
IBM XL Fortran for AIX, V15.1.3

Getting Started with XL Fortran
Version 15.1.3

SC27-4242-02

IBM

IBM XL Fortran for AIX, V15.1.3

Getting Started with XL Fortran
Version 15.1.3

SC27-4242-02

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

First edition

This edition applies to IBM XL Fortran for AIX, V15.1.3 (Program 5765-J09; 5725-C74) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Conventions v
Related information ix

IBM XL Fortran information ix
Standards and specifications x
Other IBM information. xi

Technical support xi
How to send your comments xi

Chapter 1. Introducing XL Fortran . . . 1
Commonality with other IBM compilers 1
Operating system and hardware support 1
A highly configurable compiler 1
Language standard compliance 3

Source-code migration and conformance checking 3
Tools, utilities, and commands 4
Program optimization 5
64-bit object capability 5
Shared memory parallelization 6
Diagnostic reports 7
Symbolic debugger support 7

Chapter 2. What's new for IBM XL
Fortran for AIX, V15.1.3 9
Language features 9
Intrinsic procedures 10
Other enhancements 10

Chapter 3. Migration of your
applications 13
Things to note in IBM XL Fortran for AIX, V15.1.3 13
Avoiding or fixing upgrade problems. 14
Compatibility with earlier versions 17

Chapter 4. Enhancements added in
earlier releases 21
Enhancements added in Version 15.1.2 21

Fortran 2008 features 21
Language interoperability features 21
Intrinsic procedures 22
Commands 22
Compiler options 22
Other XL Fortran updates 23

Enhancements added in Version 15.1 23

Support for POWER8 processors 23
Fortran 2008 features 25
Language interoperability features 27
OpenMP 4.0 28
Directives and intrinsic procedures 29
Compiler options 31
Other XL Fortran updates 33

Enhancements added in Version 14.1 34
Fortran 2008 features 34
OpenMP 3.1 37
Performance and optimization 38
Diagnostic reports 38
Compiler options and directives 40

Chapter 5. Setting up and customizing
XL Fortran 43
Using custom compiler configuration files 43
Configuring compiler utilization tracking and
reporting 43

Chapter 6. Developing applications
with XL Fortran 45
The compiler phases 45
Editing Fortran source files 45
Compiling with XL Fortran 46

Invoking the compiler 46
Compiling parallelized XL Fortran applications 48
Specifying compiler options 49
XL Fortran input and output files 50

Linking your compiled applications with XL Fortran 51
Linking new objects with existing ones 51
Relinking an existing executable file 51
Dynamic and static linking 52

Running your compiled application 52
XL Fortran compiler diagnostic aids 53

Debugging compiled applications 53
Determining which level of XL Fortran is being
used 54

Notices 55
Trademarks 57

Index 59

© Copyright IBM Corp. 1996, 2015 iii

iv XL Fortran: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
Fortran for AIX®, V15.1.3 compiler.

Who should read this document

This document is intended for Fortran developers who are looking for introductory
overview and usage information for XL Fortran. It assumes that you have some
familiarity with command-line compilers, basic knowledge of the Fortran
programming language, and basic knowledge of operating system commands.
Programmers new to XL Fortran can use this document to find information about
the capabilities and features unique to XL Fortran.

How to use this document

Throughout this document, the xlf compiler invocation is used to describe the
behavior of the compiler. You can, however, substitute other forms of the compiler
invocation command if your particular environment requires it, and compiler
option usage remains the same unless otherwise specified.

While this document covers information such as configuring the compiler
environment, and compiling and linking Fortran applications using the XL Fortran
compiler, it does not include the following topics:
v Compiler installation: see the XL Fortran Installation Guide.
v Compiler options: see the XL Fortran Compiler Reference for detailed information

about the syntax and usage of compiler options.
v The Fortran programming language: see the XL Fortran Language Reference for

information about the syntax, semantics, and IBM implementation of the Fortran
programming language.

v Programming topics: see the XL Fortran Optimization and Programming Guide for
detailed information about developing applications with XL Fortran, with a
focus on program portability and optimization.

Conventions
Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for AIX, V15.1.3 information.

Table 1. Typographical conventions

Typeface Indicates Example

lowercase
bold

Invocation commands, executable
names, and compiler options.

The compiler provides basic
invocation commands, xlf, along with
several other compiler invocation
commands to support various Fortran
language levels and compilation
environments.

The default file name for the
executable program is a.out.

© Copyright IBM Corp. 1996, 2015 v

Table 1. Typographical conventions (continued)

Typeface Indicates Example

italics Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

Make sure that you update the size
parameter if you return more than
the size requested.

underlining The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace Examples of program code,
reference to program code, file
names, path names, command
strings, or user-defined names.

To compile and optimize
myprogram.f, enter: xlf myprogram.f
-O3.

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Icon
Bracket
separator text Meaning

F2008

F2008

Fortran 2008
begins /
Fortran 2008
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2008 standard.

Fortran 2003
begins /
Fortran 2003
ends

The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard, and it applies to all later
standards.

IBM extension
begins / IBM
extension ends

The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

TS 29113

TS 29113

TS 29113
begins / TS
29113 ends

The text describes an IBM XL Fortran implementation of
Technical Specification 29113, referred to as TS 29113.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
helps you to interpret and use those diagrams.

vi XL Fortran: Getting Started

v Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
The ►►─── symbol indicates the beginning of a command, directive, or statement.
The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.
The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.
The ───►◄ symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the │─── symbol and end with
the ───│ symbol.
IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.
Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

v Required items are shown on the horizontal line (the main path):

►► keyword required_argument ►◄

v Optional items are shown below the main path:

►► keyword
optional_argument

►◄

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

v If you can choose from two or more items, they are shown vertically, in a stack.
If you must choose one of the items, one item of the stack is shown on the main
path.

►► keyword required_argument1
required_argument2

►◄

If choosing one of the items is optional, the entire stack is shown below the
main path.

►► keyword
optional_argument1
optional_argument2

►◄

v An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

►► ▼

,

keyword repeatable_argument ►◄

v The item that is the default is shown above the main path.

About this document vii

►► keyword
default_argument
alternate_argument ►◄

v Keywords are shown in nonitalic letters and should be entered exactly as shown.
v Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

How to read syntax statements

Syntax statements are read from left to right:
v Individual required arguments are shown with no special notation.
v When you must make a choice between a set of alternatives, they are enclosed

by { and } symbols.
v Optional arguments are enclosed by [and] symbols.
v When you can select from a group of choices, they are separated by | characters.
v Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|d]e[,e]... name_list{name_list}...

The following list explains the syntax statement:
v Enter the keyword EXAMPLE.

►►
(1)

EXAMPLE char_constant a
b c

d

▼

,

e name_list ►◄

Notes:

1 IBM extension

Interpret the diagram as follows:

v Enter the keyword EXAMPLE.

v EXAMPLE is an IBM extension.

v Enter a value for char_constant.

v Enter a value for a or b, but not for both.

v Optionally, enter a value for c or d.

v Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

v Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

viii XL Fortran: Getting Started

v Enter a value for char_constant.
v Enter a value for a or b, but not for both.
v Optionally, enter a value for c or d.
v Enter at least one value for e. If you enter more than one value, you must put a

comma between each.
v Optionally, enter the value of at least one name for name_list. If you enter more

than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
v The term free source form format often appears as free source form.
v The term fixed source form format often appears as fixed source form.
v The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information
XL Fortran provides product information in the following formats:
v Quick Start Guide

The Quick Start Guide (quickstart.pdf) is intended to get you started with IBM
XL Fortran for AIX, V15.1.3. It is located by default in the XL Fortran directory
and in the \quickstart directory of the installation DVD.

v README files
README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory and in the root directory of the installation DVD.

v Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for AIX, V15.1.3 Installation Guide.

v Online product documentation
The fully searchable HTML-based documentation is viewable in IBM Knowledge
Center at http://www.ibm.com/support/knowledgecenter/SSGH4D_15.1.3/
com.ibm.compilers.aix.doc/welcome.html.

About this document ix

http://www.ibm.com/support/knowledgecenter/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGH4D_15.1.3/com.ibm.compilers.aix.doc/welcome.html

v PDF documents
PDF documents are available on the web at http://www.ibm.com/support/
docview.wss?uid=swg27036673.
The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

Document title
PDF file
name Description

IBM XL Fortran for AIX,
V15.1.3 Installation Guide,
SC27-4243-02

install.pdf Contains information for installing XL Fortran
and configuring your environment for basic
compilation and program execution.

Getting Started with IBM
XL Fortran for AIX,
V15.1.3, SC27-4242-02

getstart.pdf Contains an introduction to the XL Fortran
product, with information about setting up and
configuring your environment, compiling and
linking programs, and troubleshooting
compilation errors.

IBM XL Fortran for AIX,
V15.1.3 Compiler Reference,
SC27-4244-02

compiler.pdf Contains information about the various
compiler options and environment variables.

IBM XL Fortran for AIX,
V15.1.3 Language Reference,
SC27-4245-02

langref.pdf Contains information about the Fortran
programming language as supported by IBM,
including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran for AIX,
V15.1.3 Optimization and
Programming Guide,
SC27-4246-02

proguide.pdf Contains information on advanced
programming topics, such as application
porting, interlanguage calls, floating-point
operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use Adobe Reader. If you do not have Adobe Reader, you
can download it (subject to license terms) from the Adobe website at
http://www.adobe.com.

More information related to XL Fortran, including IBM Redbooks® publications,
white papers, and other articles, is available on the web at http://www.ibm.com/
support/docview.wss?uid=swg27036673.

For more information about Fortran, see the Fortran café at https://
www.ibm.com/developerworks/mydeveloperworks/groups/service/html/
communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa.

Standards and specifications
XL Fortran is designed to support the following standards and specifications. You
can refer to these standards and specifications for precise definitions of some of the
features found in this information.
v American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
v American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
v ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
v Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.
v Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991.

(This information uses its informal name, Fortran 90.)

x XL Fortran: Getting Started

http://www.ibm.com/support/docview.wss?uid=swg27036673
http://www.ibm.com/support/docview.wss?uid=swg27036673
http://www.adobe.com
http://www.ibm.com/support/docview.wss?uid=swg27036673
http://www.ibm.com/support/docview.wss?uid=swg27036673
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=b10932b4-0edd-4e61-89f2-6e478ccba9aa

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

v Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008. We
currently provide partial support to this standard.)

v Information technology - Further interoperability of Fortran with C, ISO/IEC TS
29113:2012. (This information uses its informal name, Technical specification
29113, referred to as TS 29113. We currently provide partial support to this
specification.)

v Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

v OpenMP Application Program Interface Version 3.1 (full support), and OpenMP
Application Program Interface Version 4.0 (partial support), available at
http://www.openmp.org

Other IBM information
v Parallel Environment for AIX: Operation and Use

v The IBM Systems Information Center, at http://publib.boulder.ibm.com/
infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm,
is a resource for AIX information.
You can find the following books for your specific AIX system:
– AIX Commands Reference, Volumes 1 - 6

– Technical Reference: Base Operating System and Extensions, Volumes 1 & 2

– AIX National Language Support Guide and Reference

– AIX General Programming Concepts: Writing and Debugging Programs

– AIX Assembler Language Reference

Technical support
Additional technical support is available from the XL Fortran Support page at
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_aix.
This page provides a portal with search capabilities to a large selection of
Technotes and other support information.

If you cannot find what you need, you can send an email to
compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http://www.ibm.com/software/products/en/xlfortran-aix.

How to send your comments
Your feedback is important in helping us to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments to compinfo@ca.ibm.com.

About this document xi

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.doc/doc/base/aixparent.htm
http://www.ibm.com/support/entry/portal/product/rational/xl_fortran_for_aix
http://www.ibm.com/software/products/en/xlfortran-aix

Be sure to include the name of the manual, the part number of the manual, the
version of XL Fortran, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

xii XL Fortran: Getting Started

Chapter 1. Introducing XL Fortran

IBM XL Fortran for AIX, V15.1.3 is an advanced, high-performance compiler that
can be used for developing complex, computationally intensive programs,
including interlanguage calls with C programs.

This section contains information about the features of the XL Fortran compiler at a
high level. It is intended for people who are evaluating the compiler and for new
users who want to find out more about the product.

Commonality with other IBM compilers
IBM XL Fortran for AIX, V15.1.3 is part of a larger family of IBM C, C++, and
Fortran compilers. XL Fortran, together with XL C and XL C/C++, comprises the
family of XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX, IBM Blue
Gene®/Q, and selected Linux distributions. The common code base, along with
compliance with international programming language standards, helps support
consistent compiler performance and ease of code portability across multiple
operating systems and hardware platforms.

Operating system and hardware support
This section describes the operating systems and hardware that IBM XL Fortran for
AIX, V15.1.3 supports.

IBM XL Fortran for AIX, V15.1.3 supports the following operating systems:
v AIX V6.1 TL 2 Service Pack 5 or later
v AIX V7.1
v AIX V7.2
v IBM i V7.1 PASE V7.1
v IBM i V7.2 PASE V7.2

See the README file and "Before installing XL Fortran" in the XL Fortran
Installation Guide for a complete list of requirements.

The compiler, its libraries, and its generated object programs run on POWER5,
POWER5+, POWER6®, POWER7®, POWER7+™, and POWER8® systems with the
required software and disk space.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications according to the hardware type
that runs the compiled applications.

A highly configurable compiler
You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

© Copyright IBM Corp. 1996, 2015 1

Compiler invocation commands

XL Fortran provides several commands to invoke the compiler, for example, xlf,
xlf90, xlf95, xlf2003, and xlf2008. Compiler invocation commands are provided to
support most standardized Fortran language levels and many popular language
extensions.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, xlf_r. The "_r" invocations instruct the compiler to link
and bind object files to threadsafe components and libraries, and produce
threadsafe object code for compiler-created data and procedures.

For more information about XL Fortran compiler invocation commands, see
"Compiling XL Fortran programs" in the XL Fortran Compiler Reference.

Compiler options

You can choose from a large selection of compiler options to control compiler
behavior. You can benefit from using different options for the following tasks:
v Debugging your applications
v Optimizing and tuning application performance
v Selecting language levels and extensions for compatibility with nonstandard

features and behaviors that are supported by other Fortran compilers
v Performing many other common tasks that would otherwise require changing

the source code

You can specify compiler options through a combination of environment variables,
compiler configuration files, command line options, and compiler directive
statements embedded in your program source.

For more information about XL Fortran compiler options, see "Summary of
compiler options" in the XL Fortran Compiler Reference.

Custom compiler configuration files

The installation process creates a default plain text compiler configuration file
containing stanzas that define compiler option default settings.

If you frequently specify compiler option settings other than the default settings of
XL Fortran, you can use makefiles to define your settings. Alternatively, you can
create custom configuration files to define your own frequently used option
settings.

For more information about using custom compiler configuration files, see “Using
custom compiler configuration files” on page 43.

Utilization tracking configuration file

The utilization and reporting tool can be used to detect whether your
organization's use of the compiler exceeds your license entitlements.

The utilization tracking and reporting feature of the compiler has its own
configuration file. The main compiler configuration file contains an entry that

2 XL Fortran: Getting Started

points to this file. The different installations of the compiler product can use a
single utilization tracking configuration file to centrally manage the utilization
tracking and reporting feature.

For detailed information about the utilization tracking and reporting feature, see
"Tracking and reporting compiler usage" in the XL Fortran Compiler Reference.

Language standard compliance
This topic describes the Fortran programming language specifications that IBM XL
Fortran for AIX, V15.1.3 supports.
v Partial support for ISO/IEC TS 29113:2012 (referred to as the Technical

Specification for further interoperability with C or TS 29113)
v Partial support for ISO/IEC 1539-1:2010 (referred to as Fortran 2008 or F2008)
v ISO/IEC 1539-1:2004 (referred to as Fortran 2003 or F2003)
v ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)
v ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or F90)
v ANSI X3.9-1978 (referred to as FORTRAN 77)

In addition to the standard language levels, XL Fortran supports the following
language extensions:
v Partial support for OpenMP Application Program Interface V4.0
v OpenMP Application Program Interface V3.1
v Language extensions to support vector programming
v Common Fortran language extensions defined by other compiler vendors, in

addition to those defined by IBM
v Industry extensions that are found in Fortran products from various compiler

vendors
v Extensions specified in SAA Fortran

See "Language standards" in the XL Fortran Language Reference for more
information about Fortran language specifications and extensions.

Source-code migration and conformance checking
XL Fortran provides compiler invocation commands that instruct the compiler to
inspect your application for conformance to a specific language level and warn you
if constructs and keywords do not conform to the specified language level.

You can also use the -qlanglvl compiler option to specify a language level. If the
language elements in your program source do not conform to the specified
language level, the compiler issues diagnostic messages. Additionally, you can
name your source files with common filename extensions such as .f77, .f90, f95,
.f03, or .f08, and then use the generic compiler invocations such as xlf or xlf_r to
automatically select the language level appropriate to the filename extension.

You can rebuild your FORTRAN 77, Fortran 90, Fortran 95, Fortran 2003, and
Fortran 2008 source code with IBM XL Fortran for AIX, V15.1.3 and link them all
into the same application. Similarly, object code or libraries compiled with previous
versions of XL Fortran are still compatible with the newest XL Fortran compiler
and runtime environment, except for two cases. See “Compatibility with earlier
versions” on page 17 for more information.

Related information

Chapter 1. Introducing XL Fortran 3

-qlanglvl

Tools, utilities, and commands
This topic introduces the main tools, utilities, and commands that are included
with XL Fortran. It does not contain all compiler tools, utilities, and commands.

Tools

Utilization reporting tool

The utilization reporting tool generates a report describing your
organization's utilization of the compiler. These reports help determine
whether your organization's use of the compiler matches your compiler
license entitlements. The urt command contains options that can be used to
customize the report. For more information, see Tracking and reporting
compiler usage in the XL Fortran Compiler Reference.

Utilities

CreateExportList utility
The CreateExportList utility creates a file that contains a list of all the
global symbols found in a given set of object files. For more information,
see Exporting symbols with the CreateExportList utility in the XL Fortran
Compiler Reference.

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can
help you find optimization opportunities. For more information about how
to use this command, see genhtml command in the XL Fortran Compiler
Reference.

Profile-directed feedback (PDF) related commands

cleanpdf command
The cleanpdf command removes all the PDF files or the specified
PDF files from the directory to which profile-directed feedback
data is written.

mergepdf command
The mergepdf command provides the ability to weigh the
importance of two or more PDF records when combining them into
a single record. The PDF records must be derived from the same
executable.

showpdf command
The showpdf command displays the following types of profiling
information for all the procedures executed in a PDF run
(compilation under the -qpdf1 option):
v Block-counter profiling
v Call-counter profiling
v Value profiling
v Cache-miss profiling, if you specified the -qpdf1=level=2 option

during the -qpdf1 phase.

4 XL Fortran: Getting Started

You can view the first two types of profiling information in either
text or XML format. However, you can view value profiling and
cache-miss profiling information only in XML format.

For more information, see -qpdf1, -qpdf2 in the XL Fortran Compiler
Reference.

xlfndi The xlfndi script installs XL Fortran to a nondefault directory location. For
more information, see Updating an advanced installation using xlfndi in
the XL Fortran Installation Guide.

Program optimization
XL Fortran provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
v Select different levels of compiler optimizations.
v Control optimizations for loops, floating point, and other types of operations.
v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL Fortran provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:
v Reducing the number of instructions executed for critical operations
v Restructuring generated object code to make optimal use of the Power

Architecture® processors
v Improving the usage of the memory subsystem
v Exploiting the ability of the architecture to handle large amounts of shared

memory parallelization
Related information

Optimizing your applications

Optimization and tuning

Intrinsic procedures

64-bit object capability
The 64-bit object capability of the XL Fortran compiler addresses increasing
demand for larger storage requirements and greater processing power.

The AIX operating system provides an environment that allows you to develop
and execute programs that exploit 64-bit processors through the use of 64-bit
address spaces.

To support larger executables that can fit within a 64-bit address space, a separate
64-bit object format is used. The binder binds these objects to create 64-bit
executables. Objects that are bound together must all be of the same object format.
The following scenarios are not permitted and will fail to load, execute, or both:
v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

Chapter 1. Introducing XL Fortran 5

v A 32-bit object or executable that has references to symbols from a 64-bit library
or shared library

v A 64-bit executable that explicitly attempts to load a 32-bit module
v A 32-bit executable that explicitly attempts to load a 64-bit module
v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they
currently do on a 32-bit platform.

XL Fortran supports 64-bit mode mainly through the use of the -q64 and -qarch
compiler options. This combination determines the bit mode and instruction set for
the target architecture.

For more information, see "Using XL Fortran in a 64-bit environment" in the XL
Fortran Compiler Reference.

Shared memory parallelization
XL Fortran supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL Fortran:

v Directive-based shared memory parallelization (OpenMP, SMP)
v Instructing the compiler to automatically generate shared memory

parallelization
v Message-passing-based shared or distributed memory parallelization (MPI)
v POSIX threads (Pthreads) parallelization
v Low-level UNIX parallelization using fork() and exec()

The parallel programming facilities are based on the concept of threads. Parallel
programming exploits the advantages of multiprocessor systems while maintaining
a full binary compatibility with existing uniprocessor systems. This means that a
multithreaded program that works on a uniprocessor system can take advantage of
a multiprocessor system without recompiling.

For more information, see "Parallel programming with XL Fortran" in the XL
Fortran Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL Fortran and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular block of code. The existence of the directives in the source removes the
need for the compiler to perform any dependence analysis on the parallel code.
OpenMP directives require the presence of Pthread libraries to provide the
necessary infrastructure for parallelization.

OpenMP directives address the following important issues of parallelizing an
application:

6 XL Fortran: Getting Started

1. Clauses and directives are available for scoping variables. Generally,
variables should not be shared; that is, each thread should have its own
copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the threads.

3. Directives are available to control synchronization between threads.

IBM XL Fortran for AIX, V15.1 supports OpenMP API Version 4.0 specification. For
details, see “OpenMP 4.0” on page 28.

Related information

Optimizing your applications

The OpenMP API specification for parallel programming

Diagnostic reports
The compiler listings, XML reports, and HTML reports provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see "Understanding XL Fortran compiler listings" in the XL Fortran Compiler
Reference.

You can also obtain diagnostic information from the compiler in XML or HTML
format. The XML and HTML reports provide information about optimizations that
the compiler performed or could not perform. You can use this information to
reduce programming effort when tuning applications, especially high-performance
applications. The report is defined by an XML schema and is easily consumable by
tools that you can create to read and analyze the results. For detailed information
about this report and how to use it, see "Using reports to diagnose optimization
opportunities" in the XL Fortran Optimization and Programming Guide.

Symbolic debugger support
You can instruct XL Fortran to include debugging information in your compiled
objects by using different levels of the -g or -qdbg compiler option.

The debugging information can be examined by dbx or any other symbolic
debugger that supports the AIX XCOFF executable format to help you debug your
programs.

Related information

-g

-qdbg

Chapter 1. Introducing XL Fortran 7

http://www.openmp.org

8 XL Fortran: Getting Started

Chapter 2. What's new for IBM XL Fortran for AIX, V15.1.3

This section describes features and enhancements added to IBM XL Fortran for
AIX, V15.1.3.

Language features
This topic lists new language features that are introduced in this release of XL
Fortran.

F2008

BIND attribute for an internal procedure

You can specify the BIND attribute without the NAME= specifier on an internal
procedure. In previous releases, the BIND attribute could not be specified on an
internal procedure.

DO CONCURRENT construct

With the DO CONCURRENT construct, you can specify that individual loop
iterations have no interdependencies, in which case the execution order of the
iterations can be indeterminate at the beginning of the execution of the DO
CONCURRENT construct.

Polymorphic variable in an intrinsic assignment

In an intrinsic assignment variable = expression, variable now can be polymorphic. If
variable is polymorphic, the following rules apply:
v variable must be allocatable.
v variable must be type-compatible with expression, or the declared types of variable

and expression must conform.

Multiple allocate objects allowed on an ALLOCATE statement

You can allocate more than one allocate_object by using an ALLOCATE statement
that contains the SOURCE= or MOLD= specifier. In previous releases, you could
only allocate one allocate_object by using an ALLOCATE statement that contains the
SOURCE= or MOLD= specifier.

VALUE attribute

You can specify the VALUE attribute on an array dummy argument that has either
assumed shape or explicit shape. In the previous releases, you could not specify
the VALUE attribute on array dummy arguments.

F2008

Related information in the XL Fortran Language Reference

Internal procedures

DO CONCURRENT construct (Fortran 2008)

© Copyright IBM Corp. 1996, 2015 9

Intrinsic assignment

ALLOCATE

VALUE (Fortran 2003)

Intrinsic procedures
This section describes intrinsic procedures that are new or changed for IBM XL
Fortran for AIX, V15.1.3.

New intrinsic procedures

VEC_CIPHER_BE(ARG1,ARG2)
Performs one round of the AES cipher operation on an intermediate state
ARG1 by using a given round key ARG2.

VEC_CIPHERLAST_BE(ARG1,ARG2)
Performs the final round of the AES cipher operation on an intermediate
state ARG1 by using a given round key ARG2.

VEC_NCIPHER_BE(ARG1,ARG2)
Performs one round of the AES inverse cipher operation on an
intermediate state ARG1 by using a given round key ARG2.

VEC_NCIPHERLAST_BE(ARG1,ARG2)
Performs the final round of the AES inverse cipher operation on an
intermediate state ARG1 by using a given round key ARG2.

VEC_PMSUM_BE(ARG1,ARG2)
Performs an exclusive-OR operation by implementing a polynomial
addition on each even-odd pair of the polynomial multiplication result of
the corresponding elements.

VEC_SBOX_BE(ARG1)
Performs the SubBytes operation, as defined in Federal Information
Processing Standards FIPS-197, on a given state ARG1.

VEC_SHASIGMA_BE(ARG1,ARG2,ARG3)
Performs a secure hash computation in accordance with Federal Information
Processing Standards FIPS-180-3.

Changed intrinsic procedures

VEC_MULE(ARG1, ARG2)
VEC_MULE(ARG1, ARG2) now supports INTEGER(4) and UNSIGNED(4)
vector types of parameters.

VEC_MULO(ARG1, ARG2)
VEC_MULO(ARG1, ARG2) now supports INTEGER(4) and UNSIGNED(4)
vector types of parameters.

Other enhancements
This section describes other features and enhancements in IBM XL Fortran for AIX,
V15.1.3.

10 XL Fortran: Getting Started

Software License Metric (SLM) Tags logging support

IBM XL Fortran for AIX, V15.1.3 fully supports IBM Software License Metric (SLM)
Tags logging so that you can use IBM License Metric Tool (ILMT) to track compiler
license usage.

For more information, see "Tracking compiler usage with Software License Metric
Tags logging" in the XL Fortran Compiler Reference.

Chapter 2. What's new for IBM XL Fortran for AIX, V15.1.3 11

12 XL Fortran: Getting Started

Chapter 3. Migration of your applications

This section provides information about migrating your applications to IBM XL
Fortran for AIX, V15.1.3.

The XL Fortran compiler helps you to port or to migrate source code among
Fortran compilers by providing full Fortran 90, Fortran 95, Fortran 2003, and
partial Fortran 2008 language support, and selected language extensions (including
intrinsic functions and data types) from many different compiler vendors.
Throughout this document, we refer to these extensions as “industry extensions”.

To protect your investment in FORTRAN 77 source code, you can easily invoke the
compiler with a set of defaults that provide compatibility with earlier versions of
XL Fortran. The f77, fort77, xlf, xlf_r, and xlf_r7 commands provide maximum
compatibility with existing FORTRAN 77 programs. The default options provided
with the f90, xlf90, xlf90_r, and xlf90_r7 commands give access to the full range of
Fortran 90 language features. The default options provided with the f95, xlf95,
xlf95_r, and xlf95_r7 commands give access to the full range of Fortran 95
language features. The default options provided with the f2003, xlf2003, and
xlf2003_r commands give access to the full range of Fortran 2003 language
features. The default options provided with the f2008, xlf2008, and xlf2008_r
commands give access to the Fortran 2008 language features supported in this
release.

Additionally, you can name your source files with extensions such as .f77, .f90,
.f95, .f03, or .f08 and use the generic compiler invocations such as xlf or xlf_r to
automatically select language-level appropriate defaults.

To protect your investments in FORTRAN 77 object code, you can link Fortran 90
and Fortran 95 programs with existing FORTRAN 77 object modules and libraries.
See “Linking new objects with existing ones” on page 51 for details.

More advice is provided in the following sections to help make the transition from
an earlier version of the XL Fortran compiler as fast and simple as possible.

Related information
v Chapter 2, “What's new for IBM XL Fortran for AIX, V15.1.3,” on page 9

Things to note in IBM XL Fortran for AIX, V15.1.3
Because IBM XL Fortran for AIX, V15.1.3 is highly compatible with XL Fortran
Versions 14 through 3 inclusive, most of the advice in this section applies to
upgrades from Version 2, or earlier levels of XL Fortran.
v The xlf90, xlf90_r, xlf90_r7, and f90 commands provide Fortran 90 conformance.

The xlf95, xlf95_r, xlf95_r7, and f95 commands provide Fortran 95 conformance.
The xlf2003, xlf2003_r, and f2003 commands provide Fortran 2003 conformance.
The xlf2008, xlf2008_r, and f2008 commands provide partial Fortran 2008
conformance. However, these commands may cause some problems with
existing FORTRAN 77 programs. The xlf, xlf_r, xlf_r7, f77, and fort77
commands avoid some of these problems by keeping the old behavior wherever
possible.

© Copyright IBM Corp. 1996, 2015 13

v Fortran 90 introduced the idea of kind parameters for types. Except for the types
complex and character, XL Fortran uses numeric kind parameters that
correspond to the lengths of the types. For the type complex, the kind parameter
is equal to the length of the real portion, which is half of the overall length. For
the type character, the kind parameter is equal to the number of bytes that are
required to represent each character, and this value is 1. A FORTRAN 77
declaration that is written using the * extension for length specifiers can now be
rewritten with a kind parameter:

INTEGER*4 X ! F77 notation with extension.
INTEGER(4) X ! F90 standard notation.
COMPLEX*8 Y ! *n becomes (n) for all types except
COMPLEX(4) Y ! COMPLEX, where the value is halved.

This new form is the one that is used consistently throughout the XL Fortran
manuals.
Because the values of kind parameters may be different for different compilers,
you may want to use named constants, placed in an include file or a module, to
represent the kind parameters used in your programs. The
SELECTED_CHAR_KIND, SELECTED_INT_KIND and
SELECTED_REAL_KIND intrinsic functions also let you determine kind values
in a portable way.

v Fortran 90 introduced a standardized free source form for source code, which is
different from the XL Fortran Version 2 free source form. The -qfree and -k
options now use the Fortran 90 free source form; the Version 2 free source form
is available through the option -qfree=ibm.

v The library that provides Fortran 90, Fortran 95, Fortran 2003, and partial
Fortran 2008 support is libxlf90.a, located in /usr/lib. A libxlf.a library of stub
routines is provided in /usr/lib, but it is only used for linking existing Version 1
or 2 object files or running existing executables. When a Version 1 or Version 2
object file calls entry points in libxlf.a, those entry points then call equivalent
entry points in libxlf90.a. If you recompile such object files, the result could be
improved I/O performance, because the entry points in libxlf90.a are called
directly.

Avoiding or fixing upgrade problems
Although XL Fortran is generally compatible with FORTRAN 77 programs, there
are some changes in XL Fortran and the Fortran 90, Fortran 95, Fortran 2003, and
Fortran 2008 languages that you should be aware of.

To preserve the behavior of existing compilation environments, the xlf and f77
commands both work as they did in earlier XL Fortran versions wherever possible.
As you write entirely new Fortran 90, Fortran 95, Fortran 2003, or Fortran 2008
programs or adapt old programs to avoid potential problems, you can begin using
the xlf90, xlf95, xlf2003, and xlf2008 commands, which use Fortran 90, Fortran 95,
Fortran 2003, and Fortran 2008 conventions for source-code format.

Note that in the following table, you can substitute xlf_r or xlf_r7 for xlf, xlf90_r
or xlf90_r7 for xlf90, xlf95_r or xlf95_r7 for xlf95, xlf2003_r for xlf2003, and
xlf2008_r for xlf2008.

Table 4. Potential problems migrating programs to XL Fortran V15.1.3. The column on the
right shows which problems you can avoid by using the xlf or f77 command.

Potential Problem Solution or Workaround xlf Avoids?

Compilation Problems

14 XL Fortran: Getting Started

Table 4. Potential problems migrating programs to XL Fortran V15.1.3 (continued). The
column on the right shows which problems you can avoid by using the xlf or f77 command.

Potential Problem Solution or Workaround xlf Avoids?

New intrinsic procedure names may conflict
with external procedure names. The
intrinsic procedure is called instead of the
external procedure.

Use the -qextern option, or
insert EXTERNAL
statements to avoid the
ambiguity. Consider
switching to the Fortran 90
or Fortran 95 procedure if it
does what you want.

The .XOR. intrinsic operator is not
recognized.

Use the option
-qxlf77=intxor.

U

Zero-sized objects are not allowed by the
compiler.

Use the xlf90 or xlf95
command, or use the
-qzerosize option with the
xlf or f77 command.

Performance / Optimization Problems

Existing programs or programs linked with
older XL Fortran object files run more
slowly or do not show expected
performance improvements on new
hardware.

Recompile everything.

Programs compiled with -O3 or -qhot
optimization behave differently from those
unoptimized (different results, exceptions,
or compilation messages).

Try adding the -qstrict
option.

The option combination -O and -1 cannot
be abbreviated to -O1, to avoid
misunderstandings. (There are -O2, -O3,
-O4, and -O5 optimization levels, but there
is no -O1.)

Specify -O and -1 as separate
options.

Programs that use integer POINTERs
produce incorrect results when optimized.

Specify the option
-qalias=intptr with the xlf90
or xlf95 command, or use the
xlf command.

U

Runtime problems

Programs that read to the end of the file
and then try to append records without first
executing a BACKSPACE statement do not
work correctly. The write requests generate
error messages.

To compile existing
programs, specify the option
-qxlf77=softeof with the
xlf90 or xlf95 command, or
use the xlf command. For
new programs, add the
BACKSPACE statement
before writing past the
endfile record.

U

Uninitialized variables are not necessarily
set to zero, and programs that ran before
may exceed the user stack limit. The reason
is that the default storage class is now
AUTOMATIC, rather than STATIC (an
implementation choice allowed by the
language).

Ensure that you explicitly
initialize your variables, use
the -qsave option with the
xlf90 or xlf95 command, or
add SAVE statements where
needed in the source.

U

Chapter 3. Migration of your applications 15

Table 4. Potential problems migrating programs to XL Fortran V15.1.3 (continued). The
column on the right shows which problems you can avoid by using the xlf or f77 command.

Potential Problem Solution or Workaround xlf Avoids?

Writing data to some files opened without a
POSITION= specifier overwrites the files,
instead of appending the data.

Use the option
-qposition=appendold, or
add POSITION= specifiers
where needed.

U

Newly compiled programs are unable to
read existing data files containing
NAMELIST data. The reason is that the
Fortran 90 and Fortran 95 standards define
a namelist format that is different from that
used on AIX in the past.

Set the environment variable
XLFRTEOPTS to the string
namelist=old.

The programs that produced
the old NAMELIST data
must be recompiled.

Some I/O statements and edit descriptors
accept or produce slightly different input
and output. For example, real output now
has a leading zero when appropriate.

The changes to I/O formats are intended to
be more usable and typical of industry
practice, so you should try to use the
defaults for any new data you produce.

When you need to maintain
compatibility with existing
data files, compile with the
xlf command. If the
incompatibility is due to a
single specific I/O change,
see if the -qxlf77 option has
a suboption for compatibility
with earlier versions. If so,
you can switch to the xlf90
or xlf95 command and use
the -qxlf77 option on
programs that use the old
data files.

U

Numeric results and I/O output are not
always exactly identical with XL Fortran
Version 2. Certain implementation details of
I/O, such as spacing in list-directed output
and the meanings of some IOSTAT values,
have changed since XL Fortran Version 2.
(This entry is similar to the previous one
except that these differences are not
compatible with earlier versions.)

You may need to generate
existing data files again or to
change any programs that
depend on these details.
When compatibility with
earlier versions is not
provided by the -qxlf77
compiler option or
XLFRTEOPTS runtime
options, there is no way to
get the old behavior back.

SIGN(A,B) now returns -|A| when B =
-0.0. Prior to XL Fortran Version 7.1, it
returned |A|.

This behavior conforms with
the Fortran 95 standard and
is consistent with the IEEE
standard for binary
floating-point arithmetic. It
occurs because the
-qxlf90=signedzero option is
turned on. Turn it off, or
specify a command that does
not use this option by
default.

U

16 XL Fortran: Getting Started

Table 4. Potential problems migrating programs to XL Fortran V15.1.3 (continued). The
column on the right shows which problems you can avoid by using the xlf or f77 command.

Potential Problem Solution or Workaround xlf Avoids?

A minus sign is printed for a negative zero
in formatted output. A minus sign is
printed for negative values that have an
outputted form of zero (that is, in the case
where trailing non-zero digits are truncated
from the output so that the resulting output
looks like zero). Prior to XL Fortran Version
7.1, minus signs were not printed in these
situations.

This behavior conforms with
the Fortran 95 standard and
occurs because the
-qxlf90=signedzero option is
turned on. Turn it off, or
specify a command that does
not use this option by
default.

U

The handling of IEEE infinity and
not-a-number (NaN) exceptional values has
changed. By default, XL Fortran displays
IEEE infinity and NaN exceptional values
based on the command used to compile the
source code. This can result in a mixture of
IEEE exceptional value outputs if there are
multiple object files that were compiled
with different options.

XL Fortran allows control
over the display of IEEE
infinity and NaN exceptional
values. To get the previous
behavior, set the
XLFRTEOPTS environment
variable to the
naninfoutput=old string.

U

Compatibility with earlier versions
This section describes issues about compatibility with earlier versions and their
workarounds.

-qsave and -qxlf77=persistent no longer enabled by threadsafe
invocation commands

To reduce the risk of thread safety coding issues, the threadsafe invocation
commands xlf_r and xlf_r7 no longer list -qsave and -qxlf77=persistent as default
options in the compiler configuration file. The -qsave option specifies that the
default storage class for local variables is static. The -qxlf77=persistent option
saves the address of arguments to subprograms with ENTRY statements in static
storage.

If you compile a multithreaded program that has uninitialized local variables with
xlf_r or xlf_r7, the program might fail execution. When -qsave is in effect, local
variables are stored in static storage and have an initial value of 0. Because xlf_r
and xlf_r7 no longer imply -qsave, local variables are stored in automatic storage
and do not have a particular initial value.

To ensure proper program behavior, always explicitly initialize the local variables
in your program or specify -qinitauto so that the local variables are initialized by
the compiler. Alternatively, specify -qsave or -qxlf77=persistent if you are sure that
they are safe for your program. If you specify -qsave or -qxlf77=persistent with
xlf_r or xlf_r7, a compiler warning message about thread safety is issued.

OpenMP threadprivate data compatibility issue between V13.1
and its earlier versions

Starting from XL Fortran V13.1, the implementation of the threadprivate data, that
is, OpenMP threadprivate variable, has been improved. The operating system

Chapter 3. Migration of your applications 17

thread local storage is used instead of the runtime implementation. The new
implementation might improve performance on some applications.

If you plan to mix the object (.o) files that you have compiled with levels prior to
13.1 with the object files that you compiled with XL Fortran, and the same
OpenMP threadprivate variables are referenced in both old and new object files,
different implementations might cause incompatibility issues. A link error, a
compile time error or other undefined behaviors might occur. To support
compatibility with earlier versions, you can use the -qsmp=noostls suboption to
switch back to the old implementation. You can recompile the entire program with
the default suboption -qsmp=ostls to get the benefit of the new implementation.

If you are not sure whether the object files you have compiled with levels prior to
XL Fortran contain any old implementation, you can use the nm command to
determine whether you need to use the -qsmp=noostls suboption. The following
code is an example that shows how to use the nm command:
> nm oldfiles.o
...
._xlGetThStorageBlock U -
._xlGetThValue U -
...

In the preceding example, if _xlGetThStorageBlock or _xlGetThValue is found, this
means the object files contain old implementation. In this case, you must use
-qsmp=noostls; otherwise, use the default suboption -qsmp=ostls.

Binary compatibility issue between V11.1 or V12.1 and its later
releases

Because of a change to the signature of a compiler-generated routine, mixing code
compiled with XL Fortran V11.1 or V12.1 with code containing parameterized
derived types compiled with the latest compiler may require recompiling all the
source files. Otherwise, a runtime error will occur if the older code uses certain
polymorphic references that can resolve to parameterized derived type objects
where a length parameter is involved.

For example, the new application extends a derived type whose declaration was
compiled using either XL Fortran V11.1 or XL Fortran V12.1, and the extending
type has length derived type parameters, and the new application passes an object
that has a dynamic type of the extending type through polymorphism via
argument association or function reference to a procedure compiled using XL
Fortran V11.1 or XL Fortran V12.1 compiler version.

XL Fortran runtime detects the above issue and halts the execution with the
following error message:

XL Fortran detected a mismatch in a compiler-generated routine. If your
code contains compilation units compiled with XL Fortran V11.1 or V12.1,
recompile them with the latest XL Fortran compiler.

Example of argument association:

18 XL Fortran: Getting Started

V11.1 or V12.1 release V13.1 or later releases

module m
type base
integer i

end type

contains

subroutine sub(arg)
class(base) :: arg
class(base), allocatable :: local

allocate(local, source=arg)
end subroutine

end module

use m

type, extends(base) :: child (l)
integer, len :: l
integer :: m(l)
integer :: n(l)

end type

class(base), allocatable :: b1
allocate(child(5) :: b1)
call sub(b1)

end

The problem is the ALLOCATE statement in 11.1/12.1 code is calling a
compiler-generated routine that is compiled using newer releases of XL Fortran
compiler other than XL Fortran V11.1 or XL Fortran V12.1 through type bound
procedure call. Since the signature of the compiler-generated routine is different
between 11.1/12.1 releases and newer releases, module m needs to be recompiled
using newer releases of XL Fortran compiler.

Example of function call:

V11.1 or V12.1 release V13.1 or later releases

module m
type base
integer i

contains
procedure :: bar => bar_base

end type
type container
class(base), allocatable :: b1
end type

contains
subroutine bar_base(a)
class(base) a
print *, "base"

end subroutine
end module

program main
use m
interface
function foo()
import
type(container) :: foo

end function
end interface
type(container) :: c1
c1 = foo()
call c1%b1%bar

end program

module n
use m
type, extends(base) :: child(l)
integer, len :: l
integer a(l)

contains
procedure :: bar => bar_child

end type
contains

subroutine bar_child(a)
class(child(*)) a
print *, "child"
print *, a%a

end subroutine
end module

function foo()
use n
type(container) :: foo
allocate(child(6) :: foo%b1)

end function

The problem is c1 = foo() in program main is calling a compiler-generated routine
that is compiled using newer releases of XL Fortran compiler other than V11.1 or
V12.1 through type bound procedure call via function foo. Since the signature of
the compiler-generated routine is different between 11.1/12.1 releases and newer

Chapter 3. Migration of your applications 19

releases, program main needs to be recompiled using newer releases of XL Fortran
compiler.

20 XL Fortran: Getting Started

Chapter 4. Enhancements added in earlier releases

This section describes enhancements added in earlier releases. These enhancements
also apply to the current release.

Enhancements added in Version 15.1.2
This section describes features and enhancements added in IBM XL Fortran for
AIX, V15.1.2. These features and enhancements apply to later releases as well.

Fortran 2008 features
This topic lists the Fortran 2008 features that are introduced in this release of XL
Fortran.

New restriction on elemental procedures

If a dummy argument of an elemental procedure does not have the VALUE
attribute, the dummy argument must have the INTENT attribute specified.

New restriction on the reference to an elemental function

In a reference to an elemental procedure, if any actual argument is an array, every
actual argument that corresponds to an INTENT(OUT) or INTENT(INOUT)
dummy argument must be an array.

Language interoperability features
XL Fortran implements selected language interoperability features, which accept
programs that contain parts written in Fortran and parts written in the C language.

This version of XL Fortran provides support for the following language
interoperability features as specified in TS 29113:

Assumed-length arguments of type character

BIND(C) procedures that have nonallocatable and nonpointer dummy arguments
of type character with assumed length can interoperate with C functions having
formal parameters that are pointers to type CFI_cdesc_t.

The C_PTRDIFF_T named constant in the ISO_C_BINDING
module

The C_PTRDIFF_T named constant is added to the ISO_C_BINDING module.
Fortran entities of type INTEGER(C_PTRDIFF_T) are interoperable with C entities
of type ptrdiff_t.

Relaxed restrictions on module procedure C_FUNLOC(X) and
C_LOC(X) of intrinsic module ISO_C_BINDING

Some restrictions on module procedure C_FUNLOC(X) and C_LOC(X) of intrinsic
module ISO_C_BINDING that are put forward by earlier Fortran language
standards are removed according to TS29113. For details, see C_FUNLOC(X) and
C_LOC(X) in the XL Fortran Language Reference and .

© Copyright IBM Corp. 1996, 2015 21

Intrinsic procedures
This section describes intrinsic procedures that are new for IBM XL Fortran for
AIX, V15.1.2.

STORAGE_SIZE (A, KIND)
Returns the storage size in bits for an element of an array that has the
dynamic type and type parameters of A.

VEC_MERGEE(ARG1,ARG2)
Merges the values of even-numbered elements of two vectors.

VEC_MERGEO(ARG1,ARG2)
Merges the values of odd-numbered elements of two vectors.

VEC_REVB(ARG1)
Returns a vector that contains the bytes of the corresponding element of
the argument in the reverse byte order.

VEC_REVE(ARG1)
Returns a vector that contains the elements of the argument in the reverse
element order.

VEC_XL(ARG1, ARG2)
Loads a 16-byte vector from the memory address specified by the
displacement ARG1 and the pointer ARG2.

VEC_XL_BE(ARG1, ARG2)
Loads a 16-byte vector from the memory address specified by the
displacement ARG1 and the pointer ARG2.

VEC_XST(ARG1, ARG2, ARG3)
Stores the elements of the 16-byte vector ARG1 to the effective address
obtained by adding the displacement provided in ARG2 with the address
provided by ARG3. The effective address is not truncated to a multiple of 16
bytes.

VEC_XST_BE(ARG1, ARG2, ARG3)
Stores the elements of the 16-byte vector ARG1 in big endian element order
to the effective address obtained by adding the displacement provided in
ARG2 with the address provided by ARG3. The effective address is not
truncated to a multiple of 16 bytes.

Related information

Intrinsic procedures

Commands
This section describes new, changed, or removed compiler commands.

resetpdf
This command has been removed. It is recommended that you use the
cleanpdf command instead. The behavior of the resetpdf command is the
same as that of the cleanpdf command. For more information, see -qpdf1,
-qpdf2 in the XL Fortran Compiler Reference.

Compiler options
This topic describes new or changed compiler options.

-qfloat
The following suboptions are added:

22 XL Fortran: Getting Started

subnormals
This suboption asserts to the compiler that the code uses
subnormal floating point values, also known as denormalized
floating point values.

nosubnormals
This suboption asserts to the compiler that the code does not use
subnormal floating point values, also known as denormalized
floating point values.

Whether or not you specify this suboption, the behavior of your program
will not change, but the compiler uses this information to gain possible
performance improvements. The suboptions take effect only on POWER8
processors. To use -qfloat=subnormals or -qfloat=nosubnormals, you
must also specify the -qarch=pwr8 and -qtune=pwr8 options.

-MMD
Produces a dependency output file containing targets suitable for inclusion
in a description file for the make command. This option was named as -M
in XL Fortran for AIX, V15.1.

-qufmt
Sets the byte order for I/O operations on unformatted data files.

-qvisibility
Specifies the visibility attribute for external linkage symbols in object files.

Other XL Fortran updates
This section describes other updates added in IBM XL Fortran for AIX 15.1.2.

TS 29113

Passing scalar actual arguments that correspond to
assumed-size dummy arguments of assumed-type

You can pass a scalar as the actual argument that corresponds to an assumed-size
dummy argument of assumed-type. An example is provided in Assumed-size
arrays in the XL Fortran Language Reference.

TS 29113

The CONVERT specifier in the OPEN and INQUIRE statements

You can use CONVERT= char_expr in the OPEN statement to set the byte order for
I/O operations on unformatted data files. char_expr is a scalar character expression
whose value must evaluate to NATIVE, BIG_ENDIAN, or LITTLE_ENDIAN. You
can also use CONVERT= char_var in the INQUIRE statement to find out the byte
order for I/O operations on unformatted data files. For details, see OPEN and
INQUIRE in the XL Fortran Language Reference and .

Enhancements added in Version 15.1
This section describes features and enhancements added to the compiler in Version
15.1. These features and enhancements apply to later versions as well.

Support for POWER8 processors
XL Fortran for AIX, V15.1 supports POWER8 processors.

Chapter 4. Enhancements added in earlier releases 23

The new features and enhancements introduced in support of the POWER8
processors, fall under the following categories:
v MASS libraries for POWER8 processors
v Compiler options for POWER8 processors
v Hardware directives and intrinsics for POWER8 processors

Mathematical Acceleration Subsystem (MASS) libraries for
POWER8 processors

Scalar libraries

The MASS library interfaces include the following features:
v The scalar functions have generic interfaces that can be called with

REAL(4) or REAL(8) arguments.
v The scalar functions are marked pure. You can call them from pure

procedures.
v The scalar functions are marked elemental. You can call them with an

array argument and apply them to all the array elements.
v The intent of the argument is specified to assist in compiler error

checking.

For more information about the scalar libraries, see Using the scalar library
in the XL Fortran Optimization and Programming Guide.

Vector libraries

The vector MASS library libmassvp8.a contains vector procedures that
have been tuned for the POWER8 architecture. The procedures can be used
in either 32-bit mode or 64-bit mode.

The MASS vector library interfaces include the following features:
v The vector functions have generic interfaces that can be called with

REAL(4) or REAL(8) arguments.
v The vector functions are marked pure. You can call them from pure

procedures.
v The intent of the argument is specified to assist in compiler error

checking.

For more information about the vector libraries, see Using the vector
libraries in the XL Fortran Optimization and Programming Guide.

SIMD libraries

The MASS SIMD library libmass_simdp8.a contains an accelerated set of
frequently used math intrinsic procedures that provide improved
performance over the corresponding standard system library procedures.

The MASS SIMD library interfaces include the following features:
v The SIMD functions are marked pure. You can call them from pure

procedures.
v The intent of the argument is specified to assist in compiler error

checking.

For more information about the SIMD libraries, see Using the SIMD
libraries in the XL Fortran Optimization and Programming Guide.

24 XL Fortran: Getting Started

Compiler options for POWER8 processors

The -qarch compiler option specifies the processor architecture for which code is
generated. The -qtune compiler option tunes instruction selection, scheduling, and
other architecture-dependent performance enhancements to run best on a specific
hardware architecture.

The new -qarch=pwr8 suboption produces object code containing instructions that
will run on the POWER8 hardware platforms. With the new -qtune=pwr8
suboption, optimizations are tuned for the POWER8 hardware platforms.

For more information, see -qarch in the and -qtune in the XL Fortran Language
Reference.

Hardware directives and intrinsics for POWER8 processors

New hardware directives and intrinsics are added to support the following
POWER8 processor features:
v POWER8 intrinsics for vector processing
v POWER8 cryptography intrinsics
v POWER8 transactional memory intrinsics
v POWER8 prefetch directives
v POWER8 prefetch intrinsic procedures

For more information about the directives and intrinsic procedures, see
Hardware-specific directives, Hardware-specific intrinsic procedures (IBM
extension), Vector intrinsic procedures (IBM extension) , or The
TRANSACTIONAL_MEMORY intrinsic module (IBM extension) in the XL Fortran
Language Reference.

Fortran 2008 features
XL Fortran implements selected features of the Fortran 2008 standard.

This version of XL Fortran provides support for the following Fortran 2008
features:
v BACK= arguments in MAXLOC and MINLOC

v Double colon separators (::) in PROCEDURE statements
v Intrinsic procedures for manipulating bits through combined shifting, merging,

masking, or shifting
v Extensions to the generic resolution rules
v FINDLOC intrinsic procedure
v Impure elemental procedures
v Separate module subprograms
v Submodules
v The MODULE prefix specifier
v Type specification in the FORALL statement and construct

BACK= arguments in the MAXLOC and MINLOC intrinsic
procedures

You can specify the search direction in the MAXLOC and MINLOC intrinsic
procedures with the BACK= argument keyword.

Chapter 4. Enhancements added in earlier releases 25

Double colon separators in PROCEDURE statements

You can optionally use a double colon separator (::) in PROCEDURE and
MODULE PROCEDURE statements inside interface blocks.

Intrinsic procedures for bit manipulations

You can use the following intrinsic procedures for manipulating bits through
combined shifting, merging, masking, or shifting:
v DSHIFTL
v DSHIFTR
v MASKL
v MASKR
v MERGE_BITS
v SHIFTA
v SHIFTL
v SHIFTR

Extensions to the generic resolution rules

The Fortran 2008 standard extends the generic resolution rules to distinguish
between allocatable and pointer dummy arguments and between procedure and
data dummy arguments. For details, see Unambiguous generic procedure
references in the XL Fortran Language Reference.

FINDLOC intrinsic procedure

The FINDLOC intrinsic procedure locates the element of an array whose value
equals the target value under the condition that is specified by parameters. It
returns the subscript of the element using positive integers. For details, see
FINDLOC(ARRAY, VALUE, DIM, MASK, KIND, BACK) in the XL Fortran Compiler
Reference.

Impure elemental procedures

Elemental procedures are no longer required to be pure in Fortran 2008. You can
explicitly declare procedures with the IMPURE prefix specifier.

Separate module subprograms

A separate module subprogram defines a separate module procedure that is
declared by a corresponding module procedure interface body. For details, see
Separate module subprograms and Separate module procedures.

Submodules

A submodule extends a module or another submodule. You can declare a module
procedure interface body in a module and implement it as a separate module
procedure in one of the descendant submodules. The submodule feature provides
the following benefits:
v If only the implementation of a separate module procedure is changed, but the

interface remains the same, you do not need to recompile the file that contains
the module in which the corresponding module procedure interface body is
declared.

26 XL Fortran: Getting Started

v Two submodules of different modules can access the ancestor module of each
other through use association without causing circular dependency.

v You can put entities in the intermediate submodule level so that the entities are
shared by the descendant submodules. If some of the entities are changed, the
interpretation of anything that is accessible from the ancestor module by use
association is not affected. This also prevents cascades of reprocessing and
testing.

For details about the syntax and rules, see Submodules in the XL Fortran Language
Reference. For details about the benefits of submodules and an example that
demonstrates how to use submodules, see Submodules in the XL Fortran
Optimization and Programming Guide.

The MODULE prefix specifier

To declare a module procedure interface body or define a separate module
procedure, specify the MODULE prefix specifier for the FUNCTION or
SUBROUTINE statement. For details, see FUNCTION and SUBROUTINE.

Type specification in the FORALL statement and construct

You can optionally include type specifications for index variables in the FORALL
statement and construct.

Language interoperability features
XL Fortran implements selected language interoperability features, which accept
programs that contain parts written in Fortran and parts written in the C language.

This version of XL Fortran provides support for the following language
interoperability features as specified in TS 29113:
v Interoperability of assumed-rank arguments
v Interoperability of assumed-type arguments
v Interoperable procedures with dummy arguments that have ALLOCATABLE,

OPTIONAL, or POINTER attributes
v Interoperable variables in asynchronous communication
v The ISO_Fortran_binding.h header file
v The RANK intrinsic procedure

Interoperability of assumed-rank arguments

Assumed-rank arguments are introduced to facilitate the interoperability with C
functions that accept arguments of arbitrary rank. For details, see Interoperability
of assumed-rank arguments in the XL Fortran Language Reference.

Interoperability of assumed-type arguments

Assumed-type arguments are introduced to facilitate the interoperability with
formal parameters of type void* in C functions. For details, see Assumed-type
objects in the XL Fortran Language Reference.

Chapter 4. Enhancements added in earlier releases 27

Interoperable procedures with allocatable, optional, and pointer
dummy arguments

You can specify ALLOCATABLE, OPTIONAL, and POINTER attributes for a
dummy argument in a procedure interface that has the BIND(C) attribute. For
details, see Optional arguments and Allocatable and pointer arguments in the XL
Fortran Language Reference.

Interoperable variables in asynchronous communication

Asynchronous communication for a Fortran variable can occur when procedures
that are defined by means other than Fortran are called. You must specify the
ASYNCHRONOUS attribute for the variables that are used for the asynchronous
communication. For details, see Interoperable variables in asynchronous
communication in the XL Fortran Language Reference.

The ISO_Fortran_binding.h header file

By using a C descriptor whose type is defined in the ISO_Fortran_binding.h
header file, you can pass a Fortran data object to C. By using functions that are
defined in the ISO_Fortran_binding.h header file, you can also manipulate a
Fortran data object in C. For details, see The ISO_Fortran_binding.h header file in
the XL Fortran Language Reference.

The RANK intrinsic procedure

You can use the RANK intrinsic procedure to get the rank of a data object, such as
an assumed-rank object. For details, see RANK(A) in the XL Fortran Language
Reference.

OpenMP 4.0
XL Fortran for AIX, V15.1 partially supports the OpenMP Application Program
Interface Version 4.0 specification. The XL Fortran implementation is based on
IBM's interpretation of the OpenMP Application Program Interface Version 4.0.

This version of XL Fortran supports the following OpenMP 4.0 features:
v capture clause enhancements
v OMP_DISPLAY_ENV environment variable

update and capture clauses enhancements

The update and capture clauses of the atomic construct are extended to support
more expression forms.

capture clause enhancements

The capture clause of the atomic construct is extended to support more syntax
forms.

OMP_DISPLAY_ENV environment variable

You can use the OMP_DISPLAY_ENV environment variable to display the values
of the internal control variables (ICVs) associated with the environment variables
and the build-specific information about the runtime library.

28 XL Fortran: Getting Started

Related information
v "Parallel programming with XL Fortran" in the XL Fortran Optimization and

Programming Guide

v The OpenMP API specification for parallel programming

Directives and intrinsic procedures
The following major categories of directives and intrinsic procedures are new to
this release.

Note: POWER8 directives and intrinsic procedures are valid only when
-qarch=pwr8 is set or implied.

POWER8 intrinsic procedures for vector processing

The following vector intrinsic procedures are added:
v The vector gather bits by bytes doubleword procedure

– VEC_GBB

v The vector count leading zeros procedure
– VEC_CNTLZ

v The vector population count procedure
– VEC_POPCNT

v Extended vector logical operations procedures
– VEC_EQV

– VEC_NAND

– VEC_ORC

v 128-bit integer add and subtract procedures
– VEC_ADD_U128

– VEC_SUB_U128

– VEC_ADDE_U128

– VEC_SUBE_U128

– VEC_ADDC_U128

– VEC_SUBC_U128

– VEC_ADDEC_U128

– VEC_SUBEC_U128

– VEC_BPERM

The following intrinsic procedures are extended to support doubleword types:
v Vector pack procedures

– VEC_PACK

– VEC_PACKS

– VEC_PACKSU

v Vector unpack procedures
– VEC_UNPACKL

– VEC_UNPACKH

v Vector add and subtract procedures
– VEC_ADD

– VEC_SUB

Chapter 4. Enhancements added in earlier releases 29

http://www.openmp.org

v Vector max and min procedures
– VEC_MAX

– VEC_MIN

v Vector shift and rotate procedures
– VEC_RL

– VEC_SL

– VEC_SR

– VEC_SRA

v Vector compare procedures
– VEC_CMPGE

– VEC_CMPLE

POWER8 cryptography intrinsic procedures

The following intrinsic procedures are provided to perform cryptographic
operations:
v Advanced Encryption Standard (AES) procedures

– VCIPHER

– VCIPHERLAST

– VNCIPHER

– VNCIPHERLAST

– VSBOX

v Secure Hash Algorithm (SHA) procedures
– VSHASIGMAD

– VSHASIGMAW

v Miscellaneous procedures
– VPMSUMB

– VPMSUMH

– VPMSUMW

– VPMSUMD

– VPERMXOR

POWER8 transactional memory intrinsic procedures

Transactional memory is a model for parallel programming. In this model, you can
designate a block of instructions or statements to be treated atomically.

The transactional_memory module provides the following intrinsic procedures to
work with transactions:
v Transaction begin and end procedures

– TM_BEGIN

– TM_END

– TM_SIMPLE_BEGIN

v Transaction abort procedures
– TM_ABORT

– TM_NAMED_ABORT

v Transaction inquiry procedures

30 XL Fortran: Getting Started

– TM_FAILURE_ADDRESS

– TM_FAILURE_CODE

– TM_IS_CONFLICT

– TM_IS_FAILURE_PERSISTENT

– TM_IS_FOOTPRINT_EXCEEDED

– TM_IS_ILLEGAL

– TM_IS_NAMED_USER_ABORT

– TM_IS_NESTED_TOO_DEEP

– TM_IS_USER_ABORT

– TM_NESTING_DEPTH

POWER8 prefetch directives

The following directives display the problem state control of the Data Stream
Control Register (DSCR) in an intuitive, portable, and optimization-friendly way:
v Transient attribute enable directives

– HARDWARE_TRANSIENT_ENABLE

– LOAD_TRANSIENT_ENABLE

– SOFTWARE_TRANSIENT_ENABLE

– STORE_TRANSIENT_ENABLE

v Unit count enable and set directives
– HARDWARE_UNIT_COUNT_ENABLE

– SET_PREFETCH_UNIT_COUNT

– SOFTWARE_UNIT_COUNT_ENABLE

v Prefetch depth directives
– DEFAULT_PREFETCH_DEPTH

– DEPTH_ATTAINMENT_URGENCY

v Load stream enable and disable directives
– LOAD_STREAM_DISABLE

– STRIDE_N_STREAM_ENABLE

POWER8 prefetch intrinsic procedures

You can use the following intrinsic procedures to get or set the value of the DSCR:
v PREFETCH_GET_DSCR_REGISTER

v PREFETCH_SET_DSCR_REGISTER

Related information:
v Hardware-specific directives,
v Hardware-specific intrinsic procedures (IBM extension)
v Vector intrinsic procedures (IBM extension)
v The TRANSACTIONAL_MEMORY intrinsic module (IBM extension)
v XL Fortran Language Reference

v -qarch

Compiler options
This topic describes new or changed compiler options.

Chapter 4. Enhancements added in earlier releases 31

You can specify compiler options on the command line. You can also modify
compiler behavior through directives embedded in your application source files.
For detailed descriptions and usage information for XL Fortran compiler options,
see the XL Fortran Compiler Reference.

-I This option is extended to support submodules. You can use it to add a
directory to the search path for submodule symbol (.smod) files.

-M, -qmakedep
This option produces a dependency output file containing targets suitable
for inclusion in a description file for the make command.

-MF This option is used to specify the name or location for the dependency
output files that are generated by the -qmakedep or -M option.

-MT This option is used to specify the target name of the object file in the make
rule in the dependency output file that is generated by the -qmakedep or
-M option.

-qarch The option default is updated to pwr4. Suboptions denoting old hardware
families are silently upgraded to newer architectures.

The following suboptions are added or updated:

-qarch=pwr7
This suboption produces object code containing instructions that
run on the POWER7, POWER7+, or POWER8 hardware platforms.

-qarch=pwr8
This suboption produces object code containing instructions that
run on the POWER8 hardware platforms.

-qcheck
The following suboptions are added:

-qcheck=all
This suboption enables all suboptions.

-qcheck=bounds
This suboption checks each reference to an array, array section, or
character substring to ensure that the reference stays within the
defined bounds of the entity.

-qcheck=stackclobber
This suboption detects a certain type of stack corruption in your
programs.

-qcheck=unset
This suboption checks for automatic variables that are used before
they are set at run time.

-qdbgfmt=dwarf4
This suboption generates debugging information in DWARF 4 format.

-qfunctrace
This option is extended to support submodules.

-qhelp This option displays the man page of the compiler.

-qinfo

The following suboptions are added :

32 XL Fortran: Getting Started

-qinfo=HOSTASSOCiation
This suboption notifies you about entities that are accessed by host
association.

-qinfo=mt
This suboption notifies you about potential places where
synchronization is needed.

-qinfo=unset
This suboption detects automatic variables that are used before
they are set, and flags them with informational messages at
compile time.

-qmoddir
This option is extended to support submodules. You can use it to specify
the location for any submodule (.smod) symbol files.

-qpath This option specifies locations for complier components. You can specify a
different path for each component.

-qpdf1=unique
This suboption creates a unique PDF file for each process during run time.

-qprefetch=dscr
This suboption helps to improve the runtime performance of your
applications. You can specify a value for dscr depending on your system
architecture.

-qsimd=auto
This suboption controls the autosimdization, which was performed by the
deprecated -qhot=simd option.

-qtune The option default is updated.

The following suboptions are added or updated:

-qtune=pwr7
This suboption specifies that optimizations are tuned for the
POWER7 or POWER7+ hardware platforms.

-qtune=pwr8
This suboption specifies that optimizations are tuned for the
POWER8 hardware platforms.

SMT suboptions
The new -qtune simultaneous multithreading (SMT) suboptions
allow you to specify a target SMT to direct optimization for best
performance in that mode.

-qunroll=n
This suboption hints to the compiler to unroll loops by a factor of n. If the
loop has fewer than n iterations, it is fully unrolled.

-WL This suboption specifies additional options for the IPA link step.

Other XL Fortran updates
This section describes other updates added in AIX, V15.1.

The XLF_POSIX_BINDINGS module

The XLF_POSIX_BINDINGS module provides interfaces to many POSIX and XSI
functions and named constants. For details, see The XLF_POSIX_BINDINGS

Chapter 4. Enhancements added in earlier releases 33

module in the XL Fortran Language Reference.

Enhancements added in Version 14.1
This section describes features and enhancements added to the compiler in Version
14.1. These features and enhancements apply to later versions as well.

Fortran 2008 features
XL Fortran V14.1 implements selected features of the Fortran 2008 standard.

This version of XL Fortran provides support for the following Fortran 2008
features:
v ALLOCATE enhancements
v Complex part designators
v Implied-shape arrays
v Internal procedures as actual arguments or procedure pointer targets
v Intrinsic types in the TYPE() type specifier
v Pointer dummy argument enhancement
v The declaration of multiple type-bound procedures in a single procedure

statement
v The -qxlf2008=checkpresence suboption
v The BLOCK construct
v The CONTIGUOUS attribute and IS_CONTIGUOUS intrinsic function
v The END statement for internal and module subprograms
v The EXIT statement
v The EXECUTE_COMMAND_LINE intrinsic subroutine
v The HYPOT intrinsic procedure
v The ISO_FORTRAN_ENV intrinsic module
v The LEADZ and TRAILZ intrinsic procedures
v The math intrinsic procedures extension
v The NEWUNIT= specifier
v The POPCNT and POPPAR inquiry intrinsic functions
v The RADIX= argument
v The STOP and ERROR STOP statements

ALLOCATE enhancements

The MOLD= specifier has been added to the ALLOCATE statement. In addition,
you can omit the bounds in the ALLOCATE statement if you provide source_expr
in the SOURCE= or MOLD= specifier.

Complex part designators

Complex part designators have been added in Fortran 2008. Using complex part
designators, you can directly access the real or imaginary part of complex entities.
You can use the designators instead of the REAL() and IMAG() intrinsics.

34 XL Fortran: Getting Started

Implied-shape arrays

Implied-shape arrays have been added in Fortran 2008. An implied-shape array
inherits its shape from the constant expression in its declaration.

Internal procedures as actual arguments or procedure pointer
targets

To conform with the Fortran 2008 standard, procedure pointers can now point to
internal procedures. In addition, you can use internal procedures and pointers to
internal procedures as actual arguments.

Intrinsic types in the TYPE() type specifier

The TYPE() type specifier has been extended to declare entities of both derived
type and intrinsic type.

Pointer dummy argument enhancement

In Fortran 2008, a dummy argument that has the POINTER and INTENT(IN)
attributes can be argument associated with a nonpointer actual argument that has
the TARGET attribute.

The declaration of multiple type-bound procedures in a single
procedure statement

In Fortran 2008, you can declare multiple type-bound procedures using one
type-bound procedure statement.

The -qxlf2008=checkpresence suboption

The -qxlf2008=checkpresence suboption has been introduced to check the
allocation status or pointer association status of actual arguments during argument
association of optional dummy arguments.

The BLOCK construct

The BLOCK construct has been added in Fortran 2008. It defines an executable
block that can contain declarations.

The CONTIGUOUS attribute and IS_CONTIGUOUS intrinsic
function

The CONTIGUOUS attribute specifies that the array elements in an array pointer
or an assumed-shape array are not separated by other data objects, which
guarantees that the array object is stored in contiguous memory.

The IS_CONTIGUOUS intrinsic function is used to test whether an array is stored
in contiguous memory.

The END statement for internal and module subprograms

In Fortran 2008, you can omit the FUNCTION and SUBROUTINE keywords on
the END statements for internal and module subprograms.

Chapter 4. Enhancements added in earlier releases 35

The EXECUTE_COMMAND_LINE intrinsic subroutine

The EXECUTE_COMMAND_LINE subroutine has been added in Fortran 2008.
You can use it to pass a command to the operating system for execution.

The EXIT statement

The EXIT statement can now be used to terminate execution of one of the
following constructs:
v ASSOCIATE
v BLOCK
v DO
v IF
v SELECT CASE
v SELECT TYPE

The HYPOT intrinsic procedure

The HYPOT intrinsic procedure is introduced to calculate the Euclidean distance
between two values.

The ISO_FORTRAN_ENV intrinsic module

The following constants are added:
v CHARACTER_KINDS

v INT8, INT16, INT32, and INT64

v INTEGER_KINDS

v IOSTAT_INQUIRE_INTERNAL_UNIT

v LOGICAL_KINDS

v REAL32, REAL64, and REAL128

v REAL_KINDS

The following functions are added:
v COMPILER_OPTIONS

v COMPILER_VERSION

The LEADZ and TRAILZ intrinsic procedures

The LEADZ and TRAILZ intrinsic procedures are introduced to count the number
of leading and trailing zeros in an integer.

The math intrinsic procedures extension

The following new intrinsic procedures have been introduced:
v ACOSH

v ASINH

v ATANH

v ERFC_SCALED

v LOG_GAMMA

Notes:

36 XL Fortran: Getting Started

1. The LOG_GAMMA intrinsic procedure is the Fortran 2008 standard compliant
alias of the LGAMMA intrinsic procedure.

2. The ERF, ERFC, and GAMMA intrinsic procedures are now Fortran 2008
standard compliant.

Complex arguments are now supported in the following intrinsic procedures:
v ACOS

v ASIN

v ATAN

v COSH

v SINH

v TAN

v TANH

Note: The ATAN intrinsic procedure can now optionally take two arguments,
ATAN(Y, X), and have the same results as the ATAN2 intrinsic procedure.

The NEWUNIT= specifier

The OPEN statement has been updated with the NEWUNIT= specifier to specify
the unit number automatically. In the BACKSPACE, CLOSE, ENDFILE, FLUSH,
INQUIRE, OPEN, READ, REWIND, and WRITE statements, the range of unit
values now includes the NEWUNIT value.

The POPCNT and POPPAR inquiry intrinsic functions

The POPCNT and POPPAR functions have been updated to conform with the
Fortran 2008 standard. They can be used in constant expressions now.

The RADIX= argument

A RADIX= argument has been added to the SELECTED_REAL_KIND and
IEEE_SELECTED_REAL_KIND intrinsic procedures.

The STOP and ERROR STOP statements

The STOP statement has been enhanced to take an integer or character constant
expression as stop code. The STOP statement initiates normal termination of a
program while the ERROR STOP statement initiates error termination.

OpenMP 3.1
XL Fortran V14.1 supports the OpenMP Application Program Interface Version 3.1
specification. The XL Fortran implementation is based on IBM's interpretation of
the OpenMP Application Program Interface Version 3.1.

OpenMP 3.1 includes the following updates to OpenMP 3.0:
v Adds the FINAL and MERGEABLE clauses to the TASK construct to support

optimization.
v Adds the TASKYIELD construct to allow users to specify where in the program

can perform task switching.
v Adds the omp_in_final runtime library routine to support specialization of final

task regions.

Chapter 4. Enhancements added in earlier releases 37

v Extends the ATOMIC construct to include READ, WRITE, and CAPTURE forms; adds
the UPDATE clause to apply the existing form of the ATOMIC construct.

v Allows dummy arguments with the INTENT(IN) attribute to be specified on the
FIRSTPRIVATE clause.

v Allows unallocated allocatable arrays to be specified on the COPYIN clause.
v Allows Fortran 90 Pointers to be specified on the FIRSTPRIVATE clause.
v Adds the OMP_PROC_BIND environment variable to control whether OpenMP

threads are allowed to move between processors.
v Extends the OMP_NUM_THREADS environment variable to specify the number of

threads to use for nested parallel regions.

Related information
v "Parallel programming with XL Fortran" in the XL Fortran Optimization and

Programming Guide

v www.openmp.org

Performance and optimization
Additional features and enhancements in XL Fortran V14.1 assist with performance
tuning and application optimization.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimized your code. You can use this
information to get further benefits from the optimization capabilities of the
compiler. For more details about these enhanced reports, see “Diagnostic reports.”

For additional information about performance tuning and program optimization,
see "Optimizing your applications" in the XL Fortran Optimization and Programming
Guide.

Diagnostic reports
The new diagnostic reports added in XL Fortran V14.1 can help you identify
opportunities to improve the performance of your code.

Compiler reports in HTML format

It is now possible to get information in XML or HTML format about the
optimizations that the compiler was able to perform and also which optimization
opportunities were missed. This information can be used to reduce programming
effort for tuning applications, especially high-performance applications.

The -qlistfmt option and its associated suboptions can be used to generate the
XML or HTML report. By default, this option now generates all the available
content if you do not specify the type of content.

To view the HTML version of an XML report that has been already generated, you
can now use the genhtml tool. For more information about how to use this tool,
see the genhtml command in the XL Fortran Compiler Reference.

For detailed information about this report and how to use it, see "Using reports to
diagnose optimization opportunities" in the XL Fortran Optimization and
Programming Guide.

38 XL Fortran: Getting Started

http://www.openmp.org

Enhancements to profiling reports

New sections have been added to your listing file to help you analyze your
programs. When using the -qreport option with the -qpdf2 option, you can get the
following sections added to the listing file in the section entitled PDF Report:

Relevance of profiling data
This section shows the relevance of the profiling data to the source code
during the -qpdf1 phase. The relevance is indicated by a number in the
range of 0 - 100. The larger the number is, the more relevant the profiling
data is to the source code, and the more performance gain can be achieved
by using the profiling data.

Missing profiling data
This section might include a warning message about missing profiling
data. The warning message is issued for each function for which the
compiler does not find profiling data.

Outdated profiling data
This section might include a warning message about outdated profiling
data. The compiler issues this warning message for each function that is
modified after the -qpdf1 phase. The warning message is also issued when
the optimization level changes from the -qpdf1 phase to the -qpdf2 phase.

For detailed information about profile-directed feedback, see "Profile-directed
feedback" in the XL Fortran Optimization and Programming Guide.

For additional information about the listing files, see "Understanding XL Fortran
compiler listings" in the XL Fortran Compiler Reference.

Enhancements to showpdf reports

In addition to block-counter and call-counter profiling information currently
provided, you can also use the showpdf utility to view cache-miss profiling and
value profiling information. Value profiling and cache-miss profiling information
can be displayed only in XML format. However, all the other types of profiling
information can be displayed in either text or XML format. In this release, the
profile-directed feedback (PDF) information is saved in two files. One is a PDF
map file that is generated during the -qpdf1 phase, and the other is a PDF file that
is generated during the execution of the resulting application. You can run the
showpdf utility to display the PDF information contained in these two files. For
more information, see "Viewing profiling information with showpdf" in the XL
Fortran Optimization and Programming Guide.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

The information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see "Listings, messages and
compiler information" in the XL Fortran Compiler Reference.

Chapter 4. Enhancements added in earlier releases 39

Table 5. Listings-related compiler options and directives

Option/directive Description

-qlistfmt The -qlistfmt option has been enhanced to generate
HTML reports as well as XML reports, containing
information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of this option has changed. Now,
if you do not specify a particular type of content, the
option generates all the available content, rather than
generating none.

Compiler options and directives
This section describes new or changed compiler options and directives in V14.1.

You can specify compiler options on the command line. You can also modify
compiler behavior through directives embedded in your application source files.
See the XL Fortran Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

New or changed compiler options

-g, -qdbg
The -g or -qdbg option is extended to have new different levels to improve
the debugging of optimized programs.

-qassert
-qassert=minitercnt=n and -qassert=maxitercnt=n are added to specify the
expected minimum and maximum iteration counts of the loops in the
program.

-qfunctrace
The -qfunctrace option is extended to allow you to specify module
procedures and module names.

-qhaltonmsg
Stops compilation before producing any object files, executable files, or
assembler source files if a specified error message is generated.

-qinitalloc
The new option -qinitalloc is added to initialize allocatable and pointer
variables that are allocated but not initialized.

-qlanglvl
The following suboptions are added or updated:

-qlanglvl=2008std
-qlanglvl=2008pure

These two new suboptions are added to enable language level
checking for supported Fortran 2008 features.

-qlistfmt
The -qlistfmt option is enhanced to generate HTML reports as well as
XML reports, containing information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of -qlistfmt has changed. In this release, if you do not
specify a particular type of content, the option generates all the available
content, rather than generating none.

40 XL Fortran: Getting Started

-qmaxerr
-qmaxerr stops compilation when the number of error messages of a
specified severity level or higher reaches a specified number.

-qoptfile
The new option -qoptfile specifies a file containing a list of additional
command line options to be used for the compilation.

-qpic -qpic=large now enables large TOC access and prevents TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

-qshowpdf
The default value is changed from -qnoshowpdf to -qshowpdf.

-qxlf2008
The new suboption -qxlf2008=checkpresence is added so that you can
check dummy argument presence according to the Fortran 2008 standard.

-qxlf2003
The new suboption -qxlf2003=dynamicacval is added to control whether
you can use unlimited polymorphic entities for array constructors, and
whether dynamic types of array constructor values are used.

New or changed directives

ALIGN
Using the ALIGN directive, you can specify the alignment for your
variables in memory.

ASSERT
You can use assertions MINITERCNT(n) and MAXITERCNT(n) to specify
the minimum and maximum number of iterations for a given loop.

Chapter 4. Enhancements added in earlier releases 41

42 XL Fortran: Getting Started

Chapter 5. Setting up and customizing XL Fortran

This section describes how to set up and customize the compiler according to your
own requirements.

For complete prerequisite and installation information for XL Fortran, see "Before
installing XL Fortran" in the XL Fortran Installation Guide.

Using custom compiler configuration files
You can customize compiler settings and options by modifying the default
configuration file or creating your own configuration file.

You have the following options to customize compiler settings:
v The XL Fortran compiler installation process creates a default compiler

configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

v You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings that you specify in your custom configuration files
with compiler settings that are specified in the default configuration file.
Compiler updates that might later affect settings in the default configuration file
do not affect the settings in your custom configuration files.
Related information

Using custom compiler configuration files

Configuring compiler utilization tracking and reporting
In addition to the compiler configuration file, there is a separate configuration file
for the utilization tracking and reporting feature. Utilization tracking is disabled by
default, but you can enable it by modifying an entry in this configuration file.
Various other aspects of utilization tracking can also be configured using this file.

Although the compiler configuration file is separate from the utilization tracking
configuration file, it contains an entry that specifies the location of the utilization
tracking configuration file so that the compiler can find this file.

For more information about how to configure the utilization tracking and reporting
feature, see Tracking and reporting compiler usage in the XL Fortran Compiler
Reference.

© Copyright IBM Corp. 1996, 2015 43

44 XL Fortran: Getting Started

Chapter 6. Developing applications with XL Fortran

Fortran application development consists of repeating cycles of editing, compiling,
linking, and running. By default, compiling and linking are combined into a single
step.

Notes:

v Before you use the compiler, ensure that XL Fortran is properly installed and
configured. For more information, see the XL Fortran Installation Guide.

v To learn about writing Fortran programs, refer to the XL Fortran Language
Reference.

The compiler phases
A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities are executed more than once during a
compilation. As each compilation component runs, the results are sent to the next
step in the sequence.
1. Preprocessing of source files
2. Compilation, which might consist of the following phases, depending on what

compiler options are specified:
a. Front-end parsing and semantic analysis
b. Loop transformations
c. High-level optimization
d. Low-level optimization
e. Register allocation
f. Final assembly

3. Assembling the assembly (.s) files and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -qphsinfo.

Editing Fortran source files
To create Fortran source programs, you can use any text editor available on your
system, such as vi or emacs.

Source programs must be saved using a recognized file name suffix. See “XL
Fortran input and output files” on page 50 for a list of suffixes recognized by XL
Fortran.

For a Fortran source program to be a valid program, it must conform to the
language definitions specified in the XL Fortran Language Reference.

© Copyright IBM Corp. 1996, 2015 45

Compiling with XL Fortran
XL Fortran is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular Fortran application.

Invoking the compiler
The compiler invocation commands perform all necessary steps to compile Fortran
source files, assemble any .s and .S files, and link the object files and libraries into
an executable program.

To compile a Fortran source program, use the following basic invocation syntax:

►► xlf ▼ ▼ input_file
compiler_option

►◄

For most applications, compile with xlf or a threadsafe counterpart.
v If the file name extensions of your source files indicate a specific level of

Fortran, such as .f08, .f03, .f95, .f90, or .f77, you can compile with xlf or the
corresponding generic threadsafe invocations so that the compiler can
automatically select the appropriate language-level defaults.

v If you compile source files whose file name extensions are generic, such as .f or
.F, with xlf or corresponding generic threadsafe invocations, the compilation
conforms to FORTRAN 77.

For more information about threadsafe counterparts, see "Compiling XL Fortran
programs" in the XL Fortran Compiler Reference.

Invocation commands for different levels of Fortran

More invocation commands are available to meet specialized compilation needs,
primarily to provide explicit compilation support for different levels and
extensions of the Fortran language. These invocation commands do not consider
the specific level of Fortran indicated by the source file name extensions, such as
.f08, .f03, .f95, .f90, or .f77.

46 XL Fortran: Getting Started

Table 6. Invocation commands and corresponding Fortran language standards

Language
level

Invocation
commands Notes

Fortran
2008

v f2008

v xlf2008

These compiler invocations
accept Fortran 90 free source
form by default. To use fixed
source form with these
invocations, you must specify
the -qfixed option.

The Fortran 2008 language
standard is partially
supported in this release.

Fortran
2003

v f2003

v xlf2003

Fortran
95

v f95

v xlf95

I/O formats are slightly
different between these
commands and the other
commands. I/O formats for
the Fortran 95 compiler
invocations are also different
from the I/O formats of
Fortran 90 invocations.
Switch to the Fortran 95
formats for data files
whenever possible.

Fortran
90

v f90

v xlf90

FORTRAN
77

v f77

v fort77

Where possible, these compiler invocations maintain
compatibility with existing programs by using the same I/O
formats as FORTRAN 77 and some implementation
behaviors that are compatible with earlier versions of XL
Fortran.

You might need to continue using these invocations for
compatibility with existing makefiles and build
environments. However, programs that are compiled with
these invocations might not conform to the Fortran 2008,
Fortran 2003, Fortran 95, or Fortran 90 language level
standards.

Compiling with full compliance to language standards

By default, these invocation commands do not conform completely to the
corresponding language standards. If you need full compliance, compile with the
following compiler option settings and specify the following runtime options
before you run the program, with a command similar to the following examples:

Fortran 2008

Compiler options:
-qlanglvl=2008std -qnodirective -qnoescape -qextname
-qfloat=nomaf:rndsngl:nofold -qnoswapomp -qstrictieeemod

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=2008std:

iostat_end=2003std:internal_nldelim=2003std"

Fortran 2003

Compiler options:
-qlanglvl=2003std -qnodirective -qnoescape -qextname
-qfloat=nomaf:rndsngl:nofold -qnoswapomp -qstrictieeemod

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=2003std:

iostat_end=2003std:internal_nldelim=2003std"

Fortran 95

Chapter 6. Developing applications with XL Fortran 47

Compiler options:
-qlanglvl=95std -qnodirective -qnoescape -qextname
-qfloat=nomaf:rndsngl:nofold -qnoswapomp

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=95std"

Fortran 90

Compiler options:
-qlanglvl=90std -qnodirective -qnoescape -qextname
-qfloat=nomaf:rndsngl:nofold -qnoswapomp

Example of runtime options:
export XLFRTEOPTS="err_recovery=no:langlvl=90std"

The default settings are intended to provide the best combination of performance
and usability, so change them only when full compliance is required. Some of the
options that are mentioned in the preceding tables are only required for
compliance in specific situations. For example, you must specify -qextname only
when an external symbol, such as a common block or subprogram, is named main.

The -qxlf2003 compiler option

The -qxlf2003 compiler option provides compatibility with XL Fortran V10.1 and
the Fortran 2003 standard for certain aspects of the language.

When you compile with the Fortran 2003 or Fortran 2008 compiler invocations, the
default setting is -qxlf2003=polymorphic. This setting instructs the compiler to
allow polymorphic items such as the CLASS type specifier and SELECT TYPE
construct in your Fortran application source.

For all other compiler invocations, the default is -qxlf2003=nopolymorphic.

The -qxlf2008 compiler option

You can use the -qxlf2008 compiler option for the following purposes:
v To enable language features specific to the Fortran 2008 standard when you

compile with compiler invocations that conform to earlier Fortran standards
v To disable language features specific to the Fortran 2008 standard when you

compile with compiler invocations that conform to the Fortran 2008 standard

When you compile with the Fortran 2008 compiler invocations, the default setting
is -qxlf2008=checkpresence. This setting instructs the compiler to check dummy
argument presence according to the Fortran 2008 standard.

For all other compiler invocations, the default is -qxlf2008=nocheckpresence.

See "Compiling XL Fortran programs" in the XL Fortran Compiler Reference for more
information about compiler invocation commands available to you.

Compiling parallelized XL Fortran applications
XL Fortran provides threadsafe compiler invocation commands to compile
parallelized applications for use in multiprocessor environments.

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to threadsafe components and
libraries. The generic XL Fortran threadsafe compiler invocations are as follows:

48 XL Fortran: Getting Started

v xlf_r
v xlf_r7

XL Fortran provides additional threadsafe invocations to meet specific compilation
requirements. For more information, see "Compiling XL Fortran programs" in the
XL Fortran Compiler Reference.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize SMP or OpenMP directives and activate parallelization, you
must also specify the -qsmp compiler option. In turn, you should specify the
-qsmp option only when threadsafe invocations are used. When you specify
-qsmp, the driver links the libraries that are specified on the smp libraries line in
the active stanza of the configuration file.

For more information about parallelized applications, see "Parallel programming"
in the XL Fortran Optimization and Programming Guide.

POSIX Pthreads API support

On AIX Version 5.1 and higher, XL Fortran supports 64-bit thread programming
with the 1003.1-1996 (POSIX) standard Pthreads API. It also supports 32-bit
programming with both the Draft 7 and the 1003.1-1996 standard APIs.

You can use invocation commands (which use corresponding stanzas in the xlf.cfg
configuration file) to compile and then link your programs with either the
1003.1-1996 standard or the Draft 7 interface libraries.
v To compile and then link your program with the 1003.1-1996 standard interface

libraries, use the _r variants of the compiler invocation commands. For example,
you could specify:

fortran_r test.f

v To compile and then link your program with the Draft 7 interface libraries, use
the _r variants of the compiler invocation commands. For example, you could
specify:

fortran_r7 test.f

Apart from the level of thread support, the _r7 invocation variants and their
corresponding stanzas in the vac.cfgvac.cfgxlf.cfg configuration file provide the
same support as their corresponding _r counterparts.

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler
characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options in one or any combination of the following ways:
v On the command line
v In your source code using directive statements
v In a makefile
v In the stanzas found in a compiler configuration file

You can also pass options to the linker, assembler, and preprocessor.

Chapter 6. Developing applications with XL Fortran 49

Priority sequence of compiler options

Option conflicts and incompatibilities might occur when multiple compiler options
are specified. To resolve these conflicts in a consistent manner, the compiler applies
the following general priority sequence to most options:
1. Directive statements in your source file override command line settings.
2. Compiler option settings on the command line override configuration file

settings.
3. Configuration file settings override default settings.

Generally, if the same compiler option is specified more than once on the
command line when the compiler is invoked, the last option specified prevails.

Note: Some compiler options, such as the -I option, do not follow the priority
sequence described above. The compiler searches any directories specified with -I
in the xlf.cfg file before it searches the directories specified with -I on the
command line. The -I option is cumulative rather than preemptive.

Related information

Specifying options on the command line

XL Fortran input and output files
The topic describes the file types that are recognized by XL Fortran.

For detailed information about these and additional file types used by the
compiler, see "Types of input files" in the XL Fortran Compiler Reference and "Types
of output files" in the XL Fortran Compiler Reference.

Table 7. Input file types

Filename extension Description

.a Archive or library files

.f, .F, .f77, .F77, .f90, .F90,

.f95, .F95, .f03, .F03, .f08,

.F08

Fortran source files

.mod Module symbol files

.smod ▌1▐ Submodule symbol files

.o Object files

.s Assembler files

.so Shared object files

Note: ▌1▐ Fortran 2008

Table 8. Output file types

Filename extension Description

a.out Default name for executable file created by the compiler

.mod Module symbol files

.smod ▌1▐ Submodule symbol files

.lst Listing files

.o Object files

.s Assembler files

50 XL Fortran: Getting Started

Table 8. Output file types (continued)

Filename extension Description

.so Shared object files

Note: ▌1▐ Fortran 2008

Linking your compiled applications with XL Fortran
By default, you do not need to do anything special to link an XL Fortran program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, you can use xlf to compile file1.f and file3.f to produce object
files file1.o and file3.o; after that, all object files, including file2.o, are
submitted to the linker to produce one executable.
xlf file1.f file2.o file3.f

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.
xlf -c file1.f # Produce one object file (file1.o)
xlf -c file2.f file3.f # Or multiple object files (file2.o, file3.o)
xlf file1.o file2.o file3.o # Link object files with default libraries

Linking new objects with existing ones
If you have .o or other object files that you compiled with an earlier versions of XL
Fortran, you can link them with object files that you compile with the current level
of XL Fortran.

See "Linking new objects with existing ones" in the XL Fortran Compiler Reference
for more information.

Relinking an existing executable file
The linker accepts executable files as input, so you can link an existing executable
file with updated object files.

You cannot, however, relink executable files that were previously linked using the
-qipa option.

If you have a program consisting of several source files and only make localized
changes to some of the source files, you do not necessarily have to compile each
file again. Instead, you can include the executable file as the last input file when
compiling the changed files:

xlf95 -omansion front_door.f entry_hall.f parlor.f sitting_room.f \
master_bath.f kitchen.f dining_room.f pantry.f utility_room.f

vi kitchen.f # Fix problem in OVEN subroutine
xlf95 -o newmansion kitchen.f mansion

Limiting the number of files to compile and link the second time reduces the
compile time, disk activity, and memory use.

Chapter 6. Developing applications with XL Fortran 51

Note: You should avoid this type of linking unless you are experienced with
linking. If done incorrectly, it can result in interface errors and other problems. If
you do encounter problems, compiling with the -qextchk compiler option can help
you diagnose problems with linking.

Dynamic and static linking
You can use XL Fortran to take advantage of the operating system facilities for
both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They might perform better than statically linked programs if
several programs use the same shared routines at the same time. By using dynamic
linking, you can upgrade the routines in the shared libraries without relinking.
This form of linking is the default and no additional options are needed.

Static linking means that the code for all routines called by your program becomes
part of the executable file. Statically linked programs can be moved to run on
systems without the XL Fortran runtime libraries. They might perform better than
dynamically linked programs if they make many calls to library routines or call
many small routines. They do require some precautions in choosing names for data
objects and routines in the program if you want to avoid naming conflicts with
library routines.

Note: Dynamically and statically linked programs might not work if you compile
them on one level of the operating system and run them on a different level of the
operating system.

Running your compiled application
After a program is compiled and linked, you can run the generated executable file
on the command line.

The default file name for the program executable file produced by the XL Fortran
compiler is a.out. You can select a different name with the -o compiler option.

You should avoid giving your program executable file the same name as system or
shell commands, such as test or cp, as you could accidentally execute the wrong
command. If you do decide to name your program executable file with the same
name as a system or shell command, you should execute your program by
specifying the path name to the directory in which your executable file resides,
such as ./test.

To run a program, enter the name of the program executable file with runtime
arguments on the command line.

Canceling execution

To suspend a running program, press Ctrl+Z while the program is in the
foreground. Use the fg command to resume running.

52 XL Fortran: Getting Started

To cancel a running program, press Ctrl+C while the program is in the foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL Fortran compiler. Some environment
variables do not control actual runtime behavior, but they can have an impact on
how your applications run.

For more information about environment variables and how they can affect your
applications at run time, see the XL Fortran Installation Guide.

Running compiled applications on other systems

In general, applications linked on a system using an earlier version of AIX can run
with more recent versions of AIX. However, applications linked on a system using
a newer version of AIX might not necessarily run with earlier versions of AIX.

If you want to run an application developed with the XL Fortran compiler on
another system that does not have the compiler installed, you need to install a
runtime environment on that system or link your application statically.

You can obtain the latest XL Fortran Runtime Environment images, together with
licensing and usage information, from the XL Fortran for AIX support page.

XL Fortran compiler diagnostic aids
XL Fortran issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL Fortran Compiler Reference:
v "Understanding XL Fortran compiler listings"
v "Error checking and debugging options"
v "Listings, messages, and compiler information options"

Debugging compiled applications
You can use a symbolic debugger to debug applications compiled with XL Fortran.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
Fortran compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see "Error
checking and debugging" in the XL Fortran Compiler Reference.

You can then use dbx or any other symbolic debugger that supports the AIX
XCOFF executable format to step through and inspect the behavior of your
compiled application.

Optimized applications pose special challenges when you debug your applications.
If you need to debug an optimized application, you can consider using the -gN
form of the -g option along with any optimization options. This form of the -g
option provides different levels of tradeoff between full optimization and full

Chapter 6. Developing applications with XL Fortran 53

http://www.ibm.com/support/entry/portal/Overview/Software/Rational/XL_Fortran_for_AIX

debugging support, depending on the value of N. For more information about
debugging your optimized code, see "Debugging optimized code" in the XL Fortran
Optimization and Programming Guide.

Determining which level of XL Fortran is being used
To display the version and release level of XL Fortran that you are using, invoke
the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following command:
xlf -qversion=verbose

54 XL Fortran: Getting Started

Notices

Programming interfaces: Intended programming interfaces allow the customer to
write programs to obtain the services of IBM XL Fortran for AIX.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1996, 2015 55

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

56 XL Fortran: Getting Started

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided “AS IS”, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2015.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

PRIVACY POLICY CONSIDERATIONS:

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, or to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe and the Adobe logo are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Notices 57

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

58 XL Fortran: Getting Started

Index

Special characters
.a files 50
.f and .F files 50
.i files 50
.lst files 50
.mod files 50
.o files 50
.s files 50
.S files 50

Numerics
64-bit environment 5

A
a.out file 50
assembler

source (.s) files 50
source (.S) files 50

B
backward 17
backward compatibility issues 17
basic example, described ix

C
code optimization 5
commands 4
compatibility 17
compilation

sequence of activities 45
compiler

invoking 46
running 46

compiler directives
new or changed 40

compiler options
conflicts and incompatibilities 50
new or changed 22, 32, 40
specification methods 49

compiling
SMP programs 48

D
dbx debugger 7, 53
debugger support 53

output listings 53
symbolic 7

debugging 53
debugging compiled applications 53
debugging information, generating 53
dynamic linking 52

E
editing source files 45
executable files 50
executing a program 52
executing the linker 51

F
f2003 command

description 46
level of Fortran standard

compliance 47
f2008 command

description 46
level of Fortran standard

compliance 47
f77 command

description 46
level of Fortran standard

compliance 47
f90 command

description 46
level of Fortran standard

compliance 47
f95 command

description 46
level of Fortran standard

compliance 47
files

editing source 45
input 50
output 50

fort77 command
description 46
level of Fortran standard

compliance 47
Fortran 2003

compiling programs written for 47
Fortran 2008

compiling programs written for 47
Fortran 90

compiling programs written for 47
Fortran 95

compiling programs written for 47

I
input files 50
invocation commands 46
invoking a program 52
invoking the compiler 46

L
language standards 3
language support 3
libraries 50
libxlf.a library 14
libxlf90.a and libxlf.a libraries 13

libxlf90.a library 14
linking

dynamic 52
static 52

linking process 51
listings 50

M
migrating

from previous versions of XL
Fortran 13

migration
source code 49

mod files 50
more enhancements

new features
V15.1.3 11

multiprocessor systems 6

O
object files 50

creating 51
linking 51

OpenMP 6
optimization

programs 5
output files 50

P
parallelization 6
performance

optimizing transformations 5
POSIX Pthreads

API support 49
problem determination 53
programs

running 52

R
running the compiler 46
runtime environment 53
runtime libraries 50
runtime options 53

S
shared memory parallelization 6
shared object files 50
SMP

programs, compiling 48
SMP programs 6
source files 50
source-level debugging support 7
static linking 52
symbolic debugger support 7

© Copyright IBM Corp. 1996, 2015 59

T
tools

cleanpdf utility 4
CreateExportList 4
custom installation 5
install 5
mergepdf utility 4
showpdf utility 4
xlfndi 5

U
utilities

cleanpdf 4
CreateExportList 4
custom installation 5
install 5
mergepdf 4
showpdf 4
xlfndi 5

X
xlc.cfg file 49
xlf command

description 46
level of Fortran standard

compliance 13
xlf_r command

description 46
for compiling SMP programs 48
level of Fortran standard

compliance 13
xlf_r7 command

description 46
for compiling SMP programs 48
level of Fortran standard

compliance 13
xlf2003 command

description 46
level of Fortran standard

compliance 47
xlf2003_r command

description 46
level of Fortran standard

compliance 47
xlf2008 command

description 46
level of Fortran standard

compliance 47
xlf2008_r command

description 46
level of Fortran standard

compliance 47
xlf90 command

description 46
level of Fortran standard

compliance 13, 47
xlf90_r command

description 46
for compiling SMP programs 48
level of Fortran standard

compliance 13, 47
xlf90_r7 command

description 46
for compiling SMP programs 48

xlf90_r7 command (continued)
level of Fortran standard

compliance 13, 47
xlf95 command

description 46
level of Fortran standard

compliance 13, 47
xlf95_r command

description 46
for compiling SMP programs 48
level of Fortran standard

compliance 13, 47
xlf95_r7 command

description 46
for compiling SMP programs 48
level of Fortran standard

compliance 13, 47

60 XL Fortran: Getting Started

IBM®

Product Number: 5765-J09; 5725-C74

Printed in USA

SC27-4242-02

	Contents
	About this document
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL Fortran
	Commonality with other IBM compilers
	Operating system and hardware support
	A highly configurable compiler
	Language standard compliance
	Source-code migration and conformance checking

	Tools, utilities, and commands
	Program optimization
	64-bit object capability
	Shared memory parallelization
	Diagnostic reports
	Symbolic debugger support

	Chapter 2. What's new for IBM XL Fortran for AIX, V15.1.3
	Language features
	Intrinsic procedures
	Other enhancements

	Chapter 3. Migration of your applications
	Things to note in IBM XL Fortran for AIX, V15.1.3
	Avoiding or fixing upgrade problems
	Compatibility with earlier versions

	Chapter 4. Enhancements added in earlier releases
	Enhancements added in Version 15.1.2
	Fortran 2008 features
	Language interoperability features
	Intrinsic procedures
	Commands
	Compiler options
	Other XL Fortran updates

	Enhancements added in Version 15.1
	Support for POWER8 processors
	Fortran 2008 features
	Language interoperability features
	OpenMP 4.0
	Directives and intrinsic procedures
	Compiler options
	Other XL Fortran updates

	Enhancements added in Version 14.1
	Fortran 2008 features
	OpenMP 3.1
	Performance and optimization
	Diagnostic reports
	Compiler options and directives

	Chapter 5. Setting up and customizing XL Fortran
	Using custom compiler configuration files
	Configuring compiler utilization tracking and reporting

	Chapter 6. Developing applications with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Invoking the compiler
	Compiling parallelized XL Fortran applications
	Specifying compiler options
	XL Fortran input and output files

	Linking your compiled applications with XL Fortran
	Linking new objects with existing ones
	Relinking an existing executable file
	Dynamic and static linking

	Running your compiled application
	XL Fortran compiler diagnostic aids
	Debugging compiled applications
	Determining which level of XL Fortran is being used

	Notices
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	I
	L
	M
	O
	P
	R
	S
	T
	U
	X

