
IBM Software Group

®

WebSphere® Support Technical Exchange

Windows® Native Memory Problem
Determination Techniques and Tools for
WebSphere Application Server

Kevin Grigorenko (kevin.grigorenko@us.ibm.com)
IBM® WAS SWAT Team
22 June 2011

mailto:kevin.grigorenko@us.ibm.com
mailto:kevin.grigorenko@us.ibm.com

IBM Software Group

 WebSphere® Support Technical Exchange 2 of 45

Agenda

 Overview
 Windows Native Memory Layout
 Detection
 Monitoring
 Isolation & Avoidance
 Analysis

UMDH
LeakDiag, DebugDiag
VMMap

IBM Software Group

 WebSphere® Support Technical Exchange 3 of 45

Overview
 Native memory issues are notoriously difficult

May cause: crashes, thrashing, OS instability, high CPU
Isolation and/or avoidance is often easier than analysis
Operating systems provide analysis tools - difficult to use

 Common on Windows 32-bit JVMs because the user
address space (by default) is limited to 2GB

 This presentation covers how to detect, monitor, avoid,
isolate, and analyze, in that order.

 This presentation focuses on the IBM JVM.

IBM Software Group

 WebSphere® Support Technical Exchange 4 of 45

Native Memory Basics
 Native memory generally means the virtual native memory

of a process or address space. This is limited by the
hardware architecture and operating system (OS).

 Native memory may be resident, used, unused, reserved, committed, swapped out,
paged out, etc. All of these don't matter for this presentation. That's how the OS
deals with virtual memory, based on configuration and constraints.

 Insufficient RAM for the peak, active virtual memory needs causes paging which
dramatically impacts performance.

 32-bit: Max theoretical native memory per process=4GB.
64-bit: 16 million TB (practically less, but essentially no
native OOMs) ∞)

 A 32-bit process running in a 64-bit OS still has a 32-bit virtual address space.
 A JavaTM process has a native heap and a Java heap. These

are both carved out of the native memory.

http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffa_1001.html
http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffa_1001.html

IBM Software Group

 WebSphere® Support Technical Exchange 5 of 45

Windows Native Memory Layout
 By default, Windows 32-bit uses a 2GB virtual address space

 Rest used by kernel, shared across processes (paged pool, page table, PTEs, drivers, etc.)

 http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf [MSFT1, 2]

 In 3GB mode, some libraries are still based at the 2GB boundary, so
-Xmx is practically limited to between -Xmx1200m and -Xmx1856m
Library rebasing is possible but then shared libraries loaded privately

 Java 6 split heap option may be used (forces gencon):
 -Xgc:splitheap -Xmx2800m -Xmox1800m

http://technet.microsoft.com/en-us/library/cc784475(v=WS.10).aspx
http://technet.microsoft.com/en-us/library/cc784475(v=WS.10).aspx
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/diagnosis/dw3gbswitch3.pdf
http://msdn.microsoft.com/en-us/library/bb613473(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/bb613473(v=vs.85).aspx
http://technet.microsoft.com/en-us/library/cc786709(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc786709(WS.10).aspx
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/understanding/mm_gc_generational_split.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/understanding/mm_gc_generational_split.html

IBM Software Group

 WebSphere® Support Technical Exchange 6 of 45

Using 3GB Mode
 Java is compiled with LARGEADDRESSAWARE
 Not risk free!

Third party JNI libraries with pointer arithmetic may have
unexpected issues or crashes

The kernel itself can run into issues, particularly with
exhausted page translation table entries

 Windows <= 2003: /3GB boot.ini switch, reboot box
 http://technet.microsoft.com/en-us/library/bb124810.aspx

 Windows > 2003: BCDEdit /set increaseuserva 3072, reboot
 http://msdn.microsoft.com/en-us/library/ff542202.aspx [Also]

 Ensure enough physical memory:
 http://msdn.microsoft.com/en-us/library/aa366778%28v=vs.85%29.aspx

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/problem_determination/win_large_addr.html
http://technet.microsoft.com/en-us/library/bb124810.aspx
http://msdn.microsoft.com/en-us/library/ff542202.aspx
http://msdn.microsoft.com/en-us/library/ff542202.aspx
http://blogs.technet.com/b/askperf/archive/2009/04/03/who-moved-my-3gb.aspx
http://blogs.technet.com/b/askperf/archive/2009/04/03/who-moved-my-3gb.aspx
http://msdn.microsoft.com/en-us/library/aa366778%28v=vs.85%29.aspx

IBM Software Group

 WebSphere® Support Technical Exchange 7 of 45

Detection
 Best detection is monitoring, covered later; however, some

signs of a native OutOfMemoryError (NOOM):
An OutOfMemoryError is generated with details about not being

able to launch threads (below example from Javacore, may
show in SystemOut.log)

• 1TISIGINFO Dump Event "systhrow" (00040000) Detail
"java/lang/OutOfMemoryError" "Failed to create a thread: retVal -1" received

An OutOfMemoryError is generated but there is sufficient Java
heap space (consult verbosegc or the “Bytes of Heap Space
Free” section in the Javacore).

• Not 100% since this can also be Java heap fragmentation,
the heap is not fully expanded, or there was a massive Java
allocation (always check requested alloc sizes before OOM).

IBM Software Group

 WebSphere® Support Technical Exchange 8 of 45

Detection (Continued)

 An OutOfMemoryError is thrown and the “Current
Thread” is in a native method, e.g.:

3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/Thread.startImpl(Native Method)
4XESTACKTRACE at java/lang/Thread.start(Thread.java:887(Compiled Code))

 The JVM crashes and its virtual memory usage is
near its limit (windbg → !address -summary)

 With verbosegc enabled, the Javacore has a GC
flight recorder section, which may show:
J9AllocateIndexableObject() returning NULL!

IBM Software Group

 WebSphere® Support Technical Exchange 9 of 45

Monitoring
 Use Windows Perfmon. By default, counters do not

show the PID, so use the PID format:
http://support.microsoft.com/kb/281884
No restart of machine/Java required, just restart

perfmon
 For each process, use the Virtual Bytes and Private

Bytes counters (Performance Object → Process)
 http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-8000_1008.html

 Also gather system-wide counters
 CPU, Memory, Disk, etc. (recent Windows versions' perfmon have this

predefined under System Performance → Performance Counter)

http://support.microsoft.com/kb/281884
http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-8000_1008.html

IBM Software Group

 WebSphere® Support Technical Exchange 10 of 45

Monitoring
 Load CSV or BLG

from perfmon (View
Log Data → Log
Files)

 Right click counter
to change scale
Example on right

shows leak in
virtual

Change Y-axis
 Or write to CSV and

load in spreadsheet

IBM Software Group

 WebSphere® Support Technical Exchange 11 of 45

Monitoring
 Health Center has native

memory monitoring
 Ships with the JVM, but always

good to upgrade the agent

 Generic JVM argument
-Xhealthcenter

• -Xhealthcenter:level=low to
not gather profiling data

 Visualization client in IBM
Support Assistant

 -Xhealthcenter:level=headless for
writing to an HCD file

IBM Software Group

 WebSphere® Support Technical Exchange 12 of 45

Avoidance/Isolation Techniques
 Many of these techniques might not resolve the

problem or are workarounds, and have “costs”
 Reduce -Xmx
 Reduce number of threads (or stack size [-Xss])
 Reduce number of classes/classloaders
 Fixed size thread pools (min=max)

 http://www-01.ibm.com/support/docview.wss?uid=swg21368248

Major thread pools (WebContainer, etc.), e.g. not startup
 Ensure latest versions of native libraries (e.g. type 2 DB drivers)

 Reduce per-JVM max throughput, scale out JVMs

http://www-01.ibm.com/support/docview.wss?uid=swg21368248

IBM Software Group

 WebSphere® Support Technical Exchange 13 of 45

Avoidance/Isolation Techniques
 Obligatory, but important – use latest WAS/Java FP
 Ensure -Xnoclassgc is not set
 If a lot of sun/reflect/DelegatingClassLoader (e.g. a lot of

reflection), use -Dsun.reflect.inflationThreshold=0
 Use com.ibm.ws.webcontainer.channelwritetype=sync

 http://www-01.ibm.com/support/docview.wss?uid=swg21317658

 Disable AIO: http://www-01.ibm.com/support/docview.wss?uid=swg21317658

 Switch to 64-bit JVMs
 Links

 http://www-01.ibm.com/support/docview.wss?uid=swg21373312

http://www-01.ibm.com/support/docview.wss?uid=swg21317658
http://www-01.ibm.com/support/docview.wss?uid=swg21317658
http://www-01.ibm.com/support/docview.wss?uid=swg21373312

IBM Software Group

 WebSphere® Support Technical Exchange 14 of 45

Data in System Dumps

 Some native memory info in system dumps. Use:
 -Xdump:heap:none

-Xdump:java+system:events=systhrow,filter=java/lang/OutOfMemor
yError,range=1..4,request=exclusive+compact+prepwalk

 http://www.ibm.com/developerworks/opensource/library/j-memoryanalyzer/index.html

 Install IBM Product Extensions into MAT:
 http://www.alphaworks.ibm.com/tech/iema

 http://dl.alphaworks.ibm.com/ettktechnologies/updates

 Open Query Browser → IBM Extensions → Java SE
Runtime → DirectByteBuffers

http://www.ibm.com/developerworks/opensource/library/j-memoryanalyzer/index.html
http://www.alphaworks.ibm.com/tech/iema
http://dl.alphaworks.ibm.com/ettktechnologies/updates

IBM Software Group

 WebSphere® Support Technical Exchange 15 of 45

Other Analysis
 Javacores have a wealth of native memory information

related to the JVM itself (MEMINFO)
1STSEGTYPE is one of

• Internal Memory: general segment usage
• Object Memory: Java heap, should match verbosegc

heap use
• Class Memory: Native memory for classes
• JIT Code Cache: JIT compiled code
• JIT Data Cache: JIT data

 Useful to check JIT code and/or data leaks
 Also has information on duplicate classes
 Aggregation scripts:

get_memory_use.pl

http://www.ibm.com/developerworks/java/library/j-nativememory-aix/

IBM Software Group

 WebSphere® Support Technical Exchange 16 of 45

Other Analysis
 To diagnose JVM memory leaks, use the

command line option:
-memorycheck:callsite=1000
 http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffd_1001.html

Also available on a core dump:

• jextract -interactive core.2011...0001.dmp
(Commands must be prefixed with '!')
> !findallcallsites

 If there is a leak after restarting applications, this may
be a classloader leak. The IBM Extensions for Memory
Analyzer has a query for this:

 http://www.ibm.com/developerworks/websphere/techjournal/1103_supauth/1103_supauth.html#sec10

http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffd_1001.html
http://www.ibm.com/developerworks/websphere/techjournal/1103_supauth/1103_supauth.html#sec10

IBM Software Group

 WebSphere® Support Technical Exchange 17 of 45

Analysis
 Four primary tools covered (all from Microsoft®)

DebugDiag:
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=28bd5941-c458-46f1-b24d-f60151d875a3&displaylang=en

UMDH:
• http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffe_1005.html

• http://www-01.ibm.com/support/docview.wss?uid=swg21313578#trackingWithUMDH

LeakDiag: ftp://ftp.microsoft.com/PSS/Tools/Developer Support Tools/LeakDiag

VMMap: http://technet.microsoft.com/en-us/sysinternals/dd535533

 Install Windows Debugging Tools:
32-bit: http://msdn.microsoft.com/en-us/windows/hardware/gg463016

64-bit: http://msdn.microsoft.com/en-us/windows/hardware/gg463012

• If installing the SDK, you can just install the tools

http://www.microsoft.com/downloads/en/details.aspx?FamilyID=28bd5941-c458-46f1-b24d-f60151d875a3&displaylang=en
http://publib.boulder.ibm.com/infocenter/javasdk/tools/topic/com.ibm.java.doc.igaa/_1vg000121410cbe-1195c23a635-7ffe_1005.html
http://www-01.ibm.com/support/docview.wss?uid=swg21313578#trackingWithUMDH
ftp://anonymous@ftp.microsoft.com/PSS/Tools/Developer%20Support%20Tools/LeakDiag
http://technet.microsoft.com/en-us/sysinternals/dd535533
http://msdn.microsoft.com/en-us/windows/hardware/gg463016
http://msdn.microsoft.com/en-us/windows/hardware/gg463012

IBM Software Group

 WebSphere® Support Technical Exchange 18 of 45

Frame Pointer Omission (FPO)
 UMDH is different from the other three tools. Whereas the

other tools “inject” themselves into the executing process
(e.g. using the Detours API), UMDH consults an allocation
“database” created by the kernel itself (because gflags
was set).
If gflags is set, this database can be seen in windbg also.

 The kernel does not have access to symbols, but most 32-
bit programs use a register convention in which the EBP
register points to the previous method.
A different convention is used for 64-bit so the problems

discussed on the next slide do not affect 64-bit apps.

IBM Software Group

 WebSphere® Support Technical Exchange 19 of 45

Frame Pointer Omission (FPO)
 There is an optimization called Frame Pointer Omission

(FPO) which makes the kernel stack walker not work. A
big problem occurred when MS Visual C++ 2005 used
this optimization.

 Visual C++ 2005 SP1 and future versions no longer use
this optimization (/Oy-), so given that Windows itself is
built without FPO, then applications also should not use
it. The Java libraries do not appear to use it.

 Check if FPO is used by an EXE or DLL:
dumpbin.exe /fpo %MODULE%
If there are “FPO Data” lines, then it is used.

IBM Software Group

 WebSphere® Support Technical Exchange 20 of 45

Symbols

 In general, Windows executables and libraries (DLLs)
are “stripped” – i.e. no symbols

 Symbol files are .PDB files with the same name as the
EXE or DLL. Two types: public or private
http://msdn.microsoft.com/en-us/library/ff550665.aspx

 Java ships with PDBs. WAS does not (only a few
libraries - AIO, WsProcessManagement, few others)

 Install the Windows symbols (retail):
 http://msdn.microsoft.com/en-us/windows/hardware/gg463028

 Try to get PDBs for third party libraries

http://msdn.microsoft.com/en-us/library/ff550665.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463028

IBM Software Group

 WebSphere® Support Technical Exchange 21 of 45

Symbol Path

 Some tooling requires a symbol path to make sense of
the data. Takes the form:
c:\path1;c:\path2;c:\winsympath;srv*c:\winsympath*http

://msdl.microsoft.com/download/symbols
Just a list of paths that have PDBs, except the “srv”

one which is actually a * delimited list to define the
Microsoft symbol server, from which symbols can be
dynamically downloaded. c:\winsympath in the example
should be where you installed the Windows symbols

http://support.microsoft.com/kb/311503

http://support.microsoft.com/kb/311503

IBM Software Group

 WebSphere® Support Technical Exchange 22 of 45

Symbol Path
 Assuming WAS in C:\WAS and Windows symbols

in C:\Windows\Symbols, example sympath:
c:\Windows\Symbols\;C:\WAS\java\jre\bin\;C:\WA

S\java\jre\bin\j9vm\;srv*c:\Windows\Symbols*http:
//msdl.microsoft.com/download/symbols

 To avoid issues, set this as a System Environment
Variable with the name _NT_SYMBOL_PATH

 In windbg, when loading a customer dump, you
also need their PDBs (or from JIM), then set with:

 .sympath
c:\Windows\Symbols\;C:\customer\java\jre\bin\;C:\customer\java\jre\bin\j9vm\;srv*c:\Wi
ndows\Symbols*http://msdl.microsoft.com/download/symbols
.reload

IBM Software Group

 WebSphere® Support Technical Exchange 23 of 45

Symbols

 In general, you want “retail” symbols and not
“checked” symbols. The latter are for debug
builds of Windows.

 Some production system cannot use a symbol
server. In this case, run symchk /om on the box
to get a list of symbols that it needs. Then run
symchk /im with this list to download those
symbols and then transfer them over.

IBM Software Group

 WebSphere® Support Technical Exchange 24 of 45

DebugDiag
 Start DebugDiag; Click on Cancel on the Select Rule

Type Dialog Box
 Tools → Options and Settings

Set symbol path in “Symbol Search Path for Analysis”
Preferences → Check "Record call stacks immediately

when monitoring for leaks"

• If customer experiences large overhead, uncheck this
 Attach to the target WAS process:

Process tab → Right Click → Monitor for Leaks
 Take snapshots over time → Right Click → Create Full

Userdump

IBM Software Group

 WebSphere® Support Technical Exchange 25 of 45

DebugDiag

 Alternatively, create a rule through the wizard. This
also allows setting up when dumps are automatically
taken (e.g. after virtual and/or private bytes increases
past some # of MB and at MB intervals after that)
Also allows for catching a crash when virtual bytes

limit hit
http://msdn.microsoft.com/en-us/library/ff420662.aspx

http://msdn.microsoft.com/en-us/library/ff420662.aspx

IBM Software Group

 WebSphere® Support Technical Exchange 26 of 45

DebugDiag
 To analyze the data

Set your symbol path
Load the user dumps in the Advanced Analysis tab
Click Memory Pressure Analyzers
Click Start Analysis

 Analysis creates an HTML file (IE .mht file)
If you're running Linux®, you can open .mht in Opera

 It's much easier if the customer runs the analysis and
then just sends the .mht file. This avoids having to
get the same PDBs and transferring the dumps

IBM Software Group

 WebSphere® Support Technical Exchange 27 of 45

DebugDiag
 How it works

 Most memory allocations belong in one of three groups: caching, short term
allocations that will be released later, and memory leaks. All three allocation
methods have very distinct allocation patterns when measured over time. The leak-
tracking feature calculates a leak probability using a formula that is based on these
allocation patterns as measured over a specific time period. More precisely, leak
probability is a number between 0 and 100 that measures how allocations are
spread over time. Empirical studies show that leak allocations tend to be evenly
spread over time. When allocations are evenly spread over time, leak probability
equals 100. If allocations are bunched either at the beginning or at the end of the
tracking duration, this usually indicates either caching allocations or short term
allocations, respectively. If all allocations occurred at the beginning or at the end of
a process, then leak probability will equal zero. Additional studies show that a high
allocation count accompanied by leak probability higher than 75 percent indicates
memory leaks. A properly functioning process could be experiencing heavy caching
or short-term allocations and these phenomena could mask other behaviors, so it is
important to use this synthetic time distribution calculation to get stack samples for
those functions.

IBM Software Group

 WebSphere® Support Technical Exchange 28 of 45

DebugDiag
 … How it works …

 As they accumulate, these allocations are sorted based on the following filters:
Top 10 functions sorted by allocation count.
Top 10 functions sorted by total allocation size.
Top 10 functions sorted by leak probability.

The final sorted combination determines which functions must have stack samples associated
with them.

 A stack sample is a heuristic record based on the X86 op codes of possible return addresses that
are found on the stack at execution time. In almost all cases, these samples will contain spurious
addresses. MemoryExt.dll, the analysis module extension, uses the symbol information found in
these samples to reconstruct a stack that will resemble the stack at the time of failure as closely
as possible. This method is used because debug symbols are not used at run time, and reading
and accessing the stack at every allocation would cause significant performance overhead.

 Q: I am debugging a high CPU issue, and I can't use a hang rule because the process is not an
IIS process, and I can't take a manual dump because the problem is random. What can I do?
A: Modify the service script that is included with the tool to set a trigger on process CPU usage.
Service scripts (dbgsvc.vbs) are located in the \Samples folder.

IBM Software Group

 WebSphere® Support Technical Exchange 29 of 45

DebugDiag

 Analysis first summarizes curious things

 Note that each core is treated independently, so
best to look at most recent (time is in the file
name)

IBM Software Group

 WebSphere® Support Technical Exchange 30 of 45

DebugDiag
 Search for “Call stack sample,” e.g.:

 Call stack sample 4
Address 0x25f60020
Allocation Time 00:01:55 since tracking started
Allocation Size 97.66 MBytes

Function Source Destination
j9prt24!j9mem_allocate_memory_basic+1b c:\cygwin\home\foreman\sandbox\jvm-
src\src\j9\port\win32\j9mem.c @ 32 ntdll!RtlAllocateHeap
j9prt24!j9mem_allocate_memory+4a c:\cygwin\home\foreman\sandbox\jvm-
src\src\j9\port\common\j9memtag.c @ 160 j9prt24!j9mem_allocate_memory_basic
jclscar_24!sun_misc_Unsafe_allocateMemory+8d C:\Cygwin\home\Foreman\sandbox\jvm-
src\src\j9\jcl\inl\smunsafe.asm @ 644
oleaut32!DllMain+2c
j9prt24!j9sig_protect+41 c:\cygwin\home\foreman\sandbox\jvm-src\src\j9\port\win32\j9signal.c
@ 144 …

 No Java methods, but it's a start. In this case, someone
is calling sun/misc/Unsafe.allocateMemory() for 97MB

IBM Software Group

 WebSphere® Support Technical Exchange 31 of 45

DebugDiag
 In this case, I know that DirectByteBuffers are one

caller of Unsafe.allocateMemory. Using IEMA:
 Alignment size of 4096 bytes, and word size of 4 bytes.

105 total instances of java.nio.DirectByteBuffer
103 total non-viewed* DirectByteBuffers. Sum capacity (with overhead)=517472736 (493.50 MB). Sum capacity (without
overhead)=517050848 (493.09 MB). Overhead=0.08%, 421888 (412.0 KB)
103 total non-viewed*, non-phantomed** DirectByteBuffers. Sum capacity (with overhead)=517472736 (493.50 MB). Sum
capacity (without overhead)=517050848 (493.09 MB). Overhead=0.08%, 421888 (412.0 KB)
Maximum non-viewed*, non-phantomed** DirectByteBuffer = 102406496 (97.66 MB)
=> Sum DirectByteBuffer capacity available for GC: 0 (0.0 B)
=> Sum DirectByteBuffer capacity not available for GC: 517472736 (493.50 MB)

 Histogram of Incoming References (*, **)

6 instances incoming from java.lang.Object[10]=512037600 (488.31 MB)...
 Class Name | Shallow Heap | Retained Heap | Capacity |IsViewed| # Inbound

java.nio.DirectByteBuffer @ 0x2b94dc8 | 72 | 72 | 102,406,496 |false | 2
|- java.lang.Object[10] @ 0xbffd98 | 56 | 56 | 0 |false | -1
| '- java.util.ArrayList @ 0xbffd78 | 32 | 88 | 0 |false | -1
| '- class com.ibm.AllocateNativeMemory @ 0x218cc20| 250 | 690 | 0 |false | -1
java.nio.DirectByteBuffer @ 0x2b83ba8 | 72 | 72 | 102,406,496 |false | 2
java.nio.DirectByteBuffer @ 0x2b83920 | 72 | 72 | 102,406,496 |false | 2
java.nio.DirectByteBuffer @ 0x23b6800 | 72 | 72 | 102,406,496 |false | 2
java.nio.DirectByteBuffer @ 0x2394e20 | 72 | 72 | 102,406,496 |false | 2

IBM Software Group

 WebSphere® Support Technical Exchange 32 of 45

UMDH
 Basic process to get UMDH data:

 Install debugging tools; Set symbol path

 Run gflags on WAS Java executable (sets registry flag):

• gflags -i <WAS>\java\bin\java +ust
• gflags -i <WAS>\java\jre\bin\java +ust

 Restart WAS; Start Perfmon

 Reproduce problem

• Take native mem snapshots over time: umdh -p:<pid>
-f:umdhN.txt

 Compare snapshots (either first to last, or in pairs):

• umdh -v umdhX.txt umdhY.txt -f:umdhdiffZ.txt
 Undo gflags – same as above, except -ust

IBM Software Group

 WebSphere® Support Technical Exchange 33 of 45

UMDH
 Analyzing the data

See previous links
UMDH attempts to figure out which allocations have

been not freed, then aggregates by stack trace
The diff file is a text file that sorts by largest difference

in total allocation size by back trace; e.g. leak of
0x55500=341KB:

 + 55500 (77700 - 22200) 16c allocs BackTrace5E929EF0
+ 104 (16c - 68) BackTrace5E929EF0 allocations
ntdll!RtlAllocateHeap+0000021D
MSVCR90!malloc+00000079
(f:\dd\vctools\crt_bld\self_x86\crt\src\malloc.c, 163)
MSVCR90!operator new+0000001F
(f:\dd\vctools\crt_bld\self_x86\crt\src\new.cpp, 59)...

IBM Software Group

 WebSphere® Support Technical Exchange 34 of 45

LeakDiag
 Older tool, not much documentation
 Tools → Options

Set Symbol search path
Check “Use DbgHelp StackWalk API to walk

stacks”
Change “Max stack depth” to 10 or more

 Select process (gflags not needed)
 Select the allocator (usually Windows Heap or NT

Allocator is what's needed)
 Click Start button
 Take N snapshots over time with Log button

IBM Software Group

 WebSphere® Support Technical Exchange 35 of 45

LeakDiag

 Creates XML files, no diff function built in
 XML files group by stack trace. Example:

<STACK numallocs="042" size="024" totalsize="01008">
<STACKSTATS>
<SIZESTAT size="024" numallocs="042"/>
<HEAPSTAT handle="572c0000" numallocs="042"/>
</STACKSTATS>
<FRAME num="0" dll="MSVCR80.dll" function ="malloc" offset="0x1F5" filename="" line=""
addr="0x73F44EFE" />
<FRAME num="1" dll="MSVCR80.dll" function ="calloc" offset="0x18" filename="" line="" addr="0x73F44F70" />
<FRAME num="2" dll="gxiosa.dll" function ="osaMutexCreateGlobalMutex" offset="0x8F" filename="" line=""
addr="0x563E73BF" />
…
<STACKID>5EFA57E8</STACKID>
</STACK>

IBM Software Group

 WebSphere® Support Technical Exchange 36 of 45

VMMap

 When starting, click cancel
 Options → Configure Symbols
 File → Select Process → Launch and Trace a new

Process
Unfortunately, this requires the full Java args to WAS
You can use startServer.bat -script to generate this

 Click Trace button
 You can also select heap block and click the Heap

Allocations and Calltree buttons to see details
 Also can do differences between snapshots

IBM Software Group

 WebSphere® Support Technical Exchange 37 of 45

Other Information
 You can get some really weird stack traces with

wrong or incomplete symbols
 Some tools show truncated stacks with all

precautions taken (FPO, symbols) – when you hit this
and tried everything you can, open a support ticket
with Microsoft

 Sometimes dumps can fail to be created:
 http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/nodump_winmemory.html

 Taking manual dump using userdump.exe:
http://support.microsoft.com/kb/241215

 Some allocations never freed (cache) - may be ok

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/nodump_winmemory.html
http://support.microsoft.com/kb/241215

IBM Software Group

 WebSphere® Support Technical Exchange 38 of 45

Windbg Useful Commands
 Open Crash Dump

List all loaded libraries → lmf

Write output to file → .logopen %SOMEFILE%

Virtual memory info → !address -summary

List all native heaps → !heap -s

List details of a particular heap (Heap ID is first column in !
heap -s) → !heap -stat -h <Heap ID>

Given a UserPtr and EXE has gflags +ust, dump stack → !
heap -p -a <UserPtr>

Was gflags set? → !gflag

Dump arbitrary address → db 0x123...

IBM Software Group

 WebSphere® Support Technical Exchange 39 of 45

windbg

 Perfmon data from a previous example to
correlate with windbg

IBM Software Group

 WebSphere® Support Technical Exchange 40 of 45

windbg
 !address -summary to see dumps' virtual memory
 Example:

 Dump#1
--- State Summary ---------------- RgnCount ----------- Total Size -------- %ofBusy %ofTotal
MEM_FREE 120 9231e000 (2.284 Gb) 76.14%
MEM_COMMIT 993 1d2f8000 (466.969 Mb) 63.72% 15.20%
MEM_RESERVE 269 109da000 (265.852 Mb) 36.28% 8.65%

 Dump#2
MEM_FREE 123 7fe20000 (1.998 Gb) 66.61%
MEM_COMMIT 992 2f7c1000 (759.754 Mb) 74.06% 24.73%
MEM_RESERVE 270 10a0f000 (266.059 Mb) 25.94% 8.66%

 Add MEM_COMMIT+MEM_RESERVE. This lines up with
perfmon (~700MB, then 1.1GB)

 Also look at MEM_FREE. In this case, I'm running with /
3GB (e.g. in the last example, 1.9+1.1=3)

IBM Software Group

 WebSphere® Support Technical Exchange 41 of 45

Notes & Links
 Notes

Summing virtual bytes over processes using the
same shared libraries (e.g. multiple WAS JVMs on a
node) will have some double counting.

• Similarly, summing private bytes will be under-
counting.

 Links
Native OOM MustGather for Windows:

• http://www-01.ibm.com/support/docview.wss?uid=swg21313578
 https://www-950.ibm.com/events/wwe/impact/impact10cms.nsf/download/k8a14cc9d282c282c128831c1151/$FILE/IMPACT_native_memory.pdf

 http://www-01.ibm.com/support/docview.wss?uid=swg27013819&aid=1

http://www-01.ibm.com/support/docview.wss?uid=swg21313578
https://www-950.ibm.com/events/wwe/impact/impact10cms.nsf/download/k8a14cc9d282c282c128831c1151/$FILE/IMPACT_native_memory.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27013819&aid=1

IBM Software Group

 WebSphere® Support Technical Exchange 42 of 45

Summary

 In summary, native OutOfMemoryErrors (NOOMs) are one
of the most difficult classes of problems.

 32-bit Windows programs are particularly prone due to the
default 2GB user virtual address space limit.

 Monitoring native memory is absolutely essential.
 Various workarounds exist for NOOMs but have various

costs.
 Various tools exist to investigate root cause, with

DebugDiag and UMDH being the best.

IBM Software Group

 WebSphere® Support Technical Exchange 43 of 45

Additional WebSphere Product Resources
 Learn about upcoming WebSphere Support Technical Exchange webcasts, and access

previously recorded presentations at:
http://www.ibm.com/software/websphere/support/supp_tech.html

 Discover the latest trends in WebSphere Technology and implementation, participate in
technically-focused briefings, webcasts and podcasts at:
http://www.ibm.com/developerworks/websphere/community/

 Join the Global WebSphere Community:
http://www.websphereusergroup.org

 Access key product show-me demos and tutorials by visiting IBM Education Assistant:
http://www.ibm.com/software/info/education/assistant

 View a webcast replay with step-by-step instructions for using the Service Request (SR)
tool for submitting problems electronically:
http://www.ibm.com/software/websphere/support/d2w.html

 Sign up to receive weekly technical My Notifications emails:
http://www.ibm.com/software/support/einfo.html

http://www.ibm.com/software/websphere/support/supp_tech.html
http://www.ibm.com/developerworks/websphere/community/
http://www.ibm.com/developerworks/websphere/community/
http://www.ibm.com/developerworks/websphere/community/
http://www.websphereusergroup.org/
http://www.websphereusergroup.org/
http://www.websphereusergroup.org/
http://www.ibm.com/software/info/education/assistant
http://www.ibm.com/software/websphere/support/d2w.html
http://www.ibm.com/software/support/einfo.html
http://www.ibm.com/software/support/einfo.html

IBM Software Group

 WebSphere® Support Technical Exchange 44 of 45

Connect with us!

1. Get notified on upcoming webcasts
Send an e-mail to wsehelp@us.ibm.com with subject line “wste
subscribe” to get a list of mailing lists and to subscribe

2. Tell us what you want to learn
Send us suggestions for future topics or improvements about our
webcasts to wsehelp@us.ibm.com

3. Be connected!
Connect with us on Facebook
Connect with us on Twitter

mailto:wsehelp@us.ibm.com?subject=wste%20subscribe
mailto:wsehelp@us.ibm.com?subject=wste%20subscribe
mailto:wsehelp@us.ibm.com
http://www.facebook.com/pages/WebSphere-Support-Technical-Exchange/121293581419
http://www.twitter.com/ibmwste

IBM Software Group

 WebSphere® Support Technical Exchange 45 of 45

Questions and Answers

	IBM Presentations: Blue Pearl Asterisk template
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Additional WebSphere Product Resources
	Slide 44
	Slide 45

