
IBM Content Collector
Version 3.0.0.2

Script Connector Implementation Guide

���

IBM Content Collector
Version 3.0.0.2

Script Connector Implementation Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 55.

This edition applies to version 3.0 Fix Pack 2 of IBM Content Collector (product number 5724-V57) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2008, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

ibm.com and related resources. v
How to send your comments vi
Contacting IBM vi

What is the IBM Content Collector Script
Connector? 1
Script Connector overview. 1
What can you use it for? 1
How does it work? 2
What are the limitations? 2

Getting started 5
Installing the Script Connector 5
The Script Connector template 8
Creating a working folder from the template . . . 8
What happens next? 10

Writing connector scripts. 11
The Script Connector API. 11
Writing connector scripts in JScript 12

Reading task input parameters 12
Gathering metadata within a script 14
Returning metadata from a task script 14
Submitting metadata from a collector script . . 15
Logging 15
Error handling 16
Updating performance counters 16
Using existing COM objects in script code . . . 16
Upgrading Script Connector scripts from earlier
IBM Content Collector versions. 18
Testing script code 19

Writing connector scripts in Python 19
Creating tasks 20
Reading task input parameters 21
Gathering metadata within a script 22
Returning metadata from a task script 22
Creating collectors 22
Submitting metadata from a collector script . . 23
Assigning entity IDs 24
Logging 24
Error handling 25
Updating performance counters and Windows
event logs 25
Using existing COM objects in script code . . . 26

Preparing for deployment 27

Modifying .wsc files for COM registration 27
Generating new guids for tasks and collectors . . . 28
Creating a registration script. 29

Creating a registration script using JScript . . . 29
Creating a registration script in Python 31

Enabling task and collector configuration in
Configuration Manager 33
Customizing configuration screens. 33

Deploying your connector 35
Prerequisite steps 35
Unregistering the existing implementation 35
Deploying the new implementation files. 36
Registering the new implementation 36
After deployment 37

Configuring your connector 39
Connector configuration 39
The Script Connector toolbox 40
Task configuration 40
Collector configuration 42
Troubleshooting configuration issues 43

The Script Connector does not appear in
Configuration Manager 43
A new task or collector does not appear in
Configuration Manager 43
A task or collector cannot be configured 43
The Script Connector configuration window
displays cryptic labels 44

Debugging connector scripts 45

Additional documentation 47
Script Connector API documentation 47
Windows Script Technologies documentation . . . 48

Samples 49
Unix date conversion 49
File processing connector 50
Web service call 51
Python Unix date conversion 52

Notices 55

Index 59

© Copyright IBM Corp. 2008, 2012 iii

iv IBM Content Collector: Script Connector Implementation Guide

ibm.com and related resources

Product support and documentation are available from ibm.com®.

Support and assistance

Product support is available on the web. Simply click Support from the
appropriate product website.

IBM® Content Collector
http://www-01.ibm.com/software/data/content-management/content-
collector/

IBM Email Archive and eDiscovery Solution
http://pic.dhe.ibm.com/infocenter/email/v3r0m0/index.jsp

IBM CommonStore for Exchange Server
http://www.ibm.com/software/data/commonstore/exchange/

IBM CommonStore for Lotus® Domino®

http://www.ibm.com/software/data/commonstore/lotus/

IBM Content Manager
http://www.ibm.com/software/data/cm/cmgr/mp/

IBM FileNet® P8
http://www.ibm.com/software/data/content-management/filenet-p8-
platform/

IBM Enterprise Records
http://www.ibm.com/software/data/content-management/filenet-records-
manager/

IBM Records Manager
http://www.ibm.com/software/data/cm/cmgr/rm/

IBM WebSphere® Application Server
http://www.ibm.com/software/webservers/appserv/was/

Lotus Notes® and Domino
http://www.ibm.com/software/lotus/notesanddomino/

Information center

You can view the IBM Content Collector product documentation in an
Eclipse-based information center. See the information center at
http://pic.dhe.ibm.com/infocenter/email/v3r0m0/index.jsp.

PDF publications

You can view a PDF version of the IBM Content Collector installation and
configuration guide by using the Adobe Acrobat Reader for your operating system.
The guide is available from the IBM Publications Center. If you do not have the
Acrobat Reader installed, you can download it from the Adobe website at
http://www.adobe.com.

© Copyright IBM Corp. 2008, 2012 v

http://www-01.ibm.com/software/data/content-management/content-collector/
http://www-01.ibm.com/software/data/content-management/content-collector/
http://pic.dhe.ibm.com/infocenter/email/v3r0m0/index.jsp
http://www.ibm.com/software/data/commonstore/exchange/
http://www.ibm.com/software/data/commonstore/lotus/
http://www.ibm.com/software/data/cm/cmgr/mp/
http://www.ibm.com/software/data/content-management/filenet-p8-platform/
http://www.ibm.com/software/data/content-management/filenet-p8-platform/
http://www.ibm.com/software/data/content-management/filenet-records-manager/
http://www.ibm.com/software/data/content-management/filenet-records-manager/
http://www.ibm.com/software/data/cm/cmgr/rm/
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/lotus/notesanddomino/
http://pic.dhe.ibm.com/infocenter/email/v3r0m0/index.jsp
http://www.adobe.com

How to send your comments
Your feedback is important in helping to provide the most accurate and highest
quality information.

Send your comments by using the online reader comment form at
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US
&source=swg-rcf.

Contacting IBM
To contact IBM customer service in the United States or Canada, call
1-800-IBM-SERV (1-800-426-7378).

To learn about available service options, call one of the following numbers:
v In the United States: 1-888-426-4343
v In Canada: 1-800-465-9600

For more information about how to contact IBM, see the Contact IBM website at
http://www.ibm.com/contact/us/.

vi IBM Content Collector: Script Connector Implementation Guide

https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf
https://www14.software.ibm.com/webapp/iwm/web/signup.do?lang=en_US&source=swg-rcf
http://www.ibm.com/contact/us/

What is the IBM Content Collector Script Connector?

Script Connector overview
The Script Connector is an IBM Content Collector connector that enables customers
and service providers to implement custom tasks and collectors that extend
standard IBM Content Collector functionality. This makes the Script Connector
very useful for integrating IBM Content Collector with existing business processes,
prototyping and proof of concept studies, and for customization "in the field" by
implementers and customers.

The Script Connector uses popular scripting languages to provide a
straightforward but flexible way of implementing custom collectors and tasks.
Using scripting enables rapid delivery of comparatively simple and self-contained
functionality. However, the use of scripting also means that the Script Connector is
not suitable for all scenarios, especially those that have tightly constrained
performance requirements.

What can you use it for?
The Script Connector is frequently used to implement a custom task that provides
additional metadata to existing entities in a task route.

For example, a Script Connector task can be implemented to:
v Perform simple data conversion duties based solely on the input data, such as

converting integer Unix dates to internal DateTime values.
v Manage complex data conversion operations, such as anonymizing or encrypting

personally identifiable information.
v Call web services or perform database queries to provide additional metadata,

such as using a customer identifier to retrieve the corresponding customer name
and address.

v Use third-party APIs to read extended properties from the file system and from
specific file types such as Microsoft Office documents and CAD drawings.

v Handle custom postprocessing operations, such as sending an email message.

A Script Connector task might also add additional entities to the task route. For
example, a Script Connector task can be implemented to:
v Extract files from a .zip archive and submit them to the task route, or create a

new .zip file packaging files processed by the task route.
v Convert files from one format to another, such as converting .doc files to .rtf

files.
v Use an XSL style sheet to render XML files as HTML.

The Script Connector can also be used to implement custom collectors to find and
submit items into a task route. You might consider creating a custom collector to:
v Process metadata files that are not in a format that is supported by the File

System Connector, such as fixed length records, base64 encoded data, or text
files containing name/value pairs.

v Extract files or other content from a third-party system.

© Copyright IBM Corp. 2008, 2012 1

Implementing a custom collector is optional and is generally more complex than
implementing a custom task. If possible, try to use an existing collector to submit
items for processing, then use a custom task to fill the gaps in metadata or
functionality.

How does it work?
The Script Connector is based on Windows COM technology. To perform work, the
Script Connector creates a COM object using information in the Windows registry,
then uses COM late binding to call a method named execute on that object. To use
the Script Connector to provide custom functionality, you must provide a COM
component that implements the execute method and provide the registry
information to call it.

The Script Connector is specifically intended to work with the scripting languages
provided by the Windows Scripting Runtime (JScript and VBScript). To interface
with script code, the Script Connector uses Windows Scripting Components (WSC),
a bridging technology that allows script code to be registered and called as COM
objects. The script code can then leverage other COM components developed in
any language, including other scripts that are registered as COM components
using WSC. The Script Connector also supports the use of Python scripts registered
as COM objects, leveraging the functionality provided by standard and third-party
Python libraries.

The Script Connector also provides an API to allow interaction with the IBM
Content Collector infrastructure. This allows scripts to retrieve passed
configuration and input parameters, to add metadata to existing entities, to submit
new files and other entities, to return task status, to log messages, to update
performance counters, and to register the script code so that it can be used. The
Script Connector also supports the creation and registration of custom metadata
sources.

The Script Connector provides a simple plug-in user interface to the IBM Content
Collector Configuration Manager to add tasks and collectors to task routes, provide
basic task and collector configuration, and to specify task input parameters. The
text labels and tooltip help shown to users can be customized by updating a
localization file.

Custom connector development using the Script Connector is much simpler than
developing custom connectors in C++. In fact, these scripts can be developed with
nothing more complex than a standard text editor (although a text editor with
syntax highlighting such as Notepad++ is helpful); you do not require a fully
featured development environment such as Microsoft Visual Studio.

What are the limitations?
Currently, only one Script Connector can be installed on a system. This one
instance can be configured to perform multiple unrelated tasks, but this limitation
complicates mixing and matching tasks from different Script Connector
implementations. A failure in an unreliable task or collector that causes the Script
Connector to crash, will also stop all Script Connector tasks and collectors from
working.

Implementing a collector is optional, but the Script Connector can implement a
maximum of one collector. However, this collector can be used in multiple task
routes and you can configure multiple instances of the collector in a single task

2 IBM Content Collector: Script Connector Implementation Guide

route. The Script Connector can implement multiple tasks, irrespective of whether
a collector is implemented. Obviously, it must implement at least one task or a
collector to be useful.

The Script Connector user interface components in Configuration Manager are
generic because they have to support all possible uses of the Script Connector. The
user interface is not user configurable, except for changing the display text and
tooltips.

The generic user interface means that collector configuration must be defined as a
single string for each collector instance. However, this string can contain any
information that can be meaningfully represented as a string. For example, simple
configuration parameters can be specified on multiple lines as name/value pairs; a
hierarchical data structure can be represented as XML, and binary data can be
serialized using base64 encoding. For more complex configuration requirements,
the configuration string can also be used to specify an external configuration file,
which can use any format you want.

The generic user interface also means that static task configuration is limited to a
single string for each task instance. Again, this can contain any information that
can be represented as a string. Tasks also support named input parameters that can
be used to pass constant values or use an input expression to derive input values
from the metadata from upstream collectors and tasks.

The Script Connector does not implement caching and the script object is
re-created for each call to a task or collector. This means that you cannot create a
Script Connector task that is optimized for high throughput. The lack of caching
also means that the Script Connector is not suitable for creating tasks that use APIs
that are expensive to initialize (in terms of time, such as connecting to a remote
database over a WAN, or in terms of memory, such as loading a large XML DOM
object into memory), or have limitations on the creation rate of top level classes
(such as the Domino COM API). However, limitations that are not acceptable for
tasks, can be acceptable for collectors, where the collector might connect once and
run continuously for minutes or even hours.

What is the IBM Content Collector Script Connector? 3

4 IBM Content Collector: Script Connector Implementation Guide

Getting started

Before you start working with the Script Connector, review the information about
prerequisites, installation, and the Script Connector template.

Prerequisites

IBM Content Collector must be installed and configured.

If you want to write connector scripts in Python, download and install the
following software:
1. ActiveState ActivePython for Windows (x86) (32-bit)

The free Community Edition is suitable. The provided Script Connector
samples were developed and tested using ActivePython version 2.7.2.

2. Python for Windows extensions (pywin32)
Ensure that you download the Windows 32-bit version of this software for the
specific Python release installed at the previous step.

Installing the Script Connector
Because the majority of IBM Content Collector customers will not need the Script
Connector, it is not automatically installed and configured as part of the normal
installation process. However, to ensure the Script Connector is readily available
for those customers that do need it, the Script Connector installer is copied into the
ctms\ResourceKit subdirectory of the IBM Content Collector installation directory.

If IBM Content Collector is installed to the default location, you can find the Script
Connector package at this location:

On 64-bit Windows, at:

C:\Program Files (x86)\IBM\ContentCollector\ctms\ResourceKit\
ScriptConnector

On 32-bit Windows, at:

C:\Program Files\IBM\ContentCollector\ctms\ResourceKit\ScriptConnector

The ScriptConnector folder initially contains the following files:

Table 1. Contents of the Script Connector folder before installation

Folder File Contents

readme.txt Installation details and known issues.

Install Install Script Connector Installation shortcut that provides
pre-configured installation
parameters.

© Copyright IBM Corp. 2008, 2012 5

Table 1. Contents of the Script Connector folder before installation (continued)

Folder File Contents

Install ScriptConnectorConnectorSetup.msi Installation package for the Script
Connector service, API, and
customization kit including template,
samples, and API documentation.
Tip: Do not attempt to install the
Script Connector by running this file
directly. The installation will fail with
an error indicating that the
TARGETDIR parameter has not been
set. However, after installation, you
can uninstall the Script Connector by
running this file.

To install the Script Connector:
1. Double-click the Install Script Connector shortcut in the Install folder. This

runs ScriptConnectorSetup.msi with the required command line parameters to
install the Script Connector executable files and API to the correct location. The
ScriptConnector folder now contains the following additional files and folders:

Table 2. Contents of the Script Connector folder after installation

Folder File Contents

Documentation ScriptConnectorAPIDocs.zip Zip archive containing
HTML Script Connector API
documentation

See the Script Connector API
documentation for details.

Install\Logs Installation logs.

Samples Script Connector samples.

See “Unix date conversion”
on page 49, “File processing
connector” on page 50, “Web
service call” on page 51, and
“Python Unix date
conversion” on page 52 for
details.

Template Script Connector template.

See “The Script Connector
template” on page 8 for more
information.

Tools GuidGenerator.js Script for generating new
globally unique identifiers
(guids).

See “Generating new guids
for tasks and collectors” on
page 28 for more
information.

The Script Connector installer also installs the following Python support files
into the IBM Content Collector installation directory:

6 IBM Content Collector: Script Connector Implementation Guide

Folder File Usage

ctms\ibm __init__.py Defines the namespace ibm to
enable importing.

ctms\ibm\ctms __init__.py Defines the namespace
ibm.ctms to enable
importing.

Exposes enumeration types
in ConfigurableConnectorDLL
to Python scripts.

ctms\ibm\ctms util.py Contains Python utilities for
connector development.
Provides these classes:

v JavaScript like DateTime
class for returning
date/time metadata to
simplify translation of
JScript code to Python.

v ACLEntry class for
returning ACL entry
metadata

v Expando object class used
for passing extended error
information and ACL
entry metadata to scripts

v Registration helper classes

v Enumeration like classes
for LogLevels,
Win32LogLevels,
TypeSystem2TypeIds, and
TaskTypes.

Enabled by:
import ibm.ctms.util

ctms\ibm\ctms template.py Provides a template for
Python tasks and collectors.
Because Python supports
inheritance, the template
provides base classes for
both tasks and collectors,
encapsulating the common
functionality.

Enabled by:
import ibm.ctms.template

After the installation, the Script Connector does not appear in the list of
available connectors in Configuration Manager until you register a task or a
collector.

2. Complete one of these tasks:
v Deploy one of the samples.
v Use the Script Connector template to create a custom implementation, then

deploy it.
All instructions for setting up a Script Connector apply to new Script
Connector implementations that are written using the Script Connector
template.

Getting started 7

After deployment and registration, you can configure task routes that use the
Script Connector, and the IBM Content Collector Task Routing Engine service will
be able to run them.

If you need to uninstall the Script Connector, double-click
ScriptConnectorSetup.msi. This gives you the option of repairing or uninstalling
the Script Connector. Alternatively, you can use the Windows Control Panel
Program and Features dialog to uninstall or repair the Script Connector. The Script
Connector is listed as IBM Content Collector Script Connector.

The Script Connector template
To minimize the work you need to do, the ConnectorTemplate folder provides a
template for creating a new JScript Script Connector implementation.

This template contains these files:

Table 3. List of template files

File Usage

ConnectorConfiguration.js JScript template for registering tasks,
collectors, and custom metadata.

ConnectorConfiguration.wsc Used to register the Script Connector
registration script in
ConnectorConfiguration.js as a COM object
that can be called by the Script
Connectorexecutable during registration.

CustomTask1.js
CustomTask2.js
CustomCollector.js

JScript templates for custom tasks and
collectors. These templates also contain
useful code snippets that demonstrate how
to use the Script Connector API to read
configuration and submit entity metadata.

CustomTask1.wsc
CustomTask2.wsc
CustomCollector.wsc

Used to register task and collector scripts as
COM objects that can be called by the Script
Connector.

ConfigurableConnector.adf
CustomTask1.adf
CustomTask2.adf
CustomCollector.adf

Adds Script Connector user interface
components to Configuration Manager.

ConfigurableConnector.Resource.en-US.xml Provides English language labels and tooltip
text for the Script Connector user interface
components.

All instructions for setting up a Script Connector apply to new Script Connector
implementations that are written using the Script Connector template.

Creating a working folder from the template
Always create a working folder before you start to customize the template scripts.

To set up a working folder:
1. Create a working folder for your script components.

Important: Do not put the working folder in the ContentCollector\ctms folder
or any of its subfolders.

8 IBM Content Collector: Script Connector Implementation Guide

2. Copy these files from the template:

Table 4. List of files to be copied to the working folder

Source file Target location

Template\ConnectorConfiguration.js Working Folder

Template\ConnectorConfiguration.wsc Working Folder

Template\adf\ConfigurableConnector.adf Working Folder\adf

Template\localization\
ConfigurableConnector.Resource.en-US.xml

Working Folder\localization

3. If you are implementing custom tasks, copy files as follows.

Tip: When you copy the template files for collectors and tasks, you do not
need to rename the template files, but using a unique filename prefix that is
specific to each task and collector simplifies combining tasks from multiple
sources into a single Script Connector deployment package.
v For one or more custom tasks:

Table 5. Files required for implementing one or more custom tasks

Source file Target location

Template\CustomTask1.js Working Folder\TaskName.js

Template\CustomTask1.wsc Working Folder\TaskName.wsc

Template\adf\CustomTask1.adf Working Folder\adf\TaskName.adf

v For two or more custom tasks:

Table 6. Files required for implementing two or more custom tasks

Source file Target location

Template\CustomTask2.js Working Folder\TaskName2.js

Template\CustomTask2.wsc Working Folder\TaskName2.wsc

Template\adf\CustomTask2.adf Working Folder\adf\TaskName2.adf

v For three or more custom tasks, copy the same files as for two or more
custom tasks, renaming the files appropriately.

4. If you are implementing a custom collector, copy files as follows:

Table 7. Files required for implementing a custom collector

Source file Target location

Template\CustomCollector.js Working Folder\CollectorName.js

Template\CustomCollector.wsc Working Folder\CollectorName.wsc

Template\adf\CustomCollector.adf Working Folder\adf\CollectorName.adf

Getting started 9

What happens next?
After you have set up your working folder from the Script Connector template,
you must customize the files.

Complete these customization steps.

Table 8. Customization tasks

File What to do

Task scripts For each task, replace the body of the
ProcessEntity() function with your own
custom task implementation.

See “Writing connector scripts” on page 11
for more information.

Collector scripts If implementing a collector, replace the body
of the PerformCollection() function with
your own custom collector implementation.

See “Writing connector scripts” on page 11
for more information.

.wsc files Replace the values of the description, classid
(guid), and progid attributes in the
registration element. Update the src attribute
in the script element to reference the
corresponding .js script file.

See “Modifying .wsc files for COM
registration” on page 27 for more
information.

ConnectorConfiguration.js You must provide the body of the
registration script. The task and collector
guids specified in the script must match
classid elements in the corresponding .wsc
files.

See “Creating a registration script” on page
29 for more information.

ConnectorConfiguration.wsc If you renamed ConnectorConfiguration.js,
update the src attribute in the script element
to reference the renamed .js script file.

ConfigurableConnector.adf Do not change.

Task and collector .adf files Update with the task IDs of your custom
tasks (as registered in
ConnectorConfiguration.js).

See “Enabling task and collector
configuration in Configuration Manager” on
page 33 for more information.

ConfigurableConnector.Resource.en-US.xml Customize the labels and tooltips displayed
to the user in the Script Connector
configuration screens in Configuration
Manager.

See “Customizing configuration screens” on
page 33 for more information.

10 IBM Content Collector: Script Connector Implementation Guide

Writing connector scripts

To complete a custom Script Connector implementation, use the Script Connector
template and API to write scripts that integrate the required custom task and
collector functionality. The functions that are defined in these scripts can be called
by the Script Connector and can interact with the CTMS framework. The following
information covers writing connector scripts in both JScript and Python.

The Script Connector API
The Script Connector API allows two-way interaction between the Script Connector
and the scripts that do the work. Your scripts will use the Script Connector API to
read input parameters, to return task output metadata, to submit collected items to
log messages, and to update performance counters.

The API defines the following classes:

ICOMCaptureUtilForScripts
This is the main API class. It is used to:
v Test if the connector is shutting down or if the collector is stopping.
v Add task status, file, and other metadata to entities.
v Log events.
v Update performance counters.
v Return task, collector, and custom metadata details for registration.

An instance is passed to the execute() method of task and collector scripts
and to the describeMethods() method of registration scripts.

ICOMCollectorSubmitProxyForScripts
This class is only used by collectors. It is used to:
v Associate metadata with entities found by the collector.
v Submit the entity metadata to the task route for processing.

The collector obtains an instance by calling
ICOMCaptureUtilForScripts.createCollectorSubmitStubProxy().

This class is new in IBM Content Collector V3.0. In earlier versions, this
functionality was handled by ICOMCaptureUtilForScripts.

IComTaskInput
This class is a container for task input. It is used to:
v Pass the configuration string containing static configuration data to tasks

and collectors.
v Pass a collection containing the entity IDs and entity data for each entity

routed to a task.
v Pass context information on the current task route node (task route and

task ids and names).

A COM SafeArray containing instances of this class (usually one) is passed
as input to the execute() method of tasks and collectors.

IEntityData
Type-safe property bag used to contain a set of named properties. It is
used to:

© Copyright IBM Corp. 2008, 2012 11

v Pass the evaluated results of input parameter expressions for each entity
passed in task inputs.

v Return output metadata for an entity, from either a task or a collector.

New instances can be created in a script:
var customMetadata =

new ActiveXObject("ConfigurableConnectorDLL.EntityData");

The API also defines enumerations containing error codes from calls to methods in
these classes. For more information, see the Script API documentation. How to
access the API documentation is described in “Script Connector API
documentation” on page 47.

Writing connector scripts in JScript
The Script Connector template provides JScript templates for both tasks
(CustomTaskx.js) and collectors (CustomCollector.js).

These templates handle the mechanics of marshalling data between the Script
Connector and the script code. In many cases, implementing a task is simply a
matter of replacing the body of the ProcessEntity() method in the template script
with your custom implementation. Similarly, replace the body of
PerformCollection() to implement a collector. These template scripts and the
provided code snippets also show the key script operations that you need to use to
make your scripts interact with the Script Connector and IBM Content Collector.
The samples provide additional information.

Reading task input parameters
When you configure a task, you specify property names and data types and
provide an expression to provide a value.

The input metadata mappings look similar to this sample:

These passed parameters can be retrieved from an IEntityData object passed as
part of the task input. To access these parameters you could use the following
script:
// Read passed input parameters
// - The name of the parameter must match the name specified in the Task Configuration
// - You must use the getEntityData...() method appropriate for the parameter datatype
// - The task configuration must specify an expression that provides a value
var fileName = entityData.getEntityDataStringValue("FileName");
var fileExtension = entityData.getEntityDataStringValue("FileExtension");
var fileSize = entityData.getEntityDataInt64Value("FileSize");

// Determine if owner property exists in the input metadata and conditionally read data
var fileOwner = "";

12 IBM Content Collector: Script Connector Implementation Guide

if (entityData.haveParameter("FileOwner"))
{

fileOwner = entityData.getEntityDataStringValue("FileOwner");
}

You must ensure the property names specified in the task configuration match the
property names specified in the script (the comparison is case sensitive).

Date input parameters require special handling as the passed value is a COM
object, rather than a JScript Date object:
// Get Date input
var dateIn = entityData.getEntityDataDateTimeValue("FileDate");

// New JScript Date
var fileDate = new Date();

// Set Date properties from input parameter object
// Input parameter date object properties are UTC
fileDate.setUTCFullYear(dateIn.year);
fileDate.setUTCMonth(dateIn.month - 1); // JScript Date, month is 0 based
fileDate.setUTCDate(dateIn.day);
fileDate.setUTCHours(dateIn.hour);
fileDate.setUTCMinutes(dateIn.minutes);
fileDate.setUTCSeconds(dateIn.seconds);
fileDate.setUTCMilliseconds(dateIn.milliseconds);

// Other supported properties
// dateIn.biasIsPositive - Boolean, false for US, true for India
// dateIn.biasHours - Integer, 5 for New York
// dateIn.biasMinutes - Integer, 30 for Newfoundland
// dateIn.timezoneName - String "EST"
// dateIn.lastDayOfMonth - Integer in range 28-31
// dateIn.isLeapYear - Boolean, true for 2012

Access Control List (ACL) Entry parameters are also passed as COM objects:
// Get ACL entry
// Supported properties
// aclEntry.principal - String, user or group name
// aclEntry.privilege - String, privilege name (not validated)
// aclEntry.isGranted - Boolean, true=granted, false=denied
var aclEntry = entityData.getEntityDataACLEntryValue("Author");
if (aclEntry.privilege == “ReadWrite” && aclEntry.isGranted)
{

var author = aclEntry.principal;
aclEntry.privilege = “Read”;
...

}

If the input parameters are array types, the input data must be converted from
SafeArray format into a JScript array. The script template defines a conversion
function SafeArrayToJScriptArray() to perform this conversion. This is used as
follows:
// Read array parameters
// - The passed value is a SafeArray, which is opaque to JScript
// - You must use SafeArrayToJScriptArray() to convert to a compatible array type
var readOnlyUsers = SafeArrayToJScriptArray(
entityData.getEntityDataStringArrayValue("ReadOnlyUsers"));

// Use the array parameter
for (var idx in readOnlyUsers)
{

var userName = readOnlyUsers[idx];
...

}

Writing connector scripts 13

Date array input parameters require both array conversion and date conversion.

Gathering metadata within a script
The IEntityData API class provides a type-safe property bag that is used to gather
metadata properties within a script. You create an instance for each metadata
source emitted by your task or collector, except for task status and file metadata.
You then add named properties to the property bag.
// Create an instance of IEntityData to hold custom metadata
var customMetadata = new ActiveXObject("ConfigurableConnectorDLL.EntityData");

// Add property values to it
customMetadata.setEntityDataStringValue("FileName", filename);
customMetadata.setEntityDataStringValue("FileExtension", extension);
customMetadata.setEntityDataIntValue("FileSize", size > 1024 ? size : 1024);

// A JScript Date type is required to return date/time properties
var fileDate = new Date();
fileDate.setUTCFullYear(2012);
fileDate.setUTCMonth(4); // 0 based, 0 = January, 4 = May
fileDate.setUTCDate(31); // 1 based
customMetadata.setEntityDataDateTimeValue("FileDate", fileDate);

// A JScript Object with principal, privilege, and isGranted properties
// is required to return ACLEntry properties
var aclEntry = new Object();
aclEntry.principal = owner;
aclEntry.privilege = “All”;
aclEntry.isGranted = true;
customMetadata.setEntityDataACLEntryValue("FileOwner", aclEntry);

// A JScript Array type is required to return array properties
var readOnlyUsers = new Array();
readOnlyUsers.push("User1");
readOnlyUsers.push("User2");

customMetadata.setEntityDataStringArrayValue("ReadOnlyUsers", readOnlyUsers);

The property bag typically contains the property values for user defined metadata
sources or for custom metadata sources registered by the Script Connector.
However, at this stage, the object is not associated with a specific metadata source
and the properties you add are not validated (except to test for unique names). It
is your responsibility to ensure the correctness of the property names and the data
types of the values.

Returning metadata from a task script
Metadata is returned from a task to the task route service when the task exits. You
add metadata to an entity by calling methods on ICOMCaptureUtilForScripts.
// Associate customMetadata with a specific metadata source
captureUtilApi.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata);

// Update the file metadata
captureUtilApi.addFileMetadata(entityId, fileName);

// Update the entity with a status of success
captureUtilApi.addTaskStatusMetadata(entityId, true, @LogTrace2, "");

You add metadata to an existing entity by reusing an entity ID passed to the script
within the task inputs. To add a new entity to the current entity set, you simply

14 IBM Content Collector: Script Connector Implementation Guide

provide a new unique entity ID and associate metadata with that entity ID. For
example, a task could take an input file, render it to another file format, and add
metadata for the new file.
var pdfFilename = filename + ".pdf";
if (RenderToPDF(filename, pdfFilename))
{
var pdfEntityId = ("" + pdfFilename).toLowerCase();

// Add file metadata, custom metadata and task status metadata to the pdf file entity
captureUtilApi.addFileMetadata(pdfEntityId, pdfFilename);
captureUtilApi.addCustomMetadata(pdfEntityId, "Custom.Metadata1", customMetadata);
captureUtilApi.addTaskStatusMetadata(pdfEntityId, true, @LogTrace2, "");

}

Important: If you call addCustomMetadata(EntityId, MetadataSourceId, Metadata) for
an existing entity, and the entity already has metadata associated with the same
MetadataSourceId value, the existing metadata is overwritten, not updated. To avoid
potential problems, use task-specific metadata sources. If you need to update
existing metadata, all metadata properties that you need to preserve should be
mapped to task input parameters and copied into the output metadata within the
script.

Submitting metadata from a collector script
Unlike tasks, collectors do not wait until completion to submit metadata. Collector
submission is managed by the API class ICOMCollectorSubmitProxyForScripts.
When an item is found, an entity ID is assigned, and the metadata associated with
the entity (or group of related entities) is compiled.

When the entity metadata is complete, it is submitted to the task route service by
calling the send() method. The buffer must be cleared by calling clearTaskOutputs()
before continuing to search for the next item.
// Create an instance of ICOMCollectorSubmitProxyForScripts to submit collected entities
var submitStub = captureUtilApi.createCollectorSubmitStubProxy();

try
{
// Associate customMetadata with a specific metadata source
submitStub.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata);

// Update the file metadata
submitStub.addFileMetadata(entityId, fileName);

// Update the entity with a status of success
submitStub.addTaskStatusMetadata(entityId, true, @LogTrace2, "");

// Submit an entity to the task route service
submitStub.send();

}
finally
{
// Clean up after submitting an entity
submitStub.clearTaskOutputs();

}

Important: Collector scripts that were developed for IBM Content Collector 2.2 are
not compatible with IBM Content Collector 3.0. See “Upgrading Script Connector
scripts from earlier IBM Content Collector versions” on page 18 for details.

Logging
To write to the log, you call the ICOMCaptureUtilForScripts.logEvent() method,
specifying a log level and a message.
captureUtilApi.logEvent(@LogTrace, "Processing entity with id " + entityId);

Each template script defines constants for the supported log levels:

Writing connector scripts 15

// Log Level Constants
@set @LogFatal = 1;
@set @LogError = 2;
@set @LogWarning = 3;
@set @LogInfo = 4;
@set @LogTrace = 5;
@set @LogTrace2 = 6;

When you configure the Script Connector, you specify a log level and a log
location. The log level you pass in the logEvent() method is compared with the
configured log level, and only messages of equal or greater severity (lower log
level) are logged.

Error handling
If an operation in a script causes an exception to be thrown, and the exception is
not caught and handled within the script, the exception will be logged by the
Script Connector. However, the information logged is unlikely to be precise enough
to pinpoint the problem. For production use, scripts should take responsibility for
handling errors.

Best practices for error handling:
v The execute() method should include a try...catch block, and the catch block

should log the error.
v For tasks created using the CustomTaskx.js template files, the ProcessEntity()

method should include a try...catch block. Within the catch block:
– Log the error, clearly identifying the entity ID of the item that failed.
– Call the ICOMCaptureUtilForScripts.entityError() method to update the error

performance counters and write an event to the Windows Event log.
– Set the task status in the entity metadata to indicate failure, including the

exception message. Because the exception is caught, scripts can continue
processing the next entity, or can invalidate all entities in the current entity
set.

Updating performance counters
Most connectors use the IBM Content Collector performance counters to record
how many entities are accessed, submitted, processed, and skipped. Production
quality Script Connector should also update these performance counters using
methods on ICOMCaptureUtilForScripts.

For more information on the methods used to update performance counters,
consult the ICOMCaptureUtilForScripts reference in the Script API documentation.
See “Script Connector API documentation” on page 47 for details on how to access
the API documentation.

Using existing COM objects in script code
If your task performs anything more complex than simple data conversion, it will
probably require the services of other COM classes to complete. Windows Scripting
provides some very useful COM classes for use in scripts, including WScript.Shell
for interacting with the Windows shell (for running programs and manipulating
environment variables and registry entries) and Scripting.FileSystemObject for
interacting with the file system.

These classes are so useful that they are automatically registered by the script
template .wsc files:

16 IBM Content Collector: Script Connector Implementation Guide

<!-- Create Scripting.FileSystem object for managing files -->
<object id=’FileSystem’ progid=’Scripting.FileSystemObject’ />

<!-- Create WScript.Shell object for registry access etc. -->
<object id=’Shell’ progid=’WScript.Shell’ />

Registering these classes in this way means that static methods can be called
directly using the ID specified in the .wsc file. This code snippet shows how a
custom collector can use Scripting.FileSystemObject to iterate through the files in a
folder:
function PerformCollection(captureUtilApi, taskInput)
{
var filename, entityId, customMetadata;

// Get the folder to collect from the configuration
var folderName = taskInput.getConfigurationData();

// Create a submit stub for returning the files that we find
var submitStub = captureUtilApi.createCollectorSubmitStubProxy();

// Get the specified folder object from the registered Scripting.FileSystemObject
var folderObj = FileSystem.getFolder(folderName);

for (var files = new Enumerator(folderObj.files); !files.atEnd(); files.moveNext())
{
if (captureUtilApi.getIsStopped())
break;

filename = "" + files.item();
entityId = ("" + filename).toLowerCase();

try
{
customMetadata = CreateCustomMetadata(filename);

submitStub.addFileMetadata(entityId, filename);
submitStub.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata);
submitStub.addTaskStatusMetadata(entityId, true, @LogTrace2, "");
submitStub.send();

}
finally
{
submitStub.clearTaskOutputs();

}
}

See the “File processing connector” on page 50 for a full implementation.

Instances of other root COM objects are instantiated by creating a new
ActiveXObject, specifying the ProgId or the guid of the COM class:
var xmlDoc = new ActiveXObject("Msxml2.DOMDocument.6.0");

There are many other COM classes that you can use in your scripts. Microsoft
MSXML classes are frequently used in Script Connector implementations, for
reading and writing XML. Other APIs used include the Lotus Domino COM API,
Novell GroupWise COM, Microsoft Office automation, FileNet IDM for Content
Services and Image Services, IBM FileNet P8 3.5 COM APIs and .Net classes that
expose COM Callable Wrappers.

If you are implementing multiple tasks, you might have significant duplicate code
in your task scripts. Each task might define identical JScript classes to represent the
same custom data objects. If you have significant duplicate script code, consider
creating separate scripts that encapsulate the common functionality within JScript
classes and use .wsc files to register these classes as COM objects. After
registration, you can create and use instances of your classes:

Writing connector scripts 17

var myClass = new ActiveXObject("MyConnector.MyCommonClass.1");
myClass.doSomething();
...

For some very specific requirements, it might be necessary to develop custom
COM components using other programming languages (for example C++ or C#).
In this case, the Script Connector simply provides a bridging technology to create
an instance of your component and to call methods on it during task route
execution. This approach means that you are free to implement your COM server
as an out-of-process server that is packaged as an executable (.exe) that runs in its
own memory space as a separate process, instead of an in-process COM server in
the Script Connector's memory space. This separation can provide a more resilient
and better performing system that gives you complete control of caching and
object lifetimes. However, if you are contemplating this approach, you should also
consider the alternative of developing a custom connector using the connector
SDK.

Upgrading Script Connector scripts from earlier IBM Content
Collector versions

Script Connector task and registration scripts developed for IBM Content Collector
2.2 and all scripts developed for IBM Content Collector 3.0 can be used by IBM
Content Collector 3.0 FP2 without modification. However, collector scripts
developed for IBM Content Collector 2.2 must be modified to change the way that
entities are submitted to the task route service.

In IBM Content Collector 2.2, entities were submitted by a collector script using
methods on the main API class ICOMCaptureUtilForScripts:
try
{

// Associate customMetadata with a specific metadata source
captureUtilApi.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata);

// Update the file metadata
captureUtilApi.addFileMetadata(entityId, fileName);

// Update the entity with a status of success
captureUtilApi.addTaskStatusMetadata(entityId, true, @LogTrace2, "");

// Submit an entity to the task route service
captureUtilApi.sendTaskOutputs();

}
finally
{

// Clean up after submitting an entity
captureUtilApi.clearTaskOutputs();

}

In IBM Content Collector 3.0, Script Connector collector submission is managed by
a separate API class ICOMCollectorSubmitProxyForScripts. The equivalent script
for a version 3.0 collector implementation is:
// Create an instance of ICOMCollectorSubmitProxyForScripts to submit collected entities
var submitStub = captureUtilApi.createCollectorSubmitStubProxy();

try
{
// Associate customMetadata with a specific metadata source
submitStub.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata);

// Update the file metadata
submitStub.addFileMetadata(entityId, fileName);

// Update the entity with a status of success

18 IBM Content Collector: Script Connector Implementation Guide

submitStub.addTaskStatusMetadata(entityId, true, @LogTrace2, "");

// Submit an entity to the task route service
submitStub.send();

}
finally
{
// Clean up after submitting an entity
submitStub.clearTaskOutputs();

}

When upgrading from IBM Content Collector 2.2 to 3.0, collector scripts must be
updated to use ICOMCollectorSubmitProxyForScripts.

Testing script code
Consider how you will test your script as you develop it. Testing is much simpler
if you are able to test the key functionality of your script without running multiple
IBM Content Collector services.

This is relatively easy to accomplish:
v Enforce a clear separation between the methods in your script code that

implement your core functionality and the methods that interface with the task
route service (including methods provided by the script template and the
methods you write that use Script Connector API classes). The aim is to create
methods that can be called directly from a test script without running the task
routing service.

v Expose the methods you want to expose to your test script by adding methods
to the public interface definition in the .wsc file (see “Modifying .wsc files for
COM registration” on page 27).

v Create a test script that creates an instance of your script as an ActiveXObject.
Your test script can then call the public methods you exposed in the .wsc file,
passing known test parameters.

v In general, you should minimize the number of methods in your script that call
Script Connector API methods. For example, rather than peppering calls to
ICOMCaptureUtilForScripts.logEvent() throughout your script code, write your
own logging method that is aware of the calling context (test or run time). Your
logging method simply calls the logEvent() method at run time, but can either
ignore the logging messages or write them to a log file when called from a test
script.
For more complex test requirements, you might prefer to use JScript and .wsc
files to create and register test classes that expose methods with the same names
and parameters as the Script Connector API methods: instances of these test
classes can then be passed to your test scripts in place of the actual Script
Connector API classes.

v However, assuming that you are testing on a system with IBM Content Collector
and the Script Connector installed, you should use IEntityData in your test
scripts, both to pass parameters and to return custom metadata. This minimizes
the chance of errors caused by duplicate property IDs and unexpected datatypes.

Writing connector scripts in Python
The provided Python utilities and template simplify the process of creating task
and collector scripts. Python tasks and collectors can be implemented using base
classes in the ibm.ctms.template namespace. These base classes encapsulate the
boilerplate script code that the JScript script template provides for equivalent tasks
and collectors that are written in JScript.

Writing connector scripts 19

Windows does not ship with Python installed, so you must download and install a
suitable Python distribution for Windows that supports 32-bit COM objects before
you can write connector scripts in Python (see “Prerequisites” on page 5).

Creating tasks
Follow these steps to create new tasks from the script template.

To create a new task:
1. Import the ibm.ctms.template and ibm.ctms.util packages. Note that template

namespaces are resolved using relative paths from the ctms folder.
2. Create a new class that inherits from ibm.ctms.template.TaskBase.
3. Specify the COM registration parameters for the class using standard pywin32

COM registration functionality. Registering Python task and collector scripts in
this way means that a .wsc file is not required for COM registration, and
multiple tasks and a collector can be packaged within a single Python file.

4. Define the constructor and destructor, setting a task-specific log entry prefix.
5. If each entity in the task input can be processed independently, you can

implement the task functionality simply by overriding the ProcessEntity()
method in the base class. If a failure in processing any one entity causes all
submitted entities to fail, or if there are dependencies between entities, override
the ProcessTaskInput() method and process the entities as a set.

The following Python script demonstrates the key steps. See the sample “Python
Unix date conversion” on page 52 for a complete, working example.
1. Import template containing base classes and connector utilities
import ibm.ctms.template
import ibm.ctms.util

2. Class inherited from ibm.ctms.template.TaskBase
class CustomTask(ibm.ctms.template.TaskBase) :

3. COM registration properties
_public_methods_ = ["execute"]
_reg_progid_ = "IBM_CTMS.CustomTaskPy"
_reg_desc_ = "Custom Task in Python"
_reg_clsid_ = "{643E6E84-59DA-4E13-A4A4-2DD0329FCAFF}"

4. Constructor/destructor
def __init__(self) :

Set the logging prefix – include a trailing space
super(CustomTask , self).__init__("Custom.Task1: ")

def __del__(self) : #Destructor
super(CustomTask , self).__del__()

5. ProcessEntity method implementation
\brief Task implementation, overriding virtual method in the template.
\param config Task configuration (ibm.ctms.template.TaskConfig object)
\param entityId Entity id (String)
\param entityData Input parameter values for entityId (IEntityData instance)
def ProcessEntity(self, config, entityId, entityData) :

Log task start – config contains task and task route names and IDs
self.LogEvent(ibm.ctms.util.LogLevels.Trace,

"Task " + config.Name + " in task route " + config.TaskRouteName +
" is processing entity " + entityId)

try :
Read passed input parameters defined in the Script Connector task configuration
paramValue = entityData.getEntityDataStringValue(“Parameter.ID1”)
...

Perform the task
config.ConfigString contains the task configuration
...

Create the output metadata and set the properties
newMetadata = win32com.client.Dispatch("ConfigurableConnectorDLL.EntityData")
newMetadata.setEntityDataStringValue(“Custom.Metadata1”, propertyValue)
...

Add the output metadata to the entity
self.CaptureUtilApi.addCustomMetadata(entityId, "Custom.Metadata1.Property1", newMetadata)

20 IBM Content Collector: Script Connector Implementation Guide

Add file metadata (if the task creates a file associated with the entity ID)
self.CaptureUtilApi.addFileMetadata(entityId, fileName)

Set task status to success – leave this step to last in case of an error
self.CaptureUtilApi.addTaskStatusMetadata(entityId, True, ibm.ctms.util.LogLevels.Trace2, "")

except Exception as e :
Get the exception details
message = "Error: " + GetErrorMessage(e)

#Log the error
self.LogEvent(ibm.ctms.util.LogLevels.Error,

"Task failed for entity: " + entityId + " : " + message)

Set task status to failure
self.CaptureUtilApi.addTaskStatusMetadata(entityId, False, ibm.ctms.util.LogLevels.Error, message)

Reading task input parameters
Task input parameters can be retrieved from an IEntityData object that is passed as
part of the task input. To access these parameters, you can use the following
scripts.

Reading non-array task input parameters in Python is straightforward:
Read passed input parameters
fileName = entityData.getEntityDataStringValue("FileName")
fileExtension = entityData.getEntityDataStringValue("FileExtension")
fileSize = entityData.getEntityDataInt64Value("FileSize")

Determine if owner property exists in the input metadata and conditionally read data
fileOwner = ""
if entityData.haveParameter("FileOwner") :

fileOwner = entityData.getEntityDataStringValue("FileOwner")

Python, like JScript, must apply special handling to DateTimeVal input parameters,
because the input data is a COM object rather than a native Python data type.
Python scripts can use language features for manipulating dates and times (in the
datetime package). Subclass the datetime.tzinfo class to use the time zone
properties that are passed in the input object.
Get Date input
Input parameter date object properties are UTC
dateIn = entityData.getEntityDataDateTimeValue("FileDate")

Convert to Python datetime.datetime
fileDate = datetime.datetime(dateIn.year, dateIn.month, dateIn.day,

dateIn.hour, dateIn.minutes, dateIn.seconds,
dateIn.milliseconds * 1000)

Access Control List (ACL) Entry parameters are also passed as COM objects:
Get ACL entry
aclEntry = entityData.getEntityDataACLEntryValue("Author")
if (aclEntry.privilege == “ReadWrite” and aclEntry.isGranted) :

author = aclEntry.principal
aclEntry.privilege = “Read”
...

Reading array input parameter in Python is simpler than in JScript, because
Python can work with COM SafeArrays directly (JScript requires the function
SafeArrayToJScriptArray() to convert a SafeArray to a JScript array):
Read array parameters
The passed value is a SafeArray
readOnlyUsers = entityData.getEntityDataStringArrayValue("ReadOnlyUsers")

Use the array parameter
for userName in readOnlyUsers :

...

Writing connector scripts 21

Gathering metadata within a script
In Python scripts, you create an IEntityData instance to gather output metadata
and set metadata properties in much the same way as in the equivalent JScript
code.
IEntityData creation
customMetadata = win32com.client.Dispatch("ConfigurableConnectorDLL.EntityData")

Simple property
stringVal = “A day in the life”
customMetadata.setEntityDataStringValue(“Metadata.StringVal”, stringVal)

Use a Python datetime.datetime instance to return datetime properties. When you
work with third-party libraries, you can also return COM dates and variants
containing dates.
DateTime properties- Use datetime.datetime (UTC assumed)
dateVal = datetime.datetime(2012, 10, 22, 14, 58, 21, 0)
customMetadata.setEntityDataDateTimeValue("Metadata.DateTimeVal", dateVal)

The native Python types that represent ACL entries (including values in an ACL
entry array) must be wrapped in an IDispatch wrapper.
ACL entry properties – Wrap an ACLEntry instance
aclVal = ibm.ctms.util.ACLEntry("dvader", "superuser", true)
customMetadata.setEntityDataACLEntryValue("Metadata.ACLEntryVal",

win32com.server.util.wrap(aclVal))

The Script Connector is flexible in the way it handles array parameters, accepting
lists, tuples, and array.array types as input.
Array properties – Can use Python lists, tuples or numeric arrays
intList = [1, 1, 2, 3, 5, 8, 13, 21, 34]
customMetadata.setEntityDataInt64ArrayValue("Metadata.Int64ArrayVal", intList)

Returning metadata from a task script
Metadata is returned from a task by calling methods on the instance of
ICOMCaptureUtilForScripts that is initially passed as a parameter to the execute
method. The Python template base class exposes this object to script code as the
CaptureUtilApi instance member.
Associate customMetadata with a specific metadata source
self.CaptureUtilApi.addCustomMetadata(entityId, "Custom.Metadata1", customMetadata)

Update the file metadata
self.CaptureUtilApi.addFileMetadata(entityId, fileName)

Set task status to success
self.CaptureUtilApi.addTaskStatusMetadata(entityId, True, ibm.ctms.util.LogLevels.Trace2, "")

Creating collectors
The steps for creating a new collector from the script template are very similar to
creating a task.

To create a new collector:
1. Import the ibm.ctms.template and ibm.ctms.util packages.
2. Create a new class that inherits from ibm.ctms.template.CollectorBase.
3. Specify the COM registration parameters for the class.
4. Define the constructor and destructor, setting a collector-specific log entry

prefix.
5. Implement the PerformCollection() method.

22 IBM Content Collector: Script Connector Implementation Guide

The following Python script demonstrates the key steps:
1. Import template containing base classes and connector utils
import ibm.ctms.template
import ibm.ctms.util

Used by example
import os, os.path
import base64

2. Class inherited from ibm.ctms.template.CollectorBase
class CustomCollector(ibm.ctms.template.CollectorBase) :

3. COM registration properties
_public_methods_ = ["execute"]
_reg_progid_ = "IBM_CTMS.CustomCollectorPy"
_reg_desc_ = "Custom Collector in Python"
_reg_clsid_ = "{1B5006C9-ACFF-4CB7-ABA1-1DA8DFB0CC8F}"

4. Constructor/destructor
def __init__(self) :

Set the logging prefix – include a trailing space
super(CustomCollector , self).__init__("Custom.Collector: ")

def __del__(self) : #Destructor
super(CustomCollector , self).__del__()

5. PerformCollection method implementation
\brief Collector implementation, overriding virtual method in the template.
\param config Collector configuration (ibm.ctms.template.TaskConfig object)
def PerformCollection(self, config) :

config contains collector and task route names and ids
config.ConfigString contains the collector configuration
folderName = config.ConfigString

Perform the collection
if os.path.exists(folderName) :

for root, dirs, files in os.walk(folderName) :
for f in files :

Check for end of processing window
if self.CaptureUtilApi.getIsStopped() :

self.LogEvent(ibm.ctms.util.LogLevels.Trace,
"Collector " + config.Name + " is stopping")

return

Process the file
fullpath = os.path.join(root, f)
if os.path.splitext(fullpath)[1]==".txt" :

Located a text file in the target folder
Submit the file to the task route
self.SubmitFile(fullPath)

Submitting metadata from a collector script
Entities are submitted using an instance of ICOMCollectorSubmitProxyForScripts,
exposed by the collector base class as the SubmitStub instance member.

Continuing the pervious example, typical usage might be:
def SubmitFile(self, filePath) :

Make sure we have a value in case of an error
entityId = “Not yet assigned”

try :
Create an opaque entity ID that maps 1:1 with file path
Using filename based entity ID prevents re-submission while file is being processed
entityId = base64.b64encode(filePath.lower())

Create collector specific output metadata and set the properties
newMetadata = win32com.client.Dispatch("ConfigurableConnectorDLL.EntityData")
...

Add the output metadata to the entity
self.SubmitStub.addCustomMetadata(entityId, "Custom.Metadata1", newMetadata)

Add file metadata (if the collector finds or creates a file associated with the entity ID)
self.SubmitStub.addFileMetadata(entityId, filePath)

Set task status to success

Writing connector scripts 23

self.SubmitStub.addTaskStatusMetadata(entityId, True, ibm.ctms.util.LogLevels.Trace2, "")

Submit the entity to the Task route service
self.SubmitStub.send()

#Log the submission
self.LogEvent(ibm.ctms.util.LogLevels.Trace,

"Send succeeded for file “ + filePath + “ as “ + entityId)

except Exception as e :
Get the exception details
message = "Error: " + GetErrorMessage(e)

#Log the error
self.LogEvent(ibm.ctms.util.LogLevels.Error,

"Send failed for file “ + filePath + “ as " + entityId + " : " + message)

Clear the metadata that failed submission
Entities are not normally submitted if there is an error
self.SubmitStub.clearTaskOutputs()

Assigning entity IDs
All entity IDs are strings that are used without modification by the task route
service to uniquely identify an entity. To prevent possible data corruption if an
entity is currently being processed, the task route service throws an error if the
same entity is resubmitted. This means that your entity ID should accurately reflect
the identity semantics of the item it represents, be it a file, mail message, a
document in a document repository, or a unique version of a document.

Therefore, an entity should always be assigned the same entity ID, and that entity
ID should be distinct from the entity IDs assigned to all other entities. The
difficulty lies in defining what an entity is and what defines uniqueness and
identity.

Note the way that entity IDs are generated in the code snippet that is shown in the
topic about submitting metadata from a collector script. The code sample uses
entity IDs that are based on the full file path, thus defining an entity as a file with
a specific name at a specific location on the file system, factoring in that Windows
file names are not case sensitive. Thus, two files with the same name in different
locations are considered to be different entities, as are any two distinct files with
the same binary content. If you wanted to define an entity by its binary content,
you could generate a hash key from the file contents. If the entity can be processed
safely by multiple connectors and tasks at the same time, you can also generate a
guid as the entity ID. However, you must ensure that entity IDs are unique.

When writing connector scripts, you can give meaning to the entity ID by using a
file name as an entity ID or by generating an entity ID for an email message by
using a combination of the server name, the mailbox identifier, and the message
identifier. However, other tasks will not be able to parse your entity ID to obtain
this information. A better alternative is to provide this information as metadata, so
that you can use this information to create decision point rules and can map the
information to document properties during archiving. In the code snippet, the file
name is encoded to preserve the identity semantics without conveying obvious
meaning.

Logging
The template base classes define a LogEvent() method that filters redundant
logging calls. The first parameter, the log level, can be specified as an integer, but
using the ibm.ctms.util.LogLevels enumeration improves readability.
Log the current entity ID
self.LogEvent(ibm.ctms.util.LogLevels.Trace, "Processing entity " + entityId)

24 IBM Content Collector: Script Connector Implementation Guide

Error handling
The Python template classes catch unhandled exceptions that are thrown within
your script code, log an error, and might wrap the error in a COMException to
provide additional context to the task route service. The template also provides a
method, GetErrorMessage(), that obtains a stack trace for Python error messages to
provide detailed context for the error. If the exception results from a call to a
method on any of the Script Connector API types, calling getErrorInfo() returns an
object that contains any additional error information.

As the provided Python code snippets show, you should take control of exception
handling within your scripts. Exception handling procedures differ between task
and collector scripts.

In the exception handler of a task script, you should log the error, clearly
identifying the entity ID of the item that failed, and set the task status in the entity
metadata to indicate failure, providing the error message. If a failure in processing
one entity means that all entities should fail, call
self.CaptureUtilApi.clearTaskOutputs() to clear the metadata added by the task
prior to the failure. Then set the task status of all entities to error (you need to
keep track of the entity IDs).

In a collector script, you also log the error but rather than submitting an entity
with an initial status of error, simply skip the item. Following an error, you can
choose to continue collecting other items or to stop collection. Your collector might
also manage some form of blacklist to avoid reprocessing problem items that are
likely to fail repeatedly.

Updating performance counters and Windows event logs
To enable monitoring of your collector using the IBM Content Collector System
Dashboard and other system tools, your collectors can call the following methods
on ICOMCaptureUtilForScripts (self.CaptureUtilApi). Calling these methods writes
entries to the IBM Content Collector task route event logs (the event logs are
named CTMS - task_route_name) and update the Windows performance counters
that record how many locations the collector searches, how many entities the
collector accesses, and how many cause errors.

Method Parameters Usage Event ID Performance counter

locationStarted Task Route Name,
Collector Name,
Location

Collectors, when starting
collection from a specific
location (such as a file
folder).

144

locationFinished Task Route Name,
Collector Name,
Location,
Error Message

Collectors, after stopping
collection from a specific
location. If an error occurred,
include the error message,
otherwise specify None.

145, 147,
149

CTMS Collector,
Searched Locations/sec

entityAccessed Task Route Name,
Collector Name

Collectors, when processing
a candidate entity.

CTMS Collector,
Accessed Entities/sec

entitySkipped Task Route Name,
Collector Name,
Entity ID,
Location,
Reason

Collectors, when skipping a
candidate entity, specifying
the reason for skipping the
entity (for example,
previously processed or
captured, access denied).

119

Writing connector scripts 25

Method Parameters Usage Event ID Performance counter

entityError Task Route Name,
Collector Name,
Entity ID,
Location,
Error Message,
Additional Information

When processing a specific
entity caused an error.

120 CTMS Collector,
Entity Errors/sec

You can use the following method in tasks that update target systems to record the
number of documents created in a target repository.

Method Parameters Usage Performance counter

documentCreated Task Route Name,
Task Name

After adding a new document to a target
document repository.

CTMS Target,
Documents Created/sec

Note that the Script Connector and the task route service also write to the event
log, and they update further performance counters as a side effect of calling other
methods.

Using existing COM objects in script code
The Python language and Python Standard Library provide all the functionality
that you need to implement many script connector tasks. Other tasks can be
implemented using third-party libraries, for example, to access web servers or to
read Microsoft Office document properties.

Python is also very well suited to working with other COM types because it
supports both late (IDispatch) and static binding (using makepy.py to generate a
wrapper from a type library), and it allows low-level access to COM and Windows
API internals if necessary.

The .wsc files that are used to register JScript task and collector scripts typically
register WScript.Shell and Scripting.FileSystemObject, making them available to
script code (as Shell and FileSystem, respectively). In Python scripts, you typically
use equivalent functionality provided by the Python Standard Library and other
modules. However, because these are standard COM objects, you can still use them
from Python if necessary (for example when porting JScript tasks to Python).
wsShell = win32com.client.Dispatch("WScript.Shell")
fileSystem = win32com.client.Dispatch("Scripting.FileSystemObject")

26 IBM Content Collector: Script Connector Implementation Guide

Preparing for deployment

Modifying .wsc files for COM registration
Your scripts must be registered as COM objects before the Script Connector can call
them.

To register all scripts that are written in JScript or VBScript and connector
registration scripts that are written in Python, you create a .wsc file and register
the .wsc file using Regsvr32.exe. A .wsc file is an XML file that specifies the
information needed to register a script as a COM type, including the COM class
properties, public interface, and the script location. Python task and collector
scripts are registered using the built-in support for COM registration in pywin32.

A typical .wsc file used by the Script Connector will include the following
elements and attributes:
<?xml version=’1.0’?>
<component>
...

<!-- COM registration added to Windows registry -->
<registration

description="Unix Date Conversion Task"
version="1.00"
classid="{632EBF06-D586-4E6E-97BB-C2375B211A82}"
progid="IBM_CTMS.UnixDateConversionTask"

/>
...

<public>
<!-- Script method that is called when task is invoked by the Task Routing Service -->
<method name=’execute’ internalName=’Execute’ dispid=’1’ >

<PARAMETER name=’comTaskInputs’ />
<PARAMETER name=’captureUtilApi’ />

</method>
</public>

...
<!-- Language and location of script code -->
<script language=’JScript’ src=’UnixDateConversionTask.js’ />

</component>

Update the following attributes:

Table 9. Attributes to be updated

Element Attribute Required update

registration description Provide a user-friendly display name for the
COM class that provides access to your
script. This name is primarily used by
developer tools and class browsers that
show installed COM classes.

Note that this name is distinct from task and
collector IDs and display names shown in
Configuration Manager.

© Copyright IBM Corp. 2008, 2012 27

Table 9. Attributes to be updated (continued)

Element Attribute Required update

registration classid Replace with a unique guid specific to your
task or collector.
Important: Do not update the classid in the
.wsc file for the connector configuration
script (ConnectorConfiguration.wsc). The
Script Connector always accesses the
configuration script using the hard coded
guid {4FB50180-2060-41A4-AD98-
66AA88807088}.

See “Generating new guids for tasks and
collectors” for more information.

registration progid The ProgId used to register the COM class in
HKEY_CLASSES_ROOT in the Windows
Registry. This name can be used to create an
instance of the script class programmatically.
The format of a ProgId is:

Program.Component.Version

A ProgId has a maximum length of 39
characters, cannot start with a digit, and
cannot contain punctuation, spaces, or
underscores (except for periods between
components).

method internalName Required if the name of the method in the
script code does not match the method name
in the name attribute. No action is required
if you are using the script templates as the
method stubs have already been created.

script language No action required if the script is written in
JScript, otherwise change to match the
scripting language used (VBScript, Python).

script src Update to specify the location of the script
code. Can include an absolute or relative file
path.

Generating new guids for tasks and collectors
Each task and collector registered on the system must have a unique guid.
Generating a new guid for each task and collector script makes it possible to use
scripts from third parties without naming conflicts and protects against unexpected
results from the inadvertent use of the wrong script.

The ScriptConnector\Tools folder contains a simple script that can be used to
generate new guids for JScript scripts. If you use Python, you can generate new
guids with the Python interpreter.

To generate new guids:
v If you use JScript, open a Windows command prompt. Navigate to the Tools

folder and run the following command:
cscript GuidGenerator.js //NoLogo

Or, to redirect the output to a file:
cscript GuidGenerator.js //NoLogo >> guids.txt

28 IBM Content Collector: Script Connector Implementation Guide

v If you use Python, enter the following commands into the Python interpreter:
>>> import pythoncom
>>> print pythoncom.CreateGuid()

The generated guid is used to:
v Replace the default guid specified in the classid attribute in the registration

element of the task or collector script's .wsc file to enable COM registration. See
“Modifying .wsc files for COM registration” on page 27 for details.

v Replace the default guid specified in the DescribeMethods() method in the
connector registration script (ConnectorConfiguration.js). See “Creating a
registration script” for details.

Creating a registration script
During IBM Content Collector installation, the connectors you choose to install are
automatically registered by the installer.

The connector registration process:
v Performs Windows service registration, so the connector executable can be run

as a Windows service.
v Registers with IBM Content Collector the set of tasks that the connector can

perform. For each task, the task list specifies a task ID, the task type (either
collector, task, or end), and the metadata types emitted by the task.

The Script Connector is not registered by the installer, because the tasks it will
perform and the metadata emitted by these tasks are entirely dependent on your
specific implementation. However, connectors can also be registered (and
unregistered) manually, by running the connector executable from the command
line, passing appropriate command line arguments. The Script Connector is
registered from the command line. The tasks and metadata sources to be registered
are specified using a custom registration script.

For registration, the Script Connector uses the same scripting technology that it
uses at run time. During the registration process, the Script Connector creates a
COM object using a specific guid, then calls specific methods on that object to
obtain the information required for registration. This guid corresponds to a
customized registration script that you provide, describing your specific
implementation.

Creating a registration script using JScript
ConnectorConfiguration.js provides a template for a customized JScript
registration script, which you then complete and register using
ConnectorConfiguration.wsc.

You must make the following changes to ConnectorConfiguration.js so that the
Script Connector can register your implementation:
1. Optional: Update the display name used when registering the Script Connector

as a Windows service:
// Display name for the Windows service. You can change this.
var WindowsDisplayName = "IBM Script Connector";

2. Optional: In DescribeMethods(), specify any custom metadata sources that
should be registered when your connector is registered.
The metadata sources you register will be considered system metadata sources
and cannot be edited by users, but are otherwise functionally identical to user

Preparing for deployment 29

metadata sources defined in the Configuration Manager. Custom metadata
sources should only be created when your collector or tasks or both generate a
consistent set of metadata properties and where your implementation is always
the source of that metadata.
Your collector and tasks are not restricted to generating custom metadata; they
can also generate other types of metadata including file metadata, task status
metadata, user defined metadata, and other types of system metadata that are
implemented using SimpleMetadata.dll (except for email metadata, most are).
function DescribeMethods(captureUtilApi)
{

// Optional: Describe custom metadata created by our connector
DescribeCustomMetadata(captureUtilApi);

// Describe tasks and collectors implemented by our connector
...

}

// Define custom metadata sources for registration
function DescribeCustomMetadata(captureUtilApi)
{

// Create a new custom metadata source
var customMetadataSource = new MetadataSource("Custom.Metadata1");

// Construct property descriptors for the metadata source
var customMetadataProperties = new Array();

customMetadataProperties.push(
new MetadataProperty("Custom.Metadata1.Property1", TypeSystem2.StringVal));

customMetadataProperties.push(
new MetadataProperty("Custom.Metadata1.Property2", TypeSystem2.StringVal));

// Register our custom metadata source
captureUtilApi.addMetadataDescription(customMetadataSource, customMetadataProperties);

}

The convenience types, MetadataSource and MetadataProperty, are predefined
in ConnectorConfiguration.js in the Script Connector template.
This example uses text keys (Custom.Metadata1) that are unlikely to cause
naming collisions but are not in a friendly format for display to the user. In this
case, the display names shown to the user should be specified in the
localization file. However, you might prefer to define your metadata sources
using names that can be displayed directly without a localization entry (such as
Custom Metadata), especially if you need to support only a single language.

3. Specify the tasks (0, 1, or more) and collectors (0 or 1) that should be registered
when your connector is registered. To register a task or collector, you need to
specify:
v A unique ID for each task (the collector ID is fixed)
v A unique guid generated specifically for each task and collector (the same

guid must be specified in the corresponding .wsc file)
v The metadata sources generated by the task or collector
v The type of task (collector, task, end)
For example, to register a task and collector:
function DescribeMethods(captureUtilApi)
{

// Describe custom metadata created by our connector
...

// Describe tasks and collectors implemented by our connector
// Having one method call per task makes it easier to mix and match tasks in one connector
DescribeCustomTask1(captureUtilApi);
DescribeCustomCollector(captureUtilApi);

}

// Register a custom task
function DescribeCustomTask1(captureUtilApi)
{

// Task properties: ID, Guid
var taskId = "Custom.Task1";
var taskGuid = "{F5103CD7-DBAC-49B7-902F-B0AED50CA9F9}"; // unique to this task

30 IBM Content Collector: Script Connector Implementation Guide

// Metadata emitted by the task.
var taskMetadata = new Array();
taskMetadata.push(new MetadataOutput("ctms.taskstatus.metadata")); // Task status
taskMetadata.push(new MetadataOutput("Custom.Metadata1")); // Our custom type

// Register our task
// ICOMCaptureUtilForScripts.addMethodDescription() expects the following parameters
//
// taskId: Task or collector ID used internally (Registry, DataStore)
// guid: COM class GUID specified in the .wsc file
// metadata: Metadata sources emitted
// type: Task type (task, collector, end)
captureUtilApi.addMethodDescription(taskId, taskGuid, taskMetadata, TaskTypes.task);

}

// Register a custom collector
function DescribeCustomCollector(captureUtilApi)
{

// Collector properties: ID (fixed), Guid
var collectorId = "ibm.ctms.connector.configurable.collector";
var collectorGuid = "{BCF4DE64-90D9-4DAD-933A-D7493CF4BF62}"; // unique to this collector

// Metadata emitted by the collector.
var collectorMetadata = new Array();
collectorMetadata.push(new MetadataOutput("ctms.taskstatus.metadata")); // Task status
collectorMetadata.push(new MetadataOutput("ctms.file.metadata")); // File metadata
collectorMetadata.push(new MetadataOutput("Custom.Metadata1")); // Our custom type

// Register our collector
// ICOMCaptureUtilForScripts.addMethodDescription() expects the following parameters
//
// taskId: Task or collector ID used internally (Registry, DataStore)
// guid: COM class GUID specified in the .wsc file
// metadata: Metadata sources emitted
// type: Task type (task, collector, end)
captureUtilApi.addMethodDescription(collectorId, collectorGuid, collectorMetadata, TaskTypes.collector);

}

The convenience type, MetadataOutput, is predefined in
ConnectorConfiguration.js in the Script Connector template.

Creating a registration script in Python
Unlike Python task and collector scripts, Python connector registration scripts must
be registered as COM objects by using .wsc files. For convenience, the Python
registration script can be packaged in the same .py file as the task and collector
classes.

For registration, four module level functions must be implemented:
v CreateObject()
v GetWindowsDisplayName()
v GetConnectorName()
v DescribeMethods()

The CreateObject(), GetWindowsDisplayName(), and GetConnectorName()
functions are boilerplate code. Use the code as is. However, you can change the
Windows service display name.
Required imports for registration
import ibm.ctms.util
import win32com.server.util

Create an expando object that implements IDispatchEx
Used at run time to pass information to scripts
Do not change this
def CreateObject(ignr) :

newObject = ibm.ctms.util.Object()
return win32com.server.util.wrap(newObject, usePolicy=win32com.server.policy.DynamicPolicy)

Get the connector’s Windows service display name for registration
You can change this
def GetWindowsDisplayName(ignr) :

return "IBM Content Collector Script Connector"

Get the connector name for registration
Used in the datastore, Windows registry, .adf and localization files
Do not change this
def GetConnectorName(ignr) :

return "ibm.ctms.connector.configurable.Connector"

Preparing for deployment 31

If Python functions are exposed within the public interface of a COM object that is
registered using a .wsc file, they must include an additional parameter that is
required but unused. This is an artifact of the .wsc COM registration process. The
equivalent JScript code does not require this redundant parameter, because the
JScript language supports variable numbers of parameters.

The DescribeMethods() function must be implemented by your connector
registration script to provide registration information for your connector's tasks,
collectors, and custom metadata sources.
Describe tasks, collectors and custom metadata sources for registration
captureUtilApi (ICOMCaptureUtilForScripts) provides API for interacting with the Script Connector
def DescribeMethods(captureUtilApi, ignr) :

Describe custom metadata to be registered by our connector
DescribeCustomMetadata(captureUtilApi)

Describe tasks and collectors implemented by our connector
Multiple tasks can be registered but only 1 collector
Separate method calls makes it easier to manage tasks
DescribeCustomTask(captureUtilApi)
DescribeCustomCollector(captureUtilApi)

Registering custom metadata sources is optional, because your connector can also
use file system metadata, task status metadata, and any existing user defined
metadata sources, but it is useful to guarantee the availability of specific metadata
sources with known metadata properties. These metadata sources are created as
system metadata sources when your connector is registered and cannot be edited
by users.

The ibm.ctms.util namespace contains two convenience classes, MetadataSource
and MetadataProperty, to provide information about metadata sources (an
identifier, and the name and location of the method used to create an instance) and
metadata properties (an identifier and the data type). These classes are native
Python types, therefore they must be wrapped in an IDispatch wrapper using the
win32com.server.util.wrap method to expose their properties to the Script
Connector. The ibm.ctms.util namespace also provides an enumeration,
TypeSystem2TypeIds, that defines all valid data types.

The metadata source and property information is passed back to the Script
Connector by calling ICOMCaptureUtilForScripts.addMetadataDescription().
Describe custom metadata to be registered by our connector
def DescribeCustomMetadata(captureUtilApi) :

Metadata source descriptor
customMetadataSource = win32com.server.util.wrap(ibm.ctms.util.MetadataSource("Custom.Metadata1"))

Array of property descriptors for the properties in the metadata source
customMetadataProperties = [

win32com.server.util.wrap(
ibm.ctms.util.MetadataProperty("Custom.Metadata1.Property1", ibm.ctms.util.TypeSystem2TypeIds.StringVal)) ,

win32com.server.util.wrap(
ibm.ctms.util.MetadataProperty("Custom.Metadata1.Property2", ibm.ctms.util.TypeSystem2TypeIds.StringVal))

]

Register our custom metadata types
captureUtilApi.addMetadataDescription(customMetadataSource, customMetadataProperties)

Your connector registration script must provide registration information for at least
one task or collector. You can register multiple tasks, but only one collector can be
registered (because the collector ID is fixed). To register a task or collector, you call
ICOMCaptureUtilForScripts.addMethodDescription(). This method expects the
following parameters:
v A unique ID for each task (the collector ID is fixed).
v The COM class ID specified in the task or connector class.

32 IBM Content Collector: Script Connector Implementation Guide

v The metadata sources generated by the task or collector, including task status
metadata, file metadata, other system metadata types, and user defined
metadata. Use an array of wrapped ibm.ctms.util.MetadataOutput instances to
specify metadata source types.

v The type of task (collector, task, end). Set the corresponding value in the
ibm.ctms.util.TaskTypes enumeration.

Describe a task implemented by our connector
def DescribeCustomTask(captureUtilApi) :

Task properties: ID, Guid
taskId = "Custom.Task"
taskGuid = CustomTask._reg_clsid_

Array of metadata source types emitted by the task.
taskMetadata = [

win32com.server.util.wrap(ibm.ctms.util.MetadataOutput("ctms.taskstatus.metadata")) ,
win32com.server.util.wrap(ibm.ctms.util.MetadataOutput("Custom.Metadata1"))

]

Register our task
captureUtilApi.addMethodDescription(taskId, taskGuid, taskMetadata,

ibm.ctms.util.TaskTypes.task)

Describe the collector implemented by our connector
def DescribeCustomCollector(captureUtilApi) :

Collector properties: ID (fixed), Guid
collectorId = "ibm.ctms.connector.configurable.collector"
collectorGuid = CustomCollector._reg_clsid_

Array of metadata source types emitted by the collector.
collectorMetadata = [

win32com.server.util.wrap(ibm.ctms.util.MetadataOutput("ctms.taskstatus.metadata")) ,
win32com.server.util.wrap(ibm.ctms.util.MetadataOutput("ctms.file.metadata")) ,
win32com.server.util.wrap(ibm.ctms.util.MetadataOutput("Custom.Metadata1"))

]

Register our collector
captureUtilApi.addMethodDescription(collectorId, collectorGuid, collectorMetadata,

ibm.ctms.util.TaskTypes.collector)

Enabling task and collector configuration in Configuration Manager
If you have implemented custom tasks or collectors, Configuration Manager needs
some additional information to associate your task or collector with the user
interface components that you use to configure it. This information is specified in
the associated .adf file that you added to the adf folder when you set up your
working folder from the template.

The .adf files for tasks must be updated to ensure that each task has an ID that
does not conflict with task IDs in any other .adf file. This step is not necessary for
custom collectors because you can only have one defined.

To update the .adf file associated with a custom task:
1. Open the file in a text editor.
2. Use search and replace to replace the value Custom.Task1 with the task ID of

your custom task (as registered in your connector configuration script). The .adf
file contains comments that describe how to do this.

Customizing configuration screens
The labels and tooltips displayed in the Script Connector user interface elements in
Configuration Manager are defined in the file
ConfigurableConnector.Resource.en-US.xml. This file is added to the localization
folder when you set up your working folder from the template.

Preparing for deployment 33

To change the labels and tooltips, update the text contained within CDATA
sections in the label and info elements. The localization file contains XML
comments that document where each label appears in Configuration Manager.

If you implement multiple tasks or custom metadata sources, or both, you can
provide more readable display names to the user.
ConfigurableConnector.Resource.en-US.xml contains commented-out sections
within the Tasks and Metadata elements that show the changes that are necessary
to provide task and metadata display names. The task, metadata source, and
metadata property IDs that you supply must match those specified in the
connector registration script (see “Creating a registration script” on page 29).

To localize for other languages, create a copy of
ConfigurableConnector.Resource.en-US.xml in the localization folder, replacing
en-US with the appropriate language abbreviation (see other Configuration
Manager language files for valid suffixes). Then, translate the text in the label and
info elements.

If you are implementing multiple tasks and metadata sources, you can provide
separate localization files for each task. This means that there is a 1:1
correspondence between .js, .py, .wsc, .adf, and localization files. The Unix date
conversion (“Unix date conversion” on page 49) and Web service call (“Web service
call” on page 51) samples use this approach.

34 IBM Content Collector: Script Connector Implementation Guide

Deploying your connector

Following the correct deployment sequence is essential to prevent problems. The
steps detailed here can easily be automated using one or more batch files.

For all commands specified in this section, it is assumed that the current directory
is the ctms directory under the root installation folder for IBM Content Collector.
Running these commands requires Administrator access.

In a scale-out environment, repeat the deployment procedure on each node.

Important: On a 64-bit operating system, you must use the 32-bit version of
RegSvr32.exe for successful registration of the .wsc files. Using the full file path
ensures that you use the right version of RegSvr32.exe. Do not use right-click
registration for the same reason. The RegSvr32 file path specified in this section is
the default for a 64-bit Windows system. Modify it accordingly.

Prerequisite steps
Before you can deploy and register the new implementation, you have to close
Configuration Manager. For a new installation, you must make sure that the
configuration library is registered. For modifying an existing Script Connector
implementation, further steps are required.
1. Close Configuration Manager.
2. Stop the IBM Content Collector Configuration Access service, either from

Services.msc or using the following command:
sc stop ibm.ctms.ui

3. For a new installation, make sure the configuration library is registered.
C:\Windows\SysWOW64\RegSvr32.exe /s ConfigurableConnectorDLL.dll

Unregistering the existing implementation
If you are modifying an existing Script Connector implementation, you must
remove the existing Script Connector service and COM registration before
replacing or deleting any of the deployed files.

The correct unregistration procedure removes all Script Connector entries from the
Windows registry. Obsolete entries in the Windows registry are difficult to clean up
and can lead to unexpected behavior and errors that are difficult to troubleshoot.

To unregister an existing installation:
1. Unregister the Script Connector.

ConfigurableConnector.exe -u

2. Unregister task, collector, and configuration COM objects. To unregister JScript
scripts, use RegSvr32.exe. In the following example, .wsc file names are for a
collector and two tasks using the template filenames. Modify appropriately
based on the .wsc filenames for the tasks and collector (if any) that are
currently deployed.

© Copyright IBM Corp. 2008, 2012 35

C:\Windows\SysWOW64\RegSvr32.exe /s -u CustomTask1.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s -u CustomTask2.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s -u CustomCollector.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s -u ConnectorConfiguration.wsc

To unregister Python scripts, use the -unregister command line argument. The
connector configuration script, however, must be unregistered using
RegSvr32.exe. For example:
python PyConnector.py –unregister
C:\Windows\SysWOW64\RegSvr32.exe -u PyConnectorConfig.wsc

Ensure you have a backup of the deployed files. Having the registration script
and COM registration details means you can clean up the Windows registry
manually in the event of problems.

Deploying the new implementation files
To deploy the new implementation files, you must copy them to the appropriate
location in the IBM Content Collector installation directory.

To deploy the files:
1. Copy the .js (or .py) and .wsc files for the configuration script and for the tasks

and collectors that you are deploying from your working folder to the ctms
directory.

2. Copy localization files from your working localization folder to the
ctms\localization folder.

3. Copy .adf files from your working adf folder to the ctms\adf folder.
4. Remove any obsolete files that were not replaced by the new deployment.

Registering the new implementation
After you deployed the new implementation files, you must register the task,
collector, and configuration COM objects, and the Script Connector service and
metadata.

To register the new implementation:
1. Register task, collector, and configuration COM objects. To register JScript

scripts, use RegSvr32.exe. In the following example, the .wsc file names are for
a collector and two tasks using the template filenames. Modify appropriately
using the .wsc filenames for the collectors and tasks you are actually deploying.
C:\Windows\SysWOW64\RegSvr32.exe /s ConnectorConfiguration.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s CustomCollector.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s CustomTask1.wsc
C:\Windows\SysWOW64\RegSvr32.exe /s CustomTask2.wsc

For Python scripts, you simply run the script to register the COM types. The
connector configuration script, however, must be registered using
RegSvr32.exe. For example:
python PyConnector.py
C:\Windows\SysWOW64\RegSvr32.exe PyConnectorConfig.wsc

2. Register the Script Connector service and metadata.
ConfigurableConnector.exe -r

The Script Connector service will be registered to log on using the Local
System account. You can change the service configuration to log on using a
specific user account and password.

At this stage, the Script Connector is deployed and is ready for use.

36 IBM Content Collector: Script Connector Implementation Guide

After deployment
After the Script Connector is deployed and is ready for use, you can create the
required configuration objects in Configuration Manager.
1. Restart the IBM Content Collector Configuration Access service service, either

from Services.msc or using the following command:
sc start ibm.ctms.ui

2. Restart Configuration Manager.
3. Configure your connector, add collectors and tasks to task routes, and configure

them.
4. Restart the IBM Content Collector Task Routing Engine service.

Deploying your connector 37

38 IBM Content Collector: Script Connector Implementation Guide

Configuring your connector

To be able to work with your Script Connector implementation, you must
configure the connector and the custom collectors and tasks in Configuration
Manager.

Connector configuration
When your Script Connector implementation is installed and registered, it will
appear in the Connectors configuration window.

The name that appears in the Connectors list, the window titles, and the labels are
defined by entries in the Script Connector localization file
(ConfigurableConnector.Resources.en-US.xml on an English language system).

For example, if you install the Sample File Processing Connector sample, the Script
Connector configuration window looks like this:

The connector name and description are populated from entries in the localization
file during connector registration and are not editable. Log settings (Log file
location, Log level, and Log file retention) can be configured by the user.

The option Allow one script invocation at a time was added in IBM Content
Collector 3.0.0 Fix Pack 2. By default, this option is not selected. Leave it
deselected if your script engine (and any third-party COM libraries that your script
calls) fully supports multithreaded operation. If you select this option, the Script

© Copyright IBM Corp. 2008, 2012 39

Connector ensures that scripts are called sequentially and, if necessary, queues
calls. When you use Python scripts, select this option.

The Script Connector toolbox
After registration, the collector and tasks provided by your Script Connector
implementation will be available in the Task Route Designer toolbox for adding to
a task route.

The connector, collector, and task names will be displayed using the corresponding
entries in the localization file, and will default to the registered IDs if the
localization entries are not available.

Task configuration
You must configure any Script Connector task that you add to a task route.

When you drop a Script Connector task onto your task route, the task node is
given a default name and description. You can rename the task and update the
description.

40 IBM Content Collector: Script Connector Implementation Guide

The Task configuration section contains a multiline text box to specify
configuration parameters that do not change between calls to the task. The way
that this is used is entirely dependent on your implementation and is not validated
by Configuration Manager. In this example, the entry for Configuration string in
the localization file has not been updated, so you must know the expected
configuration format.

The Input metadata mappings section is used to specify the input parameters that
are sent to your task when it is called. The property names and data types
specified here must match the names and data types that your task expects. To
make this simpler for the user, you can use the localization file to provide a tooltip
that documents the expected parameter names and data types.

As well as specifying the property name and value, you must also provide a
property mapping expression to provide a value.

One common problem with metadata mappings is the case where a specific
metadata property is not available at the point where it is referenced by a task. To
avoid errors in your task script caused by missing metadata, select the Advanced
option when configuring property mappings.

Configuring your connector 41

Create an expression that uses the TestMetadataReference() function to test for the
existence of the property, and supply a default value if the property has not been
set.

You can also test for the existence of a metadata property in your script code.

Collector configuration
You must configure any Script Connector collector that you add to a task route.

When you drop a Script Connector collector onto your task route, the collector
node is also given a default name and description based on entries in the
localization file. You are free to rename the collector and update the description.

42 IBM Content Collector: Script Connector Implementation Guide

The Collector configuration section also contains a multi-line text box for
specifying collector configuration. As with tasks, the way that this is used is
entirely dependent on your implementation and is not validated by Configuration
Manager.

Using the localization file, you can update the label and tooltip to describe the
configuration expected by your collector. In this example, the label has been
localized to show that the collector expects a directory name.

Before you can use the collector, you also need to configure the collection schedule
in the schedule tab. The schedule defaults to Run always.

Troubleshooting configuration issues
You can troubleshoot common problems that you might encounter when
configuring a Script Connector in Configuration Manager.

The Script Connector does not appear in Configuration
Manager

Symptoms
The list of connectors in the Connectors View in Configuration Manager does not
include the Script Connector.

Resolving the problem
Ensure that you have deployed and registered at least one Script Connector task or
collector.

Restart the IBM Content Collector Configuration Access service and restart
Configuration Manager.

A new task or collector does not appear in Configuration
Manager

Symptoms
A new Script Connector task or collector is not available in the Configuration
Manager toolbox.

Resolving the problem
Ensure that you have deployed and registered your new scripts, ADF file changes,
and localization changes.

If you modified the registration script, unregister and register the registration
script's .wsc file, and rerun the connector registration.

Restart the IBM Content Collector Configuration Access service and restart
Configuration Manager.

A task or collector cannot be configured
Symptoms
When you try to edit a Script Connector task or collector in Configuration
Manager, you see a plain configuration panel with this message:
No configuration required

Resolving the problem

Configuring your connector 43

Ensure you have deployed the ADF and localization files. Then, check the ADF file
and verify that the task ID in the ADF file matches the task ID in the registration
script and in the Windows registry.

The Script Connector configuration window displays cryptic
labels

Symptoms
The Script Connector configuration window displays cryptic labels with salmon
pink backgrounds.

Resolving the problem
Ensure that you have deployed your localization files to the localization folder.

If the only affected control is a check box with the label
ibm.ctms.connector.configurable.ConnectorConfigUI.allowOneTaskInvocationAtATime,
your localization file is missing an entry for a check box that was added in IBM
Content Collector 3.0.0 Fix Pack 2. Copy the missing localization entry from the
IBM Content Collector 3.0.0.2 template to the deployed localization file.

Restart Configuration Manager.

44 IBM Content Collector: Script Connector Implementation Guide

Debugging connector scripts

Scripts can often be debugged by using the logEvent function to write log
messages to a log file or to the Windows Event log. However, many issues will
require the use of a debugger to step through the code as it executes.

This is an example for debugging by using the logEvent function:
captureUtilApi.logEvent(@LogTrace, "Unix created date " + createdMsSince1970

+ " converted to " + createdDate.toUTCString());

If your script is written in JScript or VBScript, you can debug your code as follows:
1. Ensure you have a compatible debugger installed. Microsoft Visual Studio 2005

or later is compatible. An alternative is the deprecated Microsoft script
debugger, scd10en.exe. This is very basic but has a very small footprint (670
KB download).

2. Disable the Script Connector service. This prevents the IBM Content Collector
Task Routing Engine service from starting a second instance of the Script
Connector as a service when you have already launched the Script Connector
from the command line.

3. Ensure the debug attribute on the component processing instruction in your
.wsc file is set to true. For example:
<?xml version=’1.0’?>
<component>

<!-- Enable debugging -->
<?component error=’true’ debug=’true’?>

</component>

4. Place a debugger statement in your script code.
// This is the method called via the .wsc registration when the task is invoked
/// \brief Passes each task input object of task input array to ProcessTaskInput
/// \param comTaskInputs Task inputs as SafeArray
/// \param captureUtilApi Script Connector API COM helper class
function execute(comTaskInputs, captureUtilApi)
{

debugger;

...

5. Use the 32-bit version of RegSvr32.exe to re-register the .wsc file. Otherwise
you will continue to use the cached registered script, not the modified script
containing the debugger statement.

6. Start the Script Connector service in console mode from the command line:
ConfigurableConnector.exe -c

This launches the Script Connector as a console application using your user
credentials.

7. Start the IBM Content Collector Task Routing Engine service. When the IBM
Content Collector Task Routing Engine service encounters a call to a collector
or task implemented by the Script Connector, it will attempt to establish
named-pipe communication with an existing Script Connector process. Because
your process is already running, it will handle the request and call the execute
method on your task or collector. When execution hits the debugger statement,
execution will stop and the debugger will take control.

© Copyright IBM Corp. 2008, 2012 45

Consider this:

Connectors and the IBM Content Collector Task Routing Engine service run in
a multithreaded environment. If you have a collector that submits multiple
items during a task debugging session, you can easily become confused as the
debugger switches contexts each time thread execution hits one of your break
points. For this reason you should disable task routes and collectors other than
those you are debugging. To control the debugging process still further, you
can disable all collectors, add a new collector to your task route specifically for
debugging, which you then configure so that it finds and submits one entity at
a time.

The stand-alone script debugger will occasionally fail to attach to the script that
is being debugged, usually after starting and stopping the Script Connector
several times.

Running the Script Connector from the command line using with the -c switch
can change connector behavior:
v When the connector is run as a service, the current working directory for the

process will be the Windows system directory. However, when the connector
is run from the command line with the -c switch, the current working
directory will be inherited from the parent process, typically the current
working directory of cmd.exe. This can cause differences in behavior if your
script attempts to open files without providing a fully qualified path.

v When the connector is run as a service, the service account is defined in the
service configuration. When the connector is run from the command line, the
Script Connector will normally run using your user account. This means that
the set of resources that are accessible (files, databases, network shares, and
so on) might be different. You can work around this by using the runas
command on the command line to ensure that the Script Connector process
runs with the same user account as it would when started as a service.

46 IBM Content Collector: Script Connector Implementation Guide

Additional documentation

Script Connector API documentation
During Script Connector installation, the file ScriptConnectorAPIDocs.zip is added
to the folder ctms\ResourceKit\ScriptConnector\Documentation. This file contains
HTML documentation that is generated directly from the C++ source code. You
must extract the files before you can use the documentation.

Click the Start here shortcut to access the Script Connector API documentation in a
two panel view with a navigation pane on the left side and content on the right.
Each method is documented and each method description includes a code snippet
that shows how to use the method in JScript code.

To help you cross-reference the code samples with the API documentation, the
comments and "How to" code snippets in the template scripts clearly indicate the
class names of objects that are passed as parameters and created as new ActiveX
objects within the code (because JScript is not type safe and the type cannot be
inferred from the variable declarations).

© Copyright IBM Corp. 2008, 2012 47

Windows Script Technologies documentation
Microsoft provides reference and conceptual documentation for all of Microsoft
Windows Script Technologies.

Windows Scripting documentation can be obtained from the Microsoft at:

http://www.microsoft.com

Search for windows script 5.6 documentation.

When you download the documentation, the downloaded file, script56.chm, is a
compiled HTML Help file. It documents Windows Scripting Technologies,
including JScript, VBScript, Windows Script Host, and the Script Runtime
(including WScript.Shell, Scripting.FileSystemObject, and Scripting.Dictionary).
Although the documentation is for version 5.6, there have not been any significant
changes to the object model in versions 5.7 and 5.8.

Tip: By default, your system might block access to compiled HTML help files. If
access is blocked, you might be able to see the index, but not the help file contents
(you might see a message Navigation to the webpage was cancelled). If your
system blocks access, copy script56.chm to a location on your local file system,
right-click the file, select Properties, and click Unblock to allow access to the
contents.

48 IBM Content Collector: Script Connector Implementation Guide

http://www.microsoft.com

Samples

TheScript Connector packages includes several samples for custom tasks.

These samples are currently provided:
v “Unix date conversion”
v “File processing connector” on page 50
v “Web service call” on page 51
v “Python Unix date conversion” on page 52

Unix date conversion
This JScript sample demonstrates a simple metadata conversion task. It also
demonstrates the use of custom metadata and localization.

The sample is in the Samples\UnixDateConversion folder.

Problem:

An external system export process generates XML metadata files that specify the
original file creation and modification dates as an integer number representing the
number of seconds since January 1st 1970. The FSC Associate Metadata task can
read these values as 64-bit integer properties, but IBM Content Collector does not
have a built-in mechanism to convert these values to the date representation that is
required to provide meaningful creation and modification date metadata in IBM
FileNet P8 or IBM Content Manager.

Solution:

The JScript Date class provides a constructor that can perform the required date
conversion. This means that the Script Connector can be used to implement a
simple task that adds this conversion functionality to IBM Content Collector.

To use the sample:
1. Deploy the UnixDateConversion sample and register the Script Connector. The

registration process will add a new system metadata source that contains two
date properties. This metadata source is localized and will appear as Unix date
conversion output to downstream tasks.

2. Create a metadata source for the file system XML. This metadata source will
include two integer properties to contain the numeric creation and modification
dates read from the XML file.

3. Create a task route that uses the File System Source Connector as the source
and any document repository as the target. The target document class should
contain two date properties for the creation and modification dates.

4. Configure the FSC Collector, specifying the collection sources and schedule.
5. Configure the FSC Associate Metadata task to populate the file system

metadata source. This task must assign a value to the numeric file creation and
modification dates.

6. Add the Script Connector Unix Date Conversion task to your task route,
downstream of the FSC Associate Metadata task. In the Input property

© Copyright IBM Corp. 2008, 2012 49

mappings section, configure two input properties unixCreatedDate and
unixModifiedDate of type integer and map these to numeric creation and
modification dates in your input metadata.

7. In the target repository connector, map <Unix date conversion output,
Created date> and <Unix date conversion output, Modified date> to
appropriate properties in the target document class.

File processing connector
This sample demonstrates how to implement a task that can read input metadata
from a file where the file format is not supported by the FSC Associate Metadata
task. This task also shows how a task can add entities to an entity set.
Furthermore, it demonstrates how to implement a simple collector.

The sample is in the Samples\CustomMetadataFileHandling folder.

Problem:

An external process generates files that contain employee records. Employee record
files are generated for each data file in the source folder, with the extension .data
appended. A typical employee record looks like this:
Employee Name: Kirk James T. Employee Number: 5A0780 Date: 03/07/1999

The FSC Associate Metadata task cannot parse the employee names, numbers, and
hire dates.

Solution:

The JScript Regex class can be used to parse the employee record using a regular
expression. Although JScript does not provide a native mechanism for reading files,
Scripting.FileSystem from the scripting run time, can be used to read the file
contents. Two custom metadata sources are also required, one to contain the
employee metadata and one to distinguish between metadata and data files, so
that different capture and post processing operations can be performed on the two
file types.

To use the sample:
1. Deploy the CustomMetadataFileHandling sample and register the Script

Connector. The registration process will add two new system metadata sources:
v Sample File Type Info that contains a single boolean property Is Metadata

File. This property is used to distinguish between data and metadata files.
v Sample Employee Info that contains employee metadata.

2. Create a new task route using a File System Source Connector task route
template.

3. Using the sample collector is optional. If you want to use it, remove the FSC
Collector and replace it with a Sample File Processing Collector. Specify the
source folder and collection schedule. The sample collector replicates a small
subset of the functionality of the FSC Collector and is intended for
demonstration purposes only.

4. If you choose not to use the sample collector, configure the FSC Collector
collection sources and schedule as usual. On the Filter tab, configure a file
extension filter to exclude files with an extension of .data.

50 IBM Content Collector: Script Connector Implementation Guide

5. Remove the FSC Associate Metadata task and replace it with the Script
Connector Sample File Processing task. In the Input property mappings
section, configure an input property named filename of type string and map it
to <File, File Path>.

6. In the target repository connector, map employee metadata to appropriate
properties in the target document class. Note that employee metadata is added
only to the data file, so you might need to add a condition to your task route
that tests the file type using the <Sample File Type Info, Is Metadata File>
property.

Web service call
This sample demonstrates a basic task that can call an external web service task. It
also demonstrates the use of an external COM object (Microsoft.XMLHTTP).

The sample is in the Samples\WebServiceCall folder.

For demonstration purposes, this task uses a public web service that accepts
anonymous connections (http://www.w3schools.com/webservices/
tempconvert.asmx), performing temperature conversion between Celsius and
Fahrenheit. Because JScript does not provide direct support for consuming web
services, this is an especially naïve and inflexible implementation of a web service
client. A more realistic approach would be to package a fully featured web service
client as a COM object that is callable from JScript, providing a cleaner interface
that isolates the JScript from the implementation details. Alternatively, you could
implement a connector in Python, using third-party Python SOAP libraries to call
web service methods.

Problem:

A task route needs to invoke an external web service to retrieve additional
information, for example a customer record. IBM Content Collector does not
currently provide a task or expression that can be used to call an external web
service during normal task route processing.

Solution:

The Script Connector can use Microsoft's XML HTTP class to send a SOAP request
to an external web service, parse the response and add the data to a custom
metadata source.

To use the sample:
1. Deploy the WebServiceCall sample and register the Script Connector. The

registration process will add a new system metadata source, WebService.Output
that contains two integer properties.

2. Create a new task route using a File System Source Connector task route
template. Configure the FSC Collector, specifying the collection sources and
schedule.

3. Add the Script Connector Web Service task to your task route. In the Input
property mappings section, configure two input properties celsiusValue and
fahrenheitValue of type integer and configure input expressions to provide a
value, either based on the input metadata or a literal value.

4. In the target repository task, map <Web Service output, Celsius converted to
fahrenheit> and <Web Service output, Fahrenheit converted to celsius> to

Samples 51

http://www.w3schools.com/webservices/tempconvert.asmx
http://www.w3schools.com/webservices/tempconvert.asmx

appropriate properties in the target document class. For demonstration
purposes, you can use an audit log task instead.

Python Unix date conversion
This sample is functionally equivalent to the JScript Unix date conversion sample
described earlier, but is written in Python. In this sample, an integer is converted
to a date by using the datetime.utcfromtimestamp() class method in the datetime
package.

Windows does not ship with Python installed, so you must download and install a
suitable Python distribution for Windows before you can work with this example
(see “Prerequisites” on page 5).

This sample demonstrates the usage of the Script Connector Python packages that
are installed by the Script Connector installer in IBM Content Collector 3.0.0 Fix
Pack 2.

The sample is in the Samples\PythonUnixDateConversion folder.

To use the sample:
1. Deploy the sample from the PythonUnixDateConversion folder. The process of

deploying a Python connector is slightly different than that for deploying a
JScript connector.
a. Close Configuration Manager and stop the IBM Content Collector

Configuration Access service.
b. Copy the files UnixDateConversion.py and UnixDateConversionPy.wsc to the

ctms directory.
c. Copy the localization files from the sample localization folder to the

ctms\localization folder and copy the .adf files from the sample adf folder
to the ctms\adf folder.

d. Register the task and configuration COM objects. Open a command
window, and run the following commands from the ctms folder:
python.exe UnixDateConversion.py

c:\Windows\SysWOW64\regsvr32.exe UnixDateConfiguration.wsc

ConfigurableConnector.exe -r

e. Restart the IBM Content Collector Configuration Access service and
Configuration Manager.

2. Create a metadata source for the file system XML. This metadata source will
include two integer properties to contain the numeric creation and modification
dates read from the XML file.

3. Create a task route that uses the File System Source Connector as the source
and any document repository as the target. The target document class should
contain two date properties for the creation and modification dates.

4. Configure the FSC Collector, specifying the collection sources and schedule.
5. Configure the FSC Associate Metadata task to populate the file system

metadata source. This task must assign a value to the numeric file creation and
modification dates.

6. Add the Script Connector Unix Date Conversion task to your task route,
downstream of the FSC Associate Metadata task. In the Input property
mappings section, configure two input properties unixCreatedDate and

52 IBM Content Collector: Script Connector Implementation Guide

unixModifiedDate of type integer and map these to numeric creation and
modification dates in your input metadata.

7. In the target repository connector, map <Unix date conversion output,
Created date> and <Unix date conversion output, Modified date> to
appropriate properties in the target document class.

Samples 53

54 IBM Content Collector: Script Connector Implementation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2008, 2012 55

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland GmbH
Department M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

56 IBM Content Collector: Script Connector Implementation Guide

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation, registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at “Copyright
and trademark information” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Microsoft, SharePoint, and Windows are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

The Oracle Outside In Technology included herein is subject to a restricted use
license and can only be used in conjunction with this application.

Other product and service names might be trademarks of IBM or other companies.

Notices 57

http://www.ibm.com/legal/copytrade.shtml

58 IBM Content Collector: Script Connector Implementation Guide

Index

A
adf files 33
API classes

ICOMCaptureUtilForScripts 11
ICOMCollectorSubmitProxyForScripts 11
IComTaskInput 11
IEntityData 11

C
CaptureUtilApi 22
classid attribute 27
clearTaskOutputs() 15
COM objects 16, 26
COM registration 27, 28
COMException 25
ConfigurableConnector.adf 8
ConfigurableConnector.Resource.en�US.xml 8, 34
ConfigurableConnectorDLL.dll 35
configuration library 35
Configuration Manager 33, 39
configuration objects 37
configuration panels

advanced property mapping 40
collector 42
connector 39
input metadata mapping 40
task 40
toolbox 40

connector registration script 28
connector scripts 20

JScript 11, 12
overview 11
Python 11

ConnectorConfiguration.js 8
ConnectorConfiguration.wsc 8
ConnectorTemplate folder 8
CreateObject() 31
CustomCollector.adf 8
CustomCollector.js 8
CustomCollector.wsc 8
customization tasks

adapting files 10
CustomTask1.adf 8
CustomTask1.js 8
CustomTask1.wsc 8
CustomTask2.adf 8
CustomTask2.js 8
CustomTask2.wsc 8

D
date conversion 49, 52
debugger 45
deployment 36
DescribeMethods() 31
description attribute 27
display names 34

E
entities

adding metadata 14
entity IDs 24

F
file processing 49
folder contents 5

G
generic user interface 2
GetConnectorName() 31
GetWindowsDisplayName() 31
GuidGenerator.js 5
guids 28

I
IBM Content Collector Script Connector

getting started 36
IBM Content Collector Task Routing Engine service 45
ibm.ctms.util.LogLevels 24
ICOMCaptureUtilForScripts 11, 14, 16, 18, 22, 25

LogEvent() 15
ICOMCaptureUtilForScripts.addMethodDescription() 31
ICOMCaptureUtilForScripts.entityError() 16
ICOMCollectorSubmitProxyForScripts 11, 18, 23
IComTaskInput 11
IDispatch 31
IEntityData 11, 14, 22
input parameters

converting 12, 21
reading 12, 21

Install Script Connector shortcut 5
installation 5
internalName attribute 27

J
JScript registration script 29

L
labels 34
language attribute 27
limitations 2
localization 34
log levels 15, 24
log messages 15, 24
logEvent() 15

M
metadata

gathering 14, 22
returning 14, 22

© Copyright IBM Corp. 2008, 2012 59

metadata (continued)
submitting 23

method element 27
methods

clearTaskOutputs() 15
execute() 16
getErrorInfo() 25
GetErrorMessage() 25
ICOMCaptureUtilForScripts 16, 18
ICOMCaptureUtilForScripts() 25
ICOMCollectorSubmitProxyForScripts 18
logEvent() 15, 24
ProcessEntity() 16
send() 15

O
overview 1

P
performance counters 16, 25
prerequisites 5
principles 2
ProcessEntity() 16
progid attribute 27
property bag 14, 22
Python 20
Python registration script 31
Python scripts

collectors 22
tasks 20

R
readme.txt file 5
registration

connector 29, 31
ConnectorConfiguration.js 29
ConnectorConfiguration.wsc 29
JScript 29
metadata 29, 31
Python 31
task 29, 31

registration element 27
RegSvr32.exe 35
removing registry entries 35
restarting services 37

S
samples

file processing connector 50
JScript Unix date conversion 49
Python Unix date conversion 52
web service call 51

Script Connector APIs
ICOMCaptureUtilForScripts 47
ICOMCollectorSubmitProxyForScripts 47
IComTaskInput 47
IEntityData 47

Script Connector service 45
script element 27
ScriptConnectorAPIDocs.zip 5
ScriptConnectorConnectorSetup.msi 5

Scripting documentation 48
Scripting.FileSystemObject 16, 26
self.CaptureUtilApi 25
self.CaptureUtilApi.clearTaskOutputs() 25
send() 15
src attribute 27
SubmitStub 23

T
Task Route Designer toolbox 40
task samples 49
template 5, 8
template files

ConfigurableConnector.adf 8
ConfigurableConnector.Resource.en�US.xml 8
ConnectorConfiguration.js 8
ConnectorConfiguration.wsc 8
CustomCollector.adf 8
CustomCollector.js 8
CustomCollector.wsc 8
CustomTask1.adf 8
CustomTask1.js 8
CustomTask1.wsc 8
CustomTask2.adf 8
CustomTask2.js 8
CustomTask2.wsc 8

test scripts 19
tooltips 34

U
uninstallation 5
Unix date conversion 49
use cases 1

W
web service 49
win32com.server.util.wrap method 31
Windows registry 35
Windows Script Component files 27
Windows Script Technologies 48
Windows scripting

Scripting.FileSystemObject 16, 26
WScript.Shell 16, 26

working folder 8
wsc files 27
WScript.Shell 16, 26

60 IBM Content Collector: Script Connector Implementation Guide

����

Product Number: 5724-V57

	Contents
	ibm.com and related resources
	How to send your comments
	Contacting IBM

	What is the IBM Content Collector Script Connector?
	Script Connector overview
	What can you use it for?
	How does it work?
	What are the limitations?

	Getting started
	Installing the Script Connector
	The Script Connector template
	Creating a working folder from the template
	What happens next?

	Writing connector scripts
	The Script Connector API
	Writing connector scripts in JScript
	Reading task input parameters
	Gathering metadata within a script
	Returning metadata from a task script
	Submitting metadata from a collector script
	Logging
	Error handling
	Updating performance counters
	Using existing COM objects in script code
	Upgrading Script Connector scripts from earlier IBM Content Collector versions
	Testing script code

	Writing connector scripts in Python
	Creating tasks
	Reading task input parameters
	Gathering metadata within a script
	Returning metadata from a task script
	Creating collectors
	Submitting metadata from a collector script
	Assigning entity IDs
	Logging
	Error handling
	Updating performance counters and Windows event logs
	Using existing COM objects in script code

	Preparing for deployment
	Modifying .wsc files for COM registration
	Generating new guids for tasks and collectors
	Creating a registration script
	Creating a registration script using JScript
	Creating a registration script in Python

	Enabling task and collector configuration in Configuration Manager
	Customizing configuration screens

	Deploying your connector
	Prerequisite steps
	Unregistering the existing implementation
	Deploying the new implementation files
	Registering the new implementation
	After deployment

	Configuring your connector
	Connector configuration
	The Script Connector toolbox
	Task configuration
	Collector configuration
	Troubleshooting configuration issues
	The Script Connector does not appear in Configuration Manager
	A new task or collector does not appear in Configuration Manager
	A task or collector cannot be configured
	The Script Connector configuration window displays cryptic labels

	Debugging connector scripts
	Additional documentation
	Script Connector API documentation
	Windows Script Technologies documentation

	Samples
	Unix date conversion
	File processing connector
	Web service call
	Python Unix date conversion

	Notices
	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W

