
IBM z/OS V2R1 XL C/C++ ���

Enable high-performing z/OS XL C/C++ programs for
workload optimized business software solutions

Highlights

v Exploits zEnterprise® System servers through
new hardware built-in functions and options
for improved application performance

v Enables system programming capabilities
through Metal C with support for advanced
optimization for AMODE-switching Metal C
applications and programming features to
reduce system programming effort

v Supports additional C11 and C++11 features,
and GNU C/C++ compatibility features for
easier programming and better portability

v Provides performance optimization with
support for a new option to specify
single-threaded programs, OpenMP
parallelization directives, and changes in the
default ARCH/TUNE settings

v Enhances debugging for optimized code and
inline procedures

v Integrates with IBM® Rational® Developer for
System z® and IBM Rational Team Concert™

providing a modern development environment
and a collaborative team environment

The IBM z/OS® XL C/C++ compiler helps you
create and maintain critical business applications
written in C or C++, maximize application
performance, and improve developer productivity.
z/OS XL C/C++ can transform C or C++ source
code to fully exploit your existing IBM System z
hardware and optimize workloads through
smarter computing capabilities with the new IBM
zEnterprise System. Built-in functions,
performance-tuned libraries, and language
constructs are some of the features that simplify
programming and boost application runtime
performance.

IBM works constantly to improve compiler
components, including front-ends, high-level
optimizers, and low-level optimizers. By
upgrading your compiler, you can keep up with
new language standards and extensions,
advancements in hardware technology, usability
features, and advances in optimization with
minimal or no source code changes. IBM

compilers offer a cost-effective way to get more
out of existing technology and stay ahead of
competitors on the technology curve.

z/OS XL C/C++ is a leading-edge compiler that
maximizes middleware by providing access to
IBM DB2®, CICS®, and IMS™ systems.

This new release of z/OS V2R1 XL C/C++
reinforces the continuing IBM commitment to the
C and C++ programming languages on the z/OS
platform.

Exploits zEnterprise System
servers through new built-in
functions and options
In z/OS V2R1 XL C/C++, the ARCH(10) option is
introduced, to enable functions for programs
running on zEnterprise EC12 (zEC12) and
zEnterprise BC12 (zBC12) systems, including
support for the miscellaneous-instruction-
extension facility, and the transactional-execution
facility, as well as a new TUNE(10) option to
generate code that is optimized for zEC12 and
zBC12 machines.

New built-in functions have been added to mark
the beginning and end of transactions, and to
diagnose the reasons for failure. These built-ins
include functions for starting, ending and
aborting a transaction, as well as for storing
non-transactional state, extracting the nesting
depth of a transaction, and for capturing
transaction failure diagnostics. The built-ins
provide an effective means for improving the
performance of multithreaded C and C++
applications on z/OS.

New hardware built-in functions are also
available for accessing the Decimal-Floating-Point
Zoned-Conversion facility in zEC12 and zBC12
which enables zoned-decimal types to take
advantage of the DFP unit to increase application
performance and CPU utilization.



Enables system programming
capabilities through Metal C
System programming allows for development of
freestanding programs that do not depend on any
supplied runtime environment, such as Language
Environment®. These programs obtain the system
services needed by calling assembler services
directly.

You can use the Metal C feature of z/OS XL C in
place of assembler for development of system
programs. Metal C includes the following
capabilities:
v The __asm keyword enables you to specify

assembly instructions in C code.
v The METAL compiler option enables you to use

the MVS™ system linkage conventions.
v The PROLOG and EPILOG compiler options

and the #pragma prolog() and #pragma epilog()
preprocessor directives enable you to specify
custom HLASM prolog and epilog code, to
implement custom function linkage conventions
if required.

System programs written in C exploit the same
advancements in hardware and advances in
performance optimization realized by application
programs coded in C.

Metal C can also be used to write programs to
run in the CICS Transaction Server for z/OS,
particularly in situations where you would
otherwise code directly using assembler.

Improves the optimization of
Metal C programs through
advanced optimization for
AMODE-switching Metal C
applications
New support for AMODE switching during IPA
link enables Metal C applications that use
AMODE switching to take advantage of
interprocedural analysis optimizations.

New #pragma map directive to
associate the "main" function to
an alternate external name
When a Metal C program is built with the RENT
option, it needs a "main" function to anchor the
writable static area (WSA) creation process.
However, a Metal C program may not have a

function called "main" as the entry point thus not
having the opportunity to be built with the RENT
option.

A Metal C program can now have an alternate
entry point name for function "main" while
maintaining all the characteristics of function
"main".

New SYSSTATE option to enable
Metal C users to fine tune the
SYSSTATE assembler macro
The SYSSTATE assembler macro automatically
generated by the compiler does not have the
OSREL parameter nor the ASCENV parameter
specified.

The new SYSSTATE option allows the user to add
the OSREL parameter with the desired value, and
to have the ASCENV parameter generated
according to the ASC mode of the function.

Supports additional C11 and
C++11 features, and GNU C/C++
compatibility features for easier
programming and better
portability
z/OS V2R1 XL C/C++ supports additional C11
and C++11 functions to allow a standardized way
to specify optimization choices, make it easier to
write C and C++ programs, improve program
portability, and help you with debugging. The
compiler also adds support for additional GNU
C/C++ language extensions and compatibility
features for ease of migrating applications built
with GNU C/C++ to System z.

C11 features
z/OS V2R1 XL C/C++ supports the following
C11 features:

Anonymous structures
The z/OS V2R1 XL C/C++ compiler
enables anonymous structures under the
EXTC1X extended language level. An
anonymous structure is a structure that
does not have a tag or a name and that is
a member of another structure or union.

Complex type initialization
When the C11 complex initialization
feature is enabled, you can initialize C99
complex types with a value of the form x

2



+ yi, where x and y can be any floating
point value, including Inf or NaN.

Generic selection
Generic selection provides a mechanism
to choose an expression according to a
given type name at compile time, a
common usage of which is to define type
generic macros.

_Noreturn function specifier
When you declare a function with the
_Noreturn function specifier, the compiler
can better optimize your code without
regard to what happens if it returns. Any
function, with the exception of main, can
be declared or defined with the
_Noreturn function specifier.

Static assertions
You can use static assertions to detect and
diagnose common usage errors at compile
time.

C++11 features
z/OS V2R1 XL C/C++ supports the following
C++11 features:

Default and deleted functions
This feature introduces two new forms of
function declarations to define explicitly
defaulted functions and deleted functions.
For the explicitly defaulted functions, the
compiler generates the default
implementations, which are more efficient
than manually programmed
implementations. The compiler disables
the deleted functions to avoid calling
unwanted functions.

Explicit conversion operators
With this feature, you can apply the
explicit function specifier to the definition
of a user-defined conversion function to
inhibit unintended implicit conversions
through the user-defined conversion
function.

Generalized constant expressions
With this feature, constant expressions can
include calls to template and
non-template constexpr functions,
constexpr objects of class literal types, and
references bound to const objects that are
initialized with constant expressions.

Strongly scoped enums
With the scoped enumeration feature, you
can get the following benefits:

v The ability to declare a scoped
enumeration type, whose enumerators
are declared in the scope of the
enumeration.

v The ability to declare an enumeration
without providing the enumerators.

v The ability to specify explicitly the
underlying type of an enumeration.

v Improved type safety with no
conversions from the value of an
enumerator (or an object of an
enumeration type) to an integer.

rvalue references
With the rvalue references feature, you
can reuse the resources of expiring objects
and improve the performance of your
libraries, especially if you use generic
code with class types. Additionally, the
value category can be considered when
writing a forwarding function.

Right angle brackets
In the C++ language, two consecutive
closing angle brackets (>) in the template
parameter context must be separated with
a white space, because they are otherwise
parsed as the bitwise right-shift operator
(>>). The right angle bracket feature
removes the white space requirement for
consecutive right angle brackets, thus
making programming more convenient.

GNU C/C++ compatibility
z/OS XL C/C++ V2R1 supports the following
GNU C/C++ compatibility features:
v __builtin_expect
v propagation of attributes to function template

instantiations
v zero initialization for objects with an initializer

of () and an implicitly defined default
constructor

v improved diagnostics for invalid template
template argument

3



Provides optimization with
support for a new option to
specify single-threaded
programs, OpenMP parallelization
directives, and change in the
default ARCH/TUNE settings
The z/OS XL C/C++ compiler assumes that the
user application is multithreaded, which inhibits
it from making non-threadsafe transformations
which could speed up code. In V2R1, users can
use the new NOTHREADED option for their
single-threaded applications for improved
compile time and run time performance benefits.

OpenMP is a widely used industry standard to
construct shared memory parallelism. The new
SMP option allows OpenMP parallelization
directives to be recognized.

In V2R1, the default ARCH and TUNE settings
have been changed to target IBM System z9®

servers, and above, for improved application
performance. The default settings are changed
from ARCH(5) and TUNE(5) to ARCH(7) and
TUNE(7) in z/OS V2R1.

Enhances debugging for
optimized code and inline
procedures
z/OS V2R1 XL C/C++ introduces new debug
level options that make it easier to generate
optimized code that can still be easily debugged.

In addition, the compiler offers debug
information for parameters and local variables of
each inline instance of a procedure.

Integrates with IBM Rational
Developer for System z and IBM
Rational Team Concert providing
a modern development
environment and a collaborative
team environment
IBM Rational Developer for System z, an
Eclipse-based offering, boosts programming
productivity with an integrated development
environment that makes it easy to edit, compile
and debug z/OS XL C and XL C++ applications
right from your workstation.

IBM Rational Team Concert allows you to boost
programming productivity with a collaborative
team environment that makes it easy to manage
your distributed software projects and teams.

License options

To help you optimize software licensing costs, IBM can assist in identifying the licenses that best suits
your organization. For additional information on the types of licenses available for z/OS, see:

www.ibm.com/systems/z/resources/swprice/index.html

Ordering information

IBM z/OS XL C/C++ is an optional priced feature of z/OS. z/OS XL C/C++ is available through the
ShopzSeries web site:

www.ibm.com/software/shopzseries

where it is listed as “XL C/C++”.

4



z/OS XL C/C++ is supported on z/OS at the same level. For more information about the support
lifecycle of z/OS, see:

www.ibm.com/software/support/lifecycle/index_z.html

Summary of features and benefits

The following table summarizes the features and benefits for z/OS XL C/C++.

Table 1. Summary of features and benefits

Feature Benefit

Designed for IBM platforms v Exploits z/Architecture® systems

Improved industry language standards compliance v Facilitates porting from other platforms to z/OS

v Provides compiler diagnostics to help you achieve the
level of conformance to a particular programming
language standard

v Supports commonly used IBM and non-IBM language
extensions

Improved industry-leading optimizations v Uses technology from the industry-leading XL C/C++
family of compilers; z/OS XL C/C++ is designed to
offer superior application performance on z/OS.

Enhanced middleware support v Exploits the latest middleware (DB2, CICS, IMS) to
facilitate application integration and modernization.

Improved debug information and debug APIs v Enables tool providers (including Debug Tool,
Application Performance Analyzer, z/OS dbx, as well
as third-party tools) to build additional debugging
capability and improve performance in their tools.

Improved low-level programming support v Provides system programming capabilities through
Metal C. With Metal C you can insert HLASM
instructions into C source, specify custom function
prologs and epilogs, and generate HLASM source,
making it easier to integrate new code with existing
HLASM programs.

Exploits hardware support for IEEE 754 decimal
floating-point data

v Improves the accuracy and performance of decimal
floating-point calculations for commercial applications

Additional built-in functions v Provides access to the newest and most efficient
hardware operations at the source level

v Simplifies the development effort for creating and
maintaining high-performance applications

Integrated development environment v Rational Developer for System z consists of a common
development workbench and an integrated set of tools
that support model-based development, runtime
testing, and rapid deployment of applications.

Collaborative team environment v Rational Team Concert (separate product) unifies
development teams by making it easy to manage your
distributed software projects and teams.

IBM service and support v Provides responsive platform and cross-platform
support that meets or exceeds customer expectations.

v Teams with subject matter experts in compiler
development for dedicated support excellence.

5



System requirements

The following table presents the hardware and software requirements for z/OS V2R1 XL C/C++.

Table 2. System requirements

Operating system Software Hardware

z/OS V2R1 v IBM zEnterprise EC12 (zEC12)

v IBM zEnterprise BC12 (zBC12)

v IBM zEnterprise 196 (z196)

v IBM zEnterprise 114 (z114)

v IBM System z10™ (z10 EC, z10 BC)1

v IBM System z9 (z9 BC, z9 EC)1

Notes:

1. These products are withdrawn
from marketing.

Upgrade now

Upgrade to the latest z/OS operating system and get the latest XL C/C++ compiler to leverage your
zEnterprise investment and stay ahead of competitors on the technology curve.

For more information

To learn more about z/OS V2R1 XL C/C++, contact your IBM representative or IBM Business Partner, or
visit the z/OS XL C/C++ web site at http://www.ibm.com/software/products/us/en/czos.

Like IBM Compilers on Facebook or follow @IBM_compilers on Twitter. The IBM C/C++ Cafe at
http://www.ibm.com/rational/community/cpp has additional resources on IBM C and C++ compilers.

6



© Copyright IBM Corporation 2013.

IBM Corporation
Software Group
Route 100
Somers, NY 10589 U.S.A.

Produced in the United States of America
July 2013
All Rights Reserved

IBM, the IBM logo, ibm.com®, CICS, DB2, IMS, Language Environment, MVS, Rational, Rational Team
Concert, System z, z/Architecture, z/OS, z9, z10, and zEnterprise are trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence in this information with a trademark symbol (®

or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

References in this document to IBM products or services do not imply that IBM intends to make these
available in all countries in which IBM operates.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject
to change without notice. Any statements regarding IBM's future direction and intent are subject to
change or withdrawal without notice, and represent goals and objectives only.

The information provided in this document is distributed “as is” without any warranty, either express or
implied. IBM expressly disclaims any warranties of merchantability, fitness for a particular purpose or
non-infringement. IBM products are warranted according to the terms and conditions of the agreements
(e.g. IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided.

7

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

	Enable high-performing z/OS XL C/C++ programs for workload optimized business software solutions
	Highlights
	Exploits zEnterprise System servers through new built-in functions and options
	Enables system programming capabilities through Metal C
	Improves the optimization of Metal C programs through advanced optimization for AMODE-switching Metal C applications
	New #pragma map directive to associate the "main" function to an alternate external name
	New SYSSTATE option to enable Metal C users to fine tune the SYSSTATE assembler macro

	Supports additional C11 and C++11 features, and GNU C/C++ compatibility features for easier programming and better portabilit
	C11 features
	C++11 features
	GNU C/C++ compatibility

	Provides optimization with support for a new option to specify single-threaded programs, OpenMP parallelization directives, a
	Enhances debugging for optimized code and inline procedures
	Integrates with IBM Rational Developer for System z and IBM Rational Team Concert providing a modern development environment 

	License options
	Ordering information
	Summary of features and benefits
	System requirements
	Upgrade now
	For more information

