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What is Flow Control ? 

Flow control enables control over how models are 

instantiated and solved in OPL using IBM ILOG Script: 

 
 solve several models with different data in sequence or iteratively 

 

 run multiple “solves” on the same base model, modifying 

data, constraints, or both, after each solve 

 

 decompose a model into smaller more manageable models, and 

solve these to arrive at a solution to the original model (model 

decomposition) 
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What is IBM ILOG Script ? 

 A script is a sequence of commands. These commands could be of 

various types such as declarations, simple instructions or compound 

instructions 

 

 IBM ILOG Script is different from OPL modeling language 

 

 IBM ILOG Script is an implementation of JavaScript 

 
 Includes extension classes for OPL using which Model elements can 

be accessed and modified in Flow Control 

 

 All IBM ILOG Script extension classes for OPL start with Ilo, (for 

example IloOplModel, IloCplex, IloCP) 
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The main block 

main { 

… 

} 

 

 To implement Flow Control include a 

main block 

 

 A .mod file can contain at most only 

one main block 

 

 Main block will be first executed 

regardless of where it is placed in 

the .mod file 
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The main block using CPLEX Optimizer 

main { 

 

 thisOplModel.generate(); 

 

 if (cplex.solve()) { 

  var obj=cplex.getObjValue(); 

 } 

 

} 

 thisOplModel is an IBM ILOG Script 

variable referring to the current model 

instance 

 

 generate() is a method used to generate 

the model instance 

 

 cplex is an IBM ILOG Script variable 

available by default, that refers to the 

CPLEX Optimizer instance 

 

 solve() calls one of CPLEX Optimizer’s 

MP algorithms to solve the model 

 

 getObjValue() is a method to access the 

value of the objective function 
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The main block using CP Optimizer 

main { 

 

 thisOplModel.generate(); 

 

 if (cp.solve()) { 

  var obj=cp.getObjValue(); 

 } 

 

} 

 cp is an IBM ILOG Script variable 

available by default, that refers to the CP 

Optimizer instance 

 

 If the main block is in a model file starting 

with using cp;, the cp variable is 

available by default  

 

 If the model file starts with using cp;, 

you'll have to declare the cplex variable 

explicitly if you want to call CPLEX in that 

same main block: 

 

              var cplex = new IloCplex(); 
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Templates for Flow Control 

To Construct a Main Block you can apply one of the two methods: 
 

 

 Start with an OPL project and create a run configuration 

 

 

 Start with an OPL model and OPL data file 
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Script template calling a project 

main { 

 var proj = new IloOplProject("../../../../../opl/mulprod"); 

 var rc = proj.makeRunConfiguration(); 

 rc.oplModel.generate(); 

 if (rc.cplex.solve()) { 

  writeln("OBJ = ", rc.cplex.getObjValue()); 

 } 

 else { 

  writeln("No solution"); 

 } 

 rc.end(); 

 proj.end(); 

} 
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Script template calling a model and data 
main { 

 var source = new 

IloOplModelSource("../../../../../opl/mulprod/mulprod.mod"); 

 var def = new IloOplModelDefinition(source); 

 var opl = new IloOplModel(def,cplex); 

 var data = new 

 IloOplDataSource("../../../../../opl/mulprod/mulprod.dat"); 

 opl.addDataSource(data); 

 opl.generate(); 

 if (cplex.solve()) { 

  writeln("OBJ = ", cplex.getObjValue()); 

 } 

 else { 

  writeln("No solution"); 

 } 

 opl.end(); 

 data.end(); 

 def.end(); 

 source.end(); 

} 
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Which template to use? 

 

 

 The two templates are similar in behavior, both are useful for 

generating and solving a model 

 

 The Run Configuration approach has the added advantage of being 

able to use an OPL Settings file (for example, to invoke the tuning tool 

on a set of models) 

 

 If you are using the current model instance in the flow control, you can 

use the thisOplModel to refer to the current model 
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Preprocessing and Postprocessing 

execute{ 

  writeln("Preprocessing block"); 

  } 

minimize 

... 

  

subject to { 

  ... 

}   

execute{ 

  writeln(“Postprocessing block"); 

} 

 

 Use preprocessing execute blocks 

to prepare the data before solving, 

or to set any parameters 

 

 Preprocessing execute blocks are 

called by default before each solve  

 

 Use postprocessing execute 

blocks to control and manipulate 

the solutions, such as data display 

or scripting log 

 

 In flow control to execute the 

postprocessing blocks use: 

 
thisOplModel.postProcess(); 
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Examples of Preprocessing 

 

 Use Preprocessing execute blocks to prepare the data before calling 

solve 
 

execute{ 

  for(var w in workers){ 

   w.salary = w.salaryPerHr * w.hoursWorked; 

  } 

} 

 

 Use Preprocessing execute blocks to set any OPL or CPLEX or CP 

parameter settings before calling solve 
 

execute{ 

 cplex.numericalemphasis  = true; 

} 
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Examples of Postprocessing 

 

 Use Postprocessing execute blocks to display the output data 
 

plan Plan[p in Products][t in Periods] =  

  <Inside[p,t],Outside[p,t],Inv[p,t]>; 

   

execute{ 

  writeln("Current Plan = ",Plan); 

} 

 

 Use Postprocessing execute blocks to display the current solution values 
 

execute { 

 writeln("Solution Objective value = ", cplex.getObjValue()); 

} 
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What is an Iterative Solve? 

 Iterative Solve refers to the approach of incrementally building the mathematical 
model over several iterations 

 Start with a base mathematical model 

 After each iteration modify the model (either data or definition) to improve 
the final solution 

 If there is no further improvement, stop the iteration 

 Apart from the Final Optimal Solution, this approach also gives the 
Optimal Solution after each iteration 

 A powerful yet simple technique for “what-if” analysis 

 
 We will use this technique today on a Multi-Period Production Planning Problem 

 A variation of basic production-planning problem 

 Consider the demand for the products over several periods and allow the 
company to produce more than the demand in a given period  

 There is an inventory cost associated with storing the additional production 
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Example for Iterative solves using mulprod 
Multi-period production planning problem 

mulprod.mod 
 

 

 minimize 

  sum( p in Products , t in Periods )  

    (InsideCost[p]*Inside[p][t] +  

     OutsideCost[p]*Outside[p][t] + 

     InvCost[p]*Inv[p][t]); 

 

 subject to { 

  forall( r in Resources , t in Periods ) 

    ctCapacity: 

      sum( p in Products )  

        Consumption[r][p] * Inside[p][t] <= Capacity[r]; 

 

  forall( p in Products , t in Periods ) 

    ctDemand: 

      Inv[p][t-1] + Inside[p][t] + Outside[p][t] ==  

      Demand[p][t] + Inv[p][t]; 

 

  forall( p in Products ) 

    ctInventory: 

      Inv[p][0] == Inventory[p];  

 } 

 

 tuple plan { 

  float inside; 

  float outside; 

  float inv; 

 } 

 

 plan Plan[p in Products][t in Periods] =  

  <Inside[p,t],Outside[p,t],Inv[p,t]>; 

A data instance from mulprod.dat 
 

 

 

Products =  { kluski capellini fettucine }; 

Resources = { flour eggs }; 
NbPeriods = 3; 

 

Consumption = [ 

                [ 0.5, 0.4, 0.3 ], 

                [ 0.2, 0.4, 0.6 ] 

              ]; 

Capacity = [ 20, 40 ]; 
Demand = [ 

           [ 10 100 50 ] 

           [ 20 200 100] 

           [ 50 100 100] 

         ]; 

Inventory = [ 0 0 0]; 

InvCost = [ 0.1 0.2 0.1];   

InsideCost = [ 0.4, 0.6, 0.1 ]; 

OutsideCost  = [ 0.8, 0.9, 0.4 ]; 
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Example for Iterative solves using mulprod 
main { 

     thisOplModel.generate(); 
 var produce = thisOplModel; 

   var capFlour = produce.Capacity["flour"]; 
   var best; 

   var curr = Infinity; 

   var ofile = new IloOplOutputFile("mulprod_main.txt"); 

   while ( 1 ) { 

      best = curr; 

      writeln("Solve with capFlour = ",capFlour); 

      if ( cplex.solve() ) { 

      curr = cplex.getObjValue(); 

        writeln(); 

        writeln("OBJECTIVE: ",curr); 

        ofile.writeln("Objective with capFlour = ", capFlour, " is ", curr);         

      } else { 

        writeln("No solution!"); 

        break; 

      } 

      if ( best==curr ) break; 
      capFlour++; 

      for(var t in thisOplModel.Periods) 

        thisOplModel.ctCapacity["flour"][t].UB = capFlour; 
   } 

if (best != Infinity) { 

      writeln("plan = ",produce.Plan); 

   } 

   ofile.close();     

} 
  

 

Solving 

iteratively 

using while 

loop 

Modifying the upper bound (flour capacity) 

Stopping criteria 

Using the current model instance 
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Data Access in Flow Control 

 Before modifying the data in the Flow Control, you must get the data elements 
from the OPL model instance using: 
 

thisOplModel.dataElements; 
 

 Every time a model data element is modified the OPL model needs to be 
re-generated 
 

 If generating your OPL model is time consuming, consider directly modifying 
the generated optimization model 

 You can modify the CPLEX Optimizer matrix directly, without modifying 
the OPL model 

 For example to modify the flour capacity: 

thisOplModel.ctCapacity["flour"].UB = flourCapacity; 

 
 Only external data can be modified ( for example data declared in a .mod file 

and initialized in a .dat file ) 
 

 Scalar data (for example int NumPeriods = 10) cannot be modified in Flow 
Control 
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Example for modifying model data using mulprod 
 

 

 

  

 var def = produce.modelDefinition; 

     

 var data = produce.dataElements; 

       

 if ( produce!=thisOplModel ) { 

 

      produce.end(); 

 

 } 

 

 produce = new IloOplModel(def,cplex); 

  

 capFlour++; 

     

 data.Capacity["flour"] = capFlour; 

     

 produce.addDataSource(data); 

     

 produce.generate(); 

Create new model definition 

Reference new data elements 

Create new OPL model instance 

Change data (new flour capacity) 

Add new data to OPL model instance 

Generate the new OPL model instance 
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Few tips to remember when performing iterative/multi 
model solves 

 Choose wisely which template will work best for your model design. Both 
templates can essentially perform the same tasks, but each template has its 
own advantages 

 If you have multiple data instances to run, with different settings choosing 
the Template with OPL project with different run configurations would be a 
better option 

 If you have only one OPL model instance being solved iteratively then a 
data model template would work better 

 

 When modifying the data elements (or model definition) of a OPL Model 
instance, remember to add the modified data (or the modified model definition) 
to the model source and generate the new OPL Model Instance 
 

 If your OPL model generation is time consuming, consider modifying the 
generated optimization model directly (note: this will not modify the OPL model) 
 

 Remember to end the objects not in use  by using the end() method 
 

 If using the CPLEX Studio IDE set mainEndEnabled to true 
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What is Column Generation? 
 

 Classic example is the Cutting Stock problem: 

There exist boards of a fixed width (for instance 110 inches) 

There are also a number of shelves of different lengths 
(for instance, 20 inches, 45 inches, etc.) 

 It is possible to cut multiple shelves from a single board 

There is a specified demand the number of shelves 

Objective: minimize the number of boards used to satisfy demand 

 

 The naïve approach is nearly impossible to write: 

One variable per possible pattern will only work if there are very 
few possible patterns 

 In practice, there are too many possible patterns to make this 
workable 

 Impossible to scale, with even a modest number of possibilities  
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What is Column Generation? 

 
 Column Generation builds these pattern variables iteratively 

 
 The main approach starts with a rudimentary form of the original 

problem 
 

 The first half solves the main model, then uses information from this 
main problem to initialize a sub problem 
 

 The second half solves the sub model, then uses information from this 
sub problem to create new variables for main problem 
 

 Requires flow control to manage two different models 
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Basic Approach to Column Generation 

 
 

 Step 1: Solve Master Model, get some basic solution 
 

 Step 2: Use dual information to initialize sub model 
 

 Step 3: Solve Sub Model, get information on new pattern variable that 
will best improve the objective. 
 

 If the sub model suggests that there is no more improvement, stop 
 

 Step 4: Otherwise, use sub model solution to create new variable, go 
back to step 1 
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Basic Approach to Column Generation 

 Solve Master Model 
 
 
 
 
 
 

 
 

 
 Forward information from master model to sub model 
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Basic Approach to Column Generation 

 Solve Sub Model 
 
 
 
 
 
 

 If the sub model suggests that there is no more improvement, stop. 
Otherwise, use sub model solution to create new variable 
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Key Points of Column Generation 

 
 This particular approach relies on the concepts of “dual” in linear 

programming 
 

 This can be extended to other ways to identify new patterns 

The key is that the sub problem identifies new variables that will 
definitely improve the objective, then stops 

 

 Similar approaches work in other industries, like crew scheduling, or 
vehicle routing 

Start with a rudimentary formulation, then improve this iteratively 

 

 Flow control allows you to forward information from one model to 
another 
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What is Problem Decomposition? 
 

 Classic example is a Cost Minimization problem with penalties 

There is a standard model with demand constraints, and supply 
constraints, and cost coefficients 

Some constraints can be violated.  This is expressed by adding a 
“slack” variable on the constraints 

Each slack variable has a very large cost coefficient 

As the goal is to minimize cost, this will also minimize the slack 
variables 

 

 The direct approach is very common, but has a couple of drawbacks 

 If the penalty cost coefficients are too large, can introduce 
numerical instability and related performance issues 

 If the penalty cost coefficients are too small, constraints may be 
violated when they should not 

 It may be difficult to prove optimality of particular model 

 
 
 
 

WebSphere® Support Technical Exchange 35 35 



IBM Software Group 

36  

What is Problem Decomposition? 

 
 Problem Decomposition splits (or decomposes) the model into two or 

more parts 
 

 The first broad model solves to minimize the slacks and/or other very 
large costs 
 

 Once the large costs are determined, they are fixed in the main model 
 

 The main model can then optimize on the small, fine-grained details, 
without letting the big variables interfere 
 

 Requires flow control to manage the different models 
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Basic Approach to Problem Decomposition 

 Basic Monolithic Model 
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Basic Approach to Problem Decomposition 

 Revised Model for large costs (note objective only has large costs) 
 
 
 
 
 

 Revised Model for small costs (note that slacks are fixed) 
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Basic Approach to Problem Decomposition 

 Flow Control to link both models 
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Key Points of Problem Decomposition 

 
 This particular approach splits a large model into smaller models 

 
 There is substantial overlap between each model 

This may mean extra overhead if the model design changes 

 

 The benefit is that this allows for a more natural modeling: 

Usually the largest costs dominate the objective, so solving them 
and fixing them can give a better sense than solving for everything 

Avoiding a mix of large and small values, coefficients tends to 
improve numerical stability, performance, and correctness 

 

 Flow control allows solve these related models, and forward 
information between them.  This is the basis of decomposition 
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Debugging in Flow Control: writeln 

 
 

 The simplest approach is to add writeln() statements throughout the 
flow control blocks, displaying different variables and expressions 
 

 Even though it seems simple, it is often the quickest to set up, and the 
simplest to evolve 
 
 
 

 Be careful! Too many printing statements can clutter the output, and 
make things less usable 
 

 Consider using an output file (ofile) and redirect this extra output to an 
auxiliary file 
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Debugging in Flow Control: solve underlying model 

 
 

 It can be very tricky to debug master models and sub models, 
especially if they are built iteratively 
 

 Sometimes, it is useful to create a new OPL project, using the original 
model   
 

 The OPL data file must be created separately (or manually) 

This can be made easier by printing out various data with writeln() 

 

 This approach is very useful to determine if there are errors in the flow 
control statements, or with the model itself 
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Debugging in Flow Control: use the IDE 
 Create a breakpoint in the model (right-click on the line numbers) 

 
 
 
 
 
 
 
 

 
 Start the debugger 
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Debugging in Flow Control: use the IDE 
 Use the Debug options to step through the flow control model line-by-line 

 
 
 
 
 
 
 
 
 

 Use the expression window to keep track of variables 
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Ending Objects in Flow Control 

 
 Iterative solves can lead to out of memory errors if the objects are not 

handled correctly 
 
 

 IBM ILOG Script provides the end() methods to end the objects in Flow 
Control 
 
 

 The end() method is disabled by default in CPLEX Studio IDE, to 
enable it use: 
 

thisOplModel.settings.mainEndEnabled =  true;  
 

 Use caution when calling end() method, if you try access the object 
after it has been deleted could lead to a crash 
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Ending Objects in Flow Control 

main { 

var source = new 

IloOplModelSource("../../../../../opl/mulprod/mulprod.mod

"); 

var def = new IloOplModelDefinition(source); 

var opl = new IloOplModel(def,cplex); 

var data = new 

IloOplDataSource("../../../../../opl/mulprod/mulprod.dat"

); 

opl.addDataSource(data); 

opl.generate();  

 

opl.settings.mainEndEnabled = true; 
 

if (cplex.solve()) { 

writeln("OBJ = ", cplex.getObjValue()); 

} 

else { 

writeln("No solution"); 

} 

opl.end(); 

data.end(); 

def.end(); 

source.end(); 
} 

WebSphere® Support Technical Exchange 48 48 

main { 

var proj = new 

IloOplProject("../../../../../opl/mulprod"); 

var rc = proj.makeRunConfiguration(); 

rc.oplModel.generate(); 

 

rc.oplModel.settings.mainEndEnabled = true; 
 

if (rc.cplex.solve()) { 

writeln("OBJ = ", rc.cplex.getObjValue()); 

} 

else { 

writeln("No solution"); 

} 

rc.end(); 

proj.end(); 
} 

Template calling a model and data Template calling a project 
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Summary 

 
 Flow control is a powerful concept, allowing you to control how different 

models are solved 
 

 Preprocessing and postprocessing can be used to initialize, prepare, 
and output data in different ways 
 

 Solving multiple related models in sequences is possible with a simple 
loop and flow control statements 
 

 The flow control approach also works to decompose larger complicated 
models into smaller models 
 

 Flow control allows you to approach more problems than a pure 
OPL model approach 
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Further ILOG Optimization Support Resources 

 
 We are on Facebook! 

https://www.facebook.com/ILOGOptimizationSupport 

 

 We are on YouTube! 

https://www.youtube.com/OptimizationSupport 

 

 Don’t forget the IBM Support Portal 

http://ibm.com/support/  

 

WebSphere® Support Technical Exchange 51 51 



IBM Software Group 

52  

Additional WebSphere Product Resources 

 Learn about upcoming WebSphere Support Technical Exchange webcasts, and access 
previously recorded presentations at: 
http://www.ibm.com/software/websphere/support/supp_tech.html 
 

 Discover the latest trends in WebSphere Technology and implementation, participate in 
technically-focused briefings, webcasts and podcasts at: 
http://www.ibm.com/developerworks/websphere/community/ 
 

 Join the Global WebSphere Community:  
http://www.websphereusergroup.org  
 

 Access key product show-me demos and tutorials by visiting IBM Education Assistant: 
http://www.ibm.com/software/info/education/assistant 
 

 View a webcast replay with step-by-step instructions for using the Service Request (SR) 
tool for submitting problems electronically: 
http://www.ibm.com/software/websphere/support/d2w.html 
 

 Sign up to receive weekly technical My Notifications emails: 
http://www.ibm.com/software/support/einfo.html 
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Connect with us! 

 

1. Get notified on upcoming webcasts 
Send an e-mail to wsehelp@us.ibm.com with subject line “wste 

subscribe” to get a list of mailing lists and to subscribe 

2. Tell us what you want to learn 
Send us suggestions for future topics or improvements about our 

webcasts to wsehelp@us.ibm.com 

3. Be connected! 
Connect with us on Facebook 

Connect with us on Twitter 
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Questions and Answers 

WebSphere® Support Technical Exchange 54 

This Support Technical Exchange session will be recorded and a replay will be available on IBM.COM sites. When speaking, do not 
state any confidential information, your name, company name or any information you do not want shared publicly in the 
replay.  By speaking in during this presentation, you assume liability for your comments. 

54 



IBM Software Group 

55  

Easily find important Support resources 
 Connect with the Expert:  

 Support Technical Exchanges 

 Ask the Expert Sessions 

 Product Support Newsletters 

 Blog & Forums 

 Training videos, IEA modules 

 Event Readiness 

 Proactive Services Offerings 

 Essential Links to key sites: 

 IBM Support Portal 

 Client Success Portal 

 Fix Central 

Join the new Industry Solutions Client Success Essentials Community         Quick start instructions 

Join Industry Solutions Client Success Essentials Community 

WebSphere® Support Technical Exchange 
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