
PPaaggee 11 ooff 4466

11

Exploiting the Automatic Client Reconnect feature introduced in

WebSphere MQ 7.0.1 – MQI (C Code)

IBM Techdoc:
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27017882

Date last updated: 7-Jun-2010

Angel Rivera – rivera@us.ibm.com

IBM WebSphere MQ Support

+++ Objective +++

The objective of this techdoc is to show real examples that use MQI (C Code) that

exploit the new feature introduced in WebSphere MQ 7.0.1: Automatic Client

Reconnect.

There are several mechanisms that specify how a client will do the automatic

reconnection. This is the order of reconnection:

1) MQCNO flags for MQCONN – this is not shown in this document (these flags are

specified inside an application).

2) If MQSERVER is present, then it is used. It overrides all the options 3 and 4.

3) If the MQSERVER is NOT present, then the next option is to use the Client

Configuration File (mqclient.ini).

4) Finally, if none of the above is defined, then the CCDT is used.

+++ Table of Contents +++

Chapter 1: Setup of queue managers and clients

Chapter 2: Using the “High availability sample programs” (C code) – single queue

manager

Scenario 2-A) Testing reconnect to a single standalone queue manager (using CCDT

file)

Scenario 2-B) Testing reconnect to a single standalone queue manager (using

MQSERVER)

Scenario 2-C) Testing reconnect to a single standalone queue manager (using client

configuration file)

http://www.ibm.com/support/docview.wss?rs=171&uid=swg27017882
mailto:rivera@us.ibm.com

PPaaggee 22 ooff 4466

22

Chapter 3: Using the “High availability sample programs” (C code) – 2 separate queue

managers

Scenario 3-A) Testing reconnect to another standalone queue manager (using

MQSERVER) – Failure of sample with sync point

Scenario 3-B) VARIATION of Scenario 3-A: Using only the put and get samples (no sync

point)

Scenario 3-C) Testing reconnect to another standalone queue manager, no sync point

(using client configuration file)

Chapter 4: Using the “High availability sample programs” (C code) – multi-instance

queue managers

Chapter 5: Behavior of clients that are not explicitly enabled for automatic reconnect

(using client configuration file)

Scenario 5-A) Testing reconnect to another standalone queue manager, amqsputc and

amqsgetc (C-code), MQ 7.0.1

Scenario 5-B) Testing reconnect to another standalone queue manager, amqsputc and

amqsgetc (C-code), MQ 6

Appendix A: Troubleshooting

Appendix B: Information about the MQ Client Configuration File

+++ References

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.

mq.csqzaf.doc/cs70190_.htm

MQ V7 Information Center

> Clients

>> Application Programming

>>> Automatic client reconnection

http://www.ibm.com/support/docview.wss?uid=swg27016801

WSTE: WebSphere MQ V7.0 Client Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs70190_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs70190_.htm
http://www.ibm.com/support/docview.wss?uid=swg27016801

PPaaggee 33 ooff 4466

33

++

+++ Chapter 1: Setup of queue managers and clients

++

a) Standalone queue managers

The following standalone queue managers are used:

Host-A: veracruz.y.ibm.com (SuSE Linux Enterprise Server SLES 9), x86 32-bit

 Queue manager name: QM_VER Port: 1414

Host-B: aemtux1.z.ibm.com (SUSE LINUX Enterprise Server 9), Power PC 64-bit

Queue manager name: ANGEL_TUX1 Port: 1421

The MQ version in both systems is 7.0.1.1.

b) Multi-instance queue manager

The Automatic Client Reconnect feature is independent of the Multi-Instance Queue

Manager feature, both introduced in WebSphere MQ 7.0.1.0.

However, these 2 features are a good complement of each other, and thus, in this

document, a multi-instance queue manager is used for some of the example

scenarios.

It is NOT necessary for the queue managers to be multi-instance queue managers in

order to be used with the automatic reconnect.

In this example, the following multi-instance queue manager will be used:

Queue manager name: QMMI1

The hosts where the instances run are:

Host-1: cbeech.x.ibm.com (SuSE Linux Enterprise Server SLES 10), x86 32-bit

Host-2: veracruz.y.ibm.com (SuSE Linux Enterprise Server SLES 9), x86 32-bit

The listener port in both systems is 1421

The MQ version in both systems is 7.0.1.1.

The user “rivera” is a member of the “mqm” group, thus, it is an MQ administrator.

The active instance is running in Host-1:

rivera@cbeech: /var/mqm

$ strmqm -x QMMI1

WebSphere MQ queue manager 'QMMI1' starting.

5 log records accessed on queue manager 'QMMI1' during the log replay phase.

PPaaggee 44 ooff 4466

44

Log replay for queue manager 'QMMI1' complete.

Transaction manager state recovered for queue manager 'QMMI1'.

WebSphere MQ queue manager 'QMMI1' started.

$ dspmq -m QMMI1 -x

QMNAME(QMMI1) STATUS(Running)

 INSTANCE(cbeech) MODE(Active)

 INSTANCE(veracruz) MODE(Standby)

The standby instance is running in Host-2.

rivera@veracruz: /home/rivera

$ strmqm -x QMMI1

WebSphere MQ queue manager 'QMMI1' starting.

A standby instance of queue manager 'QMMI1' has been started. The active

instance is running elsewhere.

$ dspmq -m QMMI1 -x

QMNAME(QMMI1) STATUS(Running as standby)

 INSTANCE(cbeech) MODE(Active)

 INSTANCE(veracruz) MODE(Standby)

c) Create objects to facilitate the remote access via MQ Explorer and the test

scenarios

From the host that has the active instance, create the following objects.

The default port number for the MQ Listener is 1414.

$ runmqsc QueueManager

The following objects are needed to use MQ Explorer remotely

You may want to customize some of the attributes, such as QMNAME, CONNAME,

port number, etc.

DEFINE LISTENER(TCP.LISTENER) TRPTYPE(TCP) CONTROL(QMGR) PORT(1414)

START LISTENER(TCP.LISTENER)

DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

The following statements are needed for the test scenarios.

DEFINE QLOCAL(SOURCE)

PPaaggee 55 ooff 4466

55

DEFINE QLOCAL(TARGET)

END

d) MQ client and samples

The MQ clients to be tested are:

d.1) MQ 6.0.2.8 from Linux

Samples compiled under MQ 6.0.2.8 from Linux were copied into a host with MQ

7.0.1.1 to test the capability of automatic client reconnection without the need for

rebuild.

The tests were successful.

d.2) MQ 7.0.1.1 from Linux

1) Traditional put/get, pub/sub

amqsputc – put message using client mode (not bindings)

amqsgutc – get message using client mode (not bindings)

amqspub – publish

amqssub – subscribe

2) High availability sample programs

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.

mq.csqzal.doc/fg17235_.htm

WebSphere MQ 7.0.1

> High availability sample programs

“The amqsghac, amqsphac and amqsmhac high availability sample programs use

automated client reconnection to demonstrate recovery following the failure of a

queue manager.

“

The 3 sample programs are:

PUT:

amqsphac queueName [qMgrName]

 * Puts a sequence of messages to a queue with a 2-second delay between each

message.

 * Displays events sent to its event handler.

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg17235_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzal.doc/fg17235_.htm

PPaaggee 66 ooff 4466

66

 * No sync point is used.

 * Reconnection can be made to any queue manager.

GET:

amqsghac queueName [qMgrName]

 * Gets messages from a queue.

 * Displays events sent to its event handler.

 * No sync point is used.

 * Reconnection can be made to any queue manager.

MOVE:

amqsmhac -s sourceQueueName -t targetQueueName [-m qMgrName] [-w

waitInterval]

 * Copies messages from one queue to another under sync point, with a default wait

interval of 15 minutes after the last message that is received before the program

finishes.

 * Sync point is used.

 * Reconnection can be made only to the same queue manager.

e) Several ssh/telnet/command prompt windows are needed

The scenarios are run from a Windows XP machine, which has MQ 7.0.1.1 and uses the

tool PuTTy to have remote connections via ssh and/or telnet.

Several ssh/telnet/command prompt windows are needed for the scenarios.

Each window will be numbered in the scenarios to help keep track of the tasks done.

Window-1: host veracruz - start/stop QMgr

Window-2: host veracruz - Put – samples: amqsphac, amqsputc, amqspub

Window-3: host veracruz - Get – samples: amqsghac, amqsgetc, amqssub

Window-4: host veracruz - Move msg from one Q to another - amqsmhac

Window-5: host aemtux1 - start/stop QMgr

Window-6: host cbeech - start/stop QMgr

Window-7: host Windows XP – client samples

f) Shell script in Unix to modify the command prompt to help track the purpose for

each window

To help track the proper window while performing the scenario, the command

prompt (specified by the PS1 environment variable in Unix) can be modified by a

script to indicate the user name, hostname and window number.

You can create this script in the “bin” directory of your userid.

PPaaggee 77 ooff 4466

77

Change the permissions to execute.

 chmod 755 set-windowid.ksh

Then run the script with a leading dot “.” And space to “source-in” the environment

variables. For example, the following will be for window number 1:

Window-1 (login as MQ administrator called “rivera” in host “veracruz):

. set-windowid.ksh 1

The result will be a command prompt that looks like this:

 rivera@veracruz.Window_1: /home/rivera

< begin script >

Usage: . set-window-id.ksh windowID

Purpose: To modify the PS1 prompt to indicate:

username@hostname.Window_ID current_directory

For example:

rivera@veracruz.Window_1: /home/rivera

if ["$#" -eq 1]

then

 export WID=$1

 export SITE=`/bin/hostname -s`

export PS1='$USER@$SITE.Window_$WID: $PWD \$ '

else

 echo "need to provide a single integer"

fi

< end script >

PPaaggee 88 ooff 4466

88

+++

+++ Chapter 2: Using the “High availability sample programs” (C code) – single queue

manager

+++

The scenarios in this section show the basic automatic client reconnection capability

of MQ V7 clients when working with a single queue manager.

After the clients are connected and exchanging messages, the queue manager is

terminated with the flag “-r” to allow the reconnection. Then the queue manager is

re-started and the clients automatically reconnect.

Using High availability sample programs

See Chapter 1 for more details on these samples.

PUT: amqsphac queueName [qMgrName]

GET: amqsghac queueName [qMgrName]

MOVE: amqsmhac -s sourceQueueName -t targetQueueName [-m qMgrName] [-w

waitInterval]

The following figure shows how these 3 samples work together.

SOURCE and TARGET are the queues that are used.

Customization of the Client Channel Definition Table (CCDT)

In the both hosts run the following runmqsc commands.

This complements / replaces the runmqsc commands mentioned earlier in this

document.

PPaaggee 99 ooff 4466

99

DEFINE CHANNEL(CHANNEL1) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(CHANNEL2) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

 CONNAME('aemtux1.z.ibm.com(1421)') QMNAME(ANGEL_TUX1) REPLACE

DEFINE CHANNEL(CHANNEL2) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

 CONNAME('veracruz.y.ibm.com(1414)') QMNAME(QM_VER) REPLACE

END

Scenario 2-A) Testing reconnect to a single standalone queue manager (using CCDT

file)

- Open 4 windows in the local host (Host-A): Window-1 thru Window-4

- Open 1 window for the remote host (Host-B): Window-5

++ Stop the local queue manager and start the remote queue manager, to confirm

that the samples need to access the remote queue manager.

- In Window-1 veracruz:

Login as an MQ admin:

 endmqm -i QM_VER

- In Window-5 aemtux1:

Login as an MQ admin:

 strmqm ANGEL_TUX1

- In Window-1 for the local host (Host-A), verify that AMQCLCHL.TAB client channel

definition table (CCDT) file is available in the default location:

$ ls -l /var/mqm/qmgrs/QM_VER/@ipcc/AMQCLCHL.TAB

-rw-rw---- 1 mqm mqm 2030 2010-01-26 08:13

/var/mqm/qmgrs/QM_VER/@ipcc/AMQCLCHL.TAB

- In each of the windows in Host-A, export the environment variable MQCHLLIB to the

path to the AMQCLCHL.TAB client channel definition table (CCDT) file:

export MQCHLLIB=/var/mqm/qmgrs/QM_VER/@ipcc/

Note:

The default value for the related environment variable is:

 export MQCHLTAB=AMQCLCHL.TAB

Because we are keeping this name, there is no need to explicitly define this variable.

PPaaggee 1100 ooff 4466

1100

Ensure to unset these variables, just in case it was defined in the profile:

 unset MQSERVER

 unset MQCLNTCF

Note:

To unset a variable in Windows specify a null string to the variable via “=”:

 set MQSERVER=

The following will be explained later on. Ensure to comment out the statements for:

 ServerConnectionParms

… in the Client configuration file:

 /var/mqm/mqclient.ini

++ Start the samples in Host-A

Notice that the queue manager name is NOT specified in the samples.

- In Window-2 (put: amqsphac) issue:

$ amqsphac SOURCE ANGEL_TUX1

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

message <Message 2>

message <Message 3>

- In Window-4 (move: amqsmhac) issue:

$ amqsmhac -s SOURCE -t TARGET -m ANGEL_TUX1

Sample AMQSMHA0 start

- In Window-3 (get: amqsghac) issue:

$ amqsghac TARGET ANGEL_TUX1

Sample AMQSGHAC start

message <Message 1>

message <Message 2>

message <Message 3>

- Wait for 15 seconds and observe the text in each window.

- In Window-5 of the remote Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

PPaaggee 1111 ooff 4466

1111

Note: In case that you need to expedite the reconnection process, you may need to

use the -i flag (immediate). Notice that the AMQ9604 error will be shown for each

connected client.

$ endmqm -r -i ANGEL_TUX1

Waiting for queue manager 'ANGEL_TUX1' to end.

WebSphere MQ queue manager 'ANGEL_TUX1' ending.

01/21/2010 12:49:40 PM AMQ9604: Channel 'SYSTEM.DEF.SVRCONN' terminated

unexpectedly

01/21/2010 12:49:40 PM AMQ9604: Channel 'SYSTEM.DEF.SVRCONN' terminated

unexpectedly

01/21/2010 12:49:40 PM AMQ9604: Channel 'SYSTEM.DEF.SVRCONN' terminated

unexpectedly

WebSphere MQ queue manager 'ANGEL_TUX1' ended.

- Observe the text in each window and verify that each program is trying to

reconnect.

- Window-2 (put: amqsphac):

message <Message 75>

13:16:47 : EVENT : Connection Reconnecting (Delay: 241ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 145ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 2462ms)

13:16:51 : EVENT : Connection Reconnecting (Delay: 4652ms)

13:16:56 : EVENT : Connection Reconnecting (Delay: 8558ms)

13:17:04 : EVENT : Connection Reconnecting (Delay: 18847ms)

- Window-4 (move: amqsmhac):

13:16:47 : EVENT : Connection Reconnecting (Delay: 58ms)

13:16:47 : EVENT : Connection Reconnecting (Delay: 1032ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 2020ms)

13:16:50 : EVENT : Connection Reconnecting (Delay: 4601ms)

13:16:55 : EVENT : Connection Reconnecting (Delay: 8256ms)

13:17:03 : EVENT : Connection Reconnecting (Delay: 16628ms)

- Window-3 (get: amqsghac):

message <Message 75>

13:16:47 : EVENT : Connection Reconnecting (Delay: 245ms)

13:16:47 : EVENT : Connection Reconnecting (Delay: 1300ms)

13:16:49 : EVENT : Connection Reconnecting (Delay: 2439ms)

13:16:51 : EVENT : Connection Reconnecting (Delay: 4306ms)

13:16:55 : EVENT : Connection Reconnecting (Delay: 8920ms)

13:17:04 : EVENT : Connection Reconnecting (Delay: 17981ms)

PPaaggee 1122 ooff 4466

1122

- In Window-1 look at the /var/mqm/errors/AMQERR01.LOG file:

Notice the following errors:

01/26/2010 12:30:36 PM - Process(29626.3) User(rivera) Program(amqsghac)

 Host(veracruz)

AMQ9524: Remote queue manager unavailable.

EXPLANATION:

Channel 'CHANNEL1' cannot start because the remote queue manager is not

currently available.

ACTION:

Either start the remote queue manager, or retry the operation later.

01/26/2010 12:30:37 PM - Process(29624.4) User(rivera) Program(amqsphac)

 Host(veracruz)

AMQ9202: Remote host 'aemtux1 (9.42.131.12) (1421)' not available, retry later.

EXPLANATION:

The attempt to allocate a conversation using TCP/IP to host 'aemtux1

(9.42.131.12) (1421)' was not successful. However the error may be a

transitory one and it may be possible to successfully allocate a TCP/IP

conversation later.

ACTION:

Try the connection again later. If the failure persists, record the error

values and contact your systems administrator. The return code from TCP/IP is

111 (X'6F'). The reason for the failure may be that this host cannot reach the

destination host. It may also be possible that the listening program at host

'aemtux1 (9.42.131.12) (1421)' was not running. If this is the case, perform

the relevant operations to start the TCP/IP listening program, and try again

01/26/2010 12:30:40 PM - Process(29626.2) User(rivera) Program(amqsghac)

 Host(veracruz)

AMQ9209: Connection to host '9.42.131.12(1421)' closed.

EXPLANATION:

An error occurred receiving data from '9.42.131.12(1421)' over TCP/IP. The

connection to the remote host has unexpectedly terminated.

ACTION:

Tell the systems administrator.

- In Window-5 of the remote Host-B, restart the queue manager:

$ strmqm ANGEL_TUX1

WebSphere MQ queue manager 'ANGEL_TUX1' starting.

35 log records accessed on queue manager 'ANGEL_TUX1' during the log replay phase.

PPaaggee 1133 ooff 4466

1133

Log replay for queue manager 'ANGEL_TUX1' complete.

Transaction manager state recovered for queue manager 'ANGEL_TUX1'.

WebSphere MQ queue manager 'ANGEL_TUX1' started.

- Observe the text in each window and verify that each program reconnected.

Notice that the MQ error log (AMQERR01.LOG) for the queue manager will have some

messages:

/var/mqm/qmgrs/ANGEL_TUX1/errors

01/26/2010 12:32:43 PM - Process(26813.7) User(rivera) Program(amqrmppa)

 Host(aemtux1)

AMQ9209: Connection to host 'dyn452040 (9.37.249.176)' closed.

EXPLANATION:

An error occurred receiving data from 'dyn452040 (9.37.249.176)' over TCP/IP.

The connection to the remote host has unexpectedly terminated.

ACTION:

Tell the systems administrator.

01/26/2010 12:32:46 PM - Process(26813.8) User(rivera) Program(amqrmppa)

 Host(aemtux1)

AMQ9209: Connection to host 'dyn452040 (9.37.249.176)' closed.

EXPLANATION:

An error occurred receiving data from 'dyn452040 (9.37.249.176)' over TCP/IP.

The connection to the remote host has unexpectedly terminated.

ACTION:

Tell the systems administrator.

- Window-2 (put: amqsphac):

13:17:23 : EVENT : Connection Reconnected

message <Message 76>

13:17:23 : EVENT : Connection Broken

message <Message 77>

message <Message 78>

message <Message 79>

- Window-4 (move: amqsmhac):

13:17:20 : EVENT : Connection Reconnected

13:17:20 : EVENT : Connection Broken

PPaaggee 1144 ooff 4466

1144

- Window-3 (get: amqsghac):

13:17:22 : EVENT : Connection Reconnected

13:17:23 : EVENT : Connection Broken

message <Message 76>

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 1155 ooff 4466

1155

Scenario 2-B) Testing reconnect to a single standalone queue manager (using

MQSERVER)

This is a variation of Scenario 2-A, but using the MQSERVER variable instead of the

CCDT file.

++ In each of the windows used in Scenario 2-A, do the following 2 tasks:

- Unset the environment variables that reference the CCDT file:

unset MQCHLLIB

unset MQCHLTAB

unset MQCLNTCF

- Set the following environment variable to point to a remote queue manager:

export MQSERVER=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

Notes on using single quotes with MQSERVER:

1) In Unix, it is necessary to use single quotes around hostname(port) as shown above,

or around the entire string:

 export MQSERVER='SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)'

2) In Windows, do not include the single quotes:

 set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

3) For more examples of MQSERVER, see “Appendix: Troubleshooting”.

++ Start the samples in Host-A (veracruz).

++ Repeat the same steps as in Scenario 2-A.

Notice that because MQSERVER specifies the access to a particular queue manager,

there is no need to add it to the samples:

- In Window-2 (put: amqsphac) issue:

$ amqsphac SOURCE

- In Window-4 (move: amqsmhac) issue:

$ amqsmhac -s SOURCE -t TARGET

- In Window-3 (get: amqsghac) issue:

$ amqsghac TARGET

- Wait for 15 seconds and observe the text in each window.

PPaaggee 1166 ooff 4466

1166

- In Window-5 for the remote Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

$ endmqm -r -i ANGEL_TUX1

- Continue with the rest of the steps of the scenario 2-A:

Re-start the queue manager and observe the reconnection.

Note: The results should be the same as in Scenario 2-A.

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 1177 ooff 4466

1177

Scenario 2-C) Testing reconnect to a single standalone queue manager (using client

configuration file)

This is a variation of Scenario 2-A and Scenario 2-B. The main difference is neither

the CCDT file nor the MQSERVER variable will be used. Instead, the WebSphere MQ

client configuration file will be used. This is a feature introduced in MQ V7.

++ Edit the client configuration file:

In the local Host-A (veracruz), modify the client configuration file (the default

location is shown below):

 /var/mqm/mqclient.ini

This file can be also specified by the environment variable: MQCLNTCF

Add the following stanza (which will act as having the MQSERVER environment

variable being set) and allowing the reconnectable clients to reconnect.

CHANNELS:

 DefRecon=YES

 ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

Note: Do NOT use single quotes around the connection name! The MQSERVER variable

in Unix requires them, but they do NOT work inside the client configuration file.

 ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

The above does NOT work and you will get the return code 2538

(MQRC_HOST_NOT_AVAILABLE):

MQCONNX ended with reason code 2538

- In each of the MQ client windows used in Scenario A, unset the environment

variables that reference the CCDT file and MQSERVER. By not using either of these

variables, then the Client Configuration file will be used.

unset MQCHLLIB

unset MQCHLTAB

unset MQSERVER

++ Start the samples in the local Host-A (veracruz).

- Repeat the same steps as in Scenario 2-B.

- In Window-2 (put: amqsphac) issue:

$ amqsphac SOURCE

PPaaggee 1188 ooff 4466

1188

- In Window-4 (move: amqsmhac) issue:

$ amqsmhac -s SOURCE -t TARGET

- In Window-3 (get: amqsghac) issue:

$ amqsghac TARGET

- Wait for 15 seconds and observe the text in each window.

- In Window-5 for the Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

$ endmqm -r -i ANGEL_TUX1

- Continue with the rest of the steps of the scenario 2-B:

Re-start the queue manager and observe the reconnection.

Note: The results should be the same as in Scenario 2-B.

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 1199 ooff 4466

1199

+++

+++ Chapter 3: Using the “High availability sample programs” (C code) – 2 separate

queue managers

+++

The scenarios in this section are similar to the previous chapter, with the exception

that 2 queue managers will be used (instead of one).

Two variations will be explored:

- Using 2 standalone queue managers.

- Using a multi-instance queue manager and doing a switchover from the active to the

standby instance.

Customization of the Client Channel Definition Table

In the local host (Host-A, “veracruz” in these scenarios), run the following commands,

to complement/replace the runmqsc commands mentioned earlier in this document.

- In Window-1 veracruz:

$ strmqm QM_VER

Note that in CONNAME only a single pair of single quotes should be used to delimit the

WHOLE string which includes one or more hostname(port) tokens.

Correct: CONNAME('ipaddr1(1414),ipaddr2(1414)')

Incorrect: CONNAME('ipaddr1(1414) ', 'ipaddr2(1414)')

In the incorrect sample, notice that each hostname(port) is surrounded by single

quotes.

$ runmqsc QM_VER

DEFINE CHANNEL(CHANNEL1) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

CONNAME('aemtux1.z.ibm.com(1421),+

veracruz.y.ibm.com(1414)') QMNAME(ANGEL_TUX1) REPLACE

END

PPaaggee 2200 ooff 4466

2200

Scenario 3-A) Testing reconnect to another standalone queue manager (using

MQSERVER) – Failure of sample with sync point

The local Host-A “veracruz” will be used to run the client and the 2nd queue manager.

The remote Host-B “aemtux1” will be used to run the first queue manager.

- Open 4 windows in the local host (Host-A): Window-1 thru Window-4

- Open 1 window for the remote host (Host-B): Window-5

++ Stop the local queue manager and start the remote queue manager, to confirm

that the samples need to access the remote queue manager (1st queue manager).

- Login to Host-A (veracruz):

 endmqm -i QM_VER

- Login to Host-B (aemtux1):

 strmqm ANGEL_TUX1

- In each of the 4 windows in Host-A, set the following environment variable to point

to the 2 queue managers (in a single line):

export

MQSERVER=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421),veracruz.y.ibm.co

m(1414)'

- Unset the other variables:

unset MQCHLLIB

 unset MQCLNTCF

- Comment out the “ServerConnectionParms” entries in the Client configuration file:

/var/mqm/mqclient.ini

++ Start the samples in Host-A

- In Window-2 (put: amqsphac) issue:

$ amqsphac SOURCE

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

message <Message 2>

message <Message 3>

PPaaggee 2211 ooff 4466

2211

- In Window-4 (move: amqsmhac) issue:

$ amqsmhac -s SOURCE -t TARGET

Sample AMQSMHA0 start

- In Window-3 (get: amqsghac) issue:

$ amqsghac TARGET

Sample AMQSGHAC start

message <Message 1>

message <Message 2>

message <Message 3>

- Wait for 15 seconds and observe the text in each window.

- In Window-5 of the remote Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

$ endmqm -r -i ANGEL_TUX1

- Observe the text in each window and verify that each program is trying to

reconnect.

- Window-2 (put: amqsphac):

message <Message 75>

13:16:47 : EVENT : Connection Reconnecting (Delay: 241ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 145ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 2462ms)

13:16:51 : EVENT : Connection Reconnecting (Delay: 4652ms)

13:16:56 : EVENT : Connection Reconnecting (Delay: 8558ms)

13:17:04 : EVENT : Connection Reconnecting (Delay: 18847ms)

- Window-4 (move: amqsmhac):

13:16:47 : EVENT : Connection Reconnecting (Delay: 58ms)

13:16:47 : EVENT : Connection Reconnecting (Delay: 1032ms)

13:16:48 : EVENT : Connection Reconnecting (Delay: 2020ms)

13:16:50 : EVENT : Connection Reconnecting (Delay: 4601ms)

13:16:55 : EVENT : Connection Reconnecting (Delay: 8256ms)

13:17:03 : EVENT : Connection Reconnecting (Delay: 16628ms)

- Window-3 (get: amqsghac):

message <Message 75>

13:16:47 : EVENT : Connection Reconnecting (Delay: 245ms)

PPaaggee 2222 ooff 4466

2222

13:16:47 : EVENT : Connection Reconnecting (Delay: 1300ms)

13:16:49 : EVENT : Connection Reconnecting (Delay: 2439ms)

13:16:51 : EVENT : Connection Reconnecting (Delay: 4306ms)

13:16:55 : EVENT : Connection Reconnecting (Delay: 8920ms)

13:17:04 : EVENT : Connection Reconnecting (Delay: 17981ms)

- In Window-1 (for Host-A), start the 2nd queue manager:

$ strmqm QM_VER

- Observe the text in each window and verify that each program reconnected.

The samples in Window-2 (Put) and Window-3 (Get) worked fine and reconnected.

NOTE!!!

However, for Window-4 (amqsmhac – transfer via sync point), after stopping the

remote queue manager and starting the local queue manager to force a reconnect,

the following return code was issued: 2548

The reason is that this sample uses a sync point and this is not supported during

reconnects!

- Window-2 (put: amqsphac):

13:17:23 : EVENT : Connection Reconnected

message <Message 76>

13:17:23 : EVENT : Connection Broken

message <Message 77>

message <Message 78>

message <Message 79>

- Window-4 (move: amqsmhac):

15:40:17 : EVENT : Connection Reconnecting (Delay: 151ms)

15:40:19 : EVENT : Connection Reconnecting (Delay: 0ms)

15:40:19 : EVENT : Connection Reconnecting (Delay: 2165ms)

15:40:21 : EVENT : Connection Reconnecting (Delay: 4747ms)

15:40:26 : EVENT : Reconnection failed

MQGET ended with reason code 2548

MQBACK ended with reason code 2548

MQDISC ended with reason code 2548

Sample AMQSMHA0 end

PPaaggee 2233 ooff 4466

2233

$ mqrc 2548

 2548 0x000009f4 MQRC_RECONNECT_FAILED

- Window-3 (get: amqsghac):

13:17:22 : EVENT : Connection Reconnected

13:17:23 : EVENT : Connection Broken

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 2244 ooff 4466

2244

Scenario 3-B) VARIATION of Scenario 3-A: Using only the put and get samples (no sync

point)

This scenario explores a variation that does not use the sample that employs sync-

point.

Because an application (sample amqsmhac) that uses syncpoint cannot be

automatically reconnected as shown in Scenario 3-A, the following variation will be

explored:

The sample amqsphac will put a message into SOURCE and the sample amqsghac will

get the message from SOURCE. In the previous scenario, the get action was on the

TARGET queue.

The remote queue manager ANGEL_TUX1 is running.

The local queue manager QM_VER is stopped.

- In Window-2 (put: amqsphac):

$ amqsphac SOURCE

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

>> These messages are being placed into the remote queue manager ANGEL_TUX1

into queue SOURCE:

message <Message 2>

message <Message 3>

message <Message 4>

message <Message 5>

PPaaggee 2255 ooff 4466

2255

- Window-4 (move: amqsmhac): not used

The sample uses sync point and it can only reconnect to the same original queue

manager.

- In Window-3 (get: amqsghac)

NOTICE that the queue is SOURCE (not TARGET)

$ amqsghac SOURCE

Sample AMQSGHAC start

message <Message 1>

>> These messages are being read from the queue SOURCE from remote queue

manager ANGEL_TUX1

message <Message 2>

message <Message 3>

message <Message 4>

message <Message 5>

- Wait for 15 seconds and observe the text in each window.

- In Window-5 of the remote Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

$ endmqm -r -i ANGEL_TUX1

- Observe the text in each window and verify that each program is trying to

reconnect.

- Window-2 (put: amqsphac):

message <Message 7>

15:16:54 : EVENT : Connection Reconnecting (Delay: 209ms)

15:16:57 : EVENT : Connection Reconnecting (Delay: 0ms)

15:16:57 : EVENT : Connection Reconnecting (Delay: 2247ms)

15:16:59 : EVENT : Connection Reconnecting (Delay: 4646ms)

15:17:04 : EVENT : Connection Reconnecting (Delay: 8069ms)

- Window-3 (get:amqsghac):

message <Message 7>

15:16:54 : EVENT : Connection Reconnecting (Delay: 90ms)

15:16:57 : EVENT : Connection Reconnecting (Delay: 0ms)

15:16:57 : EVENT : Connection Reconnecting (Delay: 2348ms)

15:16:59 : EVENT : Connection Reconnecting (Delay: 4671ms)

PPaaggee 2266 ooff 4466

2266

15:17:04 : EVENT : Connection Reconnecting (Delay: 9747ms)

- In Window-1 of Host-A, restart the 2nd queue manager:

$ strmqm QM_VER

- Observe the text in each window and verify that each program reconnected.

- Window-2 (put: amqsphac):

15:17:04 : EVENT : Connection Reconnecting (Delay: 8069ms)

15:17:12 : EVENT : Connection Reconnected

message <Message 8>

15:17:13 : EVENT : Connection Broken

>> These messages are being placed into the 2nd queue manager QM_VER into queue

SOURCE:

message <Message 9>

message <Message 10>

message <Message 11>

message <Message 12>

- Window-3 (get:amqsghac):

15:17:04 : EVENT : Connection Reconnecting (Delay: 9747ms)

15:17:13 : EVENT : Connection Reconnected

15:17:14 : EVENT : Connection Broken

>> These messages are being read from the queue SOURCE from the 2nd queue

manager QM_VER

message <Message 8>

message <Message 9>

message <Message 10>

message <Message 11>

message <Message 12>

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 2277 ooff 4466

2277

 Scenario 3-C) Testing reconnect to another standalone queue manager, no sync point

(using client configuration file)

This is a variation of Scenario 3-B. The main difference is that the CCDT file nor the

MQSERVER variable will be used. Instead, the WebSphere MQ client configuration file

will be used.

++ Edit the client configuration file in the local host (Host-A):

In the local Host-A (veracruz), modify the client configuration file:

 /var/mqm/mqclient.ini

Or the file specified by the environment variable MQCLNTCF.

Add the following stanza (which will act as having the MQSERVER environment

variable being set) and allowing the reconnectable clients to reconnect.

CHANNELS:

 DefRecon=YES

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421),veracr

uz.y.ibm.com(1414)

WARNING:

The format is: ChannelName/TransportType/ConnectionName where

ConnectionName as a comma separated list of names of machines.

Do NOT include the single quotes around the queue managers. The single quotes are

ok for MQSERVER in Unix, but it is NOT ok for the mqclient.ini.

Incorrect (using single quotes like in MQSERVER):

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/’aemtux1.z.ibm.com(1421),verac

ruz.y.ibm.com(1414)’

The above does NOT work and you will get the return code 2538

(MQRC_HOST_NOT_AVAILABLE):

MQCONNX ended with reason code 2538

- In each of the windows used in Scenario 3-C above, unset the environment variables

that reference the CCDT file and MQSERVER:

unset MQCHLLIB

unset MQCHLTAB

unset MQSERVER

PPaaggee 2288 ooff 4466

2288

++ Stop the local queue manager and start the remote queue manager:

- Login to Host-A (veracruz):

 endmqm -i QM_VER

- Login to Host-B (aemtux1):

 strmqm ANGEL_TUX1

++ Start the samples in the local Host-A (veracruz).

++ Repeat the same steps as in Scenario 3-B

- In Window-2 (put: amqsphac):

$ amqsphac SOURCE

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

- In Window-3 (get: amqsghac)

NOTICE that the queue is SOURCE (not TARGET)

$ amqsghac SOURCE

Sample AMQSGHAC start

message <Message 1>

- Wait for 15 seconds and observe the text in each window.

- In Window-5 of the remote Host-B, stop the queue manager and allow the clients to

reconnect (flag: -r).

$ endmqm -r -i ANGEL_TUX1

- Observe the text in each window and verify that each program is trying to

reconnect.

- Window-2 (put: amqsphac):

message <Message 6>

15:47:05 : EVENT : Connection Reconnecting (Delay: 134ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 0ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 2008ms)

15:47:09 : EVENT : Connection Reconnecting (Delay: 4768ms)

PPaaggee 2299 ooff 4466

2299

- Window-3 (get:amqsghac):

message <Message 6>

15:47:05 : EVENT : Connection Reconnecting (Delay: 43ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 0ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 2352ms)

15:47:10 : EVENT : Connection Reconnecting (Delay: 4078ms)

- In Window-1 of Host-A, restart the 2nd queue manager:

$ strmqm QM_VER

- Observe the text in each window and verify that each program reconnected.

- Window-2 (put: amqsphac):

15:47:09 : EVENT : Connection Reconnecting (Delay: 4768ms)

15:47:14 : EVENT : Connection Reconnected

message <Message 7>

15:47:14 : EVENT : Connection Broken

message <Message 8>

message <Message 9>

message <Message 10>

- Window-3 (get:amqsghac):

15:47:10 : EVENT : Connection Reconnecting (Delay: 4078ms)

15:47:14 : EVENT : Connection Reconnected

15:47:14 : EVENT : Connection Broken

message <Message 7>

message <Message 8>

message <Message 9>

message <Message 10>

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 3300 ooff 4466

3300

++

+++ Chapter 4: Using the “High availability sample programs” (C code) – multi-

instance queue managers

++

This is similar to Scenario 3-C):

Testing reconnect to another standalone queue manager, no sync point (using client

configuration file)

The main difference is that instead of using 2 separate queue managers, a pair of

multi-instance queue managers will be used (active and standby)

++ Edit the client configuration file in the local host (Host-A):

In the local Host-A (veracruz), modify the client configuration file:

 /var/mqm/mqclient.ini

Or the file specified by the environment variable MQCLNTCF.

Add the following stanza (which will act as having the MQSERVER environment

variable being set) and allowing the reconnectable clients to reconnect.

CHANNELS:

 DefRecon=YES

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/cbeech.x.ibm.com(1421),veracru

z.y.ibm.com(1421)

WARNING:

The format is: ChannelName/TransportType/ConnectionName where

ConnectionName as a comma separated list of names of machines.

Do NOT include the single quotes around the queue managers. The single quotes are

ok for MQSERVER in Unix, but it is NOT ok for the mqclient.ini.

Incorrect (using single quotes like in MQSERVER):

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/’aemtux1.z.ibm.com(1421),verac

ruz.y.ibm.com(1414)’

The above does NOT work and you will get the return code 2538

(MQRC_HOST_NOT_AVAILABLE):

MQCONNX ended with reason code 2538

PPaaggee 3311 ooff 4466

3311

Customization of the Client Channel Definition Table (CCDT)

Although we are not going to use the CCDT file in this scenario, this would be the

changes to be made via runqmsc

This complements / replaces the runmqsc commands mentioned earlier in this

document.

DEFINE CHANNEL(CHANNEL3) CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(CHANNEL3) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +

 CONNAME('cbeech.x.ibm.com(1421), +

veracruz.y.ibm.com(1421)') QMNAME(QMMI1) REPLACE

END

The location of the CCDT is:

/mqexport/701/data/QMMI1/@ipcc/AMQCLCHL.TAB

- In each of the windows used in Scenario 3-C above, unset the environment variables

that reference the CCDT file and MQSERVER:

unset MQCHLLIB

unset MQCHLTAB

unset MQSERVER

++ Start the Multi-Instance queue managers:

- Login to Host-A (veracruz):

$ strmqm -x QMMI1

- Wait until this instance is started. It will be the Active one.

- Login to Host-C (cbeech):

$ strmqm -x QMMI1

- In Host-C, verify the status:

$ dspmq -x -m QMMI1

QMNAME(QMMI1) STATUS(Running as standby)

 INSTANCE(veracruz) MODE(Active)

 INSTANCE(cbeech) MODE(Standby)

PPaaggee 3322 ooff 4466

3322

- In Host-A, verify the status:

$ dspmq -x -m QMMI1

QMNAME(QMMI1) STATUS(Running)

 INSTANCE(veracruz) MODE(Active)

 INSTANCE(cbeech) MODE(Standby)\

- Stop the queue managers used in the previous scenarios.

In case that we have not done properly all the configuration changes, if these queue

managers are running, they may give us a false reading.

- Login to Host-A (veracruz):

 endmqm -i QM_VER

- Login to Host-B (aemtux1):

 endmqm -i ANGEL_TUX1

++ Start the samples in the local Host-A (veracruz).

- In Window-2 (put: amqsphac):

$ amqsphac SOURCE

Sample AMQSPHAC start

target queue is SOURCE

message <Message 1>

- In Window-3 (get: amqsghac)

$ amqsghac SOURCE

Sample AMQSGHAC start

message <Message 1>

- Wait for 15 seconds and observe the text in each window.

- In Window-1, stop the active instance of the queue manager and perform a

switchover:

$ endmqm -s -i QMMI1

Waiting for queue manager 'QMMI1' to end.

Waiting for queue manager 'QMMI1' to end.

Waiting for queue manager 'QMMI1' to end.

Waiting for queue manager 'QMMI1' to end.

PPaaggee 3333 ooff 4466

3333

Quiesce request accepted. The queue manager will stop when all outstanding work

is complete, permitting switchover to a standby instance.

- Observe the text in each window of the samples and verify that each program is

trying to reconnect.

- Window-2 (put: amqsphac):

message <Message 6>

15:47:05 : EVENT : Connection Reconnecting (Delay: 134ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 0ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 2008ms)

15:47:09 : EVENT : Connection Reconnecting (Delay: 4768ms)

- Window-3 (get:amqsghac):

message <Message 6>

15:47:05 : EVENT : Connection Reconnecting (Delay: 43ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 0ms)

15:47:07 : EVENT : Connection Reconnecting (Delay: 2352ms)

15:47:10 : EVENT : Connection Reconnecting (Delay: 4078ms)

- In Window-6 of the remote Host-C, issue the following command to display the

status.

Note: You may need to wait few seconds and then repeat the command, until you see

that this standby instance is now the Active one.

$ dspmq -x -m QMMI1

QMNAME(QMMI1) STATUS(Running)

 INSTANCE(cbeech) MODE(Active)

- Observe the text in each window and verify that each program reconnected.

- Window-2 (put: amqsphac):

15:47:09 : EVENT : Connection Reconnecting (Delay: 4768ms)

15:47:14 : EVENT : Connection Reconnected

message <Message 7>

15:47:14 : EVENT : Connection Broken

message <Message 8>

message <Message 9>

message <Message 10>

- Window-3 (get:amqsghac):

15:47:10 : EVENT : Connection Reconnecting (Delay: 4078ms)

15:47:14 : EVENT : Connection Reconnected

PPaaggee 3344 ooff 4466

3344

15:47:14 : EVENT : Connection Broken

message <Message 7>

message <Message 8>

message <Message 9>

message <Message 10>

- To stop the samples, press <Ctrl-C> in each of the windows.

PPaaggee 3355 ooff 4466

3355

++

+++ Chapter 5: Behavior of clients that are not explicitly enabled for automatic

reconnect (using client configuration file)

++

The sample “amqsputc” (put message) does not have source code that explicitly

enable the handling of the automatic reconnect.

The idea in these 2 Scenarios is to show you what the behavior is when the queue

manager is ending and is asking the connected clients to reconnect.

5-A: Using amqsputc that was compiled and linked with MQ 7.0.1 and running under

MQ 7.0.1

5-B: Using amqsputc that was compiled and linked with MQ 6 and was copied into a

machine that is running MQ 7.0.1.

These samples use the underlying MQI calls from the MQ dynamically-linked libraries

provided in MQ 7.0.1 and thus, these MQI calls have a default behavior of trying to

reconnect and to follow the instructions provided in the Client Configuration File

(mqclient.ini).

Note about not using amqsgetc:

The sample “amqsgetc” is too limiting for this scenario because it terminates after 30

seconds of inactivity, and in these scenarios, it takes more than 30 seconds do to the

switchover. Thus, the high availability sample “amqsghac” will be used instead, and

there is an advantage that we can observe the messages that indicate the

reconnection.

Scenario 5-A) Testing reconnect to another standalone queue manager, amqsputc and

amqsgetc (C-code), MQ 7.0.1

The scenario is similar to the scenario in Chapter 4, in which Multi-Instance queue

managers are specified for the automatic client reconnect.

The samples are the ones provided with MQ 7.0.1, that is, the source code for the

samples was compiled and linked under MQ 7.0.1.

The sample amqsputc was compiled and linked with MQ 7.0.1 and is running under MQ

7.0.1.

- Unset the environment variables that reference the CCDT file and MQSERVER:

unset MQCHLLIB

PPaaggee 3366 ooff 4466

3366

unset MQCHLTAB

unset MQSERVER

++ Ensure that the local client configuration file is properly set for 2 standalone

queue managers:

$ tail /var/mqm/mqclient.ini

CHANNELS:

 DefRecon=YES

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/cbeech.x.ibm.com(1421),veracru

z.y.ibm.com(1421)

++ Start the Multi-Instance queue managers:

- Login to Host-A (veracruz):

$ strmqm -x QMMI1

- Wait until this instance is started. It will be the Active one.

- Login to Host-C (cbeech):

$ strmqm -x QMMI1

++ Start the samples in the local Host-A (veracruz).

- In Window-2 (put: amqsputc).

Enter 3 short strings followed by Enter for each one: test1, test2 and test3

$ amqsputc SOURCE

Sample AMQSPUT0 start

target queue is SOURCE

test1

test2

test3

- In Window-3 (get: amqsghac)

$ amqsgetc SOURCE

Sample AMQSGHAC start

message <test1>

message <test2>

message <test3>

PPaaggee 3377 ooff 4466

3377

- Wait for 15 seconds and observe the text in each window.

- In Window-1, stop the active instance of the queue manager and perform a

switchover:

$ endmqm -s QMMI1

- Observe the text in each window of the samples and verify that each program is

trying to reconnect.

- Window-2 (put: amqsputc).

Enter 3 more messages:

Sample AMQSPUT0 start

target queue is SOURCE

test1

test2

test3

test4

test5

test6

- Window-3 (get:amqsputc):

Sample AMQSGHAC start

message <test1>

message <test2>

message <test3>

14:39:46 : EVENT : Connection Reconnecting (Delay: 172ms)

14:39:46 : EVENT : Connection Reconnecting (Delay: 1311ms)

14:39:47 : EVENT : Connection Reconnecting (Delay: 2213ms)

14:39:50 : EVENT : Connection Reconnecting (Delay: 4522ms)

14:39:54 : EVENT : Connection Reconnecting (Delay: 8654ms)

14:40:03 : EVENT : Connection Reconnecting (Delay: 18782ms)

14:40:22 : EVENT : Connection Reconnecting (Delay: 29246ms)

14:40:51 : EVENT : Connection Reconnecting (Delay: 33824ms)

- In Window-6 of the remote Host-C, issue the following command to display the

status.

Note: You may need to wait few seconds and then repeat the command, until you see

that this standby instance is now the Active one.

PPaaggee 3388 ooff 4466

3388

$ dspmq -x -m QMMI1

QMNAME(QMMI1) STATUS(Running)

 INSTANCE(cbeech) MODE(Active)

- Window-2 (put: amqsphac):

Enter 3 more messages:

Sample AMQSPUT0 start

target queue is SOURCE

test1

test2

test3

test4

test5

test6

test7

test8

test9

- Window-3 (get:amqsghac):

Notice that the messages “test4” thru “test6” where issued while there was a

switchover, and the rest of the messages were issued after the switchover.

Sample AMQSGHAC start

message <test1>

message <test2>

message <test3>

14:39:46 : EVENT : Connection Reconnecting (Delay: 172ms)

14:39:46 : EVENT : Connection Reconnecting (Delay: 1311ms)

14:39:47 : EVENT : Connection Reconnecting (Delay: 2213ms)

14:39:50 : EVENT : Connection Reconnecting (Delay: 4522ms)

14:39:54 : EVENT : Connection Reconnecting (Delay: 8654ms)

14:40:03 : EVENT : Connection Reconnecting (Delay: 18782ms)

14:40:22 : EVENT : Connection Reconnecting (Delay: 29246ms)

14:40:51 : EVENT : Connection Reconnecting (Delay: 33824ms)

14:41:25 : EVENT : Connection Reconnecting (Delay: 29937ms)

14:41:55 : EVENT : Connection Reconnected

14:41:55 : EVENT : Connection Broken

message <test4>

message <test5>

message <test6>

message <test7>

PPaaggee 3399 ooff 4466

3399

message <test8>

message <test9>

- To stop the samples, press <Ctrl-C> in each of the windows.

Scenario 5-B) Testing reconnect to another standalone queue manager, amqsputc and

amqsgetc (C-code), MQ 6

The scenario is similar to the Scenario 5-A.

The main difference is that the sample amqsputc was compiled and linked with MQ

6.0.2.8 and it was copied into a host that is running under MQ 7.0.1.

Note:

The scenario 5-B behaved exactly as in Scenario 5-A.

It proves that when a client that has been dynamically linked in MQ V6 and copied

into a host that uses the MQ client 7.0.1, it will behave with the default automatic

client reconnect.

PPaaggee 4400 ooff 4466

4400

+++

+++ Appendix A: Troubleshooting

+++

+++ A) If a client application is running without a specific queue manager name and

the environment variables for the CCDT or MQSERVER are not defined, and the client

configuration file is not set (or not configured properly), and there is no default

queue manager, then the following error message is displayed:

$ unset MQCHLLIB

$ unset MQCHLTAB

$ unset MQSERVER

$ amqsphac SOURCE

Sample AMQSPHAC start

MQCONNX ended with reason code 2538

Sample AMQSPHAC end

$ mqrc 2538

 2538 0x000009ea MQRC_HOST_NOT_AVAILABLE

+++ B) Specifying the hostname(port) in MQSERVER

B.1) In Unix, it is necessary to use single quotes around hostname(port):

 export MQSERVER=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

or around the entire string:

 export MQSERVER='SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)'

B.2) However, it might be confusing to see how the Bourne, Korn or Bash shells

display the value:

$ export MQSERVER=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

Notice that the output of echo does not show any single quotes

$ echo $MQSERVER

SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

rivera@veracruz: /home/rivera

Notice that the single quotes surround the entire string, not just hostname(port)

$ set | grep MQSERVER

MQSERVER='SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)'

PPaaggee 4411 ooff 4466

4411

B.3) If the single quotes are not used, then the following error will occur:

$ export MQSERVER=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

-bash: syntax error near unexpected token `('

B.4) In Windows, there is no need to use the single quotes around hostname(port):

B.4.a) Correct:

C:\> set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

C:\> set MQSERVER

MQSERVER=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

C:\> amqsputc SOURCE

Sample AMQSPUT0 start

target queue is SOURCE

test from Windows

Sample AMQSPUT0 end

B.4.b) Incorrect: using single quotes around hostname(port)

C:\> set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

C:\> amqsputc SOURCE

Sample AMQSPUT0 start

MQCONN ended with reason code 2538

C:\> mqrc 2538

 2538 0x000009ea MQRC_HOST_NOT_AVAILABLE

B.4.c) Incorrect: using single quotes entire string

C:\> set MQSERVER='SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)'

C:\> amqsputc SOURCE

Sample AMQSPUT0 start

MQCONN ended with reason code 2540

C:\> mqrc 2540

 2540 0x000009ec MQRC_UNKNOWN_CHANNEL_NAME

PPaaggee 4422 ooff 4466

4422

+++ C) Do not use single quotes around the connection name in the client

configuration file

The following is a correct way to specify the Channels stanza in mqclient.ini:

CHANNELS:

DefRecon=YES

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/aemtux1.z.ibm.com(1421)

Note: Do NOT use single quotes around the connection name! The MQSERVER variable

in Unix requires them, but they do NOT work inside the client configuration file.

 ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/'aemtux1.z.ibm.com(1421)'

Or in the case of multiple hostname(port) tokens:

ServerConnectionParms=SYSTEM.DEF.SVRCONN/TCP/’aemtux1.z.ibm.com(1421),verac

ruz.y.ibm.com(1414)’

The above does NOT work and you will get the return code 2538

(MQRC_HOST_NOT_AVAILABLE):

 MQCONNX ended with reason code 2538

+++ D) Applications that use sync point can perform automatic client reconnect only

for the same queue manager.

If a reconnectable application that uses sync point tries to reconnect to another

queue manager, then the reason code 2548 is generated:

15:40:21 : EVENT : Connection Reconnecting (Delay: 4747ms)

15:40:26 : EVENT : Reconnection failed

MQGET ended with reason code 2548

MQBACK ended with reason code 2548

MQDISC ended with reason code 2548

Sample AMQSMHA0 end

$ mqrc 2548

 2548 0x000009f4 MQRC_RECONNECT_FAILED

PPaaggee 4433 ooff 4466

4433

+++ E) An application that does not specify the automatic reconnect, then will not be

able to reconnect if the queue manager restarts:

$ amqsgetc SOURCE

MQGET ended with reason code 2009

MQCLOSE ended with reason code 2009

MQDISC ended with reason code 2009

Sample AMQSGET0 end

$ mqrc 2009

 2009 0x000007d9 MQRC_CONNECTION_BROKEN

+++ F) You have a CCDT with several channels and there is no default queue manager

for the host. You start the amqsphac sample and do not specify the queue manager

name.

$ amqsphac SOURCE

Sample AMQSPHAC start

MQCONNX ended with reason code 2539

Sample AMQSPHAC end

$ mqrc 2539

 2539 0x000009eb MQRC_CHANNEL_CONFIG_ERROR

This error generates an entry for AMQ9205 in the /var/mqm/errors MQ error log.

01/26/2010 12:26:48 PM - Process(29467.1) User(rivera) Program(amqsphac)

 Host(veracruz)

AMQ9205: The host name supplied is not valid.

EXPLANATION:

The supplied TCP/IP host name '' could not be resolved into a network address.

Either the name server does not contain the host, or the name server was not

available.

ACTION: Check the TCP/IP configuration on your host.

Solution:

Because the CCDT contains multiple channel entries and because there is no default

queue manager, then the MQ client application does not know which queue manager

to contact.

The solution is to specify the name of the queue manager when invoking the sample:

$ amqsphac SOURCE QM_VER

PPaaggee 4444 ooff 4466

4444

++

+++ Appendix B: Information about the MQ Client Configuration File

++

The MQ Client Configuration File was introduced in MQ V7.

Its functionality was extended in MQ 7.0.1 to incorporate the automatic client

reconnect feature.

For more information consult:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.

mq.csqzaf.doc/cs13350_.htm

WebSphere MQ client configuration file

“

The configuration features apply to all connections a client application makes to any

queue managers, rather than being specific to an individual connection to a queue

manager. Attributes relating to a connection to an individual queue manager can be

configured programmatically, for example by using an MQCD structure, or by using a

Client Channel Definition Table (CCDT).

“

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.

mq.csqzaf.doc/cs13360_.htm

Location of the client configuration file

The default file name is:

 mqclient.ini

The default location is:

On UNIX systems, the directory is:

 /var/mqm

On Windows® platforms you configure the environment variable MQ_FILE_PATH

during installation, to point at the installation directory. It is normally:

C:\Program Files\IBM\WebSphere MQ

The file can reside in a different directory or have a different name. The name and

location will be the specified by the environment variable:

 MQCLNTCF

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13350_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13350_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13360_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13360_.htm

PPaaggee 4455 ooff 4466

4455

The configuration changes needed for the reconnect scenarios need to reside in the

CHANNELS stanza of the client configuration file. For more details consult:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.

mq.csqzaf.doc/cs13370_.htm

CHANNELS stanza of the client configuration file

The following is a summary of the important variables:

ChannelDefinitionDirectory=path

The directory path to the file containing the client channel definition table.

On Windows the default is the WebSphere MQ installation directory, typically

C:\Program Files\IBM\WebSphere MQ: on Unix systems the default is /var/mqm.

This is equivalent to the MQCHLLIB environment parameter.

ChannelDefinitionFile=filename|AMQCLCHL.TAB

The name of the file containing the client channel definition table.

This is equivalent to the MQCHLTAB environment parameter.

DefRecon=NO|YES|QMGR|DISABLED

The DefRecon attribute provides an administrative option to enable client programs

to automatically reconnect, or to disable the automatic reconnection of a client

program that has been written to reconnect automatically.

NO - Unless overridden by MQCONNX, the client is not reconnected automatically.

YES - Unless overridden by MQCONNX, the client reconnects automatically.

QMGR - Unless overridden by MQCONNX, the client reconnects automatically, but only

to the same queue manager. The QMGR option has the same effect as

MQCNO_RECONNECT_Q_MGR.

DISABLED - Reconnection is disabled, even if requested by the client program using

the MQCONNX MQI call.

MQReconnectTimeout=TimeInSeconds

The timeout in seconds for retrying a client reconnection. The default value is 1800

seconds (30 minutes).

ServerConnectionParms

ServerConnectionParms specifies the location of the WebSphere MQ server and the

communication method to be used. It is a string of the format

ChannelName/TransportType/ConnectionName.

ConnectionName must be a fully-qualified network name.

ChannelName cannot contain the forward slash (⁄) character because this character

is used to separate the channel name, transport type, and connection name.

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13370_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaf.doc/cs13370_.htm

PPaaggee 4466 ooff 4466

4466

When ServerConnectionParms is used to define a client channel, a maximum message

length of 100 MB is used. Therefore the maximum message size in effect for the

channel is the value specified in the SVRCONN channel on the server.

This is equivalent to the MQSERVER environment parameter.

Specify ConnectionName as a comma separated list of names of machines for the

stated TransportType. Typically, only one machine name is required. You can provide

multiple machine names to configure multiple connections with the same properties.

The connections are tried in the order they are specified in the connection list until a

connection is successfully established. If no connection is successful, the client starts

retry processing. Connection lists are an alternative to queue manager groups to

configure connections for reconnectable clients.

+++ end +++

