
Enabling an IMS application as a web service provider
with SAML signed assertion using IMS Enterprise Suite
Version 2.2 SOAP Gateway
(z/OS version)

Contents

Overview... 1
Requirements .. 2
Contents of the sample ZIP file .. 2

General process... 3
Part I. Creating web service artifacts for your IMS application 4

1.1 Pre-generated sample artifacts ... 5
1.2 Generating the web service artifacts with Rational Developer for System z 5

Part 2. Deploying the generated artifacts.. 17
2.1 Deploying the XML converter driver to IMS Connect...................................... 18
2.2 Deploying the web service artifacts to the SOAP Gateway server.................... 19

Part 3. Setting up and enabling WS-Security for this web service 22
3.1 On the server side.. 22
3.2 On the client side ... 24

Part 4. Enabling client authentication over HTTPS communication............................ 28
Part 5. Creating and running the Java client application .. 33

5.1 Setting the PATH and CLASSPATH variables... 34
5.2 Compiling the Java client application.. 34
5.3 Running the Java application ... 34

Summary ... 36
Additional resources ... 37

Overview
With IBM® IMS™ Enterprise Suite SOAP Gateway, you can enable your IMS
application as a web service. Different types of client applications can submit SOAP
requests to IMS that drive the business logic of your IMS applications.
You can enable the web services security (WS-Security) feature to ensure that the
security credentials of the client application is validated each time a message is
submitted.

This sample guides you through the steps required to enable an IMS application as a web
service. This guide uses the IMS Phonebook sample application (IVTNO) to demonstrate

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 1
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

how to enable WS-Security SAML 2.0 signed assertion and how to create a client
application that sends messages via secure HTTPS communication (client authentication)
to the IMS Phonebook web service that is deployed on the SOAP Gateway server.

The Apache Axis2 web services framework supports multiple XML data-binding
approaches, such as XMLBeans, JiBX data binding, as well as the custom Axis Data
Binding (ADB) approach developed specifically for Axis2. This sample demonstrates
how to use the WSDL2Java tool that takes a WSDL document and generates fully
annotated Java code from which to implement a service by using the XMLBeans
approach.

Requirements
• IMS Enterprise Suite Version 2.2 SOAP Gateway
• IMS Version 11 or Version 12 with integrated IMS Connect
• The IMS Phonebook sample application files (included with this sample)
• IBM® Rational® Developer for System z™ Version 8.0.3.2 or later

• Optional: If you don't have access to the tool, the generated artifacts are
provided for you.

• Required: The FEK.SFEKLOAD data set for Rational® Developer for
System z must be added to the STEPLIB in the IMS Connect startup
procedure for the XML converter function to work.

• Apache Ant for compiling your client application from
http://ant.apache.org/bindownload.cgi. Store the downloaded ant.jar and ant-
launcher.jar file in a convenient location.
Note: This sample is tested with V1.8.2.

Contents of the sample ZIP file
The sample ZIP file that you downloaded includes the COBOL copybook for the
Phonebook sample application that will be enabled as a web service. The ZIP file also
includes the generated files from Rational Developer for System z V8.0.3.2 for your
reference in case you do not have access to the required version of Rational Developer
for System z Version.

Filename Description
Phonebook copybook and files that are generated by Rational Developer for System z
With WS-Security enabled (with SAML 2.0 Signed Assertion security token) scenario
IMSPHBK.cpy IMS Phonebook application copybook
IMSPHBK.wsdl WSDL file (generated by RDz V8.0.3.2)
IMSPHBK.xml Correlator XML file (generated by RDz

V8.0.3.2)
IMSPHBKD.cbl XML converters file (generated by RDz

V8.0.3.2)
IMSPHBK_migrated.xml Migrated correlator file for the new correlator

schema.

Sample JCL for compiling and linking the XML converter

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 2
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

http://ant.apache.org/bindownload.cgi

IMSPHBKD.jcl Sample JCL for compiling and linking the
IMSPHBKD.cbl XML converter

Sample Java application
IMSPHBK_Security.java Sample Java client application

The SAMLSignedAssertion/ folder

saml-provider.jceks A sample keystore file

client/bindings.xml and policy.xml Client binding and policy files (different SAML
token types will have their own corresponding
binding and policy files)

SAML/saml-
creation/SAMLIssuerConfig.properties

File containing configuration properties to control
how the SAML token is configured

The files1347061119810/ folder

Target/xxxxxx.java Generated Phonebook service stub files
Important: The IMSPHBKServiceStub.java file
included here is a customized version to
demonstrate the customization required.

z/OS shell script files

wsdl2java_xmlbean.sh Generate the client proxy code in xmlbean data
bindings

antCompile.sh and ant.sh Compile the source file

setpath.sh and setclasspath.sh Set the Java PATH and CLASSPATH

General process

The following diagram shows the runtime process flow when the sample is completed.
We will run a Java client application, IMSPHBK_security, to access the Phonebook
application for information. We will create a stub file that that will handle the request
from the IMSPHBK_security application by generating it from the Phonebook web
service WSDL. The IMSPHBK_security application calls this client stub, which will
translate the requests into SOAP messages.

The web service WSDL is, in turn, generated from the IMS Phonebook application by
using Rational Developer for System z. The artifact generation process also generates the
XML converter to deploy into IMS Connect. This XML converter will handle the
conversion between the XML messages and the binary data from the IMS Phonebook
application.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 3
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 1. The runtime process for this sample

This sample demonstrates the steps in five parts:
Part 1. Creating web service artifacts for your IMS application
Part 2. Deploying the generated artifacts
Part 3. Setting up and enabling WS-Security for this web service
Part 4. Enabling client authentication over HTTPS communication
Part 5. Creating and running the Java client application

Part I. Creating web service artifacts for your IMS application
To enable an IMS application as a web service with IMS Enterprise Suite SOAP
Gateway, you start by creating the following web service artifacts from the application.

1. A XML converter driver that helps convert between XML (the format web
services understand) and binary (IMS message format)

2. A web service interface, which is a Web Services Description Language (WSDL)
file, that describes where the web service is located, and what the input and output
messages look like for invoking your IMS application.

3. A correlator XML file that specifies transaction and runtime properties such as the
XML converter driver name, transaction code, and timeout values.

The source to generate these files is the IMS application that describes the input and
output messages.

Figure 2. Generating the artifacts using Rational Developer for System z

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 4
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

These generated files need to be deployed to IMS Connect or the SOAP Gateway server
before you can deploy a web service.
The following steps will generate these artifacts from the COBOL copybook of the IMS
Phonebook sample application by using the Rational Developer for System z.

1.1 Pre-generated sample artifacts
In case you do not have access to Rational Developer for System z, the files that are
generated by Rational Developer for System z for this sample application are provided in
the ZIP file. You can skip this step and proceed to the next step: deploying the XML
converters to IMS Connect.

1.2 Generating the web service artifacts with Rational Developer for
System z
Rational Developer for System z provides the XML Services for the Enterprise (XSE)
feature that generates the web service artifacts for your IMS application. The Enterprise
Service Tools (EST) analyzes the COBOL copybook file that describes the input and
output message format for your IMS application and automatically generates the XML
converter driver, the web service WSDL file, and the correlator file.
To generate the web service artifacts:

1. Start Rational Developer for System z™ from your desktop by clicking Start >
All Programs > IBM Software Delivery Platform > IBM Rational Developer
for System z with java V8.0.x > IBM Rational Developer for System z with
java.

You might be prompted to select a workspace. A workspace is a directory that
stores all of the files for the projects. You can select your own directory or use the
default directory.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 5
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 3. The Welcome panel in Rational Developer for System z

When Rational Developer for System z starts, the Welcome panel displays.

2. Click the Workbench icon. The workbench environment displays.
3. From the Windows menu, select Open Perspective > Other. The Open

Perspective window displays.

Figure 4. The Open Perspective window

4. Select Enterprise Service Tools from the list and click OK.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 6
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

5. Right-click in the EST Project Explorer window and click File > New > IMS
Enterprise Suite SOAP Gateway Project.

Figure 5. Creating a new IMS Enterprise Suite SOAP Gateway project

6. In the New IMS Enterprise Suite SOAP Gateway Project window, specify the
following options:

Figure 6. Creating an IMS Enterprise Suite SOAP Gateway project

a. In the Project name field, type the name of your project: IMSPhoneBook.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 7
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

b. Select the following options:
• Development scenario: Create New Service Interface (bottom-up)

(default)
• Application mode: Service Provider (default)
• Conversion type: Compiled XML Conversion

c. Click Next.

7. Import the source file:

Figure 7. Importing Phonebook copybook source file

a. Click Import from File System.
b. In the window that opens, navigate to where the COBOL copybook that

describes the format of the input and output messages of your IMS
application. In this example, use the Browse button to navigate to the IMS
Phonebook copybook (IMSPHBK.cpy) and click Open.

c. Click Finish. A new project called IMSPhoneBook is now available in
your EST Project Explorer, and the Create New Service Interface (bottom-
up) wizard opens.

8. In the Create New Service Interface (bottom-up) wizard, specify the request and

response language structures and set your COBOL preferences.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 8
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 8. Request data structures selection

Figure 9. Response data structures selection

a. In the Request Language Structure tab, select the COBOL data structure
that corresponds to the input message of the IMS application: INPUT-
MSG.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 9
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

b. In the Outbound data structure tab, select the COBOL data structure
that corresponds to the output message of the IMS application: OUTPUT-
MSG.

c. Click Change COBOL Preferences and ensure the target platform is set
to z/OS.

Figure 10. Specify the target platform options to z/OS

d. Click OK to go back to the Create New Service Interface (bottom-up)

wizard

e. Click Next

9. The IMS Message Layouts page is for specifying the minimum and maximum
number for the INPUT-MSG that corresponds to the input message of the IMS
application, and the minimum and maximum number for the OUTPUT-MSG that

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 10
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

corresponds to the output message of the IMS application.

Figure 11. Request Message Layout

For this sample, we can leave things the way they are. Click Next.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 11
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

10. Specify the generation options:

Figure 12. Generation Options

a. In the Host code page field, select the code page that the host uses. SOAP
Gateway supports only UTF-8 encoding for the inbound and outbound
code pages. Therefore, you cannot change these settings.
Note : If the service for LE COBOL PM00230 is not installed, then,
change the XMLPARSE option to XMLSS and do not forget to specify
the RDz load library hlq.SFEKLOAD in the STEPLIB concatenation of
the IMS Connect startup procedure.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 12
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 13. WSDL and XSD generation options (The service location of https is for WS-
Security enabled web services)

b. In the WSDL and XSD tab, in the Service location field, change the
hostname and port number to the location of SOAP Gateway. This field
specifies the address of the web service. If SOAP Gateway is running on
the same machine as your client, you can enter this value:
https://localhost:8443/imssoap/services/IMSPHBKService
(WS-Security is enabled)

c. Click Next.

11. Specify the IMS Enterprise Suite SOAP Gateway correlator properties.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 13
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

https://localhost:8443/imssoap/services/IMSPHBKService

Figure 14. Correlator Properties

a. In the Transaction code field, enter IVTNO.
b. In the Inbound connection bundle field, enter IMSPHBK.
c. In the WS-Security field, select Enabled to ensure that you have service

location set to:
https://localhost:yourport/imssoap/services/IMSPHBKService. In this
sample, we will set it to 8993 for demonstration purposes.
When you deploy this phone book web service WS-Security enabled, you
need to specify the security token type.
Tip: For message-level web services security (WS-Security), you can
either use UserNameToken, SAML11Token, SAML20Token,
SAML11SignedTokenTrustOne or SAML11SignedTokenTrustAny
SAML20SignedTokenTrustOne or SAML20SignedTokenTrustAny
sender-voucher tokens. For example:
iogmgmt –deploy –w IMSPHBK.wsdl –r IMSPHBK.xml –t
SAML20SignedTokenTrustAny
See SOAP Gateway management utility reference section of the SOAP
Gateway documentation in the information center for details.

Important: WS-Security field is a deprecated field. This value is ignored by SOAP

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 14
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

https://localhost:yourport/imssoap/services/IMSPHBKService

Gateway. The token type will be defined later when you deploy the web service.
Rational Developer for System z V8.0.3.x and V8.5 generates an older version of the
correlator schema. IMS Enterprise Suite V2.2 requires a newer version (V2.0) of the
correlator schema. This new version is supported in Rational Developer for System z
V8.5.1 or later. Therefore, correlator files generated by Rational Developer for
System z V8.0.3.x or V8.5 will need to be migrated to the new schema. We will do
that later by using the SOAP Gateway management utility iogmgmt –migrate
correlator command.

d. Accept the remaining default values and click Next.

12. Specify the location and names of the web service artifacts.

Figure 15. XML Converters tab with Generate all to driver check box selected

a. Accept the default values for the location and names of the COBOL
converters and driver.

b. Ensure that Generate all to driver is selected. This option specifies that
the generated web service artifacts (driver, inbound converter, and
outbound converter) are all placed in the same file.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 15
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

c. In the WSDL and XSD tab:

Figure 16. XSD files to be generated

i. Accept the default location and name for the WSDL file.
ii. Ensure that the WSDL file name check box is selected.
iii. Optionally, enter names the inbound and outbound XSD files to be
generated. These files are not required by SOAP Gateway.
iv. Click Finish.

13. The following files are generated:

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 16
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 17. Generated WSDL and Correlator files

o IMSPHBKD.cbl: COBOL converter driver file
o IMSPHBK.xml: correlator XML file
o IMSPHBK.wsdl: WSDL file
o IMSPHBKI.xsd and IMSPHBKO.xsd: Inbound and outbound XSD files

(optional; these files are not necessary for SOAP Gateway)

The next step is to deploy the converter driver file to IMS Connect, recycle the IMS
Connect instance, and then deploy the IMS Phonebook application web service with
the SOAP Gateway management utility.

Part 2. Deploying the generated artifacts
The following diagram demonstrates the where the generated XML converter driver, the
correlator file and the WSDL file need to be deployed.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 17
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 18. Deploying the generated artifacts

2.1 Deploying the XML converter driver to IMS Connect
To deploy the XML converter driver:

1. Transfer the XML converter driver (IMSPHBKD.cbl) from your workstation to
the IMS Connect instance by using FTP. Transfer the file in ASCII mode. Do
not use a binary mode FTP client or the COBOL source file may be corrupted.
You may have to use this FTP option in some cases.
 quote site sbdataconn=(IBM-037,IBM-1252)

2. Modify the provided IMSPHBKD.jcl sample JCL job to compile and bind the
XML converter. The Rational Developer for System z datasets must be
catalogued ahead of time. The highlighted values must be replaced with values
specific to your environment. Consult your IMS system programmer for details.

//IMSPHBKD JOB LINK,MSGLEVEL=1,REGION=640K,CLASS=G,MSGCLASS=H,
// USER=USRT004,PASSWORD=ALL1SDUN,NOTIFY=&SYSUID
//ORDER JCLLIB ORDER=IGYV4R20.SIGYPROC
//COMPILE EXEC IGYWCL,LNGPRFX=IGYV4R20,PARM.COBOL=LIST,
// PARM.LKED='LET,LIST,MAP,AMODE(31)'
//COBOL.SYSLIB DD DSN=CEE.SCEESAMP,DISP=SHR
//COBOL.SYSIN DD DISP=SHR,UNIT=SYSDA,VOL=SER=IMSDQE,
// DSN=SANDY.XMLCNV.SOURCE(IMSPHBKD)
//LKED.SYSLIB DD DSN=TEODORO.RDZ8032.SFEKLOAD,DISP=SHR

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 18
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

// DD DSN=CEE.SCEELKED,DISP=SHR
//LKED.SYSLMOD DD DSN=IMSTESTL.TNUC0,DISP=SHR
//LKED.SYSIN DD *
ENTRY IMSPHBKD
ALIAS IMSPHBKX
NAME IMSPHBKD(R)
/*

3. Add the Rational Developer for System z datasets to your IMS Connect

STEPLIB.
4. If you have not done so already, obtain APF authorization to access the Rational

Developer for System z SFEKLOAD dataset, for example, with the MVS START
command:
S APF,F=ADD,D='TEODORO.RDZ8032.SFEKLOAD',V=volumn_name
This command adds the data set to the APF authorization list.

5. Restart IMS Connect.

For more information:

• For IMS Version 12, see the “IMS Connect XML message conversion” topic
in IMS Version 12: Communications and Connections.

• For IMS Version 11, see the “IMS Connect XML message conversion” topic
in IMS Version 11: Communications and Connections.

2.2 Deploying the web service artifacts to the SOAP Gateway server

The following steps show you how to use the SOAP Gateway management utility to
deploy your IMS application as a web service to a SOAP Gateway server on the z/OS
platform.

1. Store the WSDL file and the correlator XML file in the SOAP Gateway server file
system:

a. Store the WSDL file (IMSPHBK.wsdl) in the SOAP Gateway server at the
same location installation_directory/imssoap/wsdl. For example:
/ES22/clone/essg3/imssoap/wsdl/

b. Store the correlator file (IMSPHBK.xml) in the IMS Enterprise Suite
SOAP Gateway XML directory: installation_directory/imssoap/xml. For
example: /ES22/clone/essg3/imssoap/xml/
Recommendation: Store the WSDL and XML files in a temporary
directory as a backup. When you use the management utility to undeploy
this web service, for example, iogmgmt –undeploy –r
myCorrelator.xml, the correlator file and service files will be deleted
from the IMS Enterprise Suite SOAP Gateway XML and services
directories respectively and you will have to restore them.

c. Migrate the generated correlator file to the new schema required for IMS

Enterprise Suite V2.2. This step is needed only if you are using Rational

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 19
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.ccg/ims_ct_xmlapg.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.ccg/ims_ct_xmlapg.htm

Developer for System z V8.0.3.x or V8.5. V8.5.1 or later generates the
new correlator schema and no migration is needed.
i. Go to the management utility directory at

<soap_install_dir>/imsserver/deploy
For example:
cd /ES22/clone/essg3/imsserver/deploy

ii. Migrate the correlator by using the following command:

iogmgmt –migrate correlator

2. Start the IMS Enterprise Suite SOAP Gateway server.
Start the SOAP Gateway server by the job name. The default job name is
AEWIOGPR.
/START AEWIOGPR

The message “IOG3001I: The SOAP Gateway server is now up and running"
appears in the console.

3. Create a connection bundle using the SOAP Gateway management utility.

a. Change directory to <soap_install_dir>/imsserver/deploy if you
are not there already. For example:
cd /ES22/clone/essg3/imsserver/deploy

b. Use the Management Utility to create a connection bundle entry named
IMSPHBK. A connection bundle is a file that contains connection
information for IMS Connect.

Issue the following command:
iogmgmt –conn –c –n IMSPHBK –d datastore_name –h host_name
–p port_number

For example:
iogmgmt –conn –c –n IMSPHBK –d IMS1 –h
csdmec06.vmec.svl.ibm.com –p 9999

$ iogmgmt -conn -c -n IMSPHBK -d IMS1 -h
csdmec06.vmec.svl.ibm.com -p 9999

IOGD0113I: The create connection bundle entry (IMSPHBK) command
successfully changed the SOAP Gateway master configuration. The
parameters submitted with the command were:
 -conn
 -c
 -n IMSPHBK
 -d IMS1
 -h csdmec06.vmec.svl.ibm.com
 -p 9999. The SOAP Gateway server file system was
updated. The changes will be reflected in the runtime
configuration of the server after the next time that the SOAP
Gateway starts. No action is required.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 20
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

In the command shown:
-conn specifies connection bundle tasks;
-c specifies the create task;
-n specifies the connection bundle entry name;
-d specifies the datastore name of the target IMS Connect (case
sensitive);
-h specifies the TCP/IP host name of the target IMS Connect;
-p specifies the listening port number of the target IMS Connect.

4. Optional: Use the management utility command:

iogmgmt -view –cf IMSPHBK.xml

to view the correlator XML file to verify the contents:

$ iogmgmt -view -cf IMSPHBK.xml

IOGD0301I: List of correlator entries from correlator file
(IMSPHBK.xml) in the runtime configuration:

 Correlator Type: Provider
 Service name: IMSPHBKService
 Operation name: IMSPHBKOperation
 XML adapter type: IBM XML Adapter
 Converter name: IMSPHBKD
 Transaction code: IVTNO
 Connection bundle: connbundle2
 Socket timeout: 0
 Execution timeout: 0
 Lterm name:
 WS-Security Type: SAML20SignedTokenTrustAny

6. Optional: You can use the command:
iogmgmt –corr –u -r correlator_name -i service_name -p
operation_name -s 4000
to update or add information to the correlator XML file.

$ iogmgmt -corr -u -r IMSPHBK.xml -i IMSPHBKService -p IMSPHBKOperation -s
4000

IOGD0503I: The update correlator command successfully updated IMSPHBK.xml
in the master and runtime configuration. The correlator and parameters
submitted with the command were:

 -s 4000

. The SOAP Gateway server file system was updated with the listed
properties. No action is required.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 21
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

In the command shown, the following parameter specifies the correlator property
to update and the new value for the property:

 -s specifies the socket timeout value in milliseconds

The steps so far have all required web service artifacts generated, stored, and configured
in the appropriate location. The next step is to deploy the Phonebook application and
specify the WS-Security SAML token type during the deployment.

Part 3. Setting up and enabling WS-Security for this web service

The steps below describe how to enable WS-Security for this web service. If you do not
want to enable WS-Security, skip to the next section, “Part 4. Enabling client
authentication over HTTPS communication,” which shows you how to set up for client
(mutual) authentication.

To enable web services security, you need to set up the SOAP Gateway server and
prepare the client application.

3.1 On the server side

1. Deploy IMSPHBK web service with WS-Security enabled (SOAP Gateway
server is still running).
To enable the WS-Security for the web service, you need to ensure that the end
point of the WSDL file (IMSPHBK.wsdl) points to the secure port. The default
secure port number is 8443. We are using 8993 in this phonebook sample.

a. Edit the WSDL file (in <soap_install_dir>/imssoap/wsdl). Go to
the bottom lines and edit the port number:
<wsdl:service name="IMSPHBKService">
<wsdl:port
binding="tns:IMSPHBKBinding"name="IMSPHBKPort">
<soap:address location=
"https://localhost:8993/imssoap/services/IMSPHBKService"/>
</wsdl:port>
</wsdl:service>

b. Use the iogmgmt -deploy command to deploy the web service:
iogmgmt -deploy -w IMSPHBK.wsdl -r IMSPHBK.xml –t
SAML20SignedTokenTrustAny

$ iogmgmt -deploy -w IMSPHBK.wsdl -r IMSPHBK.xml -t
SAML20SignedTokenTrustAny
IOGD0104I: The deploy command successfully deployed the IMSPHBKService
web service to the runtime and master configurations: Web ser
vice definition and associated schema XML files:
/ES22/clone/essg3/imssoap/wsdl/IMSPHBK.wsdl. Correlator XML
file:/ES22/clone/essg3/
imssoap/xml/IMSPHBK.xml.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 22
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

https://localhost:8993/imssoap/services/
https://localhost:8993/imssoap/services/IMSPHBKService

 In the command:
 -deploy specifies the task
 -w specifies the complete path to the WSDL file
 -r specifies the complet path to te correlator XML

-t specifies the WS-Security token type
(SAML20SignedTokenTrustAny)

2. If the deployment is successful, go to the next step for client side setup. If

unsuccessful, undeploy the IMSPHBK web service (while the SOAP Gateway
server is running) and redeploy. As recommended earlier, make sure you have a
backup copy of the WSDL file and correlator XML file before you undeploy a
web service because these files will be removed from the wsdl and xml
directories when a web service is undeployed.

To undeploy, use the following command:

$ iogmgmt -undeploy -r IMSPHBK.xml

IOGD0750I: The undeploy command successfully undeployed the service
with correlator (IMSPHBK.xml and /ES22/clone/essg3/imssoap/WEB-I
NF/services//IMSPHBKService.aar) from the SOAP Gateway master and
runtime configurations.

In the command shown:
-undeploy specifies the task
-r specifies the correlator file name of the web service you want to

undeploy

The associated correlator XML and the service file are deleted (see the previous
recommendations for storing the XML and WSDL files.)

3. Verify that the deployment has completed successfully. Your IMS application is
enabled as a web service. To verify this, do the following:

a. Open an Internet browser and start the SOAP Gateway Administrative

Console entering http://hostname:port/imssoap

Figure 19. The SOAP Gateway administrative console

a. Click View Deployed Web Services.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 23
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

http://hostname:port/imssoap

b. Click Services in the right panel. You will see “IMSPHBKService” in
the list of deployed services.

3.2 On the client side
We need to create a client application that can process the signed SAML tokens. The
general steps are:

1. Use wsdl2java_xmlbean.sh to generate the proxy Java code. This shell script
uses the Apache Axis WSDL2Java utility to generate the client stub code.

2. Update the generated stub file (IMSPHBKServiceStub.java) to import the
required web services security related classes, set the token type and SAML
attributes, and issue the token.

3. Issue the antCompile.sh build.xml command to compile the source file.
4. Make sure client side binding and policy files are present.
5. Rename IMSPHBKService.aar generated in the output directory

(output/build/lib/) to IMSPHBKService.jar.
6. Edit SAMLIssuerConfig.properties to set the correct path to the keystores folder.

The following diagram shows the general steps demonstrated in this part of the task.

Figure 20. Running wsdl2java to generate the client application

To clearly distinguish the directory where you work on your client application from
where the SOAP Gateway server runs, we will be using a user directory for all client-side
work.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 24
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

• When you see a path such as <soap_install_dir>/imssoap, the task is for the
server side.

• When you see a path such as /u/username, the task is for the client side.

We will be creating the client stub, an application generated from a WSDL file for
handling the SOAP messages.

Take the following steps to create a Java client stub:

1. Use the wsdl2java_xmlbean.sh to generate a proxy java code.
a. Create a directory. In this example, we have a user called “qiusun” and we

create a directory path as follows:
/u/qiusun/saml/xmlbean_ES22
Use the mkdir command to create the directory path.

b. Copy the wsdl2java_ xmlbean.sh file provided with this package into this
directory. This file generates a Java client based on the WSDL file by
using the XMLbeans approach.

c. Copy the IMSPHBK.wsdl file into the same directory.
d. Go to the directory that stores the wsdl2java_xmlbean.sh and

IMSPHBK.wsdl files.
e. Edit wsdl2java_xmlbean.sh with the correct value for IMSSOAP_DIR.
f. Issue the following command:

 wsdl2java_xmlbean.sh IMSPHBK.wsdl output

$ wsdl2java_xmlbean.sh IMSPHBK.wsdl output
Retrieving document at 'IMSPHBK.wsdl'.
log4j:WARN No appenders could be found for logger
(org.apache.axis2.description.WSDL11ToAllAxisServicesBuilder).
log4j:WARN Please initialize the log4j system properly.
(Location of error unknown)Duplicate variable declaration for:
'isUnwrapParameters'
(Location of error unknown)Duplicate variable declaration for:
'operationName'
(Location of error unknown)Duplicate variable declaration for:
'inputcount'
(Location of error unknown)Duplicate variable declaration for:
'inputcount'

In the command shown, the first argument should be the complete path to the
WSDL file. In this case, we are assuming that the IMSPHBK.wsdl file is already
copied into the same directory.

The second argument is the generated output directory

Note: You can ignore those warning messages. There is no functional problem,
nothing failed, and the messages can be safely ignored.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 25
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

2. You need to update the generated client stub file (IMSPHBKServiceStub.java) to
set SAML context to the message context. This stub file has been generated in
the previous step in the following directory:
/u/qiusun/saml/xmlbean_ES22/output/src/
files1347061119810/target/

Compare the stub file with the one provided with this sample. The provided
sample file contains comments that highlight places where changes or additions
that are required. Search for
//@start SAMLSignedAssertionSupport
and
//@end SAMLSignedAssertionSupport
for the required changes.

Note: Due to Axis 2 version update, for the stub file that was generated by
Enterprise Suite 2.2, we need to manually call the following line:
_serviceClient.engageModule("wss");

Without this line, the SAML Token object will not be generated and inserted to
the SOAP envelope.

3. Compile the source file using the antCompile.sh.
a. If you have not yet done so, download Ant from

http://ant.apache.org/bindownload.cgi. Store the downloaded ant.jar and ant-
launcher.jar file in a convenient location.
Note: In this example, we suggest that you store them under
/u/qiusun/saml/xmlbean_ES22/ant/binary
so you can use the antCompile.sh script without too many changes.

b. Modify the antCompile.sh script to set the IMSSOAP_DIR and
JAVA_HOME variables based on your environment. If you store them in a
different location, modify antCompile.sh accordingly.

c. Ensure that the SOAP Gateway installation directory, and the ant.jar and ant-
launcher.jar file location are specified in you classpath. A setclasspath.sh file
is provided with this sample.
i. Modify the script for your environment settings.

• Ensure that the SOAP Gateway installation directory is updated
based on your environment.

• Ensure that the ant.jar and ant-launcher.jar files are pointed to in the
classpath.

ii. Execute the shell script:
. ./setclasspath.sh

b. Copy the antCompile.sh and ant.sh file provided with this package into the

temporary directory /u/qiusun/saml/xmlbean_ES22/output. Use the

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 26
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

http://ant.apache.org/bindownload.cgi

ASCII mode if you are using an FTP tool.

c. Issue the command:
. ./antCompile.sh build.xml

$. ./antCompile.sh build.xml

 The output looks as follows:

on <javac encoding="UTF-8" debug="on" memoryMaximumSize="512m"
memoryInitialSize="512m" fork="true" destdir="${classes}" srcdir
="${src}">
<javac encoding="UTF-8" debug="on" memoryMaximumSize="512m"
memoryInitialSize="512m" fork="true" destdir="${classes}">
build.xml already has proper encoding
.:/u/qiusun/:/ES22/clone/essg3/imsserver/server/lib/iogaxis/*:/ES22/
clone/essg3/imsserver/server/lib/iogwss/*:/ES22/clone/essg3/imsser
ver/server/lib/iogsoap/*:/ES22/clone/essg3/imssoap/WEB-INF/lib/*:/
ES22/clone/essg3/imsserver/deploy/*:/javaroot/jdk170/J7.0/lib/ibmc
fw.jar:/javaroot/jdk170/J7.0/lib/ibmjgssprovider.jar:/javaroot/jdk170
/J7.0/lib/ibmpkcs.jar:/javaroot/jdk170/J7.0/lib/ext/ibmjceprovi
der.jar:/javaroot/jdk170/J7.0/lib/ext/ibmpkcs11impl.jar:/ES22/clone/
essg3/imsserver/server/lib/servlet-api.jar:/ES22/clone/essg3/ims
soap/WEB-INF/lib/IMSPHBKService.jar:/ES22/clone/essg3/imssoap/WEB-
INF/lib/XBeans-packaged.jar::/ES22/clone/essg3/imsserver/server/li
b/iogaxis/*:/ES22/clone/essg3/imsserver/server/lib/iogwss/*:/ES22/
clone/essg3/imsserver/server/lib/iogsoap/*.jar::/ES22/clone/essg3/
imssoap/WEB-INF/lib/*::/ES22/clone/essg3/imssoap/imsserver/deploy/*:
Buildfile: /u/qiusun/saml/xmlbean_ES22/output/build.xml
init:
jar.xbeans:
pre.compile.test:
 [echo] XmlBeans Availability = true
 [echo] Stax Availability= true
 [echo] Axis2 Availability= true

compile.src:

 [javac] /u/qiusun/saml/xmlbean_ES22/output/build.xml:49:
 warning: 'includeantruntime' was not set, defaulting to

build.sysclasspat
h=last; set to false for repeatable builds
echo.classpath.problem:
jar.server:
BUILD SUCCESSFUL
Total time: 4 seconds

 4. Rename the IMSPHBKService.aar to IMSPHBKService.jar. Renaming the file
is needed because this file because it is not intended as a web service, but is
needed as a JAR file later during the compilation of the client application in Part
5 of the sample.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 27
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

 5. Edit the SAMLIssuerConfig.properties file provided in the
SAMLSignedAssertion\SAML\saml-creation directory to set the correct path
to the keystores folder. The KeyStorePath value must be edited with your path.

IssuerURI=http://www.websphere.ibm.com/SAML/SelfIssuer
KeyStorePath=/u/qiusun/saml/saml-provider.jceks
KeyStoreType=jceks
KeyStorePassword=storepass
KeyAlias=samlissuer
KeyPassword=samlissuer
KeyName=CN=SAMLIssuer,O=IBM,C=US

This properties file defines the default keystore, the password to open the
keystore, and the private key to sign SAML tokens.

Part 4. Enabling client authentication over HTTPS
communication
Secure HTTPS communication is required for web services that use WS-Security with
SAML tokens and the SAML 2.0 sender-vouches confirmation method. SAML tokens
contain security information in the message header that is not protected unless the
message is encrypted with SSL or transport-layer security. You can configure SOAP
Gateway to provide this security in addition to WS-Security.

The client must make an HTTPS connection to IMS Enterprise Suite SOAP Gateway
server. The client uses a local truststore to verify that the public key from IMS Enterprise
Suite SOAP Gateway is trusted and SOAP Gateway verifies the client public key with the
server truststore before continuing communication.

The following diagram shows the steps to create keystores and truststores on both the
client and the server in order to set up HTTPS communication from the client to the
SOAP Gateway server.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 28
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 21. Setting up for client authentication

The following steps demonstrate the commands used with the IBM Java tools to create
and configure the Java security stores on the SOAP Gateway server. Replace
“/javaroot/jdk170/J7.0” with your java installation path.

cd /javaroot/jdk170/J7.0/bin

Create a new ssl directory. For example:

mkdir /u/qiusun/ssl

1. Create the Java Keystore for IMS Enterprise Suite SOAP Gateway

(server.keystore.ks) containing an RSA key pair.

keytool -genkey -alias server.keystore -dname "CN=Server
Keystore OU=IBM SWG, O=IBM, C=US" -keyalg RSA -keypass imssoap
-storepass imssoap -keystore /u/qiusun/ssl/server.keystore.ks

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 29
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

2. Export the public key from server.keystore.ks as a certificate (server.keystore.cer)

keytool -export -alias server.keystore
-storepass imssoap -file /u/qiusun/ssl/server.keystore.cer
-keystore /u/qiusun/ssl/server.keystore.ks

You can ignore the message JVMJ9VM082E Unable to switch to IFA
processor - issue "extattr +a libj9ifa24.so"

3. Create the Java Truststore for IMS Enterprise Suite SOAP Gateway
(server.truststore.ks).

keytool -genkey -alias server.truststore
-dname "CN=Server Truststore, OU=IBM SWG, O=IBM, C=US"
-keyalg RSA -keypass imssoap -storepass imssoap
-keystore /u/qiusun/ssl/server.truststore.ks

Directory “/u/qiusun/ssl” should now contain “server.keystore.cer”,
“server.truststore.ks” and “server.keystore.ks”

4. Create client side keystore (client.keystore.ks) containing an RSA key pair.

keytool -genkey -alias client.keystore
-dname "CN=Client Keystore, OU=IBM SWG, O=IBM, C=US"
-keyalg RSA -keypass imssoap -storepass imssoap
-keystore /u/qiusun/ssl/client.keystore.ks

5. Export the public key from client.keystore.ks as a certificate (client.keystore.cer)

keytool -export -alias client.keystore -storepass imssoap -file
/u/qiusun/ssl/client.keystore.cer -keystore
/u/qiusun/ssl/client.keystore.ks

6. Create client side truststore (client.truststore.ks):

keytool -genkey -alias client.truststore -dname "CN=Client
Truststore OU=IBM SWG, O=IBM, C=US" -keyalg RSA -keypass imssoap
-storepass imssoap -keystore /u/qiusun/ssl/client.truststore.ks

7. Transfer the server certificate (server.keystore.cer) to the client side with FTP.

Then, import the server.keystore.cer certificate into the client trust store

keytool -import -v -trustcacerts -alias server -file
/u/qiusun/ssl/server.keystore.cer -keystore
/u/qiusun/ssl/client.truststore.ks -keypass imssoap -storepass
imssoap

The output looks as follows:

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 30
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Owner: CN="Server Keystore OU=IBM SWG", O=IBM, C=US
Issuer: CN="Server Keystore OU=IBM SWG", O=IBM, C=US
Serial number: 6a9807a9
Valid from: 11/8/12 2:58 PM until: 2/6/13 2:58 PM
Certificate fingerprints:
 MD5: 6F:24:34:A8:54:1D:07:50:81:14:3D:18:A1:CF:EB:EA
 SHA1:
24:C4:4F:51:05:7C:D3:CD:18:E4:49:EE:15:5C:9C:B6:96:90:73:94
 SHA256:
86:53:E3:BC:C7:F3:BC:52:AE:35:4E:05:E0:5D:E8:9F:08:A4:FA:40:93:B5
:00:18:EB:6C:D1:4F:AA:92:8A:05
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:
#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [

0000: 2b 1a 47 ca 0a 85 df da f9 ec 9e 75 54 57 4f 8c
..G........uTWO.

0010: 52 07 74 43 R.tC

]
]

Trust this certificate? [no]: yes
Certificate was added to keystore
 [Storing /u/qiusun/ssl/client.truststore.ks]

8. Transfer the client certificate (client.keystore.cer) to the SOAP Gateway server

side by using FTP if the server is running on a different system.

9. Import the client.keystore.cer into SOAP Gateway server truststore.

keytool -import -v -trustcacerts -alias client
-file /u/qiusun/ssl/client.keystore.cer
-keystore /u/qiusun/ssl/server.truststore.ks -keypass imssoap
-storepass imssoap

The output looks as follows:

$ keytool -import -v -trustcacerts -alias client -file /u/qiusun/ssl/
client.keystore.cer -keystore /u/qiusun/ssl/server.truststore.ks -
keypass imssoap -storepass imssoap
Owner: CN=Client Keystore, OU=IBM SWG, O=IBM, C=US
Issuer: CN=Client Keystore, OU=IBM SWG, O=IBM, C=US
Serial number: 60a2853f
Valid from: 11/8/12 3:00 PM until: 2/6/13 3:00 PM
Certificate fingerprints:
 MD5: 4B:5F:F0:5F:44:DE:08:A8:C4:14:D5:D8:53:B9:F5:17
 SHA1: 0B:2A:D5:AA:71:63:EC:45:8C:52:F8:12:15:8D:9E:B1:AB:5D:C9:18
 SHA256:

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 31
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

A1:C6:D2:38:8E:5D:47:32:95:32:FF:2C:31:DA:25:53:D5:54:9B:B1:6B:C8:34:F6:B2
:
61:1E:EC:E6:86:C1:F0
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 83 cc a8 38 da 8e 54 b3 b7 f6 ae 4f 75 ce 8b 35 ...8..T....Ou..5
0010: 4f c8 6d 1a O.m.
]
]

Trust this certificate? [no]: yes
Certificate was added to keystore
[Storing /u/qiusun/ssl/server.truststore.ks]

10. Configure the IMS Enterprise Suite SOAP Gateway for client authentication with

the management utility. Use the command
iogmgmt -prop -u -clientauth true -s 8993
-k server_keystore -w keystore_password
–t server_truststore –a truststore_password

$ iogmgmt -prop -u -clientauth true -s 8993 -k
/u/qiusun/ssl/server.keystore.ks \-w imssoap -t
/u/qiusun/ssl/server.truststore.ks -a ims
soap
IOGD0095I: Client Authentication was successfully enabled in the
SOAP Gateway server master configuration. The changes will take
effect the next time that the SOAP Gateway server starts.

In the command shown:

-prop –u specifies the update properties task
-clientauth true enables client authentication
-s specifies the secured port number
-k specifies the fully qualified path to the server side keystore
-w specifies the password for the keystore
-t specifies the fully qualified path to the server side truststore
-a specifies the password for the truststore

11. To disable client authentication, you can issue iogmgmt –prop –u –
clientauth false

$ iogmgmt -prop -u -clientauth false

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 32
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

IOGD0085I: The client authentication property value was set to
(false). The indicated property was successfully updated. You
must restart the SOAP Gateway server for the change to take
effect.

Part 5. Creating and running the Java client application

To test the scenario, use a Java client application to invoke the web service. A sample
Java application is included to invoke the IMS Phonebook application web service.

The provided IMSPHBK_Security.java sample client application includes the security
and SSL-related import statements, the security SAML token that is passed in through the
SOAP header, and the SSL keystore and truststore information.

This client application calls the IMS Phonebook web service to obtain the following
information:

System.out.println("Command: " + output.getOutCmd());
System.out.println("Last Name: " + output.getOutName1());
System.out.println("First Name: " + output.getOutName2());
System.out.println("Extension: " + output.getOutExtn());
System.out.println("Zip Code: " + output.getOutZip());

The SOAP envelope and message are hardcoded for demonstration purposes.

Important: Before using this sample, you must edit it and replace the hard-coded path to
the keystore and truststore in the following statements:

 System.setProperty("javax.net.ssl.trustStore",
 "/u/qiusun/ssl/client.truststore.ks");
 System.setProperty("javax.net.ssl.trustStorePassword","imssoap");
 System.setProperty("javax.net.ssl.trustStoreType","JKS");
 System.setProperty("javax.net.ssl.keyStore",
 "/u/qiusun/ssl/client.keystore.ks");
 System.setProperty("javax.net.ssl.keyStorePassword", "imssoap");
 System.setProperty("javax.net.ssl.keyStoreType","JKS");

Your SOAP Gateway server address and port must also be updated accordingly:
IMSPHBKServiceStub stub = new IMSPHBKServiceStub(null,
 "https://9.30.132.151:8993/imssoap/services/IMSPHBKService");

System.out.println("Message: " + output.getOutMsg());

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 33
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

5.1 Setting the PATH and CLASSPATH variables
a. Set the Java PATH:

A setpath.sh file is provided with this package to set the java path.

$ cat setpath.sh
#!/bin/sh
export IMSSOAP_DIR=/ES22/clone/essg3
export JAVA_HOME=/javaroot/jdk170/J7.0

Modify the script to your SOAP home and JAVA home directory location, and
execute it.

. ./setpath.sh

b. Make sure that the Java CLASSPATH is updated to point to where the generated
IMSPHBKService.jar and XBeans-packaged.jar (generated in Part 3 of the
sample) are stored.

A setclasspath.sh file is provided with this package to set the Java classpath.
Modify the script to your environment settings and execute it.

. ./setclasspath.sh

5.2 Compiling the Java client application
Issue this command:

javac IMSPHBK_Security.java

5.3 Running the Java application
To run the Java application, issue:

java IMSPHBK_Security

The output looks as follows:

$ java IMSPHBK_Security
log4j:WARN No appenders could be found for logger
(org.apache.axis2.description.AxisOperation).
log4j:WARN Please initialize the log4j system properly.
configured client side policy set
SAML=<saml2:Assertion
xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0"
ID="_93986F9A19C044EE6B1352411733983" IssueI
nstant="2012-11-08T21:55:33.982Z"><saml2:Issuer>IBM IMS SOAP
Gateway</saml2:Issuer><ds:Signature
xmlns:ds="http://www.w3.org/2000/09

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 34
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

/xmldsig#"><ds:SignedInfo><ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"
/><ds:SignatureMethod Algor
ithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" /><ds:Reference
URI="#_93986F9A19C044EE6B1352411733983"><ds:Transforms><ds:Transfo
rm Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature" /><ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c1
4n#" /></ds:Transforms><ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"
/><ds:DigestValue>tt5aOYR8BsWUyUquM13YReD
A4YM=</ds:DigestValue></ds:Reference></ds:SignedInfo><ds:Signature
Value>NvC3EeaC5O+cifsB8L61yNoTP1g4CEbix97hGf8tvVKasn6YKZULembhEupC
dw0LIHWqNeyookMIcCbUGiajN0ogVSXybQmtex4/Dp79H4p4kigO1ZaYsaTsVEl0mE
FqP1FpCeRaDaa/meoEjZ1i2ygLBoOPo3exwdgmOxOnjOgw9gzTWBzcsM1Ntpz+A+V9
ryo1xugQKAzjleh1RwzwBDVWYjLXXUiLdlM2lRyX0QpWagC9ADWT5dyEjhVYSwPHsh
GPt6AMxjEsH5fo0DMhSRFySugS0H9rXYZWJQ886bgnLMZ72M0+FdO2/mQKFGxiCv+E
BEJX+gQZNMwtS+0aSg==</ds:SignatureValue><ds:KeyInfo><ds:X509Data><
ds:X509Certificate>MIIC/zCCAeegAwIBAgIENfm2PDANBgkqhkiG9w0BAQsFADA
wMQswCQYDVQQGEwJVUzEMMAoGA1UEChMDSUJNMRMwEQYDVQQDEwpTQU1MSXNzdWVyM
B4XDTEyMTAxNTA4Mjk0NFoXDTI2MDYyNDA4Mjk0NFowMDELMAkGA1UEBhMCVVMxDDA
KBgNVBAoTA0lCTTETMBEGA1UEAxMKU0FNTElzc3VlcjCCASIwDQYJKoZIhvcNAQEBB
QADggEPADCCAQoCggEBANLqEvrRkohcEo7U2WsYaD5KGcxIx6xfngfWIwRlo1HNo/a
oStpSJ6uXXsM8uzMwCxHyEnFYCYeiac0cB7UdXOXrL+D8/4UJuIPjUn/70LNzVA/NE
0Kgs8cWQJ4npYW7c3hfZKFniloEyGDNr718Ozu9mztDmqVf+MH1zypTsABNT2QgPf7
345EA/Fwogz2vg/h9qGIhF84YZm6aFmaG+zEuV4tzrOsUKzbDp1zmwPfCwDxWsSOqK
QfGxQYdtRV3gaG/G+yDH4tQn/2ptgA9ceKh6VVz1NOn8HXgJLFsLr9CxljRMw2wTpT
oBohNUi61ud/nbO4+aZ/7Xbr7JmHYJM8CAwEAAaMhMB8wHQYDVR0OBBYEFMc2pMDo1
wQjoOMSWTw58sK8xo3LMA0GCSqGSIb3DQEBCwUAA4IBAQBrfRznQB3y31LAlJV59oU
jilX3lVR3S4WIXOxIkIrOuKucioz9/wHhJ5gvNYWJaDrbk5I/463ZcQIQ2bCiJKQtG
8y6KEtRsx21gK/mjwgB0+5d2954wRqEJwUgIdztxkuZNhMljz5k+P+9y8uS4dKqsdo
odOSieP1ddglnVnTCP4evndFCHiHghXu7cUz2j2IhH0rMAoJFsTNNvkvyucV1uXGaY
R5rnPGgQoHNh/Plu5azOiL1NMWe6c6aIk4hMH3ByVauV2aXevJuTF5/FDP7PxEoW56
mdO2jjWJnXTgjsJPIkqjfu1R1TeyHrHNE3zCGClhx801KI5ci6JjmssyH</ds:X509
Certificate></ds:X509Data></ds:KeyInfo></ds:Signature><saml2:Subje
ct><saml2:NameID>Alice</saml2:NameID><saml2:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:sender-vouches"
/></saml2:Sub
ject><saml2:Conditions NotBefore="2012-11-08T21:55:34.103Z"
NotOnOrAfter="2012-11-08T22:55:34.103Z"
/><saml2:AttributeStatement><sam
l2:Attribute Name="Address" AttributeNamespace="IBM WebSphere
namespace"><saml2:AttributeValue>123 SAML street,
Austin</saml2:Attrib
uteValue></saml2:Attribute><saml2:Attribute
Name="Groups"><saml2:AttributeValue>admin
users</saml2:AttributeValue><saml2:AttributeVa
lue>Building
ABC</saml2:AttributeValue><saml2:AttributeValue>Reporting to
Joe</saml2:AttributeValue></saml2:Attribute></saml2:Attrib
uteStatement></saml2:Assertion>
 before execute, envlope = <?xml version='1.0' encoding='utf-
8'?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/en

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 35
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

velope/"><soapenv:Body><ims:INPUTMSG
xmlns:ims="http://www.IMSPHBKI.com/schemas/IMSPHBKIInterface"><ims
:in_ll>32</ims:in_ll><ims:in_
zz>0</ims:in_zz><ims:in_trcd>IVTNO</ims:in_trcd><ims:in_cmd>displa
y</ims:in_cmd><ims:in_name1>LAST1</ims:in_name1></ims:INPUTMSG></s
oapenv:Body></soapenv:Envelope>
 after execute, envlope = <?xml version='1.0' encoding='utf-
8'?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/env
elope/"><soapenv:Header><s:Security xmlns:s="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
xmln
s:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
soapenv:mustUnderstand="1"><u:Timestamp><u:
Created>2012-11-
08T21:55:37.956Z</u:Created></u:Timestamp></s:Security></soapenv:H
eader><soapenv:Body><OUTPUTMSG xmlns="http://www.I
MSPHBKO.com/schemas/IMSPHBKOInterface"><out_ll>93</out_ll><out_zz>
768</out_zz><out_msg>ENTRY WAS DISPLAYED</out_msg><out_cmd>DISPLAY
</out_cmd><out_name1>LAST1</out_name1><out_name2>FIRST1</out_name2
><out_extn>8-111-1111</out_extn><out_zip>33333</out_zip><out_segno
>0001</out_segno></OUTPUTMSG></soapenv:Body></soapenv:Envelope>
Command: DISPLAY
Last Name: LAST1
First Name: FIRST1
Extension: 8-111-1111
Zip Code: 33333
Message: ENTRY WAS DISPLAYED

The last six lines are the response to the request.

Summary
The following diagram shows the overall task flow demonstrated in this sample.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 36
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

Figure 22. Overall task flow

Additional resources
For more information about the web service provider scenario support in SOAP Gateway,
see:
• Web service provider scenario for an overview of how IMS applications can be

enabled as a web service and related support for security.
• Enabling an IMS application as a web service provider for information about how to

create the required web service artifacts, deploy the web service, and write a client
application.

For more information about creating client applications, see
http://axis.apache.org/axis2/java/core/docs/userguide-creatingclients.html.

IBM IMS Enterprise Suite Version 2.2 SOAP Gateway: 37
Enabling an IMS application as a web service provider with SAML signed assertion
 December 2012

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims.soap22.doc/sgw_provider.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims.soap22.doc/t9sgwoverview.htm
http://axis.apache.org/axis2/java/core/docs/userguide-creatingclients.html

	Overview
	Requirements
	Contents of the sample ZIP file

	General process
	Part I. Creating web service artifacts for your IMS applica
	1.1 Pre-generated sample artifacts
	1.2 Generating the web service artifacts with Rational Deve

	Part 2. Deploying the generated artifacts
	2.1 Deploying the XML converter driver to IMS Connect
	2.2 Deploying the web service artifacts to the SOAP Gateway

	Part 3. Setting up and enabling WS-Security for this web ser
	3.1 On the server side
	3.2 On the client side

	Part 4. Enabling client authentication over HTTPS communicat
	Part 5. Creating and running the Java client application
	5.1 Setting the PATH and CLASSPATH variables
	5.2 Compiling the Java client application
	5.3 Running the Java application

	Summary
	Additional resources

