
IBM® Security Privileged Identity Manager

Web Services API

Last updated: June 2015

1

Table of Contents

1 Introduction..4
2 Web Services functionality..5

2.1 WSSessionService...5
2.2 WSOrganizationalContainerService...7
2.3 WSPasswordService..7
2.4 WSPersonService..8
2.5 WSRoleService...9
2.6 WSSystemUserService..9
2.7 WSSearchDataService...10
2.8 WSRequestService..11
2.9 WSToDoService..12
2.10 WSUnauthService...12
2.11 WSSharedAccessService...13

3 Example code to use the IBM Security Privileged Identity Manager Web Services..................................20
 Example: Authenticate to IBM Security Privileged Identity Manager and get a session handle......22
 Example: Login via challenge response questions for a user (lost password behavior)....................22
 Example: Get principal person (get the person object of the logged in person)................................23
 Example: Create person..23
 Example: Modify person (including roles)..24
 Example: Suspend person example..24
 Example: Search person example...24
 Example: Get principal person's roles..24
 Example: Check if person is member of role...24
 Example: Add role..25
 Example: Remove role...25
 Example: Synchronize passwords and synchronize generated password..26
 Example: Add roles to person..26
 Example: Remove person from roles...26
 Example: Transfer person..26

3.1 Role object related tasks..26
 Example: Lookup a role by its DN...26
 Example: Lookup a system role (ISPIM Group)..26
 Example: Search roles by filter..26
 Example: Create static role...27
 Example: Get member roles...27
 Example: Update role hierarchy...27

3.2 Organizational Container object related tasks...28
 Example: Get Organization sub-tree..28
 Example: Search container by attribute..28
 Example: Create container...28
 Example: Remove container..28
 Example: Lookup container...29

3.3 To Do task related...29
 Example: Get Assignments..29
 Example: Get RFI...29
 Example: Get Entity detail...30
 Example: Submit RFI...30
 Example: Approve or Reject..30

3.4 UnAuth related task...30

2

 Example: Get challenge questions...30
 Example: Lost password login reset password...30
 Example: Self register..31
 Example: Get self password change rules..31

4 SharedAccess related examples...32
5 Single Sign-On (SSO) implementation...33

5.1 WS-Security headers...34
 Web Services API best practices..35
 Don’t use ‘GregorianCalendar.setTime(new Date())’ for scheduling arguments35
 LDAP Attribute filter ..36
 Specify return attributes...36

6 Change history...37
7 Notices...37

3

1 Introduction
The IBM® Security Privileged Identity Manager Web Services front end provides a
web services based channel to communicate with the IBM Security Privileged Identity
Manager.

The Web Services API exposes user functionality for customers to build custom
applications. The Web Services API does not expose administration functionality.

This document describes the IBM Security Privileged Identity Manager Web Services.

Note: To manage credential pools and identity providers, see the IBM Security
Privileged Identity Manager REST API developer reference at
http://www.ibm.com/support/docview.wss?uid=swg21903311.

4

http://www.ibm.com/support/docview.wss?uid=swg21903311

2 Web Services functionality
The IBM Security Privileged Identity Manager Web Services suite exposes
functionality that is required for servicing the IBM Security Privileged Identity
Manager end user tasks.

The IBM Security Privileged Identity Manager Web Services suite consists of multiple
web services that are broken up by function. The WSSessionService is the first
service to be called by any application. The session object that is returned by its
login method is used as a parameter in all subsequent services.

2.1 WSSessionService
The WSSessionService provides authentication, session creation and password
challenge authentication methods. This web service login method is called by a client
before any of the other web services are invoked. The login method returns a session
(handle) object that must be passed to the other web service calls to maintain a
threaded conversation. The authentication method also supports Single Sign-On
(SSO) if the IBM Security Privileged Identity Manager is configured with SSO
enabled. The ISIMWebServices suite has a handler that intercepts calls into the web
services to check valid session information. It also handles session timeouts and
cleanup.
This service also provides a method to login through the challenge response
authentication process in case of lost or forgotten passwords.

There are two ways in which session management can be done in the ISPIM web
services.

◦ Client side session management: This is the default mode. In this mode the
session management is not done on the server side. The server does not
maintain any session information of the client. The client sends the LTPA
token to the server in every request as part of the WSSession object's
clientSession attribute. The server then constructs the subject from the
clientSession parameter and validates the user. In this scenario there is no
support for logout API. The client has to take the responsibility of discarding
the session.

◦ Server side session management: In this mode the sessions are cached on
the server side and logout is a valid API.

The property enrole.webServices.session.mgmt.clientSide in the
enrole.properties file enables to switch the modes. A value true means
the client mode is enabled.

WSSessionService supports the following methods:

 getChallengeQuestions
Note : Configure Responses before using this API .

 getItimFixpackLevel

5

 getItimVersion

 getItimVersionInfo

 getProperty

 getWebServicesBuildNumber

 getWebServicesTargetType

 getWebServicesVersion

 isPasswordEditingAllowed (this method returns the system property “Is
password editing allowed”

 login

 logout

 lostPasswordLoginDirectEntry (No longer supported)

 lostPasswordLoginResetPassword

WSSessionService supports the following methods:

Ø login
This API authenticates the user and returns the session object. This session

object is needed to use other web service APIs.

Input:
userID: The user ID of the IBM Security Privileged Identity Manager

system user.
password: The password of the user.

Output:
session: The WSSession object that has the authenticated user

information.

Fault:
The fault message is returned with the message key and the message

parameters if the user cannot authenticate.

Ø logout
This API logs out the user from the current session.

Input:
session: The session from which the user is to logout.

Output:

6

None

Fault:
The fault message is returned with the message key and the message

parameters if the user can not be logged out.

2.2 WSOrganizationalContainerService
WSOrganizationalContainerService provides the IBM Security Privileged Identity
Manager organization tree traversal and retrieval methods.

 createContainer

 getOrganizations

 getOrganizationSubTree

 getOrganizationTree

 searchContainerByAttribute

 searchContainerByName

 searchContainerTreeByAttribute

 modifyContainer

 removeContainer

 lookupContainer

2.3 WSPasswordService
WSPasswordService provides password management functionality and supports the
following methods:

 changePassword

 generatePassword

 generatePasswordByService

 generatePasswordForService

 getPasswordRules

 getSelfPasswordChangeRules

 isPasswordValid

 joinRules

7

 selfChangePassword

2.4 WSPersonService
WSPersonService provides person object related methods. Apart from simple person
operations like create, modify, suspend, restore, and delete, the service also has
methods to get a person authorized services (services that a person is entitled to) in
the IBM Security Privileged Identity Manager or accounts, perform person searches,
and get the Principal person object.
WSPersonService supports the following methods:

 addRole

 addRolesToPerson

 createPerson

 deletePerson

 getAccountsByOwner

 getAuthorizedPersonProfilesForCreate

 getAuthorizedServices

 getFilteredAccountsByOwner

 getFilteredAuthorizedServices

 getPersonRoles

 getPrincipalPerson

 isCreatePersonAllowed

 isMemberOfRole

 lookupPerson

 modifyPerson

 removeRole

 removeRolesFromPerson

 restorePerson
Note : If password synchronization is enabled , then synchronized password
for person will be used , unless synchronized is not set , in this case new
password will be set as synchronized password , and then will be used .

8

 searchPersonsFromRoot

 searchPersonsWithItimAccount

 selfRegisterPerson

 suspendPerson

 suspendPersonAdvanced

 synchGeneratedPassword

 synchPasswords

 transferPerson

2.5 WSRoleService
The WSRoleService web service provides the capability to create a static role,
modify a static role, get member roles, update the role hierarchy by adding and
removing role members, lookup and search roles in the IBM Security Privileged
Identity Manager.

WSRoleService supports the following methods:

 lookupRole

 lookupSystemRole

 searchRoles

 searchForRolesInContainer

 getMemberRoles

 createStaticRole

 modifyStaticRole

 updateRoleHierarchy

2.6 WSSystemUserService
WSSystemUserService provides functionality related to system users. The service
also exposes delegation management functionality. WSSystemUserService supports
the following methods:

 addDelegate

9

 getChallengeResponseConfiguration

 getDelegates

 getExistingChallengeResponseInfo

 getSystemRoleNames

 getSystemUser

 getSystemUsersForPerson

 modifyDelegate

 removeDelegate

 searchSystemUsers

 setChallengeResponseInfo

2.7 WSSearchDataService
WSSearchDataService provides functionality to search various IBM Security
Privileged Identity Manager directory objects. The search method does not enforce
the IBM Security Privileged Identity Manager ACIs, however a valid IBM Security
Privileged Identity Manager session is required to call these methods.

The service supports a generic search method which takes an array of parameters
like search base, search type, search filter, and others. It also has methods to
specifically support search requests that are executed while rendering search
controls, search matches and search filters on forms.

The service exposes following methods:

 findSearchControlObjects

 findSearchFilterObjects

 getAttributeNames

 getCommonPersonSearchAttributeNames

 searchData

 searchForDelegates

 searchPersonsFromRoot

 searchPersonWithITIMAccount

10

2.8 WSRequestService
WSRequestService provides the IBM Security Privileged Identity Manager request
related functionality. The following methods are supported by WSRequestService:

 abortRequest

 getActivities

 getChildProcesses

 getcompletedRequests

 getCompletedRequestsPage

 getPendingRequests

 getProcess

 getRequest

 searchCompletedRequests

11

2.9 WSToDoService
The WSToDoService web service lets a user access pending assignment items,
approve or reject assignment items, submit RFI items, and others. The following
methods are currently supported by WSToDoService:

 approveOrReject

 approveOrRejectGroups

 getAssignmentGroups

 getAssignments

 getItemsInAssignmnetGroup

 getRFI

 getEntityDetail

 submitRFI

2.10WSUnauthService
The WSUnauthService API provides an interface for all the web service APIs that do
not require the IBM Security Privileged Identity Manager authentication. The existing
methods belong to the WSPersonService, WSPasswordService, and
WSSessionService APIs. The following methods are currently supported by the
WSUnauthService API:

 getSelfPasswordChangeRules

 joinRules

 selfRegister

 getChallengeQuestions
Note : Configure Responses before using this API .

 getItimVersion

 getItimVersionInfo

 getItimFixpackLevel

 getWebServicesBuildNumber

 getWebServicesTargetType

12

 getWebServicesVersion

 lostPasswordLoginResetPassword

2.11WSSharedAccessService
WSSharedAccessService provides many functions for the shared access module.
Web service clients must call the login method before calling any other web services.
The login method returns a session object that must be passed to the other web
service calls in order to maintain a threaded conversation. WSSharedAccessService
supports the following methods:

Ø login
This API authenticates the user and returns the session object. This session

object is needed to use other web service APIs.

Input:
userID: The user ID of the IBM Security Privileged Identity Manager

system user.
password: The password of the user.

Output:
session: The WSSession object that has the authenticated user

information.

Fault:
The fault message is returned with the message key and the message

parameters if the user cannot authenticate.

Ø logout
This API logs out the user from the current session.

Input:

session: The session from which the user is to logout.

Output:
None

Fault:
The fault message is returned with the message key and the message

parameters if the user can not be logged out.

Ø getAuthorizedSharedAccess
This API gets the authorized credentials and credential pools under the service

specified by the unique resource identifier (serviceURI) of the service. If the
service cannot be found by the service URI the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential are not checked out.

13

Input:
session: The session for the logged on user.
serviceURI: The unique resource identifier for the service. Internally, this

is mapped to the erserviceuri attribute of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø getCredential
This API gets the credential of specified credential component object. The

credential component can be a credential or credential pool. If the credential
needs to be checked out before getting the credential, this method
automatically checks out the credential. If the pool is specified as a credential
component, one of the credential from the pool is checked out. When the
credential is checked out, the credential is checked out synchronously without
the workflow even if the workflow is defined for credential checkout operation.

Input:
session: The session for the logged on user.
credCompDN: The distinguished name of the credential or credential pool.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
The WSCredential object is returned with the following attributes:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

14

Ø getCredentialAttributes
This API gets the account attribute values for the credential component object.

The credential component can be a credential or credential pool. If the
credential needs to be checked out before getting the credential, this method
automatically checks out the credential. If the pool is specified as a credential
component, one of the credential from the pool is checked out. When the
credential is checked out, the credential is checked out synchronously without
the workflow even if the workflow is defined for credential checkout operation.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
attributeNames: The list of account attribute names. For example, “eruid”

and “erpassword” need to be used for the user id and the password.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
leaseInfo: The WSLeaseinfo object that has the expiration and leaseDN

information. If the credential is checked out, then the lease information
is returned.

attributes: The list of the WSAttribute objects. The WSAttribute has the
attribute name and the value pair. If the attribute cannot be found on
the account, then the value would not be populated in this list.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø checkIn
This API checks in the credential.

Input:
session: The session for the logged on user.
leaseDN: The Distinguished Name of credential lease.

Output:
requestID: The request ID for checking in the credential.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check in the credential
or if the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø checkInAllIDs

15

This API checks in all the checked out credentials that the logged on user has
checked out.

Input:
session: The session for the logged on user.

Output:
requestID: The list of request ID for checking in all the credential.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check in the credential
or if the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø checkoutWithoutWorkflow
This API checks out the credential of the specified credential component object

without using the workflow. The credential component can be a credential or
credential pool. If the pool is specified as a credential component, one of the
credentials from the pool is checked out. When the credential is checked out,
the credential is checked out synchronously without the workflow, even if the
workflow is defined for credential checkout operation.

NOTE: The checkoutWithoutWorkflow method is provided for automated agents
and applications that can not wait for completion of workflow processes. Use
this method only when the client cannot use the checkout() method. Custom
process activities are not executed by the checkoutWithoutWorkflow
method. If custom process activities are required, you must use the
checkout() method.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
The WSCredential object is returned with the following attributes:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check out the credential

16

or if the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø checkout
This API checks out the credential of the specified credential component object.

The credential component can be a credential or credential pool. If the pool is
specified as a credential component, one of the credentials from the pool is
checked out. If the workflow is defined for the checkout operation the request
is submitted to the workflow and the request id is returned. If the workflow is
not defined the credential is checked out and the credential information is
returned.

When a global life cycle operation is defined to invoke the checkout() workflow
extension, the checkout of shared accounts is done asynchronously. For this
scenario, you must also configure the operation name in the Shared Access
Module global setting.
NOTE: If there is no life cycle operation defined to invoke the checkout()
workflow extension, check out of shared accounts is done synchronously.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
Either WSCredential or the requestID is returned. If the workflow is

defined for the checkout operation, then the request is submitted to the
workflow and the request ID is returned. If the workflow is not defined
then the WSCredential object that has the following attributes is
returned:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check out the credential
or if the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø getAuthorizedSharedAccessByServiceDN
This API gets the authorized credentials and credential pools under the service

specified by the distinguished name of the service. If the service cannot be
found by the distinguished name of the service the fault message is returned.

17

Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential are not checked out.

Input:
session: The session for the logged on user.
serviceDN: The distinguished name of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø getAllAuthorizedSharedAccess
This API gets the authorized credentials and credential pools under the service

specified by the unique resource identifier (serviceURI) of the service. If the
service cannot be found by the service URI the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential including the ones that are already checked out by

logged on user or by other users.

Input:
session: The session for the logged on user.
serviceURI: The unique resource identifier for the service. Internally, this

is mapped to the erserviceuri attribute of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

Ø getAllAuthorizedSharedAccessByServiceDN

18

This API gets the authorized credentials and credential pools under the service
specified by the distinguished name of the service. If the service cannot be
found by the distinguished name of the service the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential including the ones that are already checked out by

logged on user or by other users.

Input:
session: The session for the logged on user.
serviceDN: The distinguished name of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Privileged Identity Manager server.

19

3 Example code to use the IBM Security
Privileged Identity Manager Web Services

The IBM Security Privileged Identity Manager Web Services may be accessed by
using the supplied WSDL files and auto generating the client, or using the WSDL
directly to access the web services.

To see or build code samples, download the SDK package that is included with your
IBM Security Privileged Identity Manager download.

Version 2.0 Download: http://www.ibm.com/support/docview.wss?
uid=swg24038026
Version 2.0.1 Download: http://www.ibm.com/support/docview.wss?
uid=swg24040010

Examples of some WSDL URLs:

WSSessionService
isim.wsdl.url.session=http://localhost:9080/itim/services/WSSessionService/WEB-
INF/wsdl/WSSessionService.wsdl

WSRequestService
isim.wsdl.url.request=http://localhost:9080/itim/services/WSRequestServiceService/WEB-
INF/wsdl/WSRequestService.wsdl

WSPersonService
isim.wsdl.url.person=http://localhost:9080/itim/services/WSPersonServiceService/WEB-
INF/wsdl/WSPersonService.wsdl

To get a handle on the Service interface by using JAX WS, adhere to the following
code path.

Example1:

//Obtaining an handle on the service interface. This is the entry point for
//accessing the WSSessionService methods. The WSSessionService_Service or for that matter all the
//other services have an overloaded constructor where in you can pass in the WSDL URL (i.e. the location
//where the WSDL file is published. It can be a file, ftp or any other URL which obeys the URL
//Specification.

//The default constructor loads the WSDL file from the META-INF/wsdl folder of the client jar file.

WSSessionService_Service service = new WSSessionService_Service();

//Obtaining the port of the service.

WSSessionServicePortProxy port = service.getWSSessionServicePort();

//We can make the WSSessionService operation calls on the port object.

Port.login(username, password);

20

http://www-01.ibm.com/support/docview.wss?uid=swg24038026
http://www-01.ibm.com/support/docview.wss?uid=swg24038026
http://localhost:9080/itim/services/WSPersonServiceService/WEB-INF/wsdl/WSPersonService.wsdl
http://localhost:9080/itim/services/WSPersonServiceService/WEB-INF/wsdl/WSPersonService.wsdl
http://localhost:9080/itim/services/WSRequestServiceService/WEB-INF/wsdl/WSRequestService.wsdl
http://localhost:9080/itim/services/WSRequestServiceService/WEB-INF/wsdl/WSRequestService.wsdl
http://localhost:9080/itim/services/WSSessionService/WEB-INF/wsdl/WSSessionService.wsdl
http://localhost:9080/itim/services/WSSessionService/WEB-INF/wsdl/WSSessionService.wsdl
http://www-01.ibm.com/support/docview.wss?uid=swg24040010
http://www-01.ibm.com/support/docview.wss?uid=swg24040010

Example 2:

//Here we will directly use the WSDL published on the IBM Security Privileged Identity Manager server to
create the web service proxy

WSSessionService_Service service = new
WSSessionService_Service(“http://localhost:9080/itim/services/WSSessionService/WEB-
INF/wsdl/WSSessionService.wsdl”, new QName("http://services.ws.itim.ibm.com", "WSSessionService")

WSSessionServicePortProxy port = service.getWSSessionServicePort();

. Using the pre-compiled Java client.

Once the web service factory class is instantiated, the instance must be reused to
get an instance of any of the web services.
// Get the Service object
WSSessionService_Service service = new WSSessionService_Service();

// Get an instance of WSSessionService from the web service factory
WSSessionService port = service.getWSSessionServicePort();

21

1.1 Authentication, Challenge Response, and System Information examples

Example: Authenticate to IBM Security Privileged Identity Manager and get
a session handle

String userid = “gverma”;
String password = “secret”;
// Get an instance of WSSessionService from the web service factory
WSSessionService_Service sessionService = new WSSessionService_Service();
// login and get a session
WSSession session = sessionService..getPort().login(userid, credential);

Example: Login via challenge response questions for a user (lost password
behavior)

// Assume that a sessionService is already instantiated as shown in Example 6.1-1
String userid=”gverma”;
Collection criList = new ArrayList(); // List to hold each challenge and response info.
try {
String[] challenges = sessionService.getChallengeQuestions(userid);
for (int i = 0; i < challenges.length; i++) {
WSChallengeResponseInfo cri = new WSChallengeResponseInfo();
cri.setQuestion(challenges[i]);
// At this point, this example assumes that the answer is available in string variable
// “answer” thru user interaction.
cri.setAnswer(answer);
criList.add(cri);
}
WSChallengeResponseInfo[] crInfos =
(WSChallengeResponseInfo[]) criList.toArray(new WSChallengeResponseInfo[criList.size()]);
WSSession session = sessionService.lostPasswordLoginDirectEntry(userid, crInfos);
// Depending on what challenge response behavior is needed, the client can opt to reset the ISPIM //
service password instead of direct login via Challenge Response. Uncomment the below line (and //
comment the above statement to get this behavior
// String requestId = sessionService.lostPasswordLoginResetPassword(userid, crInfos);
}
catch (WSLoginServiceException e) {
e.printStackTrace();
}
catch (RemoteException e) {
e.printStackTrace();
}
//……other exceptions omitted

Get the IBM Security Privileged Identity Manager Version and Fixpack level

float itimVersion = sessionService.getItimVersion();
int itimFixpackLevel = sessionService.getItimFixpackLevel();

Get the IBM Security Privileged Identity Manager Web Services version
(informational only)
float webServiceVersion = sessionService.getWebServicesVersion();
int webServiceBuildNumber = sessionService.getWebServicesBuildNumber();

22

1.2 Person related task examples

All the examples below assume an ITIMWebServiceFactory instance named
webServiceFactory, and a valid session in a WSSession object named session.

Example: Get principal person (get the person object of the logged in
person)

// Assume that a web service factory instance and session have already been established as shown in
Example 4.1.1
WSPersonServiceService personService = new WSPersonServiceService();
WSPerson person = personService.getWSPersonService().getPrincipalPerson(session);
// Now that we have the principal’s person object, get the person’s name
String name = person.getName();
// get the person’s attributes
WSAttribute[] wsAttributes = person.getAttributes();
// Convenience code: Change attributes from Array to a Collection
Collection attributes = Arrays.asList(wsAttributes);
// Get a specific attribute and its value
WSAttribute attribute = WSAttrUtils.getWSAttribute(wsAttributes, “sn”);
String lastName = WSAttrUtils.getSingleValue(attribute);
// or
String lastName = attribute.getValues()[0];

Example: Create person

// This example first searches for an OrganizationalUnit called “Finance”, then
// creates a custom person of the type “BluePerson” in that OU.
WSOrganizationalContainerService_Service containerService = new
WSOrganizationalContainerService_Service();
WSPersonService_Service personService = new WSPersonService_Service();
// First, search for an OU called Finance to anchor the person. We set the search to look for org units.
String containerProfile = WSObjectCategoryConstants.ORGUNIT; // Constant choices are // ORGUNIT //
LOCATION // ORGANIZATION (although
// you can use other
// methods to search for
// organizations)
// SECURITY_DOMAIN
String containerName = "Finance"; // Container name to search. You can also use wildcard

// character * as a prefix or suffix.
// Search for container named Finance starting at the root . We use the searchContainerByName method.
The other choices are
// searchContainerByAttribute, getOrganizations, getOrganizationTree and getOrganizationSubTree
methods to get organizational
// containers. In the call to searchContainerByName below, we pass a parent container of null which starts
the search at the
// organizational tree root.
WSOrganizationalContainer[] wsContainers = containerService.searchContainerByName(session, null,
containerProfile, containerName);
if (wsContainers != null && wsContainers.length > 0) {
System.out.println("Found " + wsContainers.length + " containers for " + containerName);
// Set the parent container for the person. If the search found more than 1 container, select
// the one you want. We arbitrarily choose the first found container in this example.
WSOrganizationalContainer parentContainer = wsContainers[0];
// Create a person value object.
WSPerson wsPerson = new WSPerson();
Collection attrList = new ArrayList();
wsPerson.setProfileName("BluePerson"); // IMPORTANT: Set the correct profile name. This
// example uses a custom person entity called
// BluePerson.

23

// Populate the custom blueId attr
WSAttribute wsAttr = new WSAttribute("blueId", new String[] {"Blue-1022"});
attrList.add(wsAttr);
// Populate the mandatory cn and sn attributes
wsAttr = new WSAttribute("cn", new String[] {"Ben Franklin"});
attrList.add(wsAttr);
wsAttr = new WSAttribute("sn", new String[] {"Franklin"});
attrList.add(wsAttr);
// Add any more attrs to the Collection attrList, and set attributes on person object.
WSAttribute[] wsAttrs = (WSAttribute[])attrList.toArray(new WSAttribute[attrList.size()]);
wsPerson.setAttributes(wsAttrs);
// Submit a person create request
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date());
WSRequest request = personService.createPerson(session, parentContainer, wsPerson, calendar);
System.out.println("Submitted person create request id = " + request.getRequestId());
} else {
System.out.println("No container found matching " + containerName);

Example: Modify person (including roles)

// This example assumes that wsAttributes contains the modified attributes of a person.
String personDN; // This should be set to the DN of the person to be modified.
WSAttribute[] wsAttributes; // this should be set to the modified attributes.
WSRequest request = personService.modifyPerson(session, personDN, wsAttributes);
System.out.println(“Request id of modify person request is : “ request.getRequestId());

Example: Suspend person example

// The personDN is assumed to contain the DN of the person to be suspended. Assumes that
// a previous search or other operation was made to search for the person to be suspended.
String personDN; // This should be set to the DN of the person to be suspended.
WSRequest request = personService.suspendPerson(session, personDN);

Example: Search person example

// This method is available as a convenience. The WSSearchDataService provides the
// implementation.
String ldapFilter = “(employeeNumber=12345)”;
String[] attrList = null; // Optional, supply an array of attribute names to be returned.
// A null value will return all attributes.
WSPerson[] persons = personService.searchPersonsFromRoot(session, filter, attrList);
// Print out the person name and DN from the search results
for (int i = 0; i < persons.length; i++) {
WSPerson person = persons[i];
System.out.println(“Name: “ + person.getName() + “, dn: “ + person.getItimDN());
}

Example: Get principal person's roles

String personDN = personService.getPrincipalPerson(session).getItimDN();
List<WSRole> roles = personService.getPersonRoles(session, personDN);

Example: Check if person is member of role

String personDN = personService.getPrincipalPerson(session).getItimDN();
String roleDN; // This should be set to the DN of the role to be checked.
boolean isMember = personService.isMemberOfRole(session, personDN, roleDN);

24

Example: Add role

This operation adds a single role to a person and submit a modify request. To add
multiple roles to a person, avoid using the addRole operation repeatedly. Instead,
add the roles (role DNs) to the “erroles” attribute on the WSPerson object and
submit a single modifyPerson operation.

Lsit<WSRole> roles = roleService.searchRoles(session, "(errolename=FinanceAdmin)");
// This example assumes that only one role is returned from the search.
String roleDN = roles.get(0).getItimDN();

String personDN = personService.getPrincipalPerson(session).getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = personService.addRole(session, personDN, roleDN, calendar);

Example: Remove role

The removeRole operation is very similar to the addRole operation. It removes the
specified role from the person and submits a modify request to the IBM Security
Privileged Identity Manager. To delete multiple roles from a person, avoid using the
removeRole operation repeatedly. Instead, delete the roles (role DNs) from the
“erroles” attribute on the WSPerson object and submit a single modifyPerson
operation.

25

Example: Synchronize passwords and synchronize generated password

The synchPasswords operation submits a request to synchronize passwords for
person accounts. The synchGeneratedPassword creates a system generated
password that satisfies the password policy and uses that to synchronize the
passwords.

String personDN = personService.getPrincipalPerson(session).getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date());
String newPassword="newSecret";
boolean notifyByMail = false; // See usage in synchPasswords – only used in ITIM 5.0 onwards.
// It will be ignored in ITIM 4.6.
// Submit a synchPasswords by specifying the new password
WSRequest syncRequest = personService.synchPasswords(session, personDN,
newPassword, calendar, notifyByMail);
// Or have the system generate a new password and synchronize it.
WSRequest syncRequest2 = personService.synchGeneratedPassword(session,
personDN, calendar);

Example: Add roles to person

Assigns the person to more than one roles.
WSRequest wsRequest = personService.addRolesToPerson(wsSession, personDN, roleDNlist, date);

Example: Remove person from roles

Removes person from the roles.
WSRequest wsRequest = personService.removeRolesFromPerson(wsSession, personDN, roleDNlist, date);

Example: Transfer person

Transfers a person.
WSRequest wsRequest = personService.transferPerson(wsSession, personDN, wsContainer, date);

3.1 Role object related tasks
All the examples below assume an ITIMWebServiceFactory instance named
webServiceFactory, and a valid session in a WSSession object named session.

Example: Lookup a role by its DN

WSRoleServiceService roleService = new WSRoleServiceService();
String roleDN; // Set this to the DN of the role to be looked up.
WSRole role = roleService.getRoleServicePort().lookup(session, roleDN);

Example: Lookup a system role (ISPIM Group)

WSRoleServiceService roleService = new WSRoleServiceService();
String sysroleDN; // Set this to the DN of the system role to be looked up.
WSRole role = roleService.getRoleServicePort().lookupSystemRole(session, sysroleDN);

Example: Search roles by filter

WSRoleServiceService roleService = new WSRoleServiceService();
String filter = “(errolename=Finance*)”; // Set a valid LDAP filter
List<WSRole> roles = roleService.getRoleServicePort().lookup(session, filter);

26

Example: Create static role

WSRoleServiceService roleService = new WSRoleSerivceService();
roleService.createStaticRole(session, wsContainer, wsRole);

Example: Get member roles

WSRoleServiceService roleService = new WSRoleSerivceService();
List<WSRole> membRoles = roleService. getMemberRoles(session, roleDN);

Example: Update role hierarchy

WSRoleServiceService roleService = new WSRoleSerivceService();
roleService. updateRoleHierarchy(session, roleDN, rolesAddedDN[],rolesDeletedDN[],date);

27

3.2 Organizational Container object related tasks

Example: Get Organization sub-tree

WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer parentWSOrgContainer = this.getParentWSOrgContainer(wsSession,
parentOrg, wsOrgContainerService);
WSOrganizationalContainer wsOrgContainerSubTree =
wsOrgContainerService.getOrganizationSubTree(wsSession, parentWSOrgContainer);
if(wsOrgContainerSubTree != null){

executedSuccessfully = true;
printWSOrgContainerDetails(wsOrgContainerSubTree);

}

Example: Search container by attribute

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();

WSOrganizationalContainer parentWSOrgContainer = this.getParentWSOrgContainer(wsSession,
parentOrg, wsOrgContainerService);
List<WSOrganizationalContainer> lstWSORganizationalContainers =
wsOrgContainerService.searchContainerByAttribute(wsSession, parentWSOrgContainer, attrName,
attrValue);
if(lstWSORganizationalContainers != null && lstWSORganizationalContainers.size() > 0){

executedSuccessfully = true;
//Print Details of the Containers which are returned
for(WSOrganizationalContainer wsOrgContainer : lstWSORganizationalContainers){

printWSOrgContainerDetails(wsOrgContainer);
}

}else{
System.out.println(" There are no organizational containers matching the attribute name " +

attrName + " and attribute value " + attrValue);
}

Example: Create container

WSSession wsSession = this.loginIntoITIM(principle, credential);
WSOrganizationalContainer newWSContainer =
createWSOrganizationalContainerFromAttributes(mpParams);
WSOrganizationalContainerService service = this.getWSOrganizationalContainerService();
List<WSOrganizationalContainer> lstOrgContainers = service.searchContainerByName(wsSession, null,
ORG_CONTAINER_PROFILE_NAME, parentOrg);
WSOrganizationalContainer parent = null;
if(lstOrgContainers != null && lstOrgContainers.size() > 0){

parent = lstOrgContainers.get(0);
}else{

System.out.println(" Not able to locate the parent container with name " + parentOrg);
}
WSOrganizationalContainer wsOrgContainer = service.createContainer(wsSession, parent,
newWSContainer);

Example: Remove container

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer wsContainer = null;
String containerName = (String) mpParams.get(PARAM_ORG_CONTAINER);
if (containerName != null) {

List<WSOrganizationalContainer> lstWSOrgContainers = wsOrgContainerService
.searchContainerByName(wsSession, null,"OrganizationalUnit", containerName);

28

if (lstWSOrgContainers != null
&& !lstWSOrgContainers.isEmpty()) {
wsContainer = lstWSOrgContainers.get(0);

} else {
System.out.println("No container found matching "

+ containerName);
return false;

}

} else {
System.out.println("No Filter parameter passed for the container name.");
return false;

}
String containerDN = wsContainer.getItimDN();
wsOrgContainerService.removeContainer(wsSession, containerDN);

Example: Lookup container

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer wsContainer = null;
String containerName = (String) mpParams.get(PARAM_ORG_CONTAINER);
if (containerName != null) {

List<WSOrganizationalContainer> lstWSOrgContainers = wsOrgContainerService
.searchContainerByName(wsSession, null,

"OrganizationalUnit", containerName);
if (lstWSOrgContainers != null

&& !lstWSOrgContainers.isEmpty()) {
wsContainer = lstWSOrgContainers.get(0);

} else {
System.out.println("No container found matching "

+ containerName);
return false;

}
} else {

System.out.println("No Filter parameter passed for the container name.");
return false;

}
String containerDN = wsContainer.getItimDN();
WSOrganizationalContainer wsOrgContainer = wsOrgContainerService.lookupContainer(wsSession,
containerDN);

3.3 To Do task related

Example: Get Assignments

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
List<WSAssignment> wsAssignmentList = wsToDoService

.getAssignments(session);

Example: Get RFI

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
WSRFIWrapper wrapperWSRFI = wsToDoService.getRFI(session,

rfiAssignmentId);

29

Example: Get Entity detail

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
long assignmentId = Long.parseLong(assgnID.trim());
WSEntityWrapper entityWrapper = wsToDoService.getEntityDetail(

session, assignmentId);

Example: Submit RFI

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();

long rfiAssignmentId = Long.parseLong(assgnID.trim());
WSRFIWrapper wrapperWSRFI = wsToDoService.getRFI(session,

rfiAssignmentId);

ArrayOfTns1WSAttribute rfiAttr = wrapperWSRFI.getWsAttrValues();
List<WSAttribute> wsRFIAttr = rfiAttr.getItem();

//Assuming that the RFI is for an account entity
//and that all the attributes for which the input is requested has string syntax
//Providing a constant string value "RFIVal" for input.
for (WSAttribute attr : wsRFIAttr) {

String attrName = attr.getName();
if(!attrName.equalsIgnoreCase("erservice") && !attrName.equalsIgnoreCase("target_dn") && !

attrName.equalsIgnoreCase("container_dn")) {
ArrayOfXsdString attrVal = new ArrayOfXsdString();
attrVal.getItem().add("RFIVal");
attr.setValues(attrVal);

}
}
wsToDoService.submitRFI(session, wrapperWSRFI);

Example: Approve or Reject

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
List<WSAssignment> wsAssignmentList = wsToDoService

.getAssignments(session);

List<Long> activityIds = new ArrayList<Long>();
for (WSAssignment assignment : wsAssignmentList) {

activityIds.add(assignment.getId());
}
wsToDoService.approveOrReject(session, activityIds,

approvalStatus, explanation);

3.4 UnAuth related task

Example: Get challenge questions

WSUnauthService wsUnauthService = getUnauthService();
List<String> challengeQuestions = wsUnauthService.

getChallengeQuestions(principle, wsLocale);
for (String question : challengeQuestions)

System.out.println (question);

Example: Lost password login reset password

List<String> answersList = new ArrayList<String>();
answersList.add(answer);

30

WSUnauthService wsUnauthService = getUnauthService();
List<String> challenges = wsUnauthService.

getChallengeQuestions(principle, wsLocale);
if (challenges.size() != answersList.size())

return false;
List<WSChallengeResponseInfo> criList = new ArrayList<WSChallengeResponseInfo>();
for (int i = 0; i < challenges.size(); i++) {

WSChallengeResponseInfo cri = new WSChallengeResponseInfo();
cri.setQuestion(challenges.get(i));
cri.setAnswer(answersList.get(i));
criList.add(cri);

}
String requestId = wsUnauthService.lostPasswordLoginResetPassword(

principle, criList, wsLocale);

Example: Self register

WSPerson wsPerson = createWSPersonFromAttributes(inputParamsMapWithPersonAttribs);
WSUnauthService wsUnauthService = getUnauthService();
// tenantId is an optional parameter if not specified then the value specified
// in the enRole.properties for property "enrole.defaulttenant.id" is used.
wsUnauthService.selfRegister (wsPerson, tenantId);

Example: Get self password change rules

WSUnauthService wsUnauthService = getUnauthService();
WSPasswordRulesInfo wsRuleInfo = wsUnauthService

.getSelfPasswordChangeRules(accountDN);

31

4 SharedAccess related examples

The following example demonstrates how to use the client proxy interface to call the
shared access Web Services APIs.

// Get the client side proxy to call the shared access Web Services APIs.
URL serviceURL = new URL(
"http:/localhost:9080/itim/services/WSSharedAccessService/WEB-
INF/wsdl/WSSharedAccessService.wsdl");
WSSessionService_Service service =
new WSSessionService_Service(url,
new QName(""http://services.ws.itim.ibm.com", WSSharedAccessService));
WSSharedAccessService proxy = servcie.getWSSharedAccess();

// Authenticate and get the session
WSSession session = proxy.login("userID", "password");

// Get authorized shared accesses
List<WSSharedAccess> authorizedSharedAccess =
proxy.proxy.getAuthorizedSharedAccess(session, serviceURI);

// Get the credential
WSCredential wsCredential = proxy.getCredential(session, credCompDistinguished Name, justification,
duration);

// Check in the credential
String requestID = proxy.checkIn(session, leaseDN);

// Log out
proxy.logout(session);

32

5 Single Sign-On (SSO) implementation

The IBM Security Privileged Identity Manager (ISPIM) Web services provides a
fallback mechanism when authenticating the user. The IBM Security Privileged
Identity Manager WSSessionHandler first verifies the Simple Object Access Protocol
(SOAP) message to confirm whether the session details passed in the message can
assign it a valid subject. If it does not, then WSSessionHandler first looks into the
SOAP header for the WS-Security header. If WSSessionHandler is not able to locate
the identity token and hence a valid subject, WSSessionHandler then looks for the
Lightweight Third Party Authentication (LTPA) token in the HTTP cookie LtpaToken2.

The IBM Security Privileged Identity Manager Web services support Single Sign-On
for its web services. The programming approach relies on the Java Authentication
and Authorization Service (JAAS) module to authenticate the token and provide with
the appropriate subject with the corresponding principals. The user authenticates
using WSLoginModule and WSCallbackHandler. The code snippet for retrieving the
Subject from the identity token (LTPA) is the same for WS-Security header
scenarios, which is described as follows:

33

The following section describes the supported SSO use cases or scenarios:

5.1 WS-Security headers
The <Security> header block in a SOAP message provides a mechanism to attach
security-related information that is targeted at a specific receiver or the SOAP actor.
The LTPA token is an identity token. You can use the standard Web services security
header to send this token. The BinarySecurityToken element contains the LTPA
token, which the IBM Security Privileged Identity Maoknager Web services consume
for authenticating the user. The LTPA token is sent as part of every request that the
client makes for invoking the Web services API. The handling of the LTPA token at
the client side is out of the scope of this document. See the examples about how you
can embed the LTPA token in the BinarySecurityToken element.

The IBM Security Privileged Identity Manager Web services provide their own actors.
The client sends the <wsse:Security> header with the IBM Security Privileged
Identity Manager actor to enable the IBM Security Privileged Identity Manager to
process the header and retrieve the LTPA token.

The IBM Security Privileged Identity Manager Actor Identifier URL is:
http://services.ws.itim.ibm.com/60/actor

The actor has versioning support.

The BinarySecurityToken element also supports encoded token in the SOAP
header. This version of IBM Security Privileged Identity Manager Web services
provides for Base64 encoding.

Following is the sample SOAP message with the LTPA token for the Web services API
call WSPersonService.getPrincipalPerson:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header xmlns:wsse="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd">
<wsse:Security

actor="http://services.ws.itim.ibm.com/60/actor">
<wsse:BinarySecurityToken ValueType="wsst:LTPA">

gn0DxEOu/Nn4b9gGr5rVKwpazJis9CRauQ0zfwf0wSRlgQkwvFON13tnWinWF==

</wsse:BinarySecurityToken>
</wsse:Security>

</S:Header>
<S:Body>

<getPrincipalPerson>
<session>

<clientSession xsi:nil="true"></clientSession>

<enforceChallengeResponse>false</enforceChallengeResponse>
<locale xsi:nil="true"></locale>
<sessionID>0</sessionID>

</session>
</getPrincipalPerson>

34

http://services.ws.itim.ibm.com/60/actor
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd
http://schemas.xmlsoap.org/soap/envelope/
http://services.ws.itim.ibm.com/60/actor

</S:Body>
<S:Envelope>

Web Services API best practices

The web services API are asynchronous in nature which is similar to the behavior of
the Java API. This enables IBM Security Privileged Identity Manager to handle
multiple requests for different operations from multiple users. The requests are lined
up in a queue and there is no guaranteed order in which the requests will be
executed. IBM Security Privileged Identity Manager does not support transaction
management on the requests. The underlying data sources such as LDAP and RDBMS
support transaction management.

For example: A create person request is submitted by a user. At the same time a
new request for changing the attribute is triggered. There is no guarantee which
request will be picked up first by IBM Security Privileged Identity Manager. If the
latter one is picked it would fail as there is no user existing.

In scenarios where there are dependency operations to be performed the Request
object should be used to ensure that the previous operation is successfully
completed and then proceed with the next one. This ensures that there is no race
condition which may lead to failures. The WSRequestService can be used to
determine the status of the process/operation.

Don’t use ‘GregorianCalendar.setTime(new Date())’ for scheduling
arguments .

Several WebServices functions accept javax.xml.datatype.XMLGregorianCalendar
parameter used to schedule the action for some time in the future. If the desire is to
have the operation start immediately, use null.
Example:

GregorianCalendar calendar = new GregorianCalendar();

calendar.setTime(new Date());

XMLGregorianCalendar date =
DatatypeFactory.newInstance().newXMLGregorianCalendar(calendar);

Impact:

Passing in a GregorianCalendar.setTime(new Date()) value has two downsides. The
first is that if the API call is done on a remote system, the current system’s date may
not match up with the server’s date due to being out of sync or timezone differences
resulting in undesired behavior. The second, and more important, downside is that
specifying a date instead of null results in a message for future activity being added
to the SCHEDULED_MESSAGE table creating unnecessary work for IBM Security
Privileged Identity Manager and possibly resulting in lock contention for busy
systems.

35

LDAP Attribute filter

Several WebService functions accept a LDAP filter to search the entities in the LDAP
repository. Ensure that a valid and optimal LDAP filter is passed to these functions.

Impact:

Filters used with WSPersonService should be optimal to minimize the amount of data
returned decreasing the time required to return the results.

Specify return attributes

When searching for an entity, explicitly specifying the desired attributes will improve
performance.

Impact:

By specifying a list of desired attributes, the directory server can minimize the
amount of data returned decreasing the time required to return the results.
Specifying an attribute list can also reduce the memory overhead of the resulting
data set.

36

6 Change history

Dec 2014 Initial.

June 2015 Removed WSServiceService, WSAccountService, WSGroupService.
Added WSDL URL examples.

Table 6.1: Change history

7 Notices
This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact
the IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

37

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

2Z4A/101

11400 Burnet Road

Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are

38

fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute,
display or make derivative work of these publications, or any portion thereof,
without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in

39

its discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS.
THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND
FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the web at
http://www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks
of HP, IBM Corp. and Quantum in the U.S. and other countries.

Privacy Policy Considerations

40

IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with the
end user or for other purposes. In many cases no personally identifiable information
is collected by the Software Offerings. Some of our Software Offerings can help
enable you to collect personally identifiable information. If this Software Offering
uses cookies to collect personally identifiable information, specific information about
this offering’s use of cookies is set forth below.

This Software Offering uses other technologies that collect each user's user name,
password or other personally identifiable information for purposes of session
management, authentication, single sign-on configuration, usage tracking, or
functional purposes. These technologies can be disabled, but disabling them will also
eliminate the functionality they enable.

This Software Offering does not use cookies to collect personally identifiable
information. The only information that is transmitted between the server and the
browser through a cookie is the session ID, which has a limited lifetime. A session ID
associates the session request with information stored on the server.

If the configurations deployed for this Software Offering provide you as customer the
ability to collect personally identifiable information from end users via cookies and
other technologies, you should seek your own legal advice about any laws applicable
to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s
Online Privacy Statement at http://www.ibm.com/privacy/details/us/en sections
entitled "Cookies, Web Beacons and Other Technologies" and "Software Products and
Software-as-a Service".

41

	1 Introduction
	2 Web Services functionality
	2.1 WSSessionService
	2.2 WSOrganizationalContainerService
	2.3 WSPasswordService
	2.4 WSPersonService
	2.5 WSRoleService
	2.6 WSSystemUserService
	2.7 WSSearchDataService
	2.8 WSRequestService
	2.9 WSToDoService
	2.10 WSUnauthService
	2.11 WSSharedAccessService

	3 Example code to use the IBM Security Privileged Identity Manager Web Services
	Example: Authenticate to IBM Security Privileged Identity Manager and get a session handle
	Example: Login via challenge response questions for a user (lost password behavior)
	Example: Get principal person (get the person object of the logged in person)
	Example: Create person
	Example: Modify person (including roles)
	Example: Suspend person example
	Example: Search person example
	Example: Get principal person's roles
	Example: Check if person is member of role
	Example: Add role
	Example: Remove role
	Example: Synchronize passwords and synchronize generated password
	Example: Add roles to person
	Example: Remove person from roles
	Example: Transfer person
	3.1 Role object related tasks
	Example: Lookup a role by its DN
	Example: Lookup a system role (ISPIM Group)
	Example: Search roles by filter
	Example: Create static role
	Example: Get member roles
	Example: Update role hierarchy

	3.2 Organizational Container object related tasks
	Example: Get Organization sub-tree
	Example: Search container by attribute
	Example: Create container
	Example: Remove container
	Example: Lookup container

	3.3 To Do task related
	Example: Get Assignments
	Example: Get RFI
	Example: Get Entity detail
	Example: Submit RFI
	Example: Approve or Reject

	3.4 UnAuth related task
	Example: Get challenge questions
	Example: Lost password login reset password
	Example: Self register
	Example: Get self password change rules

	4 SharedAccess related examples
	5 Single Sign-On (SSO) implementation
	5.1 WS-Security headers
	Web Services API best practices
	Don’t use ‘GregorianCalendar.setTime(new Date())’ for scheduling arguments .
	LDAP Attribute filter
	Specify return attributes

	6 Change history
	7 Notices

