
Click to

add text

IBM Software Group

®

WebSphere® Support Technical Exchange

Examples of Flow Control in OPL

Nikhila Arkalgud (narkalgu@us.ibm.com)
Scott Rux (srux@us.ibm.com)
IBM ILOG Optimization Level 2 Technical Support
2 October 2013

This session will be recorded and a replay will be available on IBM.COM sites. When speaking, do not state any confidential information,
your name, company name or any information that you do not want shared publicly in the replay. By speaking during this presentation,
you assume liability for your comments.

IBM Software Group

2

Agenda

 Introduction to Flow Control

Basic Structure of Flow Control

Templates for Flow Control

 Examples

Preprocessing and Postprocessing

Performing Iterative solves

Data access and modification

Column Generation

Problem Decomposition

 Important Tools

Debugging

Memory Management

 Conclusion

WebSphere® Support Technical Exchange

IBM Software Group

3 WebSphere® Support Technical Exchange 3

Introduction to Flow Control

3

IBM Software Group

4

What is Flow Control ?

Flow control enables control over how models are

instantiated and solved in OPL using IBM ILOG Script:

 solve several models with different data in sequence or iteratively

 run multiple “solves” on the same base model, modifying

data, constraints, or both, after each solve

 decompose a model into smaller more manageable models, and

solve these to arrive at a solution to the original model (model

decomposition)

WebSphere® Support Technical Exchange

IBM Software Group

5

What is IBM ILOG Script ?

 A script is a sequence of commands. These commands could be of

various types such as declarations, simple instructions or compound

instructions

 IBM ILOG Script is different from OPL modeling language

 IBM ILOG Script is an implementation of JavaScript

 Includes extension classes for OPL using which Model elements can

be accessed and modified in Flow Control

 All IBM ILOG Script extension classes for OPL start with Ilo, (for

example IloOplModel, IloCplex, IloCP)

WebSphere® Support Technical Exchange

IBM Software Group

6 WebSphere® Support Technical Exchange 6

Basic Structure of Flow Control

6

IBM Software Group

7

The main block

main {

…

}

 To implement Flow Control include a

main block

 A .mod file can contain at most only

one main block

 Main block will be first executed

regardless of where it is placed in

the .mod file

WebSphere® Support Technical Exchange

IBM Software Group

8

The main block using CPLEX Optimizer

main {

 thisOplModel.generate();

 if (cplex.solve()) {

 var obj=cplex.getObjValue();

 }

}

 thisOplModel is an IBM ILOG Script

variable referring to the current model

instance

 generate() is a method used to generate

the model instance

 cplex is an IBM ILOG Script variable

available by default, that refers to the

CPLEX Optimizer instance

 solve() calls one of CPLEX Optimizer’s

MP algorithms to solve the model

 getObjValue() is a method to access the

value of the objective function

WebSphere® Support Technical Exchange

IBM Software Group

9

The main block using CP Optimizer

main {

 thisOplModel.generate();

 if (cp.solve()) {

 var obj=cp.getObjValue();

 }

}

 cp is an IBM ILOG Script variable

available by default, that refers to the CP

Optimizer instance

 If the main block is in a model file starting

with using cp;, the cp variable is

available by default

 If the model file starts with using cp;,

you'll have to declare the cplex variable

explicitly if you want to call CPLEX in that

same main block:

 var cplex = new IloCplex();

WebSphere® Support Technical Exchange

IBM Software Group

10 WebSphere® Support Technical Exchange 10

Templates for Flow Control

10

IBM Software Group

11

Templates for Flow Control

To Construct a Main Block you can apply one of the two methods:

 Start with an OPL project and create a run configuration

 Start with an OPL model and OPL data file

WebSphere® Support Technical Exchange 11 11

IBM Software Group

12

Script template calling a project

main {

 var proj = new IloOplProject("../../../../../opl/mulprod");

 var rc = proj.makeRunConfiguration();

 rc.oplModel.generate();

 if (rc.cplex.solve()) {

 writeln("OBJ = ", rc.cplex.getObjValue());

 }

 else {

 writeln("No solution");

 }

 rc.end();

 proj.end();

}

WebSphere® Support Technical Exchange 12 12

Calls OPL project mulprod.prj

Creates a run configuration

IBM Software Group

13

Script template calling a model and data
main {

 var source = new

IloOplModelSource("../../../../../opl/mulprod/mulprod.mod");

 var def = new IloOplModelDefinition(source);

 var opl = new IloOplModel(def,cplex);

 var data = new

 IloOplDataSource("../../../../../opl/mulprod/mulprod.dat");

 opl.addDataSource(data);

 opl.generate();

 if (cplex.solve()) {

 writeln("OBJ = ", cplex.getObjValue());

 }

 else {

 writeln("No solution");

 }

 opl.end();

 data.end();

 def.end();

 source.end();

}

WebSphere® Support Technical Exchange 13 13

Create source using .mod

Create model instance

Create model definition using source

Add data to model instance

IBM Software Group

14

Which template to use?

 The two templates are similar in behavior, both are useful for

generating and solving a model

 The Run Configuration approach has the added advantage of being

able to use an OPL Settings file (for example, to invoke the tuning tool

on a set of models)

 If you are using the current model instance in the flow control, you can

use the thisOplModel to refer to the current model

WebSphere® Support Technical Exchange 14 14

IBM Software Group

15 WebSphere® Support Technical Exchange 15

Preprocessing and Postprocessing

in Flow Control

15

IBM Software Group

16

Preprocessing and Postprocessing

execute{

 writeln("Preprocessing block");

 }

minimize

...

subject to {

 ...

}

execute{

 writeln(“Postprocessing block");

}

 Use preprocessing execute blocks

to prepare the data before solving,

or to set any parameters

 Preprocessing execute blocks are

called by default before each solve

 Use postprocessing execute

blocks to control and manipulate

the solutions, such as data display

or scripting log

 In flow control to execute the

postprocessing blocks use:

thisOplModel.postProcess();

WebSphere® Support Technical Exchange

IBM Software Group

17

Examples of Preprocessing

 Use Preprocessing execute blocks to prepare the data before calling

solve

execute{

 for(var w in workers){

 w.salary = w.salaryPerHr * w.hoursWorked;

 }

}

 Use Preprocessing execute blocks to set any OPL or CPLEX or CP

parameter settings before calling solve

execute{

 cplex.numericalemphasis = true;

}

WebSphere® Support Technical Exchange

IBM Software Group

18

Examples of Postprocessing

 Use Postprocessing execute blocks to display the output data

plan Plan[p in Products][t in Periods] =

 <Inside[p,t],Outside[p,t],Inv[p,t]>;

execute{

 writeln("Current Plan = ",Plan);

}

 Use Postprocessing execute blocks to display the current solution values

execute {

 writeln("Solution Objective value = ", cplex.getObjValue());

}

WebSphere® Support Technical Exchange

IBM Software Group

19 WebSphere® Support Technical Exchange 19

Iterative Solves using Flow Control

19

IBM Software Group

20

What is an Iterative Solve?

 Iterative Solve refers to the approach of incrementally building the mathematical
model over several iterations

 Start with a base mathematical model

 After each iteration modify the model (either data or definition) to improve
the final solution

 If there is no further improvement, stop the iteration

 Apart from the Final Optimal Solution, this approach also gives the
Optimal Solution after each iteration

 A powerful yet simple technique for “what-if” analysis

 We will use this technique today on a Multi-Period Production Planning Problem

 A variation of basic production-planning problem

 Consider the demand for the products over several periods and allow the
company to produce more than the demand in a given period

 There is an inventory cost associated with storing the additional production

WebSphere® Support Technical Exchange 20 20

IBM Software Group

21

Example for Iterative solves using mulprod
Multi-period production planning problem

mulprod.mod

 minimize

 sum(p in Products , t in Periods)

 (InsideCost[p]*Inside[p][t] +

 OutsideCost[p]*Outside[p][t] +

 InvCost[p]*Inv[p][t]);

 subject to {

 forall(r in Resources , t in Periods)

 ctCapacity:

 sum(p in Products)

 Consumption[r][p] * Inside[p][t] <= Capacity[r];

 forall(p in Products , t in Periods)

 ctDemand:

 Inv[p][t-1] + Inside[p][t] + Outside[p][t] ==

 Demand[p][t] + Inv[p][t];

 forall(p in Products)

 ctInventory:

 Inv[p][0] == Inventory[p];

 }

 tuple plan {

 float inside;

 float outside;

 float inv;

 }

 plan Plan[p in Products][t in Periods] =

 <Inside[p,t],Outside[p,t],Inv[p,t]>;

A data instance from mulprod.dat

Products = { kluski capellini fettucine };

Resources = { flour eggs };
NbPeriods = 3;

Consumption = [

 [0.5, 0.4, 0.3],

 [0.2, 0.4, 0.6]

];

Capacity = [20, 40];
Demand = [

 [10 100 50]

 [20 200 100]

 [50 100 100]

];

Inventory = [0 0 0];

InvCost = [0.1 0.2 0.1];

InsideCost = [0.4, 0.6, 0.1];

OutsideCost = [0.8, 0.9, 0.4];

WebSphere® Support Technical Exchange

IBM Software Group

22

Example for Iterative solves using mulprod
main {

 thisOplModel.generate();
 var produce = thisOplModel;

 var capFlour = produce.Capacity["flour"];
 var best;

 var curr = Infinity;

 var ofile = new IloOplOutputFile("mulprod_main.txt");

 while (1) {

 best = curr;

 writeln("Solve with capFlour = ",capFlour);

 if (cplex.solve()) {

 curr = cplex.getObjValue();

 writeln();

 writeln("OBJECTIVE: ",curr);

 ofile.writeln("Objective with capFlour = ", capFlour, " is ", curr);

 } else {

 writeln("No solution!");

 break;

 }

 if (best==curr) break;
 capFlour++;

 for(var t in thisOplModel.Periods)

 thisOplModel.ctCapacity["flour"][t].UB = capFlour;
 }

if (best != Infinity) {

 writeln("plan = ",produce.Plan);

 }

 ofile.close();

}

Solving

iteratively

using while

loop

Modifying the upper bound (flour capacity)

Stopping criteria

Using the current model instance

WebSphere® Support Technical Exchange

Obtain the starting Flour Capacity

IBM Software Group

23 WebSphere® Support Technical Exchange 23

Data Access in Flow Control

23

IBM Software Group

24

Data Access in Flow Control

 Before modifying the data in the Flow Control, you must get the data elements
from the OPL model instance using:

thisOplModel.dataElements;

 Every time a model data element is modified the OPL model needs to be
re-generated

 If generating your OPL model is time consuming, consider directly modifying
the generated optimization model

 You can modify the CPLEX Optimizer matrix directly, without modifying
the OPL model

 For example to modify the flour capacity:

thisOplModel.ctCapacity["flour"].UB = flourCapacity;

 Only external data can be modified (for example data declared in a .mod file

and initialized in a .dat file)

 Scalar data (for example int NumPeriods = 10) cannot be modified in Flow
Control

WebSphere® Support Technical Exchange 24 24

IBM Software Group

25

Example for modifying model data using mulprod

 var def = produce.modelDefinition;

 var data = produce.dataElements;

 if (produce!=thisOplModel) {

 produce.end();

 }

 produce = new IloOplModel(def,cplex);

 capFlour++;

 data.Capacity["flour"] = capFlour;

 produce.addDataSource(data);

 produce.generate();

Create new model definition

Reference new data elements

Create new OPL model instance

Change data (new flour capacity)

Add new data to OPL model instance

Generate the new OPL model instance

WebSphere® Support Technical Exchange

End the previous OPL model instance

IBM Software Group

26

Few tips to remember when performing iterative/multi
model solves

 Choose wisely which template will work best for your model design. Both
templates can essentially perform the same tasks, but each template has its
own advantages

 If you have multiple data instances to run, with different settings choosing
the Template with OPL project with different run configurations would be a
better option

 If you have only one OPL model instance being solved iteratively then a
data model template would work better

 When modifying the data elements (or model definition) of a OPL Model
instance, remember to add the modified data (or the modified model definition)
to the model source and generate the new OPL Model Instance

 If your OPL model generation is time consuming, consider modifying the
generated optimization model directly (note: this will not modify the OPL model)

 Remember to end the objects not in use by using the end() method

 If using the CPLEX Studio IDE set mainEndEnabled to true

WebSphere® Support Technical Exchange 26 26

IBM Software Group

27 WebSphere® Support Technical Exchange 27

Column Generation using

Flow Control

27

IBM Software Group

28

What is Column Generation?

 Classic example is the Cutting Stock problem:

There exist boards of a fixed width (for instance 110 inches)

There are also a number of shelves of different lengths
(for instance, 20 inches, 45 inches, etc.)

 It is possible to cut multiple shelves from a single board

There is a specified demand the number of shelves

Objective: minimize the number of boards used to satisfy demand

 The naïve approach is nearly impossible to write:

One variable per possible pattern will only work if there are very
few possible patterns

 In practice, there are too many possible patterns to make this
workable

 Impossible to scale, with even a modest number of possibilities

WebSphere® Support Technical Exchange 28 28

IBM Software Group

29

What is Column Generation?

 Column Generation builds these pattern variables iteratively

 The main approach starts with a rudimentary form of the original

problem

 The first half solves the main model, then uses information from this
main problem to initialize a sub problem

 The second half solves the sub model, then uses information from this
sub problem to create new variables for main problem

 Requires flow control to manage two different models

WebSphere® Support Technical Exchange 29 29

IBM Software Group

30

Basic Approach to Column Generation

 Step 1: Solve Master Model, get some basic solution

 Step 2: Use dual information to initialize sub model

 Step 3: Solve Sub Model, get information on new pattern variable that
will best improve the objective.

 If the sub model suggests that there is no more improvement, stop

 Step 4: Otherwise, use sub model solution to create new variable, go
back to step 1

WebSphere® Support Technical Exchange 30 30

IBM Software Group

31

Basic Approach to Column Generation

 Solve Master Model

 Forward information from master model to sub model

WebSphere® Support Technical Exchange 31 31

IBM Software Group

32

Basic Approach to Column Generation

 Solve Sub Model

 If the sub model suggests that there is no more improvement, stop.
Otherwise, use sub model solution to create new variable

WebSphere® Support Technical Exchange 32 32

IBM Software Group

33

Key Points of Column Generation

 This particular approach relies on the concepts of “dual” in linear

programming

 This can be extended to other ways to identify new patterns

The key is that the sub problem identifies new variables that will
definitely improve the objective, then stops

 Similar approaches work in other industries, like crew scheduling, or
vehicle routing

Start with a rudimentary formulation, then improve this iteratively

 Flow control allows you to forward information from one model to
another

WebSphere® Support Technical Exchange 33 33

IBM Software Group

34 WebSphere® Support Technical Exchange 34

Problem Decomposition using

Flow Control

34

IBM Software Group

35

What is Problem Decomposition?

 Classic example is a Cost Minimization problem with penalties

There is a standard model with demand constraints, and supply
constraints, and cost coefficients

Some constraints can be violated. This is expressed by adding a
“slack” variable on the constraints

Each slack variable has a very large cost coefficient

As the goal is to minimize cost, this will also minimize the slack
variables

 The direct approach is very common, but has a couple of drawbacks

 If the penalty cost coefficients are too large, can introduce
numerical instability and related performance issues

 If the penalty cost coefficients are too small, constraints may be
violated when they should not

 It may be difficult to prove optimality of particular model

WebSphere® Support Technical Exchange 35 35

IBM Software Group

36

What is Problem Decomposition?

 Problem Decomposition splits (or decomposes) the model into two or

more parts

 The first broad model solves to minimize the slacks and/or other very
large costs

 Once the large costs are determined, they are fixed in the main model

 The main model can then optimize on the small, fine-grained details,
without letting the big variables interfere

 Requires flow control to manage the different models

WebSphere® Support Technical Exchange 36 36

IBM Software Group

37

Basic Approach to Problem Decomposition

 Basic Monolithic Model

WebSphere® Support Technical Exchange 37 37

Slack Cost Coefficient

Slack Variables

IBM Software Group

38

Basic Approach to Problem Decomposition

 Revised Model for large costs (note objective only has large costs)

 Revised Model for small costs (note that slacks are fixed)

WebSphere® Support Technical Exchange 38 38

Only Slack Costs

Fixed Slack Values

Only Normal Costs

IBM Software Group

39

Basic Approach to Problem Decomposition

 Flow Control to link both models

WebSphere® Support Technical Exchange 39 39

Build Second Model

Solve First Model

Use previous data

for second model

IBM Software Group

40

Key Points of Problem Decomposition

 This particular approach splits a large model into smaller models

 There is substantial overlap between each model

This may mean extra overhead if the model design changes

 The benefit is that this allows for a more natural modeling:

Usually the largest costs dominate the objective, so solving them
and fixing them can give a better sense than solving for everything

Avoiding a mix of large and small values, coefficients tends to
improve numerical stability, performance, and correctness

 Flow control allows solve these related models, and forward
information between them. This is the basis of decomposition

WebSphere® Support Technical Exchange 40 40

IBM Software Group

41 WebSphere® Support Technical Exchange 41

Debugging in Flow Control

41

IBM Software Group

42

Debugging in Flow Control: writeln

 The simplest approach is to add writeln() statements throughout the
flow control blocks, displaying different variables and expressions

 Even though it seems simple, it is often the quickest to set up, and the
simplest to evolve

 Be careful! Too many printing statements can clutter the output, and
make things less usable

 Consider using an output file (ofile) and redirect this extra output to an
auxiliary file

WebSphere® Support Technical Exchange 42 42

IBM Software Group

43

Debugging in Flow Control: solve underlying model

 It can be very tricky to debug master models and sub models,
especially if they are built iteratively

 Sometimes, it is useful to create a new OPL project, using the original
model

 The OPL data file must be created separately (or manually)

This can be made easier by printing out various data with writeln()

 This approach is very useful to determine if there are errors in the flow
control statements, or with the model itself

WebSphere® Support Technical Exchange 43 43

IBM Software Group

44

Debugging in Flow Control: use the IDE
 Create a breakpoint in the model (right-click on the line numbers)

 Start the debugger

WebSphere® Support Technical Exchange 44 44

IBM Software Group

45

Debugging in Flow Control: use the IDE
 Use the Debug options to step through the flow control model line-by-line

 Use the expression window to keep track of variables

WebSphere® Support Technical Exchange 45 45

IBM Software Group

46 WebSphere® Support Technical Exchange 46

Memory Management in

Flow Control

46

IBM Software Group

47

Ending Objects in Flow Control

 Iterative solves can lead to out of memory errors if the objects are not

handled correctly

 IBM ILOG Script provides the end() methods to end the objects in Flow
Control

 The end() method is disabled by default in CPLEX Studio IDE, to
enable it use:

thisOplModel.settings.mainEndEnabled = true;

 Use caution when calling end() method, if you try access the object
after it has been deleted could lead to a crash

WebSphere® Support Technical Exchange 47 47

IBM Software Group

48

Ending Objects in Flow Control

main {

var source = new

IloOplModelSource("../../../../../opl/mulprod/mulprod.mod

");

var def = new IloOplModelDefinition(source);

var opl = new IloOplModel(def,cplex);

var data = new

IloOplDataSource("../../../../../opl/mulprod/mulprod.dat"

);

opl.addDataSource(data);

opl.generate();

opl.settings.mainEndEnabled = true;

if (cplex.solve()) {

writeln("OBJ = ", cplex.getObjValue());

}

else {

writeln("No solution");

}

opl.end();

data.end();

def.end();

source.end();
}

WebSphere® Support Technical Exchange 48 48

main {

var proj = new

IloOplProject("../../../../../opl/mulprod");

var rc = proj.makeRunConfiguration();

rc.oplModel.generate();

rc.oplModel.settings.mainEndEnabled = true;

if (rc.cplex.solve()) {

writeln("OBJ = ", rc.cplex.getObjValue());

}

else {

writeln("No solution");

}

rc.end();

proj.end();
}

Template calling a model and data Template calling a project

IBM Software Group

49 WebSphere® Support Technical Exchange 49

Conclusion

49

IBM Software Group

50

Summary

 Flow control is a powerful concept, allowing you to control how different

models are solved

 Preprocessing and postprocessing can be used to initialize, prepare,
and output data in different ways

 Solving multiple related models in sequences is possible with a simple
loop and flow control statements

 The flow control approach also works to decompose larger complicated
models into smaller models

 Flow control allows you to approach more problems than a pure
OPL model approach

WebSphere® Support Technical Exchange 50 50

IBM Software Group

51

Further ILOG Optimization Support Resources

 We are on Facebook!

https://www.facebook.com/ILOGOptimizationSupport

 We are on YouTube!

https://www.youtube.com/OptimizationSupport

 Don’t forget the IBM Support Portal

http://ibm.com/support/

WebSphere® Support Technical Exchange 51 51

IBM Software Group

52

Additional WebSphere Product Resources

 Learn about upcoming WebSphere Support Technical Exchange webcasts, and access
previously recorded presentations at:
http://www.ibm.com/software/websphere/support/supp_tech.html

 Discover the latest trends in WebSphere Technology and implementation, participate in
technically-focused briefings, webcasts and podcasts at:
http://www.ibm.com/developerworks/websphere/community/

 Join the Global WebSphere Community:
http://www.websphereusergroup.org

 Access key product show-me demos and tutorials by visiting IBM Education Assistant:
http://www.ibm.com/software/info/education/assistant

 View a webcast replay with step-by-step instructions for using the Service Request (SR)
tool for submitting problems electronically:
http://www.ibm.com/software/websphere/support/d2w.html

 Sign up to receive weekly technical My Notifications emails:
http://www.ibm.com/software/support/einfo.html

WebSphere® Support Technical Exchange 52 52

http://www.ibm.com/software/websphere/support/supp_tech.html
http://www.ibm.com/developerworks/websphere/community/
http://www.websphereusergroup.org/
http://www.ibm.com/software/info/education/assistant
http://www.ibm.com/software/websphere/support/d2w.html
http://www.ibm.com/software/support/einfo.html

IBM Software Group

53 WebSphere® Support Technical Exchange 53

Connect with us!

1. Get notified on upcoming webcasts
Send an e-mail to wsehelp@us.ibm.com with subject line “wste

subscribe” to get a list of mailing lists and to subscribe

2. Tell us what you want to learn
Send us suggestions for future topics or improvements about our

webcasts to wsehelp@us.ibm.com

3. Be connected!
Connect with us on Facebook

Connect with us on Twitter

53

mailto:wsehelp@us.ibm.com?subject=wste subscribe
mailto:wsehelp@us.ibm.com
https://www.facebook.com/ILOGOptimizationSupport
http://www.twitter.com/ibmwste

IBM Software Group

54

Questions and Answers

WebSphere® Support Technical Exchange 54

This Support Technical Exchange session will be recorded and a replay will be available on IBM.COM sites. When speaking, do not
state any confidential information, your name, company name or any information you do not want shared publicly in the
replay. By speaking in during this presentation, you assume liability for your comments.

54

IBM Software Group

55

Easily find important Support resources
 Connect with the Expert:

 Support Technical Exchanges

 Ask the Expert Sessions

 Product Support Newsletters

 Blog & Forums

 Training videos, IEA modules

 Event Readiness

 Proactive Services Offerings

 Essential Links to key sites:

 IBM Support Portal

 Client Success Portal

 Fix Central

Join the new Industry Solutions Client Success Essentials Community Quick start instructions

Join Industry Solutions Client Success Essentials Community

WebSphere® Support Technical Exchange

https://www-304.ibm.com/connections/communities/community/ClientEssentials
http://www.ibm.com/support/docview.wss?uid=swg21647517

IBM Software Group

56

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL

PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND

ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”

WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS

BASED ON IBM’S CURRENT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM

WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE

USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION,

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO NOR SHALL HAVE THE EFFECT

OF CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR

LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE

GOVERNING THE USE OF IBM PRODUCT OR SOFTWARE.

Copyright and Trademark Information

IBM, The IBM Logo and IBM.COM are trademarks of International Business Machines Corp., registered in

many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other

companies. A current list of IBM trademarks and others are available on the web under “Copyright and

Trademark Information” located at www.ibm.com/legal/copytrade.shtml.

56 WebSphere® Support Technical Exchange

http://www.ibm.com/legal/copytrade.shtml

