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About this document

This document describes the syntax, semantics, and IBM® XL C Enterprise Edition
for AIX® implementation of the C programming language. Although the XL C
compiler conforms to the specifications maintained by the ISO standards for the C
programming language, it also incorporates many extensions to the core language.
These extensions have been implemented to enhance usability in specific operating
environments, support compatibility with other compilers, and support new
hardware capabilities. For example, many language constructs have been added for
compatibility with the GNU C compiler to maximize portability between the two
development environments.

Who should read this document
This document is a reference for users who already have experience on
programming applications in C. Users new to C can still use this document to find
language and features unique to XL C; however, this reference does not aim to
teach programming concepts nor to promote specific programming practices.

How to use this document
While this document covers both standard and implementation-specific features, it
does not include the following topics:
v Standard C library functions and headers. For information on the standard C

library, refer to your AIX operating system information.
v Constructs for writing multi-threaded programs, including IBM SMP directives,

OpenMP directives and functions, and POSIX Pthread functions. For reference
information about IBM SMP and OpenMP constructs, see the XL C Compiler
Reference; for information about Pthreads library functions, refer to your AIX
information.

v Compiler pragmas, predefined macros, and built-in functions. These are
described in the XL C Compiler Reference.

How this document is organized
This document is organized to loosely follow the structure of the ISO standard
language specifications and topics are grouped into similar headings.
v Chapters 1 through 9 discuss language elements, including lexical elements, data

types, declarations, declarators, type conversions, expressions, operators,
statements, and functions. Throughout these chapters, both standard features
and extensions are discussed.

v Chapter 10 discusses directives to the preprocessor.
v Chapter 11 provides summary lists of all the extended features that are

supported.

Conventions
Typographical conventions
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The following table shows the typographical conventions used in the IBM XL C for
AIX, V13.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable
names, compiler options, and
directives.

The compiler provides basic
invocation commands, xlc, along with
several other compiler invocation
commands to support various C
language levels and compilation
environments.

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Programming keywords and
library functions, compiler builtins,
examples of program code,
command strings, or user-defined
names.

To compile and optimize
myprogram.c, enter: xlc myprogram.c
-O3.

Qualifying elements (icons)

In descriptions of language elements where a feature is exclusive to the C11
standard, or where a feature is an IBM extension of the C standard, this
information uses icons to delineate segments of text as follows:

Table 2. Qualifying elements

Qualifier/Icon Meaning

IBM extension begins
IBM

IBM

IBM extension ends

The text describes a feature that is an IBM extension to the
standard language specifications.

C11 begins
C11

C11

C11 ends

The text describes a feature that is introduced into standard C
as part of C11.

Syntax diagrams

Throughout this information, diagrams illustrate XL C syntax. This section helps
you to interpret and use those diagrams.
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
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The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following syntax diagram example shows the syntax for the #pragma
comment directive.
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►►
(1) (2) (3) (4) (5) (9) (10)

# pragma comment ( compiler )
date
timestamp

(6)
copyright
user (7) (8)

, " token_sequence "

►◄

Notes:

1 This is the start of the syntax diagram.

2 The symbol # must appear first.

3 The keyword pragma must appear following the # symbol.

4 The name of the pragma comment must appear following the keyword pragma.

5 An opening parenthesis must be present.

6 The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

7 A comma must appear between the comment type copyright or user, and an
optional character string.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.
The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.
v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be

x XL C: Language Reference



performed during a basic, or default, installation; these need little or no
modification.

Related information
The following sections provide related information for XL C:

IBM XL C information
XL C provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL C for AIX, V13.1.3. It is located by default in the XL C directory and in the
\quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL C directory and in the root directory of the installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL C for AIX, V13.1.3 Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSGH2K_13.1.3/
com.ibm.compilers.aix.doc/welcome.html.

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036590.
The following files comprise the full set of XL C product information:

Table 3. XL C PDF files

Document title
PDF file
name Description

IBM XL C for AIX, V13.1.3
Installation Guide,
SC27-4238-02

install.pdf Contains information for installing XL C and
configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL C for AIX, V13.1.3,
SC27-4237-02

getstart.pdf Contains an introduction to the XL C product,
with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL C for AIX, V13.1.3
Compiler Reference,
SC27-4239-02

compiler.pdf Contains information about the various
compiler options, pragmas, macros,
environment variables, and built-in functions,
including those used for parallel processing.

IBM XL C for AIX, V13.1.3
Language Reference,
SC27-4240-02

langref.pdf Contains information about the C programming
languages, as supported by IBM, including
language extensions for portability and
conformance to nonproprietary standards.
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Table 3. XL C PDF files (continued)

Document title
PDF file
name Description

IBM XL C for AIX, V13.1.3
Optimization and
Programming Guide,
SC27-4241-02

proguide.pdf Contains information about advanced
programming topics, such as application
porting, interlanguage calls with Fortran code,
library development, application optimization
and parallelization, and the XL C
high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL C, including IBM Redbooks® publications, white
papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036590.

For more information about C/C++, see the C/C++ café at https://
www.ibm.com/developerworks/community/groups/service/html/
communityview?communityUuid=5894415f-be62-4bc0-81c5-3956e82276f3.

Standards and specifications
XL C is designed to support the following standards and specifications. You can
refer to these standards and specifications for precise definitions of some of the
features found in this information.
v Information Technology - Programming languages - C, ISO/IEC 9899:1990, also

known as C89.
v Information Technology - Programming languages - C, ISO/IEC 9899:1999, also

known as C99.
v Information Technology - Programming languages - C, ISO/IEC 9899:2011, also

known as C11. (Partial support)
v AltiVec Technology Programming Interface Manual, Motorola Inc. This specification

for vector data types, to support vector processing technology, is available at
http://www.freescale.com/files/32bit/doc/ref_manual/ALTIVECPIM.pdf.

v Information Technology - Programming Languages - Extension for the programming
language C to support decimal floating-point arithmetic, ISO/IEC WDTR 24732. This
draft technical report has been submitted to the C standards committee, and is
available at http://www.open-std.org/JTC1/SC22/WG14/www/docs/
n1176.pdf.

v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v OpenMP Application Program Interface Version 3.1 (full support), and OpenMP

Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm,
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6
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Other information
v Using the GNU Compiler Collection available at http://gcc.gnu.org/onlinedocs

Technical support
Additional technical support is available from the XL C Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_c_for_aix. This
page provides a portal with search capabilities to a large selection of Technotes and
other support information.

If you cannot find what you need, you can send an email to
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For the latest information about XL C, visit the product information site at
http://www.ibm.com/software/products/en/xlcaix.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL C
information, send your comments to compinfo@ca.ibm.com.

Be sure to include the name of the manual, the part number of the manual, the
version of XL C, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).
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Chapter 1. Language levels and language extensions

The C language described in this reference is based on the standards listed in
“Standards and specifications” on page xii.

We refer to the following language specifications as "base language levels" in order
to introduce the notion of an extension to a base.
v C99
v C89

This information uses the term K&R C to refer to the C language plus the generally
accepted extensions produced by Brian Kernighan and Dennis Ritchie that were in
use prior to the ISO standardization of C.

In addition to the features supported by the base levels, XL C contains language
extensions that enhance usability and facilitate porting programs to different
platforms, including:
v “Extensions related to C11 standard features”
v “Extensions related to GNU C” on page 2
v “Extensions supporting and extending the AltiVec Programming Interface” on

page 2
v “Extensions supporting Unicode” on page 2

You can control the language level to be used for compilation through several
mechanisms, including:
v various invocation commands in the XL C Compiler Reference

v the -qlanglvl option in the XL C Compiler Reference

With a few exceptions, almost all of the language extensions are supported when
you compile using the basic invocation command xlc.

The default language level for the xlc invocation command is extc99, which
includes all of the features introduced by the C99 standard, and most of the IBM
extensions described in this information. For a complete listing of the C extensions
and various methods for enabling them, see Chapter 11, “The IBM XL C language
extensions,” on page 225.

For information on the various methods for controlling the language level for
compilation, see Invoking the compiler in the XL C Compiler Reference and
-qlanglvl in the XL C Compiler Reference.

Extensions related to C11 standard features

C11

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
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release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

C11

XL C supports the currently implemented C11 features as part of a continual
phased release process leading towards full compliance with C11. A complete list
of C11 features supported in XL C is provided in “C11 compatibility” on page 226.

Extensions related to GNU C

Certain language extensions that correspond to GNU C features are implemented
to facilitate portability. These include extensions to C89 and C99. Throughout this
information, the text indicates the IBM extensions that have been implemented for
compatibility with GNU C ; a complete list of these is provided in “Extensions for
GNU C compatibility” on page 226 for C++ only.

Extensions supporting and extending the AltiVec Programming
Interface

XL C supports and extends AltiVec vector types when vector support is enabled.
These language extensions exploit the SIMD and parallel processing capabilities of
the PowerPC® processor, and facilitate the associated optimization techniques. The
IBM implementation of the AltiVec Programming Interface specification is an
extended implementation, which, for the most part, matches the syntax and
semantics of the GNU C implementation. In addition to the text provided
throughout this information that describes the behavior of the vector extensions, a
list of the IBM extensions to the AltiVec Programming Interface is also provided in
“Extensions for vector processing support” on page 230.

Extensions supporting Unicode

The Unicode Standard is the specification of an encoding scheme for written
characters and text. It is a universal standard that enables consistent encoding of
multilingual text and allows text data to be interchanged internationally without
conflict. The ISO C Committee has approved the implementation of u-literals and
U-literals to support Unicode UTF-16 and UTF-32 character literals, respectively.
See “Extensions for Unicode support” on page 230 for details.
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Chapter 2. Scope and linkage

Scope is the largest region of program text in which a name can potentially be used
without qualification to refer to an entity; that is, the largest region in which the
name is potentially valid. Broadly speaking, scope is the general context used to
differentiate the meanings of entity names. The rules for scope combined with
those for name resolution enable the compiler to determine whether a reference to
an identifier is legal at a given point in a file.

The scope of a declaration and the visibility of an identifier are related but distinct
concepts. Scope is the mechanism by which it is possible to limit the visibility of
declarations in a program. The visibility of an identifier is the region of program
text from which the object associated with the identifier can be legally accessed.
Scope can exceed visibility, but visibility cannot exceed scope. Scope exceeds
visibility when a duplicate identifier is used in an inner declarative region, thereby
hiding the object declared in the outer declarative region. The original identifier
cannot be used to access the first object until the scope of the duplicate identifier
(the lifetime of the second object) has ended.

Thus, the scope of an identifier is interrelated with the storage duration of the
identified object, which is the length of time that an object remains in an identified
region of storage. The lifetime of the object is influenced by its storage duration,
which in turn is affected by the scope of the object identifier.

Linkage refers to the use or availability of a name across multiple translation units
or within a single translation unit. The term translation unit refers to a source code
file plus all the header and other source files that are included after preprocessing
with the #include directive, minus any source lines skipped because of conditional
preprocessing directives. Linkage allows the correct association of each instance of
an identifier with one particular object or function.

Scope and linkage are distinguishable in that scope is for the benefit of the
compiler, whereas linkage is for the benefit of the linker. During the translation of
a source file to object code, the compiler keeps track of the identifiers that have
external linkage and eventually stores them in a table within the object file. The
linker is thereby able to determine which names have external linkage, but is
unaware of those with internal or no linkage.

The distinctions between the different types of scopes are discussed in “Scope.”
The different types of linkages are discussed in “Program linkage” on page 7.
Related reference:
“Storage class specifiers” on page 42

Scope
The scope of an identifier is the largest region of the program text in which the
identifier can potentially be used to refer to its object. The meaning of the identifier
depends upon the context in which the identifier is used. Scope is the general
context used to distinguish the meanings of names.

The scope of an identifier is possibly noncontiguous. One of the ways that
breakage occurs is when the same name is reused to declare a different entity,
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thereby creating a contained declarative region (inner) and a containing declarative
region (outer). Thus, point of declaration is a factor affecting scope. Exploiting the
possibility of a noncontiguous scope is the basis for the technique called information
hiding.

In all declarations, the identifier is in scope before the initializer. The following
example demonstrates this:
int x;
void f() {

int x = x;
}

The x declared in function f() has local scope, not global scope.

Block scope
A name has local scope or block scope if it is declared in a block. A name with local
scope can be used in that block and in blocks enclosed within that block, but the
name must be declared before it is used. When the block is exited, the names
declared in the block are no longer available.

Parameter names for a function have the scope of the outermost block of that
function. Also, if the function is declared and not defined, these parameter names
have function prototype scope.

When one block is nested inside another, the variables from the outer block are
usually visible in the nested block. However, if the declaration of a variable in a
nested block has the same name as a variable that is declared in an enclosing
block, the declaration in the nested block hides the variable that was declared in
the enclosing block. The original declaration is restored when program control
returns to the outer block. This is called block visibility.

Name resolution in a local scope begins in the immediately enclosing scope in
which the name is used and continues outward with each enclosing scope. The
order in which scopes are searched during name resolution causes the
phenomenon of information hiding. A declaration in an enclosing scope is hidden
by a declaration of the same identifier in a nested scope.
Related reference:
“Block statements” on page 155

Function scope
The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

A label can be used in a goto statement before the actual label is seen.
Related reference:
“Labeled statements” on page 153

Function prototype scope
In a function declaration (also called a function prototype) or in any function
declarator—except the declarator of a function definition—parameter names have
function prototype scope. Function prototype scope terminates at the end of the
nearest enclosing function declarator.
Related reference:
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“Function declarations” on page 179

File scope
A name has file scope if the identifier's declaration appears outside of any block. A
name with file scope and internal linkage is visible from the point where it is
declared to the end of the translation unit.
Related reference:
“Internal linkage” on page 7
“The extern storage class specifier” on page 44

Examples of scope in C
The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype
declaration.
1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main function prints the values 1, 2, 3, 0,
3, 2, 1 on separate lines. Each instance of i represents a different variable.

#include <stdio.h>
int i = 1; /* i defined at file scope */

int main(int argc, char * argv[])
┌───── {
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ ┌─── {
¹ ² int i = 2, j = 3; /* i and j defined at block scope */
¹ ² /* global definition of i is hidden */
¹ ² printf("%d\n%d\n", i, j); /* Prints 2, 3 */
¹ ²
¹ ² ┌── {
¹ ² ³ int i = 0; /* i is redefined in a nested block */
¹ ² ³ /* previous definitions of i are hidden */
¹ ² ³ printf("%d\n%d\n", i, j); /* Prints 0, 3 */
¹ ² └── }
¹ ²
¹ ² printf("%d\n", i); /* Prints 2 */
¹ ²
¹ └─── }
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ return 0;
¹
└────── }
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Namespaces of identifiers
Namespaces are the various syntactic contexts within which an identifier can be
used. Within the same context and the same scope, an identifier must uniquely
identify an entity. The compiler sets up namespaces to distinguish among identifiers
referring to different kinds of entities. Identical identifiers in different namespaces
do not interfere with each other, even if they are in the same scope.

The same identifier can declare different objects as long as each identifier is unique
within its namespace. The syntactic context of an identifier within a program lets
the compiler resolve its namespace without ambiguity.

Within each of the following four namespaces, the identifiers must be unique:
v Tags of the following types must be unique within a single scope:

– Enumerations
– Structures and unions

v Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

v Statement labels have function scope and must be unique within a function.
v All other ordinary identifiers must be unique within a single scope:

– C function names
– Variable names
– Names of function parameters
– Enumeration constants
– typedef names

You can redefine identifiers in the same namespace using enclosed program blocks.

Structure tags, structure members, variable names, and statement labels are in four
different namespaces. No name conflict occurs among the items named student in
the following example:
int get_item()
{

struct student /* structure tag */
{

char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable */

goto student;
student:; /* null statement label */
return 0;
}

The compiler interprets each occurrence of student by its context in the program:
when student appears after the keyword struct, it is a structure tag; when it
appears in the block defining the student type, it is a structure member variable;
when it appears at the end of the structure definition, it declares a structure
variable; and when it appears after the goto statement, it is a label.
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Program linkage
Linkage determines whether identifiers that have identical names refer to the same
object, function, or other entity, even if those identifiers appear in different
translation units. The linkage of an identifier depends on how it was declared.
There are three types of linkages:
v “Internal linkage” : identifiers can only be seen within a translation unit.
v “External linkage” : identifiers can be seen (and referred to) in other translation

units.
v “No linkage” on page 8: identifiers can only be seen in the scope in which they

are defined.

Linkage does not affect scoping, and normal name lookup considerations apply.
Related reference:
“The static storage class specifier” on page 43
“The extern storage class specifier” on page 44
“Function storage class specifiers” on page 182
“Type qualifiers” on page 69

Internal linkage
The following kinds of identifiers have internal linkage:
v Objects, references, or functions explicitly declared static
v Objects or references declared in global scope with the specifier const and

neither explicitly declared extern, nor previously declared to have external
linkage

v Data members of an anonymous union

A function declared inside a block will usually have external linkage. An object
declared inside a block will usually have external linkage if it is specified extern. If
a variable that has static storage is defined outside a function, the variable has
internal linkage and is available from the point where it is defined to the end of
the current translation unit.

If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at namespace or global scope, the identifier
has the same linkage as the first declaration.

External linkage
In global scope, identifiers for the following kinds of entities declared without the
static storage class specifier have external linkage:
v An object
v A function

If an identifier is declared with the extern keyword and if a previous declaration
of an object or function with the same identifier is visible, the identifier has the
same linkage as the first declaration. For example, a variable or function that is
first declared with the keyword static and later declared with the keyword extern
has internal linkage. However, a variable or function that has no linkage and was
later declared with a linkage specifier will have the linkage that was expressly
specified.
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No linkage
The following kinds of identifiers have no linkage:
v Names that have neither external nor internal linkage
v Names declared in local scopes (with exceptions of certain entities declared with

the extern keyword)
v Identifiers that do not represent an object or a function, including labels,

enumerators, typedef names that refer to entities with no linkage, type names,
function parameters

You cannot use a name with no linkage to declare an entity with linkage. For
example, you cannot use the name of a structure or enumeration or a typedef
name referring to an entity with no linkage to declare an entity with linkage. The
following example demonstrates this:
int main() {

struct A { };
// extern A a1;

typedef A myA;
// extern myA a2;
}

The compiler will not allow the declaration of a1 with external linkage. Structure A
has no linkage. The compiler will not allow the declaration of a2 with external
linkage. The typedef name myA has no linkage because A has no linkage.
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Chapter 3. Lexical elements

A lexical element refers to a character or groupings of characters that might legally
appear in a source file. This chapter contains discussions of the basic lexical
elements and conventions of the C programming language.

Tokens
Source code is treated during preprocessing and compilation as a sequence of
tokens. A token is the smallest independent unit of meaning in a program, as
defined by the compiler.

Adjacent identifiers, keywords, and literals must be separated with white space.
Other tokens should be separated by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds, and comments.

There are the following different types of tokens:
v “Keywords”
v “Identifiers” on page 10
v “Literals” on page 13
v “Punctuators and operators” on page 27

Keywords
Keywords are identifiers reserved by the language for special use. Although you can
use them for preprocessor macro names, it is considered poor programming style.
Only the exact spelling of keywords is reserved. For example, auto is reserved but
AUTO is not.

Table 4. C keywords

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

Standard C at the C99 and C11 levels also reserves the following keywords:

Table 5. C99 and C11 keywords

_Bool
_Complex
_Generic1

_Imaginary2

inline
_Noreturn1

_Static_assert1

restrict

Notes:

1. C11 These keywords are introduced due to the C11 language level. C11

2. The keyword _Imaginary is reserved for possible future use. For complex number
functionality, use _Complex; see Complex literals for details.
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Keywords for language extensions (IBM extension)

In addition to standard language keywords, the XL C compiler reserves the
following keywords for use in language extensions:

Table 6. Keywords for C language extensions

__alignof
__alignof__
asm
__asm
__asm__
_attribute__
__attribute
bool 5

__complex__
__const__
_Decimal323

_Decimal643

_Decimal1283

__extension__
__label__
__imag__
__inline__1

pixel5

__pixel5

__real__
__restrict

__restrict__
__signed__
__signed

__static_assert
__volatile
__volatile__
__thread4

typeof2

__typeof__
vector5

__vector5

Notes:

1. The __inline__ keyword uses the GNU C semantics for inline functions. For details, see
“Linkage of inline functions” on page 183.

2. typeof is recognized only when -qkeyword=typeof is in effect.

3. These keywords are recognized only when -qdfp is enabled.

4. __thread is recognized only when -qtls is enabled.

5. These keywords are recognized only in a vector declaration context, when vector
support is enabled.

More detailed information regarding the compilation contexts in which extension
keywords are valid is provided in the sections that describe each keyword.
Related reference:

See -qlanglvl in the XL C Compiler Reference

See -qkeyword in the XL C Compiler Reference
“Vector types (IBM extension)” on page 51

Identifiers
Identifiers provide names for the following language elements:
v Functions
v Objects
v Labels
v Function parameters
v Macros and macro parameters
v Type definitions
v Enumerated types and enumerators
v Structure and union names

An identifier consists of an arbitrary number of letters, digits, or the underscore
character in the form:

10 XL C: Language Reference



►► letter
_

▼ letter
digit
_

►◄

Characters in identifiers

The first character in an identifier must be a letter or the _ (underscore) character;
however, beginning identifiers with an underscore is considered poor
programming style.

The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different identifiers. If you specify a
lowercase a as part of an identifier name, you cannot substitute an uppercase A in
its place; you must use the lowercase letter.

The universal character names for letters and digits outside of the basic source
character set are allowed at the C99 language level.

IBM

 
The dollar sign can appear in identifier names when compiled using the

-qdollar compiler option or at one of the extended language levels that
encompasses this option. IBM

Reserved identifiers

Identifiers with two initial underscores or an initial underscore followed by an
uppercase letter are reserved globally for use by the compiler.

Identifiers that begin with a single underscore are reserved as identifiers with file
scope in both the ordinary and tag namespaces.

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name
duplications. You should always include the appropriate headers when using
standard library functions.

The __func__ predefined identifier

The C99 predefined identifier __func__ makes a function name available for use
within the function. Immediately following the opening brace of each function
definition, __func__ is implicitly declared by the compiler. The resulting behavior
is as if the following declaration had been made:
static const char __func__[] = "function-name";

where function-name is the name of the lexically-enclosing function.

For debugging purposes, you can explicitly use the __func__ identifier to return
the name of the function in which it appears. For example:
#include <stdio.h>

void myfunc(void) {
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printf("%s\n",__func__);
printf("size of __func__ = %d\n", sizeof(__func__));

}

int main() {
myfunc();

}

The output of the program is:
myfunc
size of __func__ = 7

When the assert macro is used inside a function definition, the macro adds the
name of the enclosing function on the standard error stream.

Assembly labels (IBM extension)

The compiler binds each non-static external variable and function name in the
source code to a name that it generates in the object file and any assembly code
that is emitted. For compatibility with GCC, the compiler implements an extension
to standard C that allows you to specify the name to be used in the object file and
assembly code, by applying an assembly label to the declaration of a global
variable or function prototype. You can also define names that do not start with an
underscore even on systems where an underscore is normally prepended to the
name of a function or variable.

Assembly label syntax

►► declarator asm
__asm__
__asm

( " string_literal " )
initializer

►◄

The string_literal is a valid assembly name that is to be bound to the given object
or function.

The following are examples of assembly label specifications:
void func3() __asm__("foo3");
int i __asm("abc");
char c asm("abcs") = ’a’;

The following restrictions apply to the use of assembly labels:
v Assembly labels cannot be specified on local or static variables.
v The same assembly label name cannot be applied to multiple identifiers in the

same compilation unit.
v The assembly label name cannot be the same as any other global identifier name

in the same compilation unit, unless the label name and identifier name are used
for the same variable or function declaration.

v The assembly label cannot be specified on typedef declarations.
v An assembly label cannot be the same as a name specified on a different

variable or function by a previous #pragma map directive. Similarly, the map
name specified by a #pragma map directive cannot be the same as a name
specified by a previous assembly label on a different variable or function.

v You cannot apply an assembly label to an identifier that has been mapped to a
different name by a #pragma map directive on a previous declaration of that
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variable or function. Similarly, you cannot specify a #pragma map directive on
an identifier that has previously been remapped by an assembly label.

v If you apply different labels to multiple declarations of the same variable or
function, the first specification is honored, and all subsequent assembly labels
are ignored with a warning.

Related reference:
“The Unicode standard” on page 31
“Keywords” on page 9

See -qlanglvl in the XL C Compiler Reference
“Function declarations and definitions” on page 179

See #pragma map in the XL C Compiler Reference
“alias” on page 190
Variables in specified registers (IBM extension)
“Inline assembly statements (IBM extension)” on page 170

See -qreserved_reg in the XL C Compiler Reference

Literals
The term literal constant, or literal, refers to a value that occurs in a program and
cannot be changed. The C language uses the term constant in place of the noun
literal. The adjective literal adds to the concept of a constant the notion that we can
speak of it only in terms of its value. A literal constant is nonaddressable, which
means that its value is stored somewhere in memory, but we have no means of
accessing that address.

Every literal has a value and a data type. The value of any literal does not change
while the program runs and must be in the range of representable values for its
type.

There are the following different types of literals:
v “Integer literals”
v “Boolean literals” on page 17
v “Floating-point literals” on page 17
v “Vector literals (IBM extension)” on page 22
v “Character literals” on page 25
v “String literals” on page 26

Integer literals

Integer literals are numbers that do not have a decimal point or an exponential part.
They can be represented as:
v Decimal integer literals
v Hexadecimal integer literals
v Octal integer literals

An integer literal might have a prefix that specifies its base, or a suffix that
specifies its type.
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Integer literal syntax

►► decimal_constant
octal_constant
hexadecimal_constant

l
L u
ll U
LL
u
U l

L
ll
LL

►◄

The long long features

There are two long long features:
v the C99 long long feature
v the non-C99 long long feature

Note: The syntax of integer literals is the same for both of the long long features.

Types of integer literals that are supported in pre-C99 mode

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is not enabled.

Table 7. Types of integer literals that are supported in pre-C99 mode1

Representation Suffix Possible data types

int unsigned
int

long
int

unsigned long
int

IBM

long long
int

IBM

unsigned
long long
int

Decimal None + + +

Octal, Hex None + + + +

All u or U + +

Decimal l or L + +

Octal, Hex l or L + +

All Both u
or U
and l
or L

+

Decimal ll
or LL

+ +

Octal, Hex ll or
LL

+ +

All Both u
or U
and ll
or LL

+
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Table 7. Types of integer literals that are supported in pre-C99 mode1 (continued)

Representation Suffix Possible data types

Note:

1. When none of the long long features are enabled, types of integer literals include all
the types in this table except the last two columns.

Types of integer literals that are supported in C99

The following example demonstrates the different behaviors of the compiler when
you enable different long long behaviors:
#include <stdio.h>

int main(){
if(0>3999999999-4000000000){

printf("C99 long long");
}
else{

printf("non-C99 IBM long long extension");
}

}

In this example, the values 3999999999 and 4000000000 are too large to fit into the
32-bit long int type, but they can fit into either the unsigned long or the long
long int type. If you enable the C99 long long feature, the two values have the
long long int type, so the difference of 3999999999 and 4000000000 is negative.
Otherwise, if you enable the non-C99 IBM long long extension, the two values
have the unsigned long type, so the difference is positive.

When both the C99 and non-C99 long long features are disabled, integer literals
that have one of the following suffixes cause a severe compile-time error:
v ll or LL
v Both u or U and ll or LL

The following table lists the integer literals and shows the possible data types
when the C99 long long feature is enabled.

Table 8. Types of integer literals that are supported in C99

Representation Suffix Possible data types

int unsigned
int

long int unsigned
long int

long
long int

unsigned
long
long int

Decimal None + + + +

Octal, Hex None + + + + + +

All u or U + + +

Decimal l or L + + +

Octal, Hex l or L + + + +

All Both u or U
and l or L

+ +

Decimal ll or LL + +

Octal, Hex ll or LL + +
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Table 8. Types of integer literals that are supported in C99 (continued)

Representation Suffix Possible data types

All Both u or U
and ll or
LL

+

Decimal integer literals

A decimal integer literal contains any of the digits 0 through 9. The first digit cannot
be 0. Integer literals beginning with the digit 0 are interpreted as an octal integer
literal rather than as a decimal integer literal.

Decimal integer literal syntax

►► digit_1_to_9 ▼ digit_0_to_9 ►◄

See the following examples of decimal literals:
485976
5

A plus (+) or minus (-) symbol can precede a decimal integer literal. The operator
is treated as a unary operator rather than as part of the literal. Consider the
following example:
-433132211
+20

Hexadecimal integer literals

A hexadecimal integer literal begins with the 0 digit followed by either an x or X,
followed by any combination of the digits 0 through 9 and the letters a through f
or A through F. The letters A (or a) through F (or f) represent the values 10 through
15, respectively.

Hexadecimal integer literal syntax

►► 0x
0X

▼ digit_0_to_f
digit_0_to_F

►◄

See the following examples of hexadecimal integer literals:
0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal integer literals

An octal integer literal begins with the digit 0 and contains any of the digits 0
through 7.
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Octal integer literal syntax

►► 0 ▼ digit_0_to_7 ►◄

See the following examples of octal integer literals:
0
0125
034673
03245

Related reference:
“Integral types” on page 48
“Integral conversions” on page 106
“Integral and floating-point promotions” on page 111

See -qlanglvl in the XL C Compiler Reference

Boolean literals

At the C99 level, C defines true and false as macros in the header file stdbool.h.
Related reference:
“Boolean types” on page 48
“Boolean conversions” on page 106

Floating-point literals

Floating-point literals are numbers that have a decimal point or an exponential part.
They can be represented as:
v Real literals

– Binary floating-point literals
– Hexadecimal floating-point literals

– IBM

 
Decimal floating-point literals (IBM extension)

v Complex literals

Binary floating-point literals

A real binary floating-point constant consists of the following:
v An integral part
v A decimal point
v A fractional part
v An exponent part
v An optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

Binary floating-point literal syntax
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►► ▼

▼

▼

▼

. digit
exponent

digit

digit .
exponent

digit exponent

f
F
l
L

►◄

Exponent:

e
E +

-

▼ digit

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point literal. However, it is
not part of the literal; it is interpreted as a unary operator.

The following are examples of floating-point literals:

floating-point constant Value

5.3876e4 53,876
4e-11 0.00000000004
1e+5 100000
7.321E-3 0.007321
3.2E+4 32000
0.5e-6 0.0000005
0.45 0.45
6.e10 60000000000

Hexadecimal floating-point literals

Real hexadecimal floating-point constants, which are a C99 feature, consist of the
following parts.
v a hexadecimal prefix
v a significant part
v a binary exponent part
v an optional suffix

The significant part represents a rational number and is composed of the
following:
v a sequence of hexadecimal digits (whole-number part)
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v an optional fraction part

The optional fraction part is a period followed by a sequence of hexadecimal
digits.

The exponent part indicates the power of 2 to which the significant part is raised,
and is an optionally signed decimal integer. The type suffix is optional. The full
syntax is as follows:

Hexadecimal floating-point literal syntax

►► 0x
0X

▼ ▼

▼

▼

. digit_0_to_f exponent
digit_0_to_f digit_0_to_F
digit_0_to_F

digit_0_to_f . exponent
digit_0_to_F

digit_0_to_f exponent
digit_0_to_F

►

►
f
F
l
L

►◄

Exponent:

p
P +

-

▼ digit_0_to_9

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double. You can omit either the whole-number part or the fraction part, but not
both. The binary exponent part is required to avoid the ambiguity of the type
suffix F being mistaken for a hexadecimal digit.

Decimal floating-point literals (IBM extension)

A real decimal floating-point constant consists of the following:
v An integral part
v A decimal point
v A fractional part
v An exponent part
v An optional suffix
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Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

Decimal floating-point literal syntax

►► ▼ ▼

▼

▼

. digit exponent
digit

digit . exponent

digit exponent

df
DF
dd
DD
dl
DL

►◄

Exponent:

e
E +

-

▼ digit

The suffix df or DF indicates a type of _Decimal32, the suffix dd or DD indicates a
type of _Decimal64, and the suffix dl or DL indicates a type of _Decimal128. If a
suffix is not specified, the floating-point constant has a type double.

You cannot use mixed cases in the literal suffix. For example, the suffix dF or Df is
invalid.

The following are examples of decimal floating-point literal declarations:
_Decimal32 a = 22.2df;
_Decimal64 b = 33.3dd;

Note: Decimal floating-point literal suffixes are recognized only when the -qdfp
option is enabled.

Complex literals

Complex literals, which were introduced in the C99 standard, are constructed in
two parts: the real part, and the imaginary part.

Complex literal syntax

►► real part + imaginary part
–

►◄

real part:

floating-point constant
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imaginary part:

floating-point constant * _Complex_I

floating-point constant can be specified as a decimal or hexadecimal floating-point
literal (including optional suffixes), in any of the formats described in the previous
sections.

_Complex_I is a macro defined in the complex.h header file, representing the
imaginary unit i, the square root of -1.

For example, the declaration:
varComplex = 2.0f + 2.0f * _Complex_I;

initializes the complex variable varComplex to a value of 2.0 + 2.0i.

IBM

 
For ease of porting applications developed with GNU C, XL C also

allows you to indicate the imaginary part of a complex literal with a suffix, in
addition to the standard suffixes that indicate the type of the complex number
(float, double, or long double).

The simplified syntax for a complex literal using the GNU suffixes is as follows:

►► real part + imaginary part
–

►◄

real part:

floating-point constant

imaginary part:

floating-point constant imaginary-suffix

floating-point constant can be specified as a decimal or hexadecimal floating-point
literal (including optional suffixes), in any of the formats described in the previous
sections.

imaginary-suffix is one of the suffixes i, I, j, or J, representing the imaginary unit.

For example, the declaration
varComplex = 3.0f + 4.0fi;

initializes the complex variable varComplex to a value of 3.0 + 4.0i. IBM

Related reference:
“Floating-point types” on page 49
“Floating-point conversions” on page 106
“Unary expressions” on page 122
Complex floating-point types
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Vector literals (IBM extension)

A vector literal is a constant expression for which the value is interpreted as a
vector type. The data type of a vector literal is represented by a parenthesized
vector type, and its value is a set of constant expressions that represent the vector
elements and are enclosed in parentheses or braces. When all vector elements have
the same value, the value of the literal can be represented by a single constant
expression. You can initialize vector types with vector literals.

Vector literal syntax

►► ( vector_type ) ( literal_list )
{ literal_list }

►◄

literal_list:

▼

,

constant_expression

The vector_type is a supported vector type; see “Vector types (IBM extension)” on
page 51 for a list of these.

The literal_list can be either of the following expressions:
v A single expression.

If the single expression is enclosed with parentheses, all elements of the vector
are initialized to the specified value. If the single expression is enclosed with
braces, the first element of the vector is initialized to the specified value, and the
remaining elements of the vector are initialized to 0.

v A comma-separated list of expressions. Each element of the vector is initialized
to the respectively specified value.
The number of constant expressions is determined by the type of the vector and
whether it is enclosed with braces or parentheses.
If the comma-separated list of expressions is enclosed with braces, the number of
constant expressions can be equal to or less than the number of elements in the
vector. If the number of constant expressions is less than the number of elements
in the vector, the values of the unspecified elements are 0.
If the comma-separated list of expressions is enclosed with parentheses, the
number of constant expressions must match the number of elements in the
vector as follows:

2 For vector long long, vector bool long long, and vector double types.

4 For vector int, vector long, and vector float types.

8 For vector short and vector pixel types.

16 For vector char types.

The following table shows the supported vector literals and how the compiler
interprets them to determine their values.
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Table 9. Vector literals

Syntax Interpreted by the compiler as

(vector unsigned char)(unsigned int)

(vector unsigned char){unsigned int}

A set of 16 unsigned 8-bit quantities that
all have the value of the single integer.

(vector unsigned char)(unsigned int, ...)

(vector unsigned char){unsigned int, ...}

A set of 16 unsigned 8-bit quantities with
the value specified by each of the 16
integers.

(vector signed char)(int)

(vector signed char){int}

A set of 16 signed 8-bit quantities that all
have the value of the single integer.

(vector signed char)(int, ...)

(vector signed char){int, ...}

A set of 16 signed 8-bit quantities with the
value specified by each of the 16 integers.

(vector bool char)(unsigned int)

(vector bool char){unsigned int}

A set of 16 unsigned 8-bit quantities that
all have the value of the single integer.

(vector bool char)(unsigned int, ...)

(vector bool char){unsigned int, ...}

A set of 16 unsigned 8-bit quantities with
a value specified by each of 16 integers.

(vector unsigned short)(unsigned int)

(vector unsigned short){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector unsigned short)(unsigned int, ...)

(vector unsigned short){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

(vector signed short)(int)

(vector signed short){int}

A set of 8 signed 16-bit quantities that all
have the value of the single integer.

(vector signed short)(int, ...)

(vector signed short){int, ...}

A set of 8 signed 16-bit quantities with a
value specified by each of the 8 integers.

(vector bool short)(unsigned int)

(vector bool short){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector bool short)(unsigned int, ...)

(vector bool short){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

(vector unsigned int)(unsigned int)

(vector unsigned int){unsigned int}

A set of 4 unsigned 32-bit quantities that
all have the value of the single integer.

(vector unsigned int)(unsigned int, ...)

(vector unsigned int){unsigned int, ...}

A set of 4 unsigned 32-bit quantities with
a value specified by each of the 4 integers.

(vector signed int)(int)

(vector signed int){int}

A set of 4 signed 32-bit quantities that all
have the value of the single integer.

(vector signed int)(int, ...)

(vector signed int){int, ...}

A set of 4 signed 32-bit quantities with a
value specified by each of the 4 integers.

(vector bool int)(unsigned int)

(vector bool int){unsigned int}

A set of 4 unsigned 32-bit quantities that
all have the value of the single integer.
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Table 9. Vector literals (continued)

Syntax Interpreted by the compiler as

(vector bool int)(unsigned int, ...)

(vector bool int){unsigned int, ...}

A set of 4 unsigned 32-bit quantities with
a value specified by each of the 4 integers.

(vector unsigned long long)(unsigned long long)

(vector unsigned long long){unsigned long long}

A set of 2 unsigned 64-bit quantities that
both have the value of the single long
long.

(vector unsigned long long)(unsigned long long,
...)

(vector unsigned long long){unsigned long long,
...}

A set of 2 unsigned 64-bit quantities
specified with a value by each of the 2
unsigned long longs.

(vector signed long long)(signed long long)

(vector signed long long){signed long long}

A set of 2 signed 64-bit quantities that
both have the value of the single long
long.

(vector signed long long)(signed long long, ...)

(vector signed long long){signed long long, ...}

A set of 2 signed 64-bit quantities with a
value specified by each of the 2 long
longs.

(vector bool long long)(unsigned long long)

(vector bool long long){unsigned long long}

A set of 2 boolean 64-bit quantities with a
value specified by the single unsigned
long long.

(vector bool long long)(unsigned long long, ...)

(vector bool long long){unsigned long long, ...}

A set of 2 boolean 64-bit quantities with a
value specified by each of the 2 unsigned
long longs.

(vector float)(float)

(vector float){float}

A set of 4 32-bit single-precision
floating-point quantities that all have the
value of the single float.

(vector float)(float, ...)

(vector float){float, ...}

A set of 4 32-bit single-precision
floating-point quantities with a value
specified by each of the 4 floats.

(vector double)(double)

(vector double){double}

A set of 2 64-bit double-precision
floating-point quantities that both have
the value of the single double.

(vector double)(double, double)

(vector double){double, double}

A set of 2 64-bit double-precision
floating-point quantities with a value
specified by each of the 2 doubles.

(vector pixel)(unsigned int)

(vector pixel){unsigned int}

A set of 8 unsigned 16-bit quantities that
all have the value of the single integer.

(vector pixel)(unsigned int, ...)

(vector pixel){unsigned int, ...}

A set of 8 unsigned 16-bit quantities with
a value specified by each of the 8 integers.

Note: The value of an element in a vector bool is FALSE if each bit of the element
is set to 0 and TRUE if each bit of the element is set to 1.

For example, for an unsigned integer vector type, the literal could be either of the
following:
(vector unsigned int)(10) /* initializes all four elements to a value of 10 */
(vector unsigned int)(14, 82, 73, 700) /* initializes the first element

to 14, the second element to 82,
the third element to 73, and the
fourth element to 700 */

24 XL C: Language Reference



You can cast vector literals with the “Cast operator ()” on page 145. Enclosing the
vector literal to be cast in parentheses can improve the readability of the code. For
example, you can use the following code to cast a vector signed int literal to a
vector unsigned char literal:
(vector unsigned char)((vector signed int)(-1, -1, 0, 0))

Related reference:
“Vector types (IBM extension)” on page 51
“Initialization of vectors (IBM extension)” on page 93

Character literals

A character literal contains a sequence of characters or escape sequences enclosed in
single quotation mark symbols, for example ’c’. A character literal may be
prefixed with the letter L, for example L’c’. A character literal without the L prefix
is an ordinary character literal or a narrow character literal. A character literal with the
L prefix is a wide character literal. An ordinary character literal that contains more
than one character or escape sequence (excluding single quotes ('), backslashes (\)
or new-line characters) is a multicharacter literal.

The type of a narrow character literal is int. The type of a wide character literal is
wchar_t. The type of a multicharacter literal is int.

Character literal syntax

►►
L

' ▼ character
escape_sequence

' ►◄

At least one character or escape sequence must appear in the character literal, and
the character literal must appear on a single logical source line.

The characters can be from the source program character set. You can represent the
double quotation mark symbol by itself, but to represent the single quotation mark
symbol, you must use the backslash symbol followed by a single quotation mark
symbol ( \’ escape sequence). (See “Escape sequences” on page 30 for a list of
other characters that are represented by escape characters.)

Outside of the basic source character set, the universal character names for letters
and digits are allowed at the C99 language level.

The following are examples of character literals:
’a’
’\’’
L’0’
’(’

Related reference:
“Character types” on page 51
“Source program character set” on page 29
“The Unicode standard” on page 31

See -qlanglvl in the XL C Compiler Reference
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String literals

A string literal contains a sequence of characters or escape sequences enclosed in
double quotation mark symbols. A string literal with the prefix L is a wide string
literal. A string literal without the prefix L is an ordinary or narrow string literal.

The type of a narrow string literal is array of char. The type of a wide string literal
is array of wchar_t.

String literal syntax

►►
L

" ▼ character
escape_sequence

" ►◄

Multiple spaces contained within a string literal are retained.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the string.
You can represent a single quotation mark symbol either by itself or with the
escape sequence \’. You must use the escape sequence \" to represent a double
quotation mark.

Outside of the basic source character set, the universal character names for letters
and digits are allowed at the C99 language level.

IBM

 
The Pascal string form of a string literal is also accepted when you

compile with the -qmacpstr option. IBM

See the following examples of string literals:
char titles[ ] = "Handel’s \"Water Music\"";
char *temp_string = "abc" "def" "ghi"; // *temp_string = "abcdefghi\0"
wchar_t *wide_string = L"longstring";

To continue a string on the next line, use the line continuation character (\ symbol)
followed by optional whitespace and a new-line character (required). For example:
char *mail_addr = "Last Name First Name MI Street Address \

893 City Province Postal code ";

Note: When a string literal appears more than once in the program source, how
that string is stored depends on whether strings are read-only or writable. By
default, the compiler considers strings to be read-only. XL C might allocate only
one location for a read-only string; all occurrences refer to that one location.
However, that area of storage is potentially write-protected. If strings are writable,
then each occurrence of the string has a separate, distinct storage location that is
always modifiable. You can use the #pragma strings directive or the -qro compiler
option to change the default storage for string literals.

String concatenation

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals can be concatenated to produce a single string. For
example:
"hello " "there" //equivalent to "hello there"
"hello" "there" //equivalent to "hellothere"
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Characters in concatenated strings remain distinct. For example, the strings "\xab"
and "3" are concatenated to form "\xab3". However, the characters \xab and 3
remain distinct and are not merged to form the hexadecimal character \xab3 .

If a wide string literal and a narrow string literal are adjacent, as in the following
example:
"hello " L"there"

the result is a wide string literal.

Note: In C99, narrow strings can be concatenated with wide string literals.

Following any concatenation, '\0' of type char is appended at the end of each
string. For a wide string literal, '\0' of type wchar_t is appended. By convention,
programs recognize the end of a string by finding the null character. For example:
char *first = "Hello "; //stored as "Hello \0"
char *second = "there"; //stored as "there\0"
char *third = "Hello " "there"; //stored as "Hello there\0"

Related reference:
“Character types” on page 51
“Source program character set” on page 29
“The Unicode standard” on page 31
String concatenation of u-literals

See -qlanglvl in the XL C Compiler Reference

See -qmacpstr in the XL C Compiler Reference

See -qro in the XL C Compiler Reference

See #pragma strings in the XL C Compiler Reference

Punctuators and operators
A punctuator is a token that has syntactic and semantic meaning to the compiler,
but the exact significance depends on the context. A punctuator can also be a token
that is used in the syntax of the preprocessor.

C99 defines the following tokens as punctuators, operators, or preprocessing
tokens:

Table 10. C punctuators
[ ] ( ) { } , : ;
* = ... #
. -> ++ -- ##
& + - ~ !
/ % << >> !=
< > <= >= ==
^ | && || ?
*= /= %= += -=
<<= >>= &= ^= |=
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Alternative tokens

The following table lists alternative representations for some operators and
punctuators:

Operator or punctuator Alternative representation

{ <%

} %>

[ <:

] :>

# %:

## %:%:

In addition to the operators and punctuators listed above, the C99 language level
provides the following alternative representations, defined as macros in the header
file iso646.h.

Operator or punctuator Alternative representation

&& and

| bitor

|| or

^ xor

~ compl

& bitand

&= and_eq

|= or_eq

^= xor_eq

! not

!= not_eq

Related reference:
“Digraph characters” on page 33
“Boolean types” on page 48
“Boolean conversions” on page 106
“Floating-point types” on page 49
“Floating-point conversions” on page 106
“Unary expressions” on page 122
“Vector types (IBM extension)” on page 51
“Initialization of vectors (IBM extension)” on page 93
“Source program character set” on page 29
“The Unicode standard” on page 31
“Character types” on page 51
Chapter 7, “Expressions and operators,” on page 115
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Source program character set
See the following list of the basic source character sets that are available at both
compile time and run time:
v The uppercase and lowercase letters of the English alphabet:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v The decimal digits:
0 1 2 3 4 5 6 7 8 9

v The following graphic characters:
! " # % & ' ( ) * + , - . / : ; < = > ? [ \ ] _ { } ~
– The caret (^) character in ASCII (bitwise exclusive OR symbol).
– The split vertical bar (¦) character in ASCII.

v The space character
v The control characters representing new-line, horizontal tab, vertical tab, form

feed, end of string (NULL character), alert, backspace, and carriage return.

IBM

 
Depending on the compiler option, other specialized identifiers, such as

the dollar sign ($) or characters in national character sets, may be allowed to
appear in an identifier.
Related reference:
Characters in identifiers

Multibyte characters
The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes multibyte character sets. A
multibyte character is a character whose bit representation fits into more than one
byte. To instruct the compiler to recognize multibyte character sets as source input,
be sure to compile with the -qmbcs option.

Multibyte characters can appear in any of the following contexts:
v String literals and character constants. To declare a multibyte literal, use a

wide-character representation, prefixed by L. For example:
wchar_t *a = L"wide_char_string";
wchar_t b = L’wide_char’;

Strings containing multibyte characters are treated essentially the same way as
strings without multibyte characters. Generally, wide characters are permitted
anywhere multibyte characters are, but they are incompatible with multibyte
characters in the same string because their bit patterns differ. Wherever
permitted, you can mix single-byte and multibyte characters in the same string.

v Preprocessor directives. The following preprocessor directives permit
multibyte-character constants and string literals:
– #define
– #pragma comment
– #include
A file name specified in an #include directive can contain multibyte characters.
For example:
#include <multibyte_char/mydir/mysource/multibyte_char.h>
#include "multibyte_char.h"
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v Macro definitions. Because string literals and character constants can be part of
#define statements, multibyte characters are also permitted in both object-like
and function-like macro definitions.

v The # and ## operators.
v Program comments.

The following are restrictions on the use of multibyte characters:
v Multibyte characters are not permitted in identifiers.
v Hexadecimal values for multibyte characters must be in the range of the code

page being used.
v You cannot mix wide characters and multibyte characters in macro definitions.

For example, a macro expansion that concatenates a wide string and a multibyte
string is not permitted.

v Assignment between wide characters and multibyte characters is not permitted.
v Concatenating wide character strings and multibyte character strings is not

permitted.
Related reference:
Character literals
“The Unicode standard” on page 31
“Character types” on page 51

See -qmbcs in the XL C Compiler Reference

Escape sequences
You can represent any member of the execution character set by an escape sequence.
They are primarily used to put nonprintable characters in character and string
literals. For example, you can use escape sequences to put such characters as tab,
carriage return, and backspace into an output stream.

Escape character syntax

►► \ escape_sequence_character
x hexadecimal_digits
octal_digits

►◄

An escape sequence contains a backslash (\) symbol followed by one of the escape
sequence characters or an octal or hexadecimal number. A hexadecimal escape
sequence contains an x followed by one or more hexadecimal digits (0-9, A-F, a-f).
An octal escape sequence uses up to three octal digits (0-7). The value of the
hexadecimal or octal number specifies the value of the wanted character or wide
character.

Note: The line continuation sequence (\ followed by a new-line character) is not
an escape sequence. It is used in character strings to indicate that the current line
of source code continues on the next line.

The escape sequences and the characters they represent are:

Escape sequence Character represented

\a Alert (bell, alarm)
\b Backspace
\f Form feed (new page)
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Escape sequence Character represented

\n New-line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quotation mark
\" Double quotation mark
\? Question mark
\\ Backslash

The value of an escape sequence represents the member of the character set used
at run time. Escape sequences are translated during preprocessing. For example, on
a system using the ASCII character codes, the value of the escape sequence \x56 is
the letter V. On a system using EBCDIC character codes, the value of the escape
sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. An error
message is issued if an escape sequence is not recognized.

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:
cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The Unicode standard
The Unicode Standard is the specification of an encoding scheme for written
characters and text. It is a universal standard that enables consistent encoding of
multilingual text and allows text data to be interchanged internationally without
conflict. The ISO standard for C refers to Information technology – Programming
Languages – Universal Multiple-Octet Coded Character Set (UCS), ISO/IEC 10646:2003.
(The term octet is used by ISO to refer to a byte.) The ISO/IEC 10646 standard is
more restrictive than the Unicode Standard in the number of encoding forms: a
character set that conforms to ISO/IEC 10646 is also conformant to the Unicode
Standard.

The Unicode Standard specifies a unique numeric value and name for each
character and defines three encoding forms for the bit representation of the
numeric value. The name/value pair creates an identity for a character. The
hexadecimal value representing a character is called a code point. The specification
also describes overall character properties, such as case, directionality, alphabetic
properties, and other semantic information for each character. Modeled on ASCII,
the Unicode Standard treats alphabetic characters, ideographic characters, and
symbols, and allows implementation-defined character codes in reserved code
point ranges. According to the Unicode Standard, the encoding scheme of the
standard is therefore sufficiently flexible to handle all known character encoding
requirements, including coverage of all the world's historical scripts.

C99 allows the universal character name construct defined in ISO/IEC 10646 to
represent characters outside the basic source character set. It permits universal
character names in identifiers, character constants, and string literals.
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The following table shows the generic universal character name construct and how
it corresponds to the ISO/IEC 10646 short name.

Universal character name ISO/IEC 10646 short name

where N is a hexadecimal digit
\UNNNNNNNN NNNNNNNN
\uNNNN 0000NNNN

C99 disallows the hexadecimal values representing characters in the basic character
set (base source code set) and the code points reserved by ISO/IEC 10646 for
control characters.

The following characters are also disallowed:
v Any character whose short identifier is less than 00A0. The exceptions are 0024

($), 0040 (@), or 0060 (').
v Any character whose short identifier is in the code point range D800 through

DFFF inclusive.

UTF literals (IBM extension)

The ISO C Committee has approved the implementation of u-literals and U-literals
to support Unicode UTF-16 and UTF-32 character literals, respectively.

The following table shows the syntax for UTF literals.

Table 11. UTF literals

Syntax Explanation

u'character' Denotes a UTF-16 character.

u"character-sequence" Denotes an array of UTF-16 characters.

U'character' Denotes a UTF-32 character.

U"character-sequence" Denotes an array of UTF-32 characters.

String concatenation of u-literals
The u-literals and U-literals follow the same concatenation rule as wide
character literals: the normal character string is widened if they are
present. The following shows the allowed combinations. All other
combinations are invalid.

Combination Result

u"a" u"b" u"ab"
u"a" "b" u"ab"
"a" u"b" u"ab"

U"a" U"b" U"ab"
U"a" "b" U"ab"
"a" U"b" U"ab"

Multiple concatentations are allowed, with these rules applied recursively.
Related reference:

See -qutf in the XL C Compiler Reference
String concatenation
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Digraph characters
You can represent unavailable characters in a source program by using a
combination of two keystrokes that are called a digraph character. The preprocessor
reads digraphs as tokens during the preprocessor phase.

The digraph characters are:

%: or %% # number sign
<: [ left bracket
:> ] right bracket
<% { left brace
%> } right brace
%:%: or %%%% ## preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. XL C does not replace
digraphs in string literals or in character literals. For example:
char *s = "<%%>; // stays "<%%>"

switch (c) {
case ’<%’ : { /* ... */ } // stays ’<%’
case ’%>’ : { /* ... */ } // stays ’%>’
}

Related reference:

See -qdigraph in the XL C Compiler Reference

Trigraph sequences
Some characters from the C character set are not available in all environments. You
can enter these characters into a C source program using a sequence of three
characters called a trigraph. The trigraph sequences are:

Trigraph Single character Description

??= # pound sign
??( [ left bracket
??) ] right bracket
??< { left brace
??> } right brace
??/ \ backslash
??' ^ caret
??! | vertical bar
??- ~ tilde

The preprocessor replaces trigraph sequences with the corresponding
single-character representation. For example,
some_array??(i??) = n;

Represents:
some_array[i] = n;
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Comments
A comment is text replaced during preprocessing by a single space character; the
compiler therefore ignores all comments.

There are two kinds of comments:
v The /* (slash, asterisk) characters, followed by any sequence of characters

(including new lines), followed by the */ characters. This kind of comment is
commonly called a C-style comment.

v The // (two slashes) characters followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
This kind of comment is commonly called a single-line comment.

You can put comments anywhere the language allows white space. You cannot nest
C-style comments inside other C-style comments. Each comment ends at the first
occurrence of */.

You can also include multibyte characters; to instruct the compiler to recognize
multibyte characters in the source code, compile with the -qmbcs option.

Note: The /* or */ characters found in a character constant or string literal do not
start or end comments.

In the following program, the second printf() is a comment:
#include <stdio.h>

int main(void)
{

printf("This program has a comment.\n");
/* printf("This is a comment line and will not print.\n"); */

return 0;
}

Because the second printf() is equivalent to a space, the output of this program
is:
This program has a comment.

Because the comment delimiters are inside a string literal, printf() in the
following program is not a comment.
#include <stdio.h>

int main(void)
{

printf("This program does not have \
/* NOT A COMMENT */ a comment.\n");
return 0;
}

The output of the program is:
This program does not have
/* NOT A COMMENT */ a comment.

In the following example, the comments are highlighted:
/* A program with nested comments. */

#include <stdio.h>

int main(void)
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{
test_function();
return 0;

}

int test_function(void)
{

int number;
char letter;

/*
number = 55;
letter = ’A’;
/* number = 44; */
*/
return 999;
}

In test_function, the compiler reads the first /* through to the first */. The second
*/ causes an error. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change the source code in the following way:

/* A program with conditional compilation to avoid nested comments. */

#define TEST_FUNCTION 0
#include <stdio.h>

int main(void)
{

test_function();
return 0;

}

int test_function(void)
{

int number;
char letter;

#if TEST_FUNCTION
number = 55;
letter = ’A’;
/*number = 44;*/

#endif /*TEST_FUNCTION */
}

You can nest single line comments within C-style comments. For example, the
following program will not output anything:
#include <stdio.h>

int main(void)
{

/*
printf("This line will not print.\n");
// This is a single line comment
// This is another single line comment
printf("This line will also not print.\n");
*/
return 0;

}

Note: You can also use the #pragma comment directive to place comments into
an object module.
Related reference:

Chapter 3. Lexical elements 35



See -qmbcs in the XL C Compiler Reference

See -qlanglvl in the XL C Compiler Reference

See -qcpluscmt in the XL C Compiler Reference
“Multibyte characters” on page 29
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Chapter 4. Data objects and declarations

The topics in this chapter discuss the various elements that constitute a declaration
of a data object.

Topics are sequenced to loosely follow the order in which elements appear in a
declaration. The discussion of the additional elements of data declarations is also
continued in Chapter 5, “Declarators,” on page 81.

Overview of data objects and declarations
The following sections introduce some fundamental concepts regarding data
objects and data declarations that will be used throughout this reference.

Overview of data objects
A data object is a region of storage that contains a value or group of values. Each
value can be accessed using its identifier or a more complex expression that refers
to the object. In addition, each object has a unique data type. The data type of an
object determines the storage allocation for that object and the interpretation of the
values during subsequent access. It is also used in any type checking operations.
Both the identifier and data type of an object are established in the object
declaration.

Data types are often grouped into type categories that overlap, such as:

Fundamental types versus derived types
Fundamental data types are also known as "basic", "fundamental" or
"built-in" to the language. These include integers, floating-point numbers,
and characters. Derived types are created from the set of basic types, and
include arrays, pointers, structures, unions, enumerations, and vectors.

Built-in types versus user-defined types
Built-in data types include all of the fundamental types, plus types that
refer to the addresses of basic types, such as arrays and pointers.
User-defined types are created by the user from the set of basic types, in
typedef, structure, union, and enumeration definitions.

Scalar types versus aggregate types
Scalar types represent a single data value, while aggregate types represent
multiple values, of the same type or of different types. Scalars include the
arithmetic types and pointers. Aggregate types include arrays, structures,
and vectors.

The following matrix lists the supported data types and their classification into
fundamental, derived, scalar, and aggregate types.

Table 12. C data types

Data object Basic Derived
Built-
in

User-
defined Scalar Aggregate

integer types + + +

floating-point types1 + + +
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Table 12. C data types (continued)

Data object Basic Derived
Built-
in

User-
defined Scalar Aggregate

character types + +

Booleans + + +

void type +2 + +

pointers + + +

arrays + + +

structures + + +

unions + +

enumerations + + see note3

IBM

 

vector types + +

Note:

1. Although complex floating-point types are represented internally as an array
of two elements, they behave in the same way as real floating-pointing types in
terms of alignment and arithmetic operations, and can therefore be considered
scalar types.

2. The void type is really an incomplete type, as discussed in “Incomplete types.”
3. The C standard does not classify enumerations as either scalar or aggregate.

Incomplete types

The following are incomplete types:
v The void type
v Arrays of unknown size
v Arrays of elements that are of incomplete type
v Structure, union, or enumerations that have no definition

However, if an array size is specified by [*], indicating a variable length array, the
size is considered as having been specified, and the array type is then considered a
complete type. For more information, see “Variable length arrays” on page 88.

The following examples illustrate incomplete types:
void *incomplete_ptr;
struct dimension linear; /* no previous definition of dimension */

Compatible and composite types

In C, compatible types are defined as:
v two types that can be used together without modification (as in an assignment

expression)
v two types that can be substituted one for the other without modification

A composite type is constructed from two compatible types. Determining the
resultant composite type for two compatible types is similar to following the usual
binary conversions of integral types when they are combined with some arithmetic
operators.
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Obviously, two types that are identical are compatible; their composite type is the
same type. Less obvious are the rules governing type compatibility of non-identical
types, user-defined types, type-qualified types, and so on. “Type specifiers” on
page 48 discusses compatibility for basic and user-defined types in C.
Related reference:
“The void type” on page 51
“Compatibility of arrays” on page 89
“Compatibility of pointers” on page 86
“Compatible functions” on page 181

Overview of data declarations and definitions
A declaration establishes the names and characteristics of data objects used in a
program. A definition allocates storage for data objects, and associates an identifier
with that object. When you declare or define a type, no storage is allocated.

The following table shows examples of declarations and definitions. The identifiers
declared in the first column do not allocate storage; they refer to a corresponding
definition. The identifiers declared in the second column allocate storage; they are
both declarations and definitions.

Declarations Declarations and definitions

extern double pi; double pi = 3.14159265;

struct payroll;
struct payroll {

char *name;
float salary;

} employee;

Note: The C99 standard no longer requires that all declarations appear at the
beginning of a function before the first statement.

Declarations determine the following properties of data objects and their
identifiers:
v Scope, which describes the region of program text in which an identifier can be

used to access its object
v Visibility, which describes the region of program text from which legal access

can be made to the identifier's object
v Duration, which defines the period during which the identifiers have real,

physical objects allocated in memory
v Linkage, which describes the correct association of an identifier to one particular

object
v Type, which determines how much memory is allocated to an object and how

the bit patterns found in the storage allocation of that object should be
interpreted by the program

The elements of a declaration for a data object are as follows:
v “Storage class specifiers” on page 42, which specify storage duration and linkage
v “Type specifiers” on page 48, which specify data types
v “Type qualifiers” on page 69, which specify the mutability of data values
v Declarators, which introduce and include identifiers
v “Initializers” on page 90, which initialize storage with initial values
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IBM In addition, for compatibility with GCC, XL C allows you to use attributes
to modify the properties of data objects. Type attributes, which can be used to
modify the definition of user-defined types, are described in “Type attributes (IBM
extension)” on page 75. Variable attributes, which can be used to modify the
declaration of variables, are described in “Variable attributes (IBM extension)” on
page 100. IBM

All declarations have the form:

Data declaration syntax

►► ▼

storage_class_specifier

▼

type_qualifier
type_specifier ►

► ▼

,

declarator
initializer

; ►◄

Tentative definitions

A tentative definition is any external data declaration that has no storage class
specifier and no initializer. A tentative definition becomes a full definition if the
end of the translation unit is reached and no definition has appeared with an
initializer for the identifier. In this situation, the compiler reserves uninitialized
space for the object defined.

The following statements show normal definitions and tentative definitions.
int i1 = 10; /* definition, external linkage */
static int i2 = 20; /* definition, internal linkage */
extern int i3 = 30; /* definition, external linkage */
int i4; /* tentative definition, external linkage */
static int i5; /* tentative definition, internal linkage */

int i1; /* valid tentative definition */
int i2; /* not legal, linkage disagreement with previous */
int i3; /* valid tentative definition */
int i4; /* valid tentative definition */
int i5; /* not legal, linkage disagreement with previous */

Related reference:
“Function declarations and definitions” on page 179

_Static_assert declaration (C11)

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.
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Static assertions can be declared to detect and diagnose common usage errors at
compile time. A _Static_assert declaration takes the following form:

_Static_assert declaration syntax

►► _Static_assert ( constant_expression , string_literal ) ; ►◄

The constant_expression must be an integer constant expression. If the integer
constant expression evaluates to 0, the compiler issues a severe error containing the
string literal with the source location of the _Static_assert declaration. Otherwise,
the _Static_assert declaration has no effect.

The declaration of static assertions does not declare a new type or object, and does
not imply any size or time cost at run time.

static_assert is a macro defined in assert.h for C.

The addition of static assertions to the C language has the following benefits:
v Libraries can detect common usage errors at compile time.
v Implementations of the C Standard Library can detect and diagnose common

usage errors, improving usability.

You can declare static assertions to check important program invariants at compile
time.

Examples: _Static_assert declaration

Example 1: The following example demonstrates the use of a _Static_assert
declaration inside a structure.
#include <stddef.h>
struct __attribute__((packed)) B{

char a;
int i;

};

struct A{
struct B b;
_Static_assert(offsetof(struct B,i)==1,"S not packed");

};

Example 2: The following example contains static assertions declared with
static_assert, so the assert.h header file must be included.
/* static_assert requires <assert.h> */
#include <assert.h>
static_assert(sizeof(long) >= 8, "64-bit not enabled.");

Example 3: The following example shows the use of a _Static_assert declaration
with an invalid constant expression.
_Static_assert(1 / 0, "never shows up!");

When you compile this program, the compiler does not show the string literal in
the _Static_assert declaration. Instead, the compiler issues an error message
indicating that the divisor cannot be zero.
Related reference:
“C11 compatibility” on page 226
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Storage class specifiers
A storage class specifier is used to refine the declaration of a variable, a function,
and parameters. Storage classes determine whether:
v The object has internal, external, or no linkage
v The object is to be stored in memory or in a register, if available
v The object receives the default initial value of 0 or an indeterminate default

initial value
v The object can be referenced throughout a program or only within the function,

block, or source file where the variable is defined
v The storage duration for the object is maintained throughout program run time

or only during the execution of the block where the object is defined

For a variable, its default storage duration, scope, and linkage depend on where it
is declared: whether inside or outside a block statement or the body of a function.
When these defaults are not satisfactory, you can use a storage class specifier to
explicitly set its storage class.

The storage class specifiers are:
v auto
v static
v extern
v register

v IBM __thread
Related reference:
“Function storage class specifiers” on page 182
“Initializers” on page 90

The auto storage class specifier
The auto storage class specifier lets you explicitly declare a variable with automatic
storage. The auto storage class is the default for variables declared inside a block. A
variable x that has automatic storage is deleted when the block in which x was
declared exits.

You can only apply the auto storage class specifier to names of variables declared
in a block or to names of function parameters. However, these names by default
have automatic storage. Therefore the storage class specifier auto is usually
redundant in a data declaration.

Storage duration of automatic variables

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use. An
object declared with no linkage specification and without the static storage class
specifier has automatic storage duration.

If an auto object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.
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Linkage of automatic variables

An auto variable has block scope and no linkage.
Related reference:
“Initialization and storage classes” on page 90
“Block statements” on page 155
“The goto statement” on page 169

The static storage class specifier
Objects declared with the static storage class specifier have static storage duration,
which means that memory for these objects is allocated when the program begins
running and is freed when the program terminates. Static storage duration for a
variable is different from file or global scope: a variable can have static duration
but local scope.

The keyword static is the major mechanism in C to enforce information hiding.

The static storage class specifier can be applied to the following declarations:
v Data objects
v Anonymous unions

You cannot use the static storage class specifier with the following:
v Type declarations
v Function parameters

At the C99 language level, the static keyword can be used in the declaration of
an array parameter to a function. The static keyword indicates that the argument
passed into the function is a pointer to an array of at least the specified size. In
this way, the compiler is informed that the pointer argument is never null. See
“Static array indices in function parameter declarations (C only)” on page 188 for
more information.

Linkage of static variables

If a declaration of an object contains the static storage class specifier and has file
scope, the identifier has internal linkage. Each instance of the particular identifier
therefore represents the same object within one file only. If a declaration of an
object contains the static storage class specifier and has function scope, an object is
statically allocated and all the function calls use the same object. For example, if a
static variable x has been declared in function f, when the program exits the scope
of f, x is not destroyed:
#include <stdio.h>

int f(void) {
static int x = 0;
x++;
return x;

}

int main(void) {
int j;
for (j = 0; j < 5; j++) {
printf("Value of f(): %d\n", f());

}
return 0;

}
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The following is the output of the above example:
Value of f(): 1
Value of f(): 2
Value of f(): 3
Value of f(): 4
Value of f(): 5

Because x is a function local static variable, it is not reinitialized to 0 on successive
calls to f.
Related reference:
“The static storage class specifier” on page 182
“Initialization and storage classes” on page 90
“Internal linkage” on page 7

The extern storage class specifier
The extern storage class specifier lets you declare objects that several source files
can use. An extern declaration makes the described variable usable by the
succeeding part of the current source file. This declaration does not replace the
definition. The declaration is used to describe the variable that is externally
defined.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

Storage duration of external variables

All extern objects have static storage duration. Memory is allocated for extern
objects before the main function begins running, and is freed when the program
terminates. The scope of the variable depends on the location of the declaration in
the program text. If the declaration appears within a block, the variable has block
scope; otherwise, it has file scope.

Linkage of external variables

Like the scope, the linkage of a variable declared extern depends on the placement
of the declaration in the program text. If the variable declaration appears outside
of any function definition and has been declared static earlier in the file, the
variable has internal linkage; otherwise, it has external linkage in most cases. All
object declarations that occur outside a function and that do not contain a storage
class specifier declare identifiers with external linkage.
Related reference:
“External linkage” on page 7
“Initialization and storage classes” on page 90
“The extern storage class specifier” on page 182

The register storage class specifier
The register storage class specifier indicates to the compiler that the object should
be stored in a machine register. The register storage class specifier is typically
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specified for heavily used variables, such as a loop control variable, in the hopes of
enhancing performance by minimizing access time. However, the compiler is not
required to honor this request. Because of the limited size and number of registers
available on most systems, few variables can actually be put in registers. If the
compiler does not allocate a machine register for a register object, the object is
treated as having the storage class specifier auto.

An object having the register storage class specifier must be defined within a
block or declared as a parameter to a function.

The following restrictions apply to the register storage class specifier:
v You cannot use pointers to reference objects that have the register storage class

specifier.
v You cannot use the register storage class specifier when declaring objects in

global scope.
v A register does not have an address. Therefore, you cannot apply the address

operator (&) to a register variable.

Storage duration of register variables

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If a register object is defined within a function that is recursively invoked, a new
object is allocated at each invocation of the block.

Linkage of register variables

Since a register object is treated as the equivalent to an object of the auto storage
class, it has no linkage.

Variables in specified registers (IBM extension)

You can specify that a particular hardware register is dedicated to a variable by
using an asm register variable declaration. This language extension is provided for
compatibility with GNU C.

Global register variables reserve registers throughout the program; stores into the
reserved register are never deleted.

Local register variables do not actually reserve the registers, except when the
variables are used as input or output operands in an inline assembly statement. In
this case, using the variable as an asm operand guarantees that the specified
register is used for the operand and is a convenient way to control which register
is used.

Register variable declaration syntax

►► register variable_declaration asm ("register_specifier")
__asm__
__asm

►◄

The register_specifier is a string representing a hardware register. The register name
is CPU-specific. The following are valid register names:
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r0 to r31
General purpose registers

f0 to f31
Floating-point registers

v0 to v31
Vector registers (on selected processors)

The following are the rules of use for register variables:
v You cannot reserve registers for the following types of variables:

– long long types
– aggregate types
– void types
– _Complex types
– 128-bit long double types
– decimal floating-point types

v General purpose registers can only be reserved for variables of integer or pointer
type.

v Floating-point registers can only be reserved for variables of float, double, or
64-bit long double type.

v Vector registers can only be reserved for variables of vector type.
v A global register variable cannot be initialized.
v The register dedicated for a global register variable should not be a volatile

register, or the value stored into the global variable might not be preserved
across a function call.

v More than one register variable can reserve the same register; however, the two
variables become aliases of each other, and this is diagnosed with a warning.

v The same global register variable cannot reserve more than one register.
v A register variable should not be used in an OpenMP clause or OpenMP parallel

or work-sharing region.
v The register specified in the global register declaration is reserved for the

declared variable only in the compilation unit in which the register declaration is
specified. The register is not reserved in other compilation units unless you
place the global register declaration in a common header file, or use the
-qreserved_reg compiler option.

Related reference:
“Initialization and storage classes” on page 90
“Block scope” on page 4
Assembly labels (IBM extension)
“Inline assembly statements (IBM extension)” on page 170

See -qreserved_reg in the XL C Compiler Reference

The __thread storage class specifier (IBM extension)
The __thread storage class marks a static variable as having thread-local storage
duration. This means that, in a multithreaded application, a unique instance of the
variable is created for each thread that uses it, and destroyed when the thread
terminates. The __thread storage class specifier can provide a convenient way of
assuring thread-safety: declaring an object as per-thread allows multiple threads to
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access the object without the concern of race conditions, while avoiding the need
for low-level programming of thread synchronization or significant program
restructuring.

The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of
local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -qtls option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 13. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

initial-exec None. dlopen()/load() fails if
referenced symbol is not in
the module loaded at
execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

Note: In order for the __thread keyword to be recognized, you must compile with
the -qtls option. See -qtls in the XL C Compiler Reference for details.

The specifier can be applied to variables with static storage duration. It cannot be
applied to function-scoped or block-scoped automatic variables .

The thread specifier can be either preceded or followed by the static or extern
specifier.
__thread int i;
extern __thread struct state s;
static __thread char *p;

Applying address operator (&) to a thread-local variable returns the runtime
address of the current thread's instance of the variable. That thread can pass this
address to any other thread; however, when the first thread terminates, any
pointers to its thread-local variables become invalid.
Related reference:

See -qtls in the XL C Compiler Reference
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Type specifiers
Type specifiers indicate the type of the object being declared. See the following
available kinds of types:
v Fundamental or built-in types:

– Arithmetic types
- Integral types
- Boolean types
- Floating-point types
- Character types

– The void type

– IBM

 
Vector types

v User-defined types
Related reference:
“Function return type specifiers” on page 185

Integral types
Integer types fall into the following categories:
v Signed integer types:

– signed char
– short int
– int
– long int
– long long int

v Unsigned integer types:
– unsigned char
– unsigned short int
– unsigned int
– unsigned long int
– unsigned long long int

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer value than
the equivalent signed type.

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that can be assigned to an integer.
Related reference:
Integer literals
“Integral conversions” on page 106
“Arithmetic conversions and promotions” on page 105

Boolean types
A Boolean variable can be used to hold the integer values 0 or 1, , which are
implicitly promoted to the integers 1 and 0 respectively, whenever an arithmetic
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value is necessary. The Boolean type is unsigned and has the lowest ranking in its
category of standard unsigned integer types; it may not be further qualified by the
specifiers signed, unsigned, short, or long. In simple assignments, if the left
operand is a Boolean type, then the right operand must be either an arithmetic
type or a pointer.

Boolean type is a C99 feature. To declare a Boolean variable, use the _Bool type
specifier.

IBM

 
The token bool is recognized as a keyword in C only when used in a

vector declaration context and vector support is enabled. IBM

You can use Boolean types to make Boolean logic tests. A Boolean logic test is used
to express the results of a logical operation. For example:
_Bool f(int a, int b)
{

return a==b;
}

If a and b have the same value, f returns true. If not, f returns false.
Related reference:
Boolean literals
“Boolean conversions” on page 106
“Vector types (IBM extension)” on page 51

Floating-point types
Floating-point type specifiers fall into the following categories:
v Real floating-point types
v Complex floating-point types

Real floating-point types

Generic, or binary, floating-point types consist of the following:
v float
v double
v long double

IBM

 
Decimal floating-point types consist of the following:

v _Decimal32
v _Decimal64
v _Decimal128

Note: In order for the _Decimal32, _Decimal64, and _Decimal128 keywords to be
recognized, you must compile with the -qdfp compiler option. See -qdfp in the XL
C Compiler Reference for details.

IBM

The magnitude ranges of the real floating-point types are given in the following
table.
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Table 14. Magnitude ranges of real floating-point types

Type Range

float approximately 1.2-38 to 3.438

double, long double approximately 2.2-308 to 1.8308

_Decimal32 0.000001-95 to 9.99999996

_Decimal64 0.000000000000001-383 to 9.999999999999999384

_Decimal128 0.000000000000000000000000000000001-6143 to
9.9999999999999999999999999999999996144

If a floating-point constant is too large or too small, the result is undefined by the
language.

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number.

IBM

 
You can use decimal floating-point types with any of the operators that

are supported for binary floating-point types. However, you cannot mix decimal
floating-point types with generic floating-point types or complex floating-point
types in arithmetic expressions unless you use explicit conversions. Implicit
conversions are applicable as follows:
v Implicit conversions among decimal floating-point types are always supported.
v Implicit conversions between decimal floating-point types and integral types are

always supported.
v Implicit conversions between decimal floating-point types and generic

floating-point types are supported conditionally. See “Floating-point
conversions” on page 106 for details.

IBM

Complex floating-point types

Complex floating-point types are introduced in the C99 standard. The complex
floating-point type specifiers are as follows:
v float _Complex
v double _Complex
v long double _Complex

The representation and alignment requirements of a complex type are the same as
an array type containing two elements of the corresponding real type. The real part
is equal to the first element; the imaginary part is equal to the second element.

The equality and inequality operators have the same behavior as for real types.
None of the relational operators may have a complex type as an operand.

IBM As an extension to C99, complex numbers may also be operands to the
unary operators ++ (increment), -- (decrement), and ~ (bitwise negation). IBM

Related reference:
Floating-point literals
“Floating-point conversions” on page 106
“Arithmetic conversions and promotions” on page 105
Complex literals (C only)
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“The __real__ and __imag__ operators (IBM extension)” on page 129

Character types
Character types fall into the following categories:
v Narrow character types:

– char
– signed char
– unsigned char

v Wide character type wchar_t

The char specifier is an integral type. The wchar_t type specifier is an integral type
that has enough storage to represent a wide character literal. (A wide character
literal is a character literal that is prefixed with the letter L, for example L’x’)

A char is a distinct type from signed char and unsigned char, and the three types
are not compatible.

If it does not matter if a char data object is signed or unsigned, you can declare the
object as having the data type char. Otherwise, explicitly declare signed char or
unsigned char to declare numeric variables that occupy a single byte. When a char
(signed or unsigned) is widened to an int, its value is preserved.

By default, char behaves like an unsigned char. To change this default, you can
use the -qchars option or the #pragma chars directive. See -qchars in the XL C
Compiler Reference for more information.
Related reference:
Character literals
String literals
“Arithmetic conversions and promotions” on page 105

The void type
The void data type always represents an empty set of values. The only object that
can be declared with the type specifier void is a pointer.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following cases:
v An expression statement
v The left operand of a comma expression
v The second or third operand in a conditional expression.
Related reference:
“Pointers” on page 83
“Comma operator ,” on page 142
“Conditional expressions” on page 143
“Function declarations and definitions” on page 179

Vector types (IBM extension)
XL C supports vector processing technologies through language extensions. XL C
implements and extends the AltiVec Programming Interface specification. In the
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extended syntax, type qualifiers and storage class specifiers can precede the
keyword vector (or its alternative spelling, __vector) in a declaration.

Most of the legal forms of the syntax are captured in the following diagram. Some
variations have been omitted from the diagram for the sake of clarity: type
qualifiers such as const and storage class specifiers such as static can appear in
any order within the declaration, as long as neither immediately follows the
keyword vector (or __vector).

Vector declaration syntax

►► ▼

type_qualifier
storage_class_specifier

►

► vector bool char
__vector signed short

unsigned int
int
long

int
long long

pixel
__pixel
float
double

►◄

Notes:

v The keyword vector is recognized in a declaration context only when used as a
type specifier and when vector support is enabled. The keywords pixel, __pixel
and bool are recognized as valid type specifiers only when preceded by the
keyword vector or __vector.

v The long type specifier is deprecated in a vector context and is treated as an int.
v Duplicate type specifiers are ignored in a vector declaration context.

The following table lists the supported vector data types, the size and possible
values for each type.

Table 15. Vector data types

Type Interpretation of content Range of values

vector unsigned char 16 unsigned char 0..255

vector signed char 16 signed char -128..127

vector bool char 16 unsigned char 0, 255

vector unsigned short 8 unsigned short 0..65535

vector unsigned short int

vector signed short 8 signed short -32768..32767

vector signed short int

vector bool short 8 unsigned short 0, 65535

vector bool short int
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Table 15. Vector data types (continued)

Type Interpretation of content Range of values

vector unsigned int 4 unsigned int 0..232-1

vector unsigned long

vector unsigned long int

vector signed int 4 signed int -231..231-1

vector signed long

vector signed long int

vector bool int 4 unsigned int 0, 232-1

vector bool long

vector bool long int

vector unsigned long long 2 unsigned long long 0..264-1

vector bool long long 0, 264-1

vector signed long long 2 signed long long -263..263-1

vector float 4 float IEEE-754 single (32 bit)
precision floating-point
values

vector double 2 double IEEE-754 double (64 bit)
precision floating-point
values

vector pixel 8 unsigned short 1/5/5/5 pixel

Note: The vector unsigned long long, vector bool long long, vector signed long
long, and vector double types require architectures that support the VSX
instruction set extensions, such as POWER7® or POWER8®. You must specify the
corresponding -qarch suboption such as -qarch=pwr7 or -qarch=pwr8 when you
use these types.

All vector types are aligned on a 16-byte boundary. An aggregate that contains one
or more vector types is aligned on a 16-byte boundary, and padded, if necessary, so
that each member of vector type is also 16-byte aligned.

Vector data type operators

Vector data types can use some of the unary, binary, and relational operators that
are used with primitive data types. Note that all operators require compatible
types as operands unless otherwise stated. These operators are not supported at
global scope or for objects with static duration, and there is no constant folding.

For unary operators, each element in the vector has the operation applied to it.

Table 16. Unary operators

Operator Integer vector types Vector double Bool vector types

++ Yes Yes No

−− Yes Yes No

+ Yes Yes No

− Yes (except unsigned
vectors)

Yes No
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Table 16. Unary operators (continued)

Operator Integer vector types Vector double Bool vector types

~ Yes No Yes

For binary operators, each element has the operation applied to it with the same
position element in the second operand. Binary operators also include assignment
operators.

Table 17. Binary operators

Operator Integer vector types Vector double Bool vector types

+ Yes Yes No

− Yes Yes No

* Yes Yes No

/ Yes Yes No

% Yes No No

& Yes No Yes

| Yes No Yes

^ Yes No Yes

<< Yes No Yes

>> Yes No Yes

[] Yes Yes Yes

Note: The [] operator returns the vector element at the position specified. If the
position specified is outside of the valid range, the behavior is undefined.

For relational operators, each element has the operation applied to it with the same
position element in the second operand and the results have the AND operator
applied to them to get a final result of a single value.

Table 18. Relational operators

Operator Integer vector types Vector double Bool vector types

== Yes Yes Yes

!= Yes Yes Yes

< Yes Yes No

> Yes Yes No

<= Yes Yes No

>= Yes Yes No

For the following code:
vector unsigned int a = {1,2,3,4};
vector unsigned int b = {2,4,6,8};
vector unsigned int c = a + b;
int e = b > a;
int f = a[2];
vector unsigned int d = ++a;

c would have the value (3,6,9,12), d would have the value (2,3,4,5), e would
have a non-zero value, and f would have the value 3.
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Related reference:
Vector literals
“Initialization of vectors (IBM extension)” on page 93
“The __align type qualifier (IBM extension)” on page 71
“The aligned variable attribute” on page 101

User-defined types
See the following user-defined types:
v Structures and unions
v Enumerations
v Typedef definitions
Related reference:
“Type attributes (IBM extension)” on page 75

Structures and unions
A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

A union is an object similar to a structure except that all of its members start at the
same location in memory. A union variable can represent the value of only one of
its members at a time.

You can declare a structure or union type separately from the definition of
variables of that type, as described in “Structure and union type definition” and
“Structure and union variable declarations” on page 61; or you can define a
structure or union data type and all variables that have that type in one statement,
as described in “Structure and union type and variable definitions in a single
statement” on page 61.

Structures and unions are subject to alignment considerations. For a complete
discussion of alignment, see "Aligning data" in the XL C Optimization and
Programming Guide.

Structure and union type definition

A structure or union type definition contains the struct or union keyword followed
by an optional identifier (the structure tag) and a brace-enclosed list of members.

Structure or union type definition syntax

►► struct
union

▼{ member_declaration ; }
tag_identifier

; ►◄

The tag_identifier gives a name to the type. If you do not provide a tag name, you
must put all variable definitions that refer to the type within the declaration of the
type, as described in “Structure and union type and variable definitions in a single
statement” on page 61. Similarly, you cannot use a type qualifier with a structure
or union definition; type qualifiers placed in front of the struct or union keyword
can only apply to variables that are declared within the type definition.
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Member declarations

The list of members provides a structure or union data type with a description of
the values that can be stored in the structure or union. The definition of a member
has the form of a standard variable declaration. The names of member variables
must be distinct within a single structure or union, but the same member name
may be used in another structure or union type that is defined within the same
scope, and may even be the same as a variable, function, or type name.

A structure or union member may be of any type except:
v any variably modified type
v void type
v a function
v any incomplete type

Because incomplete types are not allowed as members, a structure or union type
may not contain an instance of itself as a member, but is allowed to contain a
pointer to an instance of itself. As a special case, the last member of a structure
with more than one member may have an incomplete array type, which is called a
flexible array member, as described in Flexible array members.

IBM

As an extension to Standard C for compatibility with GNU C, XL C also allows
zero-extent arrays as members of structures and unions, as described in
Zero-extent array members (IBM extension). IBM

A member that does not represent a bit field can be qualified with either of the
type qualifiers volatile or const. The result is an lvalue.

Structure members are assigned to memory addresses in increasing order, with the
first component starting at the beginning address of the structure name itself. To
allow proper alignment of components, padding bytes may appear between any
consecutive members in the structure layout.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its member having the most stringent requirements). All of a union's
components are effectively overlaid in memory: each member of a union is
allocated storage starting at the beginning of the union, and only one member can
occupy the storage at a time.

Flexible array members

A flexible array member is an unbounded array that occurs within a
structure. It is a C99 feature. Flexible array members can be used to access
a variable-length object. A flexible array member is permitted as the last
member of a structure, provided that the structure has more than one
named member. It is declared with an empty index as follows:

array_identifier [ ];

For example, b is a flexible array member of structure f.
struct f{

int a;
int b[];

};
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Because a flexible array member has an incomplete type, you cannot apply the
sizeof operator to a flexible array. In this example, the statement sizeof(f)
returns the same result as sizeof(f.a), which is the size of an integer. The
statement sizeof(f.b) cannot be used, because b is a flexible array member that
has an incomplete type.

Any structure containing a flexible array member cannot be a member of another
structure or an element of an array, for example:
struct f{

int a;
int b[];

};
struct f fa[10]; // Error.

IBM To be compatible with GNU C, the XL Ccompiler extends Standard C, to
ease the restrictions on flexible array members and allow the following situations:
v Flexible array members can be declared in any part of a structure, not just as the

last member. The type of any member that follows the flexible array member is
not required to be compatible with the type of the flexible array member;
however, a warning message is issued when a flexible array member is followed
by members of an incompatible type. The following example demonstrates this:
struct s {

int a;
int b[];
char c; // The compiler issues a warning message.

} f;

v Structures containing flexible array members can be members of other structures.
v Flexible array members can be statically initialized only if either of the following

two conditions is true:
– The flexible array member is the last member of the structure, for example:

struct f {
int a;
int b[];

} f1 = {1,{1,2,3}}; // Fine.

struct a {
int b;
int c[];
int d[];

} e = { 1,{1,2},3}; // Error, c is not the last member
// of structure a.

– Flexible array members are contained in the outermost structure of nested
structures. Members of inner structures cannot be statically initialized, for
example:
struct b {

int c;
int d[];

};

struct c {
struct b f;
int g[];

} h ={{1,{1,2}},{1,2}}; // Error, member d of structure b is
// in the inner nested structure.

IBM

Zero-extent array members (IBM extension)
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Zero-extent arrays are provided for GNU C compatibility, and can be used
to access a variable-length object.

A zero-extent array is an array with an explicit zero specified as its dimension.
array_identifier [0]

For example, b is a zero-extent array member of structure f.
struct f{

int a;
int b[0];

};

The sizeof operator can be applied to a zero-extent array, and the value returned
is 0. In this example, the statement sizeof(f) returns the same result as
sizeof(f.a), which is the size of an integer. The statement sizeof(f.b) returns 0.

A structure containing a zero-extent array can be an element of an array, for
example:
struct f{

int a;
int b[0];

};
struct f fa[10]; // Fine.

A zero-extent array can only be statically initialized with an empty set {}.
Otherwise, it must be initialized as a dynamically allocated array. For example:
struct f{

int a;
int b[0];

};
struct f f1 = {100, {}}; //Fine.
struct f f2 = {100, {1, 2}}; //Error.

If a zero-extent array is not initialized, no static zero filling occurs, because a
zero-extent array is defined to have no members. The following example
demonstrates this:
#include <stdio.h>

struct s {
int a;
int b[0];

};

struct t1 {
struct s f;
int c[3];

} g1 = {{1},{1,2}};

struct t2 {
struct s f;
int c[3];

} g2 = {{1,{}},{1,2}};

int main() {
printf("%d %d %d %d\n", g1.f.a, g1.f.b[0], g1.f.b[1], g1.f.b[2]);
printf("%d %d %d %d\n", g2.f.a, g2.f.b[0], g2.f.b[1], g2.f.b[2]);
return 0;

}

In this example, the two printf statements produce the same output:
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1 1 2 0

A zero-extent array can be declared in any part of a structure, not just as the last
member. The type of any member following the zero-extent array is not required to
be compatible with the type of the zero-extent array; however, a warning is issued
when a zero-extent array is followed by members of an incompatible type. For
example:
struct s {

int a;
int b[0];
char c; // Issues a warning message

} f;

You can declare a zero extent array only as a member of an aggregate type. For
example:
int func(){

int a[0]; // error
struct S{
int x;
char b[0]; // fine

};
}

Bit field members

C allows integer members to be stored into memory spaces smaller than
the compiler would ordinarily allow. These space-saving structure
members are called bit fields, and their width in bits can be explicitly
declared. Bit fields are used in programs that must force a data structure to
correspond to a fixed hardware representation and are unlikely to be
portable.

Bit field member declaration syntax

►► type_specifier :
declarator

constant_expression ; ►◄

The constant_expression is a constant integer expression that indicates the field
width in bits. A bit field declaration may not use either of the type qualifiers const
or volatile.

In C99, the allowable data types for a bit field include _Bool, int, signed int, and
unsigned int, IBM and can be of other types such as char, short, or long.

IBM .

The maximum bit-field length is 64 bits. To increase portability, do not use bit
fields greater than 32 bits in size.

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:
struct taxonomy {

int kingdom : 12;
int phylum : 6;
int genus : 2;

};

When you assign a value that is out of range to a bit field, the low-order bit
pattern is preserved and the appropriate bits are assigned.
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The following restrictions apply to bit fields. You cannot:
v Define an array of bit fields
v Take the address of a bit field
v Have a pointer to a bit field
v Have a reference to a bit field

Bit fields are bit packed. They can cross word and byte boundaries. No padding is
inserted between two (non-zero length) bit field members. Bit padding can occur
after a bit field member if the next member is a zero length bitfield or a non-bit
field. Non-bit field members are aligned based on their declared type. For example,
the following structure demonstrates the lack of padding between bit field
members, and the insertion of padding after a bit field member that precedes a
non-bit field member.
struct {

int larry : 25; // Bit Field: offset 0 bytes and 0 bits.
int curly : 25; // Bit Field: offset 3 bytes and 1 bit (25 bits).
int moe; // non-Bit Field: offset 8 bytes and 0 bits (64 bits).

} stooges;

There is no padding between larry and curly. The bit offset of curly would be 25
bits. The member moe would be aligned on the next 4 byte boundary, causing 14
bits a padding between curly and moe.

Bit fields with a length of 0 must be unnamed. Unnamed bit fields cannot be
referenced or initialized.

The following example demonstrates padding, and is valid for all implementations.
Suppose that an int occupies 4 bytes. The example declares the identifier kitchen
to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen;

The structure kitchen contains eight members totalling 16 bytes. The following
table describes the storage that each member occupies:

Member name Storage occupied

light 1 bit

toaster 1 bit

(padding — 30 bits) To the next int boundary

count The size of an int (4 bytes)

ac 4 bits

(unnamed field) 4 bits

clock 1 bit

(padding — 23 bits) To the next int boundary (unnamed field)

flag 1 bit
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Member name Storage occupied

(padding — 31 bits) To the next int boundary

Structure and union variable declarations

A structure or union declaration has the same form as a definition except the
declaration does not have a brace-enclosed list of members. You must declare the
structure or union data type before you can define a variable having that type.

Structure or union variable declaration syntax

►► ▼

storage_class_specifier
type_qualifier

struct
union

tag_identifier declarator ; ►◄

The tag_identifier indicates the data type of the structure or union.

You can declare structures or unions having any storage class. The storage class
specifier and any type qualifiers for the variable must appear at the beginning of
the statement. Structures or unions declared with the register storage class
specifier are treated as automatic variables.

The following example defines structure type address:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};

The following examples declare two structure variables of type address:
struct address perm_address;
struct address temp_address;

Structure and union type and variable definitions in a single statement

You can define a structure (or union) type and a structure (or union) variable in
one statement, by putting a declarator and an optional initializer after the variable
definition. The following example defines a union data type (not named) and a
union variable (named length):
union {

float meters;
double centimeters;
long inches;

} length;

Note that because this example does not name the data type, length is the only
variable that can have this data type. Putting an identifier after struct or union
keyword provides a name for the data type and lets you declare additional
variables of this data type later in the program.

Chapter 4. Data objects and declarations 61



To specify a storage class specifier for the variable or variables, you must put the
storage class specifier at the beginning of the statement. For example:
static struct {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} perm_address, temp_address;

In this case, both perm_address and temp_address are assigned static storage.

Type qualifiers can be applied to the variable or variables declared in a type
definition. Both of the following examples are valid:
volatile struct class1 {

char descript[20];
long code;
short complete;

} file1, file2;

struct class1 {
char descript[20];
long code;
short complete;

} volatile file1, file2;

In both cases, the structures file1 and file2 are qualified as volatile.

Access to structure and union members

Once structure or union variables have been declared, members are referenced by
specifying the variable name with the dot operator (.) or a pointer with the arrow
operator (->) and the member name. For example, both of the following:
perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to members of structures and unions, including bit fields, must be
fully qualified. In the previous example, the fourth field cannot be referenced by
prov alone, but only by perm_address.prov.

C11

Anonymous structures

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

An anonymous structure is a structure that does not have a tag or a name and that
is a member of another structure or union. All the members of the anonymous
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structure behave as if they were members of the parent structure. An anonymous
structure must meet the following conditions:
v The structure is nested inside another structure or union.
v The structure has no tag.
v The structure has no name.

For example, the following code fragment demonstrates the conditions that an
anonymous structure must meet.
struct v {

union {
// This is an anonymous structure, because it has no tag, no name,
// and is a member of another structure or union.
struct { int i, j; };

// This is not an anonymous structure, because it has a name.
struct { long k, l; } w;

// This is not an anonymous structure, because
// the structure has a tag "phone".
struct phone {int number, areanumber;};

};

int m;
} v1;

Anonymous unions

An anonymous union is a union that does not have a tag or a name and that is a
member of another union or structure. It cannot be followed by a declarator. An
anonymous union is not a type; it defines an unnamed object.

The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope containing the anonymous union.
Because i and cptr are union members and have the same address, you should
only use one of them at a time. The assignment to the member cptr will change
the value of the member i.
void f() {

union { int i; char* cptr ; };
/* . . . */
i = 5;
cptr = "string_in_union"; // Overrides the value 5.

}

C11

Related reference:
“The aligned type attribute” on page 76
“The packed type attribute” on page 77
“Variable length arrays” on page 88

See Alignment of bit fields in the XL C Optimization and Programming Guide
“The aligned variable attribute” on page 101
“The __align type qualifier (IBM extension)” on page 71
“The packed variable attribute” on page 103
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“Initialization of structures and unions” on page 93
“Compatibility of structures, unions, and enumerations” on page 67
“Dot operator .” on page 121
“Arrow operator ->” on page 121
“Storage class specifiers” on page 42
“Type qualifiers” on page 69
“The static storage class specifier” on page 43

Enumerations
An enumeration is a data type that consists of a set of named values that represent
integral constants, known as enumeration constants. An enumeration is also referred
to as an enumerated type because you must list (enumerate) each of the values in
creating a name for each of them. In addition to providing a way of defining and
grouping sets of integral constants, enumerations are useful for variables that have
a small number of possible values.

You can declare an enumeration type separately from the definition of variables of
that type, as described in “Enumeration type definition” and “Enumeration
variable declarations” on page 66; or you can define an enumeration data type and
all variables that have that type in one statement, as described in “Enumeration
type and variable definitions in a single statement” on page 66.

Enumeration type definition

An enumeration type definition contains the enum keyword followed by an
optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.
A comma separates each enumerator in the enumerator list. C99 allows a trailing
comma between the last enumerator and the closing brace.

Enumeration definition syntax

►► enum
tag_identifier

▼

,

{ enumerator } ; ►◄

The tag_identifier gives a name to the enumeration type. If you do not provide a
tag name, you must put all variable definitions that refer to the enumeration type
within the declaration of the type, as described in “Enumeration type and variable
definitions in a single statement” on page 66. Similarly, you cannot use a type
qualifier with an enumeration definition; type qualifiers placed in front of the enum
keyword can only apply to variables that are declared within the type definition.

Elaborated type specifier

Elaborated type specifier syntax

►► enum tag_identifier x ►◄

The elaborated type specifier refers to a previously declared enumeration. The x is
a variable that has the type tag_identifier.
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The enum keyword can be used to refer to scoped or unscoped enumerations
during variable declaration or definition. For example:
// a scoped enumeration
enum class color { red, white, black, yellow };

// an unscoped enumeration
enum letter {A, B, C, D};

// valid, regular type name usage
color pic1 = color :: white;

// valid, elaborated type usage
enum color pic2 = color :: red;

You cannot use enum class or enum struct in the elaborated type specifier. For
example:
enum class color pic3 = color :: black; // invalid

The elaborated type specifier for an unscoped enumeration is the same as that for
a scoped enumeration. For example:
enum letter let1 = letter :: A; // valid

Enumeration members

The list of enumeration members, or enumerators, provides the data type with a set
of values.

Enumeration member declaration syntax

►► identifier
= enumeration_constant

►◄

In C, an enumeration constant is of type int. If a constant expression is used as an
initializer, the value of the expression cannot exceed the range of int (that is,
INT_MIN to INT_MAX as defined in the header limits.h).

The value of an enumeration constant is determined in the following way:
1. An equal sign (=) and a constant expression after the enumeration constant

gives an explicit value to the enumeration constant. The enumeration constant
represents the value of the constant expression.

2. If no explicit value is assigned to the first enumerator, then it takes the value 0
(zero).

3. Enumeration constants with no explicitly assigned values receive the integer
value that is one greater than the value represented by the previous
enumeration constant.

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
enum grain { oats, wheat, barley, corn, rice };

/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */
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It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.
enum status { run, clear=5, suspend, resume, hold=6 };

/* 0 5 6 7 6 */

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, the second declarations of
average and poor cause compiler errors:
func()

{
enum score { poor, average, good };
enum rating { below, average, above };
int poor;

}

Enumeration variable declarations

You must declare the enumeration data type before you can define a variable
having that type.

Enumeration variable declaration syntax

►► ▼ enum tag_identifier
storage_class_specifier
type_qualifier

declarator ►◄

The tag_identifier indicates the previously-defined data type of the enumeration.

Enumeration type and variable definitions in a single statement

You can define a type and a variable in one statement by using a declarator and an
optional initializer after the variable definition. To specify a storage class specifier
for the variable, you must put the storage class specifier at the beginning of the
declaration. For example:
register enum score { poor=1, average, good } rating = good;

This example is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value good.

Combining a data type definition with the definitions of all variables having that
data type lets you leave the data type unnamed. For example:
enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday } weekday;

defines the variable weekday, which can be assigned any of the specified
enumeration constants. However, you cannot declare any additional enumeration
variables using this set of enumeration constants.
Related reference:
“Arithmetic conversions and promotions” on page 105
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“Integral types” on page 48
“Initialization of enumerations” on page 95
“Compatibility of structures, unions, and enumerations”

Compatibility of structures, unions, and enumerations
Within a single source file, each structure or union definition creates a new type
that is neither the same as nor compatible with any other structure or union type.
However, a type specifier that is a reference to a previously defined structure or
union type is the same type. The tag associates the reference with the definition,
and effectively acts as the type name. To illustrate this, only the types of structures
j and k are compatible in this example:
struct { int a; int b; } h;
struct { int a; int b; } i;
struct S { int a; int b; } j;
struct S k;

Compatible structures may be assigned to each other.

Structures or unions with identical members but different tags are not compatible
and cannot be assigned to each other. Structures and unions with identical
members but using different alignments are not also compatible and cannot be
assigned to each other.

Since the compiler treats enumeration variables and constants as integer types, you
can freely mix the values of different enumerated types, regardless of type
compatibility. Compatibility between an enumerated type and the integer type that
represents it is controlled by compiler options and related pragmas. For a full
discussion of the -qenum compiler option and related pragmas, see -qenum and
#pragma enum in the XL C Compiler Reference.

Compatibility across separate source files

When the definitions for two structures, unions, or enumerations are defined in
separate source files, each file can theoretically contain a different definition for an
object of that type with the same name. The two declarations must be compatible,
or the run time behavior of the program is undefined. Therefore, the compatibility
rules are more restrictive and specific than those for compatibility within the same
source file. For structure, union, and enumeration types defined in separately
compiled files, the composite type is the type in the current source file.

The requirements for compatibility between two structure, union, or enumerated
types declared in separate source files are as follows:
v If one is declared with a tag, the other must also be declared with the same tag.
v If both are completed types, their members must correspond exactly in number,

be declared with compatible types, and have matching names.

For enumerations, corresponding members must also have the same values.

For structures and unions, the following additional requirements must be met for
type compatibility:
v Corresponding members must be declared in the same order (applies to

structures only).
v Corresponding bit fields must have the same widths.
Related reference:
“Arithmetic conversions and promotions” on page 105
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Structure or union type definition
Incomplete types

typedef definitions

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

You can use the typedef declaration to define your own identifiers that can be
used in place of type specifiers such as int, float, and double. A typedef
declaration does not reserve storage. The names you define using typedef are not
new data types, but synonyms for the data types or combinations of data types
they represent.

The name space for a typedef name is the same as other identifiers. When an
object is defined using a typedef identifier, the properties of the defined object are
exactly the same as if the object were defined by explicitly listing the data type
associated with the identifier.

C11

Using typedef redeclaration, you can redefine a name that is a previous typedef
name in the same scope to refer to the same type. For example:
typedef char AChar;
typedef char AChar;

The typedef redeclaration feature can be enabled by any extended language level.

IBM When any extended language level is in effect, typedef redeclaration
supports all types, including a variably modified type. IBM

For more information about variably modified types, see “Variable length arrays”
on page 88.

C11

Examples of typedef definitions

The following statements define LENGTH as a synonym for int and then use this
typedef to declare length, width, and height as integer variables:
typedef int LENGTH;
LENGTH length, width, height;

The preceding declarations are equivalent to the following declaration:
int length, width, height;

Similarly, typedef can be used to define a structure or union. For example:
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typedef struct {
int scruples;
int drams;
int grains;
} WEIGHT;

The structure WEIGHT can then be used in the following declarations:
WEIGHT chicken, cow, horse, whale;

In the following example, the type of yds is "pointer to function with no
parameters, returning int".
typedef int SCROLL(void);
extern SCROLL *yds;

In the following typedef definitions, the token struct is part of the type name: the
type of ex1 is struct a; the type of ex2 is struct b.
typedef struct a { char x; } ex1, *ptr1;
typedef struct b { char x; } ex2, *ptr2;

Type ex1 is compatible with the type struct a and the type of the object pointed
to by ptr1. Type ex1 is not compatible with char, ex2, or struct b.
Related reference:
“Type names” on page 82
“Type specifiers” on page 48
“Structures and unions” on page 55

Compatibility of arithmetic types
Two arithmetic types are compatible only if they are the same type.

The presence of type specifiers in various combinations for arithmetic types may or
may not indicate different types. For example, the type signed int is the same as
int, except when used as the types of bit fields; but char, signed char, and
unsigned char are different types.

The presence of a type qualifier changes the type. That is, const int is not the
same type as int, and therefore the two types are not compatible.

Type qualifiers
A type qualifier is used to refine the declaration of a variable, a function, and
parameters, by specifying whether:
v The value of an object can be changed
v The value of an object must always be read from memory rather than from a

register
v More than one pointer can access a modifiable memory address

XL C recognizes the following type qualifiers:

v IBM __align

v const

v restrict

v volatile
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When the const and volatile keywords are used with pointers, the placement of
the qualifier is critical in determining whether it is the pointer itself that is to be
qualified, or the object to which the pointer points. For a pointer that you want to
qualify as volatile or const, you must put the keyword between the * and the
identifier. For example:

int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier and qualifier
can be in any order, provided that the qualifier does not follow the * operator. For
example, for a pointer to a volatile data object:

volatile int *x; /* x is a pointer to a volatile int */

or
int volatile *x; /* x is a pointer to a volatile int */

For a pointer to a const data object:
const int *y; /* y is a pointer to a const int */

or
int const *y; /* y is a pointer to a const int */

The following examples contrast the semantics of these declarations:

Declaration Description

const int * ptr1; Defines a pointer to a constant integer: the value
pointed to cannot be changed.

int * const ptr2; Defines a constant pointer to an integer: the
integer can be changed, but ptr2 cannot point to
anything else.

const int * const ptr3; Defines a constant pointer to a constant integer:
neither the value pointed to nor the pointer itself
can be changed.

You can put more than one qualifier on a declaration, and the compiler ignores
duplicate type qualifiers. This is a C99 language feature.

A type qualifier cannot apply to user-defined types, but only to objects created
from a user-defined type. Therefore, the following declaration is illegal:

volatile struct omega {
int limit;
char code;

}

However, if a variable or variables are declared within the same definition of the
type, a type qualifier can be applied to the variable or variables by placing it at the
beginning of the statement or before the variable declarator or declarators.
Therefore:
volatile struct omega {

int limit;
char code;
} group;

provides the same storage as:
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struct omega {
int limit;
char code;
} volatile group;

In both examples, the volatile qualifier only applies to the structure variable
group.

When type qualifiers are applied to a structure or union variable, they also apply
to the members of the structure or union.
Related reference:
“Pointers” on page 83

The __align type qualifier (IBM extension)
The __align qualifier is a language extension that allows you to specify an explicit
alignment for an aggregate or a static (or global) variable. The specified byte
boundary affects the alignment of an aggregate as a whole, not that of its
members. The __align qualifier can be applied to an aggregate definition nested
within another aggregate definition, but not to individual elements of an
aggregate. The alignment specification is ignored for parameters and automatic
variables.

A declaration takes one of the following forms:

__align qualifier syntax for simple variables

►► type specifier __align ( int_constant ) declarator ►◄

__align qualifier syntax for structures or unions

►► __align ( int_constant ) struct
union tag_identifier

►

► { member_declaration_list } ; ►◄

where int_constant is a positive integer value indicating the byte-alignment
boundary. Legal values are powers of 2 up to 32768.

The following restrictions and limitations apply:
v The __align qualifier cannot be used where the size of the variable alignment is

smaller than the size of the type alignment.
v Not all alignments may be representable in an object file.
v The __align qualifier cannot be applied to the following:

– Individual elements within an aggregate definition.
– Individual elements of an array.
– Variables of incomplete type.
– Aggregates declared but not defined.
– Other types of declarations or definitions, such as a typedef, a function, or an

enumeration.

Examples using the __align qualifier

Applying __align to static or global variables:
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// varA is aligned on a 1024-byte boundary and padded with 1020 bytes
int __align(1024) varA;

int main()
{...}

// varB is aligned on a 512-byte boundary and padded with 508 bytes
static int __align(512) varB;

// Error
int __align(128) functionB( );

// Error
typedef int __align(128) T;

// Error
__align enum C {a, b, c};

Applying __align to align and pad aggregate tags without affecting aggregate
members:
// Struct structA is aligned on a 1024-byte boundary
// with size including padding of 1024 bytes.
__align(1024) struct structA
{

int i;
int j;

};

// Union unionA is aligned on a 1024-byte boundary
// with size including padding of 1024 bytes.
__align(1024) union unionA
{

int i;
int j;

};

Applying __align to a structure or union, where the size and alignment of the
aggregate using the structure or union is affected:
// sizeof(struct S) == 128
__align(128) struct S {int i;};

// sarray is aligned on 128-byte boundary with sizeof(sarray) == 1280
struct S sarray[10];

// Error: alignment of variable is smaller than alignment of type
struct S __align(64) svar;

// s2 is aligned on 128-byte boundary with sizeof(s2) == 256
struct S2 {struct S s1; int a;} s2;

Applying __align to an array:

In the following example, only arrayA is aligned on a 64-byte boundary, and
elements within that array are aligned according to the alignment of AnyType.
Padding is applied before the beginning of the array and does not affect the size of
the array member itself.
AnyType __align(64) arrayA[10];

Applying __align where the size of the variable alignment differs from the size of
the type alignment:
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__align(64) struct S {int i;};

// Error: alignment of variable is smaller than alignment of type.
struct S __align(32) s1;

// s2 is aligned on 128-byte boundary
struct S __align(128) s2;

// Error
struct S __align(16) s3[10];

// Error
int __align(1) s4;

// Error
__align(1) struct S {int i;};

Related reference:
“The aligned variable attribute” on page 101
“The __alignof__ operator (IBM extension)” on page 126

See Aligning data in the XL C Optimization and Programming Guide

The const type qualifier
The const qualifier explicitly declares a data object as something that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions requiring a modifiable lvalue. For example, a const data object cannot
appear on the left side of an assignment statement.

A const object cannot be used in constant expressions. A global const object
without an explicit storage class is considered extern by default.

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.
Related reference:
“The #define directive” on page 203

The restrict type qualifier
This type qualifier is introduced in the C99 standard.

A pointer is the address of a location in memory. More than one pointer can access
the same chunk of memory and modify it during the course of a program. The
restrict (or __restrict or __restrict__)1 type qualifier can be applied to a
pointer type to form a restrict-qualified pointer. During the execution of the block
that is associated with the declaration of an object that provides a way to designate
a restrict-qualified pointer, the memory addressed via the restrict-qualified pointer
cannot be modified or can be accessed only via this pointer if the pointer does not
point to a const-qualified type. The compiler may choose to optimize code
involving restrict-qualified pointers in a way that might otherwise result in
incorrect behavior. It is the responsibility of the programmer to ensure that
restrict -qualified pointers are used as they were intended to be used. Otherwise,
undefined behavior may result.
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If a particular chunk of memory is not modified, it can be aliased through more
than one restricted pointer. The following example shows restricted pointers as
parameters of foo(), and how an unmodified object can be aliased through two
restricted pointers.
void foo(int n, int * restrict a, int * restrict b, int * restrict c)
{

int i;
for (i = 0; i < n; i++)

a[i] = b[i] + c[i];
}

Assignments between restricted pointers are limited, and no distinction is made
between a function call and an equivalent nested block.
{

int * restrict x;
int * restrict y;
x = y; // undefined
{

int * restrict x1 = x; // okay
int * restrict y1 = y; // okay
x = y1; // undefined

}
}

In nested blocks containing restricted pointers, only assignments of restricted
pointers from outer to inner blocks are allowed. The exception is when the block in
which the restricted pointer is declared finishes execution. At that point in the
program, the value of the restricted pointer can be carried out of the block in
which it was declared.

Notes:

1. The restrict qualifier is represented by the following keywords (all have the
same semantics):
v The restrict keyword is recognized under compilation with xlc or c99 or

with the -qlanglvl=stdc99 or -qlanglvl=extc99 options or -qkeyword=restrict.
The __restrict and __restrict__ keywords are recognized at all language
levels.

2. Using the -qrestrict option is equivalent to adding the restrict keyword to the
pointer parameters within the specified functions.

Related reference:

See -qlanglvl in the XL C Compiler Reference

See -qkeyword in the XL C Compiler Reference

See -qrestrict in the XL C Compiler Reference

The volatile type qualifier
The volatile qualifier maintains consistency of memory access to data objects.
Volatile objects are read from memory each time their value is needed, and written
back to memory each time they are changed. The volatile qualifier declares a data
object that can have its value changed in ways outside the control or detection of
the compiler (such as a variable updated by the system clock or by another
program). This prevents the compiler from optimizing code referring to the object
by storing the object's value in a register and re-reading it from there, rather than
from memory, where it may have changed.
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Accessing any lvalue expression that is volatile-qualified produces a side effect. A
side effect means that the state of the execution environment changes.

References to an object of type "pointer to volatile" may be optimized, but no
optimization can occur to references to the object to which it points. An explicit
cast must be used to assign a value of type "pointer to volatile T" to an object of
type "pointer to T". The following shows valid uses of volatile objects.
volatile int * pvol;
int *ptr;
pvol = ptr; /* Legal */
ptr = (int *)pvol; /* Explicit cast required */

A signal-handling function may store a value in a variable of type sig_atomic_t,
provided that the variable is declared volatile. This is an exception to the rule
that a signal-handling function may not access variables with static storage
duration.

An item can be both const and volatile. In this case the item cannot be
legitimately modified by its own program but can be modified by some
asynchronous process.

Type attributes (IBM extension)
Type attributes are language extensions provided to facilitate compilation of
programs developed with the GNU C compiler compilers. These language features
allow you to use named attributes to specify special properties of data objects. Any
variables that are declared as having that type will have the attribute applied to
them.

A type attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires.
Although there are variations, the syntax of a type attribute is of the general form:

Type attribute syntax

►► type_name __attribute__ ▼

,

(( attribute name ))
__attribute name__

►

►
tag_identifier

{ member_definition_list } ; ►◄

Type attribute syntax — typedef declarations

►► typedef type_declaration type_name ►

► ▼

,

__attribute__ (( attribute name )) ;
__attribute name__

►◄
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You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C compiler issues diagnostics and ignores the attribute
specification. Multiple attribute names can be specified in the same attribute
specification.

The following type attributes are supported:
v “The aligned type attribute”
v “The packed type attribute” on page 77
v “The may_alias type attribute” on page 77
v “The transparent_union type attribute” on page 78
Related reference:
“Variable attributes (IBM extension)” on page 100
“Function attributes (IBM extension)” on page 189

The aligned type attribute
With the aligned type attribute, you can override the default alignment mode to
specify a minimum alignment value, expressed as a number of bytes, for a
structure, union, enumeration, or other user-defined type created in a typedef
declaration. The aligned attribute is typically used to increase the alignment of any
variables declared of the type to which the attribute applies.

aligned type attribute syntax

►► __attribute__ (( aligned ))
__aligned__ ( alignment_factor )

►◄

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. If you omit the alignment factor (and its
enclosing parentheses), the compiler automatically uses 16 bytes. You can specify a
value up to a maximum 268435456 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error message and the compilation fails.

The alignment value that you specify is applied to all instances of the type. Also,
the alignment value applies to the variable as a whole; if the variable is an
aggregate, the alignment value applies to the aggregate as a whole, not to the
individual members of the aggregate.

Example

In all of the following examples, the aligned attribute is applied to the structure
type A. Because a is declared as a variable of type A, it also receives the alignment
specification, as any other instances declared of type A.
struct __attribute__((__aligned__(8))) A {};

struct __attribute__((__aligned__(8))) A {} a;

typedef struct __attribute__((__aligned__(8))) A {} a;

Related reference:
“The __align type qualifier (IBM extension)” on page 71
“The aligned variable attribute” on page 101
“The __alignof__ operator (IBM extension)” on page 126
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See Aligning data in the XL C Optimization and Programming Guide

The may_alias type attribute
You can specify the may_alias type attribute for a type so that lvalues of the type
can alias objects of any type, similar to a char type. Types with the may_alias
attribute are not subject to type-based aliasing rules.

may_alias type attribute syntax

►► __attribute__ (( may_alias ))
__may_alias__

►◄

You can specify the may_alias type attribute in the following ways:
struct __attribute__((__may_alias__)) my_struct {} *ps;
typedef long __attribute__((__may_alias__)) t_long;
typedef struct __attribute__((__may_alias__)) my_struct {} t_my_struct;

Instead of specifying -qalias=noansi, you can alternatively specify the may_alias
type attribute for a type to violate the ANSI aliasing rules when compiling
expressions that contain lvalues of that type. For example:
#define __attribute__(x) /* Invalidates all __attribute__ declarations*/
typedef float __attribute__((__may_alias__)) t_float;

int main (void){
int i = 42;
t_float *pa = (t_float *) &i;
*pa = 0;
if (i == 42)
return 1;

return 0;
}

If you compile this code with the -qalias=ansi option at a high optimization level,
such as -O3, the executable program returns 1. Because the lvalue *pa is of type
float, according to the ANSI aliasing rules, the assignment to lvalue *pa cannot
modify the value of i, which is of type int.

If you remove the #define __attribute__(x) statement and compile the code with
the same options as before, the executable program returns 0. Because the type of
*pa is float __attribute__((__may_alias__)), *pa can alias any other object of
any type, and the assignment to lvalue *pa can modify the value of i to 0.

Compared to the -qalias=noansi compiler option, the may_alias type attribute can
result in less pessimistic aliasing assumptions by the compiler and thus lead to
more optimization opportunities.

This attribute is supported at the extc89, extc99, extended, and extc1x language
levels.
Related reference:
“Type-based aliasing” on page 85

The packed type attribute
The packed type attribute specifies that the minimum alignment should be used for
the members of a structure, union, or enumeration type. For structure or union
types, the alignment is one byte for a member and one bit for a bit field member.
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For enumeration types, the alignment is the smallest size that will accomodate the
range of values in the enumeration. All members of all instances of that type will
use the minimum alignment.

packed type attribute syntax

►► __attribute__ (( packed ))
__packed__

►◄

Unlike the aligned type attribute, the packed type attribute is not allowed in a
typedef declaration.
Related reference:
“The __align type qualifier (IBM extension)” on page 71
“The packed variable attribute” on page 103
“The __alignof__ operator (IBM extension)” on page 126

See Aligning data in the XL C Optimization and Programming Guide

The transparent_union type attribute
The transparent_union attribute applied to a union definition or a union typedef
definition indicates the union can be used as a transparent union. The union must
be a complete union type.

Whenever a transparent union is the type of a function parameter and that
function is called, the transparent union can accept an argument of any type that
matches that of one of its members without an explicit cast. Arguments to this
function parameter are passed to the transparent union, using the calling
convention of the first member of the union type. Because of this, all members of
the union must have the same machine representation. Transparent unions are
useful in library functions that use multiple interfaces to resolve issues of
compatibility.

transparent_union type attribute syntax

►► __attribute__ (( transparent_union ))
__transparent_union__

►◄

When the transparent_union type attribute is applied to the outer union of a
nested union, the size of the inner union (that is, its largest member) is used to
determine if it has the same machine representation as the other members of the
outer union. See the following example:
union u_t{

union u2_t{
char a;
short b;
char c;
char d;

}u;
int a1;

}__attribute__((__transparent_union__));

The attribute is ignored because the first member of union u_t, which is itself a
union, has a machine representation of 2 bytes, whereas the other member of
union u_t is of type int, which has a machine representation of 4 bytes.
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The same rationale applies to members of a union that are structures. When a
member of a union to which type attribute transparent_union has been applied is
a struct, the machine representation of the entire struct is considered, rather than
members.

All members of the union must have the same machine representation as the first
member of the union. This means that all members must be representable by the
same amount of memory as the first member of the union. The machine
representation of the first member represents the maximum memory size for any
remaining union members. For instance, if the first member of a union to which
type attribute transparent_union has been applied is of type int, then all
following members must be representable by at most 4 bytes. Members that are
representable by 1, 2, or 4 bytes are considered valid for this transparent union.

Floating-point types (float, double, float _Complex, or double _Complex) types or
vector types can be members of a transparent union, but they cannot be the first
member. The restriction that all members of the transparent union have the same
machine representation as the first member still applies.
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Chapter 5. Declarators

This section continues the discussion of data declarations and includes information
on type names, pointers, arrays, initializers, and variable attributes.

Overview of declarators
A declarator declares an object, function as part of a declaration.

A declarator has the following form:

Declarator syntax:

▼

direct_declarator

pointer_operator

Direct declarator:

▼

declarator_name
function_declarator
direct_declarator [ ]

constant_expression
( direct_declarator )

pointer_operator

Pointer operator:

*
type_qualifier_seq

Declarator name:

identifier_expression

Notes:

v The type_qualifier_seq represents one or a combination of type qualifiers. For the
details of type qualifiers, see “Type qualifiers” on page 69.

For the details of function declarators, see “Function declarators” on page 187.

The following types are known as derived declarator types, and are therefore
discussed in this section:
v “Pointers” on page 83
v “Arrays” on page 87
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IBM In addition, for compatibility with GNU C, XL C allows you to use
variable attributes to modify the properties of data objects. As they are normally
specified as part of the declarator in a declaration, they are described in “Variable
attributes (IBM extension)” on page 100. IBM

Related reference:
“Initializers” on page 90
“Type qualifiers” on page 69

Examples of declarators
The following table indicates the declarators within the declarations:

Declaration Declarator Description

int owner; owner owner is an integer data object.

int *node; *node node is a pointer to an integer data
object.

int names[126]; names[126] names is an array of 126 integer
elements.

volatile int min; min min is a volatile integer.

int * volatile volume; * volatile volume volume is a volatile pointer to an
integer.

volatile int * next; *next next is a pointer to a volatile
integer.

volatile int *
sequence[5];

*sequence[5] sequence is an array of five pointers
to volatile integer data objects.

extern const volatile int
clock;

clock clock is a constant and volatile
integer with static storage duration
and external linkage.

Related reference:
“Type qualifiers” on page 69
“Array subscripting operator [ ]” on page 140
“Function declarators” on page 187

Type names
A type name, is required in several contexts as something that you must specify
without declaring an object; for example, when writing an explicit cast expression
or when applying the sizeof operator to a type. Syntactically, the name of a data
type is the same as a declaration of a function or object of that type, but without
the identifier.

To read or write a type name correctly, put an "imaginary" identifier within the
syntax, splitting the type name into simpler components. For example, int is a
type specifier, and it always appears to the left of the identifier in a declaration. An
imaginary identifier is unnecessary in this simple case. However, int *[5] (an
array of 5 pointers to int) is also the name of a type. The type specifier int *
always appears to the left of the identifier, and the array subscripting operator
always appears to the right. In this case, an imaginary identifier is helpful in
distinguishing the type specifier.

As a general rule, the identifier in a declaration always appears to the left of the
subscripting and function call operators, and to the right of a type specifier, type
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qualifier, or indirection operator. Only the subscripting, function call, and
indirection operators may appear in a type name declaration. They bind according
to normal operator precedence, which is that the indirection operator is of lower
precedence than either the subscripting or function call operators, which have
equal ranking in the order of precedence. Parentheses may be used to control the
binding of the indirection operator.

It is possible to have a type name within a type name. For example, in a function
type, the parameter type syntax nests within the function type name. The same
rules of thumb still apply, recursively.

The following constructions illustrate applications of the type naming rules.

Table 19. Type names

Syntax Description

int *[5] array of 5 pointers to int

int (*)[5] pointer to an array of 5 integers

int (*)[*] pointer to an variable length array of an
unspecified number of integers

int *() function with no parameter specification
returning a pointer to int

int (*)(void) function with no parameters returning an
int

int (*const [])(unsigned int, ...) array of an unspecified number of constant
pointers to functions returning an int. Each
function takes one parameter of type
unsigned int and an unspecified number of
other parameters.

The compiler turns any function designator into a pointer to the function. This
behavior simplifies the syntax of function calls.
int foo(float); /* foo is a function designator */
int (*p)(float); /* p is a pointer to a function */
p=&foo; /* legal, but redundant */
p=foo; /* legal because the compiler turns foo into a function pointer */

Related reference:
“Operator precedence and associativity” on page 148
“Examples of expressions and precedence” on page 150
“Parenthesized expressions ( )” on page 118

Pointers
A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type; it cannot refer to a bit field or a
reference.

Some common uses for pointers are:
v To access dynamic data structures such as linked lists, trees, and queues.
v To access elements of an array or members of a structure.
v To access an array of characters as a string.
v To pass the address of a variable to a function. By referencing a variable through

its address, a function can change the contents of that variable.
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Note that the placement of the type qualifiers volatile and const affects the
semantics of a pointer declaration. If either of the qualifiers appears before the *,
the declarator describes a pointer to a type-qualified object. If either of the
qualifiers appears between the * and the identifier, the declarator describes a
type-qualifed pointer.

The following table provides examples of pointer declarations.

Table 20. Pointer declarations

Declaration Description

long *pcoat; pcoat is a pointer to an object having type
long

extern short * const pvolt; pvolt is a constant pointer to an object
having type short

extern int volatile *pnut; pnut is a pointer to an int object having the
volatile qualifier

float * volatile psoup; psoup is a volatile pointer to an object
having type float

enum bird *pfowl; pfowl is a pointer to an enumeration object
of type bird

char (*pvish)(void); pvish is a pointer to a function that takes no
parameters and returns a char

Related reference:
“Type qualifiers” on page 69
“Initialization of pointers” on page 96
“Compatibility of pointers” on page 86
“Pointer conversions” on page 112
“Address operator &” on page 125
“Indirection operator *” on page 125
“Pointers to functions” on page 201

Pointer arithmetic
You can perform a limited number of arithmetic operations on pointers. These
operations are:
v Increment and decrement
v Addition and subtraction
v Comparison
v Assignment

The increment (++) operator increases the value of a pointer by the size of the data
object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.

You can add an integer to a pointer but you cannot add a pointer to a pointer.
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If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:
p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer
from the other. This operation yields the number of elements in the array that
separate the two addresses that the pointers refer to.

You can compare two pointers with the following operators: ==, !=, <, >, <=,
and >=.

Pointer comparisons are defined only when the pointers point to elements of the
same array. Pointer comparisons using the == and != operators can be performed
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.

IBM

 
Pointer arithmetic is defined for pointer to vector types. Given:

vector unsigned int *v;

the expression v + 1 represents a pointer to the vector following v. IBM

Related reference:
“Increment operator ++” on page 122
“Arrays” on page 87
“Decrement operator --” on page 123
Chapter 7, “Expressions and operators,” on page 115

Type-based aliasing
The compiler follows the type-based aliasing rule in the C standard when the
-qalias=ansi option is in effect (which it is by default). This rule, also known as the
ANSI aliasing rule, states that a pointer can only be dereferenced to an object of
the same type or a compatible type. 1

The common coding practice of casting a pointer to an incompatible type and then
dereferencing it violates this rule. (Note that char pointers are an exception to this
rule)

The compiler uses the type-based aliasing information to perform optimizations to
the generated code. Contravening the type-based aliasing rule can lead to
unexpected behavior, as demonstrated in the following example:

1. The C Standard states that an object shall have its stored value accessed only by an lvalue that has one of the following types:

v the declared type of the object,

v a qualified version of the declared type of the object,

v a type that is the signed or unsigned type corresponding to the declared type of the object,

v a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the object,

v an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union), or

v a character type
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int *p;
double d = 0.0;

int *faa(double *g); /* cast operator inside the function */

void foo(double f) {
p = faa(&f); /* turning &f into an int ptr */
f += 1.0; /* The optimizer might move the */

/* assignment after the printf statement. */
printf("f=%x\n", *p);

}

int *faa(double *g) { return (int*) g; } /* questionable cast; */
/* the function can be in */
/* another translation unit */

int main() {
foo(d);

}

In the above printf statement, *p cannot be dereferenced to a double under the
ANSI aliasing rule. The compiler determines that the result of f += 1.0 does not
affect the value of *p. Thus, the optimizer might move the assignment after the
printf statement. If you compile the above example with optimization enabled, the
printf statement might output 0 (zero).
Related reference:
“The may_alias type attribute” on page 77

Compatibility of pointers
Two pointer types with the same type qualifiers are compatible if they point to
objects of compatible types. The composite type for two compatible pointer types
is the similarly qualified pointer to the composite type.

The following example shows compatible declarations for the assignment
operation:

float subtotal;
float * sub_ptr;
/* ... */
sub_ptr = &subtotal;
printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;
/* ... */
minor = &league; /* error */

Null pointers
A null pointer has a reserved value that is called a null pointer constant for
indicating that the pointer does not point to any valid object or function. You can
use null pointers in the following cases:
v Initialize pointers.
v Represent conditions such as the end of a list of unknown length.
v Indicate errors in returning a pointer from a function.

A null pointer constant is an integer constant expression that evaluates to zero. For
example, a null pointer constant can be 0, 0L, or such an expression that can be
cast to type (void *)0.
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You can specify any of the following values for a null pointer constant:
v 0
v NULL

Note: NULL is a macro. It must be defined before use.

Null pointer constants

0 You can use an integer constant expression with the value 0 or an
expression that is cast to(void *)0 as a null pointer constant.

NULL The macro NULL and value 0 are equivalent as null pointer constants, but
NULL is cleaner because it represents the purpose of using the constant for
a pointer.

Arrays
An array is a collection of objects of the same data type, allocated contiguously in
memory. Individual objects in an array, called elements, are accessed by their
position in the array. The subscripting operator ([]) provides the mechanics for
creating an index to array elements. This form of access is called indexing or
subscripting. An array facilitates the coding of repetitive tasks by allowing the
statements executed on each element to be put into a loop that iterates through
each element in the array.

The C language provides limited built-in support for an array type: reading and
writing individual elements. Assignment of one array to another, the comparison
of two arrays for equality, returning self-knowledge of size are not supported.

The type of an array is derived from the type of its elements, in what is called
array type derivation. If array objects are of incomplete type, the array type is also
considered incomplete. Array elements may not be of type void or of function
type. However, arrays of pointers to functions are allowed.

The array declarator contains an identifier followed by an optional subscript
declarator. An identifier preceded by an asterisk (*) is an array of pointers.

Array subscript declarator syntax

►► ▼ [ constant_expression ] ►◄

The constant_expression is a constant integer expression, indicating the size of the
array, which must be positive.

If the declaration appears in block or function scope, a nonconstant expression can
be specified for the array subscript declarator, and the array is considered a
variable-length array, as described in “Variable length arrays” on page 88.

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression.

The following example defines a one-dimensional array that contains four elements
having type char:
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char
list[4];

The first subscript of each dimension is 0. The array list contains the elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:
int
roster[3][2];

Multidimensional arrays are stored in row-major order. When elements are referred
to in order of increasing storage location, the last subscript varies the fastest. For
example, the elements of array roster are stored in the order:
roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

In storage, the elements of roster would be stored as:

roster[0][0]

roster[1][0]

roster[0][1]

You can leave the first (and only the first) set of subscript brackets empty in:
v Array definitions that contain initializations
v extern declarations
v Parameter declarations

In array definitions that leave the first set of subscript brackets empty, the
initializer determines the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, the initializer is compared to the
subscript declarator to determine the number of elements in the first dimension.
Related reference:
“Array subscripting operator [ ]” on page 140
“Initialization of arrays” on page 96

Variable length arrays
A variable length array, which is a C99 feature, is an array of automatic storage
duration whose length is determined at run time.
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Variable length array declarator syntax

►► array_identifier [ expression ]
*

type-qualifiers

►◄

If the size of the array is indicated by * instead of an expression, the variable
length array is considered to be of unspecified size. Such arrays are considered
complete types, but can only be used in declarations of function prototype scope.

A variable length array and a pointer to a variable length array are considered
variably modified types. Declarations of variably modified types must be at either
block scope or function prototype scope. Array objects declared with the extern
storage class specifier cannot be of variable length array type. Array objects
declared with the static storage class specifier can be a pointer to a variable
length array, but not an actual variable length array. A variable length array cannot
be initialized.

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.

A variable length array can be used in a typedef statement. The typedef name will
have only block scope. The length of the array is fixed when the typedef name is
defined, not each time it is used.

A function parameter can be a variable length array. The necessary size expressions
must be provided in the function definition. The compiler evaluates the size
expression of a variably modified parameter on entry to the function. For a
function declared with a variable length array as a parameter, as in the following,
void f(int x, int a[][x]);

the size of the variable length array argument must match that of the function
definition.
Related reference:
Flexible array members

Compatibility of arrays
Two compatible array types must have compatible element types. In addition, if
each array has a size specifier that is an integer constant expression, both size
specifiers must have the same constant value. For example, the types of the
following two arrays are not compatible:

char ex1[25];
const char ex2[25];

The composite type of two compatible array types is an array with the composite
element type. The composite type of two compatible arrays is determined by the
following rules:
1. If one of the original types is an array of known constant size, the composite

type is an array of that size. For example:
/* The composite type is char [42].*/
char ex3[];
char ex4[42];
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2. Otherwise, if one of the original types is a variable length array, the composite
type is that type.

Related reference:
“External linkage” on page 7

Initializers
An initializer specifies an initial value to a data object and is optional in a data
declaration. Whether an initializer is valid for a particular declaration depends on
the type and storage class of the object to be initialized.

The initializer consists of the = symbol followed by an initial expression or a
brace-enclosed list of initial expressions separated by commas. Individual
expressions must be separated by commas, and groups of expressions can be
enclosed in braces and separated by commas. Braces ({ }) are optional if the
initializer for a character string is a string literal. The number of initializers must
not be greater than the number of elements to be initialized. The initial expression
evaluates to the first value of the data object.

To assign a value to an arithmetic or pointer type, use the simple initializer:
= expression. For example, the following data definition uses the initializer = 3 to
set the initial value of group to 3:

int group = 3;

You initialize a variable of character type with a character literal (consisting of one
character) or with an expression that evaluates to an integer.

Initialization and storage classes
This topic includes descriptions of the following:
v Initialization of automatic variables
v Initialization of static variables
v Initialization of external variables
v Initialization of register variables

Initialization of automatic variables

You can initialize any auto variable except function parameters. If you do not
explicitly initialize an automatic object, its value is indeterminate. If you provide
an initial value, the expression representing the initial value can be any valid C
expression. The object is then set to that initial value each time the program block
that contains the object's definition is entered.

Note that if you use the goto statement to jump into the middle of a block,
automatic variables within that block are not initialized.

Initialization of static variables

You can initialize a static object with a constant expression, or an expression that
reduces to the address of a previously declared extern or static object, possibly
modified by a constant expression. If you do not explicitly initialize a static (or
external) variable, it will have a value of zero of the appropriate type, unless it is a
pointer, in which case it will be initialized to NULL.
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A static variable in a block is initialized only one time, prior to program
execution, whereas an auto variable that has an initializer is initialized every time
it comes into existence.

Initialization of external variables

You can initialize any object with the extern storage class specifier at global scope.
The initializer for an extern object must either:
v Appear as part of the definition, and the initial value must be described by a

constant expression;
v Reduce to the address of a previously declared object with static storage

duration. You may modify this object with pointer arithmetic. (In other words,
you may modify the object by adding or subtracting an integral constant
expression.)

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Initialization of register variables

You can initialize any register object except function parameters. If you do not
initialize an automatic object, its value is indeterminate. If you provide an initial
value, the expression representing the initial value can be any valid C expression.
The object is then set to that initial value each time the program block that
contains the object's definition is entered.
Related reference:
“The auto storage class specifier” on page 42
“The static storage class specifier” on page 43
“The extern storage class specifier” on page 44
“The register storage class specifier” on page 44

Designated initializers for aggregate types
Designated initializers, a C99 feature, are supported for aggregate types, including
arrays, structures, and unions. A designated initializer, or designator, points out a
particular element to be initialized. A designator list is a comma-separated list of
one or more designators. A designator list followed by an equal sign constitutes a
designation.

Designated initializers allow for the following flexibility:
v Elements within an aggregate can be initialized in any order.
v The initializer list can omit elements that are declared anywhere in the

aggregate, rather than only at the end. Elements that are omitted are initialized
as if they are static objects: arithmetic types are initialized to 0; pointers are
initialized to NULL.

v Where inconsistent or incomplete bracketing of initializers for multi-dimensional
arrays or nested aggregates may be difficult to understand, designators can more
clearly identify the element or member to be initialized.
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Designator list syntax for structures and unions

►► { ▼

,

. member = expression } ►◄

Designator list syntax for arrays

►► ▼ ▼

,

{ [ array subscript ] = expression } ►◄

In the following example, the designator is .any_member and the designated
initializer is .any_member = 13:
union { /* ... */ } caw = { .any_member = 13 };

The following example shows how the second and third members b and c of
structure variable klm are initialized with designated initializers:
struct xyz {

int a;
int b;
int c;
} klm = { .a = 99, .c = 100 };

In the following example, the third and second elements of the one-dimensional
array aa are initialized to 3 and 6, respectively:
int aa[4] = { [2] = 3, [1] = 6 };

The following example initializes the first four and last four elements, while
omitting the middle four:

static short grid[3] [4] = { [0][0]=8, [0][1]=6,
[0][2]=4, [0][3]=1,
[2][0]=9, [2][1]=3,
[2][2]=1, [2][3]=1 };

The omitted four elements of grid are initialized to zero:

Element Value Element Value

grid[0] [0] 8 grid[1] [2] 0

grid[0] [1] 6 grid[1] [3] 0

grid[0] [2] 4 grid[2] [0] 9

grid[0] [3] 1 grid[2] [1] 3

grid[1] [0] 0 grid[2] [2] 1

grid[1] [1] 0 grid[2] [3] 1

Designated initializers can be combined with regular initializers, as in the
following example:
int a[10] = {2, 4, [8]=9, 10}

In this example, a[0] is initialized to 2, a[1] is initialized to 4, a[2] to a[7] are
initialized to 0, and a[9] is initialized to 10.
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In the following example, a single designator is used to "allocate" space from both
ends of an array:
int a[MAX] = {

1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0
};

The designated initializer, [MAX-5] = 8, means that the array element at subscript
MAX-5 should be initialized to the value 8. If MAX is 15, a[5] through a[9] will be
initialized to zero. If MAX is 7, a[2] through a[4] will first have the values 5, 7, and
9, respectively, which are overridden by the values 8, 6, and 4. In other words, if
MAX is 7, the initialization would be the same as if the declaration had been written:
int a[MAX] = {

1, 3, 8, 6, 4, 2, 0
};

You can also use designators to represent members of nested structures. For
example:
struct a {

struct b {
int c;
int d;

} e;
float f;

} g = {.e.c = 3 };

initializes member c of structure variable e, which is a member of structure
variable g, to the value of 3.
Related reference:
“Initialization of structures and unions”
“Initialization of arrays” on page 96

Initialization of vectors (IBM extension)
A vector type is initialized by a vector literal or any expression having the same
vector type. For example:
vector unsigned int v = (vector unsigned int)(10);

The AltiVec specification allows a vector type to be initialized by an initializer list.
This feature is an extension for compatibility with GNU C.

Unlike vector literals, the values in the initializer list do not have to be constant
expressions except in contexts where a constant value is required; the initialization
of a global vector variable is one such context. Thus, the following code is legal:
int i=1;
int function() { return 2; }
int main()
{

vector unsigned int v1 = {i, function()};
return 0;

}

Initialization of structures and unions
An initializer for a structure is a brace-enclosed comma-separated list of values,
and for a union, a brace-enclosed single value. The initializer is preceded by an
equal sign (=).
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C99 allows the initializer for an automatic member variable of a union or structure
type to be a constant or non-constant expression.

There are two ways to specify initializers for structures and unions:
v With C89-style initializers, structure members must be initialized in the order

declared, and only the first member of a union can be initialized.
v Using designated initializers, a C99 feature which allows you to name members

to be initialized, structure members can be initialized in any order, and any
(single) member of a union can be initialized. Designated initializers are
described in detail in “Designated initializers for aggregate types” on page 91.

Using C89-style initialization, the following example shows how you would
initialize the first union member birthday of the union variable people:
union {

char birthday[9];
int age;
float weight;
} people = {"23/07/57"};

Using a designated initializer in the same example, the following initializes the
second union member age :
union {

char birthday[9];
int age;
float weight;
} people = { .age = 14 };

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2A1"};

The values of perm_address are:

Member Value

perm_address.street_no 3

perm_address.street_name address of string "Savona Dr."

perm_address.city address of string "Dundas"

perm_address.prov address of string "Ontario"

perm_address.postal_code address of string "L4B 2A1"

Unnamed structure or union members do not participate in initialization and have
indeterminate value after initialization. Therefore, in the following example, the bit
field is not initialized, and the initializer 3 is applied to member b:
struct {

int a;
int :10;
int b;
} w = { 2, 3 };
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You do not have to initialize all members of structure variables. If a structure
variable does not have an initializer, the initial values of the structure members
depend on the storage class associated with the structure variable:
v If a structure variable has static storage, its members are implicitly initialized to

zero of the appropriate type.
v If a structure variable has automatic storage, its members have no default

initialization.

If a structure variable is partially initialized, all the uninitialized structure members
are implicitly initialized to zero no matter what the storage class of the structure
variable is. See the following example:
struct one {

int a;
int b;
int c;

};
void main(){

struct one z1; // Members in z1 do not have default initial values.
static struct one z2; // z2.a=0, z2.b=0, and z2.c=0.
struct one z3 = {1}; // z3.a=1, z3.b=0, and z3.c=0.

}

In this example, structure variable z1 has automatic storage, and it does not have
an initializer, so none of the members in z1 have default initial values. Structure
variable z2 has static storage, and all its members are implicitly initialized to zero.
Structure variable z3 is partially initialized, so all its uninitialized members are
implicitly initialized to zero.

You do not have to initialize all members of a union. The default initializer for a
union with static storage is the default for the first component. A union with
automatic storage has no default initialization.

To initialize only the third and fourth members of the temp_address variable, you
could use a designated initializer list, as follows:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ .city = "Hamilton", .prov = "Ontario" };

Related reference:
Structure and union variable declarations
“Assignment operators” on page 131

Initialization of enumerations
The initializer for an enumeration variable contains the = symbol followed by an
expression enumeration_constant.

The following statement declares an enumeration grain.
enum grain { oats, wheat, barley, corn, rice };

The following statement defines a variable g_food and initializes g_food to the
value of barley. The integer value associated with barley is 2.
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enum grain g_food = barley;

Related reference:
Enumeration variable declarations

Initialization of pointers
The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:
double time, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first
element in the array. You can assign the address of the first element of an array to
a pointer by specifying the name of the array. The following two sets of definitions
are equivalent. Both define the pointer student and initialize student to the
address of the first element in section:
int section[80];
int *student = section;

is equivalent to:
int section[80];
int *student = &section[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer. The following example defines the
pointer variable string and the string constant "abcd". The pointer string is
initialized to point to the character a in the string "abcd".
char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".
static char *weekdays[ ] ={

Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

A pointer can also be initialized to null with any integer constant expression that
evaluates to 0. Such a pointer is a null pointer and it does not point to any object.
For more information about the null pointer, see “Null pointers” on page 86.

The following examples define pointers with null pointer values:
char *a = 0;
char *b = NULL;

Related reference:
“Pointers” on page 83

Initialization of arrays
The initializer for an array is a comma-separated list of constant expressions
enclosed in braces ({ }). The initializer is preceded by an equal sign (=). You do
not need to initialize all elements in an array. If an array is partially initialized,
elements that are not initialized receive the value 0 of the appropriate type. The
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same applies to elements of arrays with static storage duration. (All file-scope
variables and function-scope variables declared with the static keyword have
static storage duration.)

There are two ways to specify initializers for arrays:
v With C89-style initializers, array elements must be initialized in subscript order.
v Using designated initializers, which allow you to specify the values of the

subscript elements to be initialized, array elements can be initialized in any
order. Designated initializers are described in detail in “Designated initializers
for aggregate types” on page 91.

Using C89-style initializers, the following definition shows a completely initialized
one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values: number[0] is 5, number[1] is 7;
number[2] is 2. When you have an expression in the subscript declarator defining
the number of elements (in this case 3), you cannot have more initializers than the
number of elements in the array.

The following definition shows a partially initialized one-dimensional array:
static int number1[3] = { 5, 7 };

The values of number1[0] and number1[1] are the same as in the previous
definition, but number1[2] is 0.

The following definition shows how you can use designated initializers to skip
over elements of the array that you don't want to initialize explicitly:
static int number[3] = { [0] = 5, [2] = 7 };

The array number contains the following values: number[0] is 5; number[1] is
implicitly initialized to 0; number[2] is 7.

Instead of an expression in the subscript declarator defining the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:
static int item[ ] = { 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements, because no size was specified
and there are five initializers.

Initialization of character arrays

You can initialize a one-dimensional character array by specifying:
v A brace-enclosed comma-separated list of constants, each of which can be

contained in a character
v A string constant (braces surrounding the constant are optional)

Initializing a string constant places the null character (\0) at the end of the string if
there is room or if the array dimensions are not specified.

The following definitions show character array initializations:
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static char name1[ ] = { ’J’, ’a’, ’n’ };
static char name2[ ] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J

name1[1] a name2[1] a name3[1] a

name1[2] n name2[2] n name3[2] n

name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name3[3]="Jan";

Initialization of multidimensional arrays

You can initialize a multidimensional array using any of the following techniques:
v Listing the values of all elements you want to initialize, in the order that the

compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

v Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The
following definition contains two elements in the first dimension (you can
consider these elements as rows). The initialization contains braces around each
of these two elements:

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};

v Using nested braces to initialize dimensions and elements in a dimension
selectively. In the following example, only the first eight elements of the array
grid are explicitly initialized. The remaining four elements that are not explicitly
initialized are automatically initialized to zero.

static short grid[3] [4] = {8, 6, 4, 1, 9, 3, 1, 1};

The initial values of grid are:

Element Value Element Value

grid[0] [0] 8 grid[1] [2] 1

grid[0] [1] 6 grid[1] [3] 1

grid[0] [2] 4 grid[2] [0] 0

grid[0] [3] 1 grid[2] [1] 0

grid[1] [0] 9 grid[2] [2] 0
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Element Value Element Value

grid[1] [1] 3 grid[2] [3] 0

v Using designated initializers. The following example uses designated initializers
to explicitly initialize only the last four elements of the array. The first eight
elements that are not explicitly initialized are automatically initialized to zero.
static short grid[3] [4] = { [2][0] = 8, [2][1] = 6,

[2][2] = 4, [2][3] = 1 };

The initial values of grid are:

Element Value Element Value

grid[0] [0] 0 grid[1] [2] 0

grid[0] [1] 0 grid[1] [3] 0

grid[0] [2] 0 grid[2] [0] 8

grid[0] [3] 0 grid[2] [1] 6

grid[1] [0] 0 grid[2] [2] 4

grid[1] [1] 0 grid[2] [3] 1

Related reference:
“Arrays” on page 87
“Designated initializers for aggregate types” on page 91

Initialization of complex types (C11)
When the C11 complex initialization feature is enabled, you can initialize C99
complex types with a value of the form x + yi, where x and y can be any floating
point value, including Inf or NaN.

The C11 complex initialization feature can be enabled by the -qlanglvl=extc1x
group option.

To enable the initialization of these complex types, macros CMPLX, CMPLXF, and
CMPLXL are defined inside the standard header file complex.h for C11
compilation, which act as if the following functions are used.

float complex CMPLXF( float x, float y );
double complex CMPLX( double x, double y );
long double complex CMPLXL( long double x, long double y );

Note: These macros might infringe upon user namespaces. You must avoid using
the macro names for other purposes.

These macros are available only if the C language header file complex.h is
included, and they result in values that are suitable for static initialization if
arguments are suitable for static initialization.

The following example shows how to initialize a complex type with a value of the
form x + yi.
// a.c
#include <stdio.h>
#include <complex.h>

double _Complex a = CMPLX(5.0, 1.0/0);
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int main(void) {
double _Complex c = CMPLX(5.0, 1.0/0);
printf("Value: %e + %e * I\n", __real__(a), __imag__(a));
printf("Value: %e + %e * I\n", __real__(c), __imag__(c));

}

You can specify the following command to compile this program:
xlc -qlanglvl=extc1x a.c

The result of running the program is:
Value: 5 + Inf * I
Value: 5 + Inf * I

Related reference:
“C11 compatibility” on page 226
“Floating-point literals” on page 17
“Floating-point types” on page 49

See -qlanglvl in the XL C Compiler Reference

Variable attributes (IBM extension)
Variable attributes are language extensions provided to facilitate the compilation of
programs developed with the GNU C compiler compilers. These language features
allow you to use named attributes to specify special properties of data objects.
Variable attributes apply to the declarations of simple variables, aggregates, and
member variables of aggregates.

A variable attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
variable __attribute__ specification is included in the declaration of a variable,
and can be placed before or after the declarator. Although there are variations, the
syntax generally takes either of the following forms:

Variable attribute syntax: post-declarator

►► declarator __attribute__ ▼

,

(( attribute name ))
__attribute name__

►◄

Variable attribute syntax: pre-declarator

►► type specifier __attribute__ ▼

,

(( attribute name ))
__attribute name__

►

► declarator
initializer

►◄

You can specify attribute name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
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the likelihood of name conflicts with macros of the same name. For unsupported
attribute names, the XL C compiler issues diagnostics and ignores the attribute
specification. Multiple attribute names can be specified in the same attribute
specification.

In a comma-separated list of declarators on a single declaration line, if a variable
attribute appears before all the declarators, it applies to all declarators in the
declaration. If the attribute appears after a declarator, it only applies to the
immediately preceding declarator. For example:
struct A {

int b __attribute__((aligned)); /* typical placement of variable */
/* attribute */

int __attribute__((aligned)) c; /* variable attribute can also be */
/* placed here */

int d, e, f __attribute__((aligned)); /* attribute applies to f only */

int g __attribute__((aligned)), h, i; /* attribute applies to g only */

int __attribute__((aligned)) j, k, l; /* attribute applies to j, k, and l */

};

The following variable attributes are supported:
v “The aligned variable attribute”
v “The mode variable attribute” on page 102
v “The packed variable attribute” on page 103
v “The tls_model attribute” on page 103
v “The weak variable attribute” on page 103
v “The visibility variable attribute” on page 104

The aligned variable attribute
With the aligned variable attribute, you can override the default memory
alignment mode to specify a minimum memory alignment value, expressed as a
number of bytes, for any of the following types of variables:
v Non-aggregate variables
v Aggregate variables (such as a structures or unions)
v Selected member variables

The attribute is typically used to increase the alignment of the given variable.

aligned variable attribute syntax

►► __attribute__ (( aligned ))
__aligned__ ( alignment_factor )

►◄

The alignment_factor is the number of bytes, specified as a constant expression that
evaluates to a positive power of 2. You can specify a value up to a maximum of
268435456. If you omit the alignment factor, and its enclosing parentheses, the
compiler automatically uses 16 bytes. If you specify an alignment factor greater
than the maximum, the compiler issues an error message and the compilation fails.
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When you apply the aligned attribute to a member variable in a bit field structure,
the attribute specification is applied to the bit field container. If the default
alignment of the container is greater than the alignment factor, the default
alignment is used.

Example

In the following example, the structures first_address and second_address are set
to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} first_address __attribute__((__aligned__(16))) ;

struct address second_address __attribute__((__aligned__(16))) ;

In the following example, only the members first_address.prov and
first_address.postal_code are set to an alignment of 16 bytes:
struct address {

int street_no;
char *street_name;
char *city;
char *prov __attribute__((__aligned__(16))) ;
char *postal_code __attribute__((__aligned__(16))) ;

} first_address ;

Related reference:
“The __align type qualifier (IBM extension)” on page 71

See Aligning data in the XL C Optimization and Programming Guide
“The __alignof__ operator (IBM extension)” on page 126
“The aligned type attribute” on page 76

The mode variable attribute
The variable attribute mode allows you to override the type specifier in a variable
declaration, to specify the size of a particular integral type.

mode variable attribute syntax

►► __attribute__ (( mode ( byte ) ))
__mode__ word

pointer
__byte__
__word__
__pointer__

►◄

The valid argument for the mode is any of the of the following type specifiers that
indicates a specific width:
v byte means a 1-byte integer type
v word means a 4-byte integer type
v pointer means a 4-byte integer type in 32-bit mode and an 8-byte integer type in

64-bit mode
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The packed variable attribute
The variable attribute packed allows you to override the default alignment mode,
to reduce the alignment for all members of an aggregate, or selected members of
an aggregate to the smallest possible alignment: one byte for a member and one bit
for a bit field member.

packed variable attribute syntax

►► __attribute__ (( packed ))
__packed__

►◄

Related reference:
“The __align type qualifier (IBM extension)” on page 71

See Aligning data in the XL C Optimization and Programming Guide
“The __alignof__ operator (IBM extension)” on page 126

The tls_model attribute
The tls_model attribute allows source-level control for the thread-local storage
model used for a given variable. The tls_model attribute must specify one of
local-exec, initial-exec, local-dynamic, or global-dynamic access method, which
overrides the -qtls option for that variable. For example:
__thread int i __attribute__((tls_model("local-exec")));

The tls_model attribute allows the linker to check that the correct thread model
has been used to build the application or shared library. The linker/loader
behavior is as follows:

Table 21. Link time/runtime behavior for thread access models

Access method Link-time diagnostic Runtime diagnostic

local-exec Fails if referenced symbol is
imported.

Fails if module is not the
main program. Fails if
referenced symbol is
imported (but the linker
should have detected the
error already).

initial-exec None. dlopen()/load() fails if
referenced symbol is not in
the module loaded at
execution time.

local-dynamic Fails if referenced symbol is
imported.

Fails if referenced symbol is
imported (but the linker
should have detected the
error already).

global-dynamic None. None.

The weak variable attribute
The weak variable attribute causes the symbol resulting from the variable
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a
way to allow variable definitions in user code to override the library declaration
without causing duplicate name errors.
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weak variable attribute syntax

►► __attribute__ (( weak ))
__weak__

►◄

Related reference:

See #pragma weak in the XL C Compiler Reference
“weak” on page 196

The visibility variable attribute
The visibility variable attribute describes whether and how a variable defined in
one module can be referenced or used in other modules. The visibility attribute
affects only variables with external linkage. By using this feature, you can make a
shared library smaller and decrease the possibility of symbol collision. For details,
see Using visibility attributes in the XL C Optimization and Programming Guide.

visibility variable attribute syntax

►► __attribute__ (( visibility ( "default" ) ))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of variable a is protected, and that
of variable b is hidden:
struct str{

int var;
};
int a __attribute__((visibility("protected")));
struct str __attribute__((visibility("hidden"))) b;

Related reference:
“External linkage” on page 7
“visibility” on page 198

See Using visibility attributes in the XL C Optimization and Programming
Guide

See -qvisibility in the XL C Compiler Reference

See -qmkshrobj in the XL C Compiler Reference

See -G in the XL C Compiler Reference

See #pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)
in the XL C Compiler Reference
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Chapter 6. Type conversions

An expression of a given type is implicitly converted when it is used in the
following situations:
v As an operand of an arithmetic or logical operation.
v As a condition in an if statement or an iteration statement (such as a for loop).

The expression will be converted to a Boolean (or an integer in C89).
v In a switch statement. The expression is converted to an integral type.
v As the right operand of an assignment or as an initializer.
v As an initialization. This includes the following types:

– A function is provided an argument value that has a different type than the
parameter.

– The value specified in the return statement of a function has a different type
from the defined return type for the function.

The implicit conversion result is an rvalue.

You can perform explicit type conversions using a cast expression, as described in
“Cast expressions” on page 145.

Vector type casts (IBM extension)

Vector types can be cast to other vector types. The cast does not perform a
conversion: it preserves the 128-bit pattern, but not necessarily the value. A cast
between a vector type and a scalar type is not allowed.

Vector pointers and pointers to non-vector types can be cast back and forth to each
other. When a pointer to a non-vector type is cast to a vector pointer, the address
should be 16-byte aligned. The referenced object of the pointer to a non-vector type
can be aligned on a 16-byte boundary by using either the __align type qualifier or
__attribute__((aligned(16))).
Related reference:
“The switch statement” on page 158
“The if statement” on page 156
“The return statement” on page 167
“Lvalues and rvalues” on page 115

Arithmetic conversions and promotions
The following sections discuss the rules for the standard conversions for arithmetic
types:
v “Integral conversions” on page 106
v “Floating-point conversions” on page 106
v “Boolean conversions” on page 106

If two operands in an expression have different types, they are subject to the rules
of the usual arithmetic conversions, as described in “Usual arithmetic conversions”
on page 108.
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Integral conversions
Unsigned integer to unsigned integer or signed integer to signed integer

If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed integer to unsigned integer
The resulting value is the smallest unsigned integer type congruent to the
source integer. If the value cannot be represented by the new type,
truncation or sign shifting will occur.

Unsigned integer to signed integer
If the signed type is large enough to hold the original value, there is no
change. If the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, truncation or
sign shifting will occur.

Signed and unsigned character types to integer
The character types are promoted to type int.

Wide character type wchar_t to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, long, or unsigned long.

Signed and unsigned integer bit field to integer
If the original value can be represented by int, it is represented as int. If
The value cannot be represented by int, it is promoted to unsigned int.

Enumeration type to integer
If the original value can be represented by int, it is represented as int. If
the value cannot be represented by int, it is promoted to the smallest type
that can hold it: unsigned int, long, or unsigned long. Note that an
enumerated type can be converted to an integral type, but an integral type
cannot be converted to an enumeration.

Boolean conversions
An unscoped enumeration, pointer, or pointer to member type can be converted to
a Boolean type.

If the scalar value is equal to 0, the Boolean value is 0; otherwise, the Boolean
value is 1.

Floating-point conversions
The standard rule for converting between real floating-point types (binary to
binary, decimal to decimal and decimal to binary) is as follows:

If the value being converted can be represented exactly in the new type, it is
unchanged. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is rounded, according to
the current compile-time or runtime rounding mode in effect. If the value being
converted is outside the range of values that can be represented, the result is
dependent on the rounding mode.

Integer to floating point (binary or decimal)
If the value being converted can be represented exactly in the new type, it
is unchanged. If the value being converted is in the range of values that
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can be represented but cannot be represented exactly, the result is correctly
rounded. If the value being converted is outside the range of values that
can be represented, the result is quiet NaN.

Floating point (binary or decimal) to integer
The fractional part is discarded (i.e., the value is truncated toward zero). If
the value of the integral part cannot be represented by the integer type, the
result is one of the following:
v If the integer type is unsigned, the result is the largest representable

number if the floating-point number is positive, or 0 otherwise.
v If the integer type is signed, the result is the most negative or positive

representable number according to the sign of the floating-point number.

Implicit conversions of decimal floating-point types (IBM
extension)

The compiler has the following decimal floating-point types:
v _Decimal32

v _Decimal64

v _Decimal128

The following implicit conversions are always supported:
v Implicit conversions between decimal floating-point types:

– _Decimal32 to _Decimal64
– _Decimal32 to _Decimal128
– _Decimal64 to _Decimal32
– _Decimal64 to _Decimal128
– _Decimal128 to _Decimal32
– _Decimal128 to _Decimal64

v Implicit conversions between decimal floating-point types and the following
integer types:
– signed char, unsigned char
– signed short int, unsigned short int
– signed int, unsigned int
– signed long int, unsigned long int
– signed long long int, unsigned long long int

v Implicit conversions between decimal floating-point types and Boolean types
bool or _Bool.

Implicit conversions between decimal floating-point types and the following
generic floating-point types are supported conditionally. It is supported through
assignment operation using the simple assignment operator =, initialization,
function argument passing and function return statements.
v float

v double

v long double

The following examples demonstrate the implicit conversion from a generic
floating-point type to a decimal floating-point type. In this example, variable f1 is
implicitly converted from type float to type _Decimal32 in the initialization.
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float f1;
_Decimal32 d1 = f1;

Restriction: You cannot mix decimal floating-point types with generic
floating-point types or complex floating-point types in arithmetic expressions
unless you use explicit conversions. Here is an example:
_Decimal32 d1;
float f1;
float f2 = f1 + d1; // Incorrect
float f3 = f1 + (float)d1; // Correct

Complex conversions

Complex to complex
If the types are identical, there is no change. If the types are of a different
size, and the value can be represented by the new type, the value is not
changed; if the value cannot be represented by the new type, both real and
imaginary parts are converted according to the standard conversion rule
given above.

Complex to real (binary)
The imaginary part of the complex value is discarded. If necessary, the
value of the real part is converted according to the standard conversion
rule given above.

Complex to real (decimal)
The imaginary part of the complex value is discarded. The value of the real
part is converted from binary to decimal floating point, according to the
standard conversion rule given above.

Real (binary) to complex
The source value is used as the real part of the complex value, and
converted, if necessary, according to the standard conversion rule given
above. The value of the imaginary part is zero.

Real (decimal) to complex
The source value is converted from decimal to binary floating point,
according to the standard conversion rule given above, and used as the
real part of the complex value. The value of the imaginary part is zero.

Related reference:
“Floating-point types” on page 49

Usual arithmetic conversions
When different arithmetic types are used as operands in certain types of
expressions, standard conversions known as usual arithmetic conversions are applied.

For example, when the values of two different integral types are added together,
both values are first converted to the same type: when a short int value and an
int value are added together, the short int value is converted to the int type.
Chapter 7, “Expressions and operators,” on page 115 provides a list of the
operators and expressions that participate in the usual arithmetic conversions.
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Conversion ranks for arithmetic types

The ranks in the tables are listed from highest to lowest:

Table 22. Conversion ranks for floating-point types

Operand type

long double or long double _Complex

double or double _Complex

float or float _Complex

IBM

Table 23. Conversion ranks for decimal floating-point types

Operand type

_Decimal128

_Decimal64

_Decimal32

IBM

Table 24. Conversion ranks for integer types

Operand type

long long int, unsigned long long int

long int, unsigned long int

int, unsigned int

short int, unsigned short int

char, signed char, unsigned char

Boolean

Notes:

v The long long int and unsigned long long int types are not included in the C89
standards.

v The wchar_t type is not a distinct type, but rather a typedef for an integer type. The
rank of the wchar_t type is equal to the rank of its underlying type.

v The rank of enumerated type is equal to the rank of its underlying type.

Rules for decimal floating-point operands

IBM

In a context where an operation involves two operands, if one of the operands is of
decimal floating type, the other operand cannot be a generic floating type,
imaginary type, or complex type. The compiler performs the usual arithmetic
conversions to bring these two operands to a common type. The floating-point
promotions are applied to both operands and the following rules apply to the
promoted operands:
1. If both operands have the same type, no conversion is needed.
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2. If one operand has the _Decimal128 type, the other operand is converted to
_Decimal128.

3. Otherwise, if one operand has the _Decimal64 type, the other operand is
converted to _Decimal64.

4. Otherwise, if one operand has the _Decimal32 type, the other operand is
converted to _Decimal32.

IBM

Rules for other floating-point operands

In a context where an operation involves two operands, if either of the operands is
of floating-point type, the compiler performs the usual arithmetic conversions to
bring these two operands to a common type. The floating-point promotions are
applied to both operands. If the rules for decimal floating-point operands do not
apply, the following rules apply to the promoted operands:
1. If both operands have the same type, no conversion is needed.
2. Otherwise, if both operands have complex types, the type at a lower integer

conversion rank is converted to the type at a higher rank. For more
information, see “Floating-point conversions” on page 106.

3. Otherwise, if one operand has a complex type, the type of both operands after
conversion is the higher rank of the following types:
v The complex type corresponding to the type of the generic floating-point

operand
v The type of the complex operand

For more information, see “Floating-point conversions” on page 106.
4. Otherwise, both operands have generic floating types. The following rules

apply:
a. If one operand has the long double type, the other operand is converted to

long double.
b. Otherwise, if one operand has the double type, the other operand is

converted to double.
c. Otherwise, if one operand has the float type, the other operand is

converted to float.

Rules for integral operands

In a context where an operation involves two operands, if both of the operands are
of integral types, the compiler performs the usual arithmetic conversions to bring
these two operands to a common type. The integral promotions are applied to both
operands and the following rules apply to the promoted operands:
1. If both operands have the same type, no conversion is needed.
2. Otherwise, if both operands have signed integer types or both have unsigned

integer types, the type at a lower integer conversion rank is converted to the
type at a higher rank.

3. Otherwise, if one operand has an unsigned integer type and the other operand
has a signed integer type, the following rules apply:
a. If the rank for the unsigned integer type is higher than or equal to the rank

for the signed integer type, the signed integer type is converted to the
unsigned integer type.
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b. Otherwise, if the signed integer type can represent all of the values of the
unsigned integer type, the unsigned integer type is converted to the signed
integer type.

c. Otherwise, both types are converted to the unsigned integer type that
corresponds to the signed integer type.

Related reference:
“Integral types” on page 48
“Boolean types” on page 48
“Floating-point types” on page 49
“Character types” on page 51
“Enumerations” on page 64
“Binary expressions” on page 130

Integral and floating-point promotions
The integral and floating-point promotions are used automatically as part of the usual
arithmetic conversions and default argument promotions. The integral and
floating-point promotions do not change either the sign or the magnitude of the
value. For more information about the usual arithmetic conversions, see “Usual
arithmetic conversions” on page 108.

Integral promotion rules for bit field

The rules apply to the following conditions:
v The -qupconv option is in effect.
v The type of an integral bit field is unsigned.
v The type of the integral bit field is smaller than the int type.

If all these conditions are satisfied, one of the following rules applies to the
promotion of the integral bit field:
v If the unsigned int type can represent all the values of the integral bit field, the

bit field is converted to unsigned int.
v Otherwise, no integral promotion applies to the bit field.

If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integral bit field:
v If the int type can represent all the values of the integral bit field, the bit field is

converted to int.
v Otherwise, if the unsigned int type can represent all the values, the bit field is

converted to unsigned int.
v Otherwise, no integral promotion applies to the bit field.

Integral promotion rules for Boolean

If the -qupconv option is in effect, a Boolean value is converted to the unsigned
int type with its value unchanged. Otherwise, if the -qnoupconv option is in
effect, a Boolean value is converted to the int type with its value unchanged.

Integral promotion rules for other types

The rules apply to the following conditions:
v The -qupconv option is in effect.
v The type of an integer type other than bit field and Boolean is unsigned.
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v The type of the integer type is smaller than the int type.

If all these conditions are satisfied, the integer type is converted to the unsigned
int type.

If any of these conditions is not satisfied, one of the following rules applies to the
promotion of the integer type:
v If the integer type can be represented by the int type and its rank is lower than

the rank of int, the integer type is converted to the int type.
v Otherwise, the integer type is converted to the unsigned int type.

floating-point promotion rules

The float type can be converted to the double type. The float value is not
changed after the promotion.
Related reference:

See -qupconv (C only) in the XL C Compiler Reference

See -qbitfields in the XL C Compiler Reference

See -qchars in the XL C Compiler Reference

Lvalue-to-rvalue conversions
If an lvalue is used in a situation in which the compiler expects an rvalue, the
compiler converts the lvalue to an rvalue. However, an rvalue cannot be converted
implicitly to an lvalue. The following table lists exceptions to this rule.

Situation before conversion Resulting behavior

The lvalue is a function type. A pointer to function

The lvalue is an array. A pointer to the first element of the array

The type of the lvalue is an incomplete type. compile-time error

The lvalue refers to an uninitialized object. undefined behavior

The lvalue refers to an object not of the type
of the rvalue, nor of a type derived from the
type of the rvalue.

undefined behavior

Related reference:
“Lvalues and rvalues” on page 115

Pointer conversions
Pointer conversions are performed when pointers are used, including pointer
assignment, initialization, and comparison.

Conversions that involve pointers must use an explicit type cast. The exceptions to
this rule are the allowable assignment conversions for C pointers. In the following
table, a const-qualified lvalue cannot be used as a left operand of the assignment.
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Table 25. Legal assignment conversions for C pointers

Left operand type Permitted right operand types

pointer to (object) T v the constant 0

v a pointer to a type compatible with T

v a pointer to void (void*)

pointer to (function) F v the constant 0

v a pointer to a function compatible with F

The referenced type of the left operand must have the same or more cv-qualifiers
as compared to those of the right operand.

Zero constant to null pointer
A constant expression that evaluates to zero is a null pointer constant. This
expression can be converted to a pointer. This pointer is a null pointer
(pointer with a zero value), and is guaranteed not to point to any object.

Array to pointer
An lvalue or rvalue with type "array of N," where N is the type of a single
element of the array, to N*. The result is a pointer to the initial element of
the array. This conversion is not performed if the expression is used as the
operand of the address operator & or the sizeof operator or when the
array is bound to a reference of the array type.

Function to pointer

An lvalue that is a function can be converted to an rvalue that is a pointer
to a function of the same type, except when the expression is used as the
operand of the & (address) operator, the () (function call) operator, or the
sizeof operator.

Related reference:
“Pointers” on page 83
“Integer constant expressions” on page 117
“Arrays” on page 87
“Pointers to functions” on page 201
“Lvalues and rvalues” on page 115

Conversion to void*
C pointers are not necessarily the same size as type int. Pointer arguments given
to functions should be explicitly cast to ensure that the correct type expected by
the function is being passed. The generic object pointer in C is void*, but there is
no generic function pointer.

Any pointer to an object, optionally type-qualified, can be converted to void*,
keeping the same const or volatile qualifications.

The allowable assignment conversions involving void* as the left operand are
shown in the following table.

Table 26. Legal assignment conversions in C for void*

Left operand type Permitted right operand types

(void*) v The constant 0.

v A pointer to an object. The object may be of incomplete type.

v (void*)
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Related reference:
“The void type” on page 51

Function argument conversions
When a function is called, if a function declaration is present and includes declared
argument types, the compiler performs type checking. The compiler compares the
data types provided by the calling function with the data types that the called
function expects and performs necessary type conversions. For example, when
function funct is called, argument f is converted to a double, and argument c is
converted to an int:
char * funct (double d, int i);

int main(void){
float f;
char c;
funct(f, c) /* f is converted to a double, c is converted to an int */
return 0;

}

If no function declaration is visible when a function is called, or when an
expression appears as an argument in the variable part of a prototype argument
list, the compiler performs default argument promotions or converts the value of
the expression before passing any arguments to the function. The automatic
conversions consist of the following:
v The integral and floating-point promotions are performed.
v Arrays or functions are converted to pointers.
Related reference:
“Integral and floating-point promotions” on page 111
“The transparent_union type attribute” on page 78
“Function call expressions” on page 121
“Function calls” on page 199
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Chapter 7. Expressions and operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation.

The evaluation of expressions is based on the operators that the expressions
contain and the context in which they are used. An expression can result in a value
and can produce side effects. A side effect is a change in the state of the execution
environment.

“Operator precedence and associativity” on page 148 provides tables listing the
precedence of all the operators described in the various sections listed above.

Lvalues and rvalues
Expressions can be categorized into one of the following value categories:

Lvalue
An expression can appear on the left side of an assignment expression if
the expression is not const qualified.

Rvalue
An expression that appears only on the right side of an assignment
expression.

Notes:

v Lvalues can be of incomplete types, but rvalues must be of complete types or
void types.

An object is a region of storage that can be examined and stored into. An lvalue is
an expression that refers to such an object. An lvalue does not necessarily permit
modification of the object it designates. For example, a const object is an lvalue
that cannot be modified. The term modifiable lvalue is used to emphasize that the
lvalue allows the designated object to be changed as well as examined. Lvalues of
the following object types are not modifiable lvalues:
v An array type
v An incomplete type
v A const-qualified type
v A structure or union type with one of its members qualified as a const type

Because these lvalues are not modifiable, they cannot appear on the left side of an
assignment statement.

C defines a function designator as an expression that has function type. A function
designator is distinct from an object type or an lvalue. It can be the name of a
function or the result of dereferencing a function pointer. The C language also
differentiates between its treatment of a function pointer and an object pointer.

Certain operators require lvalues for some of their operands. The following table
lists these operators and additional constraints on their usage.
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Operator Requirement

& (unary) Operand must be an lvalue.

++ -- Operand must be a modifiable lvalue. This
applies to both prefix and postfix forms.

= += -= *= %= <<= >>= &= ^= |= Left operand must be a modifiable lvalue.

For example, all assignment operators evaluate their right operand and assign that
value to their left operand. The left operand must be a modifiable lvalue.

The address operator (&) requires an lvalue as an operand while the increment (++)
and the decrement (--) operators require a modifiable lvalue as an operand. The
following example shows expressions and their corresponding lvalues.

Expression Lvalue

x = 42 x

*ptr = newvalue *ptr

a++ a

IBM When GNU C language extensions are enabled, compound expressions,
conditional expressions, and casts are allowed as lvalues, if their operands are
lvalues.

A compound expression can be assigned if the last expression in the sequence is an
lvalue. The following expressions are equivalent:
(x + 1, y) *= 42;
x + 1, (y *=42);

The address operator can be applied to a compound expression, provided the last
expression in the sequence is an lvalue. The following expressions are equivalent:
&(x + 1, y);
x + 1, &y;

A conditional expression can be a valid lvalue if its type is not void and both of its
branches for true and false are valid lvalues. Casts are valid lvalues if the operand
is an lvalue. The primary restriction is that you cannot take the address of an
lvalue cast. IBM

Related reference:
“Arrays” on page 87
“Lvalue-to-rvalue conversions” on page 112

Primary expressions
Primary expressions fall into the following general categories:
v Names (identifiers)
v Literals (constants)
v Integer constant expressions
v Parenthesized expressions ( )
v C11 Generic selection C11
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Names
The value of a name depends on its type, which is determined by how that name
is declared. The following table shows whether a name is an lvalue expression.

Table 27. Primary expressions: Names

Name declared as Evaluates to Is an lvalue?

Variable of arithmetic,
pointer, enumeration,
structure, or union type

An object of that type yes

Enumeration constant The associated integer value no

Array That array. In contexts subject
to conversions, a pointer to
the first object in the array,
except where the name is
used as the argument to the
sizeof operator.

no

Function That function. In contexts
subject to conversions, a
pointer to that function,
except where the name is
used as the argument to the
sizeof operator, or as the
function in a function call
expression.

no

As an expression, a name may not refer to a label, typedef name, structure
member, union member, structure tag, union tag, or enumeration tag. Names used
for these purposes reside in a namespace that is separate from that of names used
in expressions. However, some of these names may be referred to within
expressions by means of special constructs: for example, the dot or arrow operators
may be used to refer to structure and union members; typedef names may be used
in casts or as an argument to the sizeof operator.

Literals
A literal is a numeric constant or string literal. When a literal is evaluated as an
expression, its value is a constant. A lexical constant is never an lvalue. However, a
string literal is an lvalue.
Related reference:
“Literals” on page 13

Integer constant expressions
An integer constant is a value that is determined at compile time and cannot be
changed at run time. An integer constant expression is an expression that is
composed of constants and evaluated to a constant at compile time.

An integer constant expression is an expression that is composed of only the
following elements:
v literals
v enumerators
v const variables initialized with compile-time constant expressions
v static const data members initialized with compile-time constant expressions
v casts to integral types
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v sizeof expressions, where the operand is not a variable length array

The sizeof operator applied to a variable length array type is evaluated at run
time, and therefore is not a constant expression.

You must use an integer constant expression in the following situations:
v In the subscript declarator as the description of an array bound.
v After the keyword case in a switch statement.
v In an enumerator, as the numeric value of an enumeration constant.
v In a bit-field width specifier.
v In the preprocessor #if statement. (Enumeration constants, address constants,

and sizeof cannot be specified in a preprocessor #if statement.)
Related reference:
“The sizeof operator” on page 127

Parenthesized expressions ( )
Use parentheses to explicitly force the order of expression evaluation. The
following expression does not use parentheses to group operands and operators.
The parentheses surrounding weight, zipcode are used to form a function call.
Note how the compiler groups the operands and operators in the expression
according to the rules for operator precedence and associativity:

handling- discount item +

+

*

*

( weight

expression

expression

unary minus

function call

parameters

expression

zipcode ),

The following expression is similar to the previous expression, but it contains
parentheses that change how the operands and operators are grouped:
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handlingitem +

+

*

*

((



weight

expression

expression

expression

parenthesized e xpression

function callexpression

expression

zipcode ) ) ,

parameters

-discount

unary m inus

In an expression that contains both associative and commutative operators, you
can use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:
x = f + (g + h);

Related reference:
“Operator precedence and associativity” on page 148

Generic selection (C11)

A generic selection is a primary expression. Its type and value depend on the
selected generic association.

The following diagram shows the generic selection syntax:

►► ▼

,

_Generic ( assignment-expression , type-name : assignment-expression )
(1)

default : assignment-expression

►◄

Notes:

1 A generic selection can have at most one default generic association.

where:

type-name
Specifies the type of a generic association. The type name that you specify in a
generic association must be a complete object type other than a variably
modified type.
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assignment-expression
Is an assignment expression. The first assignment expression is called the
controlling expression.

The generic association list is a group of generic associations. There are two forms
of generic associations:
v type-name: assignment-expression
v default: assignment-expression

One generic selection cannot have two or more generic associations that specify
compatible types. In one generic selection, the controlling expression can have at
most one compatible type name in the generic association list. If a generic selection
has no default generic association, its controlling expression must have exactly one
compatible type name in its generic association list.

If there is a generic association with a type name that is compatible with the
controlling expression in the generic selection, the expression in the generic
selection is the result expression. Otherwise, the result expression of the generic
selection is the expression in the default generic association. The controlling
expression of a generic selection is not evaluated. None of the expressions from
any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result
expression. For example, a generic selection is an lvalue, a function designator, or a
void expression if its result expression is an lvalue, a function designator, or a void
expression.

Example

The following sample myprogram.c defines a type-generic macro:
#define myfunction(X) _Generic((X), \
long double:myfunction_longdouble, \
default:myfunction_double, \
float:myfunction_float \
)(X)
void myfunction_longdouble(long double x){printf("calling %s\n",__func__);}
void myfunction_double(double x){printf("calling %s\n",__func__);}
void myfunction_float(float x){printf("calling %s\n",__func__);}

int main()
{

long double ld;
double d;
float f;
myfunction(ld);
myfunction(d);
myfunction(f);

}

When you execute the program:
xlc myprogram.c -qldbl128 -qlanglvl=extc1x
./a.out

the result is as follows:
calling myfunction_longdouble
calling myfunction_double
calling myfunction_float
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Function call expressions
A function call is an expression containing the function name followed by the
function call operator, (). If the function has been defined to receive parameters,
the values that are to be sent into the function are listed inside the parentheses of
the function call operator. The argument list can contain any number of
expressions separated by commas. The argument list can also be empty.

The type of a function call expression is the return type of the function. This type
can either be a complete type or the type void.

A function call is always an rvalue.

Here are some examples of the function call operator:
stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

The order of evaluation for function call arguments is not specified. In the
following example:
method(sample1, batch.process--, batch.process);

the argument batch.process-- might be evaluated last, causing the last two
arguments to be passed with the same value.
Related reference:
“Function argument conversions” on page 114
“Function calls” on page 199
“Lvalues and rvalues” on page 115

Member expressions
Member expressions indicate members of structures, or unions. The member
operators are:
v Dot operator .
v Arrow operator ->

Dot operator .
The . (dot) operator is used to access structure, or union members. The member is
specified by a postfix expression, followed by a . (dot) operator, followed by a
possibly qualified identifier . The postfix expression must be an object of type
struct or union. The name must be a member of that object.

The value of the expression is the value of the selected member. If the postfix
expression and the name are lvalues, the expression value is also an lvalue. If the
postfix expression is type-qualified, the same type qualifiers will apply to the
designated member in the resulting expression.
Related reference:
Access to structure and union members

Arrow operator ->
The -> (arrow) operator is used to access structure or union members using a
pointer. A postfix expression, followed by an -> (arrow) operator, followed by a
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possibly qualified identifier, designates a member of the object to which the pointer
points. The postfix expression must be a pointer to an object of type struct or
union. The name must be a member of that object.

The value of the expression is the value of the selected member. If the name is an
lvalue, the expression value is also an lvalue. If the expression is a pointer to a
qualified type, the same type-qualifiers will apply to the designated member in the
resulting expression.
Related reference:
“Pointers” on page 83
Access to structure and union members
“Structures and unions” on page 55

Unary expressions
A unary expression contains one operand and a unary operator.

All unary operators have the same precedence and have right-to-left associativity,
as shown in Table 31 on page 148.

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most unary expressions.

The supported unary operators are:
v “Increment operator ++”
v “Decrement operator --” on page 123
v “Unary plus operator +” on page 124
v “Unary minus operator -” on page 124
v “Logical negation operator !” on page 124
v “Bitwise negation operator ~” on page 124
v “Address operator &” on page 125
v “Indirection operator *” on page 125

v IBM alignof IBM

v sizeof

v IBM typeof

v IBM __real__ and __imag__ IBM

Related reference:
“Pointer arithmetic” on page 84
“Lvalues and rvalues” on page 115
“Arithmetic conversions and promotions” on page 105

Increment operator ++
The ++ (increment) operator adds 1 to the value of a scalar operand, or if the
operand is a pointer, increments the operand by the size of the object to which it
points. The operand receives the result of the increment operation. The operand
must be a modifiable lvalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand,
the operand is incremented. The incremented value is then used in the expression.
If you put the ++ after the operand, the value of the operand is used in the
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expression before the operand is incremented. A pre-increment expression is an
lvalue. A post-increment expression is an rvalue. For example:
play = ++play1 + play2++;

is similar to the following expressions; play1 is altered before play:
int temp, temp1, temp2;

temp1 = play1 + 1;
temp2 = play2;
play1 = temp1;
temp = temp1 + temp2;
play2 = play2 + 1;
play = temp;

The result has the same type as the operand after integral promotion.

The usual arithmetic conversions on the operand are performed.

IBM

 
The increment operator has been extended to handle complex types. The

operator works in the same manner as it does on a real type, except that only the
real part of the operand is incremented, and the imaginary part is unchanged.

IBM

Decrement operator --
The -- (decrement) operator subtracts 1 from the value of a scalar operand, or if
the operand is a pointer, decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the -- before or after the operand. If it appears before the operand,
the operand is decremented, and the decremented value is used in the expression.
If the -- appears after the operand, the current value of the operand is used in the
expression and the operand is decremented. A pre-decrement expression is an
lvalue. A post-decrement expression is an rvalue.

For example:
play = --play1 + play2--;

is similar to the following expressions; play1 is altered before play:
int temp, temp1, temp2;

temp1 = play1 - 1;
temp2 = play2;
play1 = temp1;
temp = temp1 + temp2;
play2 = play2 - 1;
play = temp;

The result has the same type as the operand after integral promotion, but is not an
lvalue.

The usual arithmetic conversions are performed on the operand.

IBM

 
The decrement operator has been extended to handle complex types, for

compatibility with GNU C. The operator works in the same manner as it does on a
real type, except that only the real part of the operand is decremented, and the
imaginary part is unchanged. IBM
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Unary plus operator +
The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type or pointer type. The result is not an lvalue.

The result has the same type as the operand after integral promotion.

Note: Any plus sign in front of a constant is not part of the constant.

Unary minus operator -
The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result has the same type as the operand after integral promotion.

Note: Any minus sign in front of a constant is not part of the constant.

Logical negation operator !
The ! (logical negation) operator determines whether the operand evaluates to 0
(false) or nonzero (true).

The expression yields the value 1 (true) if the operand evaluates to 0, and yields
the value 0 (false) if the operand evaluates to a nonzero value.

The following two expressions are equivalent:
!right;
right == 0;

Related reference:
“Boolean types” on page 48

Bitwise negation operator ~
The ~ (bitwise negation) operator yields the bitwise complement of the operand.
In the binary representation of the result, every bit has the opposite value of the
same bit in the binary representation of the operand. The operand must have an
integral type. The result has the same type as the operand but is not an lvalue.

Suppose x represents the decimal value 5. The 16-bit binary representation of x is:
0000000000000101

The expression ~x yields the following result (represented here as a 16-bit binary
number):
1111111111111010

Note that the ~ character can be represented by the trigraph ??-.

The 16-bit binary representation of ~0 is:
1111111111111111

IBM The bitwise negation operator has been extended to handle complex
types. With a complex type, the operator computes the complex conjugate of the
operand by reversing the sign of the imaginary part. IBM
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Related reference:
“Trigraph sequences” on page 33

Address operator &
The & (address) operator yields a pointer to its operand. The operand must be an
lvalue, a function designator, or a qualified name. It cannot be a bit field.

It cannot have the storage class register.

If the operand is an lvalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object having type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class and has the same type as the member. The result is
not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following
expression assigns the address of the variable y to the pointer p_to_y :
p_to_y = &y;

IBM The address operator has been extended to handle vector types, provided
that vector support is enabled. The result of the address operator applied to a
vector type can be stored in a pointer to a compatible vector type. The address of a
vector type can be used to initialize a pointer to vector type if both sides of the
initialization have compatible types. A pointer to void can also be initialized with
the address of a vector type.

IBM

 
The address of a label can be taken using the GNU C address operator

&&. For details, see “Labels as values (IBM extension)” on page 154.
Related reference:
“Indirection operator *”
“Pointers” on page 83
“Labels as values (IBM extension)” on page 154

Indirection operator *
The * (indirection) operator determines the value referred to by the pointer-type
operand. The operand cannot be a pointer to an incomplete type. If the operand
points to an object, the operation yields an lvalue referring to that object. If the
operand points to a function, the result is a function designator. Arrays and
functions are converted to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that
is not valid, such as NULL. The result is not defined.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:
p_to_y = &y;
*p_to_y = 3;

cause the variable y to receive the value 3.
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IBM

The indirection operator * has been extended to handle pointer to vector types,
provided that vector support is enabled. A vector pointer can point to a memory
location that has 16-byte alignment. However, the compiler does not enforce this
constraint. Dereferencing a vector pointer maintains the vector type and its 16-byte
alignment. If a program dereferences a vector pointer that does not contain a
16-byte aligned address, the behavior is undefined.

IBM

Related reference:
“Arrays” on page 87
“Pointers” on page 83

The __alignof__ operator (IBM extension)
The __alignof__ operator is a language extension to C99 that returns the position
to which its operand is aligned. The operand can be an expression or a
parenthesized type identifier. If the operand is an expression that represents an
lvalue, the number that is returned by __alignof__ represents the alignment that
the lvalue is known to have. The type of the expression is determined at compile
time, but the expression itself is not evaluated. If the operand is a type, the
number represents the alignment that is usually required for the type on the target
platform.

The __alignof__ operator cannot be applied to the following situations:
v An lvalue that represents a bit field
v A function type
v An undefined structure or class
v An incomplete type (such as void)

__alignof__ operator syntax

►► __alignof__ unary_expression
( type-id )

►◄

If type-id is a reference or a referenced type, the result is the alignment of the
referenced type. If type-id is an array, the result is the alignment of the array
element type. If type-id is a fundamental type, the result is implementation-defined.

For example, on AIX, __alignof__(wchar_t) returns 2 for a 32-bit target, and 4 for
a 64-bit target.

The operand of __alignof__ can be a vector type, provided that vector support is
enabled. For example,
vector unsigned int v1 = (vector unsigned int)(10);
vector unsigned int *pv1 = &v1;
__alignof__(v1); // vector type alignment: 16.
__alignof__(&v1); // address of vector alignment: 4.
__alignof__(*pv1); // dereferenced pointer to vector alignment: 16.
__alignof__(pv1); // pointer to vector alignment: 4.
__alignof__(vector signed char); // vector type alignment: 16.
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When __attribute__((aligned)) is used to increase the alignment of a variable of
vector type, the value that is returned by the __alignof__ operator is the alignment
factor that is specified by __attribute__((aligned)).
Related reference:
“The aligned variable attribute” on page 101
“Extensions for vector processing support” on page 230

The sizeof operator
The sizeof operator yields the size in bytes of the operand, which can be an
expression or the parenthesized name of a type.

sizeof operator syntax

►► sizeof expr
( type-name )

►◄

The result for either kind of operand is not an lvalue, but a constant integer value.
The type of the result is the unsigned integral type size_t defined in the header
file stddef.h.

Except in preprocessor directives, you can use a sizeof expression wherever an
integral constant is required. One of the most common uses for the sizeof operator
is to determine the size of objects that are referred to during storage allocation,
input, and output functions.

Another use of sizeof is in porting code across platforms. You can use the sizeof
operator to determine the size that a data type represents. For example:
sizeof(int);

The sizeof operator applied to a type name yields the amount of memory that can
be used by an object of that type, including any internal or trailing padding.

IBM

 
The operand of the sizeof operator can be a vector variable, a vector

type, or the result of dereferencing a pointer to vector type, provided that vector
support is enabled. In these cases, the return value of sizeof is always 16.
vector bool int v1;
vector bool int *pv1 = &v1;
sizeof(v1); // vector type: 16.
sizeof(&v1); // address of vector: 4.
sizeof(*pv1); // dereferenced pointer to vector: 16.
sizeof(pv1); // pointer to vector: 4.
sizeof(vector bool int); // vector type: 16.

IBM

For compound types, results are as follows:

Operand Result

An array The result is the total number of bytes in the array. For
example, in an array with 10 elements, the size is equal to 10
times the size of a single element. The compiler does not
convert the array to a pointer before evaluating the
expression.

The sizeof operator cannot be applied to:
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v A bit field
v A function type
v An undefined structure or class
v An incomplete type (such as void)

The sizeof operator applied to an expression yields the same result as if it had
been applied to only the name of the type of the expression. At compile time, the
compiler analyzes the expression to determine its type. None of the usual type
conversions that occur in the type analysis of the expression are directly
attributable to the sizeof operator. However, if the operand contains operators that
perform conversions, the compiler does take these conversions into consideration
in determining the type. For example, the second line of the following sample
causes the usual arithmetic conversions to be performed. Assuming that a short
uses 2 bytes of storage and an int uses 4 bytes,
short x; ... sizeof (x) /* the value of sizeof operator is 2 */
short x; ... sizeof (x + 1) /* value is 4, result of addition is type int */

The result of the expression x + 1 has type int and is equivalent to sizeof(int).
The value is also 4 if x has type char, short, int, or any enumeration typeof the
default enum size.

A variable length array can be the operand of a sizeof expression. In this case, the
operand is evaluated at run time, and the size is neither an integer constant nor a
constant expression, even though the size of each instance of a variable array does
not change during its lifetime.
Related reference:
“Type names” on page 82
“Integer constant expressions” on page 117
“Arrays” on page 87

The typeof operator (IBM extension)
The typeof operator returns the type of its argument, which can be an expression
or a type. The language feature provides a way to derive the type from an
expression. Given an expression e, __typeof__(e) can be used anywhere a type
name is needed, for example in a declaration or in a cast. The alternate spelling of
the keyword, __typeof__, is recommended.

The typeof operator is extended to accept a vector type as its operand, when
vector support is enabled.

typeof operator syntax

►► __typeof__
typeof

( expr )
type-name

►◄

A typeof construct itself is not an expression, but the name of a type. A typeof
construct behaves like a type name defined using typedef, although the syntax
resembles that of sizeof.

The following examples illustrate its basic syntax. For an expression e:
int e;
__typeof__(e + 1) j; /* the same as declaring int j; */
e = (__typeof__(e)) f; /* the same as casting e = (int) f; */
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Using a typeof construct is equivalent to declaring a typedef name. Given
typedef int T[2];
int i[2];

you can write
__typeof__(i) a; /* all three constructs have the same meaning */
__typeof__(int[2]) a;
__typeof__(T) a;

The behavior of the code is as if you had declared int a[2];.

For a bit field, typeof represents the underlying type of the bit field. For example,
int m:2;, the typeof(m) is int. Since the bit field property is not reserved, n in
typeof(m) n; is the same as int n, but not int n:2.

The typeof operator can be nested inside sizeof and itself. The following
declarations of arr as an array of pointers to int are equivalent:
int *arr[10]; /* traditional C declaration */
__typeof__(__typeof__ (int *)[10]) a; /* equivalent declaration */

The typeof operator can be useful in macro definitions where expression e is a
parameter. For example,
#define SWAP(a,b) { __typeof__(a) temp; temp = a; a = b; b = temp; }

Notes:

1. The typeof and __typeof__ keywords are supported as follows:
v The __typeof__ keyword is recognized under compilation with the xlc

invocation command or the -qlanglvl=extc89, -qlanglvl=extc99, or
-qlanglvl=extended options. The typeof keyword is only recognized under
compilation with -qkeyword=typeof.

Related reference:
“Type names” on page 82
“typedef definitions” on page 68
“Vector types (IBM extension)” on page 51

The __real__ and __imag__ operators (IBM extension)
XL C extends the C99 standards to support the unary operators __real__ and
__imag__. These operators provide the ability to extract the real and imaginary
parts of a complex type. These extensions have been implemented to ease the
porting applications developed with GNU C.

__real__ and __imag__ operator syntax

►► __real__
__imag__

( var_identifier ) ►◄

The var_identifier is the name of a previously declared complex variable. The
__real__ operator returns the real part of the complex variable, while the __imag__
operator returns the imaginary part of the variable. If the operand of these
operators is an lvalue, the resulting expression can be used in any context where
lvalues are allowed. They are especially useful in initializations of complex
variables, and as arguments to calls to library functions such as printf and scanf
that have no format specifiers for complex types. For example:
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float _Complex myvar;
__imag__(myvar) = 2.0f;
__real__(myvar) = 3.0f;

initializes the imaginary part of the complex variable myvar to 2.0i and the real part
to 3.0, and
printf("myvar = %f + %f * i\n", __real__(myvar), __imag__(myvar));

prints:
myvar = 3.000000 + 2.000000 * i

Related reference:
Complex literals (C only)
Complex floating-point types (C only)

The vec_step operator (IBM extension)
The vec_step operator takes a vector type operand and returns an integer value
representing the amount by which a pointer to a vector element should be
incremented in order to move by 16 bytes (the size of a vector). The following
table provides a summary of values by data type.

Table 28. Increment value for vec_step by data type

vec_step expresssion Value

vec_step(vector unsigned char)

vec_step(vector signed char)

vec_step(vector bool char)

16

vec_step(vector unsigned short)

vec_step(vector signed short)

vec_step(vector bool short)

8

vec_step(vector unsigned int)

vec_step(vector signed int)

vec_step(vector bool int)

4

vec_step(vector unsigned long long)

vec_step(vector signed long long)

vec_step(vector bool long long)

2

vec_step(vector pixel) 8

vec_step(vector float) 4

vec_step(vector double) 2

For complete information about the vec_step operator, see the AltiVec Technology
Programming Interface Manual, available at http://www.freescale.com/files/32bit/
doc/ref_manual/ALTIVECPIM.pdf

Binary expressions
A binary expression contains two operands separated by one operator.
v “Assignment operators” on page 131
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All binary operators have left-to-right associativity, but not all binary operators
have the same precedence. The ranking and precedence rules for binary operators
is summarized in Table 32 on page 149.

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the descriptions of the operators, the usual arithmetic conversions
are performed on the operands of most binary expressions.

The supported binary operators are as follows:
v “Assignment operators”
v “Multiplication operator *” on page 133
v “Division operator /” on page 133
v “Remainder operator %” on page 133
v “Addition operator +” on page 134
v “Subtraction operator -” on page 134
v “Bitwise left and right shift operators << >>” on page 135
v “Relational operators < > <= >=” on page 135
v “Equality and inequality operators == !=” on page 136
v “Bitwise AND operator &” on page 137
v “Bitwise exclusive OR operator ^” on page 138
v “Bitwise inclusive OR operator |” on page 138
v “Logical AND operator &&” on page 139
v “Logical OR operator ||” on page 139
v “Array subscripting operator [ ]” on page 140
v “Vector subscripting operator [ ] (IBM extension)” on page 141
v “Comma operator ,” on page 142
Related reference:
“Lvalues and rvalues” on page 115
“Arithmetic conversions and promotions” on page 105

Assignment operators
An assignment expression stores a value in the object designated by the left operand.
There are two types of assignment operators:
v “Simple assignment operator =” on page 132
v “Compound assignment operators” on page 132

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed.

The result of an assignment expression is not an lvalue.

All assignment operators have the same precedence and have right-to-left
associativity.
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Simple assignment operator =

The simple assignment operator has the following form:

lvalue = expr

The operator stores the value of the right operand expr in the object designated by
the left operand lvalue.

If the left operand is not a class type nor IBM a vector type IBM , the right
operand is implicitly converted to the type of the left operand. This converted type
is not be qualified by const or volatile.

If the left operand is a class type, that type must be complete. The copy
assignment operator of the left operand is called.

If the left operand is an object of reference type, the compiler assigns the value of
the right operand to the object denoted by the reference.

Compound assignment operators

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and store the result of that operation into the left operand, which must
be a modifiable lvalue.

The following table shows the operand types of compound assignment
expressions:

Operator Left operand Right operand

+= or -= Arithmetic Arithmetic

+= or -= Pointer Integral type

*=, /=, and %= Arithmetic Arithmetic

<<=, >>=, &=, ^=, and |= Integral type Integral type

Note that the expression
a *= b + c

is equivalent to
a = a * (b + c)

and not
a = a * b + c

The following table lists the compound assignment operators and shows an
expression using each operator:

Operator Example Equivalent expression

+= index += 2 index = index + 2

-= *pointer -= 1 *pointer = *pointer - 1

*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours
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Operator Example Equivalent expression

%= allowance %= 1000 allowance = allowance % 1000

<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

^= test ^= pre_test test = test ^ pre_test

|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the
example column) twice, it is in effect evaluated only once.

IBM When GNU C language features have been enabled, compound
expressions and conditional expressions are allowed as lvalues, provided that their
operands are lvalues. For details, see “Lvalues and rvalues” on page 115 IBM

Related reference:
“Lvalues and rvalues” on page 115
“Pointers” on page 83
“Type qualifiers” on page 69

Multiplication operator *
The * (multiplication) operator yields the product of its operands. The operands
must have an arithmetic or enumeration type. The result is not an lvalue. The
usual arithmetic conversions on the operands are performed.

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. For example, the expression:
sites * number * cost

can be interpreted in any of the following ways:
(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

Division operator /
The / (division) operator yields the algebraic quotient of its operands. If both
operands are integers, any fractional part (remainder) is discarded. Throwing away
the fractional part is often called truncation toward zero. The operands must have an
arithmetic or enumeration type. The right operand may not be zero: the result is
undefined if the right operand evaluates to 0. For example, expression 7 / 4 yields
the value 1 (rather than 1.75 or 2). The result is not an lvalue.

The usual arithmetic conversions on the operands are performed.

Remainder operator %
The % (remainder) operator yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.
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Both operands must have an integral or enumeration type. If the right operand
evaluates to 0, the result is undefined. If either operand has a negative value, the
result is such that the following expression always yields the value of a if b is not 0
and a/b is representable:

( a / b ) * b + a %b;

The usual arithmetic conversions on the operands are performed.

If both operands are negative, the sign of the remainder is also negative.
Otherwise, the sign of the remainder is the same as the sign of the quotient.

Addition operator +
The + (addition) operator yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral or enumeration type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

A pointer to an object in an array can be added to a value having integral type.
The result is a pointer of the same type as the pointer operand. The result refers to
another element in the array, offset from the original element by the amount of the
integral value treated as a subscript. If the resulting pointer points to storage
outside the array, other than the first location outside the array, the result is
undefined. A pointer to one element past the end of an array cannot be used to
access the memory content at that address. The compiler does not provide
boundary checking on the pointers. For example, after the addition, ptr points to
the third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

Related reference:
“Pointer arithmetic” on page 84
“Pointer conversions” on page 112

Subtraction operator -
The - (subtraction) operator yields the difference of its operands. Both operands
must have an arithmetic or enumeration type, or the left operand must have a
pointer type and the right operand must have the same pointer type or an integral
or enumeration type. You cannot subtract a pointer from an integral value.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to elements in the same array, the result is the
number of objects separating the two addresses. The number is of type ptrdiff_t,
which is defined in the header file stddef.h. Behavior is undefined if the pointers
do not refer to objects in the same array.
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Related reference:
“Pointer arithmetic” on page 84
“Pointer conversions” on page 112

Bitwise left and right shift operators << >>
The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue.
Both operands have the same precedence and are left-to-right associative.

Operator Usage

<< Indicates the bits are to be shifted to the left.

>> Indicates the bits are to be shifted to the right.

Each operand must have an integral or enumeration type. The compiler performs
integral promotions on the operands, and then the right operand is converted to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise
shifts on such values is unpredictable.

If the right operand has the value 0, the result is the value of the left operand
(after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if left_op has the value
4019, the bit pattern (in 16-bit format) of left_op is:
0000111110110011

The expression left_op << 3 yields:
0111110110011000

The expression left_op >> 3 yields:
0000000111110110

Relational operators < > <= >=
The relational operators compare two operands and determine the validity of a
relationship. The following table describes the four relational operators:

Operator Usage

< Indicates whether the value of the left operand is less than the
value of the right operand.

> Indicates whether the value of the left operand is greater than
the value of the right operand.

<= Indicates whether the value of the left operand is less than or
equal to the value of the right operand.

>= Indicates whether the value of the left operand is greater than
or equal to the value of the right operand.
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Both operands must have arithmetic or enumeration types or be pointers to the
same type.

The type of the result is int and has the values 1 if the specified relationship is
true, and 0 if false.

The result is not an lvalue.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the
same array, the result is not defined.

A pointer can be compared to a constant expression that evaluates to 0. You can
also compare a pointer to a pointer of type void*. The pointer is converted to a
pointer of type void*.

If two pointers refer to the same object, they are considered equal. If two pointers
refer to nonstatic members of the same object, the pointer to the object declared
later is greater, provided that they are not separated by an access specifier;
otherwise the comparison is undefined. If two pointers refer to data members of
the same union, they have the same address value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value is greater.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, the expression:
a < b <= c

is interpreted as:
(a < b) <= c

If the value of a is less than the value of b, the first relationship yields 1. The
compiler then compares the value true (or 1) with the value of c (integral
promotions are carried out if needed).

Equality and inequality operators == !=
The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. The following table describes the two
equality operators:

Operator Usage

== Indicates whether the value of the left operand is equal to the
value of the right operand.

!= Indicates whether the value of the left operand is not equal to
the value of the right operand.
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Both operands must have arithmetic or enumeration types or be pointers to the
same type, or one operand must have a pointer type and the other operand must
be a pointer to void or a null pointer.

The type of the result is int and has the values 1 if the specified relationship is
true, and 0 if false.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:
time < max_time == status < complete
letter != EOF

Note: The equality operator (==) should not be confused with the assignment (=)
operator.

For example,

if (x == 3)
evaluates to true (or 1) if x is equal to three. Equality tests like this should
be coded with spaces between the operator and the operands to prevent
unintentional assignments.

while

if (x = 3)
is taken to be true because (x = 3) evaluates to a nonzero value (3). The
expression also assigns the value 3 to x.

Related reference:
Simple assignment operator =

Bitwise AND operator &
The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1's, the corresponding bit
of the result is set to 1. Otherwise, it sets the corresponding result bit to 0.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:
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bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a & b 0000000000001100

Note: The bitwise AND (&) should not be confused with the logical AND. (&&)
operator. For example,

1 & 4 evaluates to 0
while

1 && 4 evaluates to true

Bitwise exclusive OR operator ^
The bitwise exclusive OR operator (in EBCDIC, the ^ symbol is represented by the
¬ symbol) compares each bit of its first operand to the corresponding bit of the
second operand. If both bits are 1's or both bits are 0's, the corresponding bit of the
result is set to 0. Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that the ^ character can be
represented by the trigraph ??’.

The following example shows the values of a, b, and the result of a ^ b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a ^ b 0000000001110010

Related reference:
“Trigraph sequences” on page 33

Bitwise inclusive OR operator |
The | (bitwise inclusive OR) operator compares the values (in binary format) of
each operand and yields a value whose bit pattern shows which bits in either of
the operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that the | character can be
represented by the trigraph ??!.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:
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bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110

Note: The bitwise OR (|) should not be confused with the logical OR (||) operator.
For example,

1 | 4 evaluates to 5
while

1 || 4 evaluates to true
Related reference:
“Trigraph sequences” on page 33

Logical AND operator &&
The && (logical AND) operator indicates whether both operands are true.

If both operands have nonzero values, the result has the value 1. Otherwise, the
result has the value 0. The type of the result is int. Both operands must have an
arithmetic or pointer type. The usual arithmetic conversions on each operand are
performed.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0 (or false), the right
operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

1 && 0 false or 0

1 && 4 true or 1

0 && 0 false or 0

The following example uses the logical AND operator to avoid division by zero:
(y != 0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0 (or false).

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1 (or true)
while

1 & 4 evaluates to 0

Logical OR operator ||
The || (logical OR) operator indicates whether either operand is true.

If either of the operands has a nonzero value, the result has the value 1. Otherwise,
the result has the value 0. The type of the result is int. Both operands must have
an arithmetic or pointer type. The usual arithmetic conversions on each operand
are performed.
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Unlike the | (bitwise inclusive OR) operator, the || operator guarantees
left-to-right evaluation of the operands. If the left operand has a nonzero (or true)
value, the right operand is not evaluated.

The following examples show how expressions that contain the logical OR
operator are evaluated:

Expression Result

1 || 0 true or 1

1 || 4 true or 1

0 || 0 false or 0

The following example uses the logical OR operator to conditionally increment y:
++x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero (or true) quantity.

Note: The logical OR (||) should not be confused with the bitwise OR (|) operator.
For example:

1 || 4 evaluates to 1 (or true)
while

1 | 4 evaluates to 5

Array subscripting operator [ ]
A postfix expression followed by an expression in [ ] (brackets) specifies an
element of an array. The expression within the brackets is referred to as a subscript.
The first element of an array has the subscript zero.

By definition, the expression a[b] is equivalent to the expression *((a) + (b)),
and, because addition is associative, it is also equivalent to b[a]. Between
expressions a and b, one must be a pointer to a type T, and the other must have
integral or enumeration type. The result of an array subscript is an lvalue. The
following example demonstrates this:
#include <stdio.h>

int main(void) {
int a[3] = { 10, 20, 30 };
printf("a[0] = %d\n", a[0]);
printf("a[1] = %d\n", 1[a]);
printf("a[2] = %d\n", *(2 + a));
return 0;

}

See the output of the above example:
a[0] = 10
a[1] = 20
a[2] = 30

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.
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In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the right-most subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4][3][6]:
for (first = 0; first < 4; ++first)

{
for (second = 0; second < 3; ++second)

{
for (third = 0; third < 6; ++third)

{
code[first][second][third] =
100;
}

}
}

C99 allows array subscripting on arrays that are not lvalues. The following
example is valid in C99:
struct trio{int a[3];};
struct trio f();
foo (int index)
{

return f().a[index];
}

Related reference:
“Pointers” on page 83
“Integral types” on page 48
“Lvalues and rvalues” on page 115
“Arrays” on page 87
“Pointer arithmetic” on page 84

Vector subscripting operator [ ] (IBM extension)
Access to individual elements of a vector data type is provided through the use of
square brackets, similar to how array elements are accessed. The vector data type
is followed by a set of square brackets containing the position of the element. The
position of the first element is 0. The type of the result is the type of the elements
contained in the vector type.

Example:
vector unsigned int v1 = {1,2,3,4};
unsigned int u1, u2, u3, u4;
u1 = v1[0]; // u1=1
u2 = v1[1]; // u2=2
u3 = v1[2]; // u3=3
u4 = v1[3]; // u4=4

Note: You can also access and manipulate individual elements of vectors with the
following intrinsic functions:
v vec_extract

v vec_insert

v vec_promote

v vec_splats
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Comma operator ,
A comma expression contains two operands of any type separated by a comma and
has left-to-right associativity. The left operand is fully evaluated, possibly
producing side effects, and its value, if there is one, is discarded. The right
operand is then evaluated. The type and value of the result of a comma expression
are those of its right operand, after the usual unary conversions.

The result of a comma expression is not an lvalue.

Any number of expressions separated by commas can form a single expression
because the comma operator is associative. The use of the comma operator
guarantees that the subexpressions will be evaluated in left-to-right order, and the
value of the last becomes the value of the entire expression. In the following
example, if omega has the value 11, the expression increments delta and assigns the
value 3 to alpha:
alpha = (delta++, omega % 4);

A sequence point occurs after the evaluation of the first operand. The value of
delta is discarded. Similarly, in the following example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)

In some contexts where the comma character is used, parentheses are required to
avoid ambiguity. For example, the function
f(a, (t = 3, t + 2), c);

has only three arguments: the value of a, the value 5, and the value of c. Other
contexts in which parentheses are required are in field-length expressions in
structure and union declarator lists, enumeration value expressions in enumeration
declarator lists, and initialization expressions in declarations and initializers.

In the previous example, the comma is used to separate the argument expressions
in a function invocation. In this context, its use does not guarantee the order of
evaluation (left to right) of the function arguments.

The primary use of the comma operator is to produce side effects in the following
situations:
v Calling a function
v Entering or repeating an iteration loop
v Testing a condition
v Other situations where a side effect is required but the result of the expression is

not immediately needed

The following table gives some examples of the uses of the comma operator.

Statement Effects

for (i=0; i<2; ++i, f() ); A for statement in which i is incremented and f()
is called at each iteration.
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Statement Effects

if ( f(), ++i, i>1 ) { /* ...
*/ }

An if statement in which function f() is called,
variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the first
two expressions, the third is evaluated and its result
determines whether the if statement is processed.

func( ( ++a, f(a) ) ); A function call to func() in which a is incremented,
the resulting value is passed to a function f(), and
the return value of f() is passed to func(). The
function func() is passed only a single argument,
because the comma expression is enclosed in
parentheses within the function argument list.

Conditional expressions
A conditional expression is a compound expression that contains a condition
(operand1), an expression to be evaluated if the condition evaluates to true
(operand2), and an expression to be evaluated if the condition has the value false
(operand3).

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:
v An arithmetic type
v A compatible pointer, structure, or union type
v void

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile or const). Pointer objects are compatible if they
have the same type or are pointers to void.

The first operand is evaluated, and its value determines whether the second or
third operand is evaluated:
v If the value is true, the second operand is evaluated.
v If the value is false, the third operand is evaluated.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, the usual
arithmetic conversions are performed on the values. The types of the second and
third operands determine the type of the result.

Conditional expressions have right-to-left associativity with respect to their first
and third operands. The leftmost operand is evaluated first, and then only one of
the remaining two operands is evaluated. The following expressions are equivalent:
a ? b : c ? d : e ? f : g
a ? b : (c ? d : (e ? f : g))
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Types in conditional C expressions
In C, a conditional expression is not an lvalue, nor is its result.

Table 29. Types of operands and results in conditional C expressions

Type of one operand Type of other operand Type of result

Arithmetic Arithmetic Arithmetic type after usual
arithmetic conversions

Structure or union type Compatible structure or
union type

Structure or union type with
all the qualifiers on both
operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
type

Pointer to type NULL pointer (the constant 0) Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

IBM

 
In GNU C, a conditional expression is a valid lvalue, provided that its

type is not void and both of its branches are valid lvalues. The following
conditional expression (a ? b : c) is legal under GNU C:
(a ? b : c) = 5
/* Under GNU C, equivalent to (a ? b = 5 : (c = 5)) */

This extension is available when compiling in one of the extended language levels.
IBM

Examples of conditional expressions
The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:
x = (y > z) ? y : z;

The following statement is equivalent to the previous expression.
if (y > z)

x = y;
else

x = z;

The following expression calls the function printf, which receives the value of the
variable c, if c evaluates to a digit. Otherwise, printf receives the character
constant ’x’.
printf(" c = %c\n", isdigit(c) ? c : ’x’);

If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure the expression evaluates properly. For example, the =
operator has lower precedence than the ?: operator in the following expression:
int i,j,k;
(i == 7) ? j ++ : k = j;

The compiler will interpret this expression as if it were parenthesized this way:
int i,j,k;
((i == 7) ? j ++ : k) = j;
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That is, k is treated as the third operand, not the entire assignment expression k =
j.

To assign the value of j to k when i == 7 is false, enclose the last operand in
parentheses:
int i,j,k;
(i == 7) ? j ++ : (k = j);

Cast expressions
A cast operator is used for explicit type conversions. It converts the value of an
expression to a specified type.

Cast operator ()

Cast expression syntax

►► ( type ) expression ►◄

In C, the result of the cast operation is not an lvalue.

The following example demonstrates the use of the cast operator to dynamically
create an integer array of size 10:
#include <stdlib.h>

int main(void) {
int* myArray = (int*) malloc(10 * sizeof(int));
free(myArray);
return 0;

}

The malloc library function returns a void pointer that points to memory that
holds an object of the size of its argument. The statement int* myArray = (int*)
malloc(10 * sizeof(int)) has the following steps:
v Creates a void pointer that points to memory that can hold ten integers.
v Converts that void pointer into an integer pointer with the use of the cast

operator.
v Assigns that integer pointer to myArray.

Cast to union type (C only) (IBM extension)

Casting to a union type is the ability to cast a union member to the same type as
the union to which it belongs. Such a cast does not produce an lvalue. The feature
is supported as an extension to C99, implemented to facilitate porting programs
developed with GNU C.

Only a type that explicitly exists as a member of a union type can be cast to that
union type. The cast can use either the tag of the union type or a union type name
declared in a typedef expression. The type specified must be a complete union
type. An anonymous union type can be used in a cast to a union type, provided
that it has a tag or type name. A bit field can be cast to a union type, provided that
the union contains a bit field member of the same type, but not necessarily of the
same length. The following code shows an example of a simple cast to union:
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#include <stdio.h>

union f {
char t;
short u;
int v;
long w;
long long x;
float y;
double z;

};

int main() {
union f u;
char a = 1;
u = (union f)a;
printf("u = %i\n", u.t);

}

The output of this example is:
u = 1

Casting to a nested union is also allowed. In the following example, the double
type dd can be cast to the nested union u2_t.
int main() {

union u_t {
char a;
short b;
int c;
union u2_t {

double d;
}u2;

};
union u_t U;
double dd = 1.234;
U.u2 = (union u2_t) dd; // Valid.
printf("U.u2 is %f\n", U.u2);

}

The output of this example is:
U.u2 is 1.234

A union cast is also valid as a function argument, part of a constant expression for
initialization of a static or non-static data object, and in a compound literal
statement. The following example shows a cast to union used as part of an
expression for initializing a static object:
struct S{

int a;
}s;

union U{
struct S *s;

};

struct T{
union U u;

};

static struct T t[] = { {(union U)&s} };

Related reference:
“Structures and unions” on page 55
“The transparent_union type attribute” on page 78
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“Type names” on page 82
“Lvalues and rvalues” on page 115

Compound literal expressions
A compound literal is a postfix expression that provides an unnamed object whose
value is given by an initializer list. The C99 language feature allows you to pass
parameters to functions without the need for temporary variables. It is useful for
specifying constants of an aggregate type (arrays, structures, and unions) when
only one instance of such types is needed.

The syntax for a compound literal resembles that of a cast expression. However, a
compound literal is an lvalue, while the result of a cast expression is not.
Furthermore, a cast can only convert to scalar types or void, whereas a compound
literal results in an object of the specified type.

Compound literal syntax

►► ( type_name ) ▼

,

{ initializer_list } ►◄

The type_name can be any data type, including IBM vector IBM

 
and

user-defined types. It can be an array of unknown size, but not a variable length
array. If the type is an array of unknown size, the size is determined by the
initializer list.

The following example passes a constant structure variable of type point
containing two integer members to the function drawline:
drawline((struct point){6,7});

If the compound literal occurs outside the body of a function, the initializer list
must consist of constant expressions, and the unnamed object has static storage
duration. If the compound literal occurs within the body of a function, the
initializer list need not consist of constant expressions, and the unnamed object has
automatic storage duration.

IBM

 
For compatibility with GNU C, a static variable can be initialized with a

compound literal of the same type, provided that all the initializers in the
initializer list are constant expressions. IBM

Related reference:
String literals

Label value expressions (IBM extension)
The label value operator && returns the address of its operand, which must be a
label defined in the current function or a containing function. The value is a
constant of type void* and should be used only in a computed goto statement. The
language feature is an extension to C, implemented to facilitate porting programs
developed with GNU C.For details, see “Labels as values (IBM extension)” on page
154.
Related reference:
“Labels as values (IBM extension)” on page 154
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Computed goto statement

Operator precedence and associativity
Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left
order for grouping operands to operators that have the same precedence. An
operator's precedence is meaningful only if other operators with higher or lower
precedence are present. Expressions with higher-precedence operators are
evaluated first. The grouping of operands can be forced by using parentheses.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is
assigned to b first, and then the value of b is assigned to a.
b = 9;
c = 5;
a = b = c;

Because the order of subexpression evaluation is not specified, you can explicitly
force the grouping of operands with operators by using parentheses.

In the expression
a + b * c / d

the * and / operations are performed before + because of precedence. b is
multiplied by c before it is divided by d because of associativity.

The following tables list the language operators in order of precedence and show
the direction of associativity for each operator. Operators that have the same rank
have the same precedence.

Table 30. Precedence and associativity of postfix operators

Rank Right
associative?

Operator function Usage

1 member selection object . member

1 member selection pointer -> member

1 subscripting pointer [ expr ]

1 function call expr ( expr_list )

1 value construction type ( expr_list )

1 postfix increment lvalue ++

1 postfix decrement lvalue --

Table 31. Precedence and associativity of unary operators

Rank Right
associative?

Operator function Usage

2 yes size of object in bytes sizeof expr

2 yes size of type in bytes sizeof ( type )

2 yes prefix increment ++ lvalue

2 yes prefix decrement -- lvalue

2 yes bitwise negation ~ expr
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Table 31. Precedence and associativity of unary operators (continued)

Rank Right
associative?

Operator function Usage

2 yes not ! expr

2 yes unary minus - expr

2 yes unary plus + expr

2 yes address of & lvalue

2 yes indirection or dereference * expr

2 yes type conversion (cast) ( type ) expr

Table 32. Precedence and associativity of binary operators

Rank Right
associative?

Operator function Usage

3 multiplication expr * expr

3 division expr / expr

3 modulo (remainder) expr % expr

4 binary addition expr + expr

4 binary subtraction expr - expr

5 bitwise shift left expr << expr

5 bitwise shift right expr >> expr

6 less than expr < expr

6 less than or equal to expr <= expr

6 greater than expr > expr

6 greater than or equal to expr >= expr

7 equal expr == expr

7 not equal expr != expr

8 bitwise AND expr & expr

9 bitwise exclusive OR expr ^ expr

10 bitwise inclusive OR expr | expr

11 logical AND expr && expr

12 logical inclusive OR expr || expr

13 conditional expression expr ? expr : expr

14 yes simple assignment lvalue = expr

14 yes multiply and assign lvalue *= expr

14 yes divide and assign lvalue /= expr

14 yes modulo and assign lvalue %= expr

14 yes add and assign lvalue += expr

14 yes subtract and assign lvalue -= expr

14 yes shift left and assign lvalue <<= expr

14 yes shift right and assign lvalue >>= expr

14 yes bitwise AND and assign lvalue &= expr

14 yes bitwise exclusive OR and
assign

lvalue ^= expr
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Table 32. Precedence and associativity of binary operators (continued)

Rank Right
associative?

Operator function Usage

14 yes bitwise inclusive OR and
assign

lvalue |= expr

15 comma (sequencing) expr , expr

Examples of expressions and precedence
The parentheses in the following expressions explicitly show how the compiler
groups operands and operators.
total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

If parentheses did not appear in these expressions, the operands and operators
would be grouped in the same manner as indicated by the parentheses. For
example, the following expressions produce the same output.
total = (4+(5*3));
total = 4+5*3;

Because the order of grouping operands with operators that are both associative
and commutative is not specified, the compiler can group the operands and
operators in the expression:
total = price + prov_tax + city_tax;

in the following ways as indicated by parentheses:
total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city_tax);
total = ((price + city_tax) + prov_tax);

The grouping of operands and operators does not affect the result.

Because intermediate values are rounded, different groupings of floating-point
operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying
the same global variables.
a = b() + c() + d();

This expression can give different results depending on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.
a = b();
a += c();
a += d();

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Therefore, the following expressions are ambiguous:
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z = (x * ++y) / func1(y);
func2(++i, x[i]);

If y has the value of 1 before the first statement, it is not known whether or not the
value of 1 or 2 is passed to func1(). In the second statement, if i has the value of 1
before the expression is evaluated, it is not known whether x[1] or x[2] is passed
as the second argument to func2().
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Chapter 8. Statements

A statement, the smallest independent computational unit, specifies an action to be
performed. In most cases, statements are executed in sequence.

The following list is a summary of the statements available in C:
v “Labeled statements”
v “Expression statements” on page 154
v “Block statements” on page 155
v “Selection statements” on page 156
v “Iteration statements” on page 162
v “Jump statements” on page 165
v “Null statement” on page 170
v “Inline assembly statements (IBM extension)” on page 170
Related reference:
Chapter 4, “Data objects and declarations,” on page 37
“Function declarations” on page 179

Labeled statements
There are three kinds of labels: identifier, case, and default.

Labeled statement syntax

►► identifier : statement ►◄

The label consists of the identifier and the colon (:) character.

A label name must be unique within the function in which it appears.

Case and default label statements only appear in switch statements. These labels
are accessible only within the closest enclosing switch statement.

case statement syntax

►► case constant_expression : statement ►◄

default statement syntax

►► default : statement ►◄

The following are examples of labels:
comment_complete : ; /* null statement label */
test_for_null : if (NULL == pointer)

Related reference:
“The goto statement” on page 169
“The switch statement” on page 158
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Locally declared labels (IBM extension)
A locally declared label, or local label, is an identifier label that is declared at the
beginning of a statement expression and for which the scope is the statement
expression in which it is declared and defined. This language feature is an
extension of C to facilitate handling programs developed with GNU C.

A local label can be used as the target of a goto statement, jumping to it from
within the same block in which it was declared. This language extension is
particularly useful for writing macros that contain nested loops, capitalizing on the
difference between its statement scope and the function scope of an ordinary label.

Locally declared label syntax

►► __label__ ▼

,

identifier ; ►◄

The declaration of local labels must precede any ordinary declarations and
statements. The label declaration defines only the label name, so you must define
the label itself in the usual way, with a name and a colon, within the statements of
the statement expression.
Related reference:
“Statement expressions (IBM extension)” on page 156

Labels as values (IBM extension)
The address of a label defined in the current function or a containing function can
be obtained and used as a value wherever a constant of type void* is valid. The
address is the return value when the label is the operand of the unary operator &&.
The ability to use the address of label as a value is an extension to C99,
implemented to facilitate porting programs developed with GNU C.

In the following example, the computed goto statements use the values of label1
and label2 to jump to those spots in the function.
int main()
{

void * ptr1, *ptr2;
...
label1: ...
...
label2: ...
...
ptr1 = &&label1;
ptr2 = &&label2;
if (...) {

goto *ptr1;
} else {

goto *ptr2;
}
...

}

Related reference:
Computed goto statement

Expression statements
An expression statement contains an expression. The expression can be null.
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Expression statement syntax

►►
expression

; ►◄

An expression statement evaluates expression, then discards the value of the
expression. An expression statement without an expression is a null statement.

See the following examples of statements:
printf("Account Number: \n"); /* call to the printf */
marks = dollars * exch_rate; /* assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment */

Related reference:
Chapter 7, “Expressions and operators,” on page 115

Block statements
A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. All definitions,
declarations, and statements enclosed within a single set of braces are treated as a
single statement. You can use a block wherever a single statement is allowed.

Block statement syntax

►► ▼ ▼ ▼{ }
statement type_definition statement

file_scope_data_declaration
block_scope_data_declaration

►◄

A block defines a local scope. If a data object is usable within a block and its
identifier is not redefined, all nested blocks can use that data object.

Example of blocks
The following program shows how the values of data objects change in nested
blocks:
/**
** This example shows how data objects change in nested blocks.
**/
#include <stdio.h>

int main(void)
{

int x = 1; /* Initialize x to 1 */
int y = 3;

if (y > 0)
{

int x = 2; /* Initialize x to 2 */
printf("second x = %4d\n", x);

}
printf("first x = %4d\n", x);

return(0);
}

The program produces the following output:
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second x = 2
first x = 1

Two variables named x are defined in main. The first definition of x retains storage
while main is running. However, because the second definition of x occurs within a
nested block, printf("second x = %4d\n", x); recognizes x as the variable defined
on the previous line. Because printf("first x = %4d\n", x); is not part of the
nested block, x is recognized as the first definition of x.

Statement expressions (IBM extension)
A block statement is a sequence of statements enclosed by braces. In GNU C, a
compound statement inside parentheses might appear as an expression in what is
called a statement expression.

Statement expression syntax

►► ▼( { statement ; } ) ►◄

The value of a statement expression is the value of the last simple expression to
appear in the entire construct. If the last statement is not an expression, then the
construct is of type void and has no value.

The statement expression can be combined with the typeof operator to create
complex function-like macros in which each operand is evaluated only once. For
example:
#define SWAP(a,b) ( {__typeof__(a) temp; temp=a; a=b; b=temp;} )

Selection statements
Selection statements consist of the following types of statements:
v The if statement
v The switch statement

The if statement
An if statement is a selection statement that allows more than one possible flow of
control.

In C, an if statement lets you conditionally process a statement when the specified
test expression evaluates to a nonzero value. The test expression must be of
arithmetic or pointer type.

You can optionally specify an else clause on the if statement. If the test
expression evaluates to a zero value and an else clause exists, the statement
associated with the else clause runs. If the test expression evaluates to a nonzero
value, the statement following the expression runs and the else clause is ignored.

if statement syntax

►► if ( expression ) statement
else statement

►◄
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When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

A single statement following any selection statements (if, switch) is treated as a
compound statement containing the original statement. As a result any variables
declared on that statement will be out of scope after the if statement. For example:
if (x)
int i;

is equivalent to:
if (x)
{ int i; }

Variable i is visible only within the if statement. The same rule applies to the else
part of the if statement.

Examples of if statements

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.
if (score >= 90)

grade = ’A’;

The following example displays Number is positive if the value of number is
greater than or equal to 0. If the value of number is less than 0, it displays Number
is negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:
if (paygrade == 7)

if (level >= 0 && level <= 8)
salary *= 1.05;

else
salary *= 1.04;

else
salary *= 1.06;

cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement,
braces might be needed to force a particular else clause to associate with the
correct if statement. In this example, omitting the braces would cause the else
clause to associate with the nested if statement.
if (kegs > 0) {

if (furlongs > kegs)
fxph = furlongs/kegs;

}
else

fxph = 0;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement runs and the entire if
statement ends.

Chapter 8. Statements 157



if (value > 0)
++increase;

else if (value == 0)
++break_even;

else
++decrease;

Related reference:
“Boolean types” on page 48

The switch statement
A switch statement is a selection statement that lets you transfer control to different
statements within the switch body depending on the value of the switch
expression. The switch expression must evaluate to an integral or enumeration
value. The body of the switch statement contains case clauses that consist of
v A case label
v An optional default label
v A case expression
v A list of statements.

If the value of the switch expression equals the value of one of the case
expressions, the statements following that case expression are processed. If not, the
default label statements, if any, are processed.

switch statement syntax

►► switch ( expression ) switch_body ►◄

The switch body is enclosed in braces and can contain definitions, declarations, case
clauses, and a default clause. Each case clause and default clause can contain
statements.

►► { ▼

type_definition
file_scope_data_declaration
block_scope_data_declaration

▼

case_clause
►

►
default_clause

▼

case_clause
} ►◄

Note: An initializer within a type_definition, file_scope_data_declaration or
block_scope_data_declaration is ignored.

A case clause contains a case label followed by any number of statements. A case
clause has the form:
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Case clause syntax

►► case_label ▼ statement ►◄

A case label contains the word case followed by an integral constant expression and
a colon. The value of each integral constant expression must represent a different
value; you cannot have duplicate case labels. Anywhere you can put one case
label, you can put multiple case labels. A case label has the form:

case label syntax

►► ▼ case integral_constant_expression : ►◄

A default clause contains a default label followed by one or more statements. You
can put a case label on either side of the default label. A switch statement can
have only one default label. A default_clause has the form:

Default clause statement

►►
case_label

default :
case_label

▼ statement ►◄

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control is passed to the statement
following the case label that contains the matching value. If there is no matching
value but there is a default label in the switch body, control passes to the default
labelled statement. If no matching value is found, and there is no default label
anywhere in the switch body, no part of the switch body is processed.

When control passes to a statement in the switch body, control only leaves the
switch body when a break statement is encountered or the last statement in the
switch body is processed.

If necessary, an integral promotion is performed on the controlling expression, and
all expressions in the case statements are converted to the same type as the
controlling expression. The switch expression can also be of class type if there is a
single conversion to integral or enumeration type.

Compiling with option -qinfo=gen finds case labels that fall through when they
should not.
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Restrictions on switch statements

You can put data definitions at the beginning of the switch body, but the compiler
does not initialize auto and register variables at the beginning of a switch body.
You can have declarations in the body of the switch statement.

You cannot use a switch statement to jump over initializations.

When the scope of an identifier with a variably modified type includes a case or
default label of a switch statement, the entire switch statement is considered to be
within the scope of that identifier. That is, the declaration of the identifier must
precede the switch statement.

Examples of switch statements

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to ’/’, the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.
char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{

case ’+’:
add();
break;

case ’-’:
subtract();
break;

case ’*’:
multiply();
break;

case ’/’:
divide();
break;

default:
printf("invalid key\n");
break;

}

If the switch expression matches a case expression, the statements following the
case expression are processed until a break statement is encountered or the end of
the switch body is reached. In the following example, break statements are not
present. If the value of text[i] is equal to ’A’, all three counters are incremented.
If the value of text[i] is equal to ’a’, lettera and total are increased. Only
total is increased if text[i] is not equal to ’A’ or ’a’.
char text[100];
int capa, lettera, total;
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// ...

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case ’A’:
capa++;

case ’a’:
lettera++;

default:
total++;

}
}

The following switch statement performs the same statements for more than one
case label:
/**
** This example contains a switch statement that performs
** the same statement for more than one case label.
**/

#include <stdio.h>

int main(void)
{

int month;

/* Read in a month value */
printf("Enter month: ");
scanf("%d", &month);

/* Tell what season it falls into */
switch (month)
{

case 12:
case 1:
case 2:

printf("month %d is a winter month\n", month);
break;

case 3:
case 4:
case 5:

printf("month %d is a spring month\n", month);
break;

case 6:
case 7:
case 8:

printf("month %d is a summer month\n", month);
break;

case 9:
case 10:
case 11:

printf("month %d is a fall month\n", month);
break;

case 66:
case 99:
default:

printf("month %d is not a valid month\n", month);
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}

return(0);
}

If the expression month has the value 3, control passes to the statement:
printf("month %d is a spring month\n", month);

The break statement passes control to the statement following the switch body.
Related reference:

See -qinfo=gen in the XL C Compiler Reference
Case and default labels
“The break statement” on page 165

Iteration statements
Iteration statements consist of the following types of statements:
v The while statement
v The do statement
v The for statement
Related reference:
“Boolean types” on page 48

The while statement
A while statement repeatedly runs the body of a loop until the controlling
expression evaluates to 0.

while statement syntax

►► while ( expression ) statement ►◄

The expression must be of arithmetic or pointer type.

The expression is evaluated to determine whether or not to process the body of the
loop. If the expression evaluates to 0, the body of the loop never runs. If the
expression does not evaluate to 0, the loop body is processed. After the body has
run, control passes back to the expression. Further processing depends on the
value of the condition.

A break, return, or goto statement can cause a while statement to end, even when
the condition does not evaluate to 0.

In the following example, item[index] triples and is printed out, as long as the
value of the expression ++index is less than MAX_INDEX. When ++index evaluates to
MAX_INDEX, the while statement ends.
/**
** This example illustrates the while statement.
**/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)
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{
static int item[ ] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
{

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);
}

The do statement
A do statement repeatedly runs a statement until the test expression evaluates to 0.
Because of the order of processing, the statement is run at least once.

do statement syntax

►► do statement while ( expression ) ; ►◄

The expression must be of arithmetic or pointer type.

The body of the loop is run before the controlling while clause is evaluated.
Further processing of the do statement depends on the value of the while clause. If
the while clause does not evaluate to 0, the statement runs again. When the while
clause evaluates to 0, the statement ends.

A break, return, or goto statement can cause the processing of a do statement to
end, even when the while clause does not evaluate to 0.

The following example keeps incrementing i while i is less than 5:
#include <stdio.h>

int main(void) {
int i = 0;
do {
i++;
printf("Value of i: %d\n", i);

}
while (i < 5);
return 0;

}

See the following output of the above example:
Value of i: 1
Value of i: 2
Value of i: 3
Value of i: 4
Value of i: 5

The for statement
A for statement provides the following benefits:
v Evaluate an expression before the first iteration of the statement (initialization)
v Specify an expression to determine whether or not the statement should be

processed (the condition)
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v Evaluate an expression after each iteration of the statement (often used to
increment for each iteration)

v Repeatedly process the statement if the controlling part does not evaluate to 0.

for statement syntax

►► for ( ; ; )
expression1 expression2 expression3

►

► statement ►◄

expression1 is the initialization expression. It is evaluated only before the statement is
processed for the first time. You can use this expression to initialize a variable. You
can also use this expression to declare a variable, provided that the variable is not
declared as static (it must be automatic and may also be declared as register). If
you declare a variable in this expression, or anywhere else in statement, that
variable goes out of scope at the end of the for loop. If you do not want to
evaluate an expression prior to the first iteration of the statement, you can omit
this expression.

expression2 is the conditional expression. It is evaluated before each iteration of the
statement. expression2 must be of arithmetic or pointer type.

If expression2 evaluates to 0, the statement is not processed and control moves to
the next statement following the for statement. If expression2 does not evaluate to
0, the statement is processed. If you omit expression2, it is as if the expression had
been replaced by 1, and the for statement is not terminated by failure of this
condition.

expression3 is evaluated after each iteration of the statement. This expression is often
used for incrementing, decrementing, or assigning to a variable. This expression is
optional.

A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to 0. If you omit expression2, you must use
a break, return, or goto statement to end the for statement.

Examples of for statements

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, count is
incremented.
int count;
for (count = 1; count <= 20; count++)

printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
int count = 1;
while (count <= 20)
{

printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
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for (; index > 10; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index,
list[index]);

}

The following for statement will continue running until scanf receives the letter e:
for (;;)
{

scanf("%c", &letter);
if (letter == ’\n’)

continue;
if (letter == ’e’)

break;
printf("You entered the letter %c\n", letter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i and j. The second comma, a comma operator, allows both i and j to be
incremented at each step through the loop.
for (int i = 0,
j = 50; i < 10; ++i, j += 50)
{

cout << "i = " << i << "and j = " << j
<< endl;

}

The following example shows a nested for statement. It prints the values of an
array having the dimensions [5][3].
for (row = 0; row < 5; row++)

for (column = 0; column < 3; column++)
printf("%d\n",
table[row][column]);

The outer statement is processed as long as the value of row is less than 5. Each
time the outer for statement is executed, the inner for statement sets the initial
value of column to zero and the statement of the inner for statement is executed 3
times. The inner statement is executed as long as the value of column is less than 3.

Jump statements
Jump statements consist of the following types of statements:
v “The break statement”
v “The continue statement” on page 166
v “The return statement” on page 167
v “The goto statement” on page 169

The break statement
A break statement lets you end an iterative (do, for, or while) statement or a switch
statement and exit from it at any point other than the logical end. A break may
only appear on one of these statements.
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break statement syntax

►► break ; ►◄

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch statement, the break passes control out of the switch body to the next
statement outside the switch statement.

The continue statement
A continue statement ends the current iteration of a loop. Program control is passed
from the continue statement to the end of the loop body.

A continue statement has the form:

►► continue ; ►◄

A continue statement can only appear within the body of an iterative statement,
such as do, for, or while.

The continue statement ends the processing of the action part of an iterative
statement and moves control to the loop continuation portion of the statement. For
example, if the iterative statement is a for statement, control moves to the third
expression in the condition part of the statement, then to the second expression
(the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

Examples of continue statements

The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.
/**
** This example shows a continue statement in a for statement.
**/

#include <stdio.h>
#define SIZE 5

int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf("rate = %.2f\n", rates[i]);
}

return(0);
}
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The program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop
ends. Processing continues with the third expression of the inner loop. The inner
loop ends when the '\0' escape sequence is encountered.
/**
** This program counts the characters in strings that are part
** of an array of pointers to characters. The count excludes
** the digits 0 through 9.
**/

#include <stdio.h>
#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i < SIZE; i++) /* for each string */

/* for each each character */
for (pointer = strings[i]; *pointer != ’\0’;
++pointer)
{ /* if a number */

if (*pointer >= ’0’ && *pointer <= ’9’)
continue;

letter_count++;
}

printf("letter count = %d\n", letter_count);

return(0);
}

The program produces the following output:
letter count = 5

The return statement
A return statement ends the processing of the current function and returns control
to the caller of the function.

return statement syntax

►► return
expression

( )

; ►◄

A value-returning function should include a return statement, containing an
expression.

If an expression is not given on a return statement in a function declared with a
non-void return type, the compiler issues a warning message.
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If the data type of the expression is different from the function return type,
conversion of the return value takes place as if the value of the expression were
assigned to an object with the same function return type.

For a function of return type void, a return statement is not strictly necessary. If
the end of such a function is reached without encountering a return statement,
control is passed to the caller as if a return statement without an expression were
encountered. In other words, an implicit return takes place upon completion of the
final statement, and control automatically returns to the calling function.

Examples of return statements

The following are examples of return statements:
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match returns
the value of i. If a match does not exist, the function match returns the value -1
(negative one).
int match(int number, int array[ ], int n)
{

int i;

for (i = 0; i < n; i++)
if (number == array[i])

return (i);
return(-1);

}

A function can contain multiple return statements. For example:
void copy( int *a, int *b, int c)
{

/* Copy array a into b, assuming both arrays are the same size */

if (!a || !b) /* if either pointer is 0, return */
return;

if (a == b) /* if both parameters refer */
return; /* to same array, return */

if (c == 0) /* nothing to copy */
return;

for (int i = 0; i < c; ++i;) /* do the copying */
b[i] = a[1];

/* implicit return */
}

In this example, the return statement is used to cause a premature termination of
the function, similar to a break statement.

An expression appearing in a return statement is converted to the return type of
the function in which the statement appears. If no implicit conversion is possible,
the return statement is invalid.
Related reference:
“Function return type specifiers” on page 185
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“Function return values” on page 186

The goto statement
A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label specified on the goto statement.

goto statement syntax

►► goto label_identifier ; ►◄

Because the goto statement can interfere with the normal sequence of processing, it
makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

If an active block is exited using a goto statement, any local variables are
destroyed when control is transferred from that block.

You cannot use a goto statement to jump over initializations.

A goto statement is allowed to jump within the scope of a variable length array,
but not past any declarations of objects with variably modified types.

The following example shows a goto statement that is used to jump out of a
nested loop. This function could be written without using a goto statement.
/**
** This example shows a goto statement that is used to
** jump out of a nested loop.
**/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)
{

int matrix[3][3]= {1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}

void display(int matrix[3][3])
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{

if ( (matrix[i][j] < 1) || (matrix[i][j] > 6) )
goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
}

return;
out_of_bounds: printf("number must be 1 through 6\n");

}

Computed goto statement (IBM extension)

A computed goto is a goto statement for which the target is a label from the same
function. The address of the label is a constant of type void*, and is obtained by
applying the unary label value operator && to the label. The target of a computed
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goto is known at run time, and all computed goto statements from the same
function will have the same targets. The language feature is an extension to C99,
implemented to facilitate porting programs developed with GNU C.

Computed goto statement syntax

►► goto *expression ; ►◄

The *expression is an expression of type void*.
Related reference:
“Labeled statements” on page 153
“Labels as values (IBM extension)” on page 154
“Label value expressions (IBM extension)” on page 147

Null statement
The null statement performs no operation. It has the form:

►► ; ►◄

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.
for (i = 0; i < 3; price[i++] = 0)

;

A null statement can be used when a label is needed before the end of a block
statement. For example:
void func(void) {

if (error_detected)
goto depart;

/* further processing */
depart: ; /* null statement required */

}

Inline assembly statements (IBM extension)
Under extended language levels, the compiler provides support for embedded
assembly code fragments among C source statements. This extension has been
implemented for use in general system programming code, and in the operating
system kernel and device drivers, which were originally developed with GNU C.

The keyword asm stands for assembly code. When strict language levels are used
in compilation, the C compiler treats asm as a regular identifier and reserves __asm
and __asm__ as keywords.

The syntax is as follows:

asm statement syntax — statement in local scope
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►► asm
__asm
__asm__

volatile
►

► ( code_format_string )
:

output :
input :

clobbers

►◄

input:

▼

,

constraint ( C_expression )
modifier

output:

▼

,

modifier constraint ( C_expression )

volatile
The qualifier volatile instructs the compiler to perform only minimal
optimizations on the assembly block. The compiler cannot move any
instructions across the implicit fences surrounding the assembly block. See
Example 1 for detailed usage information.

code_format_string
The code_format_string is the source text of the asm instructions and is a
string literal similar to a printf format specifier.

Operands are referred to in the %integer format, where integer refers to the
sequential number of the input or output operand. See Example 1 for
detailed usage information.

To increase readability, each operand can be given a symbolic name
enclosed in brackets. In the assembler code section, you can refer to each
operand in the %[symbolic_name] format, where the symbolic_name is
referenced in the operand list. You can use any name, including existing C
symbols, because the symbolic names have no relation to any C identifiers.
However, no two operands in the same assembly statement can use the
same symbolic name. See Example 2 for detailed usage information.

output
The output consists of zero, one or more output operands, separated by
commas. Each operand consists of a constraint(C_expression) pair. The
output operand must be constrained by the = or + modifier (described
below), and, optionally, by an additional % or & modifier.

input The input consists of zero, one or more input operands, separated by
commas. Each operand consists of a constraint(C_expression) pair.

clobbers

clobbers is a comma-separated list of register names enclosed in double
quotes. If an asm instruction updates registers that are not listed in the
input or output of the asm statement, the registers must be listed as
clobbered registers. The following register names are valid :
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r0 to r31
General purpose registers

f0 to f31
Floating-point registers

lr Link register

ctr Loop count, decrement and branching register

fpscr Floating-point status and control register

xer Fixed-point exception register

cr0 to cr7
Condition registers. Example 3 shows a typical use of condition
registers in the clobbers.

v0 to v31 
Vector registers (on selected processors only)

In addition to the register names, cc and memory can also be used in the list
of clobbered registers. The usage information of cc and memory is listed as
follows:

cc Add cc to the list of clobbered registers if assembler instructions
can alter condition code register.

memory

Add memory to the clobber list if assembler instructions can change
a memory location in an unpredictable fashion. The memory clobber
ensures that the compiler does not to move the assembler
instruction across other memory references and ensures that any
data that is used after the completion of the assembly statement is
valid.

However, the memory clobber can result in many unnecessary
reloads, reducing the benefits of hardware prefetching. Thus, the
memory clobber can impose a performance penalty and should be
used with caution. See Example 4 and Example 1 for the detailed
usage information.

modifier

The modifier can be one of the following operators:

= Indicates that the operand is write-only for this instruction. The
previous value is discarded and replaced by output data. See
Example 5 for detailed usage information.

+ Indicates that the operand is both read and written by the
instruction. See Example 6 for detailed usage information.

& Indicates that the operand may be modified before the instruction
is finished using the input operands; a register that is used as
input should not be reused here.

% Declares the instruction to be commutative for this operand and
the following operand. This means that the order of this operand
and the next may be swapped when generating the instruction.
This modifier can be used on an input or output operand, but
cannot be specified on the last operand. See Example 7 for detailed
usage information.
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constraint

The constraint is a string literal that describes the kind of operand that is
permitted, one character per constraint. The following constraints are
supported:

b Use a general register other than zero. Some instructions treat the
designation of register 0 specially, and do not behave as expected if
the compiler chooses r0. For these instructions, the designation of
r0 does not mean that r0 is used. Instead, it means that the literal
value 0 is specified. See Example 8 for detailed usage information.

c Use the CTR register.

d Use a floating-point register.

f Use a floating-point register. See Example 7 for detailed usage
information.

g Use a general register, memory, or immediate operand. In the
POWER® architecture, there are no instructions where a register,
memory specifier, or immediate operand can be used
interchangeably. However, this constraint is tolerated where it is
possible to do so.

h Use the CTR or LINK register.

i Use an immediate integer or string literal operand.

l Use the CTR register.

m Use a memory operand supported by the machine. You can use
this constraint for operands of the form D(R), where D is a
displacement and R is a register. See Example 9 for detailed usage
information.

n Use an immediate integer.

o Use a memory operand that is offsetable. This means that the
memory operand can be addressed by adding an integer to a base
address. In the POWER architecture, memory operands are always
offsetable, so the constraints o and m can be used interchangeably.

r Use a general register. See Example 5 for detailed usage
information.

s Use a string literal operand.

v Use a vector register.

0, 1, ...8, 9
A matching constraint. Allocate the same register in output as in
the corresponding input.

I, J, K, L, M, N, O, P 
Constant values. Fold the expression in the operand and substitute
the value into the % specifier. These constraints specify a maximum
value for the operand, as follows:
v I — signed 16-bit
v J — unsigned 16-bit shifted left 16 bits
v K — unsigned 16-bit constant
v L — signed 16-bit shifted left 16 bits
v M — unsigned constant greater than 31
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v N — unsigned constant that is an exact power of 2
v O — zero
v P — signed whose negation is a signed 16-bit constant

C_expression

The C_expression is a C expression whose value is used as the operand for
the asm instruction. Output operands must be modifiable lvalues. The
C_expression must be consistent with the constraint specified on it. For
example, if i is specified, the operand must be an integer constant number.

Note: If pointer expressions are used in input or output, the assembly instructions
honor the ANSI aliasing rule (see “Type-based aliasing” on page 85 for more
information). This means that indirect addressing using values in pointer
expression operands should be consistent with the pointer types; otherwise, you
must disable the -qalias=ansi option during compilation.
Related reference:

See -qalias=ansi in the XL C Compiler Reference

Supported and unsupported constructs
Supported constructs

The inline assembly statements support the following constructs:
v All the instruction statements listed in the Assembler Language Reference
v All extended instruction mnemonics
v Label definitions
v Branches to labels

Unsupported constructs

The inline assembly statements do not support the following constructs:
v Pseudo-operation statements, which are assembly statements that begin with a

dot (.), such as .function
v Branches between different asm blocks

In addition, some constraints originating from the GNU compiler are not
supported, but are tolerated where it is possible. For example, constraints S and T
are treated as immediates, but the compiler issues a warning message stating that
they are unsupported.

Restrictions on inline assembly statements
The following restrictions are on the use of inline assembly statements:
v The assembler instructions must be self-contained within an asm statement. The

asm statement can only be used to generate instructions. All connections to the
rest of the program must be established through the output and input operand
list.

v Referencing an external symbol directly without going through the operand list
is not supported.

v Assembler instructions requiring a pair of registers are not specifiable by any
constraints, and are therefore not supported. For example, you cannot use the %f
constraint for a _Decimal128 operand.
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v The shared register file between the floating-point scalar and the vector registers
are not modelled as shared in inline assembly statements. You must specify
registers f0-f31 and v0-v31 in the clobbers list. There is no combined x0-x63.

v Operand replacements (such as %0, %1, and so on) can use an optional x before
the number or symbolic name to indicate that a vsx register reference must be
used. For example, a vector operand %1 allocated to register v0 is replaced with 0
(for use in VMX instructions). The same operand used as %x1 in the assembly
text is replaced with 32 (for use in VSX instructions). Note that this restriction
applies only for architectures that support VSX architecture extension.

Related reference:
Assembly labels (IBM extension)
Variables in specified registers (IBM extension)

See -qasm in the XL C Compiler Reference

Examples of inline assembly statements
Example 1: The following example illustrates the usage of the volatile keyword.
#include <stdio.h>

inline bool acquireLock(int *lock){
bool returnvalue = false;
int lockval;
asm volatile(

/*--------a fence here-----*/

" 0: lwarx %0,0,%2 \n" // Loads the word and reserves
// a memory location for the subsequent
// stwcx. instruction.

" cmpwi %0,0 \n" // Compares the lock value to 0.
" bne- 1f \n" // If it is 0, you can acquire the

// lock. Otherwise, you did not get the
// lock and must try again later.

" ori %0,%0,1 \n" // Sets the lock to 1.
" stwcx. %0,0,%2 \n" // Tries to conditionally store 1

// into the lock word to acquire
// the lock.

" bne- 0b \n" // Reservation was lost. Try again.

" isync \n" // Lock acquired. The isync instruction
// implements an import barrier to
// ensure that the instructions that
// access the shared region guarded by
// this lock are executed only after
// they acquire the lock.

" ori %1,%1,1 \n" // Sets the return value for the
// function acquireLock to true.

" 1: \n" // Did not get the lock.
// Will return false.

/*------a fence here------*/

: "+r" (lockval),
"+r" (returnvalue)

: "r" (lock) // "lock" is the address of the lock in
// memory.

: "cr0" // cr0 is clobbered by cmpwi and stwcx.
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);

return returnvalue;
}
int main()
{

int myLock;
if(acquireLock(&myLock)){

printf("got it!\n");
}else{

printf("someone else got it\n");
}
return 0;

}

In this example, %0 refers to the first operand "+r"(lockval), %1 refers to the
second operand "+r"(returnvalue), and %2 refers to the third operand "r"(lock).

The assembly statement uses a lock to control access to the shared storage; no
instruction can access the shared storage before acquiring the lock.

The volatile keyword implies fences around the assembly instruction group, so
that no assembly instructions can be moved out of or around the assembly block.

Without the volatile keyword, the compiler can move the instructions around for
optimization. This might cause some instructions to access the shared storage
without acquiring the lock.

It is unnecessary to use the memory clobber in this assembly statement, because the
instructions do not modify memory in an unexpected way. If you use the memory
clobber, the program is still functionally correct. However, the memory clobber
results in many unnecessary reloads, imposing a performance penalty.

Example 2: The following example illustrates the use of the symbolic names for
input and output operands.
int a ;
int b = 1, c = 2, d = 3 ;
__asm(" addc %[result], %[first], %[second]"

: [result] "=r" (a)
: [first] "r" (b),
[second] "r" (d)

);

In this example, %[result] refers to the output operand variable a, %[first] refers
to the input operand variable b, and %[second] refers to the input operand variable
d.

Example 3: The following example shows a typical use of condition registers in the
clobbers.

asm (" add. %0,%1,%2 \n"
: "=r" (c)
: "r" (a),

"r" (b)
: "cr0"
);

In this example, apart from the registers listed in the input and output of the
assembly statement, the add. instruction also affects the condition register field 0.
Therefore, you must inform the compiler about this by adding cr0 to the clobbers.

176 XL C: Language Reference



Example 4: The following example shows the usage of the memory clobber.
asm volatile (" dcbz 0, %0 \n"

: "=r"(b)
:
: "memory"
);

In this example, the instruction dcbz clears a cache block, and might have changed
the variables in the memory location. There is no way for the compiler to know
which variables have been changed. Therefore, the compiler assumes that all data
might be aliased with the memory changed by that instruction.

As a result, everything that is needed must be reloaded from memory after the
completion of the assembly statement. The memory clobber ensures program
correctness at the expense of program performance, because the compiler might
reload data that had nothing to do with the assembly statement.

Example 5: The following example shows the usage of the = modifier and the r
constraint.
int a ;
int b = 100 ;
int c = 200 ;
asm(" add %0, %1, %2"

: "=r" (a)
: "r" (b),

"r" (c)
);

The add instruction adds the contents of two general purpose registers. The %0, %1,
and %2 operands are substituted by the C expressions in the output/input operand
fields.

The output operand uses the = modifier to indicate that a modifiable operand is
required; it uses the r constraint to indicate that a general purpose register is
required. Likewise, the r constraint in the input operands indicates that general
purpose registers are required. Within these restrictions, the compiler is free to
choose any registers to substitute for %0, %1, and %2.

Note: If the compiler chooses r0 for the second operand, the add instruction uses
the literal value 0 and yields an unexpected result. Thus, to prevent the compiler
from choosing r0 for the second operand, you can use the b constraint to denote
the second operand.

Example 6: The following example shows the usage of the + modifier and the K
constraint.
asm (" addi %0,%0,%2"

: "+r" (a)
: "r" (a),

"K" (15)
);

This assembly statement adds operand %0 and operand %2, and writes the result to
operand %0. The output operand uses the + modifier to indicate that operand %0
can be read and written by the instruction. The K constraint indicates that the value
loaded to operand %2 must be an unsigned 16-bit constant value.

Example 7: The following example shows the usage of the % modifier and the f
constraint.
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asm(" fadd %0, %1, %2"
: "=f" (c)
: "%f" (a),

"f" (b)
);

This assembly statement adds operands a and b, and writes the result to operand
c. The % modifier indicates that operands a and b can be switched if the compiler
can generate better code in doing so. Each operand has the f constraint, which
indicates that a floating point register is required.

Example 8: The following example shows the usage of the b constraint.
char res[8]={’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’};
char a=’y’;
int index=7;

asm (" stbx %0,%1,%2 \n" \
: \
: "r" (a),

"b" (index),
"r" (res)

);

In this example, the b constraint instructs the compiler to choose a general register
other than r0 for the input operand %1. The result string of this program is
abcdefgy. However, if you use the r constraint and the compiler chooses r0 for %1,
this instruction produces an incorrect result string ybcdefgh. For instructions that
treat the designation of r0 specially, it is therefore important to denote the input
operands with the b constraint.

Example 9: The following example shows the usage of the m constraint.
asm (" stb %1,%0 \n" \

: "=m" (res) \
: "r" (a)
);

In this example, the syntax of the instruction stb is stb RS,D(RA), where D is a
displacement and R is a register. D+RA forms an effective address, which is
calculated from D(RA). By using constraint m, you do not need to manually
construct effective addresses by specifying the register and displacement separately.

You can use a single constraint m or o to refer to the two operands in the
instruction, regardless of what the correct offset should be and whether it is an
offset off the stack or off the TOC (Table of Contents). This allows the compiler to
choose the right register (r1 for an automatic variable, for instance) and apply the
right displacement automatically.
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Chapter 9. Functions

In the context of programming languages, the term function means an assemblage
of statements used for computing an output value. The word is used less strictly
than in mathematics, where it means a set relating input variables uniquely to
output variables. Functions in C programs might not produce consistent outputs
for all inputs, might not produce output at all, or might have side effects.
Functions can be understood as user-defined operations, in which the parameters
of the parameter list, if any, are the operands.

Function declarations and definitions
The distinction between a function declaration and function definition is similar to
that of a data declaration and definition. The declaration establishes the names and
characteristics of a function but does not allocate storage for it, while the definition
specifies the body for a function, associates an identifier with the function, and
allocates storage for it. Thus, the identifiers declared in this example:
float square(float x);

do not allocate storage.

The function definition contains a function declaration and the body of a function.
The body is a block of statements that perform the work of the function. The
identifiers declared in this example allocate storage; they are both declarations and
definitions.
float square(float x)
{ return x*x; }

A function can be declared several times in a program, but all declarations for a
given function must be compatible; that is, the return type is the same and the
parameters have the same type. However, a function can only have one definition.
Declarations are typically placed in header files, while definitions appear in source
files.

Function declarations
A function identifier preceded by its return type and followed by its parameter list
is called a function declaration or function prototype. The prototype informs the
compiler of the format and existence of a function prior to its use. The compiler
checks for mismatches between the parameters of a function call and those in the
function declaration. The compiler also uses the declaration for argument type
checking and argument conversions.

If a function declaration is not visible at the point at which a call to the function is
made, the compiler assumes an implicit declaration of extern int func();
However, for conformance to C99, you should explicitly prototype every function
before making a call to it.

The elements of a declaration for a function are as follows:
v “Function storage class specifiers” on page 182, which specify linkage
v “Function return type specifiers” on page 185, which specify the data type of a

value to be returned
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v “Function specifiers” on page 182, which specify additional properties for
functions

v “Function declarators” on page 187, which include function identifiers as well as
lists of parameters

All function declarations have the form:

Function declaration syntax

►►
storage_class_specifier function_specifier

return_type_specifier ►

► function_declarator ; ►◄

IBM In addition, for compatibility with GNU C, XL C allows you to use
attributes to modify the properties of functions. They are described in “Function
attributes (IBM extension)” on page 189.

Function definitions
The elements of a function definition are as follows:
v “Function storage class specifiers” on page 182, which specify linkage
v “Function return type specifiers” on page 185, which specify the data type of a

value to be returned
v “Function specifiers” on page 182, which specify additional properties for

functions
v “Function declarators” on page 187, which include function identifiers as well as

lists of parameters
v The function body, which is a braces-enclosed series of statements representing

the actions that the function performs

IBM

 
In addition, for compatibility with GNU C, XL C allows you to use

attributes to modify the properties of functions. They are described in “Function
attributes (IBM extension)” on page 189. IBM

Function definitions take the following form:

Function definition syntax (C only)

►►
storage_class_specifier function_specifier

►

►
return_type_specifier

function_declarator { function body } ►◄

Examples of function declarations
The following code fragments show several function declarations (or prototypes).
The first declares a function f that takes two integer arguments and has a return
type of void:

void f(int, int);

This fragment declares a pointer p1 to a function that takes a pointer to a constant
character and returns an integer:
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int (*p1) (const char*);

The following code fragment declares a function f1 that takes an integer argument,
and returns a pointer to a function that takes an integer argument and returns an
integer:

int (*f1(int)) (int);

Alternatively, a typedef can be used for the complicated return type of function f1:
typedef int f1_return_type(int);
f1_return_type* f1(int);

The following declaration is of an external function f2 that takes a constant integer
as its first argument, can have a variable number and variable types of other
arguments, and returns type int.

extern int f2(const int, ...);

Examples of function definitions
The following example is a definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum has external linkage, returns an object that has type int, and has
two parameters of type int declared as x and y. The function body contains a
single statement that returns the sum of x and y.

The following function set_date declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.
void set_date(register struct date *date_ptr)
{

date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

Compatible functions
For two function types to be compatible, they must meet the following
requirements:
v They must agree in the number of parameters (and use of ellipsis).
v They must have compatible return types.
v The corresponding parameters must be compatible with the type that results

from the application of the default argument promotions.

The composite type of two compatible function types is determined as follows:
v If one of the function types has a parameter type list, the composite type is a

function prototype with the same parameter type list.
v If both function types have parameter type lists, the composite type of each

parameter is determined as follows:
– The composite of parameters of different rank is the type that results from the

application of the default argument promotions.
– The composite of parameters with array or function type is the adjusted type.
– The composite of parameters with qualified type is the unqualified version of

the declared type.
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For example, for the following two function declarations:
int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type would be:
int f(int (*)(char *), double (*)[3]);

If the function declarator is not part of the function declaration, the parameters
may have incomplete type. The parameters may also specify variable length array
types by using the [*] notation in their sequences of declarator specifiers. The
following are examples of compatible function prototype declarators:
int myMin(int n, int m, int a[n][m]);
int myMin(int n, int m, int a[*][*]);
int myMin(int n, int m, int a[ ][*]);
int myMin(int n, int m, int a[ ][m]);

Related reference:
Compatible and composite types

Function storage class specifiers
For a function, the storage class specifier determines the linkage of the function. By
default, function definitions have external linkage, and can be called by functions
defined in other files. An exception is inline functions, which are treated by default
as having internal linkage; see “Linkage of inline functions” on page 183 for more
information.

A storage class specifier may be used in both function declarations and definitions.
The only storage class options for functions are:
v static

v extern

The static storage class specifier
A function declared with the static storage class specifier has internal linkage,
which means that it may be called only within the translation unit in which it is
defined.

The static storage class specifier can be used in a function declaration only if it is
at file scope. You cannot declare functions within a block as static.
Related reference:
“Internal linkage” on page 7

The extern storage class specifier
A function that is declared with the extern storage class specifier has external
linkage, which means that it can be called from other translation units. The
keyword extern is optional; if you do not specify a storage class specifier, the
function is assumed to have external linkage.
Related reference:
“External linkage” on page 7

Function specifiers
The available function specifiers for functions declarations and definitions, inline
and _Noreturn, are described below.
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The inline function specifier
An inline function is one for which the compiler copies the code from the function
definition directly into the code of the calling function rather than creating a
separate set of instructions in memory. Instead of transferring control to and from
the function code segment, a modified copy of the function body may be
substituted directly for the function call. In this way, the performance overhead of
a function call is avoided. Using the inline specifier is only a suggestion to the
compiler that an inline expansion can be performed; the compiler is free to ignore
the suggestion.

Any function, with the exception of main, can be declared or defined as inline with
the inline function specifier. Static local variables are not allowed to be defined
within the body of an inline function.

The following code fragment shows an inline function definition:
inline int add(int i, int j) { return i + j; }

The use of the inline specifier does not change the meaning of the function.
However, the inline expansion of a function may not preserve the order of
evaluation of the actual arguments.

The most efficient way to code an inline function is to place the inline function
definition in a header file, and then include the header in any file containing a call
to the function which you would like to inline.

Note: The inline specifier is represented by the following keywords:
v The inline keyword is recognized under compilation with xlc or c99, or with

the -qlanglvl=stdc99 or -qlanglvl=extc99 options or -qkeyword=inline. The
__inline__ (or __inline) keyword is recognized at all language levels; however,
see “Linkage of inline functions” below for the semantics of this keyword.

Linkage of inline functions

Inline functions are treated by default as having static linkage; that is, they are
only visible within a single translation unit. Therefore, in the following example,
even though function foo is defined in exactly the same way, foo in file a.c and
foo in file b.c are treated as separate functions: two function bodies are generated,
and assigned two different addresses in memory:
// a.c

#include <stdio.h>

inline int foo(){
return 3;

}

void g() {
printf("foo called from g: return value = %d, address = %p\n", foo(), &foo);

}

// b.c

#include <stdio.h>

inline int foo(){
return 3;

}
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void g();

int main() {
printf("foo called from main: return value = %d, address = %p\n", foo(), &foo);
g();

}

The output from the compiled program is:
foo called from main: return value = 3, address = 0x10000580
foo called from g: return value = 3, address = 0x10000500

Since inline functions are treated as having internal linkage, an inline function
definition can co-exist with a regular, external definition of a function with the
same name in another translation unit. However, when you call the function from
the file containing the inline definition, the compiler may choose either the inline
version defined in the same file or the external version defined in another file for
the call; your program should not rely on the inline version being called. In the
following example, the call to foo from function g could return either 6 or 3:
// a.c

#include <stdio.h>

inline int foo(){
return 6;

}

void g() {
printf("foo called from g: return value = %d\n", foo());

}

// b.c

#include <stdio.h>

int foo(){
return 3;

}

void g();

int main() {
printf("foo called from main: return value = %d\n", foo());
g();

}

Similarly, if you define a function as extern inline, or redeclare an inline
function as extern, the function simply becomes a regular, external function and is
not inlined.

IBM

 
If you specify the __inline__ keyword, with the trailing underscores, the

compiler uses the GNU C semantics for inline functions. In contrast to the C99
semantics, a function defined as __inline__ provides an external definition only; a
function defined as static __inline__ provides an inline definition with internal
linkage (as in C99); and a function defined as extern __inline__, when compiled
with optimization enabled, allows the co-existence of an inline and external
definition of the same function. For more information on the GNU C
implementation of inline functions, see the GCC information, available at
http://gcc.gnu.org/onlinedocs/. IBM

Related reference:
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“always_inline” on page 191
“noinline” on page 195

See -qlanglvl in the XL C Compiler Reference

See -qkeyword in the XL C Compiler Reference
“The static storage class specifier” on page 182
“The extern storage class specifier” on page 182

The _Noreturn function specifier
The _Noreturn function specifier declares a function that does not return to its
caller. When you declare a function with the specifier, the compiler can better
optimize your code without regard to what happens if it returns. Any function,
with the exception of main, can be declared or defined with the _Noreturn function
specifier.

When _Noreturn is enabled, the __IBMC_NORETURN macro is defined as 1.

Include the standard header file stdnoreturn.h in your program when using the
_Noreturn function specifier.

The following code fragment shows a function definition with the _Noreturn
specifier:
_Noreturn void f (void) {

abort();
}

Notes:

v The _Noreturn keyword is recognized under compilation with the
-qlanglvl=extc89, -qlanglvl=extc99, -qlanglvl=extended, or -qlanglvl=extc1x
compiler option.

v You can also define your own functions that never return by using the
_Noreturn function specifier. However, any functions that are declared with
_Noreturn must call one of the following functions. Otherwise, the functions will
return the control to their respective caller.
– abort

– exit

– _Exit

– longjmp

– quick_exit

– thrd_exit

Function return type specifiers
The result of a function is called its return value and the data type of the return
value is called the return type.

If a function declaration does not specify a return type, the compiler assumes an
implicit return type of int. However, for conformance to C99, you should specify a
return type for every function declaration and definition, whether or not the
function returns int.
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A function may be defined to return any type of value, except an array type or a
function type; these exclusions must be handled by returning a pointer to the array
or function. When a function does not return a value, void is the type specifier in
the function declaration and definition.

A function cannot be declared as returning a data object having a volatile or
const type, but it can return a pointer to a volatile or const object.

A function can have a return type that is a user-defined type. For example:
enum count {one, two, three};
enum count counter();

The user-defined type may also be defined within the function declaration.
enum count{one, two, three} counter(); // legal

Related reference:
“Type specifiers” on page 48

Function return values
If a function is defined as having a return type of void, it should not return a
value.

If a function is defined as having a return type other than void, it should return a
value. Under compilation for strict C99 conformance, a function defined with a
return type must include an expression containing the value to be returned.

When a function returns a value, the value is returned via a return statement to
the caller of the function, after being implicitly converted to the return type of the
function in which it is defined. The following code fragment shows a function
definition including the return statement:
int add(int i, int j)
{

return i + j; // return statement
}

The function add() can be called as shown in the following code fragment:
int a = 10,

b = 20;
int answer = add(a, b); // answer is 30

In this example, the return statement initializes a variable of the returned type. The
variable answer is initialized with the int value 30. The type of the returned
expression is checked against the returned type. All standard and user-defined
conversions are performed as necessary.

Each time a function is called, new copies of its variables with automatic storage
are created. Because the storage for these automatic variables may be reused after
the function has terminated, a pointer to an automatic variable should not be
returned.
Related reference:
“The return statement” on page 167
“The auto storage class specifier” on page 42
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Function declarators
Function declarators consist of the following elements:
v An identifier, or name
v “Parameter declarations,” which specify the parameters that can be passed to the

function in a function call.

Function declarator syntax

►► identifier ( )
parameter_declaration

►◄

Note: More complex types might be formed by using the syntax of direct_declarator
in place of identifier. For the details of direct_declarator, see “Overview of
declarators” on page 81.
Related reference:
Chapter 5, “Declarators,” on page 81

Parameter declarations
The function declarator includes the list of parameters that can be passed to the
function when it is called by another function, or by itself.

Function parameter declaration syntax

►► ▼

,

( )
parameter , ...

►◄

parameter

►►
register

type_specifier
declarator

►◄

An empty argument list in a function definition indicates that a function that takes
no arguments. An empty argument list in a function declaration indicates that a
function may take any number or type of arguments. Thus,
int f()
{
...
}

indicates that function f takes no arguments. However,
int f();

simply indicates that the number and type of parameters is not known. To
explicitly indicate that a function does not take any arguments, you can replace the
argument list with the keyword void.
int f(void);
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An ellipsis at the end of the parameter specifications is used to specify that a
function has a variable number of parameters. The number of parameters is equal
to, or greater than, the number of parameter specifications.

int f(int, ...);

At least one parameter declaration, as well as a comma before the ellipsis, are both
required in C.

Parameter types

In a function declaration, or prototype, the type of each parameter must be
specified. In the function definition, if the type of a parameter is not specified, it is
assumed to be int.

A variable of a user-defined type may be declared in a parameter declaration, as in
the following example, in which x is declared for the first time:
struct X { int i; };
void print(struct X x);

The user-defined type can also be defined within the parameter declaration.
void print(struct X { int i; } x); // legal

Parameter names

In a function definition, each parameter must have an identifier. In a function
declaration, or prototype, specifying an identifier is optional. Thus, the following
example is legal in a function declaration:
int func(int,long);

Static array indices in function parameter declarations (C only)

Except in certain contexts, an unsubscripted array name (for example, region
instead of region[4]) represents a pointer whose value is the address of the first
element of the array, provided that the array has previously been declared. An
array type in the parameter list of a function is also converted to the corresponding
pointer type. Information about the size of the argument array is lost when the
array is accessed from within the function body.

To preserve this information, which is useful for optimization, you may declare the
index of the argument array using the static keyword. The constant expression
specifies the minimum pointer size that can be used as an assumption for
optimizations. This particular usage of the static keyword is highly prescribed.
The keyword may only appear in the outermost array type derivation and only in
function parameter declarations. If the caller of the function does not abide by
these restrictions, the behavior is undefined.

Note: This feature is C99 specific.

The following examples show how the feature can be used.
void foo(int arr [static 10]); /* arr points to the first of at least

10 ints */
void foo(int arr [const 10]); /* arr is a const pointer */
void foo(int arr [static const i]); /* arr points to at least i ints;

i is computed at run time. */
void foo(int arr [const static i]); /* alternate syntax to previous example */
void foo(int arr [const]); /* const pointer to int */

188 XL C: Language Reference



Related reference:
“The static storage class specifier” on page 43
“Arrays” on page 87
“Array subscripting operator [ ]” on page 140
“The void type” on page 51
“Type specifiers” on page 48
“Type qualifiers” on page 69

Function attributes (IBM extension)
Function attributes are extensions implemented to enhance the portability of
programs developed with GNU C. Specifiable attributes for functions provide
explicit ways to help the compiler optimize function calls and to instruct it to
check more aspects of the code. Others provide additional functionality.

IBM XL C compiler implements a subset of the GNU C function attributes. For a
particular function attribute that is not implemented, the compiler issues
diagnostics and ignores the attribute specification.

A function attribute is specified with the keyword __attribute__ followed by the
attribute name and any additional arguments the attribute name requires. A
function __attribute__ specification is included in the declaration or definition of
a function. The syntax takes the following forms:

Function attribute syntax: function definition (form 1)

►► return_type __attribute__ ▼

,

(( attribute name ))
__ attribute_name __

►

► function_declarator ►◄

Function attribute syntax: function definition (form 2)

►► __attribute__ ►

► ▼

,

(( attribute_name )) return_type function_declarator ;
__ attribute_name __

►◄

Function attribute syntax: function definition (form 3)

►► return_type function_declarator __attribute__ ►
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► ▼

,

(( attribute_name )) ;
__ attribute_name __

►◄

You can specify attribute_name with or without leading and trailing double
underscore characters; however, using the double underscore characters reduces
the likelihood of name conflicts with macros of the same name. These language
features are collectively available when compiling in any of the extended language
levels.

The following function declarations are all valid:
int __attribute__((attribute_name)) func(int i); //Form 1
__attribute__((attribute_name)) int func(int); //Form 2
int func() __attribute__((attribute_name)); //Form 3

The following function attributes are supported:
v “alias”
v “always_inline” on page 191
v “const” on page 191
v “format” on page 192
v “format_arg” on page 193
v “gnu_inline” on page 193
v “malloc” on page 194
v “noinline” on page 195
v “noreturn” on page 195
v “pure” on page 196
v “used” on page 196
v “weak” on page 196
v “weakref” on page 197
v “visibility” on page 198
Related reference:
“Variable attributes (IBM extension)” on page 100

alias
The alias function attribute causes the function declaration to appear in the object
file as an alias for another symbol. This language feature provides a technique for
coping with duplicate or cumbersome names.

alias function attribute syntax

►► __attribute__ (( alias ( "original_function_name" ) ))
__alias__

►◄

The aliased function can be defined after the specification of its alias with this
function attribute. C also allows an alias specification in the absence of a definition
of the aliased function in the same compilation unit.

The following code declares func1 to be an alias for __func2:
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void __func2(){ /* function body */ }
void func1() __attribute__((alias("__func2")));

The compiler does not check for consistency between the declaration of func1 and
definition of __func2. Such consistency remains the responsibility of the
programmer.
Related reference:

See #pragma weak in the XL C Compiler Reference
“The weak variable attribute” on page 103

always_inline
The always_inline function attribute instructs the compiler to inline a function.
This function can be inlined when all of the following conditions are satisfied:
v The function is an inline function that satisfies any of the following conditions:

– The function is specified with the inline or __inline__ keyword.
– The option -qinline+<function_name> is specified, where function_name is the

name of the function to be inlined.
v The function is not specified with the noinline or __noinline__ attribute.
v The optimization level is at O2 or higher.
v The number of functions to be inlined does not exceed the limit of inline

functions that can be supported by the compiler.

always_inline function attribute syntax

►► __attribute__ (( always_inline ))
__always_inline__

►◄

The noinline attribute takes precedence over the always_inline attribute. The
always_inline attribute takes precedence over inlining compiler options only if
inlining is enabled. The always_inline attribute is ignored if inlining is disabled.
Related reference:
“The inline function specifier” on page 183
“noinline” on page 195

const
The const function attribute allows you to tell the compiler that the function can
safely be called fewer times than indicated in the source code. The language
feature provides you with an explicit way to help the compiler optimize code by
indicating that the function does not examine any values except its arguments and
has no effects except for its return value.

const function attribute syntax

►► __attribute__ (( const ))
__const__

►◄

The following kinds of functions should not be declared const:
v A function with pointer arguments which examines the data pointed to.
v A function that calls a non-const function.
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Note: GNU C has a non-attribute method that uses the const keyword to achieve
the const function attribute, but the XL C compiler does not support this method.
Related reference:

See -qisolated_call in the XL C Compiler Reference

deprecated
With the deprecated function attribute, you can declare a function as deprecated.

deprecated function attribute syntax

►► __attribute__ (( deprecated ))
__deprecated__

►◄

If a function that is specified with the deprecated attribute is called, the compiler
issues a warning message to indicate that the function is not recommended to be
used. Warning messages are issued only for invocations but not declarations of
deprecated functions. See the following example.
int func( ) __attribute__((deprecated));

int main( ){
int i = func(); // warning: ’func’ is deprecated
int func();
return i;

}

int func( ){
return 1;

}

format
The format function attribute provides a way to identify user-defined functions
that take format strings as arguments so that calls to these functions will be
type-checked against a format string, similar to the way the compiler checks calls
to the functions printf, scanf, strftime, and strfmon for errors.

format function attribute syntax

►► ▼

,

__attribute__ (( format ( printf , string_index , first_to_check ) ))
__format__ scanf

strftime
strfmon
__printf__
__scanf__
__strftime__
__strfmon__

►◄

where

string_index
Is a constant integral expression that specifies which argument in the
declaration of the user function is the format string argument.

first_to_check
Is a constant integral expression that specifies the first argument to check
against the format string. If there are no arguments to check against the
format string (that is, diagnostics should only be performed on the format
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string syntax and semantics), first_to_check should have a value of 0. For
strftime-style formats, first_to_check is required to be 0.

It is possible to specify multiple format attributes on the same function, in which
case, all apply.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,1,0), __format__(__scanf__,2,3)));

It is also possible to diagnose the same string for different format styles. All styles
are diagnosed.
void my_fn(const char* a, const char* b, ...)

__attribute__((__format__(__printf__,2,3),
__format__(__strftime__,2,0),
__format__(__scanf__,2,3)));

format_arg
The format_arg function attribute provides a way to identify user-defined
functions that modify format strings. Once the function is identified, calls to
functions like printf, scanf, strftime, or strfmon, whose operands are a call to the
user-defined function can be checked for errors.

format_arg function attribute syntax

►► __attribute__ (( format_arg ( string_index ) ))
__format_arg__

►◄

where string_index is a constant integral expression that specifies which argument
is the format string argument, starting from 1.

It is possible to specify multiple format_arg attributes on the same function, in
which case, all apply.
extern char* my_dgettext(const char* my_format, const char* my_format2)

__attribute__((__format_arg__(1))) __attribute__((__format_arg__(2)));

printf(my_dgettext("%","%"));
//printf-style format diagnostics are performed on both "%" strings

gnu_inline
The gnu_inline attribute instructs the compiler to modify the inlining behavior of
a function. When this function attribute is used, the compiler imitates the GNU
legacy inlining extension to C.

This function attribute is only enabled if used in conjunction with an inline
keyword (__inline__, inline, __inline, etc.).

gnu_inline function attribute syntax

►► inline __attribute__ (( gnu_inline )) ►◄

Note: The behavior of the gnu_inline function attribute is the same when used in
conjunction with either the inline or __inline__ keywords.

The semantics of the GNU legacy inlining extension to C are as follows:
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extern gnu_inline:
extern inline __attribute__((gnu_inline)) func() {...};

This definition of func is used only for inlining. It is not compiled as a
standalone function.

static gnu_inline:
static inline __attribute__((gnu_inline)) func() {...};

If the function is generated, it is generated with internal linkage.

plain gnu_inline:
inline __attribute__((gnu_inline)) func() {...};

The definition is used for inlining when possible. It is compiled as a
standalone function (emitted as a strong definition) and emitted with
external linkage.

The gnu_inline attribute can be specified inside double parentheses with keyword
__attribute__ in a function declaration. See the following example.

inline int func() __attribute__((gnu_inline));

As with other GCC function attributes, the double underscores on the attribute
name are optional. The gnu_inline attribute should be used with a function that is
also declared with the inline keyword.

malloc
With the function attribute malloc, you can instruct the compiler to treat a function
as if any non-NULL pointer it returns cannot alias any other valid pointers. This
type of function (such as malloc and calloc) has this property, hence the name of
the attribute. As with all supported attributes, malloc will be accepted by the
compiler without requiring any particular option or language level.

The malloc function attribute can be specified inside double parentheses via
keyword __attribute__ in a function declaration.

malloc function attribute syntax

►► __attribute__ (( malloc ))
__malloc__

►◄

As with other GCC function attributes, the double underscores on the attribute
name are optional.

Note:

v Do not use this function attribute unless you are sure that the pointer returned
by a function points to unique storage. Otherwise, optimizations performed
might lead to incorrect behavior at run time.

v If the function does not return a pointer but it is marked with the function
attribute malloc, a warning is emitted, and the attribute is ignored.

Example

A simple case that should be optimized when attribute malloc is used:
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#include <stdlib.h>
#include <stdio.h>
int a;
void* my_malloc(int size) __attribute__ ((__malloc__))
{

void* p = malloc(size);
if (!p) {
printf("my_malloc: out of memory!\n");
exit(1);

}
return p;

}
int main() {

int* x = &a;
int* p = (int*) my_malloc(sizeof(int));
*x = 0;
*p = 1;
if (*x) printf("This printf statement to be detected as unreachable

and discarded during compilation process\n");
return 0;

}

noinline
The noinline function attribute prevents the function to which it is applied from
being inlined, regardless of whether the function is declared inline or non-inline.
The attribute takes precedence over inlining compiler options, the inline keyword,
and the always_inline function attribute.

noinline function attribute syntax

►► __attribute__ (( noinline ))
__noinline__

►◄

Other than preventing inlining, the attribute does not remove the semantics of
inline functions.

noreturn
The noreturn function attribute allows you to indicate to the compiler that the
function will not return the control to its caller. The language feature provides the
programmer with another explicit way to help the compiler optimize code and to
reduce false warnings for uninitialized variables.

The return type of the function should be void.

noreturn function attribute syntax

►► __attribute__ (( noreturn ))
__noreturn__

►◄

Registers saved by the calling function may not necessarily be restored before
calling the nonreturning function.
Related reference:

See #pragma leaves in the XL C Compiler Reference
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pure
The pure function attribute allows you to declare a function that can be called
fewer times than what is literally in the source code. Declaring a function with the
attribute pure indicates that the function has no effect except a return value that
depends only on the parameters, global variables, or both.

pure function attribute syntax

►► __attribute__ (( pure ))
__pure__

►◄

Related reference:

See -qisolated_call in the XL C Compiler Reference

used
When a function is referenced only in inline assembly, you can use the used
function attribute to instruct the compiler to emit the code for the function even if
it appears that the function is not referenced.

The used function attribute can be specified inside double parentheses via keyword
__attribute__ in a function declaration, for example, int foo() __attribute__
((__used__)); As with other GCC function attributes, the double underscores on
the attribute name are optional.

used function attribute syntax

►► __attribute__ (( used ))
__used__

►◄

If the function attribute gnu_inline is specified in such a way that the function is
discarded, and is specified together with the function attribute used, the
gnu_inline attribute wins, and the function definition is discarded.

weak
The weak function attribute causes the symbol resulting from the function
declaration to appear in the object file as a weak symbol, rather than a global one.
The language feature provides the programmer writing library functions with a
way to allow function definitions in user code to override the library function
declaration without causing duplicate name errors.

weak function attribute syntax

►► __attribute__ (( weak ))
__weak__

►◄

Related reference:

See #pragma weak in the XL C Compiler Reference
“alias” on page 190
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weakref
weakref is an attribute attached to function declarations which must specify a
target name. The target name might also be specified through the attribute alias in
any declaration of the function.

References to the weakref function are converted into references of the target name.
If the target name is not defined in the current translation unit and it is not
referenced directly or otherwise in a way that requires a definition of the target, for
example if it is only referenced by using weakref functions, the reference is weak.
In the presence of a definition of the target in the current translation unit,
references to a weakref function resolve directly to said definition. The weakref
attribute does not otherwise affect definitions of the target. A weakref function
must have internal linkage.

The weakref attribute, as with other GCC attributes, can be expressed in a pre-fix
or post-fix syntax:

pre-fix syntax
static __attribute__((weakref("bar"))) void foo(void);

post-fix syntax
static void foo(void) __attribute__((weakref("bar")));

Functions with weakref or alias attributes may refer to other such functions. The
name referred to is that of the last, i.e., non-weakref and non-alias target.

Rules

If a weakref function is declared without the keyword static, an error message is
emitted .

The target name specified in the weakref function declaration cannot directly or
indirectly point to itself.

Using the weakref attribute without providing a target name is not recommended.

If a body is provided in a weakref function declaration with a pre-fix syntax, the
attribute is ignored. A warning message reporting this situation will be emitted.

On AIX, when using weakref function with the option -qnoweaksymbol, the
compiler issues a severe error message reporting a conflict between the option and
the attribute.

Examples

The following examples illustrates various declarations of weakref functions:
static void foo() __attribute__((weakref("bar")));

void foo() __attribute__((weakref("bar")));

static void foo() __attribute__((weakref,alias("bar")));

static void foo() __attribute__((alias("bar"),weakref));

static void foo() __attribute__((alias("bar")));
static void foo() __attribute__((weakref));

static void foo() __attribute__((alias("bar")));
void foo() __attribute__((weakref));

static void foo() __attribute__((weakref));
static void foo() __attribute__((alias("bar")));
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static void foo() __attribute__((weakref));
void foo() __attribute__((alias("bar")));

Related reference:

See #pragma weak in the XL C Compiler Reference

visibility
The visibility function attributes describe whether and how a function defined in
one module can be referenced or used in other modules. By using this feature, you
can make a shared library smaller and decrease the possibility of symbol collision.
For details, see Using visibility attributes in the XL C Optimization and
Programming Guide.

visibility function attribute syntax

►► __attribute__ (( visibility ( "default" ) ))
__visibility__ "protected"

"hidden"
"internal"

►◄

Example

In the following example, the visibility attribute of function void f(int i, int j)
is hidden:
void __attribute__((visibility("hidden"))) f(int i, int j);

Related reference:
“External linkage” on page 7
“The visibility variable attribute” on page 104

See Using visibility attributes in the XL C Optimization and Programming
Guide

See -qvisibility in the XL C Compiler Reference

See -qmkshrobj in the XL C Compiler Reference

See -G in the XL C Compiler Reference

See #pragma GCC visibility push, #pragma GCC visibility pop (IBM extension)
in the XL C Compiler Reference

The main() function
When a program begins running, the system calls the function main, which marks
the entry point of the program. By default, main has the storage class extern. Every
program must have one function named main, and the following constraints apply:
v No other function in the program can be called main.
v main cannot be defined as inline or static.

The function main can be defined with or without parameters, using any of the
following forms:
int main (void){}

int main ( ){}

int main(int argc, char *argv[]){}
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int main (int argc, char ** argv){}

Although any name can be given to these parameters, they are usually referred to
as argc and argv. The first parameter, argc (argument count) is an integer that
indicates how many arguments were entered on the command line when the
program was started. The second parameter, argv (argument vector), is an array of
pointers to arrays of character objects. The array objects are null-terminated strings,
representing the arguments that were entered on the command line when the
program was started.

The first element of the array, argv[0], is a pointer to the character array that
contains the program name or invocation name of the program that is being run
from the command line. argv[1] indicates the first argument passed to the
program, argv[2] the second argument, and so on.

The following example program backward prints the arguments entered on a
command line such that the last argument is printed first:
#include <stdio.h>
int main(int argc, char *argv[])
{

while (--argc > 0)
printf("%s ", argv[argc]);

printf("\n");
}

Invoking this program from a command line:
backward string1 string2

gives the following output:
string2 string1

The arguments argc and argv would contain the following values at the start of
the program:

Object Value

argc 3
argv[0] pointer to string "backward"
argv[1] pointer to string "string1"
argv[2] pointer to string "string2"
argv[3] NULL

Related reference:
“The extern storage class specifier” on page 44
“The inline function specifier” on page 183
“The static storage class specifier” on page 43
“Function calls”

Function calls
After a function is declared and defined, it can be called from anywhere within the
program: from within the main function, from another function, and even from
itself. Calling the function involves specifying the function name, followed by the
function call operator and any data values the function expects to receive. These
values are the arguments for the parameters defined for the function. This process
is called passing arguments to the function.
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You can pass arguments to the called functions in two ways:
v “Pass by value,” which copies the value of an argument to the corresponding

parameter in the called function;
v “Pass by pointer,” which passes a pointer argument to the corresponding

parameter in the called function;

A function call is always an rvalue.
Related reference:
“Function argument conversions” on page 114
“Function call expressions” on page 121
“Lvalues and rvalues” on page 115

Pass by value
When you use pass-by-value, the compiler copies the value of an argument in a
calling function to a corresponding non-pointer parameter in the called function
definition. The parameter in the called function is initialized with the value of the
passed argument. As long as the parameter has not been declared as constant, the
value of the parameter can be changed, but the changes are only performed within
the scope of the called function only; they have no effect on the value of the
argument in the calling function.

In the following example, main passes func two values: 5 and 7. The function func
receives copies of these values and accesses them by the identifiers a and b. The
function func changes the value of a. When control passes back to main, the actual
values of x and y are not changed.
/**
** This example illustrates calling a function by value
**/

#include <stdio.h>

void func (int a, int b)
{

a += b;
printf("In func, a = %d b = %d\n", a, b);

}

int main(void)
{

int x = 5, y = 7;
func(x, y);
printf("In main, x = %d y = %d\n", x, y);
return 0;

}

The output of the program is:
In func, a = 12 b = 7
In main, x = 5 y = 7

Pass by pointer
Pass-by-pointer means to pass a pointer argument in the calling function to the
corresponding formal parameter of the called function. The called function can
modify the value of the variable to which the pointer argument points.

The following example shows how arguments are passed by pointer:
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#include <stdio.h>

void swapnum(int *i, int *j) {
int temp = *i;
*i = *j;
*j = temp;

}

int main(void) {
int a = 10;
int b = 20;

swapnum(&a, &b);
printf("A is %d and B is %d\n", a, b);
return 0;

}

When the function swapnum() is called, the values of the variables a and b are
exchanged because they are passed by pointer. The output is:
A is 20 and B is 10

When you use pass-by-pointer, a copy of the pointer is passed to the function. If
you modify the pointer inside the called function, you only modify the copy of the
pointer, but the original pointer remains unmodified and still points to the original
variable.

The difference between pass-by-pointer and pass-by-value is that modifications
made to arguments passed in by pointer in the called function have effect in the
calling function, whereas modifications made to arguments passed in by value in
the called function can not affect the calling function. Use pass-by-pointer if you
want to modify the argument value in the calling function. Otherwise, use
pass-by-value to pass arguments.
Related reference:
“Pointers” on page 83

Pointers to functions
Pointers to functions

A pointer to a function points to the address of the executable code of the function.
You can use pointers to call functions and to pass functions as arguments to other
functions. You cannot perform pointer arithmetic on pointers to functions.

The type of a pointer to a function is based on both the return type and parameter
types of the function.

A declaration of a pointer to a function must have the pointer name in
parentheses. Function parameters have precedence over pointers in declarations, so
parentheses are required to alter the precedence and declare a pointer to a
function. Without them, the compiler interprets the declaration as a function that
returns a pointer to a specified return type. For example:
int *f(int a); /* function f returning an int* */
int (*g)(int a); /* pointer g to a function returning an int */

In the first declaration, f is interpreted as a function that takes an int as argument,
and returns a pointer to an int. In the second declaration, g is interpreted as a
pointer to a function that takes an int argument and that returns an int.
Related reference:
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“Pointers” on page 83
“Pointer conversions” on page 112
“The extern storage class specifier” on page 182

Nested functions (C only) (IBM extension)
A nested function is a function defined inside the definition of another function. It
can be defined wherever a variable declaration is permitted, which allows nested
functions within nested functions. Within the containing function, the nested
function can be declared prior to being defined by using the auto keyword.
Otherwise, a nested function has internal linkage. The language feature is an
extension to C89 and C99, implemented to facilitate porting programs developed
with GNU C.

A nested function can access all identifiers of the containing function that precede
its definition.

A nested function must not be called after the containing function exits.

A nested function cannot use a goto statement to jump to a label in the containing
function, or to a local label declared with the __label__ keyword inherited from
the containing function.
Related reference:
“Locally declared labels (IBM extension)” on page 154
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Chapter 10. Preprocessor directives

Preprocessing is an initial phase to process text before compilation. Preprocessor
directives are lines of the source file where the first non-whitespace character is #,
which distinguishes them from other lines of text. The effect of each preprocessor
directive is a change to the text and the result is a transformation of the text that
does not contain the directives nor comments. The compiler can optionally output
the preprocessed text to a file that has a .i suffix. Preprocessing is always the
initial phase of compilation, even when the text has already been preprocessed.

Preprocessor directives consist of the following:
v “Macro definition directives,” which replace tokens in the current file with

specified replacement tokens
v “File inclusion directives” on page 211, which imbed files within the current file
v “Conditional compilation directives” on page 213, which conditionally compile

sections of the current file
v “Message generation directives” on page 218, which control the generation of

diagnostic messages

v IBM “Assertion directives (IBM extension)” on page 220, which specify
attributes of the system the program is to run on

v “The null directive (#)” on page 221, which performs no action
v “Pragma directives” on page 221, which apply compiler-specific rules to

specified sections of code

Preprocessor directives begin with the # token followed by a preprocessor
keyword. The # token must appear as the first character that is not white space on
a line. The # is not part of the directive name and can be separated from the name
with white spaces.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker. The preprocessor deletes the \ (and
the following new-line character) and splices the physical source lines into
continuous logical lines. White space is allowed between backslash and the end of
line character or the physical end of record. However, this white space is usually
not visible during editing.

Except for some #pragma directives, preprocessor directives can appear anywhere in
a program.

Macro definition directives
Macro definition directives include the following directives and operators:

The #define directive
A preprocessor define directive directs the preprocessor to replace all subsequent
occurrences of a macro with specified replacement tokens.

The #define directive can contain:
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v “Object-like macros”
v “Function-like macros”

The following are some differences between using a macro for a constant and a
declared constant:
v A const object is subject to the scoping rules for variables, whereas a constant

created using #define is not.
v Unlike a const object, the value of a macro does not appear in the intermediate

representation used by the compiler because they are expanded inline. The inline
expansion makes the macro value unavailable to the debugger.

v A macro can be used in a compile-time constant expression, such as a bit field
length, whereas a const object cannot.

Object-like macros

An object-like macro definition replaces a single identifier with the specified
replacement tokens. For example, the following object-like definition causes the
preprocessor to replace all subsequent instances of the identifier COUNT with the
constant 1000 :
#define COUNT 1000

If the statement
int arry[COUNT];

is after this macro definition and in the same compilation unit, the preprocessor
would change the statement to
int arry[1000];

in the output of the preprocessor.

Other definitions can make reference to the identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 100, which the preprocessor then replaces with 1000 + 100.

If a number that is partially built by a macro expansion is produced, the
preprocessor does not consider the result to be a single value. For example, the
following will not result in the value 10.2 but in a syntax error.
#define a 10
doubl d = a.2

Function-like macros

More complex than object-like macros, a function-like macro definition declares the
names of formal parameters within parentheses, separated by commas. An empty
formal parameter list is legal: such a macro can be used to simulate a function that
takes no arguments. C99 adds support for function-like macros with a variable
number of arguments.

Function-like macro definition:
An identifier followed by a parameter list in parentheses and the
replacement tokens. The parameters are imbedded in the replacement code.
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White space cannot separate the identifier (which is the name of the
macro) and the left parenthesis of the parameter list. A comma must
separate each parameter.

For portability, you should not have more than 31 parameters for a macro.
The parameter list may end with an ellipsis (...) as the formal parameter. In
this case, the identifier __VA_ARGS__ may appear in the replacement list.

Function-like macro invocation:
An identifier followed by a comma-separated list of arguments in
parentheses. The number of arguments should match the number of
parameters in the macro definition, unless the parameter list in the
definition ends with an ellipsis. In this latter case, the number of
arguments in the invocation should match or exceed the number of
parameters in the definition. The excess are called trailing arguments. Once
the preprocessor identifies a function-like macro invocation, argument
substitution takes place. A parameter in the replacement code is replaced
by the corresponding argument. If trailing arguments are permitted by the
macro definition, they are merged with the intervening commas to replace
the identifier __VA_ARGS__, as if they were a single argument. Any macro
invocations contained in the argument itself are completely replaced before
the argument replaces its corresponding parameter in the replacement
code.

A macro argument can be empty (consisting of zero preprocessing tokens).
For example,
#define SUM(a,b,c) a + b + c
SUM(1,,3) /* No error message.

1 is substituted for a, 3 is substituted for c. */

If the parameter list does not end with an ellipsis, the number of arguments in a
macro invocation must be the same as the number of parameters in the
corresponding macro definition. During parameter substitution, any arguments
remaining after all specified arguments have been substituted (including any
separating commas) are combined into one argument called the variable argument.
The variable argument will replace any occurrence of the identifier __VA_ARGS__ in
the replacement list. The following example illustrates this:
#define debug(...) fprintf(stderr, __VA_ARGS__)

debug("flag"); /* Becomes fprintf(stderr, "flag"); */

Commas in the macro invocation argument list do not act as argument separators
when they are:
v In character constants
v In string literals
v Surrounded by parentheses

The following line defines the macro SUM as having two parameters a and b and
the replacement tokens (a + b):
#define SUM(a,b) (a + b)

This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):
c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, these statements would appear as:
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c = (x + y);
c = d * (x + y);

Use parentheses to ensure correct evaluation of replacement text. For example, the
definition:
#define SQR(c) ((c) * (c))

requires parentheses around each parameter c in the definition in order to correctly
evaluate an expression like:
y = SQR(a + b);

The preprocessor expands this statement to:
y = ((a + b) * (a + b));

Without parentheses in the definition, the intended order of evaluation is not
preserved, and the preprocessor output is:
y = (a + b * a + b);

Arguments of the # and ## operators are converted before replacement of
parameters in a function-like macro.

Once defined, a preprocessor identifier remains defined independent of the scoping
rules of the language. The scope of a macro definition begins at the definition and
does not end until a corresponding #undef directive is encountered. If there is no
corresponding #undef directive, the scope of the macro definition lasts until the
end of the translation unit.

A recursive macro is not fully expanded. For example, the definition
#define x(a,b) x(a+1,b+1) + 4

expands
x(20,10)

to
x(20+1,10+1) + 4

rather than trying to expand the macro x over and over within itself. After the
macro x is expanded, it is a call to function x().

A definition is not required to specify replacement tokens. The following definition
removes all instances of the token debug from subsequent lines in the current file:
#define debug

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive only if the second preprocessor #define directive is
preceded by a preprocessor #undef directive. The #undef directive nullifies the first
definition so that the same identifier can be used in a redefinition.

Within the text of the program, the preprocessor does not scan comments,
character constants, or string constants for macro definitions, undefining a macro,
or macro invocations.

The following example program contains two macro definitions and a macro
invocation that refers to both of the defined macros:
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/**This example illustrates #define directives.**/

void printf(const char*, ...);
#define SQR(s) ((s) * (s))
#define PRNT(a,b) \

printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b)

int main(void)
{

int x = 2;
int y = 3;

PRNT(SQR(x),y);

return(0);
}

After being preprocessed, this program is replaced by code equivalent to the
following:
void printf(const char*, ...);

int main(void)
{

int x = 2;
int y = 3;

printf("value 1 = %d\n", ( (x) * (x) ) );
printf("value 2 = %d\n", y);

return(0);
}

This program produces the following output:
value 1 = 4
value 2 = 3

IBM

Variadic macro extensions

Variadic macro extensions refer to two extensions to C99 related to macros with
variable number of arguments. One extension is a mechanism for renaming the
variable argument identifier from __VA_ARGS__ to a user-defined identifier. The
other extension provides a way to remove the dangling comma in a variadic macro
when no variable arguments are specified. Both extensions have been implemented
to facilitate porting programs developed with GNU C.

The following examples demonstrate the use of an identifier in place of
__VA_ARGS__. The first definition of the macro debug exemplifies the usual usage of
__VA_ARGS__. The second definition shows the use of the identifier args in place of
__VA_ARGS__.
#define debug1(format, ...) printf(format, ## __VA_ARGS__)
#define debug2(format, args ...) printf(format, ## args)

Invocation Result of macro expansion

debug1("Hello %s/n", "World"); printf("Hello %s/n", "World");
debug2("Hello %s/n", "World"); printf("Hello %s/n", "World");
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The preprocessor removes the trailing comma if the variable arguments to a
function macro are omitted or empty and the comma followed by ## precedes the
variable argument identifier in the function macro definition.

IBM

Related reference:
“The const type qualifier” on page 73
“Operator precedence and associativity” on page 148
“Parenthesized expressions ( )” on page 118

The #undef directive
A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition.

#undef directive syntax

►► # undef identifier ►◄

If the identifier is not currently defined as a macro, #undef is ignored.

The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:
#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef
directives are not replaced with any replacement tokens. Once the definition of a
macro has been removed by an #undef directive, the identifier can be used in a
new #define directive.

The # operator
The # (single number sign) operator converts a parameter of a function-like macro
into a character string literal. For example, if macro ABC is defined using the
following directive:

#define ABC(x) #x

all subsequent invocations of the macro ABC would be expanded into a character
string literal containing the argument passed to ABC. For example:

Invocation Result of macro expansion

ABC(1) "1"
ABC(Hello there) "Hello there"

The # operator should not be confused with the null directive.

Use the # operator in a function-like macro definition according to the following
rules:
v A parameter following # operator in a function- like macro is converted into a

character string literal containing the argument passed to the macro.
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v White-space characters that appear before or after the argument passed to the
macro are deleted.

v Multiple white-space characters imbedded within the argument passed to the
macro are replaced by a single space character.

v If the argument passed to the macro contains a string literal and if a \
(backslash) character appears within the literal, a second \ character is inserted
before the original \ when the macro is expanded.

v If the argument passed to the macro contains a " (double quotation mark)
character, a \ character is inserted before the " when the macro is expanded.

v The conversion of an argument into a string literal occurs before macro
expansion on that argument.

v If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

v If the result of the macro expansion is not a valid character string literal, the
behavior is undefined.

The following examples demonstrate the use of the # operator:
#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of macro expansion

STR(\n "\n" ’\n’) "\n \"\\n\" ’\\n’"
STR(ONE) "ONE"
XSTR(ONE) "1"
XSTR("hello") "\"hello\""

Related reference:
“The null directive (#)” on page 221

The ## operator
The ## (double number sign) operator concatenates two tokens in a macro
invocation (text and/or arguments) given in a macro definition.

If a macro XY was defined using the following directive:
#define XY(x,y) x##y

the last token of the argument for x is concatenated with the first token of the
argument for y.

Use the ## operator according to the following rules:
v The ## operator cannot be the very first or very last item in the replacement list

of a macro definition.
v The last token of the item in front of the ## operator is concatenated with first

token of the item following the ## operator.
v Concatenation takes place before any macros in arguments are expanded.
v If the result of a concatenation is a valid macro name, it is available for further

replacement even if it appears in a context in which it would not normally be
available.

v If more than one ## operator and/or # operator appears in the replacement list
of a macro definition, the order of evaluation of the operators is not defined.
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The following examples demonstrate the use of the ## operator:
#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of macro expansion

ArgArg(lady, bug) ladybug
ArgText(con) conTEXT
TextArg(book) TEXTbook
TextText TEXTtext
ArgArg(Jitter, bug) 3

Related reference:
“The #define directive” on page 203

Standard predefined macro names
C provides the following predefined macro names as specified in the ISO C
language standard. Except for __FILE__ and __LINE__, the value of the predefined
macros remains constant throughout the translation unit. The predefined macro
names typically start and finish with 2 underscore characters.

__DATE__ 
A character string literal containing the date when the source file was
preprocessed.

The value of __DATE__ changes depending on when the input is
preprocessed. The date is in the form:

"Mmm dd yyyy"

where:

Mmm Represents the month in an abbreviated form (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than 10, the first d is a blank
character.

yyyy Represents the year.

__FILE__ 
A character string literal containing the name of the source file.

The value of __FILE__ changes as included files that are part of the source
program are preprocessed. It can be set with the #line directive.

__LINE__ 
An integer representing the current source line number.

The value of __LINE__ changes during compilation as the compiler
processes subsequent lines of your source program. It can be set with the
#line directive.

__STDC__ 
For C, the integer 1 (one) indicates that the C compiler supports the ISO
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standard. If you set the language level to classic, this macro is undefined.
(When a macro is undefined, it behaves as if it had the integer value 0
when used in a #if statement.)

__STDC_HOSTED__ (C only)
The value of this C99 macro is 1, indicating that the C compiler is a hosted
implementation. Note that this macro is only defined if __STDC__ is also
defined.

__STDC_VERSION__ (C only)
The integer constant of type long int: 199409L for the C89 language level,
199901L for C99. Note that this macro is only defined if __STDC__ is also
defined.

__TIME__ 
A character string literal containing the time when the source file was
preprocessed.

The value of __TIME__ changes as included files that are part of the source
program are preprocessed. The time is in the form:

"hh:mm:ss"

where:

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.
Related reference:
“The #line directive” on page 219
Object-like macros

File inclusion directives
File inclusion directives consist of:
v “The #include directive,” which inserts text from another source file

v IBM “The #include_next directive (IBM extension)” on page 212, which
causes the compiler to omit the directory of the including file from the search
path when searching for include files. IBM

The #include directive
A preprocessor include directive causes the preprocessor to replace the directive with
the contents of the specified file.

#include directive syntax

►► # include " file_name "
file_path

< file_name >
file_path

►◄

If the file_name is enclosed in double quotation marks, for example:
#include "payroll.h"

it is treated as a user-defined file, and may represent a header or source file.
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If the file_name is enclosed in angle brackets, for example:
#include <stdio.h>

it is treated as a system-defined file, and must represent a header file.

The new-line and > characters cannot appear in a file name delimited by < and >.
The new-line and " (double quotation marks) characters cannot appear in a file
name delimited by " and ", although > can.

The file_path can be an absolute or relative path. If the double quotation marks are
used, and file_path is a relative path, or is not specified, the preprocessor adds the
directory of the including file to the list of paths to be searched for the included
file. If the double angle brackets are used, and file_path is a relative path, or is not
specified, the preprocessor does not add the directory of the including file to the
list of paths to be searched for the included file.

The preprocessor resolves macros contained in an #include directive. After macro
replacement, the resulting token sequence consists of a file name enclosed in either
double quotation marks or the characters < and >. For example:
#define MONTH <july.h>
#include MONTH

Declarations that are used by several files can be placed in one file and included
with #include in each file that uses them. For example, the following file defs.h
contains several definitions and an inclusion of an additional file of declarations:
/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
extern int hour;
extern int min;
extern int sec;
#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

In the following example, a #define combines several preprocessor macros to
define a macro that represents the name of the C standard I/O header file. A
#include makes the header file available to the program.
#define C_IO_HEADER <stdio.h>

/* The following is equivalent to:
* #include <stdio.h>
*/

#include C_IO_HEADER

The #include_next directive (IBM extension)
The preprocessor directive #include_next behaves like the #include directive,
except that it specifically excludes the directory of the including file from the paths
to be searched for the named file. All search paths up to and including the
directory of the including file are omitted from the list of paths to be searched for
the included file. This allows you to include multiple versions of a file with the
same name in different parts of an application; or to include one header file in
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another header file with the same name (without the header including itself
recursively). Provided that the different file versions are stored in different
directories, the directive ensures you can access each version of the file, without
requiring that you use absolute paths to specify the file name.

#include_next directive syntax

►► # include_next " file_name "
file_path

< file_name >
file_path

►◄

The directive must only be used in header files, and the file specified by the
file_name must be a header file. There is no distinction between the use of double
quotation marks and angle brackets to enclose the file name.

As an example of how search paths are resolved with the #include_next directive,
assume that there are two versions of the file t.h: the first one, which is included
in the source file t.c, is located in the subdirectory path1; the second one, which is
included in the first one, is located in the subdirectory path2. Both directories are
specified as include file search paths when t.c is compiled.
/* t.c */

#include "t.h"

int main()
{
printf(", ret_val);
}

/* t.h in path1 */

#include_next "t.h"

int ret_val = RET;

/* t.h in path2 */

#define RET 55;

The #include_next directive instructs the preprocessor to skip the path1 directory
and start the search for the included file from the path2 directory. This directive
allows you to use two different versions of t.h and it prevents t.h from being
included recursively.

Conditional compilation directives
A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress the compilation of portions of source code. These directives
test a constant expression or an identifier to determine which tokens the
preprocessor should pass on to the compiler and which tokens should be bypassed
during preprocessing. The directives are:
v “The #if and #elif directives” on page 215, which conditionally include or

suppress portions of source code, depending on the result of a constant
expression

v “The #ifdef directive” on page 216, which conditionally includes source text if a
macro name is defined
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v “The #ifndef directive” on page 216, which conditionally includes source text if a
macro name is not defined

v “The #else directive” on page 216, which conditionally includes source text if the
previous #if, #ifdef, #ifndef, or #elif test fails

v “The #endif directive” on page 216, which ends conditional text

The preprocessor conditional compilation directive spans several lines:
v The condition specification line (beginning with #if, #ifdef, or #ifndef)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #elif line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #else line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to zero (optional)
v The preprocessor #endif directive

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. All the
matching directives are considered to be at the same nesting level.

Conditional compilation directives can be nested. A #else, if present, can be
matched unambiguously because of the required #endif.
#ifdef MACNAME

/* tokens added if MACNAME is defined */
# if TEST <=10

/* tokens added if MACNAME is defined and TEST <= 10 */
# else

/* tokens added if MACNAME is defined and TEST > 10 */
# endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all
the tokens starting on the line following the directive and ending at the next
conditional compilation directive at the same nesting level.

Each directive is processed in the order in which it is encountered. If an expression
evaluates to zero, the block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are
examined only to identify preprocessor directives within that block so that the
conditional nesting level can be determined. All tokens other than the name of the
directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining
blocks at that nesting level are ignored. If none of the blocks at that nesting level
has been processed and there is a #else directive, the block following the #else
directive is processed. If none of the blocks at that nesting level has been processed
and there is no #else directive, the entire nesting level is ignored.
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The #if and #elif directives
The #if directive conditionally includes text for preprocessing. If the condition that
follows the #if directive evaluates to a nonzero value, the text following up to but
excluding the associated #endif is included as preprocessing input.

The #elif (a contraction of else-if) directive, if used, must be contained within a
section of text subject to an #if directive. This directive optionally includes a
section of text based on the evaluation result of the condition that immediately
follows the directive. The #elif directive evaluates its condition only when the
original condition on the #if evaluates to false and all conditions associated with
preceding #elif directives subject to the original #if also evaluate to false.

#if and #elif directive syntax

►► # if
elif

constant_expression ►◄

All macros are expanded, except macros that are the operand of a defined
operator. Any uses of the defined operator are processed, and all remaining
keywords and identifiers are replaced with the token 0 .

The behavior is undefined if expanding the macros resulted in the token defined.

Notes:

v Casts cannot be performed. For example, the following code can be compiled
successfully by the C compiler.
#if static_cast<int>(1)
#error Unexpected
#endif

int main() {
}

v Arithmetic is performed using long int type.
v The constant_expression can contain defined macros.
v The constant_expression can contain the unary operator defined. This operator

can be used only with the preprocessor keyword #if or #elif. The following
expressions evaluate to 1 if the identifier is defined in the preprocessor, otherwise
to 0:
defined identifier
defined(identifier)

For example:
#if defined(TEST1) || defined(TEST2)

v The constant_expression must be an integral constant expression.

If a macro is not defined, a value of 0 (zero) is assigned to it. In the following
example, TEST is a macro identifier.
#include <stdio.h>
int main()
{

#if TEST != 0 // No error even when TEST is not defined.
printf("Macro TEST is defined to a non-zero value.");

#endif
}
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The #ifdef directive
The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the lines of code that immediately
follow the condition are passed on to the compiler. You must use the #endif
directive to end the conditional compilation directive.

#ifdef directive syntax

►► # ifdef identifier ►◄

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 50.
#ifdef EXTENDED
# define MAX_LEN 75
#else
# define MAX_LEN 50
#endif

The #ifndef directive
The #ifndef directive checks whether a macro is not defined.

If the identifier specified is not defined as a macro, the lines of code immediately
follow the condition are passed on to the compiler.

#ifndef directive syntax

►► # ifndef identifier ►◄

An identifier must follow the #ifndef keyword. The following example defines
MAX_LEN to be 50 if EXTENDED is not defined for the preprocessor. Otherwise, MAX_LEN
is defined to be 75.
#ifndef EXTENDED
# define MAX_LEN 50
#else
# define MAX_LEN 75
#endif

The #else directive
If the condition specified in the #if, #ifdef, or #ifndef directive evaluates to 0,
and the conditional compilation directive contains a preprocessor #else directive,
the lines of code located between the preprocessor #else directive and the
preprocessor #endif directive is selected by the preprocessor to be passed on to the
compiler.

#else directive syntax

►► # else ►◄

The #endif directive
The preprocessor #endif directive ends the conditional compilation directive.
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#endif directive syntax

►► # endif ►◄

Extension of #endif and #else (IBM extension)
The C language standard does not support extra text after #endif or #else. IBM
XL C compiler complies with the standard. When you port code from a compiler
that supports extra text after #endif or #else, you can specify option
-qlanglvl=textafterendif to suppress the warning message that is emitted.

One use is to comment on what is being tested by the corresponding #if or
#ifdef. For example:
#ifdef MY_MACRO
...
#else MY_MACRO not defined
...
#endif MY_MACRO

In this case, if you want the compiler to be silent about this deviation from the
standards, you can suppress the message by specifying option
-qlanglvl=textafterendif.

The suboption textafterendif can be specified with any of the supported language
levels. In almost all cases the default for this suboption is
-qlanglvl=notextafterendif, indicating that a message will be emitted if there is
any extraneous text after #else or #endif. The one exception is in the C compiler,
when the language level is "classic". In this case, the default for the suboption is
-qlanglvl=textafterendif, because this language level already allows extra text after
#else or #endif without generating a message.

Examples of conditional compilation directives
The following example shows how you can nest preprocessor conditional
compilation directives:
#if defined(TARGET1)
# define SIZEOF_INT 16
# ifdef PHASE2
# define MAX_PHASE 2
# else
# define MAX_PHASE 8
# endif
#elif defined(TARGET2)
# define SIZEOF_INT 32
# define MAX_PHASE 16
#else
# define SIZEOF_INT 32
# define MAX_PHASE 32
#endif

The following program contains preprocessor conditional compilation directives:
/**
** This example contains preprocessor
** conditional compilation directives.
**/

#include <stdio.h>

int main(void)
{
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static int array[ ] = { 1, 2, 3, 4, 5 };
int i;

for (i = 0; i <= 4; i++)
{

array[i] *= 2;

#if TEST >= 1
printf("i = %d\n", i);
printf("array[i] = %d\n",
array[i]);

#endif

}
return(0);

}

Message generation directives
Message generation directives include the following ones:
v “The #error directive,” which defines text for a compile-time error message
v “The #warning directive (IBM extension)” on page 219, which defines text for a

compile-time warning message
v “The #line directive” on page 219, which supplies a line number for compiler

messages
Related reference:
“Conditional compilation directives” on page 213

The #error directive
A preprocessor error directive causes the preprocessor to generate an error message
and causes the compilation to fail.

#error directive syntax

►► # error ▼ preprocessor_token ►◄

The #error directive is often used in the #else portion of a #if–#elif–#else
construct, as a safety check during compilation. For example, #error directives in
the source file can prevent code generation if a section of the program is reached
that should be bypassed.

For example, the directives
#define BUFFER_SIZE 255

#if BUFFER_SIZE < 256
#error "BUFFER_SIZE is too small."
#endif

generate the error message:
BUFFER_SIZE is too small.
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The #warning directive (IBM extension)
A preprocessor warning directive causes the preprocessor to generate a warning
message but allows compilation to continue. The argument to #warning is not
subject to macro expansion.

#warning directive syntax

►► # warning ▼ preprocessor_token ►◄

The preprocessor #warning directive is a language extension provided to facilitate
handling programs developed with GNU C. The IBM implementation preserves
multiple white spaces.

The #line directive
A preprocessor line control directive supplies line numbers for compiler messages. It
causes the compiler to view the line number of the next source line as the specified
number.

#line directive syntax

►► # line ▼ decimal_constant
0 " file_name "

characters

►◄

In order for the compiler to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #line directives where necessary (for
example, at the beginning and after the end of included text).

A file name specification enclosed in double quotation marks can follow the line
number. If you specify a file name, the compiler views the next line as part of the
specified file. If you do not specify a file name, the compiler views the next line as
part of the current source file.

In all C implementations, the token sequence on a #line directive is subject to
macro replacement. After macro replacement, the resulting character sequence
must consist of a decimal constant, optionally followed by a file name enclosed in
double quotation marks.

You can use #line control directives to make the compiler provide more
meaningful error messages. The following example program uses #line control
directives to give each function an easily recognizable line number:
/**
** This example illustrates #line directives.
**/

#include <stdio.h>
#define LINE200 200

int main(void)
{

func_1();
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func_2();
}

#line 100
func_1()
{

printf("Func_1 - the current line number is %d\n",__LINE__);
}

#line LINE200
func_2()
{

printf("Func_2 - the current line number is %d\n",__LINE__);
}

This program produces the following output:
Func_1 - the current line number is 102
Func_2 - the current line number is 202

Related reference:

See __C99_MAX_LINE_NUMBER in the XL C Compiler Reference

Assertion directives (IBM extension)
An assertion directive is an alternative to a macro definition, used to define the
computer or system the compiled program will run on. Assertions are usually
predefined, but you can define them with the #assert preprocessor directive.

#assert directive syntax

►► # assert predicate ( answer ) ►◄

The predicate represents the assertion entity you are defining. The answer represents
a value you are assigning to the assertion. You can make several assertions using
the same predicate and different answers. All the answers for any given predicate
are simultaneously true. For example, the following directives create assertions
regarding font properties:
#assert font(arial)
#assert font(blue)

Once an assertion has been defined, the assertion predicate can be used in
conditional directives to test the current system. The following directive tests
whether arial or blue is asserted for font:
#if #font(arial) || #font(blue)

You can test whether any answer is asserted for a predicate by omitting the answer
in the conditional:
#if #font

Assertions can be cancelled with the #unassert directive. If you use the same
syntax as the #assert directive, the directive cancels only the answer you specify.
For example, the following directive cancels the arial answer for the font
predicate:
#unassert font(arial)

An entire predicate is cancelled by omitting the answer from the #unassert
directive. The following directive cancels the font directive altogether:

220 XL C: Language Reference



#unassert font

Related reference:
“Conditional compilation directives” on page 213

Predefined assertions
The following assertions are predefined for the AIX platform:

Table 33. Predefined assertions for AIX

#machine #system(unix)
#system(aix)

#cpu

The null directive (#)
The null directive performs no action. It consists of a single # on a line of its own.

The null directive should not be confused with the # operator or the character that
starts a preprocessor directive.

In the following example, if MINVAL is a defined macro name, no action is
performed. If MINVAL is not a defined identifier, it is defined 1.
#ifdef MINVAL

#
#else

#define MINVAL 1
#endif

Related reference:
“The # operator” on page 208

Pragma directives
A pragma is an implementation-defined instruction to the compiler. It has the
general form:

#pragma directive syntax

►► # pragma
STDC

▼ character_sequence new-line ►◄

The character_sequence is a series of characters giving a specific compiler instruction
and arguments, if any. The token STDC indicates a standard pragma; consequently,
no macro substitution takes place on the directive. The new-line character must
terminate a pragma directive.

The character_sequence on a pragma is subject to macro substitutions. For example,
#define XX_ISO_DATA isolated_call(LG_ISO_DATA)
// ...
#pragma XX_ISO_DATA

Note: You can also use the _Pragma operator syntax to specify a pragma directive;
for details, see “The _Pragma preprocessing operator” on page 222.
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More than one pragma construct can be specified on a single pragma directive. The
compiler ignores unrecognized pragmas.

Standard C pragmas are described in “Standard pragmas.” IBM

 
Pragmas

available for XL C are described in "General purpose pragmas" in the XL C
Compiler Reference. IBM

The _Pragma preprocessing operator
The unary operator _Pragma, allows a preprocessor macro to be contained in a
pragma directive.

_Pragma operator syntax

►► _Pragma ( " string_literal " ) ►◄

The string_literal can be prefixed with L, making it a wide-string literal.

The string literal is destringized and tokenized. The resulting sequence of tokens is
processed as if it appeared in a pragma directive. For example, the following two
statements are equivalent:
_Pragma ( "pack(full)" )
#pragma pack(full)

Standard pragmas
A standard pragma is a pragma preprocessor directive for which the C Standard
defines the syntax and semantics and for which no macro replacement is
performed. A standard pragma must be one of the following:

►► #pragma STDC FP_CONTRACT
FENV_ACCESS
CX_LIMITED_RANGE

ON
OFF
DEFAULT

new-line ►◄

The FP_CONTRACT and FENV_ACCESS pragmas are recognized and ignored.

CX_LIMITED_RANGE is described below.

pragma STDC CX_LIMITED_RANGE

The usual mathematical formulas for complex multiplication, division, and
absolute value are problematic because of their treatment of infinities and because
of undue overflow and underflow. The usual formulas are as follows:

(x + iy) × (u + iv) = (xu - yv) + i(yu + xv)

(x + iy)/(u + iv) = [(xu + yv) + i(yu - xv)]/(u2 + v2)

| x + iy | = sqrt(x2 + y2)

By default, the compiler uses slightly more complex but mathematically safer
algorithms to implement these calculations. Where you determine that the usual
mathematical formulas are safe, you can use the STDC CX_LIMITED_RANGE
pragma to inform the compiler that, when the state is "on", the formulas are
acceptable. In doing so, you allow the compiler to generate faster code for these
computations. When the state is "off", the compiler will continue to use the safer
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algorithms. For details on the implementation of this pragma, see #pragma STDC
cx_limited_range in the XL C Compiler Reference.
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Chapter 11. The IBM XL C language extensions

The IBM XL C extensions include C features as extensions in the following
categories:
v “General IBM extensions”
v “C11 compatibility” on page 226
v “Extensions for GNU C compatibility” on page 226
v “Extensions for Unicode support” on page 230
v “Extensions for vector processing support” on page 230

General IBM extensions
The following features are enabled by default at all extended language levels:

Table 34. General IBM extensions

Language feature Discussed in:

Allowed types in typedef definitions “typedef definitions” on page 68

Extended types allowed in bit field
structure members

Bit field members

The following features are disabled by default at all language levels. It also can be
enabled or disabled by an individual option.

Table 35. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

__static_assert keyword “Keywords for language
extensions (IBM
extension)” on page 10

-q[no]keyword=__static_assert

Extra text after #endif or
#else

“Extension of #endif and
#else (IBM extension)” on
page 217

-qlanglvl=[no]textafterendif

The following feature is enabled by default with the xlc, cc and c99 invocation
commands when the extc99, stdc99, or extc1x language level is not in effect. It can
also be enabled or disabled by a specific compiler option, listed in the following
table:

Table 36. General IBM extensions with individual option controls

Language feature Discussed in: Individual option controls

Non-C99 IBM long long
extension

Types of integer literals
outside of C99

-q[no]longlong

The following feature is enabled by default with the xlc, cc and c99 invocation
commands when the extc99, stdc99, or extc1x language level is in effect.
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Table 37. General IBM extensions

Language feature Discussed in:

C99 long long feature with the associated
IBM extensions

Types of integer literals in C99

Related reference:

See -qlonglong in the XL C Compiler Reference

C11 compatibility

Note: IBM supports selected features of C11, known as C1X before its ratification.
IBM will continue to develop and implement the features of this standard. The
implementation of the language level is based on IBM's interpretation of the
standard. Until IBM's implementation of all the C11 features is complete, including
the support of a new C11 standard library, the implementation may change from
release to release. IBM makes no attempt to maintain compatibility, in source,
binary, or listings and other compiler interfaces, with earlier releases of IBM's
implementation of the C11 features.

The following features are part of a continual phased release process leading
towards full compliance with C11. They can be enabled by the -qlanglvl=extc1x
group option.

Table 38. Supported C11 features

Language feature Discussed in:

_Noreturn function
specifier

“The _Noreturn function specifier” on page 185, “Keywords for
language extensions (IBM extension)” on page 10

Anonymous structures Anonymous structures

Anonymous unions Anonymous unions

Complex type
initializations

“Initialization of complex types (C11)” on page 99

Generic selection “Generic selection (C11)” on page 119

Static assertions _Static_assert declaration

typedef redeclarations “typedef definitions” on page 68

Related reference

-qlanglvl in the XL C Compiler Reference

Extensions for GNU C compatibility
The following feature is enabled by default at all language levels:

Table 39. Default IBM XL C extensions for GNU C compatibility

Language feature Discussed in:

#include_next preprocessor directive “The #include_next directive (IBM
extension)” on page 212

The following features are enabled by default when you compile with any of the
following commands:
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v the xlc invocation command
v the -qlanglvl=extc99 | extc89 | extc1x | extended options

Table 40. Default IBM XL C extensions for GNU C compatibility

Language feature Discussed in:

__alignof and __alignof__ keywords “The __alignof__ operator (IBM extension)”
on page 126, “Keywords for language
extensions (IBM extension)” on page 10

__align type qualifier “The __align type qualifier (IBM extension)”
on page 71

__alignof__ operator “The __alignof__ operator (IBM extension)”
on page 126

__attribute and __attribute__ keywords “Variable attributes (IBM extension)” on
page 100, “Function attributes (IBM
extension)” on page 189, “Keywords for
language extensions (IBM extension)” on
page 10

__complex__ keyword “Keywords for language extensions (IBM
extension)” on page 10

__extension__ keyword “Keywords for language extensions (IBM
extension)” on page 10

__imag__ and__real__ keywords “The __real__ and __imag__ operators (IBM
extension)” on page 129“Keywords for
language extensions (IBM extension)” on
page 10

__imag__ and __real__ complex type
operators

“The __real__ and __imag__ operators (IBM
extension)” on page 129

__inline__ keyword “The inline function specifier” on page 183,
“Keywords for language extensions (IBM
extension)” on page 10

__label__ keyword “Nested functions (C only) (IBM extension)”
on page 202, “Locally declared labels (IBM
extension)” on page 154, “Keywords for
language extensions (IBM extension)” on
page 10

__restrict and __restrict__ keywords “The restrict type qualifier” on page 73,
“Keywords for language extensions (IBM
extension)” on page 10

__thread keyword “The __thread storage class specifier (IBM
extension) ” on page 46, “Keywords for
language extensions (IBM extension)” on
page 10

__typeof__ keyword “The typeof operator (IBM extension)” on
page 128, “Keywords for language
extensions (IBM extension)” on page 10

__typeof__ operator “The typeof operator (IBM extension)” on
page 128

#assert, #unassert preprocessor directives “Assertion directives (IBM extension)” on
page 220

#warning preprocessor directive “The #warning directive (IBM extension)” on
page 219
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Table 40. Default IBM XL C extensions for GNU C compatibility (continued)

Language feature Discussed in:

Alternate keywords “Keywords for language extensions (IBM
extension)” on page 10

asm labels “Assembly labels (IBM extension)” on page
12

Cast to a union type “Cast to union type (C only) (IBM
extension)” on page 145

Complex literal suffixes Complex literals

Computed goto statements “Computed goto statement (IBM extension)”
on page 169

Function attributes “Function attributes (IBM extension)” on
page 189

Generalized lvalues “Lvalues and rvalues” on page 115

Global register variables “Variables in specified registers (IBM
extension)” on page 45

Initialization of static variables by
compound literals

“Compound literal expressions” on page 147

Labels as values “Labels as values (IBM extension)” on page
154

Linkage of inline functions “Linkage of inline functions” on page 183

Locally declared labels “Locally declared labels (IBM extension)” on
page 154

Nested functions “Nested functions (C only) (IBM extension)”
on page 202

Placement of flexible array members
anywhere in structure or union

Flexible array members

Postfix and unary operators on complex
types (increment, decrement, and complex
conjugation)

“Increment operator ++” on page 122,
“Decrement operator --” on page 123,
“Bitwise negation operator ~” on page 124

Statements and declarations in expressions
(statement expressions)

“Statement expressions (IBM extension)” on
page 156

Static initialization of flexible array members
of aggregates

Flexible array members

Structures with flexible array members being
members of another structure

Flexible array members

Type attributes “Type attributes (IBM extension)” on page
75

Variable attributes “Variable attributes (IBM extension)” on
page 100

Variadic macro extensions Variadic macro extensions(IBM extension)

Zero-extent arrays Zero-extent array members (IBM extension)

The following features are enabled by default when you compile with any of the
following commands:
v the xlc invocation command
v the -qlanglvl=extc99 | extc89 | extc1x | extended options
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They are also enabled or disabled by specific compiler options, which are listed in
the below table:

Table 41. IBM XL C extensions for GNU C compatibility with individual option controls

Language feature Discussed in:
Individual option
controls

asm, and __asm keywords “Assembly labels (IBM extension)”
on page 12, “Inline assembly
statements (IBM extension)” on
page 170, “Keywords for language
extensions (IBM extension)” on
page 10

-q[no]keyword=asm,
-qasm

asm inline
assembly-language
statements

“Inline assembly statements (IBM
extension)” on page 170

-qasm

typeof keyword “The typeof operator (IBM
extension)” on page 128, “Keywords
for language extensions (IBM
extension)” on page 10

-q[no]keyword=typeof

typeof operator “The typeof operator (IBM
extension)” on page 128

-q[no]keyword=typeof

Visibility function attribute “visibility” on page 198 -fvisibility (-qvisibility)

Visibility variable attribute “The visibility variable attribute” on
page 104

-fvisibility (-qvisibility)

Note: You can use the -qvisibility option to specify visibility attributes for variables and
functions if they do not get visibility attributes from pragma directives, explicitly specified
attributes, or propagation rules. This option cannot be used to disable visibility attributes
for variables or functions.

The following features require compilation with the use of an additional option:

Table 42. IBM XL C extensions for GNU C compatibility, requiring additional compiler
options

Language feature Discussed in:
Required compilation
option

__thread storage class
specifier

“The __thread storage class specifier
(IBM extension) ” on page 46

-qtls

Dollar signs in identifiers “Characters in identifiers” on page
11

-qdollar

Related reference:

See -qkeyword in the XL C Compiler Reference

See -qasm in the XL C Compiler Reference

See -qtls in the XL C Compiler Reference

See -qdollar in the XL C Compiler Reference

See Invoking the compiler in the XL C Compiler Reference
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Extensions for Unicode support
The following feature requires compilation with the use of an additional option.

Table 43. IBM XL C extensions for unicode support

Language feature Discussed in:
Required compilation
option

UTF-16, UTF-32
literals

“UTF literals (IBM extension)” on page
32

-qutf

Extensions for vector processing support
The vector extensions are only accepted when all of the following conditions are
met:
v The -qarch option is set to a target architecture that supports vector processing

instructions. For example, an architecture that supports the VSX instruction set
extensions, such as POWER7, requires -qarch=pwr7.

v The -qaltivec option is in effect.

For more information on these options, see the XL C Compiler Reference.

Table 44. IBM XL C extensions to support the AltiVec Application Programming Interface
specification

Language feature Discussed in:

Vector programming language extensions “Vector types (IBM extension)” on page 51,
“Vector literals (IBM extension)” on page 22

The following features are IBM extensions to the AltiVec Application Programming
Interface specification:

Table 45. IBM XL C extensions to the AltiVec Application Programming Interface
specification

Language extension Discussed in:

Address operator & and Indirection operator
* applied to vector types

“Address operator &” on page 125,
“Indirection operator *” on page 125

bool, __pixel, pixel, __vector, and vector
keywords

“Keywords for language extensions (IBM
extension)” on page 10

Initialization of vectors “Initialization of vectors (IBM extension)” on
page 93

Pointer arithmetic for vector types “Pointer arithmetic” on page 84

vector types as arguments to the
__alignof__, typeof, sizeof, and vec_step

“The __alignof__ operator (IBM extension)”
on page 126, “The typeof operator (IBM
extension)” on page 128, “The sizeof
operator” on page 127, “The vec_step
operator (IBM extension)” on page 130

Vector type casts Chapter 6, “Type conversions,” on page 105

Vector subscripting operator [ ] “Vector subscripting operator [ ] (IBM
extension)” on page 141
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Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL C for AIX.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
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websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
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platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.
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Index

Special characters
__align 71
__cdecl 201
__func__ 10
__VA_ARGS__ 203
_Noreturn

function specifier 185
functions 185

_Pragma 222
_thread storage class specifier 46
- (subtraction operator) 134
- (unary minus operator) 124
-- (decrement operator) 123
-> (arrow operator) 121
, (comma operator) 142
! (logical negation operator) 124
!= (not equal to operator) 136
? : (conditional operators) 143
/ (division operator) 133
/= (compound assignment

operator) 131
. (dot operator) 121
$ 10, 29
* (indirection operator) 125
* (multiplication operator) 133
*= (compound assignment operator) 131
\ continuation character 26, 203
\ escape character 30
[ ] (array subscript operator) 140
[ ] (vector subscript operator) 141
% (remainder) 133
> (greater than operator) 135
>> (right-shift operator) 135
>>= (compound assignment

operator) 131
>= (greater than or equal to

operator) 135
< (less than operator) 135
<< (left-shift operator) 135
<<= (compound assignment

operator) 131
<= (less than or equal to operator) 135
| (bitwise inclusive OR operator) 138
| (vertical bar), locale 29
|| (logical OR operator) 139
& (address operator) 125
& (bitwise AND operator) 137
&& (label value operator) 147, 154
&& (logical AND operator) 139
&= (compound assignment

operator) 131
# preprocessor directive character 203
# preprocessor operator 208
## (macro concatenation) 209
+ (addition operator) 134
+ (unary plus operator) 124
++ (increment operator) 122
+= (compound assignment

operator) 131
= (simple assignment operator) 131
== (equal to operator) 136

^ (bitwise exclusive OR operator) 138
^ (caret), locale 29
^= (compound assignment

operator) 131
~ (bitwise negation operator) 124

A
addition operator (+) 134
address operator (&) 125

GNU C extension 154
aggregate types 37

initialization 93
alias

function 10
type-based aliasing 85

alias function attribute 190
alignment 101, 103

bit fields 55
structure members 55
structures 101
structures and unions 71

alignof operator 126
always_inline function attribute 191
AND operator, bitwise (&) 137
AND operator, logical (&&) 139
argc (argument count) 198

example 198
arguments

macro 203
main function 198
passing 179, 199
passing by pointer 200
passing by value 200
trailing 203

argv (argument vector) 198
example 198

arithmetic conversions 105
arithmetic types

type compatibility 69
arrays

array-to-pointer conversions 112
as function parameter 43, 187
declaration 43, 187
description 87
flexible array member 55
initialization 91
initializing 96
multidimensional 87
subscripting operator 140
type compatibility 89
variable length 82, 88
zero-extent 55

ASCII character codes 30
asm 9

keyword 10, 44
labels 10
statements 170

assembly
labels 10
statements 170

assignment operator (=)
compound 131
pointers 86
simple 131

associativity of operators 148
auto storage class specifier 42

B
basic example, described xi
binary expressions and operators 130
bit field

integral promotion 111
bit fields 55

as structure member 55
type name 128

bitwise negation operator (~) 124
block statement 155
block visibility 4
bool 51
Boolean

conversions 106
data types 48
integral promotion 111
literals 17

break statement 165
built-in data types 37

C
C11

_Static assertion 40
C11 compatibility 226
case label 158
cast expressions 22, 145

union type 145
vector literal 22

char type specifier 51
character

data types 51
literals 25
multibyte 26, 29

character literals
multicharacter literal 25
narrow character literal 25
ordinary character literal 25
universal character name 25
wide character literal 25

character set
extended 29
source 29

class members
access operators 121

classes
class objects 37

comma 142
in enumerator list 64

comments 34
compatibility

data types 37
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compatibility (continued)
user-defined types 67
XL C and GCC 1, 226
XL C decimal-floating-point types 1
XL C99 1

compatible functions 181
compatible types

across source files 67
arithmetic types 69
arrays 89
in conditional expressions 143

complex literals 17
complex types 49

initializing 99
composite types 37

across source files 67
compound

assignment 131
expression 131
literal 147
statement 155
types 37

computed goto 147, 154, 169
concatenation

macros 209
multibyte characters 26
u-literals, U-literals 31

conditional compilation directives 213
elif preprocessor directive 215
else preprocessor directive 216
endif preprocessor directive 216
examples 217
if preprocessor directive 215
ifdef preprocessor directive 216
ifndef preprocessor directive 216

conditional expression (? :) 131, 143
const 51, 73

object 115
placement in type name 82
qualifier 69
vs. #define 203

const function attribute 191
constant 13
constant expressions 64, 117
continuation character 26, 203
continue statement 166
conversions

arithmetic 105
array-to-pointer 112
Boolean 106
cast 145
complex to real 106
function arguments 114
function-to-pointer 112
integral 106
lvalue-to-rvalue 112, 115
pointer 112
standard 105
void pointer 113

CPLUSPLUS macro 210
cv-qualifier 69, 81

syntax 69

D
data declarations 37
data objects 37

data types
aggregates 37
Boolean 48
built-in 37
character 51
compatible 37
complex 49
composite 37
compound 37
enumerated 64
floating 49
incomplete 37
integral 48
scalar 37
user-defined 37, 55
vector 51
void 51

DATE macro 210
decimal

floating constants 17
decimal integer literals 13
declaration 179
declarations

description 39
duplicate type qualifiers 69
syntax 39, 82, 179
unsubscripted arrays 87
vector types 51

declarative region 3
declarators 81

description 81
examples 82

decrement operator (--) 123
default

clause 158
label 158

define preprocessor directive 203
defined unary operator 215
definitions

description 39
macro 203
tentative 39

dereferencing operator 125
derivation

array type 87
designated initializer

aggregate types 91
union 93

designator 91
designation 91
designator list 91
union 93

digraph characters 33
division operator (/) 133
do statement 163
dollar sign 10, 29
dot operator 121
double type specifier 49

E
EBCDIC character codes 30
elif preprocessor directive 215
ellipsis

in function declaration 187
in function definition 187
in macro argument list 203

else
preprocessor directive 216
statement 156

endif preprocessor directive 216
entry point

program 198
enum

keyword 64
enumerations 64

compatibility 67
declaration 64
initialization 95
trailing comma 64

enumerator 64
equal to operator (==) 136
error preprocessor directive 218
escape character \ 30
escape sequence 30

alarm \a 30
backslash \\ 30
backspace \b 30
carriage return \r 30
double quotation mark \" 30
form feed \f 30
horizontal tab \t 30
new-line \n 30
question mark \? 30
single quotation mark \' 30
vertical tab \v 30

examples
block 155
conditional expressions 144
inline assembly statements 175
scope C 5

exclusive OR operator, bitwise (^) 138
explicit

type conversions 145
exponent 17
expressions

assignment 131
binary 130
cast 145
comma 142
conditional 143
description 115
integer constant 117
parenthesized 118
primary 116
statement 154
unary 122

extensions
IBM XL C language

C99 225
decimal floating-point

support 225
GNU C 225
Unicode support 225
vector processing support 225

extern storage class specifier 7, 44, 182
with variable length arrays 88

F
file inclusion 211, 212
FILE macro 210
file scope data declarations

unsubscripted arrays 87
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flexible array member 55
float type specifier 49
floating point

constant 17
literals 17
promotion 111

floating-point literals
complex 17
real 17

floating-point types 49
for statement 163
format function attribute 192
function

aliases 10
definitions 180

function attribute
alias 190
always_inline 191
const 191
deprecated 192
format 192
format_arg 193
noinline 195
noreturn 195
pure 196
weak 196

function attributes 189
function declarators 187
function definitions 180
function designator 115
function specifier 182
function-like macro 203
functions 179

_Noreturn 185
arguments 179, 199

conversions 114
attributes 179
block 179
body 179
calling 199
calls 121

as lvalue 115
compatible 181
declaration 179

examples 180
parameter names 187

definition 179
examples 181

function call operator 179
function-to-pointer conversions 112
inline 183
library functions 179
main 198
name 179

diagnostic 10
nested 202
nested functions 179
parameters 199
pointers to 201
predefined identifier 10
prototype 179
return statements 167
return type 179, 185, 186
return value 179, 186
signature 187
specifiable attributes 189
specifiers 183, 185

functions (continued)
type name 82

G
generic macro 119
generic selection 119
global register variables 44
global variable 5, 7

uninitialized 90
goto statement 169

computed goto 169
restrictions 169

greater than operator (>) 135
greater than or equal to operator

(>=) 135

H
hexadecimal

floating constants 17
hexadecimal integer literals 13

I
identifiers 10, 117

case sensitivity 10
id-expression 81
labels 153
linkage 7
namespaces 6
predefined 10
reserved 9, 10
special characters 10, 29
truncation 10

if
preprocessor directive 215
statement 156

ifdef preprocessor directive 216
ifndef preprocessor directive 216
implicit conversion 105

Boolean 106
integral 106
lvalue 115
types 105

implicit conversions
complex to real 106

include preprocessor directive 211
include_next preprocessor directive 212
inclusive OR operator, bitwise (|) 138
incomplete type 87

as structure member 55
incomplete types 37
increment operator (++) 122
indentation of code 203
indirection operator (*) 125
information hiding 3, 4
initialization

aggregate types 93
auto object 90
extern object 90
register object 90
static object 90, 147
union member 93
vector types 93

initializer lists 90, 93, 147

initializers 90
aggregate types 91, 93
enumerations 95
unions 93
vector types 93

inline
assembly statements 170
function specifier 183
functions 183

integer
constant expressions 64, 117
data types 48
literals 13

integral
conversions 106
promotion 111

K
keywords 9

description 10
language extension 9
underscore characters 9

L
label

as values 154
implicit declaration 4
in switch statement 158
locally declared 154
statement 153

language extensions 1
IBM XL C

C99 225
decimal floating-point

support 225
GNU C 225
Unicode support 225
vector processing support 225

left-shift operator (<<) 135
less than operator (<) 135
less than or equal to operator (<=) 135
lexical element 9
LINE macro 210
line preprocessor directive 219
linkage 3

auto storage class specifier 42
const cv-qualifier 73
extern storage class specifier 44
external 7
in function definition 182
internal 7, 43, 182
none 8
program 7
register storage class specifier 44
static storage class specifier 43
weak symbols 103

literal constant 13
literals 13, 117

Boolean 17
character 25
compound 147
floating point 17
integer 13

decimal 13
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literals (continued)
integer (continued)

hexadecimal 13
octal 13

string 26
Unicode 31
vector 22

logical operators
! (logical negation) 124
|| (logical OR) 139
&& (logical AND) 139

long double type specifier 49
long long

types of integer literals in C99 13
types of integer literals outside of

C99 13
long long type specifier 48, 51
long type specifier 48, 51
LONGNAME compiler option 10
lvalues 69, 115, 117

casting 145
conversions 112, 115

M
macro

definition 203
typeof operator 128

function-like 203
invocation 203
object-like 203
variable argument 203

main function 198
arguments 198
example 198

members
class member access operators 121

modifiable lvalue 115, 131
modulo operator (%) 133
multibyte character 29

concatenation 26
multicharacter literal 25
multidimensional arrays 87
multiplication operator (*) 133

N
names

conflicts 6
long name support 10
resolution 4

namespaces
context 6
of identifiers 6
user-defined 5

narrow character literal 25
narrow string literal 26
NOLONGNAME compiler option 10
not equal to operator (!=) 136
null

character '\0' 26
pointer 96
pointer constants 112
preprocessor directive 221
statement 170

number sign (#)
preprocessor directive character 203
preprocessor operator 208

O
object-like macro 203
objects 115

description 37
lifetime 3
restrict-qualified pointer 73

octal integer literals 13
one's complement operator (~) 124
operators 27

__real__and__imag__ 129
- (subtraction) 134
- (unary minus) 124
-- (decrement) 123
-> (arrow) 121
, (comma) 142
! (logical negation) 124
!= (not equal to) 136
? : (conditional) 143
/ (division) 133
. (dot) 121
() (function call) 121, 179
* (indirection) 125
* (multiplication) 133
[] (array subscripting) 140
[] (vector subscripting) 141
% (remainder) 133
> (greater than) 135
>> (right- shift) 135
>= (greater than or equal to) 135
< (less than) 135
<< (left- shift) 135
<= (less than or equal to) 135
| (bitwise inclusive OR) 138
|| (logical OR) 139
& (address) 125
& (bitwise AND) 137
&& (logical AND) 139
+ (addition) 134
++ (increment) 122
= (simple assignment) 131
== (equal to) 136
^ (bitwise exclusive OR) 138
alternative representations 27
assignment 131
associativity 148
binary 130
bitwise negation operator (~) 124
compound assignment 131
defined 215
equality 136
precedence 148

examples 150
type names 82

preprocessor
# 208
## 209
pragma 222

relational 135
sizeof 127
typeof 128
unary 122
unary plus operator (+) 124

OR operator, logical (||) 139
ordinary character literal 25
ordinary string literal 26

P
packed

structure member 55
structures 67
unions 67
variable attribute 103

parenthesized expressions 82, 118
pass by pointer 200
pass by value 200
pixel 51
pointers

conversions 112
cv-qualified 83
dereferencing 85
description 83
generic 113
null 96
null pointer constants

nullptr 86
pointer arithmetic 84
restrict-qualified 73
to functions 201
type-qualified 83
void* 112

postfix
++ and -- 122, 123

pound sign (#)
preprocessor directive character 203
preprocessor operator 208

pragma operator 222
pragmas

_Pragma 222
preprocessor directive 221
standard 222

precedence of operators 148
predefined identifier 10
predefined macros

CPLUSPLUS 210
DATE 210
FILE 210
LINE 210
STDC 210
STDC_HOSTED 210
STDC_VERSION 210
TIME 210

prefix
++ and -- 122, 123
decimal floating constants 17
hexadecimal floating constants 17
hexadecimal integer literals 13
octal integer literals 13

preprocessor directives 203
conditional compilation 213
preprocessing overview 203
warning 219

preprocessor operator
_Pragma 222
# 208
## 209

primary expressions 116
promotions

integral and floating-point 111
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punctuators 27
alternative representations 27

Q
qualifiers

const 69
restrict 73
volatile 69, 74

R
real literals

binary floating point 17
hexadecimal floating point 17

references
as return types 186
declarator 125

register storage class specifier 44
register variables 44
remainder operator (%) 133
restrict 73
return statement 167, 186
return type

reference as 186
size_t 127

right-shift operator (>>) 135
rvalues 115

S
scalar types 37, 83
scope 3

description 3
enclosing and nested 4
function 4
function prototype 4
global 5
global namespace 5
identifiers 6
local (block) 4
macro names 208

sequence point 142
shift operators << and >> 135
short type specifier 48
side effect 74
signed type specifiers

char 51
int 48
long 48
long long 48

size_t 127
sizeof operator 127

with variable length arrays 88
sizeof... operator 127
special characters 29
specifiers

_Noreturn 185
inline 183
storage class 42

splice preprocessor directive ## 209
standard type conversions 105
statement expression 156
statements 153

block 155
break 165

statements (continued)
compound 156
continue 166
do 163
expressions 154
for 163
goto 169
if 156
inline assembly

restrictions 174
iteration 162
jump 165
jump statements 165
labels 153
null 170
return 167, 186
selection 156, 158
switch 158
while 162

static 51
in array declaration 43, 187
storage class specifier 43, 182

linkage 43
with variable length arrays 88

static storage class specifier 7
STDC macro 210
STDC_HOSTED macro 210
STDC_VERSION macro 210
storage class specifiers 42

_thread 46
auto 42
extern 44, 182
function 182
register 44
static 43, 182
tls_model attribute 46

storage duration 3
auto storage class specifier 42
extern storage class specifier 44
register storage class specifier 44
static 43, 182

string
literals 26

string literals
narrow string literal 26
ordinary string literal 26
string concatenation 26
wide string literal 26

stringize preprocessor directive # 208
struct type specifier 55
structures 55

alignment 71
anonymous structures 55
compatibility 67
flexible array member 55
identifier (tag) 55
initialization 93
members 55

alignment 55
incomplete types 55
layout in memory 55, 93
packed 55
padding 55
zero-extent array 55

namespaces within 6
packed 55
unnamed members 93

subscript declarator
in arrays 87

subscripting operator 87, 140, 141
in type name 82

subtraction operator (-) 134
suffix

decimal floating constants 17
floating-point literals 17
hexadecimal floating constants 17
integer literal constants 13

switch statement 158

T
tags

enumeration 64
structure 55
union 55

tentative definition 39
TIME macro 210
tls_model attribute 103
tokens 9, 203

alternative representations for
operators and punctuators 27

translation unit 3
trigraph sequences 33
truncation

integer division 133
type attributes 75

aligned 76
may_alias 77
packed 77
transparent_union 78

type name 82
typeof operator 128

type qualifiers
const 69, 73
const and volatile 81
duplicate 69
restrict 69, 73
volatile 69

type specifiers 48
_Bool 48
char 51
complex 49
double 49
enumeration 64
float 49
int 48
long 48
long double 49
long long 48
overriding 102
short 48
unsigned 48
vector data types 51
void 51
wchar_t 48, 51

typedef names 68
typedef specifier 68

with variable length arrays 88
typeof operator 128
types

conversions 145
type-based aliasing 85
variably modified 87
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u-literal, U-literal 31
unary expressions 122
unary operators 122

label value 147
minus (-) 124
plus (+) 124

undef preprocessor directive 208
underscore character 9, 10

in identifiers 10
Unicode 31
unions 55

cast to union type 145
compatibility 67
designated initializer 91
initialization 93
specifier 55
unnamed members 93

universal character name 10, 25, 31
unsigned type specifiers

char 51
int 48
long 48
long long 48
short 48

unsubscripted arrays
description 87, 187

user-defined data types 37, 55
usual arithmetic conversions 108
UTF-16, UTF-32 31

V
variable

in specified registers 44
variable attributes 100
variable length array 37, 88, 169

as function parameter 88, 199
sizeof 118
type name 82

variably modified types 87, 88, 158
vector

literals 22
subscripting operator 141

vector data types 51
vector literal

cast expressions 22
vector processing support 1, 230
vector types 128

in typedef declarations 68
literals 22

visibility 3
block 4

visibility attributes
function 198
variable 104

void 51
in function definition 185, 187
pointer 112, 113

volatile
qualifier 69, 74

W
warning preprocessor directive 219

wchar_t
integral promotion 111

wchar_t type specifier 25, 48, 51
weak symbol 103
while statement 162
white space 9, 34, 203, 208
wide character literal 25
wide string literal 26

Z
zero-extent array 55
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