reference

– If you specify DB2 tables and indexes using DB2 long names. (DB2 long
names could require as much as 132 bytes.)

– If you specify COMMENT ON statements with long text strings.

Example 1

Generate DDL for a specific table named SEQ_TABLE1 that was created by USER1.
Include a DROP statement in the generated DDL. The generated DDL is recorded
in the standard SYSPRINT output file for z/OS.

Provide the following input to SYSIN:
GENERATE DDL FOR TABLE "USER1"."SEQ_TABLE1" WITH DROP;

SYSOUT contains the following metadata utility output:

SYSPRINT contains the following metadata utility output:

********************************* TOP OF DATA **************************************
Start End Processing
Line # Line # Status Statement Object

1 1 0 CONNECT TO SERVER CACDAS
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

2 2 0 GENERATE DDL FOR "USER1"."SEQ_TABLE1"
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

N/A N/A 0 DISCONNECT FROM SERVER CACDAS
CACM001I SQLCODE = 0, INFO: Statement execution was successful.
******************************** BOTTOM OF DATA ************************************

Chapter 8. Reference 399

Example 2

Generate DDL for table names belonging to USER1 and beginning with the
characters IMS_TAB. Include indexes defined on the resultant tables. Generate
DROP statements for the resultant tables and indexes. Record the generated DDL
in the specified z/OS data set associated with the DDLOUT DD.

Provide the following input to SYSIN, with a DDLOUT DD specified in the
CACMETAU JCL:
GENERATE DDL FOR TABLE LIKE ESCAPE ’!’ "USER1"."IMS!_TAB%"

WITH DROP,INDEX;

********************************* TOP OF DATA **************************************
LINE NO. STATEMENT

1 CONNECT TO SERVER CACDAS "TCP/9.30.136.90/5002";
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

2 GENERATE DDL FOR TABLE "USER1"."SEQ_TABLE1" WITH DROP;
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

DROP TABLE "USER1"."SEQ_TABLE1";

CREATE TABLE "USER1"."SEQ_TABLE1" DBTYPE SEQUENTIAL
DS "USER1.SEQUENTIAL.SEQ.EMPFILE"

(
"ENAME" SOURCE DEFINITION

DATAMAP OFFSET 0 LENGTH 20
DATATYPE C
USE AS CHAR(20),

"PHONE" SOURCE DEFINITION
DATAMAP OFFSET 20 LENGTH 4
DATATYPE UF
USE AS INTEGER,

"MAILID" SOURCE DEFINITION
DATAMAP OFFSET 25 LENGTH 6
DATATYPE C
USE AS CHAR(6),

"SALARY" SOURCE DEFINITION
DATAMAP OFFSET 31 LENGTH 4
DATATYPE P
USE AS DECIMAL(7 , 2),

"JOBID" SOURCE DEFINITION
DATAMAP OFFSET 35 LENGTH 4
DATATYPE F
USE AS REAL,

"EMPID" SOURCE DEFINITION
DATAMAP OFFSET 39 LENGTH 4
DATATYPE UF
USE AS INTEGER,

"DEPTID" SOURCE DEFINITION
DATAMAP OFFSET 43 LENGTH 2
DATATYPE UH
USE AS SMALLINT,

"DEPARTMENT" SOURCE DEFINITION
DATAMAP OFFSET 47 LENGTH 15
DATATYPE C
USE AS CHAR(15));

CACM001I SQLCODE = 0, INFO: Statement execution was successful.

******************************** BOTTOM OF DATA ************************************

400 Guide and Reference

SYSOUT contains the following metadata utility output:

SYSPRINT contains the following metadata utility output:

Only one table created by USER1 fulfilled the search criteria for a name beginning
with the characters IMS_TAB. The z/OS data set associated with the DDLOUT DD
contains the following generated DDL:

********************************* TOP OF DATA **************************************
Start End Processing
Line # Line # Status Statement Object

1 1 0 CONNECT TO SERVER CACDAS
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

2 3 0 GENERATE DDL FOR LIKE
CACM001I SQLCODE = 0, INFO: The generated DDL was successfully written to DDLOUT.

N/A N/A 0 DISCONNECT FROM SERVER CACDAS
CACM001I SQLCODE = 0, INFO: Statement execution was successful.
******************************** BOTTOM OF DATA ************************************

********************************* TOP OF DATA **************************************
LINE NO. STATEMENT

1 CONNECT TO SERVER CACDAS "TCP/9.30.136.90/5002";
CACM001I SQLCODE = 0, INFO: Statement execution was successful.

LINE NO. STATEMENT

2 GENERATE DDL FOR TABLE LIKE ESCAPE ’!’ "USER1"."IMS!_TAB%"
3 WITH DROP,INDEX TO DSN:USER1.GENERATE.OUTPUT;
CACM001I SQLCODE = 0, INFO: The generated DDL was successfully written to DDLOUT
******************************** BOTTOM OF DATA ************************************

Chapter 8. Reference 401

Encrypting passwords for connecting to Classic data servers
when the SAF exit is active
If the Classic data server that the metadata utility communicates with has an active
SAF exit, the CONNECT TO SERVER statement used by the metadata utility must
include both a USERID and PASSWORD clause.

About this task

The password must be encrypted according to the Data Encryption Standard
(DES). Use the password encryption utility for Windows or the password
encryption utility for z/OS to encrypt the password according to this standard.
v The password generator utility for Windows, cacencr.exe, is a Windows-based

command-line utility.
v The password generator utility for z/OS runs as a batch job.

The SAF exit does not use encryption. If your site uses SAF exits you can connect
to a server by using the Classic Data Architect. This GUI tool masks your
password, but does not use encryption. Supply your z/OS user ID and password.

********************************* TOP OF DATA **************************************
DROP INDEX "USER1"."IMS_TABLE_IDX1";

DROP TABLE "USER1"."IMS_TABLE";

CREATE TABLE "USER1"."IMS_TABLE" DBTYPE IMS
DS "USER1.IMS.IMSFILE"

(
"NAME" SOURCE DEFINITION

DATAMAP OFFSET 0 LENGTH 20
DATATYPE UC
USE AS CHAR(20),

"ADDRESS1" SOURCE DEFINITION
DATAMAP OFFSET 20 LENGTH 20
DATATYPE UC
USE AS CHAR(20),

"ADDRESS2" SOURCE DEFINITION
DATAMAP OFFSET 40 LENGTH 20
DATATYPE UC
USE AS CHAR(20),

"CITY" SOURCE DEFINITION
DATAMAP OFFSET 60 LENGTH 12
DATATYPE UC
USE AS CHAR(12),

"STATE" SOURCE DEFINITION
DATAMAP OFFSET 72 LENGTH 2
DATATYPE UC
USE AS CHAR(2),

"ZIP" SOURCE DEFINITION
DATAMAP OFFSET 74 LENGTH 5
DATATYPE UC
USE AS CHAR(5),

"PLUS4" SOURCE DEFINITION
DATAMAP OFFSET 79 LENGTH 4
DATATYPE UC
USE AS CHAR(4));

CREATE INDEX "USER1"."IMS_TABLE_IDX1" ON "USER1"."IMS_TABLE" ("STATE"
ASC, "ZIP" ASC, "NAME" ASC);

******************************** BOTTOM OF DATA ************************************

402 Guide and Reference

User-written JDBC and ODBC applications do not use encrypted passwords. If
your site uses these applications, you can connect by using a z/OS user ID and
password.

Running the password generator utility for Windows:

The password generator utility for Windows verifies the password that you supply,
encrypts the password, and writes the encrypted password to the password.txt file
in the current directory.

About this task

The utility is installed in the ODBC\bin directory where you installed the Classic
ODBC client.

Procedure

1. Update the PATH variable to include the following references to the ODBC
installation directories: PATH=ODBC\lib;ODBC\bin;....

2. Edit the cac.ini file.
a. In a Windows command window, navigate to the ODBC\lib directory.
b. Edit the cac.ini file to provide the following required settings based on the

location of your Classic ODBC client installation and your locale
information:

NL CAT = c:\\Program Files\\IBM\\ISClassic113\\ODBC\\lib
NL = US English

3. Set the CAC_CONFIG environment variable to point to the full path of the
cac.ini file that you updated in the previous step.

SET CAC_CONFIG= c:\Program Files\IBM\ISClassic113\ODBC\lib\cac.ini

4. In a Windows command window, navigate to the ODBC\bin directory.
5. Type cacencr and press Enter.
6. At the prompt, type the password that you want to encrypt. The password

encryption utility creates a file named password.txt that contains the password
in a 16-byte hexadecimal string format.

ENCRYPTED=x’<16-byte hexadecimal value>’

7. Open the password.txt file in a file editor and copy the hexadecimal string
(x'<16-byte hexadecimal value>') to the Windows clipboard.

8. In a mainframe session, edit the data set that contains the CONNECT TO
SERVER statement used for the metadata utility. Paste the encrypted password
after the PASSWORD keyword.

Running the password generator utility for z/OS:

The password generator utility for z/OS verifies the password that you supply,
encrypts the password, and writes the encrypted password to the file that the DD
PASSWD points to.

About this task

Sample member CACENCRP that runs the utility is distributed in the
USERHLQ.SCACSAMP data set.

Chapter 8. Reference 403

Procedure

1. Create a new file or a PDS member that only users who should know the
encrypted password can access. You must create the file or PDS with the
following attributes: RECFM=FB and LRECL=80.

2. Edit the new file or PDS member. Enter the password that you want to encrypt
using the following keyword value pair:

PASSWORD=<value>

The keyword does not have to start in column one.
3. Edit the userhlq.SCACSAMP(CACENCRP) JCL member. Change the PASSWD

DD statement to point to the file that you updated in the previous step.
4. Submit the userhlq.SCACSAMP(CACENCRP) JCL member to generate the

encrypted password. The encrypted password is written back to the input file
that the DD PASSWD points to. The file will contain the original PASSWORD
keyword=value pair and the ENCRYPTED keyword=value:

PASSWORD=<value> ENCRYPTED=x’<16-byte hexadecimal value>’

5. Browse the file that the DD PASSWD points to. Copy the 16-byte hexadecimal
string (x'<16 byte hexadecimal value>') from that file.

6. Edit the data set that contains the CONNECT TO SERVER statement used for
the metadata utility. Member userhlq.SCACCONF(CACMUCON) contains an
example CONNECT TO SERVER statement with a USER ID and PASSWORD.

7. Paste the 16-byte hexadecimal string password that you copied in step 5 after
the PASSWORD keyword.

The configuration migration and maintenance utility
The configuration migration and maintenance utility, CACCFGUT, runs as an IBM
z/OS batch job that manages configurations for your Classic data servers. You can
use the utility for backup and recovery, monitoring, and maintenance.

Features of the configuration migration and maintenance utility
You can use the configuration migration and maintenance utility to manage the
configurations of your Classic data servers. The utility can monitor, back up, and
recover your configurations.

The utility supports the following configuration-related Master Terminal Operator
(MTO) commands:
v EXPORT
v IMPORT,CONFIG
v IMPORT,CONFIG,MIGRATE

The utility also provides a REPORT command.

To run the configuration migration and maintenance utility, enter one or more of
the configuration commands on the SYSIN DD statement.

Backups

You can use the utility to run the EXPORT command at any time to create backups
of configuration files.

404 Guide and Reference

Recovery

You can use the EXPORT and IMPORT commands to restore a configuration
environment to a previous point in time. By using the EXPORT command, you can
create a command file that is based on the configuration environment of a running
Classic data server. You can then use this command file to update a different
configuration file by using the IMPORT command.

To restore the full configuration, run the utility offline against empty configuration
data sets when the Classic data server is not running. To avoid conflicts with
default services, run the utility against empty configuration data sets.

Monitoring

You can use the utility to run the REPORT command at any time to monitor the
configuration of the Classic data server.

Running the configuration migration and maintenance utility
To run the configuration migration and maintenance utility, complete the steps
described in the procedure.

About this task

You must migrate the master configuration as a single file. If you previously used
a concatenation of multiple master configuration members in your VHSCONF data
set, consider merging those members into one file before running the utility.
Otherwise, global configuration values from the previous configuration might not
be migrated. You can use a utility such as IEBGENER to perform this operation.
See the IBM z/OS product information for more details about the IEBGENER
utility.

You must call the commands that migrate USER or OVERRIDEMEMBERS after the
master configuration is migrated.

When you run the configuration migration and maintenance utility for migration
purposes, run the utility as a stand-alone process before starting a Classic data
server for the first time. The configuration data sets should be empty.

You can specify FILENAME, OVERRIDEMEMBER, or USER values as a DSN, a
DD statement, or a PDS member name. When you specify a PDS member name,
the migration process defaults to the VHSCONF DD card from the previous
version. All configuration members related to the existing configuration must
reside in the same PDS.

Sample stand-alone JCL for running the configuration migration and maintenance
utility is provided in USERHLQ.SCACSAMP member CACCFGUT.

To run the configuration migration and maintenance utility to migrate a
configuration from a previous version, enter one or more of the following
configuration commands in the specified order on the SYSIN DD statement.
1. Import the master configuration file by using either of the following command

formats:

IMPORT,CONFIG,MIGRATE,FILENAME= DSN:pds(member) | DDN:ddname(member) |
member
IMPORT,CONFIG,MIGRATE,ALL,FILENAME= DSN:pds(member) | DDN:ddname(member)

Chapter 8. Reference 405

| member
Converts the master configuration member, and all query processor
override members that it references, to the new configuration. Include
query processor override members if applicable.

2. Import only the master configuration with the following command.

IMPORT,CONFIG,MIGRATE,MASTERCONFIG,FILENAME= DSN:pds(member) |
DDN:ddname(member) | member

Migrates only the master configuration. Query processor definitions
that refer to query processor override members are defined only with
master configuration values.

3. Import query processor override members.

IMPORT,CONFIG,MIGRATE,OVERRIDEMEMBER= DSN:pds(member) |
DDN:ddname(member) | member,SERVICE=servicename | ALL

Migrates a query processor override member. You can migrate the
override member for a specific query processor or for all query
processors that are defined in the current configuration.

4. Import user configurations.

IMPORT,CONFIG,MIGRATE,USER = DSN:pds(member) | DDN:ddname(member),
member, SERVICE=servicename | ALL

Migrates a specific user configuration. For this command, query
processors must already be added or migrated to a new configuration
file. The user configuration can either be applied to a particular query
processor task or to all query processor tasks in the new configuration.

5. Verify the configuration migration. You can run the REPORT command at any
time to verify the configuration. The following figure shows sample report
output.

REPORT Reports all services and user configurations stored in the binary
configuration data sets.

Parameters

ddname
The DD name points to the configuration file from the previous version.

member
The name of the PDS member.

pds
The name of the configuration PDS from the previous version.

servicename
The name of the query processor service for the related user override. The
maximum length allowed for the name is 64 bytes.

Examples

v Migrate user configuration USER1 from DSN CAC.CONFIG to query processor
TEST95.
IMPORT,CONFIG,MIGRATE,USER=DSN:CAC.CONFIG(USER1),
SERVICE=TEST95

v Migrate USER1 of DDN VSHCONF to all query processors that exist in the
current configuration
IMPORT,CONFIG,MIGRATE,USER=USER1, SERVICE=ALL

406 Guide and Reference

The ALL keyword generally causes a query processor override member or a user
configuration to be migrated to all query processors defined in the current
configuration.

v The following example shows sample REPORT command output:
CAC00200I REPORT
CONFIGURATION
SERVICE NAME: GLOBAL
SERVICE CLASS: GLOB

MESSAGEPOOLSIZE {DEFAULT}=67108864
DATACONVERRACT {DEFAULT}=0

FETCHBUFSIZE {DEFAULT}=32000
DECODEBUFSIZE {DEFAULT}=8192
STATICCATALOGS {DEFAULT}=0

NLCAT {DEFAULT}=DD:MSGCAT
TASKPARM {DEFAULT}=

CONFIGURATION
SERVICE NAME: CNTL
SERVICE CLASS: CNTL
TASK NAME: CACCNTL

INITIALTHREADS {DEFAULT}=1
MAXTHREADS {DEFAULT}=1

MAXUSERS {DEFAULT}=100
TRACELEVEL {DEFAULT}=4

RESPONSETIMEOUT {DEFAULT}=5M
IDLETIMEOUT {DEFAULT}=5M

SEQUENCE {CHANGED}=1
CONFIGURATION
SERVICE NAME: LOG
SERVICE CLASS: LOG
TASK NAME: CACLOG

INITIALTHREADS {DEFAULT}=1
MAXTHREADS {DEFAULT}=1

MAXUSERS {DEFAULT}=100
TRACELEVEL {DEFAULT}=1

RESPONSETIMEOUT {DEFAULT}=5M
IDLETIMEOUT {DEFAULT}=5M

SEQUENCE {CHANGED}=2
LOGBUFSIZE {DEFAULT}=65536
DISPLAYLOG {DEFAULT}=FALSE
STREAMNAME {DEFAULT}=

LOGURL {DEFAULT}=
CONFIGURATION
SERVICE NAME: OPER
SERVICE CLASS: OPER
TASK NAME: CACOPER

INITIALTHREADS {DEFAULT}=1
MAXTHREADS {DEFAULT}=1

MAXUSERS {DEFAULT}=100
TRACELEVEL {DEFAULT}=4

RESPONSETIMEOUT {DEFAULT}=5M
IDLETIMEOUT {DEFAULT}=5M

SAFEXIT {DEFAULT}=
SMFEXIT {DEFAULT}=
SEQUENCE {CHANGED}=3

SQLSECURITY {DEFAULT}=FALSE

CONFIGURATION
SERVICE NAME: CACTWA
SERVICE CLASS: QP
TASK NAME: CACQP

INITIALTHREADS {DEFAULT}=5
MAXTHREADS {DEFAULT}=10

MAXUSERS {DEFAULT}=20
TRACELEVEL {DEFAULT}=4

RESPONSETIMEOUT {DEFAULT}=5M
IDLETIMEOUT {DEFAULT}=5M

Chapter 8. Reference 407

BTREEBUFFS {DEFAULT}=4
USERSUBPOOLMAX {DEFAULT}=8192
TEMPFILESPACE {DEFAULT}=HIPERSPACE,INIT=8M,MAX=2048M,EXTEND=8M

VSAMAMPARMS {DEFAULT}=
SAFEXIT {DEFAULT}=
SMFEXIT {DEFAULT}=
SEQUENCE {CHANGED}=4

JOINTABLES {DEFAULT}=4
MAXROWSEXCACTION {DEFAULT}=1
MAXROWSEXAMINED {DEFAULT}=0
MAXROWSRETURNED {DEFAULT}=0

STMTRETENTION {DEFAULT}=0
CPUGOVERNOR {DEFAULT}=

WLMUOW {DEFAULT}=
CONFIGURATION
SERVICE NAME: INIT
SERVICE CLASS: INIT
TASK NAME: CACINIT

INITIALTHREADS {DEFAULT}=1
MAXTHREADS {DEFAULT}=1

MAXUSERS {DEFAULT}=100
TRACELEVEL {DEFAULT}=4

RESPONSETIMEOUT {DEFAULT}=5M
IDLETIMEOUT {DEFAULT}=5M

SEQUENCE {CHANGED}=5
COMMSTRING {CHANGED}=TCP/1.1.1.1/9087

Viewing log messages with the log print utility (CACPRTLG)
With the log print utility (CACPRTLG), you can format and display messages that
are written to a log. You can summarize the log messages or filter them. You can
also format and print event messages.

About this task

Perform the steps in the following procedure to view log messages:

Procedure
1. Configure CACPRTLG. See “Parameters for configuring the log print utility

(CACPRTLG).”
2. Create filters for the output. See “Filters for modifying output from the log

print utility (CACPRTLG)” on page 409.
3. Run CACPRTLG. There are two ways to run this utility:

v Run CACPRTLG as a step in the same job used to run the Classic data
server.

v Run CACPRTLG as a separate job from the Classic data server job or started
task.

Parameters for configuring the log print utility (CACPRTLG)
You supply values to the PARM parameter of the CACPRTLG EXEC statement to
determine which information CACPRTLG displays and where CACPRTLG extracts
the information from.

Specify the PARM parameter in the JCL for the Classic data server. See the sample
JCL for CACPRTLG in the sample members for the Classic data servers found in
USERHLQ.SCACSAMP, such as CACDS.

See also the sample JCL for CACPRTLG in the sample member
USERHLQ.SCACSAMP(CACPRTLS), which shows how to run CACPRTLG against
a system logger stream and print a log stream separately.

408 Guide and Reference

Recommendation: Use log streams for the diagnostic log or the event log
(CACLOG) so that you can print the log while the data server is running. By using
log streams, you do not need to set the logger service parameter
DISPLAYLOG=TRUE to see logged information and can avoid the processing
overhead costs related to formatting and displaying the logs.

The following list shows the possible values for the PARM parameter.

SUMMARY=N|Y

N Displays all of the messages that are in the log if you configured the
logger service to write to the CACLOG DD statement or system log
streams.

Y Displays a report about the contents of the log if you configured the
logger service to write to the CACLOG DD statement or system log
streams.

STREAM=log_stream
The log_stream value must be a valid log stream that contains data that was
written by the logger service. If you use the STREAM keyword, remove the
CACLOG DD statement from the JCL for the log print utility.

PURGE
Marks for deletion all of the log messages that are in the log stream and that
are older than the value of the STARTTIME filter criterion for the log print
utility.

PURGEALL
Marks for deletion all of the log messages that are in the log stream.

EVENTS=eventlog_stream_name
The name of the event log stream that was specified for the EVENTLOG
configuration parameter for the logger service.

LOCALE=locale
The message locale to use when translating the event messages. If you do not
specify the LOCALE parameter, the default value EN_US is used to translate
event messages using the US English message catalog. Valid values:

EN_US
US English message catalog.

JA_JP Japanese message catalog.

KO_KR
Korean message catalog.

ZH_CH
Traditional Chinese message catalog.

ZH_TW
Simplified Chinese message catalog.

Filters for modifying output from the log print utility
(CACPRTLG)
You can use SYSIN control cards to filter and display only a subset of the log
messages. With these control cards, you can display messages for a specific
time-frame, a specific task, a range of return codes, or any combination of the
elements that are listed in the log summary report.

The format of the SYSIN filtering is exactly the same as the format of the summary
report. So, you can run a summary report, find the criteria that would be relevant

Chapter 8. Reference 409

for you to filter on, then submit a SYSIN control card with those criteria. You can
find sample JCL to run a summary report in member CACPRTLS in the
SCACSAMP data set.

The following list presents the available filtering criteria. Although the criteria are
presented in uppercase, you can specify them in mixed case because the log print
utility will fold the characters into uppercase. All filter criteria must be followed by
an equal sign and a value.

STARTTIME='YYYY/MM/DD HH:MM:SS:thmi'
Specifies the beginning of the duration of time that you want log
information from. When you request the log information for a particular
Classic data server, you might find it helpful to review the JES output for
the Classic data server job to obtain the start time.
v t is tenths of a second
v h is hundredths of a second
v m is milliseconds
v i is ten-thousandths of a second

STOPTIME='YYYY/MM/DD HH:MM:SS:thmi
Specifies the end of the duration of time that you want log information
from.
v t is tenths of a second
v h is hundredths of a second
v m is milliseconds
v i is ten-thousandths of a second

MINRC
Specifies a numeric value that represents the lowest return code that you
want to be reported.

FILTERS
Specifies tracing filters to use in the report. Use only in conjunction with
IBM support.

EXFILTERS
Specifies tracing filters not to use in the report. Use only in conjunction
with IBM support.

MAXRC
Specifies a numeric value that represents the highest return code that you
want to be reported.

TASKS
Specifies a task number (service) to filter the log information by. Although
this criterion is helpful if you are diagnosing a problem with a specific
task, generally you should not use this criterion. If this criteria is used with
multiple values, each separate line must start with the TASKS keyword, an
equal sign, and the comma-delimited list of task numbers enclosed within
parenthesis.

NODES
Specifies a specific node (address space or Classic data server) for which
the log print utility should return information. This value is a
comma-delimited list enclosed with parentheses. Each line of node filters
must be preceded by the NODES keyword and an equal sign.

410 Guide and Reference

SPCRC
Specifies a list of specific return code values for which the log print utility
should return log records. Use only in conjunction with IBM support.

SQL reference
The SQL reference information includes general information about SQL language
elements, security, views, and SQL information about specific data sources.

General information
You can use the following language elements and syntax diagrams for any of the
supported database management systems.

Language elements
The SQL language elements are characters, tokens, SQL statement format,
identifiers, naming conventions, authorization IDs, authorization names,
qualification of unqualified object names, data types, and constants.

The following topics apply only to the DDL SQL statements for dynamic catalog
update operations and to DML SQL statements. See the DB2 SQL reference
documentation for the full set of language elements.

Characters:

The basic symbols of SQL are characters from the EBCDIC syntactic character set.

These characters are classified as letters, digits, or special characters:

letter Any one of the uppercase alphabetic characters A through Z plus the three
EBCDIC code points reserved as alphabetic extenders for national
languages (the code points X'5B', X'7B', and X'7C', which display as $, #,
and @ in code pages 37 and 500).

digit Any one of the characters 0 through 9.

special character
Any character other than a letter or a digit.

SQL statements can also contain double-byte character set (DBCS) characters. You
can use double-byte characters in SQL ordinary identifiers and graphic string
constants when you enclose the necessary shift characters. You can also use
double-byte characters in string constants and delimited identifiers.

In SQL applications you must contain double-byte characters within a single line.
Therefore, you cannot continue a graphic string constant from one line to the next.
You can continue a character string constant and a delimited identifier from one
line to the next only if the break occurs between single-byte characters.

Tokens:

The basic syntactical units of the language are called tokens. A token consists of
one or more characters, not including spaces, control characters, or characters
within a string constant or delimited identifier.

Tokens are classified as ordinary or delimiter tokens:

Ordinary token
A numeric constant, an ordinary identifier, a host identifier, or a keyword.

Chapter 8. Reference 411

Delimiter token
A string constant, a delimited identifier, an operator symbol, or any of the
special characters shown in the syntax diagrams. A question mark (?) is
also a delimiter token when it serves as a parameter marker.

String constants and certain delimited identifiers are the only tokens that can
include a space or control character. Any token can be followed by a space or
control character. Every ordinary token must be followed by a delimiter token, a
space, or a control character. If the syntax does not allow a delimiter token, a space
or a control character must follow the ordinary token.

Spaces
A sequence of one or more blank characters. A space is represented as the
value x’40’.

Control characters
A special character for string alignment. A control character is treated like a
space and does not cause a particular action to occur. The following table
identifies the control characters that are supported.

Table 75. Control characters

Name of control character Hexadecimal value

Tab 05

Form feed 0C

Carriage return 0D

New line or next line 15

Line feed (new line) 25

Uppercase and lowercase
Any token can include lowercase letters, but a lowercase letter in an
ordinary token is folded to uppercase. Delimiter tokens are never folded to
uppercase.

For example, the first statement is equivalent to the second statement, after
folding:
select * from DSN8710.EMP where lastname = ’Smith’;
SELECT * FROM DSN8710.EMP WHERE LASTNAME = ’Smith’;

1
.1
+2
SELECT
E
3

Figure 19. Examples of ordinary tokens

,
’string’
"fld1"
=
.

Figure 20. Examples of delimiter tokens

412 Guide and Reference

SQL statement format:

An SQL statement is a complete instruction to the database manager that is written
using Structured Query Language.

An SQL statement has a length attribute that identifies the physical length of the
SQL statement in bytes. Either the client application explicitly identifies the length
of the SQL statement, or the ODBC or JDBC driver determines the length of the
SQL statement.

Typically, the SQL statement ends with a null byte, which has a hexadecimal value
of zeros. In these cases, the length of the SQL statement is determined by scanning
the SQL statement and counting the number of bytes up to the null byte.

SQL identifiers:

An identifier is a token that forms a name. An identifier in an SQL statement is an
SQL identifier, a parameter marker, or a native identifier. SQL identifiers can be
ordinary identifiers or delimited identifiers. They can also be short identifiers,
medium identifiers, or long identifiers.

An SQL identifier can be in one of these categories: short ordinary, medium
ordinary, long ordinary, short delimited, medium ordinary, or long delimited.

Ordinary identifiers
An ordinary identifier is a letter that is followed by zero or more
characters, each of which is a letter, a digit, or the underscore character. An
ordinary identifier with an EBCDIC encoding scheme can include Katakana
characters.

Double byte character set (DBCS) characters are allowed in SQL ordinary
identifiers. You can specify an SQL ordinary identifier, when it is the name
of a table, column, view, or stored procedure, by using either DBCS
characters or single-byte character set (SBCS) characters. However, an SQL
ordinary identifier cannot contain a mixture of SBCS and DBCS characters.

The following rules show how to form DBCS SQL ordinary identifiers.
These rules are EBCDIC rules because all SQL statements are in EBCDIC.
v The identifier must start with a shift-out (X'0E') and end with a shift-in

(X'0F'). An odd-numbered byte between those shifts must not be a
shift-out.

v The maximum length is 8, 18, or 30 bytes including the shift-out and the
shift-in depending upon the context of the identifier. In other words,
there is a maximum of 28 bytes (14 double-byte characters) between the
shift-out and the shift-in.

v There must be an even number of bytes between the shift-out and the
shift-in. DBCS blanks (X'4040') are not acceptable between the shift-out
and the shift-in.

v The identifiers are not folded to uppercase or changed in any other way.
v Continuation to the next line is not allowed.

An ordinary identifier must not be identical to a keyword that is a
reserved word in any context in which the identifier is used.

The following example is an ordinary identifier:
SALARY

Chapter 8. Reference 413

Delimited identifiers
A delimited identifier is a sequence of one or more characters that are
enclosed within escape characters. The escape character is the quotation
mark (").

You can use a delimited identifier when the sequence of characters does
not qualify as an ordinary identifier. Such a sequence, for example, can be
an SQL reserved word, or it can begin with a digit. Two consecutive escape
characters represent one escape character within the delimited identifier. A
delimited identifier that contains double-byte characters also must contain
the necessary shift characters.

When the escape character is the quotation mark, the following example is
a delimited identifier:
"VIEW"

Short, medium, and long identifiers
SQL identifiers are also classified according to their maximum length. A
long identifier has a maximum length of 30 bytes. A medium identifier has
a maximum length of 18 bytes. A short identifier has a maximum length of
8 bytes. These limits do not include the escape characters of a delimited
identifier.

Whether an identifier is long, medium, or short depends on what it
represents.

Parameter marker
Parameter markers represent values that are supplied for the SQL
statement when it is run. The question mark (?) identifies a parameter
marker in an SQL statement.

Native identifiers
Native identifiers exist only in CREATE TABLE and CREATE INDEX
statements and refer to a native database object. For example, objects can
be an MVS data set name, an IMS segment name, a CA-IDMS record
name, and so on. Native identifiers can be ordinary or delimited
identifiers. If the native identifier represents a reserved word, then you
must supply a delimited identifier.

The length and allowable characters in a native identifier are
DBMS-specific.

Reserved words:

A number of words cannot be used as ordinary identifiers in some contexts
because these words might be interpreted as SQL keywords.

For example, ALL cannot be a column name in a SELECT statement. Each word,
however, can be a delimited identifier in contexts where the word otherwise
cannot be an ordinary identifier. For example, the quotation mark (") is the escape
character that begins and ends delimited identifiers. "ALL" can appear as a column
name in a SELECT statement.

You must use the following words as delimited identifiers where referring to an
SQL identifier or native identifier in any SQL statement:
ADD
ALL
ALTER
AND
ANY

414 Guide and Reference

AS
AUDIT
BETWEEN
BIND
BUFFERPOOL
BY
CALL
CAPTURE
CHAR
CHARACTER
CHECK
CLUSTER
COLLECTION
COLUMN
CONCAT
CONSTRAINT
COUNT
CURRENT
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURSOR
DATABASE
DAY
DAYS
DEFAULT
DELETE
DESCRIPTOR
DISTINCT
DOUBLE
DROP
EDITPROC
ERASE
ESCAPE
EXCEPT
EXECUTE
EXISTS
FIELDPROC
FOR
FROM
FULL
GO
GOTO
GRANT
GROUP
HAVING
HOUR
HOURS
IMMEDIATE
IN
INDEX
INNER
INOUT
INSERT
INTO
IS
JOIN
KEY
LEFT
LIKE
LOCKMAX
LOCKSIZE
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH

Chapter 8. Reference 415

MONTHS
NOT
NULL
NUMPARTS
OBID
OF
ON
OPTIMIZE
OR
ORDER
OUT
OUTER
PACKAGE
PART
PLAN
PRECISION
PRIQTY
PRIVILEGES
PROGRAM
REFERENCES
RIGHT
SECOND
SECONDS
SECQTY
SELECT
SET
SOME
STOGROUP
SUBPAGES
SYNONYM
TABLE
TABLESPACE
TO
UNION
UNIQUE
UPDATE
USER
USING
VALIDPROC
VALUES
VCAT
VIEW
VOLUMES
WHERE
WITH
YEAR
YEARS

Naming conventions:

The rules for forming a name depend on the object type that is designated by the
name. The syntax diagrams use different terms for different types of names.

The following list defines terms that represent common SQL objects that are
referenced in the various DDL statements.

authorization-name
A short identifier that designates a set of privileges. It can also designate a
user or group of users.

column-name
A qualified or unqualified name that designates a column of a table or a
view.

416 Guide and Reference

A qualified column name is a qualifier followed by a period and a long
identifier. The qualifier is a table name or a view name.

An unqualified column name is a long identifier.

index-name
A qualified or unqualified name that designates an index.

A qualified index name is a short identifier followed by a period and a
medium identifier. The short identifier is the authorization ID that owns
the index.

An unqualified index name is a medium identifier with an implicit
qualifier. The implicit qualifier is an authorization ID.

procedure-name
A qualified or unqualified name that designates a stored procedure.

A fully qualified procedure name is a two-part name. The first part is the
authorization ID that designates the owner of the procedure. The second
part is a medium identifier. A period must separate each of the parts.

A one-part or unqualified procedure name is a medium identifier with an
implicit qualifier. The implicit qualifier is an authorization ID.

schema-name
An SQL identifier that designates a schema. A schema name that is used as
a qualifier of that object name is often also an authorization ID. The objects
that are qualified with a schema name are stored procedures and tables.

table-name
A qualified or unqualified name that designates a table.

A fully qualified table name is a two-part name. The first part is the
authorization ID that designates the owner of the table. The second part is
a medium identifier. A period must separate each of the parts.

A one-part or unqualified table name is a medium identifier with an
implicit qualifier. The implicit qualifier is an authorization ID.

view-name
A qualified or unqualified name that designates a view.

A fully qualified view name is a two-part name. The first part is the
authorization ID that designates the owner of the view. The second part is
a medium identifier. A period must separate each of the parts.

A one-part or unqualified view name is a medium identifier with an
implicit qualifier. The implicit qualifier is an authorization ID.

Authorization IDs and authorization names:

An authorization ID is a character string that designates a defined set of privileges.
Client connections can successfully run SQL statements only if client connections
have the authority to perform the specified functions. A client connection derives
this authority from its authorization IDs. An authorization ID can also designate a
user or a group of users, but federation does not control this property.

Authorization IDs provide this functionality:
v Authorization checking of SQL statements
v Implicit qualifiers for database objects like tables, views, and indexes

Chapter 8. Reference 417

Connections and authorization IDs

Whenever a connection is established, an authorization ID is optionally passed to
the server. If an authorization ID is not supplied, the connection is assigned the
default authorization ID of PUBLIC. If external security is active by using the SAF
EXIT configuration parameter, then as part of connection authentication, the
authorization ID is passed to the SAF exit. If the authorization ID is allowed to
access the system, the SAF exit can return a secondary authorization ID that is in
the list of authorization IDs that are associated with the connection.

Every connection has exactly one primary authorization ID. All other IDs are
secondary authorization IDs. A connection can have a maximum of three
associated authorization IDs: the authorization ID on the connection request,
possibly one secondary authorization ID that is returned by the SAF exit, and the
generic authorization ID of PUBLIC.

An authorization name in an SQL statement is not the same as an authorization ID
of a connection.

Example

For example, assume that SMITH is the user ID that is supplied during the
connection, and you run the following statements:
CREATE TABLE TDEPT ...;
GRANT SELECT ON TDEPT TO KEENE;

When the GRANT statement is prepared and run, the SQL authorization ID is
SMITH. KEENE is an authorization name that is specified in the GRANT
statement.

Authorization to run the GRANT statement is checked against SMITH, and SMITH
is the implicit qualifier of TDEPT. The authorization rule is that the privilege set is
designated by SMITH must include the SELECT privilege with the GRANT option
on SMITH.TDEPT. There is no check involving KEENE.

If SMITH is the implicit qualifier for a statement that contains NAME1, then
NAME1 identifies the same object as SMITH.NAME1. If the implicit qualifier is
other than SMITH, then NAME1 and SMITH.NAME1 identify different objects.

Privileges

For statements other than an ALTER, CREATE, DROP, GRANT, or REVOKE
statement, each privilege that is required for the statement can be a privilege that
is designated by any authorization ID of the connection. Therefore, a privilege set
is the union of the set of privileges that are held by each authorization ID.

If the SQL statement is an ALTER, CREATE, DROP, GRANT, or REVOKE
statement, the only authorization ID for authorization checking is the SQL
authorization ID. Therefore, the privilege set is the privileges that are held by the
single authorization ID that corresponds to the user ID that is supplied on the
connection request.

Qualification of unqualified object names:

Unqualified object names are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

418 Guide and Reference

The implicit qualifier for an unqualified index, table, or view name is the
authorization ID in the CURRENT SQLID special register. This authorization ID
corresponds to the user ID of the connected user that runs the SQL statement.

Data types:

The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source.

The sources of values are as follows:
v Columns
v Constants
v Expressions
v Host variables
v Special registers

All data types include the null value. Distinct from all non-null values, the null
value is a special value that denotes the absence of a (non-null) value. Although all
data types include the null value, some sources of values cannot provide the null
value. For example, constants, columns that are defined as NOT NULL, and special
registers cannot contain null values. The COUNT function cannot return a null
value column as the result of a query.

Binary strings:

A binary string is a sequence of bytes. The length of a binary string is the number
of bytes in the sequence.

Binary strings are not associated with any CCSID. The supported binary string
data types are BINARY and VARBINARY (BINARY VARYING).

The following subtypes of binary strings are supported:

Fixed-length binary strings
The type of fixed-length binary strings is BINARY. When fixed-length
binary string distinct types, columns, and variables are defined, the length
attribute is specified, and all values have the same length. For a
fixed-length binary string, the length attribute must be between 1 and
32704 inclusive.

Varying-length binary strings
All values of varying-length string columns have the same maximum
length, which is determined by the length attribute.

The varying-length binary string is VARBINARY (BINARY VARYING).

When varying-length binary strings, distinct types, columns, and variables
are defined, the maximum length is specified and this length becomes the
length attribute. Actual length values might have a smaller value than the
length attribute value. For varying-length binary strings, the actual length
specifies the number of bytes in the string.

For a VARBINARY string, the length attribute must be between 1 and
32704. Like a varying-length character string, varying-length binary string
could be an empty string.

A binary string column is useful for storing non-character data, such as
encoded or compressed data, pictures, voice, and mixed media. Another

Chapter 8. Reference 419

use is to hold structured data for exploitation by distinct types,
user-defined functions, and stored procedures.

Character string:

A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is an empty string. An empty
string is not the same thing as a null value.

The bytes of a character string can represent a mixture of characters from a
single-byte character set (SBCS) and a double-byte character set (DBCS). Strings
that might contain both SBCS and DBCS characters are called mixed data. EBCDIC
mixed data might contain shift characters, which do not represent SBCS or DBCS
data.

The following subtypes of character strings are supported:

Fixed-length character strings
All the values of a column with a fixed-length character-string data type
have the same length, which is determined by the length attribute of the
column. The length attribute must be between 1 and 255. Every
fixed-length string column is a short string column. A fixed-length
character-string column can also be called a CHAR or CHARACTER
column.

Varying-length character strings
All values of varying-length string columns have the same maximum
length, which is determined by the length attribute. If the length attribute
is greater than 254, the column is a long-string column. Long-string
columns cannot be referenced in these items:
v Function other than SUBSTR or LENGTH
v GROUP BY clause
v ORDER BY clause
v CREATE INDEX statement
v SELECT DISTINCT statement
v Subselect of a UNION without the ALL keyword
v Predicate other than LIKE

The VARCHAR column identifies a short, varying-length string column. A
maximum-length attribute must be specified, and must be between 1 and
32704. The VARCHAR(x) syntax is preferred over LONG VARCHAR,
which is a long-string column that does not have an explicit length
attribute. The maximum length is also 32704. However, a smaller
maximum length is explicitly specified or internally computed, based on
the maximum physical size limits.

Graphic strings:

A graphic string is a sequence of DBCS characters. The length of the string is the
number of characters in the sequence. Each character is assumed to be two-bytes
long. Like character strings, graphic strings can be empty. An empty string is not
the same thing as a null value.

The following subtypes of character strings are supported:

420 Guide and Reference

Fixed-length graphic strings
All the values of a column with a fixed-length graphic-string data type
have the same length, which is determined by the length attribute of the
column. The length attribute must be between 1 and 127. Every
fixed-length graphic-string column is a short string column. A fixed-length,
graphic-string column can also be called a GRAPHIC column.

Varying-length graphic strings
All values of varying-length string columns have the same maximum
length, which is determined by the length attribute. If the length attribute
is greater than 127, the column is a long-string column, and the same rules
for LONG VARCHAR columns apply.

The VARGRAPHIC column identifies a short, varying-length graphic-string
column, and a maximum-length attribute must be specified. The length
attribute must be between 1 and 127. A long-graphic-string column is
identified as a LONG VARGRAPHIC column and does not have an explicit
length attribute. The maximum length is 16352; however, a smaller
maximum length is explicitly specified or internally computed, based on
the maximum physical-size limits.

Numbers:

The numeric data types are binary integer, floating-point, and decimal. Binary
integer includes small integer and large integer. Floating-point includes single
precision and double precision. Binary numbers are exact representations of
integers; decimal numbers are exact representations of real numbers; and
floating-point numbers are approximations of real numbers.

All numbers have a sign and a precision. When the value of a column or the result
of an expression is a decimal or floating-point zero, its sign is positive. The
precision of binary integers and decimal numbers is the total number of binary or
decimal digits excluding the sign. The precision of floating-point numbers is either
single or double, based on the number of hexadecimal digits in the fraction.

The types of numbers are as follows:

Small integer (SMALLINT)
A small integer is a binary integer with a precision of 15 bits. The range of
small integers is -32768 to +32767.

Large integer (INTEGER)
A large integer is a binary integer with a precision of 31 bits. The range of
large integers is -2147483648 to +2147483647.

Single precision floating-point (REAL or FLOAT)

A single-precision, floating-point number is a 32-bit approximation of a real
number. The number can be zero or can range from -3.40282347E+38 to
-1.17549435E-38, or from 1.17549435E-38 to 3.40282347E+38.

When the precision of a FLOAT is in the range of 1 to 21, the query
processor treats the column as REAL.

The query processor uses standard 370 representation to process single
precision floating point numbers. Individual databases might treat these
numbers in different representations and support different limits. Likewise,
when single precision floating point numbers are manipulated by the CLI,
JDBC, and ODBC client components, the representation and limits are
based on the platform and compiler that is used.

Chapter 8. Reference 421

On the z/OS server, the 370 representation consists of a sign bit, a 7-bit
biased hexadecimal exponent, and a 24-bit fractional part. The exponent
bias is 64. All operations on single precision floating point numbers are
normalized. The value that can be represented by a single precision
floating point number is approximately 6 or 7 decimal digits of precision.

Double precision floating-point (DOUBLE or FLOAT)

A double precision, floating-point number is a 64-bit approximation of a
real number. The number can be zero or can range from
-1.797693134862315E+308 to -2.225073858507201E-308, or from
2.225073858507201E-308 to 1.797693134862315E+308.

When the precision of a FLOAT is in the range of 22 to 53, the query
processor treats the column as DOUBLE PRECISION.

Like single precision numbers, double precision numbers that are
manipulated by the z/OS server components use standard 370
representation with the caveat that the source database and client
implementation might be different than that used by the data server.

On the z/OS server, the 370 representation consists of a sign bit, a 7-bit
biased hexadecimal exponent, and a 56-bit fractional part. The exponent
bias is 64. All operations on double precision floating point numbers are
normalized. The value that can be represented by a single precision
floating point number is approximately 16 or 17 decimal digits of
precision.

Decimal (DECIMAL)
A decimal number is a packed decimal number with an implicit decimal
point. The position of the decimal point is determined by the precision and
the scale of the number. The scale, which is the number of digits in the
fractional part of the number, cannot be negative or greater than the
precision. The maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The
range of a decimal variable or the numbers in a decimal column is -n to
+n, where n is the largest positive number that can be represented with the
applicable precision and scale. The maximum range is 1 - 10³¹ to 10³¹ - 1.

String representations of numbers
Values whose data types are small integer, large integer, floating-point, and
decimal are stored in an internal form that is transparent to the user of
SQL. But string representations of numbers can be used in some contexts.
A valid string representation of a number must conform to the rules for
numeric constants.

COBOL data types supported by the data server:

When you map user tables in the metadata catalogs on the data server, Classic
Data Architect can convert COBOL data types to native types that the server
supports and their corresponding SQL types.

Data types in a CREATE TABLE statement

When you map a new table, you can import data definitions in COBOL copybooks
that describe the layout of the source database and the types associated with the
data items. The information in the following table shows how Classic Data
Architect converts COBOL data types to native and SQL types.

422 Guide and Reference

When you create a new user table in the metadata catalogs on a data server, you
run a CREATE TABLE statement. Typically, this statement is found within Data
Definition Language (DDL) that Classic Data Architect creates automatically when
you run the Generate DDL wizard. The CREATE TABLE statement assigns a native
data type to each column by using a DATATYPE keyword and assigns an SQL
data type in a USE AS clause.

You can also use the information shown here to override the data types that are
assigned to columns in a user table. One approach is to edit the DDL in an SQL
Editor window. With VSAM, CICS VSAM, CA-Datacom, or sequential data
sources, you can also change the native data type in the Classic Column Info
properties window. Data types that you assign manually must be appropriate for
the data in the source database.

Supported COBOL data types

The following table describes COBOL data types that the data server supports. The
table also provides information about native and SQL types that correspond with
each COBOL type.

COBOL element type
COBOL
usage Sign

Native
data
type Length

SQL data
type Example

COBOLAlphabeticType
COBOLAlphaNumeric
Type

C <= 254 CHAR scale
= 0

PIC X(4)

COBOLNumericType Packed

decimal

T P DECIMAL PIC S9(3)
COMP-3

COBOLNumericType Packed
decimal

F UP DECIMAL PIC 9(3)
COMP-3

COBOLNumericType Display T C DECIMAL PIC S99

COBOLNumericType Display F UC CHAR scale
= 0

DECIMAL
scale > 0

PIC 99

COBOLNumericType Binary T H SMALLINT PIC S99
COMP-4

COBOLNumericType Binary F UH SMALLINT PIC 99
COMP-4

COBOLNumericType Binary T F INTEGER PIC S9(8)
COMP-4

COBOLNumericType Binary F UF INTEGER PIC 9(8)
COMP-4

COBOLNumericType Binary D DECIMAL PIC 9(18)
COMP-4

COBOLInternalFloatType Float F REAL COMP-1

COBOLInternalFloatType Double D DOUBLE COMP-2

COBOLDBCSType DBCS C <= 127 GRAPHIC PIC G (or PIC
N if NSymbol
parser setting
to DBCS)

Chapter 8. Reference 423

COBOL element type
COBOL
usage Sign

Native
data
type Length

SQL data
type Example

COBOLAlphaNumeric
EditedType
COBOLNumericEdited
Type
COBOLExternalFloat
Type

C <= 254 CHAR PIC clause is a
display format
that might
contain
B,P,Z,.,+,-
,CR,DB,E

Native data types

The following table describes Classic data types and their equivalent SQL types. A
CREATE TABLE statement specifies the native data type by using the DATATYPE
parameter.

The Other SQL data types column lists alternative SQL types that you can specify
as overrides by editing DDL in the SQL Editor window.

Table 76. Native data types

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

C Mixed mode
character data. When
the SQL data type is
DECIMAL, the data
is assumed to consist
wholly of numbers
with the right most
number identifying
the sign.

CHAR

DECIMAL

DECIMAL,
VARCHAR,
GRAPHIC, or
VARGRAPHIC,
BINARY,
VARBINARY

P Packed decimal data
where the sign is
stored in the far right
aggregation of four
bits.

DECIMAL BINARY

D1 Floating point data.
The columns length
or precision
determines whether
the SQL data type is
DOUBLE PRECISION
or DECIMAL. 64-bit
data is mapped as
DECIMAL.

DOUBLE PRECISION FLOAT(precision)

DECIMAL, BINARY

F2 32-bit signed binary
value where the sign
is in the high order
bit.

DECIMAL

INTEGER

REAL

FLOAT(precision)

BINARY

H 16-bit signed binary
value where the sign
is in the high order
bit.

DECIMAL

SMALLINT

BINARY

424 Guide and Reference

Table 76. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

V Variable mixed-mode
character data, where
the actual data is
preceded by a 16-bit
signed binary number
that identifies the
actual length of the
data.

VARCHAR LONG VARCHAR,
VARGRAPHIC, or
LONG
VARGRAPHIC,
VARBINARY

UC Unsigned
zoned-decimal data
where the last
character does not
identify the sign. The
value is always a
positive value.

DECIMAL CHAR, BINARY,
VARBINARY

UP Packed decimal data
where the sign bit is
ignored. The value is
always positive.

DECIMAL BINARY

UF Unsigned 32-bit
binary value.

INTEGER BINARY

UH Unsigned 16-bit
binary value.

SMALLINT BINARY

B3 Fixed length binary
data.

BINARY DECIMAL,
INTEGER,
SMALLINT,
VARBINARY

VB3 Variable length binary
data, where the actual
data is preceded by a
16-bit signed binary
number that identifies
the actual length of
the data.

VARBINARY N/A

1The SQL data type is DOUBLE PRECISION or FLOAT. DOUBLE PRECISION is shorthand
for an 8-byte floating point number. In the USE AS clause, you can identify this data type as
DOUBLE PRECISION or FLOAT(precision). If the precision value is in the range 22–53, the
column represents an 8-byte floating point number. If you assign FLOAT, specify the
maximum precision. The column length is based on the precision.

2The SQL data type is REAL or FLOAT. REAL is shorthand for a 4-byte floating point
number. In the USE AS clause, you can identify this data type as REAL or
FLOAT(precision). If the precision value is in the range 1–21, the column represents a 4-byte
floating point number. If you assign FLOAT, specify the maximum precision. The column
length is based on the precision.

3 Although Cobol does not support native binary types, you can manually edit the DDL to
use binary data types.

Chapter 8. Reference 425

PL/I data types supported by the data server:

When you map user tables in the metadata catalogs on the data server, Classic
Data Architect can convert PL/I data types to native types that the server supports
and their corresponding SQL types.

Data types in a CREATE TABLE statement

When you map a new table, you can import data definitions in PL/I include files
that describe the layout of the source database and the types associated with the
data items. The information in the following tables shows how the data server
converts PL/I data types to native and SQL types.

When you create a new user table in the metadata catalogs on a data server, you
run a CREATE TABLE statement. Typically, this statement is found in the Data
Definition Language (DDL) that Classic Data Architect creates automatically when
you run the Generate DDL wizard. The CREATE TABLE statement assigns a native
data type to each column using a DATATYPE keyword and assigns an SQL data
type in a USE AS clause.

You can also use the information shown here to modify the data types that are
assigned to columns in a user table. One approach is to edit the DDL in an SQL
Editor window. With VSAM, CICS VSAM, CA-Datacom, or sequential data
sources, you can also change the native data type in the Classic Column Info
properties window. Data types that you assign manually must be appropriate for
the data in the source database.

Supported PL/I data types

The following table describes PL/I data types that the data server supports. The
table also provides information about native and SQL types that correspond with
PL/I.

Computational data
type

Precision and

range Scale
Native
data type SQL data type

CHAR(n) n <= 254 C CHAR(n)

CHAR(n) VARYING n <= 32704 V VARCHAR(n)

GRAPHIC(n) n <= 127 C GRAPHIC(n)

GRAPHIC(n) VARYING n <= 16352 V VARGRAPHIC(n)

PICTURE
(non-numeric)

size <= 254 C CHAR(n)

PICTURE (V,9)1 UC DECIMAL(p,q)

PICTURE (all other
numeric formats)1

size <= 254 C CHAR(n)

BIN FIXED(p,q)
UNSIGNED

9 <= p <= 16 q=0 UH SMALLINT

BIN FIXED(p,q)
UNSIGNED

17 <= p <= 32 q=0 UF INTEGER

BIN FIXED(p,q)
UNSIGNED

33 <= p <= 64 q=0 D DECIMAL(21,0)

BIN FIXED(p,q)
SIGNED2

8 <= p <= 15 q=0 H SMALLINT

426 Guide and Reference

Computational data
type

Precision and

range Scale
Native
data type SQL data type

BIN FIXED(p,q)
SIGNED2

16 <= p <= 32 q=0 F INTEGER

BIN FIXED(p,q)
SIGNED2

32 <= p <= 63 q=0 D DECIMAL(19,0)

DECIMAL FIXED(p,q) q>=0 P DECIMAL(p,q)

DECIMAL FLOAT(p) 1 <= p <= 6 F REAL

DECIMAL FLOAT(p) 7 <= p <= 16 D DOUBLE

BIN FLOAT(p) 1 <= p <= 21 F REAL

BIN FLOAT(p) 22 <= p <= 53 D DOUBLE
1PL/I supports many different types of arithmetic character data, such as 9, V, S, +, -, Z, /,
R, CR, DB, T, R, K, and F. Values that contain character strings are typically used for report
formatting purposes, and the data server maps them as character data. With PL/I picture
strings, S, +, and - denote a character, not a sign bit. The data server does not support
them as DECIMAL.

2The SIGNED attribute is the default.

Native data types

The following table describes the contents of native data types and their equivalent
SQL types. A CREATE TABLE statement specifies the native data type by using the
DATATYPE parameter.

The Other SQL data types column lists alternative SQL data types that you can
specify as overrides by editing DDL in the SQL Editor window.

Table 77. Native data types

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

C Mixed mode
character data. When
the SQL data type is
DECIMAL, the data
is assumed to consist
wholly of numbers
with the right most
number identifying
the sign.

CHAR

DECIMAL

DECIMAL,
VARCHAR,
GRAPHIC, or
VARGRAPHIC,
BINARY,
VARBINARY

P Packed decimal data
where the sign is
stored in the far right
aggregation of four
bits.

DECIMAL BINARY

Chapter 8. Reference 427

Table 77. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

D1 Floating point data.
The columns length
or precision
determines whether
the SQL data type is
DOUBLE PRECISION
or DECIMAL. 64-bit
data is mapped as
DECIMAL.

DOUBLE PRECISION FLOAT(precision)

DECIMAL, BINARY

F2 32-bit signed binary
value where the sign
is in the high order
bit.

INTEGER

REAL

FLOAT(precision)

BINARY

H 16-bit signed binary
value where the sign
is in the high order
bit.

SMALLINT BINARY

V Variable mixed-mode
character data, where
the actual data is
preceded by a 16-bit
signed binary number
that identifies the
actual length of the
data.

VARCHAR LONG VARCHAR,
VARGRAPHIC, or
LONG
VARGRAPHIC,
VARBINARY

UC Unsigned
zoned-decimal data
where the last
character does not
identify the sign. The
value is always a
positive value.

DECIMAL CHAR, BINARY,
VARBINARY

UP Packed decimal data
where the sign bit is
ignored. The value is
always positive.

DECIMAL BINARY

UF Unsigned 32-bit
binary value.

INTEGER BINARY

UH Unsigned 16-bit
binary value.

SMALLINT BINARY

B3 Fixed length binary
data.

BINARY DECIMAL,
INTEGER,
SMALLINT,
VARBINARY

VB3 Variable length binary
data, where the actual
data is preceded by a
16-bit signed binary
number that identifies
the actual length of
the data.

VARBINARY N/A

428 Guide and Reference

Table 77. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

1The SQL data type is DOUBLE PRECISION or FLOAT. DOUBLE PRECISION is shorthand
for an 8-byte floating point number. In the USE AS clause, you can identify this data type as
DOUBLE PRECISION or FLOAT(precision). If the precision value is in the range 22–53, the
column represents an 8-byte floating point number. If you assign FLOAT, specify the
maximum precision. The column length is based on the precision.

2The SQL data type is REAL or FLOAT. REAL is shorthand for a 4-byte floating point
number. In the USE AS clause, you can identify this data type as REAL or
FLOAT(precision). If the precision value is in the range 1–21, the column represents a 4-byte
floating point number. If you assign FLOAT, specify the maximum precision. The column
length is based on the precision.

3 Although PL/I does not support native binary types, you can manually edit the DDL to
use binary data types.

Mapping PL/I complex data:

You can support complex data found in PL/I include files by mapping complex
numbers as two separate numbers.

About this task

Complex data consists of a real number followed by an imaginary number. Classic
Data Architect maps complex data by mapping two fields. One field contains the
real number, and the other contains the imaginary number.

Tip: PICTURE data types with a numeric picture clause can have the COMPLEX
attribute. If the PICTURE clause contains the supported characters of 9 and V, it
will be mapped as two DECIMAL variables. If the PICTURE clause contains
non-supported arithmetic characters, it will be mapped as two CHAR variables.

To map complex data found in a PL/I include file:

Procedure

1. When you map a table in the New table wizard, select a PL/I include file
containing a complex number.
No Classic or SQL data type can represent complex numbers, such as the one
shown in the first example.

2. When the wizard interprets a complex number, it appends the element name
with _REAL and _IMAG, as shown in the second example.

Example

Example: PL/I construct containing a complex number.
DCL 1 MYSTRUCT,

2 COMPLEXNUM BIN FIXED(15) COMPLEX;

Example: DDL describing two mapped fields, one containing the real number and
the other containing the imaginary number.
DCL 1 MYSTRUCT,

2 COMPLEXNUM_REAL BIN FIXED(15),
2 COMPLEXNUM_IMAG BIN FIXED(15);

Chapter 8. Reference 429

Constants:

A constant (also called a literal) specifies a value. Constants are classified as string
constants or numeric constants. Numeric constants are further classified as integer,
floating-point, or decimal. String constants are classified as character or graphic.
All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

The types of constants are as follows:

Integer constants
Specifies a binary integer as a signed or unsigned number that has a
maximum of 10 significant digits and no decimal point. If the value is not
within the range of a large integer, the constant is interpreted as a decimal
constant. The data type of an integer constant is large integer.

In syntax diagrams, the term integer is used for an integer constant that
must not include a sign.

Floating-point constants
Specifies a floating-point number as two numbers separated by an E. The
first number can include a sign and a decimal point. The second number
can include a sign but not a decimal point. The value of the constant is the
product of the first number and the power of 10 that is specified by the
second number. The value must be within the range of floating-point
numbers. The number of characters in the constant must not exceed 30.
Excluding leading zeros, the number of digits in the first number must not
exceed 17, and the number of digits in the second must not exceed 2. The
data type of a floating-point constant is double precision floating-point.

Decimal constants
Specifies a decimal number as a signed or unsigned number of no more
than 31 digits and either includes a decimal point or is not within the
range of binary integers. The precision is the total number of digits,
including any to the right of the decimal point. The total includes all
leading and trailing zeros. The scale is the number of digits to the right of
the decimal point, including trailing zeros.

Binary string constants
Specifies a varying-length binary string. The binary constant is valid for
columns BINARY or VARBINARY data types.

A binary-string constant is formed by specifying a BX followed by a
sequence of characters that starts and ends with a string delimiter. The
characters between the string delimiters must be an even number of
hexadecimal digits. The number of hexadecimal digits must not exceed
254.

A hexadecimal digit is a digit or any of the letters A through F (upper case
or lower case). Under the conventions of hexadecimal notation, each pair

15E1 2.E5 -2.2E-1 +5.E+2

Figure 21. Floating-point constants that represent the numbers 150, 200000, -0.22, and 500

025.50 1000. -15. +375893333333333333333.33

Figure 22. Decimal constants that have precisions and scales of 5 and 2, 4 and 0, 2 and 0,
23 and 2

430 Guide and Reference

of hexadecimal digits represents one byte. Note that this representation is
similar to the representation of the character-constant that uses the X''
form; however binary-string constant and character-string constant are not
compatible and the X'' form can not be used to specify a binary-string
constant, just as the BX'' form cannot be used to specify a character-string
constant.

Examples of binary-string constants:
BX’0000’ BX’C141C242’ BX’FF00FF01FF’

Character string constants
Specifies a varying-length character string. Character string constants have
these forms:

A sequence of characters that starts and ends with an apostrophe (').
Specifies the character string that is contained between the string
delimiters. The number of bytes between the delimiters must not
be greater than 255. Two consecutive string delimiters are used to
represent one string delimiter within the character string.

An X followed by a sequence of characters that starts and ends with a
string delimiter.

Also called a hexadecimal constant. The characters between the
string delimiters must be an even number of hexadecimal digits.
The number of hexadecimal digits must not exceed 254. A
hexadecimal digit is a digit or any of the letters A through F
(uppercase or lowercase). Under the conventions of hexadecimal
notation, each pair of hexadecimal digits represents a character. A
hexadecimal constant allows you to specify characters that do not
have a keyboard representation.

The last string in the example ('') represents an empty character string
constant, which is a string of zero length.

A character string constant is classified as mixed data if it includes a DBCS
substring. In all other cases, a character string constant is classified as
SBCS data.

Graphic string constants
Specifies a varying-length graphic string.

In EBCDIC environments, the forms of graphic string constants are:
v G'0x0e[dbcs-string]0x0f'
v N'0x0e[dbcs-string]0x0f'

In SQL statements, graphic string constants cannot be continued from one
line to the next. The maximum number of DBCS characters in a graphic
string constant is 124.

General syntax diagrams
The syntax for the DROP and COMMENT ON statements is the same for all the
DBMS types.

DROP statement:

The DROP statement deletes an object from the metadata catalog.

’12/14/1985’ ’32’ ’DON’’T CHANGE’ X’FFFF’ ’’

Figure 23. Examples of character string constants

Chapter 8. Reference 431

Syntax

�� DROP INDEX index-name ;
TABLE table-name
PROCEDURE procedure-name
VIEW view-name

��

Parameters

INDEX index-name

Deletes an index definition from the metadata catalog.

Following the INDEX keyword is the index name. If qualified, the name is a
two-part name, and the authorization ID that qualifies the name is the index
owner. If an unqualified name is supplied, the owner name is the authorization
ID from the CURRENT SQLID special register.

One of the following permissions is required to run the statement:
v SYSADM
v DBADM for the database type that is in the DBNAME column for the table

that is referenced by the index
v Ownership of index_name or the owner of table that is referenced by the

index.

TABLE table-name

Deletes a table from the metadata catalog. The table name can be a qualified or
unqualified table name. If an unqualified name is supplied, the table owner is
from the CURRENT SQLID special register.

When a table is deleted, all dependent indexes are deleted, in addition to any
views that reference the table. All authorization information that is associated
with the table is also deleted from the metadata catalog.

One of the following permissions is required to run the DROP TABLE
statement:
v SYSADM
v DBADM for the database type that is in the DBNAME column for the table

referenced by the index
v Ownership of the table that you are dropping

PROCEDURE procedure-name

Deletes a stored procedure definition from the metadata catalog. The procedure
name can be a qualified or unqualified name. If an unqualified name is
supplied, the stored procedure owner is from the CURRENT SQLID special
register.

All authorization information that is associated with the procedure is also
deleted from the metadata catalog.

One of the following permissions is required to run the DROP PROCEDURE
statement:
v Ownership of the procedure
v SYSADM authority

VIEW view-name

432 Guide and Reference

Identifies the name of the view to be deleted. view-name can be a qualified or
unqualified view name. If an unqualified name is supplied, the view owner is
obtained from the CURRENT SQLID special register.

When a view is deleted, all authorization information that is associated with
the view is also deleted from the metadata catalog. DROP VIEW deletes
dependent views along with those specified in the DROP VIEW statement.

One of the following permissions is required to execute the DROP VIEW
statement:
v SYSADM
v Ownership of the view being dropped

COMMENT ON statement:

The COMMENT statement adds or replaces comments in the descriptions of
objects in the metadata catalog.

The COMMENT ON statement updates the REMARKS column in the
SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, SYSIBM.SYSINDEXES, or
SYSIBM.SYSROUTINES table, depending on the form of the statement.

The COMMENT ON statement has two syntax diagrams. The first syntax diagram
updates the REMARKS column in a single metadata catalog table. The second
syntax diagram updates the REMARKS column in the SYSIBM.SYSCOLUMNS
table for a table or view definition.

Syntax

�� COMMENT ON COLUMN table-name .column-name
view-name

INDEX index-name
PROCEDURE procedure-name
TABLE table-name

view-name

�

� IS string-constant ; ��

�� COMMENT ON table-name
view-name

�

,

(column-name IS string-constant) ; ��

Parameters

COLUMN

Specifies the column that the comment applies to.

The name must identify a column of a table or view that exists in the system
catalog. The column names must not be qualified. The comment is placed into
the REMARKS column of the SYSIBM.SYSCOLUMNS system table, for the row
that describes the column.

Do not use the keywords TABLE or COLUMN to comment on more than one
column in a table or view. Give the table or view name and then, in
parentheses, a list in the form:

Chapter 8. Reference 433

column-name IS string-constant,
column-name IS string-constant,...

One of the following permissions is required to run the COMMENT ON
statement to update a column:
v Ownership of the table or view
v SYSADM authority
v DBADM authority for the database class (only when a table is referenced)

table-name.column-name
Name of the table column that the comment applies to.

view-name.column-name
Name of the view column that the comment applies to.

INDEX index-name

Updates the REMARKS column in SYSIBM.SYSINDEXES for an index
definition in the metadata catalog.

Following the INDEX keyword is the index name. If qualified, index-name is a
two-part name, and the authorization ID that qualifies the name is the owner
of the index. If an unqualified index name is supplied, the owner name is the
authorization ID, which is from the CURRENT SQLID special register.

One of the following permissions is required:
v Ownership of the table or index
v DBADM authority for the database class of the table referenced by the index
v SYSADM authority

PROCEDURE procedure-name

Updates the REMARKS column in SYSIBM.SYSROUTINES table for a stored
procedure definition.

Following the PROCEDURE keyword is the procedure name. If qualified, the
procedure name is a two-part name, and the authorization ID that qualifies the
name is the owner of the procedure. If an unqualified procedure name is
supplied, the owner name is the authorization ID from the CURRENT SQLID
special register.

One of the following permissions is required:
v Ownership of the procedure
v SYSADM authority

TABLE

Updates the REMARKS column in SYSIBM.SYSTABLES for a table or view.

Following the TABLE keyword is a name that refers to either a table or view. If
qualified, the table or view name is a two-part name, and the authorization ID
that qualifies the name of the owner of the table or view. If an unqualified
table name is supplied, the owner name is the authorization ID that is from the
CURRENT SQLID special register.

One of the following permissions is required:
v Ownership of the table or view
v SYSADM authority
v DBADM authority for the database class (only when a table is referenced)

434 Guide and Reference

table-name
Name of the table that the comment applies to.

view-name
Name of the view that the comment applies to.

IS string-constant

Introduces the comment that you want to make.

string-constant can be any SQL character string constant of up to 254 bytes.

IMS
You can use the CREATE TABLE, ALTER TABLE and CREATE INDEX statements
to define tables and indexes that reference IMS databases.

CREATE TABLE statement for IMS
You can use the CREATE TABLE statement to define a logical table that references
an IMS database.

Authorization

The connected user ID must have one of the following privileges to run the
CREATE TABLE statement:
v SYSADM
v DBADM for the database type that is referenced in the DBTYPE clause

The owner has all table privileges on the table (such as SELECT, UPDATE, and
so on) and the authority to drop the table. The owner can grant equivalent use
privileges on the table.

�� CREATE TABLE table-name DBTYPE IMS DBD-name �

�
INDEXROOT perceived-root-segment-name

�

� leaf-segment-name
SUBSYSTEM IMS-subsystem-ID

�

�
SCHEDULEPSB (standard-PSB-name)

, JOIN-PSB-name

�

Chapter 8. Reference 435

�

�

�

PCBPREFIX PCB PCB-name-prefix
,

PCBNAME (PCB-name)
,

PCBNUM (PCB-number)
(count)

�

� �

,

(column-definition
record-array-definition

�

�

�

);
,

, PRIMARY KEY (column-name)

��

authorization-ID.table-name

Identifies the owner of the table and the name of the table that you want to
create.

If you do not provide an authorization ID, the ID in the CURRENT SQLID
special register is used.

You must create more than one table if you map to a database or a file that
meets either of these criteria:
v The database or file contains repeating data.
v The database or file contains information about one or more distinct

sub-objects, because the database or file is not designed to follow the third
normalization rules, which are part of the standards to eliminate
redundancies and inconsistencies in table data. In a table designed according
to third normalization rules, each non-key column is independent of other
non-key columns, and is dependent only upon the key.

DBTYPE IMS
Specifies that the CREATE TABLE statement defines a logical table that
references an IMS database.

DBD-name
Identifies the IMS DBD (database definition) that the table references.
DBD-name corresponds to the name in the NAME parameter for the DBD
statement. That statement is in the DBDGEN source definition for the IMS
logical or physical database that the IMS table references. DBD-name follows
z/OS load-module naming conventions.

INDEX ROOT perceived-root-segment-name

Identifies the root segment for the database hierarchy that the IMS logical table
definition maps. By default, the root segment is the physical or logical root
segment for the database that DBD-name specifies. The physical or logical root
segment for the database constitutes the root segment for verification of the
IMS hierarchy to the segment that leaf-segment-name specifies.

436 Guide and Reference

The INDEXROOT clause is required when the logical table references an IMS
secondary data structure hierarchy because the intent is to use a secondary
index to access or update the IMS database. The INDEXROOT clause is
required only when a secondary index is used and the target segment of the
secondary index is not the root segment of the database. For additional
information about secondary indexes, see the IMS Administration Guide:
Database Manager.

The name is a short native identifier that follows IMS segment naming
conventions. The segment must exist in the DBD that DBD-name specifies.

The segment must be either the root segment of the database or the root
segment because a secondary index accesses the table and database.

The following caveats apply for the INDEXROOT clause:
v When a secondary index exists in the database that your table references and

the target segment in the segment hierarchy is the root segment of the
database, create separate tables for each access path.
You can use one table to access the IMS database by using the primary key
sequence field. You can use the additional tables to access the database by
using the secondary index XDFLD definition. Each of these additional tables
must use either a different PSB to access the database, or the PCB prefix
option if for a single PSB.

v To use a single mapping for both primary key and secondary index access,
you must specify the PCB prefix option and explicitly define indexes by
using the CREATE INDEX statement for each access technique (primary key
or XDFLD). On each index definition, you identify the PCB prefix that
selects the PCB that accesses the IMS database.
In this situation, the PCB that accesses the database depends upon the
contents of the WHERE clause:
– If columns in the WHERE clause provide references to all of the columns

that make up an XDFLD definition, the PCB prefix for the index that
contains the XDFLD columns is used to access the database.

– If the WHERE clause contains references to the columns that map to the
primary key sequence field, the index that contains the primary key
sequence field columns is selected. The PCB prefix that is associated with
that index is used to access the database.

– If the WHERE clause does not contain sufficient information to select
either index, the PCB prefix at the table level determines which PCB
accesses the database.

leaf-segment-name

Identifies the lowest level segment in the database hierarchy that the table
maps to.

The database hierarchy is determined by traversing the parent chain
(PARENT= keyword in the DBD definition) for leaf-segment-name to either the
explicitly identified perceived-root-segment-name or the root segment of the
physical or logical database.

The name is a short native identifier that follows IMS segment naming
conventions. The segment must exist in the DBD that is identified by
DBD-name.

When perceived-root-segment-name is the physical or logical root segment of the
database, leaf-segment-name must be a physical or logical child of
perceived-root-segment-name.

Chapter 8. Reference 437

When perceived-root-segment-name is the root segment in a secondary data
structure, leaf-segment-name must be a child of perceived-root-segment-name.

SUBSYSTEM IMS-subsystem-ID

Identifies the IMS subsystem that is the location of the database that DBD-name
specifies. The Open Database Access (ODBA) interface uses IMS-subsystem-ID
when it accesses or updates the IMS database for two-phase commit.

The ID is a native identifier that follows IMS subsystem naming conventions.
IMS-subsystem-ID is 1 to 4 characters in length.

SCHEDULEPSB

Identifies the names of one or two PSBs that access or update the IMS database
when the DRA or ODBA interface is used.

standard-PSB-name

Identifies the name of the default PSB that accesses the IMS database.

JOIN-PSB-name
Optionally specifies the name of the PSB that is scheduled to access the
IMS database. The DRA and ODBA interfaces use DBD-name to identify the
IMS database. JOIN-PSB-name corresponds to a PSB definition that is
defined to the IMS system being accessed and as a PDS member under the
same name that exists in the active ACB library of the target IMS
subsystem.

If your applications issue joins against multiple IMS tables, specify
JOIN-PSB-name.JOIN-PSB-name follows the naming conventions for the
z/OS load module.

The PSB is scheduled when a SELECT statement is run that contains a
JOIN predicate that references multiple IMS tables. This first table is the
one that JOIN references.

PCBPREFIX PCB PCB-name-prefix
Identifies a partial PCBNAME that specifies the PCB that accesses or updates
the IMS database.

The prefix is a native identifier that follows IMS PCB naming conventions.
PCB-name prefix is from 1 to 7 characters in length.

PCBNAME (PCB_name,...)
Specifies up to 5 PCB names, each of which access an IMS database for a table.
Multiple names are required if the same table is referenced more than one time
in an SQL statement, or when the same PCB name is associated with more
than one table, and the additional tables are referenced in a single SQL
statement.

Each PCB name in the list is 1 to 8 characters in length.

PCBNUM (PCB_number (count),...)
Allows more potential PCBs to access the IMS database for the table than the
PCBNAME keyword allows. Multiple numbers are required if the same table is
referenced more than once in an SQL statement, or when the same PSB is
associated with more than one table, the PCBs in the PSB have sensitivity to
the segments that the table accesses and the same PCB ordinal numbers are
specified for these tables. These additional tables are referenced in a single SQL
statement.

438 Guide and Reference

You can specify up to ten sets of PCB number ranges. The order of the
numbers represent which order a PSB is checked to determine whether a PCB
accesses the IMS database.

For each item in the list, different methods identify the PCB numbers that are
checked. The simplest method is separate each PCB number with commas. The
second method identifies a range that consists of a starting PCB number that is
followed by parenthesis and a number that identifies the number of PCBs to
check from the starting number.

With either method, the PCB number represents the relative 1 ordinal number
of the PCB that is checked. Because an input or output PCB must be defined in
each PSB, the minimum practical PCB number is 2.

column_definition

Provides SQL descriptions of the contents of the segments in the IMS database
hierarchy that this table accesses. Optionally, the column can include one or
more record arrays that identify repeating data in the sequential file. IMS
databases have limited metadata. The DBD definition defines the segments that
make up the database and its hierarchical structure.

A table must contain at least one column and can contain up to 5,000 columns.
Columns are named, and each name must be unique within the table.

At a minimum, the DBD definition contains an IMS FIELD definition for the
keys for each segment in the database and XDFLD definitions that identifies
the keys of any secondary indexes. Whether the DBD contains additional
FIELD statements that define the other fields in each segment, is site
dependent. A common practice is to only define additional FIELD statements
for those attributes that are referenced in segment search arguments (SSAs)
that the applications issue. Then IMS filters the data that is returned to the
application.

record_array_definition

Identifies repeating data. Record array definitions contain column definitions
and possibly more record array definitions.

Federated queries can read record array data if you perform one of the
following procedures:
v Map the columns in a flattened structure that provides a separate column

for each array instance and field.
v Map a separate table for each array.

You can read, update, and capture changes to redefined data if you create a
separate table and view for each record type. You can update and capture
changes to record array data if you map the columns in a flattened structure.

PRIMARY KEY column-name

Identifies the columns that uniquely identify an IMS database record and the
segment instances that this table references in an IMS database.

The specification of primary key information is always valid for a table that
references an IMS database.

The ability to determine what constitutes a good set of primary key columns
versus a bad set of columns depends primarily upon whether
perceived-root-segment-name is explicitly specified or implicitly identified, for
example by the root segment.

Chapter 8. Reference 439

The primary key does not enforce the same restrictions that the CREATE
INDEX statement does. There is no prohibition against identifying the columns
that make up the primary key sequence field or a DEDB, HDAM or PHDAM
database as primary key columns. Likewise, you can use primary key columns
for child segments. References to columns that map to the sequence fields of
all of the child segments in the database hierarchy are also good primary key
column references. Under the assumption that the fully concatenated key is
unique, references to child segment sequence fields that are not unique are also
acceptable . A warning message is generated when a reference is made to a
non-unique child sequence field.

Example

The following is an example of a CREATE TABLE statement for IMS.
CREATE TABLE CXAIMS.IMSALDB DBTYPE IMS

FVT52901 INDEXROOT FVTROOT FVTROOT
SCHEDULEPSB(PF52901U) PCBPREFIX FVT

(
ALDBIMSKEY SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 0 LENGTH 4 DATATYPE F
USE AS INTEGER,
ALDBIMSCHAR SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 4 LENGTH 254 DATATYPE C
USE AS CHAR(254)
NULL IS X’4040’,

ALDBIMSLDECIMAL SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 266 LENGTH 8 DATATYPE P
USE AS DECIMAL(15,0)
NULL IS X’000000000000000C’,
ALDBIMSDECIMALMAX SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 282 LENGTH 8 DATATYPE P
USE AS DECIMAL(15,15)
NULL IS X’000000000000000C’,

/* */
ALDBIMSLFLOAT SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 294 LENGTH 8 DATATYPE D
USE AS FLOAT(53)
NULL IS X’0000’,
ALDBIMSDBLPREC SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 302 LENGTH 8 DATATYPE D
USE AS FLOAT(53)
NULL IS X’0000’,
ALDBIMSINTEGER SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 310 LENGTH 4 DATATYPE F
USE AS INTEGER
NULL IS X’00000000’,
ALDBIMSREAL SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 314 LENGTH 4 DATATYPE D
USE AS FLOAT(21)
NULL IS X’0000’,
ALDBIMSSMALLINT SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 318 LENGTH 2 DATATYPE H
USE AS SMALLINT
NULL IS X’0000’,
ALDBIMSVCHAR SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 320 LENGTH 256 DATATYPE V
USE AS VARCHAR(254)
NULL IS X’4040’,

/* */
ALDBIMSLVCHAR SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 576 LENGTH 1026 DATATYPE V
USE AS VARCHAR(1026)
NULL IS X’4040’,

440 Guide and Reference

/* */

ALDBIMSLVGRAPHIC SOURCE DEFINITION ENTRY FVTROOT
DATAMAP OFFSET 2112 LENGTH 1025 DATATYPE V
USE AS VARGRAPHIC(1025)

/* USE AS LONG VARGRAPHIC */
NULL IS X’4040’,
PRIMARY KEY (ALDBIMSKEY)
);

Columns for IMS
You can define a column that references an IMS database. For IMS column
definitions, you must also identify the name of the segment where the column
resides.

Syntax

�� column-name SOURCE DEFINITION ENTRY segment-name
IMS-field-name

�

� DATAMAP OFFSET relative-offset LENGTH length
DATATYPE C

P
D
F
H
V
UC
UP
UH
UF
B
VB

�

� USE AS CHAR (length)
VARCHAR (length)
LONG VARCHAR
GRAPHIC (length)
VARGRAPHIC (length)
LONG VARGRAPHIC
INTEGER
SMALLINT
DECIMAL (precision, scale)
DECIMAL (precision)
FLOAT (precision)
REAL
DOUBLE PRECISION
BINARY (length)
VARBINARY (length)

�

�
WITHOUT CONVERSION

WITH CONVERSION field_procedure_name NULL IS null_value
�

Chapter 8. Reference 441

�
PRIMARY KEY

��

Parameters

column-name
Identifies the name of the column.

Specifies the column name that is a long identifier. Column names cannot be
qualified with a CREATE TABLE statement.

segment-name
Identifies the segment where the column is located. The name is a short native
identifier.

The name must also exist in the DBD specified in the CREATE TABLE
statement.

DATAMAP
Specifies the relative offset for a column. If a LENGTH keyword is specified,
information about the length of the column is also defined.

OFFSET relative-offset

Follows the DATAMAP keyword to set the offset for the column. For some
data sources like Adabas and CA-IDMS, explicit offset and length information
does not need to be supplied because the system data dictionaries can provide
this information. In these cases, the column definition does not provide offset
information. The column definition only identifies the element or field name
that the column corresponds to in the data source data dictionary. If a column
definition references a portion of a dictionary element or field, the grammar
supports specifying column offset and length within the element or field. The
column definition can identify the column offset of the start of the column and
the length of the element or field that the column is being mapped to.

The relative offset identifies the relative zero offset of the starting position of
the column within the object that the column is associated with. For simple
objects like a VSAM or sequential file, the offset is generally measured from
the start of the record. For more complex databases, like IMS or CA-IDMS, the
relative offset is measured from the start of a segment or record. If the column
is defined within a record array, then the relative offset is measured from the
start of the record array that is measured from the start of the fragment that
the column is associated with.

Note: Columns do not need to be defined in ascending relative offset starting
sequence. When a mapping contains fixed length record arrays with additional
columns following the record array, the starting offsets typically increase for
the columns before the record array definition. For the columns in the record
array, the relative offset information is reset to one and to larger numbers for
those columns that exist after the record array.

LENGTH length
The LENGTH clause is required for IMS column definitions.

Specifies the length of the column. Generally, inconsistencies between the
length that is specified using the LENGTH keyword and the length that is
obtained from the SQL data type definition on the USE AS clause are ignored.
For native DECIMAL data types the LENGTH must match the computed
physical length of the column, based on the precision and scale specified in the

442 Guide and Reference

USE AS clause when the USE AS precision is non-zero. For USE AS DECIMAL
definitions the LENGTH must match the computed physical length of the
column when the scale is non-zero and greater than the precision.
Additionally, differences between the length and the SQL length specification
for VARCHAR and VARGRAPHIC data types identify how to interpret the
length attribute for the varying length column. The following rules are applied
for VARCHAR data types:
v If the length and the VARCHAR lengths are identical, then the control length

is assumed to include the length (2 bytes) that is taken up by the control
length component.

v If the length is two bytes greater than the VARCHAR length, then the control
length component is assumed to identify the actual length of the data.

For a varying length graphic string, the same kind of conventions are used.
However, the lengths are expressed in DBCS characters. Therefore the rules are
as follows:
v If the length and the VARGRAPHIC lengths are identical, then the control

length is assumed to include the length (1 DBCS character, which is 2 bytes)
that is taken up by the control length of a component.

v If the length is one character greater (two bytes) than the VARGRAPHIC
length, then the control length component is assumed to identify the actual
length of the data in characters.

Generally, the USE AS length must match the length value specified. However,
for VARCHAR, the length can be two bytes off. For VARGRAPHIC, the length
can be different by one. For these data types, the differences do not represent a
conflict.

DATATYPE
Identifies the native format of the column.

The following table identifies the basic native data types

Table 78. Native data types

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

C Mixed mode
character data. When
the SQL data type is
DECIMAL, the data
is assumed to consist
wholly of numbers
with the right most
number identifying
the sign.

CHAR

DECIMAL

DECIMAL,
VARCHAR,
GRAPHIC, or
VARGRAPHIC,
BINARY,
VARBINARY

P Packed decimal data
where the sign is
stored in the far right
aggregation of four
bits.

DECIMAL BINARY

Chapter 8. Reference 443

Table 78. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

D1 Floating point data.
The columns length
or precision
determines whether
the SQL data type is
DOUBLE PRECISION
or DECIMAL. 64-bit
data is mapped as
DECIMAL.

DOUBLE PRECISION FLOAT(precision)

DECIMAL, BINARY

F2 32-bit signed binary
value where the sign
is in the high order
bit.

INTEGER

REAL

FLOAT(precision)

BINARY

H 16-bit signed binary
value where the sign
is in the high order
bit.

SMALLINT BINARY

V Variable mixed-mode
character data, where
the actual data is
preceded by a 16-bit
signed binary number
that identifies the
actual length of the
data.

VARCHAR LONG VARCHAR,
VARGRAPHIC, or
LONG
VARGRAPHIC,
VARBINARY

UC Unsigned
zoned-decimal data
where the last
character does not
identify the sign. The
value is always a
positive value.

DECIMAL CHAR, BINARY,
VARBINARY

UP Packed decimal data
where the sign bit is
ignored. The value is
always positive.

DECIMAL BINARY

UF Unsigned 32-bit
binary value.

INTEGER BINARY

UH Unsigned 16-bit
binary value.

SMALLINT BINARY

B3 Fixed length binary
data.

BINARY DECIMAL,
INTEGER,
SMALLINT,
VARBINARY

VB3 Variable length binary
data, where the actual
data is preceded by a
16-bit signed binary
number that identifies
the actual length of
the data.

VARBINARY N/A

444 Guide and Reference

Table 78. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

1The SQL data type is DOUBLE PRECISION or FLOAT. DOUBLE PRECISION is shorthand
for an 8-byte floating point number. In the USE AS clause, you can identify this data type as
DOUBLE PRECISION or FLOAT(precision). If the precision value is in the range 22–53, the
column represents an 8-byte floating point number. If you assign FLOAT, specify the
maximum precision. The column length is based on the precision.

2The SQL data type is REAL or FLOAT. REAL is shorthand for a 4-byte floating point
number. In the USE AS clause, you can identify this data type as REAL or
FLOAT(precision). If the precision value is in the range 1–21, the column represents a 4-byte
floating point number. If you assign FLOAT, specify the maximum precision. The column
length is based on the precision.

If DATATYPE information is not specified, the native data type is synthesized
based on the column of the SQL data type or from the database system.

The SQL data type information in the USE AS clause identifies the value in the
SIGNED column in the following instances:
v One character code is supplied.
v No DATATYPE information is specified.
v Native data type information is not obtained from the database system.

USE AS
Identifies the SQL data type for the column.

The following table describes the data types for columns. The non-null
SQLTYPE identifies the data type in internal control blocks and diagnostic
trace information.

Table 79. SQL data type descriptions

Keyword identifier Description
Maximum
length SQLTYPE

CHAR(length) Fixed-length character string that
contains mixed mode data.

254 452

VARCHAR(length) Variable length character string that
contains mixed mode data. A half-word
length component precedes the
character string and identifies the actual
length of the data. The VARCHAR
length does not include the length of
the LENGTH filed.

32704 448

LONG VARCHAR Long character string that contains
mixed mode data. A half-word length
component precedes the character string
and identifies the actual length of the
data. The LONG VARCHAR length
does not include the length of the
LENGTH field.

32704 456

GRAPHIC(length) Fixed-length graphic string that is
assumed to contain pure DBCS data
without shift codes. The length is
expressed in DBCS characters, and not
bytes.

127 468

Chapter 8. Reference 445

Table 79. SQL data type descriptions (continued)

Keyword identifier Description
Maximum
length SQLTYPE

VARGRAPHIC(length) Varying-length graphic string that is
assumed to contain pure DBCS data
without shift codes. A half-word length
component precedes the graphic string
and identifies the actual length of the
data. The length is expressed in DBCS
characters, and not bytes.

16352 464

LONG VARGRAPHIC Long graphic string that is assumed to
contain pure DBCS data without shift
codes. A half-word length component
precedes the graphic string and
identifies the actual length of the data.
The length is expressed in DBCS
characters, and not bytes.

16352 472

INTEGER Large integer. Exactly 4 496

SMALLINT Small integer. Exactly 2 500

DECIMAL

(precision,scale) or
DECIMAL(precision)

Packed decimal data. A valid precision
value is between 1 and 31. A valid scale
value is between zero and the precision
value.

31 484

FLOAT(precision) Floating point number. Depending upon
the precision, a column with a FLOAT
data type takes on the attributes of a
REAL or DOUBLE PRECISION data
type. When precision is in the range of
1 to 21, the column is treated as a
REAL. For precisions between 22 and
53, the column takes on DOUBLE
PRECISION attributes. A precision of
zero or greater than 53 is nonvalid.

4 or 8 480

REAL A single-precision, floating-point
number that is a 32-bit approximation
of a real number. The number can be
zero or can range from -3.40282347E+38
to -1.17549435E-38, or from
1.17549435E-38 to 3.40282347E+38.

4 480

DOUBLE PRECISION A floating-point number that is a 64-bit
approximation of a real number. The
number can be zero or can range from
-1.797693134862315E+308 to
-2.225073858507201E-308, or from
2.225073858507201E-308 to
1.797693134862315E+308.

8 480

BINARY(length) Fixed-length binary data. 32704 912

VARBINARY(length) Variable length binary data, where the
actual data is preceded by a 16-bit
signed binary number that identifies the
actual length of the data. The
VARBINARY length does not include
the length of the LENGTH filed.

32704 908

446 Guide and Reference

When you supply a USE AS LONG VARCHAR or USE AS LONG
VARGRAPHIC clause, you do not specify a length for the column. The length
is based on the physical attributes that are obtained about the object record or
segment where the column is.

When you supply a USE AS VARCHAR clause with a length greater than 254,
that column is changed into a LONG VARCHAR column with the specified
length. The same behavior occurs for a USE AS VARGRAPHIC clause when
the length is greater than 127.

WITHOUT CONVERSION
Specifies that a field procedure does not exist for the column.

WITH CONVERSION
Identifies the name of the load module for a field procedure, if a field
procedure is required. The field procedure name is a short identifier.

NULL IS null_value
Specifies a value that identifies when the contents of the column is null. By
default, the data in a column never contains a null value. This situation is true
even for variable length character or graphic columns where the length
component indicates that there is no data in the variable length column.

A null value is a character string that can specify up to 16 characters of data.
Specifies the value in hexadecimal format. The total length of the string is 35
characters.

A column contains null values based on null-value. If the start of the column
data matches the null value, then that instance of the column is null. For
example, if a column is defined as CHAR(10) and a null value of x'4040' is
specified, the null value length is 2. If the first 2 bytes of the column contain
spaces, the column is also null.

PRIMARY KEY
Identifies the column to be one of the columns that constitute the primary key
for the table. This form of primary key identification is mutually exclusive with
specifying a primary key at the end of the CREATE TABLE statement.

You can identify a primary key at the column level when the columns that
make up the primary key for the table are defined in ordinal sequence within
the table definition.

Record arrays for IMS
Record array definitions are used to identify and handle data that can repeat
multiple times within a non-DB2 database or file system.

Syntax

�� BEGINLEVEL level-number OFFSET relative-offset LENGTH occurrence-length �

� OCCURS number-of-occurrences
OCCURS DEPENDING ON COLUMN column-name
MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name
MAXOCCURS maximum-occurrences NULL IS null-value

column-name EQUAL ALL

�

� column_definition
record_array_definition
,

��

Chapter 8. Reference 447

Parameters

BEGINLEVEL level-number

Identifies the start of a record array definition.

The level-number on a BEGINLEVEL or ENDLEVEL definition identifies the
nesting level of the record array within the parent fragment. Multiple record
arrays can exist with the same level-number. Typically, you do not map multiple
record arrays within a single table. Create separate tables for each record array
on the same level to avoid result sets that are too large.

The following example shows a multiple record array. In this example, the
EMPL-ADDRESS data item occurs three times and the EMPL-DEPENDENTS,
EMPL-DEP-NAME and EMPL-DEP-DOB data items occur ten times. If you
map both arrays to the same table, the query processor generates 30 rows for
each EMPL-RECORD read. Each instance of EMPL-ADDRESS is combined
with each instance of EMPL-DEPENDENTS to create 30 rows (3 addresses
times 10 dependents).

If you must access the information in the above example in a single table
definition, then two record array definitions are required. These record arrays
are both level 1 arrays, because they are not nested within other arrays. To
avoid performance problems related to result sets that are too large, flatten the
structure or define a separate table for one or both arrays.

OFFSET relative-offset

The relative offset identifies the relative starting position of the record array
within the segment or within a parent record array definition.

The relative offset is a required numeric parameter.

LENGTH occurrence-length

Identifies the length in bytes of one occurrence of the repeating data.

MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name

Identifies a record array that occurs a variable number of times. A column
definition that appears before the record array definition determines the
number of instances.

You cannot map columns that occur after a variable length array, because the
starting offsets of data items that are defined after an OCCURS DEPENDING
ON definition are not at a predictable offset.

The maximum-occurrences value must be numeric, and column-name must
specify the name of a column in the table. The control column must contain a
numeric value. The query processor supports SQL types of SMALLINT,
INTEGER, DECIMAL, or CHAR (if the column contains zoned decimal data).

MAXOCCURS maximum-occurrences NULL IS

01 EMPL-RECORD.
05 EMPL-SSN PIC 9(9.
05 EMPL_NAME

10 EMPL-LAST PIC X(30.
10 EMPL_FIRST PIC X(30.
10 EMPL_MI PIC X.

05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES.
05 EMPL-DEPENDENTS OCCURS 10 TIMES.

10 EMPL-DEP-NAME PIC X(30).
10 EMPL-DEP-DOB PIC 9(8).

448 Guide and Reference

Defines a record array that repeats a fixed number of times. If the initial bytes
of the first column in the record array match null-value, that instance of the
array is null.

The maximum-occurrences value must be numeric. The null value can be a
character string of up to 32 characters. The null-value can also be a
67-character hexadecimal string that consists of 64 hexadecimal nibbles, with a
leading x and surrounding quotation marks, for example, x'4040'.

ENDLEVEL level-number
Identifies the end of a record array definition.

CREATE INDEX statement for IMS
You can use the CREATE INDEX statement to define an index that references the
columns that make up the IMS primary key (FIELD). You can also define an index
that references the columns that map to the SRCH fields in the XDFLD statement
of a secondary index definition to access the IMS database.

Indexes identify columns in a table that correspond to a physical index that is in
the source database. The query processor uses the contents of the columns that are
referenced in a WHERE clause to create the index. The query processor attempts to
build either a full key value to use in database access or a partial key value. The
partial key can be used to perform a range scan against the target database to
reduce the number of records that are accessed.

Although you might not be able to define an index against columns that
correspond to the primary key, you can identify these columns as primary key
columns. This primary key information does not affect existing connector index
selection and access optimization. The primary key information is made available
for use by front-end tools, where key information is either required or beneficial.

Syntax

�� CREATE INDEX index_name
UNIQUE

ON table_name �

� �

,
ASC

(column_name) ;
DESC FIELDNAME IMS_field_name

�

�

�

�

;
PCBPREFIX PCB_name_prefix

,

PCBNAME (PCB_name)
,

PCBNUM (PCB_number)
(count)

��

Parameters

CREATE INDEX index_name

Chapter 8. Reference 449

Identifies the SQL statement as an index definition statement. A unique index
does not have any restrictions about the columns that make up the index. For
example, a unique index column can contain null values.

If qualified, the index name is a two-part name, and the authorization ID that
qualifies the name is the owner of the index. If an unqualified table name is
supplied, the owner name is the authorization ID from the CURRENT SQLID
special register.

ON table_name

Identifies the table for which the index is being defined. The table name can be
a qualified or unqualified table name. For unqualified names, the table owner
is from the CURRENT SQLID special register.

The table name is validated with the standard syntax checks that are associated
with identifiers, and then the existence of the table is verified. Do not define an
index on a view.

column_name ASC/DESC

Specifies column names that make up the index key. Optionally, you can
identify whether the column is stored or accessed in ascending (ASC) or
descending (DESC) key sequence. By default, the key is in ascending key
sequence.

There are no fixed limits on the number of columns that you can identify as
key columns for an index. The only requirements are as follows:
v The column must exist in the table.
v The column must map to what constitutes a key in the target database. In

most cases, this determination is based on the starting offset and length of
the column as compared to the starting offset and length of the key in the
target database.

v The column cannot overlap another column within the key definition. This
determination is based on the starting offset and length of a column as
compared to the starting offsets and length of the other columns that are
identified as key columns for the index definition.

v For the key column, generally varying length and graphic data types are not
supported.

Any kind of varying-length character or graphic string is not allowed.
If the CREATE TABLE statement specifies a segment for the INDEXROOT
keyword and that segment is not a root segment, the key columns can only
reference an XDFLD that is defined by INDEXROOT. The key columns
reference offsets and lengths in the source segment that the XDFLD references.
If INDEXROOT is not specified in the CREATE TABLE statement or the
segment is the root segment for the DBD, key columns can be specified for any
XDFLD and can reference columns that map to the primary key sequence field
of the database.
If DBD_name in the CREATE TABLE statement references a logical DBD, the
key columns can reference an XDFLD in either of the physical segments that
are referenced by the INDEXROOT segment. However, if INDEXROOT is not
specified in the CREATE TABLE statement or the segment is the root segment
for the DBD, primary key references are supported only for the first physical
database that is referenced by the logical DBD.
If the index is defined against the root segment of the database and the
DBD_NAME in the CREATE TABLE statement is a DEDB, HDAM or PHDAM
database, the index cannot consist of key columns that reference the primary
key sequence field of the IMS database. This also holds true if the DBD_NAME

450 Guide and Reference

in the CREATE TABLE statement references a logical database and the root
segment of the first physical database is a DEDB, HDAM or PHDAM database

PCBPREFIX PCB_name_prefix
Identifies the PCBs that access the IMS database when the index is selected
based on the WHERE clause. PCB_name prefix is 1 to 7 characters in length and
follows IMS PCB naming conventions.

If a PCBPREFIX is in the IMS CREATE TABLE statement, you must specify a
PCBPREFIX in the CREATE INDEX statement. When the index accesses the
table, the index-level PCBPREFIX is used in preference to any PCB prefix
information at the table level.

If the index corresponds to the primary key sequence field of the IMS
database, the IMS PCB definitions that correspond to the PCBPREFIX
information must not contain a PROCSEQ definition.

Also, if the index definition corresponds to an XDFLD definition, the PCBs
must contain a PROCSEQ. This process identifies the secondary index DBD
that corresponds to the XDFLD that the index key columns match.

PCBNAME (PCB_name,...)
Specifies up to 5 PCBs that access an IMS database through a table. Multiple
PCBs are required if the same table is referenced more than once in an SQL
statement, or when the same PCB is associated with more than one table and
these additional tables are referenced in a single SQL statement.

Each PCB name in the list can be up to 8 characters long. For multiple PCB
names, separate each name by a comma.

PCBNUM (PCB_number (count),...)
Specifies a number of PCBs to access the IMS database for the table. Multiple
PCBs are required under either of these conditions:
v The same table is referenced more than once in an SQL statement.
v The same PSB is associated with more than one table, the PCBs in the PSB

have sensitivity to the segments that the table is accessing, the same PCB
ordinal numbers are specified for these tables, and these additional tables
are referenced in a single SQL statement.

You can specify up to ten sets of PCB number ranges. These PCB numbers can
be listed in any order and represent the order in which a PSB is checked to
determine whether a PCB is used to access the IMS database.

For each item in the list, two different formats are used to identify the PCB
numbers to be checked. The simplest method is to identify the PCB numbers to
be checked separated by commas. The second technique identifies a range
specification that consists of a starting PCB number that is followed by
parenthesis and a number that identifies the number of PCBs to be checked
from the starting number.

For either technique, the PCB number represents the relative 1 ordinal number
of the PCB that is to be checked. Because an I/O PCB needs to be defined in
each PSB that Classic Federation uses, the minimum practical PCB number that
can be specified starts at two.

Example

The following is an example of a CREATE INDEX statement for IMS.
CREATE UNIQUE INDEX CXAIMS.IMSALDB_IDX1 ON CXAIMS.IMSALDB (ALDBIMSKEY ASC);

Chapter 8. Reference 451

ALTER TABLE statement for IMS
You can use the ALTER TABLE statement to create tables that reference an IMS
database.

Authorization

You must have the one of the following authorities to run the ALTER TABLE
statement:
v SYSADM
v DBADM for the database type that is referenced in the DBNAME column for the

table being altered
v Ownership of the table being altered

Syntax

�� ALTER TABLE table-name DATA CAPTURE CHANGES ;
NONE

��

Parameters

table-name
Identifies the table for which the DATA CAPTURE is turned on or off. The
table name can be a qualified or unqualified table name. If an unqualified
name is supplied, the table owner is from the CURRENT SQLID special
register.

DATA CAPTURE

Indicates that the ALTER TABLE statement is setting the value of the DATA
CAPTURE flag.

CHANGES
Turns change capture on, which enables change-capture agents to capture
changes to the data that the table is mapped to.

NONE
Turns change capture off. Change-capture agents do not capture changes to
the data that the table is mapped to.

Example

The following is an example of an ALTER TABLE statement for IMS.
ALTER TABLE CXAIMS.IMSALDB DATA CAPTURE CHANGES;

VSAM
You can use the CREATE TABLE and ALTER TABLE statements to define tables
that reference VSAM files. You can use the CREATE INDEX statement to define
indexes that reference VSAM files.

CREATE TABLE statement for VSAM
You can use the CREATE TABLE statement to define a logical table that references
a VSAM file.

452 Guide and Reference

Authorization

The connected user ID must have one of the following privileges to run the
CREATE TABLE statement:
v SYSADM
v DBADM for the database type that is referenced in the DBTYPE clause

The owner has all table privileges on the table (such as SELECT, UPDATE, and so
on) and the authority to drop the table. The owner can grant equivalent use
privileges on the table.

Syntax

�� CREATE TABLE table-name DBTYPE VSAM DD DD-name
DS dataset-name

�

�
CICS_connection_information

�

�
RECORD EXIT exit-name

MAXLENGTH length

�

� �

,

(column_definition
record_array_definition

�

�

�

);
,

, PRIMARY KEY (column-name)

��

CICS_connection_information:

CICS APPLID local-LU-name CICS-LU-name LOGMODE logmode-name �

� TRANID CICS-transaction-ID
NETNAME network-name

�

�
DSN data-set-name

Parameters

authorization-ID.table-name

Identifies the owner of the table and the name of the table that you want to
create.

Chapter 8. Reference 453

If you do not provide an authorization ID, the ID in the CURRENT SQLID
special register is used.

You must create more than one table if you map to a database or a file that
meets either of these criteria:
v The database or file contains repeating data.
v The database or file contains information about one or more distinct

sub-objects, because the database or file is not designed to follow the third
normalization rules, which are part of the standards to eliminate
redundancies and inconsistencies in table data. In a table designed according
to third normalization rules, each non-key column is independent of other
non-key columns, and is dependent only upon the key.

DBTYPE VSAM

Specifies that the CREATE TABLE statement defines a logical table that
references a VSAM file.

DD DD-name

Specifies the VSAM file that the table maps to. Specifies either a local file
reference or a reference to a CICS file definition table (FDT) entry name.

If DD-name represents a local file reference, a DD clause that references the
VSAM file must exist in the Classic federation data server JCL.

If DD-name references an FDT entry name, you must specify CICS connection
information with the CICS_connection_information clause.

DD-name must correspond to a cluster or alternate index path definition for a
VSAM ESDS, KSDS, or RRDS data set.

DD-name is a short native identifier that conforms to the naming conventions
for a DD statement in job control language (JCL) on IBM z/OS.

DS data-set-name

Specifies the VSAM file that the table definition accesses. Designates a VSAM
cluster definition or a PATH component when the VSAM file is accessed from
a VSAM alternate index.

The data set name must correspond to a cluster or alternate index path
definition for a VSAM ESDS, KSDS, or RRDS data set.

The name can be 1 to 44 characters in length and must follow z/OS naming
conventions for VSAM data sets.

CICS_connection_information

Specifies CICS connection information that is required only if your VSAM files
are managed by CICS.

For Classic federation, you must specify CICS connection information that
identifies the CICS subsystem where the VSAM file is located.

CICS APPLID
Specifies the names of two logical units (LUs) that establish communication
with the target CICS subsystem.

local-LU-name
This value identifies the name of a local LU that is used to
communicate with CICS. This identifier is 1 to 8 characters in length.

454 Guide and Reference

local-LU-name corresponds to either the ACBNAME or the name (label)
on the IBM VTAM APPL definition. local-LU-name must be active on
the image where the server runs.

The name follows VTAM naming conventions. The SASCSAMP
member CACCAPPL provides the sample local LU definitions. The
sample names for local-LU-name are CACCICS1 and CACCICS2, which
you can modify. Define the name to CICS as a CONNECTION
definition. Sample connection definitions for CACCICS1 and
CACCICS2 are in SASCSAMP member CACCDEF.

CICS-LU-name
Designates the VTAM LU 6.2 definition that a CICS region listens on
for connection requests. This LU name is 1 to 8 characters in length.
The name corresponds to the value of the APPLID parameter in the
system initialization definition (DFHSIT macro) of the target CICS
subsystem where the VSAM file is located. The name follows VTAM
naming conventions.

LOGMODE logmode-name
Identifies the name of the VTAM log mode table that controls session
establishment and the service-level properties of the session that CICS
determines. The name is a short native identifier that designates the name
of the VTAM logon-mode table that controls the session parameters for the
conversation that is established between the local LU and the CICS LU.
This name is 1 to 8 characters in length. The logon-mode table name
corresponds to a z/OS load module that is accessible to VTAM. The
definition for a Classic logon-mode table is in SASCSAMP member
CACCMODE.

TRANID CICS-transaction-ID
Performs the following functions:
v Identifies the name of the Classic-supplied transaction that verifies the

existence of the VSAM file

The name of the CICS transaction is used for data access and validation
purposes. This name is 1 to 4 characters in length. In prior releases,
CICS-transaction-ID was for data access only, and a separate transaction
performed validation checking. In version 9.1, these two CICS transactions
are combined. CICS-transaction-ID corresponds to the CICS
TRANSACTION definition.

The SCACSAMP member CACCDEFS provides sample CICS transaction,
connection, program, and session definitions. The sample
CICS-transaction-ID identifier is EXV1, which you can modify.

NETNAME network-name

Enables the federation data server to communicate with a remote CICS
system by identifying the name of the network where the CICS subsystem
is running.

The name of the network where CICS-LU-name resides corresponds to the
CICS subsystem that accesses a VSAM file. This identifier is 1 to 8
characters in length.

The name is identified on the NETWORK VTAM macro definition on the
local image to identify the remote SNA network where the CICS subsystem
resides.

The name follows VTAM naming conventions.

Chapter 8. Reference 455

DSN data-set-name

Identifies the name of a data set that is associated with a file in the CICS
system. If the table is not going to be used for replication, then this DSN
data-set-name clause is not required. It is only required for Classic CDC for
VSAM when the CICS file definition is a remote file in a File Owning
Region (FOR). When using Classic CDC for VSAM, CDC requires the data
set name from which to capture changes. Using this data set name, Classic
CDC can then find the correct log stream that contains the changes to
capture.

If the CICS file being mapped is local to the CICS region specified, then
the data-set-name is available and returned to the QP. In this case, the DSN
clause is not necessary. If it is specified, then the data-set-name that is
specified is compared to the data set name on the File Control Table (FCT)
entry in CICS when the CREATE TABLE command is run.

If the CICS file being mapped is a remote definition in the CICS region
that is specified, then the data set name is not available, and the DSN
data-set-name clause is required so that Classic CDC has the required data
set name that is needed for data capture. This is enforced when the
CREATE TABLE statement is run.

The following validation rules apply when the DSN data-set-name is
specified. In each case, an error is returned if there is a problem.
v If the CICS file is local to the CICS region, then the DSN name that is

specified must match the data set name that is returned from CICS.
v If the CICS file is remote to the CICS region (no data set name returned

from CICS), the data set name that is specified by DSN must exist and is
validated through the catalog search interface.

v If the CICS file is remote to the CICS region, then the data set name
must be specified on the CREATE TABLE statement.

v The data set name that is specified must not exceed 44 characters.

RECORD EXIT exit-name

Identifies that a record processing exit is invoked for postprocessing, after a
record is retrieved from the VSAM file. The record processing exit is also called
for preprocessing before a VSAM record is inserted or updated. The record exit
is used for altering the record contents or filtering specified records.

You can use the record processing exit with Classic federation from VSAM
files.

The name is a short identifier that follows the naming conventions for a z/OS
load module.

MAXLENGTH

Specifies the maximum length, in bytes, of the buffer that calling programs can
pass to the record exit. The buffer must be large enough to accommodate the
largest possible input or output record.

column_definition
Provides SQL descriptions of the contents of the VSAM file. Column mapping
must be based on COBOL copybook definitions.

A table must contain at least one column and can contain up to 5,000 columns.
Columns are named, and each name must be unique within the table.

record_array_definition

456 Guide and Reference

Identifies repeating data. Record array definitions contain column definitions
and possibly more record array definitions.

Federated queries can read record array data if you perform one of the
following procedures:
v Map the columns in a flattened structure that provides a separate column

for each array instance and field.
v Map a separate table for each array.

PRIMARY KEY column-name
Specifies the column names that uniquely identify each record in the VSAM
file. Depending upon the type of VSAM file that the CREATE TABLE
references, statement specification of primary key columns might not be
appropriate.

Corresponds to what constitutes the target database or file system equivalent
of a primary key. The column or columns logically identify a unique row. Each
table must have a primary key consisting of the set of columns that uniquely
identifies each record.
You can use either of two approaches to define a primary key. Use the
following criteria to determine whether to specify the PRIMARY KEY clause on
the column definition or the CREATE TABLE statement.
v If the columns that make up a composite key are defined in the same

sequence as represented by the actual primary key, PRIMARY KEY can be
specified on the column definitions. When this form of primary key
identification is used, the sequence in which the columns are identified
represents the ordinal position that you must use to construct a composite
key that uniquely identifies a row in the table.

v When PRIMARY KEY information is specified on the main CREATE TABLE
statement, the columns do not need to be defined in ordinal sequence.

The following is an example of a CREATE TABLE statement for VSAM. This table
includes an array to capture data about employee dependents, but the number of
array occurrences depends on the number of dependents, that is to say, the value
of EMPL_DEP_COUNT.
CREATE TABLE "DBA"."EMPLOYEE" DBTYPE VSAM
DS "SAMPLE.VSAM.EMPLOYEE"
(

"EMPL_LAST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"EMPL_FIRST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 20 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"EMPL_GENDER" SOURCE DEFINITION
DATAMAP OFFSET 40 LENGTH 1
DATATYPE C
USE AS CHAR(1),
"EMPL_SSN" SOURCE DEFINITION
DATAMAP OFFSET 41 LENGTH 9
DATATYPE UC
USE AS CHAR(9),
"EMPL_DOB" SOURCE DEFINITION
DATAMAP OFFSET 50 LENGTH 4
DATATYPE UP
USE AS DECIMAL(6 , 0),
"EMPL_ADDRESS_1" SOURCE DEFINITION

Chapter 8. Reference 457

DATAMAP OFFSET 54 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"EMPL_ADDRESS_2" SOURCE DEFINITION
DATAMAP OFFSET 74 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"EMPL_STATE" SOURCE DEFINITION
DATAMAP OFFSET 96 LENGTH 2
DATATYPE C
USE AS CHAR(2),
"EMPL_ZIP" SOURCE DEFINITION
DATAMAP OFFSET 98 LENGTH 5
DATATYPE UC
USE AS CHAR(5),
"EMPL_DEP_COUNT" SOURCE DEFINITION
DATAMAP OFFSET 103 LENGTH 2
DATATYPE UH
USE AS SMALLINT,
"EMPL_COUNT" SOURCE DEFINITION
DATAMAP OFFSET 105 LENGTH 2
DATATYPE UH
USE AS SMALLINT,
BEGINLEVEL 1 OFFSET 107 LENGTH 54
MAXOCCURS 20
DEPENDING ON COLUMN "EMPL_DEP_COUNT",
"DEP_LAST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"DEP_FIRST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 20 LENGTH 20
DATATYPE C
USE AS CHAR(20),
"DEP_GENDER" SOURCE DEFINITION
DATAMAP OFFSET 40 LENGTH 1
DATATYPE C
USE AS CHAR(1),
"DEP_SSN" SOURCE DEFINITION
DATAMAP OFFSET 41 LENGTH 9
DATATYPE UC
USE AS CHAR(9),
"DEP_DOB" SOURCE DEFINITION
DATAMAP OFFSET 50 LENGTH 4
DATATYPE UP
USE AS DECIMAL(6 , 0),
ENDLEVEL 1);

Columns for VSAM
Column definitions are a part of CREATE TABLE statements. You use column
definitions to define the columns in a table that references a VSAM file. There are
no differences between a sequential column definition and the generic column
definitions.

Syntax

�� column-name SOURCE DEFINITION DATAMAP OFFSET relative-offset �

458 Guide and Reference

� LENGTH length
DATATYPE C

P
D
F
H
V
UC
UP
UH
UF
B
VB

�

�
INDEX
SECONDARY DD DD name

DD dataset name

�

� USE AS CHAR (length)
VARCHAR (length)
LONG VARCHAR
GRAPHIC (length)
VARGRAPHIC (length)
LONG VARGRAPHIC
INTEGER
SMALLINT
DECIMAL (precision, scale)
DECIMAL (precision)
FLOAT (precision)
REAL
DOUBLE PRECISION
BINARY (length)
VARBINARY (length)

USE RECORD LENGTH
�

�
WITHOUT CONVERSION

WITH CONVERSION field procedure name NULL IS null value
�

�
PRIMARY KEY

��

Parameters

column_name
Identifies the name of the column.

Specifies the column name that is a long identifier. Column names cannot be
qualified with a CREATE TABLE statement.

DATAMAP
Specifies the relative offset for a column. If a LENGTH keyword is specified,
information about the length of the column is also defined.

OFFSET relative_offset

Chapter 8. Reference 459

Follows the DATAMAP keyword to set the offset for the column. For some
data sources like Adabas and CA-IDMS, explicit offset and length information
does not need to be supplied because the system data dictionaries can provide
this information. In these cases, the column definition does not provide offset
information. The column definition only identifies the element or field name
that the column corresponds to in the data source data dictionary. If a column
definition references a portion of a dictionary element or field, the grammar
supports specifying column offset and length within the element or field. The
column definition can identify the column offset of the start of the column and
the length of the element or field that the column is being mapped to.

The relative offset identifies the relative zero offset of the starting position of
the column within the object that the column is associated with. For simple
objects like a VSAM or sequential file, the offset is generally measured from
the start of the record. For more complex databases, like IMS or CA-IDMS, the
relative offset is measured from the start of a segment or record. If the column
is defined within a record array, then the relative offset is measured from the
start of the record array that is measured from the start of the fragment that
the column is associated with.

Note: Columns do not need to be defined in ascending relative offset starting
sequence. When a mapping contains fixed length record arrays with additional
columns following the record array, the starting offsets typically increase for
the columns before the record array definition. For the columns in the record
array, the relative offset information is reset to one and to larger numbers for
those columns that exist after the record array.

LENGTH length

Specifies the length of the column. Generally, inconsistencies between the
length that is specified using the LENGTH keyword and the length that is
obtained from the SQL data type definition on the USE AS clause are ignored.
For native DECIMAL data types the LENGTH must match the computed
physical length of the column, based on the precision and scale specified in the
USE AS clause when the USE AS precision is non-zero. For USE AS DECIMAL
definitions the LENGTH must match the computed physical length of the
column when the scale is non-zero and greater than the precision.

Additionally, differences between the length and the SQL length specification
for VARCHAR and VARGRAPHIC data types identify how to interpret the
length attribute for the varying length column. The following rules are applied
for VARCHAR data types:
v If the length and the VARCHAR lengths are identical, then the control length

is assumed to include the length (2 bytes) that is taken up by the control
length component.

v If the length is two bytes greater than the VARCHAR length, then the control
length component is assumed to identify the actual length of the data.

For a varying length graphic string, the same kind of conventions are used.
However, the lengths are expressed in DBCS characters. Therefore the rules are
as follows:
v If the length and the VARGRAPHIC lengths are identical, then the control

length is assumed to include the length (1 DBCS character, which is 2 bytes)
that is taken up by the control length of a component.

v If the length is one character greater (two bytes) than the VARGRAPHIC
length, then the control length component is assumed to identify the actual
length of the data in characters.

460 Guide and Reference

Generally, the USE AS length must match the length value specified. However,
for VARCHAR, the length can be two bytes off. For VARGRAPHIC, the length
can be different by one. For these data types, the differences do not represent a
conflict.

DATATYPE
Identifies the native format of the column.

The following table identifies the basic native data types

Table 80. Native data types

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

C Mixed mode
character data. When
the SQL data type is
DECIMAL, the data
is assumed to consist
wholly of numbers
with the right most
number identifying
the sign.

CHAR

DECIMAL

DECIMAL,
VARCHAR,
GRAPHIC, or
VARGRAPHIC,
BINARY,
VARBINARY

P Packed decimal data
where the sign is
stored in the far right
aggregation of four
bits.

DECIMAL BINARY

D1 Floating point data.
The columns length
or precision
determines whether
the SQL data type is
DOUBLE PRECISION
or DECIMAL. 64-bit
data is mapped as
DECIMAL.

DOUBLE PRECISION FLOAT(precision)

DECIMAL, BINARY

F2 32-bit signed binary
value where the sign
is in the high order
bit.

INTEGER

REAL

FLOAT(precision)

BINARY

H 16-bit signed binary
value where the sign
is in the high order
bit.

SMALLINT BINARY

V Variable mixed-mode
character data, where
the actual data is
preceded by a 16-bit
signed binary number
that identifies the
actual length of the
data.

VARCHAR LONG VARCHAR,
VARGRAPHIC, or
LONG
VARGRAPHIC,
VARBINARY

Chapter 8. Reference 461

Table 80. Native data types (continued)

DATATYPE value Contents
Standard SQL data
type

Other SQL data
types

UC Unsigned
zoned-decimal data
where the last
character does not
identify the sign. The
value is always a
positive value.

DECIMAL CHAR, BINARY,
VARBINARY

UP Packed decimal data
where the sign bit is
ignored. The value is
always positive.

DECIMAL BINARY

UF Unsigned 32-bit
binary value.

INTEGER BINARY

UH Unsigned 16-bit
binary value.

SMALLINT BINARY

B3 Fixed length binary
data.

BINARY DECIMAL,
INTEGER,
SMALLINT,
VARBINARY

VB3 Variable length binary
data, where the actual
data is preceded by a
16-bit signed binary
number that identifies
the actual length of
the data.

VARBINARY N/A

1The SQL data type is DOUBLE PRECISION or FLOAT. DOUBLE PRECISION is shorthand
for an 8-byte floating point number. In the USE AS clause, you can identify this data type as
DOUBLE PRECISION or FLOAT(precision). If the precision value is in the range 22–53, the
column represents an 8-byte floating point number. If you assign FLOAT, specify the
maximum precision. The column length is based on the precision.

2The SQL data type is REAL or FLOAT. REAL is shorthand for a 4-byte floating point
number. In the USE AS clause, you can identify this data type as REAL or
FLOAT(precision). If the precision value is in the range 1–21, the column represents a 4-byte
floating point number. If you assign FLOAT, specify the maximum precision. The column
length is based on the precision.

If DATATYPE information is not specified, the native data type is synthesized
based on the column of the SQL data type or from the database system.

The SQL data type information in the USE AS clause identifies the value in the
SIGNED column in the following instances:
v One character code is supplied.
v No DATATYPE information is specified.
v Native data type information is not obtained from the database system.

USE AS
Identifies the SQL data type for the column.

The following table describes the data types for columns. The non-null
SQLTYPE identifies the data type in internal control blocks and diagnostic
trace information.

462 Guide and Reference

Table 81. SQL data type descriptions

Keyword identifier Description
Maximum
length SQLTYPE

CHAR(length) Fixed-length character string that
contains mixed mode data.

254 452

VARCHAR(length) Variable length character string that
contains mixed mode data. A half-word
length component precedes the
character string and identifies the actual
length of the data. The VARCHAR
length does not include the length of
the LENGTH filed.

32704 448

LONG VARCHAR Long character string that contains
mixed mode data. A half-word length
component precedes the character string
and identifies the actual length of the
data. The LONG VARCHAR length
does not include the length of the
LENGTH field.

32704 456

GRAPHIC(length) Fixed-length graphic string that is
assumed to contain pure DBCS data
without shift codes. The length is
expressed in DBCS characters, and not
bytes.

127 468

VARGRAPHIC(length) Varying-length graphic string that is
assumed to contain pure DBCS data
without shift codes. A half-word length
component precedes the graphic string
and identifies the actual length of the
data. The length is expressed in DBCS
characters, and not bytes.

16352 464

LONG VARGRAPHIC Long graphic string that is assumed to
contain pure DBCS data without shift
codes. A half-word length component
precedes the graphic string and
identifies the actual length of the data.
The length is expressed in DBCS
characters, and not bytes.

16352 472

INTEGER Large integer. Exactly 4 496

SMALLINT Small integer. Exactly 2 500

DECIMAL

(precision,scale) or
DECIMAL(precision)

Packed decimal data. A valid precision
value is between 1 and 31. A valid scale
value is between zero and the precision
value.

31 484

FLOAT(precision) Floating point number. Depending upon
the precision, a column with a FLOAT
data type takes on the attributes of a
REAL or DOUBLE PRECISION data
type. When precision is in the range of
1 to 21, the column is treated as a
REAL. For precisions between 22 and
53, the column takes on DOUBLE
PRECISION attributes. A precision of
zero or greater than 53 is nonvalid.

4 or 8 480

Chapter 8. Reference 463

Table 81. SQL data type descriptions (continued)

Keyword identifier Description
Maximum
length SQLTYPE

REAL A single-precision, floating-point
number that is a 32-bit approximation
of a real number. The number can be
zero or can range from -3.40282347E+38
to -1.17549435E-38, or from
1.17549435E-38 to 3.40282347E+38.

4 480

DOUBLE PRECISION A floating-point number that is a 64-bit
approximation of a real number. The
number can be zero or can range from
-1.797693134862315E+308 to
-2.225073858507201E-308, or from
2.225073858507201E-308 to
1.797693134862315E+308.

8 480

BINARY(length) Fixed-length binary data. 32704 912

VARBINARY(length) Variable length binary data, where the
actual data is preceded by a 16-bit
signed binary number that identifies the
actual length of the data. The
VARBINARY length does not include
the length of the LENGTH filed.

32704 908

When you supply a USE AS LONG VARCHAR or USE AS LONG
VARGRAPHIC clause, you do not specify a length for the column. The length
is based on the physical attributes that are obtained about the object record or
segment where the column is.

When you supply a USE AS VARCHAR clause with a length greater than 254,
that column is changed into a LONG VARCHAR column with the specified
length. The same behavior occurs for a USE AS VARGRAPHIC clause when
the length is greater than 127.

USE RECORD LENGTH

The USE RECORD LENGTH clause is specified after the USE AS clause for a
VARCHAR, LONG VARCHAR, VARGRAPHIC or LONG VARGRAPHIC data
type specification.

Indicates the varying string or graphic column contains the entire contents of
the record that the column is associated with. The entire record content
contains character data. The actual data contents were not important to any
client application that accessed one of these columns that ran on an MVS
system where no code page conversion was performed.

WITHOUT CONVERSION
Specifies that a field procedure does not exist for the column.

WITH CONVERSION
Identifies the name of the load module for a field procedure, if a field
procedure is required. The field procedure name is a short identifier.

NULL IS null_value
Specifies a value that identifies when the contents of the column is null. By
default, the data in a column never contains a null value. This situation is true
even for variable length character or graphic columns where the length
component indicates that there is no data in the variable length column.

464 Guide and Reference

A null value is a character string that can specify up to 16 characters of data.
Specifies the value in hexadecimal format. The total length of the string is 35
characters.

A column contains null values based on null-value. If the start of the column
data matches the null value, then that instance of the column is null. For
example, if a column is defined as CHAR(10) and a null value of x'4040' is
specified, the null value length is 2. If the first 2 bytes of the column contain
spaces, the column is also null.

PRIMARY KEY
Identifies the column to be one of the columns that constitute the primary key
for the table. This form of primary key identification is mutually exclusive with
specifying a primary key at the end of the CREATE TABLE statement.

You can identify a primary key at the column level when the columns that
make up the primary key for the table are defined in ordinal sequence within
the table definition.

KSDS or files that are accessed through an alternate index of columns that map
to the key offset and length information, which are determined during
validation, are good candidate columns to identify as primary keys. VSAM
ESDS or RRDS files that are not accessed through an alternate index are always
poor candidates for primary keys.
You can use the PRIMARY KEY clause on the column definition to identify the
primary key columns when the keys are defined in the same order.

Record arrays for VSAM
Record arrays identify and handle data that can repeat multiple times within a
non-DB2 database or file system.

Syntax

�� BEGINLEVEL level-number OFFSET relative-offset LENGTH occurrence-length �

� OCCURS number-of-occurrences
OCCURS DEPENDING ON COLUMN column-name
MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name
MAXOCCURS maximum-occurrences NULL IS null-value

column-name EQUAL ALL

�

� column_definition
record_array_definition
,

��

Parameters

BEGINLEVEL level-number

Identifies the start of a record array definition.

The level-number on a BEGINLEVEL or ENDLEVEL definition identifies the
nesting level of the record array within the parent fragment. Multiple record
arrays can exist with the same level-number. Typically, you do not map multiple
record arrays within a single table. Create separate tables for each record array
on the same level to avoid result sets that are too large.

The following example shows a multiple record array. In this example, the
EMPL-ADDRESS data item occurs three times and the EMPL-DEPENDENTS,
EMPL-DEP-NAME and EMPL-DEP-DOB data items occur ten times. If you
map both arrays to the same table, the query processor generates 30 rows for
each EMPL-RECORD read. Each instance of EMPL-ADDRESS is combined

Chapter 8. Reference 465

with each instance of EMPL-DEPENDENTS to create 30 rows (3 addresses
times 10 dependents).

If you must access the information in the above example in a single table
definition, then two record array definitions are required. These record arrays
are both level 1 arrays, because they are not nested within other arrays. To
avoid performance problems related to result sets that are too large, flatten the
structure or define a separate table for one or both arrays.

OFFSET relative-offset
The relative offset identifies the relative starting position of the record array
within its owning fragment definition. The owning fragment definition is
either associated with the table or with a parent record array definition.

LENGTH occurrence-length

Identifies the length in bytes of one occurrence of the repeating data.

MAXOCCURS maximum-occurrences DEPENDING ON COLUMN column-name

Identifies a record array that occurs a variable number of times. A column
definition that appears before the record array definition determines the
number of instances.

You cannot map columns that occur after a variable length array, because the
starting offsets of data items that are defined after an OCCURS DEPENDING
ON definition are not at a predictable offset.

The maximum-occurrences value must be numeric, and column-name must
specify the name of a column in the table. The control column must contain a
numeric value. The query processor supports SQL types of SMALLINT,
INTEGER, DECIMAL, or CHAR (if the column contains zoned decimal data).

MAXOCCURS maximum-occurrences NULL IS

Defines a record array that repeats a fixed number of times. If the initial bytes
of the first column in the record array match null-value, that instance of the
array is null.

The maximum-occurrences value must be numeric. The null value can be a
character string of up to 32 characters. The null-value can also be a
67-character hexadecimal string that consists of 64 hexadecimal nibbles, with a
leading x and surrounding quotation marks, for example, x'4040'.

ENDLEVEL level-number
Identifies the end of a record array definition.

CREATE INDEX statement for VSAM
You can use the CREATE INDEX statement to define an index that references the
columns that make up a VSAM KSDS primary key or the columns that map to an
alternate index PATH definition.

01 EMPL-RECORD.
05 EMPL-SSN PIC 9(9.
05 EMPL_NAME

10 EMPL-LAST PIC X(30.
10 EMPL_FIRST PIC X(30.
10 EMPL_MI PIC X.

05 EMPL-ADDRESS PIC X(30) OCCURS 3 TIMES.
05 EMPL-DEPENDENTS OCCURS 10 TIMES.

10 EMPL-DEP-NAME PIC X(30).
10 EMPL-DEP-DOB PIC 9(8).

466 Guide and Reference

Indexes identify columns in a table that correspond to a physical index that is in
the source database. The query processor uses the contents of the columns that are
referenced in a WHERE clause to create the index. The query processor attempts to
build either a full key value to use in database access or a partial key value. The
partial key can be used to perform a range scan against the target database to
reduce the number of records that are accessed.

Although you might not be able to define an index against columns that
correspond to the primary key, you can identify these columns as primary key
columns. This primary key information does not affect existing connector index
selection and access optimization. The primary key information is made available
for use by front-end tools, where key information is either required or beneficial.

Syntax

�� CREATE INDEX index-name
UNIQUE

ON table-name �

� �

,
ASC

(column-name) ;
DESC

data-set-information ��

data-set-information::

DD DD-name
DS dataset-name

Parameters

CREATE INDEX index-name

Identifies the SQL statement as an index definition statement. A unique index
does not have any restrictions about the columns that make up the index. For
example, a unique index column can contain null values.

If qualified, the index name is a two-part name, and the authorization ID that
qualifies the name is the owner of the index. If an unqualified table name is
supplied, the owner name is the authorization ID from the CURRENT SQLID
special register.

ON table-name

Identifies the table for which the index is being defined. The table name can be
a qualified or unqualified table name. For unqualified names, the table owner
is from the CURRENT SQLID special register.

The table name is validated with the standard syntax checks that are associated
with identifiers, and then the existence of the table is verified. Do not define an
index on a view.

column-name ASC/DESC

Chapter 8. Reference 467

Specifies column names that make up the index key. Optionally, you can
identify whether the column is stored or accessed in ascending (ASC) or
descending (DESC) key sequence. By default, the key is in ascending key
sequence.

There are no fixed limits on the number of columns that you can identify as
key columns for an index. The only requirements are as follows:
v The column must exist in the table.
v The column must map to what constitutes a key in the target database. In

most cases, this determination is based on the starting offset and length of
the column as compared to the starting offset and length of the key in the
target database.

v The column cannot overlap another column within the key definition. This
determination is based on the starting offset and length of a column as
compared to the starting offsets and length of the other columns that are
identified as key columns for the index definition.

v For the key column, generally varying length and graphic data types are not
supported.

Key column verification is strict and enforces all rules for column names. Rule
4 enforcement (nonvalid data types) is enforced. Identification of any kind of
varying-length character or graphic string is not allowed.

Data-set-information
Identifies the data set that accesses the columns that make up the table that
table_name references. One common reason to create an index is when a VSAM
KSDS file has an alternate index that is associated with it. The most likely
scenario is that the table references the base cluster name, and some queries do
not contain references in the WHERE clause to the VSAM primary key. But, the
queries do contain columns in the WHERE clause that map to the key of the
alternate index. For these queries, use the alternate index.

To define an alternate index, use either the DD clause or DS clause to identify
the name of the alternate index path data set. Also, identify as the key columns
those columns that map to the alternate index key. When a query that contains
a WHERE clause references these key columns, automatic index selection
determines that the index is the best candidate for processing the query. Thus,
the alternate index path accesses the actual VSAM data.

You can also define indexes to publish information to tools. For example, if
you have a single column that maps the entire social security number and the
three-column mapping for the components, you can define two index
definitions. In the first index definition, identify the single column as the key
column. In the second index definition, identify the three-component columns
as the keys. In this example, identification of DD or DS information is not
allowed. The DD or DS clauses only identify an alternate index path data set.

DD DD-name

Specifies the VSAM file that the table maps to. Specifies either a local file
reference or a reference to a CICS file definition table (FDT) entry name.

If DD-name represents a local file reference, a DD clause that references the
VSAM file must exist in the Classic federation data server JCL.

If DD-name references an FDT entry name, you must specify CICS
connection information with the CICS_connection_information clause.

DD-name must correspond to a cluster or alternate index path definition for
a VSAM ESDS, KSDS or RRDS data set.

468 Guide and Reference

DD-name is a short native identifier that conforms to the naming
conventions for a z/OS JCL DD statement.

DS data-set-name

Specifies the VSAM file that the table definition accesses. Designates a
VSAM cluster definition or a PATH component when the VSAM file is
accessed from a VSAM alternate index.

The data set name must correspond to a cluster or alternate index path
definition for a VSAM ESDS, KSDS or RRDS data set.

The name can be 1 to 44 characters in length and follows z/OS naming
conventions for VSAM data sets.

Example

The following is an example of a CREATE INDEX statement for VSAM.
CREATE UNIQUE INDEX "DBA"."EMPLOYEE_EP_IDX1"
ON "DBA"."EMPLOYEE_EP" ("EMPL_SSN" ASC);

SQL security
Security of your data is particularly important in an SQL-based DBMS, because
interactive SQL makes database access very easy. The security requirements of
production databases can include data in any given table that is accessible to some
users, but denied to others, and allow some users to update data in a table, while
others can only view data.

Overview of SQL security
SQL security in Classic federation is similar to security in DB2 databases.

Implementing security and enforcing security restrictions are the responsibility of
the DBMS software. SQL defines an overall framework for database security, and
SQL statements specify security access and restrictions.

SQL security involves the following key concepts:
v Users are the actors in the database. When the DBMS retrieves, inserts, deletes,

or updates data, it does so on behalf of a user or group of users. The DBMS
permits or denies user actions depending on which user makes the request. You
can define users and user groups based on categories of administrative
authorities.

v Database objects, such as tables, views, and stored procedures are the objects to
which SQL security can be applied.

v Privileges are the actions that a user is permitted to perform against a particular
database object. For example, a user might have permission to select and insert
rows in one table, but lack permission to delete or update rows in that table.
These privileges are allowed or prohibited by using the GRANT and REVOKE
SQL statements.

v SQL security and the SAF exit work together to ensure that the user ID and its
password are checked before allowing access to particular database objects.

v SQL security is required.

Authorization
In Classic federation, each user ID is associated with a particular authority level.

You can assign users to the following authority levels:

Chapter 8. Reference 469

SYSADM
The system administrator has privileges for all objects and has the ability
to grant authority to other users. The first user to run the metadata utility
is granted SYSADM authority.

SYSOPR
The system operator has remote-operator privileges to display and manage
an active data server.

DISPLAY
This user or user group has remote-operator privileges for display
commands on an active data server.

DBADM
The database administrator has mapping and view-creation privileges for
specific database types.

PUBLIC
This user or user group is limited to privileges that are explicitly granted
to its user name or PUBLIC.

You assign privileges to individual users or groups of users based on an
authorization ID by using the SQL GRANT statement. The authorization ID
determines whether the statement is permitted or prohibited by the DBMS. In
production databases, the database administrator assigns authorization IDs.

Authorization requirements for SQL statements
To issue GRANT, REVOKE, SELECT, EXECUTE, INSERT, UPDATE, and DELETE
statements, you must have specific authorization.

The following table describes authority levels that are required to issue each of
these statements.

Table 82. Authorization requirements for SQL statements

Statement Authority required

{GRANT | REVOKE} To grant a privilege, you must have SYSADM
authority, or you must be granted the privilege
itself with the WITH GRANT option.

To revoke a privilege, you must have SYSADM
authority or be the user who originally granted
the privilege being revoked. The BY ALL clause
requires SYSADM authority because you are
revoking revoke privileges that are granted by
users other than yourself.

SELECT SYSADM authority or the specific privilege is
required. SELECT authority on all tables and
views is referenced in the SELECT statement.

EXECUTE SYSADM authority or the specific privilege is
required. EXECUTE authority is on the
procedure.

INSERT SYSADM authority or the specific privilege is
required. INSERT authority is on the table.

UPDATE SYSADM authority or the specific privilege is
required. UPDATE authority is on the table and
SELECT authority on all tables is referenced in
the WHERE clause.

470 Guide and Reference

Table 82. Authorization requirements for SQL statements (continued)

Statement Authority required

DELETE SYSADM authority or the specific privilege is
required. DELETE authority is on the table.
SELECT authority is on all tables that are
referenced in the WHERE clause.

Database objects in SQL security
Catalog database types are database objects to which security can be applied.

To manage or secure the metadata utility for mapping purposes, the following
implicit database names are associated with metadata catalogs:

$ADABAS
For Adabas database mappings

$CFI For system catalog

$DATACOM
For CA-Datacom database mappings

$IDMS
For CA-IDMS database mappings

$IMS For IMS database mappings

$SEQUENT
For sequential database mappings

$SP For stored procedure definitions

$VSAM
For VSAM database mappings

These metadata catalogs map one-to-one with the connectors, with the exception of
$CFI.

You can specify database types in the GRANT DBADM statement. For example:
GRANT DBADM ON DATABASE $IMS TO USER1

To map tables, you must have the SYSADM authority to run the metadata utility,
because the metadata utility does not have security-access checking at the database
level. Grant DBADM authority only for DROP commands.

Defining user privileges
Privileges are the set of actions that a user can perform. The SQL GRANT and
REVOKE statements assign privileges.

You can use the Classic Data Architect to grant and revoke one or more of the
following privileges:
v System
v Database
v Stored procedures
v Tables and views

The GRANT and REVOKE are executable statements that can be dynamically
prepared.

Chapter 8. Reference 471

A specific grantor can grant or revoke specific privileges to specific users, with the
restriction that a privilege can only be revoked if it has first been granted.

System privileges:

System privileges allow or deny access to a specific set of catalogs within a data
server.

Syntax:

�� �

,

GRANT DISPLAY TO authorization-name
REVOKE SYSOPR FROM PUBLIC (1)

SYSADM WITH GRANT OPTION

�

�

�

(2)
BY ALL

,

authorization-name

��

Notes:

1 GRANT only

2 REVOKE only. Only revokes privileges granted by that user

The following table describes the statement parameters.

Table 83. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

{GRANT | REVOKE} GRANT or REVOKE privileges to user IDs or
groups of user IDs.

DISPLAY GRANT or REVOKE the privileges to
remotely issue all forms of the DISPLAY
command to a data server.

SYSOPR GRANT or REVOKE the privilege to
remotely issue all commands to a data server
including the commands to start and stop
services and shut down the data server.
Commands issued from the system console
are not secured.

SYSADM GRANT or REVOKE system administrator
authority.

{TO | FROM} {authorization-name | PUBLIC} GRANT or REVOKE authority to a particular
user or group of users, or to all users or
groups of users on a system.

WITH GRANT OPTION GRANT authority to a particular user or
group of users to GRANT authority to other
users or other groups of users in the system.
Although this option can be specified when
granting the SYSADM privilege, it has no
effect on SYSADM privileges because
SYSADM has ALL access privileges available
in the data server.

472 Guide and Reference

Table 83. Parameter descriptions for the GRANT and REVOKE statement. (continued)

Parameter Description

BY ALL authorization-name BY revokes each named privilege that was
explicitly granted to some named user or
group of users by one of the named grantors.
Only an authorization ID with SYSADM
authority can use BY, even if the
authorization ID names only itself in the BY
clause.

ALL then revokes each named privilege from
all named users or group of users.
authorization-name lists one or more
authorization IDs of users or group of users
who were the grantors of the privileges
named.

Do not use the same authorization ID more
than once. Each grantor listed must have
explicitly granted some named privilege to
all named users or group of users.

Database privileges:

Authorization IDs with DBADM privileges can grant and revoke specific privileges
within a particular database.

Syntax:

�� �

,

GRANT DBADM ON DATABASE database-name
REVOKE

�

� �

,
(1)

TO authorization-name WITH GRANT OPTION
FROM PUBLIC

��

Notes:

1 GRANT only

The following table describes the statement parameters.

Chapter 8. Reference 473

Table 84. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

GRANT ON DATABASE database-name Identifies database types on which privileges
are to be granted. For each named database
type the grantor must have all the specified
privileges with the GRANT option. This
privilege secures the mappings of tables and
dropping of mapped tables. The types are as
follows:

$ADABAS
For Adabas mappings

$CFI For metadata catalog mappings

$DATACOM
For CA-Datacom mappings

$IDMS For CA-IDMS mappings

$IMS For IMS mappings

$SEQUENT
For sequential

$SP for stored procedures

$VSAM
For VSAM

REVOKE ON DATABASE database-name Identifies the database type on which you
revoke the privileges. For each database type,
you or the indicated grantors must have
granted at least one of the specified
privileges on that database to all identified
users (including PUBLIC, if specified). The
same database type must not be identified
more than once. The database-names are the
same as those listed for the GRANT ON
DATABASE database-name option.

{TO | FROM} {authorization-name | PUBLIC} Specifies to what authorization IDs the
privileges are granted or revoked. The
authorization-name variable lists one or more
authorization IDs.

WITH GRANT OPTION Allows the named users to grant the
database privileges to others. The user can
specifically grant any privilege belonging to
that authority. If you omit WITH GRANT
OPTION, the named users cannot grant the
privileges to others unless they have that
authority from some other source.

Stored procedure privileges:

Stored procedure privileges allow or deny access to a particular stored procedure.

Syntax:

�� �

,

GRANT EXECUTE ON PROCEDURE procedure-name
REVOKE

�

474 Guide and Reference

� �

,
(1)

TO authorization-name WITH GRANT OPTION
FROM PUBLIC

�

�

�

(2)
BY ALL

,

authorization-name

��

Notes:

1 GRANT only

2 REVOKE only. Only revokes privileges granted by that user

The following table describes the statement parameters.

Table 85. Parameter descriptions for the GRANT and REVOKE statement.

Parameter Description

{GRANT | REVOKE} Grants or revokes authority to run a stored
procedure.

ON PROCEDURE procedure-name Identifies the procedure for which you grant
or revoke privileges.

{TO | FROM} {authorization-name | PUBLIC} Specifies to or from which authorization IDs
the privileges are granted or revoked. The
authorization-name variable lists one or more
authorization IDs.

WITH GRANT OPTION Allows the named users to grant the stored
procedure privileges to others. The user can
specifically grant any privilege belonging to
that authority. If you omit WITH GRANT
OPTION, the named users cannot grant the
privileges to others unless they have that
authority from some other source.

BY ALL authorization-name BY revokes each named privilege that was
explicitly granted to some named user or
group of users by one of the named grantors.
Only an authorization ID with SYSADM
authority can use BY, even if the
authorization ID names only itself in the BY
clause.

ALL then revokes each named privilege from
all named users or group of users.
authorization-name lists one or more
authorization IDs of users or group of users
who were the grantors of the privileges
named.

Do not use the same authorization ID more
than once. Each grantor listed must have
explicitly granted some named privilege to
all named users or group of users.

Chapter 8. Reference 475

Table and view privileges:

Table and view privileges allow or deny access to specific tables and views.

GRANT syntax for tables and views

�� �

�

,
PRIVILEGES TABLE

GRANT ALL ON table-name
, view-name

DELETE
INSERT
SELECT
UPDATE

�

� �

,

TO authorization-name WITH GRANT OPTION
PUBLIC

��

Table 86. Parameter descriptions for the GRANT statement.

Parameter Description

GRANT {ALL | ...} PRIVILEGES Grants all table or view privileges for which
you have GRANT authority, for the tables
and views named in the ON clause.

DELETE Grants privileges to use the DELETE
statement.

INSERT Grants privileges to use the INSERT
statement.

SELECT Grants privileges to use the SELECT
statement.

UPDATE Grants privileges to use the UPDATE
statement.

ON TABLE {table-name | view-name} Names the tables or views on which you are
granting the privileges. The list can be a list
of table names or view names, or a
combination of the two.

{TO | FROM} {authorization-name | PUBLIC} Specifies to or from which authorization IDs
the privileges are granted or revoked.
authorization-name lists one or more
authorization IDs.

WITH GRANT OPTION Allows the named users to grant the
table/view privileges to others. Granting an
administrative authority with this option
allows the user to specifically grant any
privilege belonging to that authority. If you
omit WITH GRANT OPTION, the named
users cannot grant the privileges to others
unless they have that authority from some
other source.

476 Guide and Reference

REVOKE syntax for tables and views

�� �

�

,
PRIVILEGES TABLE

REVOKE ALL ON table-name
, view-name

DELETE
INSERT
SELECT
UPDATE

�

� �

�

,

FROM authorization-name
PUBLIC ,

BY authorization-name
ALL

��

Table 87. Parameter descriptions for the REVOKE statement.

Statement Description

REVOKE {ALL | ...} PRIVILEGES Revokes all table or view privileges for
which you have GRANT authority, for the
tables and views named in the ON clause.

DELETE Revokes privileges to use the DELETE
statement.

INSERT Revokes privileges to use the INSERT
statement.

SELECT Revokes privileges to use the SELECT
statement.

UPDATE Revokes privileges to use the UPDATE
statement.

ON TABLE {table-name | view-name} Names the tables or views on which you are
granting the privileges. The list can be a list
of table names or view names, or a
combination of the two.

FROM {authorization-name | PUBLIC} Specifies to what authorization IDs the
privileges are revoked. authorization-name lists
one or more authorization IDs.

Chapter 8. Reference 477

Table 87. Parameter descriptions for the REVOKE statement. (continued)

Statement Description

BY {ALL | authorization-name} BY revokes each named privilege that was
explicitly granted to some named user or
group of users by one of the named grantors.
Only an authorization ID with SYSADM
authority can use BY, even if the
authorization ID names only itself in the BY
clause.

ALL then revokes each named privilege from
all named users or group of users.
authorization-name lists one or more
authorization IDs of users or group of users
who were the grantors of the privileges
named.

Do not use the same authorization ID more
than once. Each grantor listed must have
explicitly granted some named privilege to
all named users or group of users.

SAF and SMF system exits for SQL security
In addition to authorizations and privileges for SQL security, you need to use the
System Authorization Facility (SAF) security exit. The SAF exit is required to
validate passwords for data server connections.

With the SAF exit, you can administer SQL security at a group level. The group
name, in addition to the user ID, determines whether users are authorized to
perform the operation they attempt. A group name makes security administration
easier because you only need to grant and revoke privileges to and from the group
name for all users that are associated with that group name. When you need to
authorize access to new users, you can use your external security package and
assign the new user to the default group name.

In addition, the query processor calls the System Management Facility (SMF) exit
when an authorization violation is detected. The SMF exit generates an SMF record
that logs the user ID, type of authorization failure, and the name of the object for
which authorization failed.

Views
In Classic federation, views can provide alternative ways to work with the data.

Database tables define the structure and organization of the data it contains. Using
SQL, you can look at the stored data in other ways by defining alternative views of
the data. A view is an SQL query that is stored in the database and assigned a
name, similar to a table name. The results of the stored query are then visible
through the view. With SQL, you can access these query results as if the results
were a real table in the database.

Views allow you to manage your data in these ways:
v Tailor the appearance of a database so that different users see it from different

perspectives.
v Restrict access to data, allowing different users to see only certain rows or

certain columns of a table.

478 Guide and Reference

v Simplify database access by presenting the structure of the stored data in the
way that is most natural for each user.

Record types in data definition examples
Many data definitions contain redefined data that contains alternate layout
information to map different record types within a single physical file.

To enable applications to read redefined data, create a separate base table and
associated view for each record type. You can use the record type field in the view
definition to filter the data.

To insert, update, or delete redefined data, client applications must use the base
table name and filter the records by specifying the record type field in a WHERE
clause.

For example, a single VSAM file stores both employee and address records. The
correct record interpretation is managed by associating the value of a record type
field with a record layout. The following COBOL definition shows how a
REDEFINES clause specifies an alternate record type for ADDRESS-
INFORMATION. If RECORD-TYPE = "A" Classic Data Architect uses the layout for
address data.
01 EMPLOYEE-ADDRESS-RECORD.

05 EMP-ID PIC X(6).
05 RECORD-TYPE PIC X.

88 RECORD-IS-EMPLOYEE VALUE ’E’.
88 RECORD-IS-ADDRESS VALUE ’A’.

05 EMPLOYEE-INFORMATION.
10 LAST-NAME PIC X(20).
10 FIRST-NAME PIC X(20).
10 DATE-OF-BIRTH PIC 9(8).
10 MONTHLY-SALARY PIC S9(5)V99 COMP-3.
10 FILLER PIC X(48).

05 ADDRESS-INFORMATION REDEFINES EMPLOYEE-INFORMATION.
10 ADDRESS-LINE-1 PIC X(30).
10 ADDRESS-LINE-2 PIC X(30).
10 ADDRESS-CITY PIC X(20).
10 ADDRESS-STATE PIC XX.
10 ADDRESS-ZIP PIC 9(5).

A COBOL REDEFINES clause redefines data in the identical record locations of a
record layout. In this case, EMPLOYEE-INFORMATION and ADDRESS-
INFORMATION both start at location 6 in the record. To accurately map the
COBOL record above, two distinct SQL mappings are necessary for the file. The
first mapping consists of columns for EMP-ID, RECORD-TYPE, LAST-NAME,
FIRST-NAME, DATE-OF-BIRTH, and MONTHLY-SALARY. The second mapping
consists of EMP-ID, RECORD-TYPE, ADDRESS-LINE-1, ADDRESS-LINE-2,
ADDRESS-CITY, ADDRESS-STATE, and ADDRESS-ZIP. Each of these mappings is
used to create a separate table definition in the metadata catalog.

By default, in response to an SQL query or data change, every record in the file
matches the defined table. If the underlying data does not match the definition,
errors in processing occur or nonvalid information is returned. In the case
described above, an address record retrieved by using the employee table
definition produces a data error because the MONTHLY-SALARY field contains
character address data instead of numeric salary data.

To process record instances accurately with different layouts, you must apply
record selection criteria to the underlying data. If the selection criteria do not
match, records are skipped because they do not apply to the defined mapping.

Chapter 8. Reference 479

Example: The following CREATE TABLE statements define the EMPLOYEE and
ADDRESS layouts above:
CREATE TABLE VSAM.EMPLOYEE_NAME DBTYPE VSAM
DS "VSAMEMP.KSDS"
(

"EMP_ID" SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 6
DATATYPE C
USE AS CHAR(6),

"RECORD_TYPE" SOURCE DEFINITION
DATAMAP OFFSET 6 LENGTH 1
DATATYPE C
USE AS CHAR(1),

"LAST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 7 LENGTH 20
DATATYPE C
USE AS CHAR(20),

"FIRST_NAME" SOURCE DEFINITION
DATAMAP OFFSET 27 LENGTH 20
DATATYPE C
USE AS CHAR(20),

"DATE_OF_BIRTH" SOURCE DEFINITION
DATAMAP OFFSET 47 LENGTH 8
DATATYPE UC
USE AS CHAR(8),

"MONTHLY_SALARY" SOURCE DEFINITION
DATAMAP OFFSET 55 LENGTH 4
DATATYPE P
USE AS DECIMAL(7 , 2));

CREATE TABLE VSAM.EMPLOYEE_ADDRESS DBTYPE VSAM
DS "VSAMEMP.KSDS"
(

"EMP_ID" SOURCE DEFINITION
DATAMAP OFFSET 0 LENGTH 6
DATATYPE C
USE AS CHAR(6),

"RECORD_TYPE" SOURCE DEFINITION
DATAMAP OFFSET 6 LENGTH 1
DATATYPE C
USE AS CHAR(1),

"ADDRESS_LINE_1" SOURCE DEFINITION
DATAMAP OFFSET 7 LENGTH 30
DATATYPE C
USE AS CHAR(30),

"ADDRESS_LINE_2" SOURCE DEFINITION
DATAMAP OFFSET 37 LENGTH 30
DATATYPE C
USE AS CHAR(30),

"ADDRESS_CITY" SOURCE DEFINITION
DATAMAP OFFSET 67 LENGTH 20
DATATYPE C
USE AS CHAR(20),

"ADDRESS_STATE" SOURCE DEFINITION
DATAMAP OFFSET 87 LENGTH 2
DATATYPE C
USE AS CHAR(2),

"ADDRESS_ZIP" SOURCE DEFINITION
DATAMAP OFFSET 89 LENGTH 5
DATATYPE UC
USE AS CHAR(5));

Given the example, there are two choices:

480 Guide and Reference

Create two tables, each table mapping a different record layout
Inserts, updates, and deletes that are issued against a base table by client
applications must contain a WHERE clause that selects the correct record
type.

For example, you can use an UPDATE statement similar to the following:
UPDATE EMPLOYEE_ADDRESS SET ADDRESS_LINE_1=’145 MAIN ST APT B’
WHERE EMP_ID= ’130001’ and RECORD_TYPE= ’A’;

Create two tables and create a view on each table

Query the view associated with a base table to read the data. This
approach simplifies queries by eliminating the need for WHERE clause
filtering. The following view creation statements apply selection logic for
the table mappings:
CREATE VIEW VEMPL_NAME AS
SELECT * FROM EMPLOYEE_NAME WHERE RECORD_TYPE = ’E’;
CREATE VIEW VEMPL_ADDRESS AS
SELECT * FROM EMPLOYEE_ADDRESS WHERE RECORD_TYPE = ’A’;

You can then use a SELECT statement like this:
SELECT * FROM VEMPL_NAME;

Views and the query processor in Classic federation
When the query processor encounters a reference to a view in an SQL statement, it
finds the definition of the view in the database.

Then the query processor translates the request that references the view into an
equivalent request against the source tables of the view and carries out that
request. The query processor maintains the illusion of the view while the query
processor maintains the integrity of the source tables.

Advantages and disadvantages of views in Classic federation
Views provide a variety of benefits and can be useful for many types of databases.

In a personal computer database, views are usually a convenience, defined to
simplify requests to databases. In a production database installation, views can
play an important role in defining the structure of the database for users or groups
of users and can enforce the database security.

Views provide the following benefits:
v Built-in security: Gives each user permission to access the database only through

a small set of views that contain the specific data the user or group of users is
authorized to see, restricting user access to other data.

v Simplicity for queries: A view can draw data from several tables and present a
single table, simplifying the information and turning multi-table queries into
single-table queries for a view.

v Simplicity in structure: Views give users a specific view of the database
structure, presenting the database as a set of virtual tables specific to particular
users or groups of users.

v Stabilization of information: Views present a consistent, unchanged image of the
database structure, even if underlying source tables are changed.

Although there are many advantages to views, the main disadvantage to using
views rather than real tables is performance degradation. Because views only
create the appearance of a table, not a real table, the query processor must translate
queries against the view into queries against the underlying source tables. If the

Chapter 8. Reference 481

view is defined by a complex, multi-table query, even simple queries against the
view become complicated joins that can take a long time to complete.

Joined views in Classic federation
One of the most frequent reasons for using views is to simplify multi-table queries.

By specifying a two-table or a three-table query in the view definition, you can
create a joined view. Joined views draw their data from two or three different
tables and present the query results as a single virtual table. After you define the
view, you can use a simple, single-table query against the view for requests that
otherwise require a two-or-more-table join.

Example

A user often runs queries against a particular table, such as the ORDERS table. The
user does not want to work with employee numbers, but wants a view of the
ORDERS table that has names instead of numbers. You can create the following
view:
CREATE VIEW ORDER_INFO (ORDER_NUM, COMPANY, REP_NAME, AMOUNT) AS

SELECT ORDER_NUM, COMPANY, NAME, AMOUNT
FROM ORDERS, CUSTOMERS, SALESREPS
WHERE CUST = CUST_NUM
AND REP = EMPL_NUM

This view is defined by a three-table join. As with a grouped view, processing
required to create this virtual table is substantial. Each row of the view is created
from a combination of one row from the ORDERS table, one row from the
CUSTOMERS table, and one row from the SALESREPS table.

Although this view has a complex definition, it can be very valuable. For example,
you can create the following query against this view:
SELECT REP_NAME, COMPANY SUM(AMOUNT)

FROM ORDER_INFO
GROUP BY REP_NAME, COMPANY

That query generates a report of orders that are grouped by salesperson:
REP_NAME COMPANY SUM(AMOUNT)
--
Bill Adams ACME Mfg. $35,582.00
Bob Burns JCP Inc. $24,343.00
Dan Jones First Corp. $75,000.00

This query is now a single-table SELECT statement, which is far simpler than the
original three-table query. Also, the view makes it easier to see the operations in
the query. The query processor, however, still must work harder to generate the
query results for this single-table query against the view as it would to generate
query results for the same three-table query. However, for the actual user, it is
much easier to write and understand a single-table query that references the view.

CREATE VIEW statement
You can create and manage DB2 views by using the Classic Data Architect, the
metadata utility, or any client that is connected to the data server.

Although most clients can create a view with standard SQL processing, the Classic
Data Architect is a more controlled mechanism for creating and managing views.
For this reason, use the Classic Data Architect to create views.

482 Guide and Reference

The data type, length, and other characteristics of the columns are derived from
the definition of the columns in the source tables.

The CREATE VIEW statement can be embedded in an application program or
issued interactively. The statement is an executable statement that can be
dynamically prepared.

Syntax diagram

�� CREATE VIEW view-name

�

,

(column-name)

AS subselect ��

Parameters

view-name
Assigns a name to the view. The name cannot identify a table, view, alias, or
synonym that exists on the current server. The name can be a two-part name.
The authorization name that qualifies the name is the owner of the view.

column-name
Names the columns in the view. If you specify a list of column names, the list
must consist of as many names as there are columns in the result table of the
subselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the
columns of the result table of the subselect.

You must specify a list of column names if the result table of the subselect has
duplicate column names or an unnamed column (a column that is derived
from a constant, function, or expression that is not given a name by the AS
clause).

AS subselect
Defines the view. At any time, the view consists of the rows that result if the
subselect is run. The subselect cannot refer to host variables or include
parameter markers (question marks).

A query that contains either a UNION or an ORDER BY clause is not a valid
subselect.

DROP VIEW statement
To drop a view, you must use the DROP VIEW statement.

This statement provides detailed control over what happens when a user attempts
to drop a view when the definition of another view depends on it.

Example: Two views on the SALESREPS table are created by these CREATE VIEW
statements:
CREATE VIEW EASTREPS AS

SELECT *
FROM SALESREPS
WHERE REP_OFFICE IN (11, 12, 13)

CREATE VIEW NYREPS AS
SELECT *
FROM EASTREPS
WHERE REP_OFFICE = 11

Chapter 8. Reference 483

The following DROP VIEW statement removes both views as well as any views
that depend on their definition from the database:
DROP VIEW EASTREPS

The CASCADE and RESTRICT parameters are not directly supported in the DROP
VIEW syntax. However, the DROP VIEW deletes dependent views along with
those specified in the DROP VIEW.

Restrictions on binary data in SQL operations
When you reference binary data in SQL operations, some restrictions apply to
binary data.

The following restrictions apply to using binary data in SQL operations:
v The maximum length allowed for large BINARY and VARBINARY values is 254

bytes in certain SQL statements that require the query processor to perform
additional evaluation or manipulation of the value:
– Concatenation expression or function
– GROUP BY clause
– HAVING clause
– ORDER BY clause
– WHERE clause
– SELECT DISTINCT statement
More specifically, this means that processing will fail if the following limitations
are exceeded:
– For concatenations of host variables, constants, or column list items, the

resulting concatenated value cannot be larger than 254 bytes.
– For the other constructs listed above, the column size definition for a

referenced BINARY or VARBINARY column cannot be larger than 254 bytes.
Values for statements that do not require additional evaluation or manipulation
can always be as large as the defined column size without restriction. For
example, this applies to binding input host variables for an insert statement.

v The maximum length allowed for binary constants is 254 hexadecimal
characters, thus limiting the size of the actual binary value of a constant to 127
bytes.

v You cannot create an index over BINARY or VARBINARY columns.
v The LIKE predicates is not supported for binary strings.
v BINARY and VARBINARY data types are not supported for stored procedures

or field procedures.
v Referencing BINARY and VARBINARY columns in scalar functions is not

supported.

Programming reference for the JDBC driver
With the JDBC driver, you can use interfaces to manage connection pooling and an
interface for distributed transactions. You define configuration parameters in the
java.sql.properties file.

ConnectionPool interface
Use the ConnectionPoolDataSource class when you want Classic federation to
manage connection pooling for you.

484 Guide and Reference

If you want to manage connection pooling by some other means or do not want to
use connection pooling, and client applications do not perform distributed
transactions, use a DataSource object instead. If you want Classic federation to
manage connection pooling for you and client applications perform distributed
transactions, use a XADataSource object instead.

Methods

getDatabaseName
Input parameters: None

Return type: java.lang.String

Description: Returns the name of the database. Returns null if the database
name is not set.

The database name corresponds to the DATASOURCE name which is the
query processor service name. The service name is defined in the CACQP task
entry in the data server configuration. You can define one or more query
processors in the configuration file. The DATASOURCE name should
correspond to the query processor that the client will to connect to.

getDescription
Input parameters: None

Return type: java.lang.String

Description: Returns the description that was set for the object. Returns null if
the description is not set.

getLoginTimeout
Input parameters: None

Return type: integer

Description: Returns the timeout value for logging into the database.

getLogWriter
Input parameters: None

Return type: java.io.PrintWriter

Description: Returns the PrintWriter that writes to the log. Returns null if the
log PrintWriter is not set.

getPassword
Input parameters: None

Return type: java.lang.String

Description: Returns the specified password. Returns null if the password is
not specified.

getPooledConnection
Input parameters: None or two java.lang.String parameters

Return type: javax.sql.PooledConnection

Description: This method uses two signatures. The first one does not take any
input parameters, and returns a connection from the connection pool. The
second one takes two strings as input parameters. The first string specifies the
URL. The second string specifies the connection properties.

getPort
Input parameters: None

Chapter 8. Reference 485

Return type: java.lang.String

Description: Returns the port for the object. Returns null if the port is not set.

getPortNumber
See getPort.

getReference
Input parameters: None

Return type: javax.naming.Reference

Description: Returns the object properties of the data source.

getServerName
Input parameters: None

Return type: java.lang.String

Description: Returns the name of the mainframe where the data server runs.
Returns null if the server name is not specified.

getURL
Input parameters: None

Return type: java.lang.String

Description: Returns the connection URL that provides the object with enough
information to make a connection.

getUser
Input parameters: None

Return type: java.lang.String

Description: Returns the user name. Returns null if the user name is not
specified.

setDatabaseName
Input parameters: java.lang.String

Return type: None

Description: Sets the database name equal to the input parameter.

setDescription
Input parameters: java.lang.String

Return type: None

Description: Sets the description equal to the input parameter.

setLoginTimeout
Input parameters: Integer

Return type: None

Description: Sets the login timeout equal to the input parameter.

setLogWriter
Input parameters: java.io.PrintWriter

Return type: None

Description: Sets the log writer equal to the input parameter.

setPassword
Input parameters: java.lang.String

Return type: None

486 Guide and Reference

Description: Sets the password equal to the input parameter.

setPort
Input parameters: java.lang.String

Return type: None

Description: Sets the port equal to the input parameter.

setPortNumber
See setPort.

setServerName
Input parameters: java.lang.String

Return type: None

Description: Sets the server name equal to the input parameter. The server
name is the name of the mainframe where the data server runs.

setURL
Input parameters: java.lang.String

Return parameters: None

Description: Sets the URL for the object. The URL provides all of the required
connection information for the object in a single location. For certain
ConnectionPool managers, you should use this method instead of the
individual setDatabaseName, setServerName, setPort, setPassword, and
setUser methods.

setUser
Input parameters: java.lang.String

Return type: None

Description: Sets the user name equal to the input parameter.

DataSource interface
Use a DataSource object when you manage connection pooling or do not want to
use connection pooling. If you want Classic federation to manage connection
pooling for you, use a ConnectionPoolDataSource object. If you want Classic
federation to manage connection pooling for you and client applications perform
distributed transactions, use a XADataSource object instead.

Methods

getConnection
Input parameters: None or two java.lang.String parameters

Return type: java.sql.Connection

Description: Returns a connection to the specified database. This method uses
two signatures. The first signature takes no input parameters. The second
signature takes two input parameters. The first input parameter specifies the
URL. The second input parameter specifies the connection properties.

If the DataSource object does not have enough information to initiate a
connection, it returns an SQL connect exception.

getDatabaseName
Input parameters: None

Return type: java.lang.String

Chapter 8. Reference 487

Description: Returns the name of the database. Returns null if the database
name is not set.

getDataSourceName
Input parameters: None

Return type: java.lang.String

Description: Returns the name of the data source. Returns null if the data
source name is not set.

getDescription
Input parameters: None

Return type: java.lang.String

Description: Returns the description for the object. Returns null if the
description is not set.

getLoginTimeout
Input parameters: None

Return type: integer

Description: Returns the timeout value for logging into the database.

getLogWriter
Input parameters: None

Return type: java.io.PrintWriter

Description: Returns the PrintWriter that writes to the log. Returns null if the
log PrintWriter is not set.

getPassword
Input parameters: None

Return type: java.lang.String

Description: Returns the specified password. Returns null if the password is
not specified.

getPort
Input parameters: None

Return type: java.lang.String

Description: Returns the port for the object. Returns null if the port is not set.

getPortNumber
See getPort.

getReference
Input parameters: None

Return type: javax.naming.Reference

Description: Returns the object properties of the data source.

getServerName
Input parameters: None

Return type: java.lang.String

Description: Returns the name of the server. Returns null if the server name is
not specified.

getURL
Input parameters: None

488 Guide and Reference

Return type: java.lang.String

Description: Returns the connection URL that provides the object with enough
information to make a connection.

getUser
Input parameters: None

Return type: java.lang.String

Description: Returns the user name. Returns null if the user name is not
specified.

setDatabaseName
Input parameters: java.lang.String

Return type: None

Description: Sets the database name equal to the input parameter.

setDescription
Input parameters: java.lang.String

Return type: None

Description: Sets the description equal to the input parameter.

setLoginTimeout
Input parameters: Integer

Return type: None

Description: Sets the login timeout equal to the input parameter.

setLogWriter
Input parameters: java.io.PrintWriter

Return type: None

Description: Sets the log writer equal to the input parameter.

setPassword
Input parameters: java.lang.String

Return type: None

Description: Sets the password equal to the input parameter.

setPort
Input parameters: java.lang.String

Return type: None

Description: Sets the port equal to the input parameter.

setPortNumber
See setPort.

setServerName
Input parameters: java.lang.String

Return type: None

Description: Sets the server name equal to the input parameter.

setURL
Input parameters: java.lang.String

Return parameters: None

Chapter 8. Reference 489

Description: Sets the URL for the object. The URL provides all of the required
connection information for the object in a single location. For certain
ConnectionPool managers, you should use this method instead of the
individual setDatabaseName, setServerName, setPort, setPassword, and
setUser methods.

setUser
Input parameters: java.lang.String

Return type: None

Description: Sets the user name equal to the input parameter.

XADataSource interface
Use an XADataSource object for distributed transactions.

The XADataSource class extends the ConnectionPoolDataSource class. Only the
methods for the XADataSource class are included in this topic.

Methods

getXAConnection
Input parameters: Two java.lang.String objects

Return type: javax.sql.XAConnection

Description: Returns an XAConnection object that you use for distributed
transactions. This method takes two java.lang.String objects as input
parameters. The first string provides the URL. The second string provides the
connection parameters.

If a connection cannot be established with the information that is provided for
the object, the method throws an SQL connect exception.

getXAConnection
Input parameters: None

Return type: javax.sql.XAConnection

Description: Returns an XAConnection object that you use for distributed
transactions. If a connection cannot be established with the information that is
provided for the object, the method throws an SQL connect exception.

java.sql.properties
You can use several properties objects with the JDBC clients.

Properties objects

CODEPAGE
Description: Optional parameter that specifies the code page that converts
characters between systems. Java provides code pages to convert characters
between various formats, such as EBCDIC to ASCII.

Do not enter a code page if you use the English version of the Java Runtime
Environment. Code page converters are only supported by the international
version of the Java Runtime Environment.

For USS support, the setting is as follows: CODEPAGE=USS.

Restrictions:
v Use CODEPAGE=USS only when the environment is pure USS and the local

code page is EBCDIC

490 Guide and Reference

v If the JVM on USS uses ASCII, do not set CODEPAGE=USS.

FETCHBUFFERSIZE
Description: Optional parameter that specifies the size of the result set buffer
that is returned to a client application. You specify this parameter in the
configuration file for the client application.

Regardless of the size of the fetch buffer specified, the data server always
returns a complete row of data in this buffer. If you set the fetch buffer size to
1, the data server returns single rows of data to the client application.

An appropriate FETCHBUFFERSIZE depends upon the average size of the
result set rows that are sent to the client application and the optimum
communication packet size. For better performance, fit as many rows as
possible into a fetch buffer. The default FETCHBUFFERSIZE is adequate for
most queries.

If the FETCHBUFFERSIZE is set smaller than a single result set row, the size of
the actual fetch buffer that is transmitted is based on the result set row size.
The size of a single result set row in the fetch buffer depends on the number of
columns in the result set and the size of the data that is returned for each
column.

Use the following formula to determine the size of a result set row:
(number of data bytes returned) * (number of columns * 6)

There is also a fixed overhead in bytes for each fetch buffer. Use the following
formula to calculate the size of this overhead:
fetchbufferoverhead = 100 + (number of columns * 8)

If your applications routinely retrieve large result sets, contact your network
administrator to determine the optimum communication packet size, and set
the FETCHBUFFERSIZE to a size that takes this into account.

Maximum value: 64000

Minimum value: 1

Default: 64000

NL CAT
Description: Required parameter that specifies the full path name of the
language catalog. The language catalog contains system messages in a specified
language. A file contained within the configuration files points to the language
catalog. System messages include errors that are generated in the data server
and created on the client side.

The default catalog is engcat, or English Catalog, the only supported catalog in
this version of JDBC.

RESPONSETIMEOUT
Description: Optional parameter that specifies the response time-out. This
value specifies the maximum amount of time in milliseconds that this service
waits for an expected response before a connection terminates. The default is 0,
wait forever (do not time out). All other values ultimately cause a timeout
error and request an end to query processing.

Type of allowed value: Numeric with alpha modifier, which can be as follows:
v MS: Milliseconds
v S: Seconds
v M: Minutes

Chapter 8. Reference 491

Representation: Decimal

Maximum value: 1000MS, 60S, and 60M respectively

Minimum value: 0MS

Default: 0M

TRACELEVEL
Description: Optional parameter that regulates the amount of information that
is placed in the trace log by data server tasks. Any non-zero number activates
the diagnostic tracing. Trace information is recorded by JDBC in the JDBC
system log. Tracing can be resource intensive. Do not use it unless you need to
debug system problems.

Maximum value: 1

Minimum value: 0

Valid values and results:

1 Generates tracing information

0 Does not generate tracing information

Default: 0

Programming reference for the ODBC/CLI driver
The ODBC/CLI driver includes all of the necessary APIs and functionality to
conform to the core specification of Microsoft ODBC 3.51.

In addition to running as an ODBC driver in Win32 environments, the base APIs
can be called directly by ISO/IEC and X/Open CAE Call Level Interface (CLI)
applications in non-Windows environments such as Solaris, AIX, and HP-UX.

ODBC and CLI applications can use a single set of APIs. A CLI application header
file, caccli.h, is provided for CLI applications that run in non-Win32
environments. This header file replaces the Microsoft ODBC header files sql.h and
sqlext.h. The prototypes in caccli.h include only the CLI subset of the ODBC
API function prototypes.

You can find ODBC 3.51 documentation about the APIs and descriptions of error
states at the following location:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/
dasdkodbcoverview.asp

Similarities and differences between ODBC and CLI
The differences between ODBC and CLI can affect applications.

Similarities between ODBC and CLI

In addition to core functionality, ODBC and CLI support the following ODBC
Level 1 and Level 2 features:

ODBC Level 1

v Schema names in object qualification with two-part naming
v Stored procedures, including metadata queries about stored procedures

with SQLProcedures and SQLProcedureColumns

492 Guide and Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbc/htm/dasdkodbcoverview.asp

v Transaction support, including SQLEndTran for issuing commit and
rollback requests

ODBC Level 2

v OUTPUT and INOUT parameters in stored procedure calls
v Queries for metadata information about table privileges by using

SQLTablePrivileges
v Timeouts of login requests and SQL queries

Differences between ODBC and CLI

Some differences exist between the specifications:
v You bind parameters by using SQLBindParameter in ODBC applications and

SQLBindParam in CLI applications.
v CLI applications cannot use these ODBC-only APIs:

– SQLBindParameter
– SQLDriverConnect
– SQLMoreResults
– SQLNativeSQL
– SQLNumParams
– SQLProcedureColumns
– SQLProcedures
– SQLTablePrivileges

v ODBC applications are, by default, auto-commit enabled. Commits are
automatically issued when an SQLExecute is called for a non-SELECT statement.
CLI applications do not have the ability to set the auto-commit feature.

v ODBC applications can use ODBC escape sequences in SQL statement text. By
default, all SQL that is passed by ODBC applications is scanned for escape
sequences. CLI applications have no scanning capability, and all SQL is passed
on to the server as-is.

Implemented and deprecated APIs for ODBC and CLI
ODBC includes several APIs that are not part of the CLI specification. This topic
lists the APIs that are available for developing CLI applications and the deprecated
APIs.

Implemented APIs

The following APIs are implemented in the ODBC/CLI 3.51 driver. These APIs are
available to both ODBC and CLI applications unless otherwise specified.

Table 88. Implemented APIs

ODBC API name Comments

SQLAllocConnect

SQLAllocEnv

SQLAllocHandle

SQLAllocStmt

SQLBindCol

Chapter 8. Reference 493

Table 88. Implemented APIs (continued)

ODBC API name Comments

SQLBindParam CLI only.

This API is the same as the ODBC
SQLBindParameter API, with the omission
of the parameter type and buffer length
arguments (arguments 3 and 9). The
SQLBindParameter description for the
parameters other than InputOutputType
and BufferLength in the ODBC
documentation can be used as reference
material for SQLBindParam. All parameters
bound with SQLBindParam are assumed to
be INPUT.

SQLBindParameter ODBC only.

SQLCancel For SQLCancel to succeed, the server
INTERLEAVE INTERVAL parameter must
be set to a non-0 value to successfully
cancel statements. Interleaving permits
checking for additional messages (such as
cancel) from clients while SQL request
processes.

SQLColAttribute

SQLColumns

SQLConnect

SQLCopyDesc

SQLCloseCursor

SQLDataSources

SQLDescribeCol

SQLDescribeParam

SQLDisconnect

SQLDriverConnect ODBC only.

SQLEndTran

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFetchScroll Support for scrollable result sets is limited
to SQLFetchScroll support with a fetch
orientation of SQL_FETCH_NEXT.

SQLFreeConnect

SQLFreeEnv

SQLFreeHandle

SQLFreeStmt

SQLGetData

SQLGetDescField

SQLGetDescRec

494 Guide and Reference

Table 88. Implemented APIs (continued)

ODBC API name Comments

SQLGetDiagField

SQLGetDiagRec

SQLGetConnectAttr

SQLGetCursorName

SQLGetEnvAttr

SQLGetFunctions

SQLGetStmtAttr

SQLGetInfo

SQLGetTypeInfo

SQLMoreResults ODBC only.

SQLNativeSql ODBC only.

SQLNumResultCols

SQLNumParams ODBC only.

SQLParamData

SQLPrepare

SQLProcedureColumns ODBC only.

SQLProcedures ODBC only.

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges ODBC only.

SQLTables

SQLTransact

Deprecated APIs

The following APIs that were deprecated in the ODBC 3.x specification are not
supported in the ODBC/CLI driver. These APIs can still be used under the
Windows ODBC 3.x driver manager, as they are automatically remapped by the
driver manager to their newer replacements:

Table 89. List of deprecated APIs

Deprecated API ODBC 3.x replacement

SQLColAttributes SQLColAttribute

SQLGetConnectOption SQLGetConnectAttr

Chapter 8. Reference 495

Table 89. List of deprecated APIs (continued)

Deprecated API ODBC 3.x replacement

SQLGetStmtOption SQLGetStmtAttr

SQLParamOptions SQLSetStmtAttr

SQLSetConnectOption SQLSetConnectAttr

SQLSetParam SQLBindParameter

SQLSetScrollOption SQLSetStmtAttr

SQLSetStmtOption SQLSetStmtAttr

C and SQL data types for ODBC and CLI
This topic lists the C and SQL data types for ODBC and CLI applications.

C data types for ODBC applications

You can pass the following C data types when you bind result set columns and
parameters from ODBC applications.
SQL_C_DEFAULT
SQL_C_CHAR
SQL_C_LONG
SQL_C_SLONG
SQL_C_ULONG
SQL_C_SHORT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_BINARY
SQL_C_NUMERIC

C data types for CLI applications

You can pass the following data type values when you bind result set columns and
parameters from CLI applications.
SQL_DEFAULT
SQL_CHAR
SQL_INTEGER
SQL_SMALLINT
SQL_FLOAT
SQL_REAL
SQL_DOUBLE

SQL data types for ODBC and CLI applications

You can pass the following SQL data type values when you bind result set
columns and parameters from ODBC and CLI applications.
SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_INTEGER
SQL_SMALLINT
SQL_FLOAT
SQL_REAL
SQL_DOUBLE
SQL_DECIMAL
SQL_TYPE_DATE
SQL_TYPE_TIME

496 Guide and Reference

SQL_TYPE_TIMESTAMP
SQL_TYPE_DATE
SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

In the Win32 environment, the ODBC 3.x driver manager is required to use the
ODBC 3.51 driver. This version of the driver manager automatically supports both
3.x applications and older, pre-3.x applications. Calls to deprecated APIs by older
applications are automatically re-mapped to the 3.x APIs.

Binding input and output parameters from CLI applications
CLI applications must bind parameters for stored procedure calls by using the
SQLBindParam API call.

Unlike the ODBC SQLBindParameter function with which you can pass the
parameter type, SQLBindParam assumes that all parameters are input type
parameters for the stored procedure call.

To bind output and input parameters from a CLI application, programs must
retrieve the implementation parameter descriptor after calling SQLBindParam and
modify the descriptors parameter mode field by using SQLSetDescField.
Descriptors make bound parameter or column information available to ODBC and
CLI applications.

Example: To bind an input parameter for a stored procedure call, the application
program might issue the following API calls:
/* Bind an 8 byte character parameter. CLI assumes the parameter */
/* is INPUT, mode must be changed to INOUT after the bind */
sqlrc = SQLBindParam(hStmt, 1, SQL_CHAR, SQL_CHAR,

8, 0, DataPtr, IndPtr);
/* Retrieve the implementation parameter descriptor */
if (sqlrc == SQL_SUCCESS)

sqlrc = SQLGetStmtAttr(hStmt, SQL_ATTR_IMP_PARAM_DESC,
&hIPD, sizeof(hIPD), NULL);

/* Change the parameter’s mode from the INPUT default to OUTIN */
if (sqlrc == SQL_SUCCESS)

sqlrc = SQLSetDescField(hIPD, 1, SQL_DESC_PARAMETER_MODE,
(SQLPOINTER) SQL_PARAM_MODE_INOUT,
sizeof(SQLPOINTER));

Logs for the ODBC/CLI driver
The ODBC/CLI driver automatically logs errors and debugging traces when the
configuration trace level is set to a value less than 8.

The amount of tracing varies with the trace level value. The trace value 0 produces
the maximum amount of tracing, and 7 log errors only. In general, set tracing to 8
unless IBM Software Support requests diagnostic information.

In Windows 32-bit and UNIX environments, the log file is named CACLOG and is
placed in the same directory as the ODBC/CLI driver itself. You can set the
CACLOG environment variable to point to a different directory and file name. This
file is overwritten each time the ODBC/CLI driver runs.

On UNIX, the driver managers also support logging. Typically, the tracing that the
driver manager provides is sufficient to debug problems that you might encounter.
If additional tracing is required, you can set the ODBC/CLI trace levels and obtain
the ODBC/CLI traces.

Chapter 8. Reference 497

The ODBC/CLI software logs the following categories of information:
v Diagnostic messages. If an API call results in the creation of a diagnostic record

that is due to an ERROR or INFO situation, the message is logged. If the
message is an error message, then logging takes place if the TRACE LEVEL
parameter is less than 8. If the message is an INFO message, then logging takes
place if the TRACE LEVEL parameter is less than 3.

v API call entry and exit with return code. With few exceptions, API calls start
with the validation of a passed handle and end with unlocking the passed
handle. The API called and the return code are logged if trace level is set to 1. In
cases where any nonvalid handle is passed or an SQL_ERROR is returned, the
logging takes place if the TRACE LEVEL parameter is set to any value less than
8.

Recommendation: Do not use logging for ODBC applications. The log file cannot
be shared by multiple application processes, and ODBC has its own tracing facility.

The log file is binary. You can use the cacprtlog utility to format and display the
log messages. On Windows, you can also view log messages in the Application log
of the System Event Viewer.

Code pages for the ODBC/CLI driver
Classic federation supports databases that are enabled for SBCS and DBCS data.

Those databases include DB2, IMS, VSAM, sequential, and CA-IDMS. The Classic
federation Windows ODBC driver translates SBCS and DBCS data by using ICU4C
to perform code page conversions

The form of character data that Classic federation supports is mixed-mode data.
Mixed-mode character data can be strictly SBCS data or can include DBCS data.
ODBC driver support includes conversion of graphic data types and bidirectional
languages.
v In Windows, you can use the ODBC Data Source Administrator interface to

define client and server code pages when you configure the ODBC data source.
v In Linux and UNIX, you define the client and server code pages in your

configuration file for your CLI driver. If you have data sources for which you
want to use different code pages, you can define the data sources in separate
configuration files.

Restrictions for bidirectional layout transformation

Bidirectional layout transformation is restricted in the following situations:
v Problems can occur in visual to logical text transformations when converting

complex multidirectional text and when numbers are involved in the conversion.
For better results, you can insert bidirectional control characters (LRM
<left-to-right mark> and RLM <right-to-left mark>). However, these control
characters are not defined in all client code pages. For the code pages that do
not include bidirectional control characters, the ICU conversion replaces them by
substitution characters. As a result, text might not display correctly.

v The column size definitions on the data server must be large enough to allow
space for expansion. Otherwise, layout transformation fails with a decoding
error. The length of a string might increase when layout transformation occurs
from the server to the client code pages in the following situations:
– With Arabic text and when the SHAPING option is set.

498 Guide and Reference

– When converting from visual to logical text presentations for Arabic and
Hebrew text due to the insertion of bidirectional control characters.

v Bidirectional options are not available for the Japanese versions of the ODBC
Administrator and the Microsoft ODBC Data Source Administrator.

Restrictions on accessing binary data
When you access binary data from the ODBC driver, some restrictions apply to
data type conversions.

The following conversions are not supported for binary data:
v Conversion of input host variables from SQL_C_BINARY to any numeric SQL or

column types.
v Conversion from any numeric C or SQL data type into BINARY and

VARBINARY columns.
v Conversion from any binary C and SQL data type into GRAPHIC,

VARGRAPHIC and LONG VARGRAPHIC.

National language support
You can access non-English data, including double byte character set (DBCS) data
for some data sources.

DBCS support is provided for DB2, CA-IDMS, IMS, sequential, and VSAM.
National language support is implemented in the clients and the query processor.

For clients, you use a set of configuration parameters that define the local code
pages for the client and the server code pages. For Chinese and Japanese,
mixed-mode, a mixture of SBCS and DBCS data, code pages perform all data
conversions. When you access pure DBCS data (the GRAPHIC, VARGRAPHIC,
and LONG VARGRAPHIC data types), federation automatically performs the
required conversions to use this data with the mixed-mode code page converters.

For most U.S. and European customers, conversion parameters that define code
pages are not required. By default, federation performs the appropriate ASCII and
EBCDIC conversions for you.

The query processor also supports mixed-mode and DBCS comparison operations.
Comparison operations are performed by using memory comparisons.

SBCS, DBCS, and database objects
Classic federation supports SBCS, DBCS, and mixed mode data.

You can use the following database objects:
v DBCS data in GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC data types

These data types are expected to contain pure DBCS data. For these data types,
the DBCS-related code page conversions are performed.

v SBCS and DBCS mixed data in CHAR, VARCHAR, and LONG VARCHAR data
types

v Mixed mode object names delimited in double quotes.
v DBCS column names in the AS clause

The CHAR, VARCHAR, and LONG VARCHAR data types can contain SBCS data
or mixed-mode data. Classic federation inspects the contents of these data types

Chapter 8. Reference 499

and performs the appropriate conversions by using the code page information in
the SBCS-related configuration parameters. When the query processor manipulates
mixed-mode data, you must delimit the DBCS data with DBCS shift codes.

Code page conversion for drivers
You can specify code page conversion information that the JDBC driver, Windows
ODBC driver, or the UNIX and Linux CLI client use to transfer data. For
bidirectional server and client code pages, you can set bidirectional language
options.

You use the following methods to define code pages for the Classic federation
drivers:
v For the JDBC driver, you use the CODEPAGE parameter in the

java.sql.properties file.
v For the ODBC driver, you use the Code Pages tab of the ODBC Administrator.
v For the CLI driver on UNIX and Linux, you use the CLIENT CODEPAGE and

SERVER CODEPAGE parameters in the cac.ini configuration file.

Code page converters
Use the tables in this topic to identify the appropriate code page converters for
your single byte or double byte locale. You can then specify the converters for the
Windows ODBC driver in the Windows ODBC Administrator, or the converters for
the UNIX and Linux CLI client interface in the UNIX and Linux cac.ini
configuration file.

Multilingual data conversion

Depending on whether you are setting up an SBCS or DBCS locale, select a code
page converter from the pair of tables related to that locale. Refer to the z/OS table
for the server code page, and the Windows and Unix table for the client code page.
1. Find the language you require in the Character set column or the code page

number in the Code page column.
2. Scan across the row and confirm the ODBC name (Windows) or the Converter

name (UNIX and Linux).
3. Specify the ODBC name in the Windows ODBC Administrator or the Converter

name in the cac.ini configuration file.

SBCS locales

For SBCS (non-graphic) locales, the following tables identify the available code
page converters for single byte character sets:
v z/OS EBCDIC SBCS converter support
v Windows and UNIX SBCS converter support

DBCS locales

For DBCS (graphic) locales such as Chinese or Japanese, the following tables
identify the available code page converters for double byte character sets:
v z/OS EBCDIC mixed-mode (DBCS) converter support
v Windows and UNIX mixed-mode (DBCS) converter support

500 Guide and Reference

Code page converters

Table 90. z/OS EBCDIC SBCS converter support

Converter
name (UNIX
and Linux)

Code page ODBC name (Windows) Character set

ibm-37 37 ibm-37_P100-1995,swaplfnl CECP (Country Extended
Code Page), USA, Canada
(ESA*), Netherlands,
Portugal, Brazil, Australia,
New Zealand

ibm-273 273 ibm-273_P100-1995 CECP, Austria, Germany

ibm-277 277 ibm-277_P100-1995 CECP, Denmark, Norway

ibm-278 278 ibm-278_P100-1995 CECP, Finland, Sweden

ibm-280 280 ibm-280_P100-1995 CECP, Finland, Sweden

ibm-284 284 ibm-284_P100-1995 CECP, Spain, Latin America,
Spanish

ibm-285 285 ibm-285_P100-1995 CECP, United Kingdom

ibm-290 290 ibm-290_P100-1995 Japanese Katakana host
extended SBCS

ibm-297 297 ibm-297_P100-1995 CECP, France

ibm-420 420 ibm-420_X120-1999 Arabic, all presentation
shapes string type 4

ibm-424 424 ibm-424_P100-1995 Hebrew|, legacy IDs: CS
941/2, CP 424/2, string
type 4

ibm-500 500 ibm-500_P100-1995 CECP, Belgium, Canada
(AS/400*), Switzerland,
International Latin-1

ibm-803 803 ibm-803_P100-1999 Hebrew Set A, legacy code,
string type 4

ibm-838 838 ibm-838_P100-1995 Thai host extended SBCS

ibm-870 870 ibm-870_P100-1995 Latin-2 - EBCDIC
multilingual

ibm-871 871 ibm-871_P100-1995 CECP, Iceland

ibm-875 875 ibm-875_P100-1995 Greek

ibm-1025 1025 ibm-1025_P100-1995 Cyrillic, Multilingual

ibm-1026 1026 ibm-1026_P100-1995 Turkey Latin-5

ibm-1047 1047 ibm-1047_P100-1995,swaplfnl Latin-1 and Open Systems

ibm-1097 1097 ibm-1097_P100-1995 Farsi

ibm-1112 1112 ibm-1112_P100-1995 Baltic, multilingual

ibm-1122 1122 ibm-1122_P100-1999 Estonia

ibm-1123 1123 ibm-1123_P100–1995 Cyrillic Ukraine

ibm-1130 1130 ibm-1130_P100-1997 Vietnamese

ibm-1132 1132 ibm-1132_P100-1998 Lao

ibm-1137 1137 ibm-1137_P100-1999 Devanagari EBCDIC, based
on Unicode character set

Chapter 8. Reference 501

Table 90. z/OS EBCDIC SBCS converter support (continued)

Converter
name (UNIX
and Linux)

Code page ODBC name (Windows) Character set

ibm-1140 1140 ibm-1140_P100-1997,swaplfnl ECECP, USA, Canada,
Netherlands, Portugal, Brazil,
Australia, New Zealand

ibm-1141 1141 ibm-1141_P100-1997 ECECP, Austria, Germany

ibm-1142 1142 ibm-1142_P100-1997,swaplfnl ECECP, Denmark, Norway

ibm-1143 1143 ibm-1143_P100-1997,swaplfnl ECECP, Finland, Sweden

ibm-1144 1144 ibm-1144_P100-1997,swaplfnl ECECP, Italy

ibm-1145 1145 ibm-1145_P100-1997,swaplfnl ECECP, Spain, Latin
America, Spanish

ibm-1146 1146 ibm-1146_P100-1997,swaplfnl ECECP, United Kingdom

ibm-1147 1147 ibm-1147_P100-1997,swaplfnl ECECP, France

ibm-1148 1148 ibm-1148_P100-1997,swaplfnl ECECP, International 1

ibm-1149 1149 ibm-1149_P100-1997,swaplfnl ECECP, Iceland

ibm-1153 1153 ibm-1153_P100-1999,swaplfnl Latin-2 - EBCDIC,
multilingual with euro

ibm-1154 1154 ibm-1154_P100-1999 Cyrillic Multilingual with
euro

ibm-1155 1155 ibm-1155_P100-1999 Turkey, Latin-5 with euro

ibm-1156 1156 ibm-1156_P100-1999 Baltic, multilingual with euro

ibm-1157 1157 ibm-1157_P100-1999 Estonia, EBCDIC with euro

ibm-1158 1158 ibm-1158_P100-1999 Cyrillic Ukraine, EBCDIC
with euro

ibm-1160 1160 ibm-1160_P100-1999 Thai host with euro

ibm-1164 1164 ibm-1164_P100-1999 Vietnamese with euro

ibm-4899 4899 ibm-4899_P100-1998 Hebrew Set A, legacy code,
maximal set with euro and
new sheqel, string type 4

ibm-4971 4971 ibm-4971_P100-1999 Greek, with euro

ibm-5123 5123 ibm-5123_P100-1999 Japanese Latin host extended
SBCS, with euro

ibm-8482 8482 ibm-8482_P100-1999 Japanese Katakana, with
euro, growing CS

ibm-12712 12712 ibm-12712_P100-1998,swaplfnl Hebrew, max set with euro
and new sheqel, string
type 10

ibm-16804 16804 ibm-16804_X110-1999,swaplfnl Arabic, all presentation
shapes, string type 4, with
euro

Table 91. Windows and UNIX SBCS converter support

Converter
name

Code page ODBC name Description

ibm-367 367 ibm-367_P100-1995 ANSI X3.4 ASCII standard;
USA

502 Guide and Reference

Table 91. Windows and UNIX SBCS converter support (continued)

Converter
name

Code page ODBC name Description

ibm-437 437 ibm-437_P100-1995 USA, many other countries
and regions, PC base PC data

ibm-737 737 ibm-737_P100-1997 MS-DOS Greek, PC data

ibm-775 775 ibm-775_P100-1996 MS-DOS Baltic, PC data

ibm-813 813 ibm-813_P100-1995 ISO 8859-7, Greek and Latin

ISO-8559–1 819 ISO-8859-1 ISO 8859-1, Latin-1 countries
and regions

ibm-850 850 ibm-850_P100-1995 LP 222, Latin-1 countries and
regions, PC data

ibm-851 851 ibm-851_P100-1995 Greek, PC data

ibm-852 852 ibm-852_P100-1995 Latin-2 multilingual, PC data

ibm-855 855 ibm-855_P100-1995 Cyrillic, PC data

ibm-856 856 ibm-856_P100-1995 Hebrew, string type 5, PC data

ibm-857 857 ibm-857_P100-1995 Turkey Latin-5, PC data

ibm-858 858 ibm-858_P100-1997 MLP 222, Latin-1 with euro,
Latin-1 countries and regions,
PC data

ibm-860 860 ibm-860_P100-1995 Portugal, PC data

ibm-861 861 ibm-861_P100-1995 Iceland, PC data

ibm-862 862 ibm-862_P100-1995 Hebrew, migration, string
type 4, PC data

ibm-863 863 ibm-863_P100-1995 Canada, PC data

ibm-864 864 ibm-864_X110-1999 Arabic, string type 5, PC data

ibm-865 865 ibm-865_P100-1995 Denmark, Norway, PC data

ibm-866 866 ibm-866_P100-1995 Cyrillic, Russian, PC data

ibm-867 867 ibm-867_P100-1998 Hebrew, a modification of
code page 862, string type 4,
PC data

ibm-869 869 ibm-869_P100-1995 Greek, PC data

ibm-874 874 ibm-874_P100-1995 Thai PC data extended SBCS

ibm-878 878 ibm-878_P100-1996 Russian Internet koi8-r

ibm-897 897 ibm-897_P100-1995 Japanese PC data single byte.

ibm-901 901 ibm-901_P100-1999 Baltic, 8-bit with euro

ibm-902 902 ibm-902_P100-1999 Estonia, 8-bit with euro

ibm-912 912 ibm-912_P100-1995 Latin-2 - ISO 8859-2

ibm-913 913 ibm-913_P100-2000 ISO Latin-3 - 8859-3

ibm-914 914 ibm-914_P100-1995 Latin-4 - ISO 8859-4

ibm-915 915 ibm-915_P100-1995 Cyrillic, 8-bit, ISO 8859-5

ibm-916 916 ibm-916_P100-1995 ISO 8859-8, Hebrew, string
type 5

ibm-920 920 ibm-920_P100-1995 ISO 8859-9 Latin-5, ECMA-128,
Turkey TS-5881

Chapter 8. Reference 503

Table 91. Windows and UNIX SBCS converter support (continued)

Converter
name

Code page ODBC name Description

ibm-921 921 ibm-921_P100-1995 Baltic, 8-bit, ISO 8859-13

ibm-922 922 ibm-922_P100-1999 Estonia, 8-bit

ibm-923 923 ibm-923_P100-1998 ISO 8859-15, Latin-9 with euro,
total of 8 characters replaced
from 819

ibm-1051 1051 ibm-1051_P100-1995 HP emulation, for use with
Latin-1. GCGID SF150000 is
mapped to a control X'7F'

ibm-1089 1089 ibm-1089_P100-1995 ISO 8859-6, Arabic, string
type 5

ibm-1098 1098 ibm-1098_P100-1995 Farsi, personal computer

ibm-1124 1124 ibm-1124_P100-1996 Cyrillic Ukraine, 8-Bit

ibm-1125 1125 ibm-1125_P100-1997 Cyrillic Ukraine, PC data
Windows, Cyrillic

ibm-1129 1129 ibm-1129_P100-1997 ISO-8 Vietnamese

ibm-1131 1131 ibm-1131_P100-1997 Cyrillic Belarus, PC data

ibm-1133 1133 ibm-1133_P100-1997 ISO-8 Lao

ibm-1162 1162 ibm-1162_P100-1999 Thai Windows, with euro

ibm-1168 1168 ibm-1168_P100-2002 Ukrainian KOI8-U

ibm-1250 1250 ibm-1250_P100-1995 Windows Latin-2

ibm-1251 1251 ibm-1251_P100-1995 Windows, Cyrillic

ibm-1252 1252 ibm-1252_P100-2000 Windows, Latin-1

ibm-1253 1253 ibm-1253_P100-1995 Windows, Greek

ibm-1254 1254 ibm-1254_P100-1995 Windows, Turkey

ibm-1255 1255 ibm-1255_P100-1995 Windows, Hebrew, string
type 5

ibm-1256 1256 ibm-1256_P110-1997 Windows, Arabic, string
type 5

ibm-1257 1257 ibm-1257_P100-1995 Windows, Baltic Rim

ibm-1258 1258 ibm-1258_P100-1997 Windows, Vietnamese

ibm-1276 1276 ibm-1276_P100-1995 Adobe PostScript standard
encoding

ibm-4909 4909 ibm-4909_P100-1999 ISO-8, Greek and Latin with
euro

ibm-5346 5346 ibm-5346_P100-1998 Windows Latin-2, version 2
with euro

ibm-5347 5347 ibm-5347_P100-1998 Windows, Cyrillic version 2
with euro

ibm-5348 5348 ibm-5348_P100-1997 Windows, Latin-1, Version 2
with euro)

ibm-5349 5349 ibm-5349_P100-1998 Windows, Greek version 2
with euro

ibm-5350 5350 ibm-5350_P100-1998 Windows, Turkey version 2
with euro

504 Guide and Reference

Table 91. Windows and UNIX SBCS converter support (continued)

Converter
name

Code page ODBC name Description

ibm-5351 5351 ibm-5351_P100-1998 Windows, Hebrew version 2
with euro, string type 5

ibm-5352 5352 ibm-5352_P100-1998 Windows, Arabic version 2
with euro, string type 5

ibm-5353 5353 ibm-5353_P100-1998 Windows, Baltic Rim version 2
with euro

ibm-5354 5354 ibm-5354_P100-1998 Windows, Vietnamese
version 2 with euro

ibm-9005 9005 ibm-9005_X100-2005 Greek ISO 8859-7,2003

ibm-9447 9447 ibm-9447_P100-2002 Windows, Hebrew, Windows
1255-12/2001, string type 5

ibm-9449 9449 ibm-9449_P100-2002 Windows, Baltic Rim with
euro and 7 additional
characters

Table 92. z/OS EBCDIC mixed-mode (DBCS) converter support

Converter
Nname

Code page ODBC name Description

ibm-930 930 ibm-930_P120-1999 Japanese Katakana-Kanji host
mixed including 4370 UDC
(User Defined Character),
extended SBCS

ibm-933 933 ibm-933_P110-1995 Korean host mixed including
1880 UDC, Extended SBCS

ibm-935 935 ibm-935_P110-1999 Simplified Chinese host
mixed including 1880 UDC,
extended SBCS

ibm-937 937 ibm-937_P110-1999 Traditional Chinese host
mixed including 6204 UDC,
extended SBCS

ibm-939 939 ibm-939_P120-1999 Japanese Latin-Kanji host
mixed including 4370 UDC,
extended SBCS

ibm-1364 1364 ibm-1364_P110-1997 Korean host mixed extended
including 11,172 full Hangul

ibm-1371 1371 ibm-1371_P100-1999 Traditional Chinese host
mixed including:

6204 UDC,Extended SBCS
including SBCS and DBCS
euro

ibm-1388 1388 ibm-1388_P103-2001 Simplified Chinese DBCS- GB
18030 host with UDCs and
Uygur extension.

Chapter 8. Reference 505

Table 92. z/OS EBCDIC mixed-mode (DBCS) converter support (continued)

Converter
Nname

Code page ODBC name Description

ibm-1390 1390 ibm-1390 Extended Japanese
Katakana-Kanji host mixed
for JIS X0213 (Japanese
Industrial Standards),
including:

6205 UDC,extended SBCS,
includes SBCS & DBCS euro

ibm-1399 1399 ibm-1399 Extended Japanese Latin-Kanji
host mixed for JIS X0213
including:

6205 UDC,extended SBCS,
includes SBCS & DBCS euro

Table 93. Windows and UNIX mixed-mode (DBCS) converter support

Converter
name

Code page ODBC name Description

ibm-942 942 ibm-942_P12A-1999 Japanese PC data mixed
including 1880 UDC, extended
SBCS

ibm-
943_P130

943 ibm-943_P130-1999 Japanese PC data mixed for
open environment
multi-vendor code, 6878 JIS X
0208-1990 chars, 386 IBM
selected DBCS chars, 1880 UDC
(X'F040' to X'F9FC')

ibm-
943_P15A

943 ibm-943-P15A-2003 Japanese, PC data mixed for
open environment
multi-vendor code:

6878 JIS X 0208-1990 chars,386
IBM selected DBCS chars,

1880 UDC (X'F040' to X'F9FC')

ibm-
949_P110

949 ibm-949_P110-1999 IBM KS code - PC data mixed
including 1880 UDC

ibm-
949_P11A

949 ibm-949_P11A-1999 IBM KS code - PC data mixed
including 1880 UDC

ibm-950 950 ibm-950_P110-1999 Traditional Chinese PC data
mixed for IBM BIG-5

ibm-954 954 ibm-954_P101-2000 Japanese EUC (Extended Unix
Code),

G0 - JIS X201 Roman set 00895,

G1 - JIS X208-1990 set 00952,

G2 - JIS X201 Katakana set
04992,

G3 - JIS X212 set 00953

506 Guide and Reference

Table 93. Windows and UNIX mixed-mode (DBCS) converter support (continued)

Converter
name

Code page ODBC name Description

ibm-964 964 ibm-964_P110-1999 Traditional Chinese EUC;

G1 - CNS 11643 plane 1 00960;

G2 - CNS 11643 plane 2 00961

ibm-970 970 ibm-970_P110-1995 Korean EUC; G0 - ASCII; G1 -
KS C5601-1989, with 188 UDC

ibm-
1363_P110

1363 ibm-1363_P110-1997 Windows Korean PC Mixed,
including 11,172 full Hangul

ibm-
1363_P11B

1363 ibm-1363-P11B-1998 Windows Korean PC Mixed,
including 11,172 full Hangul

ibm-1375 1375 ibm-1375_P100-2003 Mixed big-5 extension for
HKSCS (Hong Kong
Supplementary Character Set)

ibm-1383 1383 ibm-1383_P110-1999 Simplified Chinese EUC; G0
set, ASCII; G1 set, GB 2312-80
set 1382

ibm-1386 1386 ibm-1386_P100-2002 Simplified Chinese PC data
GBK

(Guojia Biaozhun Kuozhan)
mixed,

all GBK character set and other
growing characters

ibm-33722 33722 ibm-33722_P120-1999 Japanese EUC (IBMeucJP);

G1 - JIS X208-1990 set 00952;

G2 - JIS X201 Katakana set
04992;

G3 - JIS X212 set 09145

Sample VTAM and CICS definitions for federated or stored procedure
access

Configure resource definitions for VTAM and CICS to set up federated and stored
procedure access to CICS.

For federated access to CICS, configure the following definitions:
v VTAM: An APPL definition on the data server to provide a local Logical Unit

(LU) name for the communication session
v CICS: Program and transaction definitions for communication between the data

server and the CICS system

For stored procedure access to CICS, configure the following definitions:
v VTAM: Additional APPL definitions to accommodate the expected number of

concurrent requests that the data server manages
v CICS: File definitions and session definitions in addition to program and

transaction definitions

Chapter 8. Reference 507

VTAM resource definitions for federated or stored procedure
access

VTAM resource definitions require an APPL definition on the server to provide a
local Logical Unit (LU) name for the communication session.

Federated access

For federated access, configure a single APPL definition to provide an LU name for
the communication session with CICS. See the topic VTAM APPL definition and
mode table entry definition.

Stored procedure access

For stored procedure access, you might need multiple APPL definitions (local LU
names), depending upon the number of procedure users on the data server that
you allow to be active concurrently. Allow one local LU name per active
server-stored procedure user to eliminate the possibility of communication failures
because the local LU name is busy. However, a one-to-one relationship between
local LU names and active server-stored procedure users is not usually required. In
general, a relatively small number of local LU names is adequate for most sites.
The required number of local LU names is the number of expected concurrent
requests that the server handles. Set the value of the MAXTHREADS parameter for the
query processor to the number of local LU names that are defined.

You assign the Application Control Block (ACB) name in the APPL definition. The
ACB name is specified on the OPEN request. This request is issued by the
user-written stored procedure that runs in the data server address space. In the
sample communication programs CACSPCOM or CACSPVCM, a pool of APPL
definitions must be created by assigning sequentially ascending ACB names like
CACAPPC0, CACAPPC1, CACAPPC2, and so on. To use this pool of ACB names,
the OPEN request must then specify the local LU name as CACAPPC*. The
communications processor attempts to open the specified ACB name after
replacing the asterisk position with a sequentially ascending value beginning at
zero.

If a pool of 10 ACB names is insufficient, the APPL definitions can use names that
end in two digits, for example, CACPPC00, CACPPC01, CACPPC02, and so on. To
use this pool of ACB names, the OPEN request must then specify the local LU
name as CACPPC**. You can specify up to seven suffix asterisk characters (*).

Important: You need to carefully control the size of the APPL definition pool. If an
OPEN request fails, the next ACB name is generated, and the stored procedure
attempts another OPEN request. If each subsequent OPEN request fails, the stored
procedure attempts the entire pool of ACB names before the communications
processor reports an OPEN failure. To use only a specific ACB name, the OPEN
request specifies the exact name without an asterisk suffix.

VTAM APPL definition and mode table entry definition
The following examples demonstrate how to create an APPL definition and a
VTAM mode table entry definition.

VTAM APPL definition
VTAM APPL Definition

CACCAPPL VBUILD TYPE=APPL
CACCICS1 APPL ACBNAME=CACCICS1, X

508 Guide and Reference

APPC=YES, X
AUTOSES=1, X
MODETAB=CACCMODE, X
DLOGMOD=MTLU62, X
AUTH=(ACQ), X
EAS=100,PARSESS=YES, X
SONSCIP=YES, X
DMINWNL=0, X
DMINWNR=1, X
DSESLIM=100

CACCICS2 APPL ACBNAME=CACCICS2, X
APPC=YES, X
AUTOSES=1, X
MODETAB=CACCMODE, X
DLOGMOD=MTLU62, X
AUTH=(ACQ), X
EAS=1,PARSESS=YES, X
SONSCIP=YES, X
DMINWNL=0, X
DMINWNR=1, X
DSESLIM=1

The example shows APPL definitions to be used by the example program
CACSPCOM or CACSPVCM. Your actual APPL definitions can vary based upon
site standards, and you can use the examples shown here for federated access. If
you set up both federated and stored procedure access, define different names for
each.

The example provides only two APPL definitions, so in this case the pool actually
consists of only two entries. CACMODE is defined as the Logon Mode Table name,
and MTLU62 is defined as the Logon Mode Table entry name. The Logon Mode
Table entry must be in either the specified Logon Mode Table or in ISTINCLM, an
IBM-supplied Logon Mode Table. The OPEN request issued by CACSPCOM also
specifies the Logon Mode Table entry (DLOGMOD) name.

If you plan to run the example program CACSPCOM and changes were made to
the ACB name or DLOGMOD, you must correct CACSPCOM to specify the
modified values, recompile, and link-edit the program before you run the example.
You can make changes to MODETAB to identify your correct Mode Table Name
without affecting the example program, CACSPCOM.

VTAM mode table entry definition
VTAM Mode Table Entry Definition

CACCMODE MODEENT LOGMODE=CACCMODE, *
TYPE=0, *
FMPROF=X’13’, *
TSPROF=X’07’, *
PRIPROT=X’B0’, *
SECPROT=X’B0’, *
COMPROT=X’D0B1’, *
RUSIZES=X’8585’, *
PSERVIC=X’060200000000000000000300’

The example above shows a Mode Table entry definition that is used by the
example program CACSPCOM or CACSPVCM. Your actual Mode Table entry
definition can vary based upon site standards. As stated earlier, the OPEN request
issued by CACSPCOM specifies Logon Mode Table entry MTLU62. If you plan to
run the example program CACSPCOM and changes were made to LOGMODE,
you must correct CACSPCOM to specify the new name, recompile, and link-edit
the program before attempting to run the example. The CICS system must have

Chapter 8. Reference 509

access to a Logon Mode Table entry with an identical name.

Configuring CICS resource definitions for federated or stored
procedure access

To complete specific resource definitions in CICS, you need to review several
definitions within your CICS or VTAM system.

Before you begin

Run the sample JCL found in the CACCDEF member of user.SCACSAMP to create
the basic CICS definitions required for CICS VSAM support. See the topic about
Setting up access to CICS VSAM.

About this task

The CICS Application Identifier (APPLID) becomes the remote LU name for the
communication session. If you implement stored procedure access, the CICS
APPLID can handle multiple sessions from stored procedure processors on the
data server.

For more information about CICS resource definitions and intersystem connectivity,
see the IBM documentation on CICS/ESA intercommunications.

To configure CICS resource definitions for federated or stored procedure access:

Procedure
1. Ensure that the CICS system initialization table (DFHSIT) definition or

initialization overrides include ISC=YES to enable intercommunication programs.
2. Ensure that the ACF/VTAM application definition for your CICS system

includes the following options on the VTAM APPL statement.

AUTH=(ACQ,VPACE,...)
Allows CICS to acquire LUTYPE6 sessions and to allow pacing of
intersystem flows.

VPACING=n
Specifies the pacing rate.

EAS=n
Specifies the maximum number of network addressable units with which
CICS can establish sessions.

PARSESS=YES
Enables LUTYPE6 parallel session support.

SONSCIP=YES
Enables session outage notification support.

3. Ensure that the APPL statement does not specify APPC=YES.
4. If you implement stored procedure access, install resource definitions for the

required LU6.2 connection handler.
a. Configure and install the program definition.

This program is in the load module CACSP62 in user.SCACLOAD. This
load module must be in a library that is included in the DFHRPL
concatenation for your CICS system. The program name appears only in the
transaction definition.

b. Configure and install the transaction definition.

510 Guide and Reference

You assign the transaction name. The default transaction name is XASP. The
OPEN request from the sample program CACSPCOM specifies the default
name, so if you change the transaction name, you must correct CACSPCOM
to specify the new transaction name, recompile, and link-edit the program
before attempting to run CACSPCOM.

CEDA definitions for federated or stored procedure access
The following examples show online resource definitions that define the CICS
resources that you need for federated or stored procedure access to CICS. The
examples use the CICS-provided CEDA transaction.

Installing CICS resource definitions

After you configure and verify the CICS resource definitions shown in the
examples, install the group by using the online command CEDA INSTALL
GROUP(gggg) ALL. When you install the group, the definitions are immediately
available for use.

Add the group to the startup group list, so the stored procedure group is
automatically installed during each subsequent startup of the CICS system. To add
the group to the startup group list, locate the GRPLIST parameter with the format
GRPLIST=xxxxxxx on the system initialization table (DFHSIT) or in the SIT overrides
used to start the CICS system. Use the name of the group list in the online
command CEDA ADD GROUP(gggg) LIST(xxxxxxx) to permanently add the stored
procedure processing group to the CICS system startup.

Federated access

Federated access requires that you install a program definition and a transaction
definition, as shown in the examples for federated access. The resource definitions
that you need include the following:
v The program definition for the sample program CACCIVS.
v The transaction definition for CACCIVS.

The default transaction name is EXV1.

Beginning in Classic federation Version 10.1 PTF rollup 2, the CACCIVS program
provides access to extended-format VSAM data sets with CICS version 3.2 or
higher.

The required fields are in underlined bold type, for example, xxxx. Define fields
that contain only lower case characters according to site standards. Enter fields that
are in mixed case exactly as shown.

Stored procedure access

If you want to add stored procedure access, use the examples to install the sample
CICS resource definitions for stored procedures.

The resource definitions that you need include the following:
v The program definitions for the sample programs CACSP62 and CACSPREM.
v The transaction definition XASP for the CACSP62 program.
v The file definition for the sample VSAM Employee file CACIVP.
v A CONNECTION/SESSION definition is required for each LU name that you

might use to communicate with CICS from the data server.
This example provides two LU NAMEs for VTAM:

Chapter 8. Reference 511

– CACPPC00
– CACPPC01
The sample program CACSPCOM, which runs in the data server address space,
uses one of these local LU names when it requests an OPEN for the LU6.2
conversation.

The required fields are in underlined bold type, for example, xxxx. Define fields
that contain only lower case characters according to site standards. Enter fields that
are in mixed case exactly as shown.

Language considerations with CACSPREM

The CACSPREM example program is a COBOL II program. The program, as
supplied, does not use Language Environment/370 facilities. However, if you
compile the program using an SAA AD/Cycle COBOL/370 Version 1 Release 1 or
later, the attribute LANGUAGE ==>Le370 must remain as shown in the example.
If the program is not compiled by a Language Environment/370 enabled compiler,
change the attribute to LANGUAGE==>CObol.

If the LANGUAGE attribute specifies Le370, you must have Language
Environment/370 support installed in your CICS system. If the LANGUAGE
attribute specifies COBOL, you must install the VS COBOL II interface in your
CICS system. If CICS is not enabled to support the LANGUAGE attribute specified
for this program, see the CICS documentation about system definitions.

Example definitions for federated access
PROGRAM DEFINITION

OBJECT CHARACTERISTICS CICS RELEASE = 0640
CEDA View PROGram(CACCIVS)
PROGram : CACCIVS
Group : gggg
DEscription : ’CICS VSAM SERVICE’
Language : C CObol | Assembler | Le370 | C | Pli
RELoad : No No | Yes
RESident : No No | Yes
USAge : Normal Normal | Transient
USElpacopy : No No | Yes
Status : Enabled Enabled | Disabled
RSl : 00 0-24 | Public
CEdf : Yes Yes | No
DAtalocation : Below Below | Any
EXECKey : User User | Cics
COncurrency : Quasirent Quasirent | Threadsafe
Api : Cicsapi Cicsapi | Openapi
REMOTE ATTRIBUTES
DYnamic : No No | Yes
REMOTESystem :
REMOTEName :
Transid :
EXECUtionset : Fullapi Fullapi | Dplsubset
JVM ATTRIBUTES
JVM : No No | Yes
JVMClass :
(Mixed Case) :
:
:
:
JVMProfile : DFHJVMPR (Mixed Case)
JAVA PROGRAM OBJECT ATTRIBUTES
Hotpool : No No | Yes

512 Guide and Reference

:
:
:
JVMProfile : DFHJVMPR (Mixed Case)
JAVA PROGRAM OBJECT ATTRIBUTES
Hotpool : No No | Yes

TRANSACTION DEFINITION

OBJECT CHARACTERISTICS CICS RELEASE = 0640
CEDA View TRANSaction(EXV1)
TRANSaction : EXV1
Group : CAC1
DEscription : ’TRANSACTION FOR CAC VSAM SERVICE’
PROGram : CACCIVS
TWasize : 00000 0-32767
PROFile : DFHCICST
PArtitionset :
STAtus : Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc : Below Below | Any
TASKDATAKey : User User | Cics
STOrageclear : No No | Yes
RUnaway : System System | 0 | 500-2700000
SHutdown : Disabled Disabled | Enabled
ISolate : Yes Yes | No
Brexit :
DYnamic : No No | Yes
ROutable : No No | Yes
REMOTESystem :
REMOTEName :
TRProf :
Localq : No | Yes
SCHEDULING
PRIOrity : 001 0-255
TClass : No No | 1-10
TRANClass : DFHTCL00
ALIASES
ALias :
TASKReq :
XTRanid :
TPName :
:
XTPname :
:
:
RECOVERY
DTimout : No No | 1-6800 (MMSS)
RESTart : No No | Yes
SPurge : No No | Yes
TPUrge : No No | Yes
DUmp : Yes Yes | No
TRACe : Yes Yes | No
COnfdata : No No | Yes
Otstimeout : No No | 0-240000 (HHMMSS)
INDOUBT ATTRIBUTES
ACtion : Backout Backout | Commit
WAIT : Yes Yes | No
WAITTime : 00 , 00 , 00 0-99 (Days,Hours,Mins)
INdoubt : Backout Backout | Commit | Wait
SECURITY
RESSec : No No | Yes
CMdsec : No No | Yes
Extsec : No No | Yes
TRANSec : 01 1-64
RSl : 00 0-24 | Public

Chapter 8. Reference 513

Example definitions for stored procedure access
PROGRAM DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine PROGram(pppppppp)
PROGram : CACSP62
Group : gggg
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C |Pli

| Rpg
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics

REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi Fullapi | Dplsubset

PROGRAM DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine PROGram(CACSPREM)
PROGram : CACSPREM
Group : gggg
DEscription ==>
Language ==> Le370 CObol | Assembler | Le370 | C | Pli

| Rpg
RELoad ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : 00 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> Below Below | Any
EXECKey ==> User User | Cics
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
Transid ==>
EXECUtionset ==> Fullapi Fullapi | Dplsubset

TRANSACTION DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine TRANSaction(tttt)
TRANSaction : XASP
Group : gggg
DEscription ==>
PROGram ==> CACSP62
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
STAtus ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDATALoc ==> Below Below | Any
TASKDATAKey ==> User User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0-2700000
SHutdown ==> Disabled Disabled | Enabled

514 Guide and Reference

ISolate ==> Yes Yes | No
REMOTE ATTRIBUTES

DYnamic ==> No No | Yes
REMOTESystem ==>
REMOTEName ==>
TRProf ==>
Localq ==> No | Yes

SCHEDULING
PRIOrity ==> 001 0-255
TClass : No No | 1-10
TRANClass ==>
ALIASES
Alias ==>
TASKReq ==>
XTRanid ==>
TPName ==>

==>
XTPname ==>

==>
==>

RECOVERY
DTimout ==> No No | 1-6800
INdoubt ==> Backout Backout | Commit | Wait
RESTart ==> No No | Yes
SPurge ==> No No | Yes
TPUrge ==> No No | Yes
DUmp ==> Yes Yes | No
TRACe ==> Yes Yes | No
COnfdata ==> No No | Yes
SECURITY
RESSec ==> No No | Yes
CMdsec ==> No No | Yes
Extsec : No
TRANSec : 01 1-64
RSl : 00 0-24 | Public

FILE DEFINITION

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine File(CACIVP)
File : CACIVP
Group : gggg
DEScription ==>
VSAM PARAMETERS
DSNAme ==> your.vsam.cluster.name.here
Password ==> PASSWORD NOT SPECIFIED
Lsrpoolid ==> 1 1-8 | None
DSNSharing ==> Allreqs Allreqs | Modifyreqs
STRings ==> 001 1-255
Nsrgroup ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
RECORDSize ==> 1-32767
Keylength ==> 1-255
INITIAL STATUS
STAtus ==> Enabled Enabled | Disabled | Unenabled
Opentime ==> Firstref Firstref | Startup
DIsposition ==> Share Share | Old
BUFFERS
DAtabuffers ==> 00002 2-32767
Indexbuffers ==> 00001 1-32767
DATATABLE PARAMETERS
Table ==> No No | Cics | User
Maxnumrecs ==> 16-16777215
DATA FORMAT
RECORDFormat ==> F V | F
OPERATIONS

Chapter 8. Reference 515

Add ==> Yes No | Yes
BRowse ==> No No | Yes
DELete ==> Yes No | Yes
REAd ==> Yes Yes | No
Update ==> Yes No | Yes
AUTO JOURNALLING
JOurnal ==> No No | 1-99
JNLRead ==> None None | Updateonly | Readonly | All
JNLSYNCRead ==> No No | Yes
JNLUpdate ==> No No | Yes
JNLAdd ==> None None | Before | AFter | ALl
JNLSYNCWrite ==> Yes Yes | No
RECOVERY PARAMETERS
RECOVery ==> None None | Backoutonly | All
Fwdrecovlog ==> No No | 1-99
BAckuptype ==> Static Static | Dynamic
SECURITY
RESsecnum : 00 0-24 | Public

CONNECTION DEFINITION (1 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine Connection(ccc1)
Connection : ccc1
Group : gggg
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> CACPPC00
INDsys ==>
REMOTE ATTRIBUTES
REMOTESYSTem ==>
REMOTEName ==>
REMOTESYSNet ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
PRotocol ==> Appc Appc | Lu61 | Exci
Conntype ==> Generic | Specific
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
Queuelimit ==> No No | 0-9999
Maxqtime ==> No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect ==> No No | Yes | All
INService ==> Yes Yes | No
SECURITY
SEcurityname ==>
ATtachsec ==> Local Local | Identify | Verify | Persistent

| Mixidpe
BINDPassword : PASSWORD NOT SPECIFIED
BINDSecurity ==> No No | Yes
Usedfltuser ==> No No | Yes
RECOVERY
PSrecovery ==> Sysdefault Sysdefault | None

CONNECTION DEFINITION (2 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine Connection(ccc2)
Connection : ccc2
Group : gggg
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> CACPPC01
INDsys ==>
REMOTE ATTRIBUTES
REMOTESYSTem ==>

516 Guide and Reference

REMOTEName ==>
REMOTESYSNet ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
PRotocol ==> Appc Appc | Lu61 | Exci
Conntype ==> Generic | Specific
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield

| Lms
RECordformat ==> U U | Vb
Queuelimit ==> No No | 0-9999
Maxqtime ==> No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect ==> No No | Yes | All
INService ==> Yes Yes | No
SECURITY
SEcurityname ==>
ATtachsec ==> Local Local | Identify | Verify

| Persistent| Mixidpe
BINDPassword : PASSWORD NOT SPECIFIED
BINDSecurity ==> No No | Yes
Usedfltuser ==> No No | Yes
RECOVERY
PSrecovery ==> Sysdefault Sysdefault | None

Tip: If you want CICS to verify user IDs and passwords as valid CICS users, set
the ATTACHSEC parameter to Verify.
SESSIONS DEFINITION (1 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine Sessions(sssssss1)
Sessions : sssssss1
Group : gggg
DEscription ==>
SESSION IDENTIFIERS
Connection ==> ccc1
SESSName ==>
NETnameq ==>
MOdename ==> MTLU62
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61 | Exci
MAximum ==> 001 , 000 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 00256 1-30720
RECEIVESize ==> 00256 1-30720
SESSPriority ==> 000 0-255
Transaction :
OPERATOR DEFAULTS
OPERId :
OPERPriority : 000 0-255
OPERRsl : 0 0-24,...
OPERSecurity : 1 1-64,...
PRESET SECURITY
USERId ==>
OPERATIONAL PROPERTIES
Autoconnect ==> No No | Yes | All
INservice :
Buildchain ==> Yes Yes | No
USERArealen ==> 000 0-255
IOarealen ==> 00000 , 00000 0-32767
RELreq ==> No No | Yes
DIscreq ==> No No | Yes
NEPclass ==> 000 0-255

Chapter 8. Reference 517

RECOVERY
RECOVOption ==> Sysdefault Sysdefault | Clearconv

| Releasesess| Uncondrel | None
RECOVNotify : None None | Message | Transaction

SESSIONS DEFINITION (2 OF 2)

OVERTYPE TO MODIFY CICS RELEASE = 0410
CEDA DEFine Sessions(sssssss2)
Sessions : sssssss2
Group : gggg
DEscription ==>
SESSION IDENTIFIERS
Connection ==> ccc2
ESSName ==>
NETnameq ==>
MOdename ==> MTLU62
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61 | Exci
MAximum ==> 001 , 000 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 00256 1-30720
RECEIVESize ==> 00256 1-30720
SESSPriority ==> 000 0-255
Transaction :
OPERATOR DEFAULTS
OPERId :
OPERPriority : 000 0-255
OPERRsl : 0 0-24,...
OPERSecurity : 1 1-64,...
PRESET SECURITY
USERId ==>
OPERATIONAL PROPERTIES
Autoconnect ==> No No | Yes | All
INservice :
Buildchain ==> Yes Yes | No
USERArealen ==> 000 0-255
IOarealen ==> 00000 , 00000 0-32767
RELreq ==> No No | Yes
DIscreq ==> No No | Yes
NEPclass ==> 000 0-255
RECOVERY
RECOVOption ==> Sysdefault Sysdefault | Clearconv

| Releasesess| Uncondrel | None
RECOVNotify : None None | Message | Transaction

Field procedures
You use field procedures to transform data values from one format to another.

Field procedures are assigned to columns as conversion exits in the Classic Data
Architect and metadata utility. The specified field procedure is invoked each time
that the column is referenced.

The transformation that the field procedure performs on a value in a WHERE
clause is called field-encoding. The same routine undoes the transformation when
values are retrieved; that operation is called field-decoding. You can also use the
Classic Data Architect to specify the SQL data types that describe column values.

You can use the sample field procedures that are provided in SCACSAMP to assist
you.

518 Guide and Reference

Restriction: The field-decoding function must be the exact inverse of the
field-encoding function. For example, if a routine encodes HYDROGEN to 01, it must
decode 01 to HYDROGEN.

Field procedure setup
You define field procedures to convert data values from one format to another
when SQL requests reference a column.

To create a field procedure for a column, use the Classic Data Architect. In the
column properties view, you can define a conversion exit in the column
information. The conversion exit is included in the DDL that creates the metadata
catalog.

Alternatively, you can specify a field procedure in a column definition by using the
WITH CONVERSION parameter.

After you define a field procedure, place the load module in a library that is
referenced by the server STEPLIB DD statement. The field procedure routine must
be written and linked as AMODE 31, RMODE ANY. Any storage or other resources that
the field procedure allocates must be freed each time that the field procedure is
called.

Field procedures and data transformations
With basic knowledge about how to use field procedures, you can perform data
transformations during query processing.

Field procedures are conversion routines that translate between data items in a
database record and their corresponding SQL data types. These procedures are
used when the underlying data type in a record does not match the SQL data type
to be returned in SQL requests. These examples of situations show how to use field
procedures:
v Database fields that are transformed to reverse or change sorting order.

For example, decimal date fields are often stored in nines compliment format in
order to reverse the sorting order of dates such that the most recent date comes
first. The nines complement is the amount necessary to complete a number up to
the highest number in the number system. In the decimal system, this is the
difference between a given number and all 9s. The nines complement of 254 is
999 minus 254, or 745.

v Abbreviations or coded tables. Abbreviations or codes for application data items
can be used to save space in database records. For example, the value 01 can be
stored in place of the element name hydrogen.

v Encryption. For security purposes, password fields can be stored in a database
record in an encrypted format.

A query invokes a field procedure to either encode or decode the data value of a
column. Field encoding takes place when either of these actions occur:
v The field is compared to a value in the WHERE clause by using the equal or not

equal comparison operators.
v A column is assigned a value with an SQL INSERT or UPDATE statement.

Field-decoding takes place when:
v A stored value is to be compared to any operator other than equal or not equal.

Chapter 8. Reference 519

v A query retrieves the contents of a field in a select list. The value is
field-decoded back into its original string value.

A field procedure is never invoked to determine if the field is NULL or NOT
NULL.

Exception: The use of a key column with a field procedure in a WHERE clause
can cause the data connector to scan the database. This situation can happen if the
column is the beginning of the key and the comparison operator is not the equal
comparison operator.

Control blocks for field procedures
You use control blocks to communicate parameters to a field procedure and
provide information about working storage, operations, errors, addresses, data
types, and other value attributes.

Field procedure parameter list (FPPL)
The field procedure parameter list points to the addresses of these areas: the work
area, the field procedure information block, the column value descriptor, and the
field descriptor.

Register 1 points to the field procedure parameter list on entry to a field
procedure. The parameter list, in turn, contains the addresses of other areas, as
shown in the following figure. The mapping macro DSNDFPPBFPPL describes the
areas that the FPPL points to.

Work area
The work area is 512 bytes of contiguous, uninitialized storage that a field
procedure can use as working storage.

If 512 bytes is sufficient for your operations, your field-definition operation does
not need to change the value that is supplied by the query processor. If less than
512 bytes is required, the field-definition can return a smaller value. If your
program requires more than 512 bytes, the field procedure must acquire the
necessary storage.

Register 1
FPPL

Work Area

Field procedure information block (FPIB)

Column value descriptor (CVD)

Field value descriptor (FVD)

Figure 24. Field procedure parameter list

520 Guide and Reference

Field procedure information block (FPIB)
The field procedure information block communicates general information to a field
procedure, including the operation that is performed, the size of the work area,
and error message addressing.

The following table displays the format of the field procedure information block:

Table 94. Format of FPIB

Value description Hex offset Integer type Contents

FPBFCODE 0 Signed 2-byte integer Function code:

v 0 (field-encoding)

v 4 (field-decoding)

FPBWKLN 2 Signed 2-byte integer 512, length of work area in
bytes

FPBSORC 4 Signed 2-byte integer Reserved

FPBRTNC 6 Character, 2 bytes Return code that is set by the
field procedure

FPBRSNC 8 Character, 4 bytes Reason code that is set by
the field procedure

FPBTOKP C Address Address of a 40-byte area in
which to return an error
message

Error messages in the FPBTOKP are not returned to the client application when a
field procedure reports an error. Error messages are, however, logged in the server
log for debugging purposes.

Value descriptors
Value descriptors describe the data type and other attributes of a column value or
field value.

During field-encoding and field-decoding, the decoded column value and the
encoded field value are described by the column value descriptor (CVD) and the
field value descriptor (FVD):

Column value descriptor (CVD)
Contains a description of a column value and, if appropriate, the value
itself. During field-encoding, the CVD describes the value to be encoded.
During field-decoding, the CVD describes the decoded value to be
supplied by the field procedure.

Field value descriptor (FVD)
Contains a description of a field value and, if appropriate, the value itself.
During field-encoding, the FVD describes the encoded value to be supplied
by the field procedure. During field-decoding, the FVD describes the value
to be decoded.

The value descriptors have the format shown in the following table:

Chapter 8. Reference 521

Table 95. Format of value descriptors

Value descriptor
Hex
offset Integer type Contents

FPVDTYP 0 Signed 2-byte
integer

Data type of the value:

v 0 (INTEGER)

v 4 (SMALLINT)

v 8 (FLOAT)

v 12 (DECIMAL)

v 16 (CHAR)

v 20 (VARCHAR)

v 24 (GRAPHIC)

v 28 (VARGRAPHIC)

FPVDVLEN 2 Signed 2-byte
integer

v For a varying-length string value, its maximum length

v For a decimal number value, its precision (byte 1) and
scale (byte 2)

v For any other value, its length

For GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC
data types, the length is specified in bytes.

FPVDVALE 4 None The value of the column or field. If the value is a
varying-length string, the first halfword is the actual
length of the value in bytes. This field is not present in a
CVD, or in an FVD that is used as input to the
field-definition operation. An empty varying-length string
has a length of zero with no data following.

Field-encoding (function code 0)
Your field procedure performs encoding operations when you specify
field-encoding function code 0 in the FPBFCODE field of the field procedure
information block. The information that follows describes the input and required
output of field-encoding operations.

On ENTRY, the registers contain the following information:

Table 96. Field encoding on entry

Register Contents

1 Address of the field procedure parameter list (FPPL)
0, 2 through 12 Values that must be restored on exit
13 Address of the calling program save area that must be restored on exit
14 Return address
15 Address of entry point of exit routine

The work area is uninitialized.

The FPIB contains the following information:

Table 97. FPIB fields and contents

Field Contents

FPBFCODE 0, the function code
FPBWKLN 512, the length of the work area in bytes

522 Guide and Reference

The CVD contains the following information:

Table 98. CVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value.
FPVDVLEN The length of the column value.
FPVDVALE The column value; if the value is a varying-length string, the first halfword contains its length.

The FVD contains the following information:

Table 99. FVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value
FPVDVLEN The length of the field value
FPVDVALE Uninitialized area with a value of FPVDVLEN

On EXIT, the registers contain the following information:

Table 100. EXIT registers and contents

Register Contents

1 Address of the field procedure parameter list (FPPL).
0, 2 through 14 The values that they contained on entry.
15 The integer zero. An error in processing is indicated by the value in FPBRTNC.

The FVD must contain the encoded field value in field FPVDVALE. If the value is
a varying-length string, the first halfword must contain its length.

The FPIB can contain the following information:

Table 101. FPIB fields and contents

Field Contents

FPBRTNC Return code. The character “0” that is followed by a space indicates success. Anything other than
“0” indicates an error.

FPBRSNC An optional, 4-byte character reason code, which is defined by the field procedure, blanks if no
reason code is provided.

FPBTOKP Address of a 40-byte area that contains an error message when an error message is detected.

Errors that are signaled by a field procedure result in SQLCODE -681 and are
written to the error log, which is set in the SQL Communications Area (SQLCA).
FPBRTNC is the return code; FPBRSNCD is the reason code; and a 40-byte error
field for the specific error message is FPBTOKP.

Field-decoding (function code 4)
Your field procedure performs decoding operations when you specify
field-encoding function code 4 in the FPBFCODE field of the field procedure
information block. The information that follows describes the input and required
output of field-decoding operations.

On ENTRY, the registers contain the following information:

Chapter 8. Reference 523

Table 102. ENTRY registers and fields

Register Contents

1 Address of the field procedure parameter list (FPPL)
0, 2 through 12 Values that must be restored on exit
13 Address of the calling program save area that must be restored on exit
14 Return address
15 Address of entry point of the exit routine

The work area is uninitialized.

The FPIB contains the following information:

Table 103. FPIB fields and contents

Field Contents

FPBFCODE 4, the function code
FPBWKLN 512, the length of the work area in bytes.

The CVD contains the following information:

Table 104. CVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value
FPVDVLEN The length of the column value
FPVDVALE Uninitialized area with a value of FPVDVLEN

The FVD contains the following information:

Table 105. FVD fields and contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value
FPVDVLEN The length of the field value
FPVDVALE The field value; if the value is a varying-length string, the first halfword contains its length

On EXIT, the registers contain the following information:

Table 106. EXIT registers and contents

Register Contents

1 Address of the field procedure parameter list (FPPL).
0, 2 through 14 The values that they contained on entry.
15 The integer zero. An error in processing is indicated by the value in FPBRTNC.

The CVD must contain the decoded column value in field FPVDVALE. If the value
is a varying-length string, the first halfword must contain its length.

The FPIB can contain the following information:

524 Guide and Reference

Table 107. FPIB fields and contents

Field Contents

FPBRTNC Return code. The character “0” that is followed by a space indicates success. Anything other than
“0” indicates an error.

FPBRSNC An optional, 4-byte character reason code, defined by the field procedure; blanks if no reason code
is provided.

FPBTOKP Address of a 40-byte area in which to return an error message.

Errors that are signaled by a field procedure result in SQLCODE -681. The errors
are written to the error log, which is set in the SQL Communications Area
(SQLCA). FPBRTNC is the return code; FPBRSNCD is the reason code; and a
40-byte error field for the specific error message is FPBTOKP.

Sample field procedures
Use the sample field procedures that are provided in SCACSAMP to guide you
when you create your own field procedures.

The following table lists each member and its description:

Table 108. SCACSAMP members and descriptions

SCACSAMP member name Description

CACFP001 A nines complement field procedure that converts decimal or zoned decimal
data

CACFP999 Creates site-specific field procedures

CACFP001 - Sample field procedure
Use this nines complement field procedure with decimal or zoned decimal data to
force decimal date fields into descending sort order.

The following mapping combinations are supported:
v DATATYPE P|UP USE AS DECIMAL(p,s) in which decimal fields are mapped

as SQL DECIMAL
v DATATYPE C|UC USE AS CHAR(n) in which zoned decimal fields are mapped

as SQL CHAR
v DATATYPE C|UC USE AS DECIMAL(p,s) in which zoned decimal fields are

mapped as SQL DECIMAL

CACFP999 - Sample field procedure
Use this generic field procedure to create your own site-specific field procedures
and transform supported data types.

This field procedure copies field data directly to column data as-is and supports
the following data types:
v SMALLINIT
v INTEGER
v DECIMAL
v FLOAT
v CHARACTER

This field procedure does not perform any data conversion.

Chapter 8. Reference 525

526 Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2003, 2015 527

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

528 Guide and Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS," without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies,
and have been used at least once in this information:
v Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

v Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in
the United States, other countries, or both.

v Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service marks of
others.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies

Notices 529

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

530 Guide and Reference

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

����

Printed in USA

	Chapter 1. Overview of product capabilities
	Introduction to Classic federation
	Classic federation capabilities and features
	Classic federation and IBM information management products
	Scenario for mainframe data access

	Release notes for IBM InfoSphere Classic Federation Server for z/OS, version 11.3
	What's New
	Migration considerations

	Release notes for InfoSphere Classic Data Architect, Version 11.3
	Migrating the workspace from a previous version of CDA

	Overview of IBM InfoSphere Classic Federation Server for z/OS
	Classic data servers
	Services and their functions
	Optimizing memory consumption for a Classic data server (guidelines)

	System exits
	Data connectors
	Classic Data Architect
	Metadata catalog
	Clients
	Stored procedure connectors

	Chapter 2. Installing Classic federation
	System Z Classic federation scenario
	Installing Classic federation on the mainframe
	Setting up the installation environment
	Customizing the installation environment
	Installation customization process
	User samples allocation utility
	Installation customization utility
	Working with the customization parameters file

	Installing Classic data servers
	Installing a new Classic federation data server
	Upgrading a Classic federation installation

	Installing the Classic Data Architect
	Starting IBM Installation Manager
	Uninstalling the Classic Data Architect

	Installing the ODBC/CLI and JDBC clients
	Installing the ODBC and JDBC drivers from the command prompt

	Uninstalling the Classic client components
	Uninstalling the ODBC/CLI or JDBC client

	Chapter 3. Configuring
	Overview of configuring Classic federation
	Gathering information and securing your environment
	Obtaining library authorizations for the APF
	Obtaining ports for Classic data server communication
	Securing a Classic data server
	Security
	SAF exit

	Basic configurations for Classic federation for all data sources
	Configuring data servers
	Mapping tables for Classic federation
	Configuring client applications

	Configurations for Classic federation for specific data sources
	Configuring access to Classic federation data sources
	Setting up access to Adabas databases
	Setting up access to CA-Datacom
	Access service for CA-Datacom
	Multi-User Facility authorization and CA-Datacom
	CA-Datacom security
	CA-Datacom setup for dynamic discovery from the Classic Data Architect

	Setting up access to CA-IDMS
	Setting the maximum number of run units
	Setting up APF authorization
	Setting up security for CA-IDMS access
	Accessing multiple CA-IDMS central versions from a single data server
	Configuring the data server to access CA-IDMS central version
	Configuring the data server for notification of central version shutdown

	Setting up access to DB2 for z/OS
	Setting up access to IMS
	Overview of data server setup for IMS access
	Setting up the DRA and ODBA
	Setting up a BMP or DBB interface
	IMS setup for dynamic discovery from the Classic Data Architect
	Running the data server

	Setting up access to sequential files
	Setting up access to VSAM
	Setting up access to CICS VSAM
	Setting up access to native VSAM
	Setting up access to DFSMStvs

	Logging for data servers
	Logging terminology
	Defining logger services

	Configuring TCP/IP connection handlers
	Understanding Classic data server configuration methods
	XM protocol strings
	Mapping tables for Classic federation
	Configuring Classic Data Architect
	Migrating the workspace from a previous version of CDA
	Creating objects to organize your work
	Importing data definitions into projects
	Creating connections to data servers and to DB2 for z/OS
	Creating connections to the data server operator
	Setting preferences
	Granting privileges and privileges for performing actions on data servers
	Revoking privileges for performing actions on data servers

	Mapping data for Classic federation
	Creating Adabas tables and views for Classic federation
	Creating CA-Datacom tables and views for Classic federation
	Creating CA-IDMS tables and views for Classic federation
	Creating CICS VSAM tables and views for Classic federation
	Creating tables and views for DB2 for z/OS databases
	Creating IMS tables and views for Classic federation
	Creating sequential tables and views for Classic federation
	Creating VSAM tables and views for Classic federation
	Creating indexes
	Creating stored procedures
	Modifying the PCB selection for IMS tables or indexes
	Mapping tables and views for redefined data
	Array processing

	Creating views on existing tables
	Creating views on existing tables with the SQL builder
	Creating views on existing tables with the SQL editor
	Creating views on existing tables with the Properties view

	Viewing and modifying objects for Classic federation
	Column properties
	Database properties
	Index properties
	Stored procedure properties
	Table properties
	View properties
	Adding or replacing columns in tables based on data definition files
	Modifying the selection of records in tables for CA-IDMS databases

	Populating metadata catalogs
	Generating DDL
	Exporting SQL to remote z/OS hosts

	Configuring communications between data servers and clients
	Communication between data servers and client applications
	Configuring data servers to use Cross Memory to communicate with local client applications
	TCP/IP for communication between data servers and client applications
	Configuring data servers to use TCP/IP to communicate with client applications

	Configuring clients
	JDBC client
	Establishing connections from JDBC applications to data servers
	Batch operations, scrollable ResultSets, and SQL warnings with JDBC

	ODBC clients
	Configuring ODBC data sources
	Configuring the ODBC driver on Windows
	Configuring the ODBC driver on Linux and UNIX

	CLI clients
	CLI client for UNIX, Linux, and Windows
	CLI client for native z/OS
	CLI client for USS

	Chapter 4. Administering
	Administering data servers
	System exits
	Security: SAF exit
	Activating the SAF exit
	SAF exit: API overview
	SAF exit: System access control - examples

	Accounting: SMF exit
	Activating the SMF exit
	SMF exit: API overview

	CPU resource governor
	Activating the CPU resource governor exit
	CPU resource governor exit: API overview

	Workload Manager exit
	Activating the WLM exit
	WLM exit: API overview
	WLM exit: initialization
	WLM exit: management and reporting
	WLM exit: termination

	DB2 thread management exit
	Activating the DB2 thread management exit
	Customizing the DB2 thread management exit

	Record processing exit
	Input parameters for the record processing exit
	Record processing exit: initialization
	Record processing exit: process
	Record processing exit: termination

	SQL updates to application data
	Transaction processing
	SQL update statements
	SQL updates and mapped tables
	Mappings that contain multiple records
	Positions of inserted records
	Record inserts with full and partial mapping
	Updates and deletions of database records
	Updates and NULL records
	Mappings that contain record arrays
	Group items and overlapping fields
	Update processing recommendations

	Adabas updates
	DB2 for z/OS updates
	CA-Datacom updates
	CA-IDMS updates
	Updates of CA-IDMS data
	Inserts of CA-IDMS data
	Delete considerations

	IMS updates
	IMS and PSB

	VSAM updates

	Monitoring federated queries
	Two-phase commit
	Recoverable Resource Manager Services (RRS) support
	RRS-enabled query processors
	Configuring query processors for RRS
	Performance impact of RRS-enabled query processors

	DB2 for z/OS two-phase commit considerations
	Creating the plan name
	RRS and system exits

	IMS two-phase commit considerations
	Initializing the RRS environment
	Defining tables for the RRS environment
	Specifying IMS subsystems for communication with multiple IMS subsystems

	CA-Datacom two-phase commit considerations
	Enabling CA-Datacom for two-phase commit

	VSAM DFSMStvs two-phase commit considerations

	Stored procedures
	Overview of stored procedure processing
	Stored procedure execution environment
	Overview of CICS interface for stored procedures
	Overview of IMS interface for stored procedures
	Overview of CA-Datacom interface for stored procedures
	Support routines
	Stored procedure samples

	Defining stored procedures
	CREATE PROCEDURE
	DROP PROCEDURE
	Deactivating the Language Environment

	Writing stored procedures
	Invoking stored procedures
	CALL statement
	ODBC stored procedure support

	Creating result sets in stored procedures
	CACRSCR interface routine
	CACRSIN interface routine
	CACSADDR interface routine
	Modifying a COBOL stored procedure to return a result set
	Linking the result set interface into a z/OS load module
	Defining the stored procedure to the metadata catalog
	Client application and result set interaction

	Support routines for stored procedures
	Get RUN OPTIONS (CACSPGRO) calling conventions
	Get user ID (CACSPGUI) calling conventions
	Get user password (CACSPGPW) calling conventions

	CICS interface for stored procedures
	Specifying CICS transaction scheduling information
	Stored procedure and CICS communication
	CACSPBR interface
	Parameters passed to the CICS application program
	Compiling and linking applications that use CACSPBR
	CACSPBR return codes
	CACSP62 abend codes

	CA-Datacom interface for stored procedures
	Specifying CA-Datacom resource information
	Stored procedure and CA-Datacom communication
	CACTDCOM interface
	Compiling and linking applications that use CACTDCOM
	CACTDCOM return codes

	IMS interface for stored procedures
	CACTDRA interface
	Compiling and linking applications that use CACTDRA
	CACTDRA return codes
	Invoking existing IMS transactions from a stored procedure

	Chapter 5. Tuning
	Query optimization techniques
	Keys to optimize queries
	Join operations to optimize queries

	Query processor optimization
	Connectors and query processor interaction
	Configuration parameters for optimization
	Static catalogs
	Result set staging

	IMS access optimization
	Keyed access techniques, SSA, and IMS optimization
	Primary indexes for IMS optimization
	Secondary indexes for IMS optimization
	CREATE INDEX statement for IMS optimization
	Search fields for IMS optimization
	Partial keys for IMS optimization
	Path calls for IMS optimization

	IMS optimization for HIDAM, HDAM, and DEBD
	HDAM and HIDAM optimization
	DEDB optimization

	PCB selection options for IMS optimization
	PCB selection by name
	PCB selection by number
	PCB selection by verification

	PSB scheduling for IMS optimization
	BMP and DBB interfaces for PSB scheduling
	DRA interface for PSB scheduling

	VSAM access optimization
	Keyed access techniques for VSAM optimization
	Primary and alternate indexes for VSAM optimization
	Partial keys for VSAM optimization

	Configuration parameters for VSAM optimization
	VSAM service for optimization

	Data server optimization
	Dispatching priority for query optimization
	WLM exit for query optimization

	Chapter 6. Integration with IBM InfoSphere Information Server
	Classic federation and InfoSphere DataStage integration
	Configuring the CLI client for the caccfxt program
	Designing a InfoSphere DataStage job that uses the caccfxt program
	Classic federation extract program: caccfxt

	InfoSphere DataStage and z/OS file access
	z/OS File stage
	Log messages for file access service requests

	Chapter 7. Troubleshooting and support
	Troubleshooting a problem
	Searching for messages
	Searching knowledge bases
	Getting fixes
	Contacting IBM Support
	Exchanging information with IBM
	Collecting diagnostic information
	Sending information to IBM Support
	Receiving information from IBM Support

	Subscribing to Support updates

	Chapter 8. Reference
	Services and configuration parameters
	Summary of services
	Call attachment facility (CAF) service
	CA-Datacom access service
	Connection handler service
	IMS BMP/DBB access service
	IMS open database access (ODBA) access service
	Logger service
	Monitoring service
	Operator service
	Query processor service
	Region controller service
	Two-phase commit query processor service
	Stored procedure service
	VSAM access service
	Workload Manager (WLM) service

	Configuration parameters for Classic data servers and services
	Global parameters for Classic data servers
	Standard parameters for services
	Service-specific parameters

	Configuration parameters for clients
	CLIENT CODEPAGE
	DATASOURCE
	DEFLOC
	FETCH BUFFER SIZE
	MESSAGE POOL SIZE
	NL CAT
	RESPONSE TIME OUT
	SERVER CODEPAGE
	SHAPING
	SYMMETRIC SWAPPING
	TASK PARAMETERS
	TEXT ORIENTATION
	TEXT PRESENTATION
	TRACE LEVEL
	USERID
	USERPASSWORD

	Command reference
	Classic data server administration commands
	Starting a data server
	STOP command
	START,SERVICE command
	STOP,SERVICE command
	DISPLAY,ALL command
	DISPLAY,MEMORY command
	DISPLAY,SERVICES command
	DISPLAY,USERS command
	CANCEL command
	DISPLAY,QUERIES command
	CANCEL,QUERY command

	Classic data server configuration commands
	Commands for updating and displaying configurations for Classic data servers
	Commands for importing and exporting configurations for a Classic data server

	Utilities reference
	The catalog initialization and maintenance utility (CACCATUT)
	Estimating the size of the catalog initialization and maintenance utility
	Creating and initializing zFS metadata catalogs
	Creating and initializing sequential metadata catalogs
	Creating and initializing linear metadata catalogs
	Upgrading metadata catalogs
	Copying metadata catalogs
	Reorganizing metadata catalogs
	Loading system objects into metadata catalogs
	Generating reports about metadata catalogs

	The metadata utility
	Running the metadata utility
	CONNECT statements for the metadata utility
	IMPORT DB2 statements for the metadata utility in Classic federation
	GENERATE DDL statement for the metadata utility
	Encrypting passwords for connecting to Classic data servers when the SAF exit is active

	The configuration migration and maintenance utility
	Features of the configuration migration and maintenance utility
	Running the configuration migration and maintenance utility

	Viewing log messages with the log print utility (CACPRTLG)
	Parameters for configuring the log print utility (CACPRTLG)
	Filters for modifying output from the log print utility (CACPRTLG)

	SQL reference
	General information
	Language elements
	General syntax diagrams

	IMS
	CREATE TABLE statement for IMS
	Columns for IMS
	Record arrays for IMS
	CREATE INDEX statement for IMS
	ALTER TABLE statement for IMS

	VSAM
	CREATE TABLE statement for VSAM
	Columns for VSAM
	Record arrays for VSAM
	CREATE INDEX statement for VSAM

	SQL security
	Overview of SQL security
	Authorization
	Authorization requirements for SQL statements
	Database objects in SQL security
	Defining user privileges
	SAF and SMF system exits for SQL security

	Views
	Record types in data definition examples
	Views and the query processor in Classic federation
	Advantages and disadvantages of views in Classic federation
	Joined views in Classic federation
	CREATE VIEW statement
	DROP VIEW statement

	Restrictions on binary data in SQL operations

	Programming reference for the JDBC driver
	ConnectionPool interface
	DataSource interface
	XADataSource interface
	java.sql.properties

	Programming reference for the ODBC/CLI driver
	Similarities and differences between ODBC and CLI
	Implemented and deprecated APIs for ODBC and CLI
	C and SQL data types for ODBC and CLI
	Binding input and output parameters from CLI applications
	Logs for the ODBC/CLI driver
	Code pages for the ODBC/CLI driver
	Restrictions on accessing binary data

	National language support
	SBCS, DBCS, and database objects
	Code page conversion for drivers
	Code page converters

	Sample VTAM and CICS definitions for federated or stored procedure access
	VTAM resource definitions for federated or stored procedure access
	VTAM APPL definition and mode table entry definition

	Configuring CICS resource definitions for federated or stored procedure access
	CEDA definitions for federated or stored procedure access

	Field procedures
	Field procedure setup
	Field procedures and data transformations
	Control blocks for field procedures
	Field procedure parameter list (FPPL)
	Work area
	Field procedure information block (FPIB)
	Value descriptors

	Field-encoding (function code 0)
	Field-decoding (function code 4)
	Sample field procedures
	CACFP001 - Sample field procedure
	CACFP999 - Sample field procedure

	Notices
	Trademarks
	Privacy policy considerations

