IBM FlashSystem[™]

SCSI Interface Guide

IBM FlashSystem[™]

SCSI Interface Guide

Note

Before using this information and the product it supports, read the information in "Notices" on page 47.

© Copyright IBM Corporation 2013. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

This edition applies to IBM FlashSystem[™] and to all subsequent releases and modifications until otherwise indicated in new editions.

Contents

IBM FlashSystem SCSI Inter	fac	e	Gu	ide	е																						. 1
SCSI command set																											. 1
Conventions of multibyte values.																											. 1
Supported versions																											. 1
Supported SCSI commands												÷					÷										. 1
Format Unit	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 1
Inquiry	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 0
	•	·	•	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	•	. 1
Mode Select (6)	·	•	•	•	•	·	·	·	·	•	•	•	•	•	·	·	·	•	•	•	•	•	•	•	•	•	. 5
Mode Select (0)	·	•	•	•	•	·	·	·	·	•	·	•	•	•	·	·	·	•	•	•	•	•	•	•	•	•	. 0
Mode Select (10)	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	•	. 0
Mode Sense (6)	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	. /
Mode Sense (10)	•	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	. 8
Persistent Reserve In	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	•	·	•	•	. 8
Persistent Reserve Out	÷	•	•	·	•	·	·	·	·	·	·	·	·	·	·	•	·	·	•	·	·	•	·	•	•	•	. 9
Prevent Allow Medium Remo	val	•	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	•	·	•	. 9
Read (6)	·	·	•	•	•	•	•	·	·	·	·	·	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 10
Read (10)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	•	. 10
Read (12)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 11
Read (16)		•	•	•		•			•		•	•	•		•	•	•		•		•		•	•			. 12
Read Buffer		•			•	•	•		•		•	•	•	•		•				•	•		•	•			. 12
Read Capacity (10)																											. 13
Read Capacity (16)																											. 14
Release (6)																											. 15
Release (10)																											. 16
Report Device Identifier																											. 16
Report LUNS.																											. 17
Request Sense																											. 19
Reserve (6)																											. 20
Reserve (10)																											. 20
Seek (6).					_																						. 21
Seek (10)	•	•	•				•		•		•	•	•								•	•	•	•	·	•	21
Send Diagnostic	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
Start Stop Unit	·	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	·	·	•	. 22
Synchronize Cache (10)	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 22
Synchronize Cache (16)	•	·	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	. 20
Test Unit Ready	•	•	•	•	•	•	•	·	•	·	•	•	•	•	•	•	•	•	•	•	•	·	•	•	·	•	. 23
Vorify (10)	·	•	•	•	•	•	•	·	•	·	•	•	·	·	•	•	•	•	•	·	•	·	•	•	·	·	. 24
$Verify (10) \dots \dots \dots \dots \dots$	·	·	•	•	•	•	•	·	·	·	·	•	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 24
$Verify (12) \dots \dots \dots \dots$	·	•	•	•	•	•	•	·	•	·	•	•	·	·	•	•	•	•	•	•	•	·	•	•	·	·	. 24
$\operatorname{Verify}_{(16)}(16) \ldots \ldots \ldots \ldots$	·	·	•	•	•	•	·	·	·	·	·	•	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 25
$VVrite (6) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	·	·	•	•	•	•	·	·	·	·	·	•	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 25
Write (10)	·	·	•	•	•	•	•	·	·	·	·	•	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 26
Write (12)	•	•	•	•	•	•	•	·	•	·	•	•	·	·	•	•	•	•	•	•	•	·	•	•	·	·	. 27
Write (16)	·	·	•	•	•	•	•	·	·	·	•	·	·	·	•	•	•	•	•	·	•	·	·	·	·	·	. 27
Write and Verify (10)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	•	. 28
Write and Verify (12)	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	•	. 29
Write and Verify (16)		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	. 29
Write Buffer		•	•	•		•			•		•	•	•		•	•	•		•		•		•	•			. 30
Task management functions		•			•	•	•		•		•	•	•	•						•	•		•	•			. 30
Inquiry responses			•										•				•						•				. 31
Standard inquiry data																											. 31
Vital product data																											. 33
Mode page parameters																											. 36
Read/write error recovery .																											. 37
Disconnect/reconnect																											. 37
Format device																											. 38
Verify error recovery																											. 39

Caching																			. 39
Control																			. 40
Medium types supported																			. 40
Fibre Channel logical-unit control .																			. 41
Fibre Channel port control																			. 41
Informational exceptions control .																			. 42
Fibre Channel command set																			. 42
Supported versions																			. 42
Supported Fibre Channel link services																			. 42
Fibre Channel port login																			. 43
Fibre Channel process login																			. 43
Fibre Channel fabric login accept page																			. 43
Task management functions																			. 44
InfiniBand information units																			. 44
Supported versions																			. 44
Port login payload																			. 44
Task management functions																			. 45
Sense data	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	. 45
Notices							 	 			 								. 47
Trademarks																			. 48
Terms and conditions																			. 49

IBM FlashSystem[™] SCSI Interface Guide

Learn about the Small Computer System Interface (SCSI) commands that are supported by your IBM[®] FlashSystem[™].

SCSI command set

Learn about the interface specifications and requirements as implemented by IBM FlashSystem[™] SCSI controllers.

Use this information as a basic reference for supported commands, required parameters, and common command responses.

Conventions of multibyte values

Unless otherwise explicitly stated, all multibyte values are stored with the most significant byte first (that is, big-endian byte ordering).

For example, in a 4-byte field, byte 0 contains the most significant bit (MSB) and byte 3 contains the least significant bit (LSB). Within a single byte, the most significant bit is listed first, and the least significant bit is listed last. For example, the value 5h is listed as 0101b, with the first 0 as the MSB and the last 0 as the LSB.

All commands that contain reserved fields are expected to be padded with zeros. Reserved fields are ignored. All parameter data and responses that contain reserved fields are padded with zeros by the device.

Supported versions

Learn which SCSI specifications are supported on your system.

The supported SCSI specifications of the SCSI standard follow:

- SAM-3 (ISO/IEC 14776-413, ANSI INCITS 402-2005)
- SPC-3 (ISO/IEC 14776-453,ANSI INCITS 408-2005)
- SBC-2 (ISO/IEC 14776-322,ANSI INCITS 405-2005)

Note that in some instances, some obsolete commands (for example, the **Reserve/Release6/10** command) are supported for compatibility with older host bus adapters (HBAs) and operating systems.

Supported SCSI commands

Learn about the supported SCSI commands.

The following table lists the supported SCSI commands and any supported optional features.

If an unsupported command is received, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Table 1. Supported SCSI commands

Primary command	Optional features
00h TEST UNIT READY	
03h REQUEST SENSE	
04h FORMAT UNIT	
08h READ (6)	
0Ah WRITE (6)	
0Bh SEEK (6)	
12h INQUIRY	Vital product data page (00h)
	Unit serial number page (80h)
	Device identification page (83h)
	Management network addresses page (85h)
	Block Limits (B0h)
	Block Device Characteristics (B1h)
15h MODE SELECT (6)	
16h RESERVE (6)	
17h RELEASE (6)	
1Ah MODE SENSE (6)	Read/write error recovery page (01h)
	Disconnect/reconnect page (02h)
	Format device page (03h)
	Rigid disk geometry page (04h)
	Verify error recovery page (07h)
	Caching page (08h)
	Control page (0Ah)
	Medium types supported page (0Bh)
	Fibre Channel interface LUN page (18h)
	Fibre Channel interface control page (19h)
	Information exceptions control page (1Ch)
1Bh START UNIT/STOP UNIT	
1Dh SEND DIAGNOSTIC	
1Eh PREVENT/ALLOW MEDIUM REMOVAL	
25h READ CAPACITY (10)	
28h READ (10)	
2Ah WRITE (10)	
2Bh SEEK (10)	
2Eh WRITE AND VERIFY (10)	
2Fh VERIFY (10)	
35h SYNCHRONIZE CACHE (10)	
3Bh WRITE BUFFER	Data mode (02h)
	Echo buffer mode (0Ah)
	Enable expander communications protocol and echo buffer mode (1Ah)

Table 1. S	Supported	SCSI	commands	(continued)
------------	-----------	------	----------	-------------

Primary command	Optional features
3Ch READ BUFFER	Data mode (02h)
	Descriptor mode (03h)
	Echo buffer mode (0Ah)
	Echo buffer descriptor mode (0Bh)
	Enable expander communications protocol and echo buffer mode (1Ah)
4Dh LOG SENSE	Supported log page (00h)
	Read error counter page (03h)
55h MODE SELECT (10)	
56h RESERVE (10)	
57h RELEASE (10)	
5Ah MODE SENSE (10)	See MODE SENSE (6)
5Eh PERSISTENT RESERVE IN	Read Keys (00h)
	Read Reservation (01h)
	Report Capabilities (02h)
	Read Full Status (03h)
5Fh PERSISTENT RESERVE OUT	Register (00h)
	Reserve (01h)
	Release (02h)
	Clear (03h)
	Preempt (04h)
	Preempt and Abort (05h)
	Register and Ignore Existing Key (06h)
88h READ (16)	
8Ah WRITE (16)	
8Eh WRITE AND VERIFY (16)	
8Fh VERIFY (16)	
91h SYNCHRONIZE CACHE (16)	
9Eh SERVICE ACTION IN (16)	Read Capacity (16) (10h)
A0h REPORT LUNS	
A3h MAINTENANCE IN	Report Device Identifier (05h)
A4h MAINTENANCE OUT	Set Device Identifier (06h)
A8h READ (12)	
AAh WRITE (12)]
AEh WRITE AND VERIFY	
AFh VERIFY (12)	

Format Unit

Learn about the FORMAT UNIT command for your system.

Use the following table to review the FORMAT UNIT command for your system.

Table 2. FORMAT UNIT (04h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0				OPERATION	CODE (04H)			
1	FMTPI	RTOREQ	LONGL	FMTD	CMPLST	DEFE	ECT LIST FOR	RMAT
2				Vendor	specific			
3				Obs	olete			
4								
5				CON	TROL			

The **FORMAT UNIT** command requests that the device server format the medium into logical blocks that are accessible to the application client. This function can be specified in the number of blocks and block length values that are received in the last mode parameter block descriptor in a **MODE SELECT** command.

If the **FMTPI** bit is set to 0 and the **RTOREQ** bit is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

All other fields are ignored and a status of GOOD is returned for all other conditions. The medium is not altered as a result of this command.

Inquiry

Learn about the **INQUIRY** command.

Use the following table to review the parameters for the **INQUIRY** command.

Table 3. Inquiry (12h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0				OPERATION	CODE (12H)		
1			Rese	erved			Obsolete	EVPD
2				PAGE	CODE			
3				ALLOCATIO	ON LENGTH			
4								
5				CON	TROL			

The **Obsolete** field was defined in earlier standards as the **CmdDt** (command support data) bit. If this bit is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

An enable vital product data (**EVPD**) bit that is set to 0 returns standard inquiry data. If the **EVPD** bit is set to 1, the vital product data that is specified by the **PAGE CODE** field is returned.

The **PAGE CODE** field specifies which vital product data page or pages to return in the data-in buffer. If the **PAGE CODE** field is not set to 0 when the **EVPD** bit is set to 0, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB. If the **INQUIRY** command is received with a **PAGE CODE** value that is unsupported, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL also includes a sense key of ILLEGAL as a sense key of ILLEGAL as

The **ALLOCATION LENGTH** field specifies the amount of inquiry data to transfer to the data-in buffer. When the inquiry response returns a status of GOOD, the number of bytes of inquiry data that is returned

is the minimum of the amount available. Alternatively, the parameter data that is returned is the amount that is specified in the **ALLOCATION LENGTH** field in the command descriptor block (CDB).

The standard inquiry data never changes after the initial power-on sequence.

Log Sense

The **LOG SENSE** command provides a means for the application client to retrieve statistical or other operational information that is maintained by the SCSI target device about the SCSI target device or its logical units.

Use the following table to review the parameters for the **Log Sense** command.

Table 4. Log Sense (4Dh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0				OPERATION	CODE (4Dł	ı)		
1			Rese	erved			PPC	SP
2		PC			PAGE	CODE		
3				Poss	much			
4				Rese	rved			
5				DA D A ΜΕΤΕ	D DOINTED			
6				TANAMETE	INTOINTER			
7					NI I ENICTL	r		
8				ALLOCATIC	JN LEINGIT.	L		
9				CON	TROL			

The LOG SENSE command is used with the LOG SELECT command.

If the **PPC** (parameter pointer control) bit is set to 1, the log page is returned only with parameter code values that changed since the last **LOG SELECT** or **LOG SENSE** command was run. If the **PPC** bit is set to 0, all parameter code values are returned regardless of whether they changed since the last **LOG SELECT** or **LOG SENSE** command was run.

An **SP** (save parameters) bit that is set to 0 specifies that the device server will run the specified **LOG SENSE** command and will not save any log parameters. If the **SP** bit is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **PC** (page control) field is ignored.

The **PAGE CODE** field specifies which log page of data is being requested. If the log page code is reserved or not implemented, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **PARAMETER POINTER** field is ignored.

If the **LOG SENSE** command returns a status of GOOD, the amount of log page parameter data that is returned to the data-in buffer is the minimum of the amount of data available. Alternatively, the parameter data that is returned is the amount that is specified in the **ALLOCATION LENGTH** field in the command descriptor block (CDB).

Mode Select (6)

The **MODE SELECT (6)** command provides a means for the application client to specify medium, logical unit, or peripheral device parameters to the device server.

Application clients need to issue the **MODE SENSE (6)** command before each **MODE SELECT (6)** command to determine supported mode pages, page lengths, and other parameters.

Use the following table to review the parameters for the Mode Select (6) command.

Table 5. Mode Select (6) (15h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0				OPERATION	CODE (15h))						
1		Reserved		PF		Reserved		SP				
2				Daaa	J							
3				Kese	rvea							
4			PA	ARAMETER	LIST LENGT	Ή						
5		CONTROL										

The mode page policy that is used is the Shared mode page policy. This means one copy of the mode page exists that is shared by all IT nexuses. The mode page policy is reported in the Mode Page Policy VPD page.

Logical units share the mode parameter header values and block descriptor values across all I T nexuses. An I T nexus loss does not affect mode parameter header values, block descriptor values, and mode page values.

A **PF** (page format) bit that is set to 0 specifies that all parameters after the block descriptors are vendor-specific. No vendor-specific parameters are supported. A **PF** bit that is set to 1 specifies that the **MODE SELECT** parameters that follow the header and block descriptors are structured as pages of related parameters and are as defined in SPC-3.

An **SP** (save pages) bit that is set to 0 specifies that the device server will perform the specified MODE SELECT operation, and will not save any mode pages. If the **SP** bit is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **PARAMETER LIST LENGTH** field specifies the length in bytes of the mode parameter list that is contained in the data-out buffer. A parameter list length of 0 specifies that the data-out buffer is empty.

If the parameter list length results in the truncation of any mode parameter header, mode parameter block descriptor, or mode page, then the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of PARAMETER LIST LENGTH ERROR.

Mode Select (10)

The **MODE SELECT (10)** command provides a means for the application client to specify medium, logical unit, or peripheral device parameters to the device server.

Application clients must issue the **MODE SENSE (10)** command before each **MODE SELECT (10)** command to determine supported mode pages, page lengths, and other parameters.

See "Mode Select (6)" for a description of the fields and operation of this command.

Use the following table to review the parameters for the Mode Select command.

Table 6. Mode Select (10) (55h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0				OPERATION	CODE (55h))						
1		Reserved		PF		Reserved		SP				
2				Deep	wood							
6				Kese	rveu							
7			D	ADAMETED	I ICT I ENICT	Ъ						
8			F2	AKAWETEK	LIST LEINGT	п						
9	CONTROL											

Mode Sense (6)

The **MODE SENSE (6)** command provides a means for a device server to report parameters to an application client.

The MODE SENSE (6) command is used with the MODE SELECT (6) command.

Use the following table to review the parameters for the MODE SENSE (6) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0							
0				OPERATION	CODE (1Ah	.)									
1		Reserved DBD Reserved													
2		PC													
3				SUBPAC	e code										
4			F	PARAMETER	LIST LENGT	Ή									
5		CONTROL													

Table 7. Mode Sense (6) (1Ah)

If the **DBD** (disable block descriptors) bit is set to 0, the device server returns a single block descriptor in the returned mode sense data. If the **DBD** bit is set to 1, no block descriptors are returned in the mode sense data.

The **PC** (page control) field specifies the type of mode parameter values to be returned in the mode pages. Current values (00b), default values (10b), and saved values (11b) are treated equally by the device server. Identical responses are returned for **MODE SENSE** commands that request those types of mode parameter values.

The **PAGE CODE** and **SUBPAGE CODE** fields specify which mode pages and subpages to return. If the page code or subpage code is not supported, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

If the application client requests all supported mode pages (for example, **PAGE CODE** equal to 3Fh), the supported pages are returned in ascending page code order beginning with mode page 01h if mode page 01h is implemented. If mode page 01h is not implemented, the supported pages are returned beginning with the first mode page in ascending order after 01h.

If the **PC** field and the **PAGE CODE** field are both set to 0, only a mode parameter header and block descriptor, if applicable, are returned to the data-in buffer.

If the **MODE SENSE** command returns a status of GOOD, the amount of **MODE SENSE** parameter data that is returned to the data-in buffer is the minimum of the amount of data available. Alternatively, the parameter data that is returned is the amount that is specified in the **ALLOCATION LENGTH** field in the command descriptor block (CDB).

Mode Sense (10)

The **MODE SENSE (10)** command provides a means for a device server to report parameters to an application client.

The MODE SENSE (10) command is used with the MODE SELECT (10) command.

Use the following table to review the parameters for the MODE SENSE (10) command.

Table 8. Mode Sense (10) (5Ah)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
0			(OPERATION	CODE (5Ah)							
1		Reserved		LLBAA	DBD		Reserved						
2	1	PC			PAGE	CODE							
3				SUBPAG	E CODE								
4				Poso	much								
6				Kese	iveu								
7					νι ι ενίζτυ								
8		ALLOCATION LENGTH											
9	CONTROL												

If the **LLBAA** (Long LBA Accepted) bit is set to 1, parameter data with the **LONGLBA** bit equal to 1 is returned. If the **LLBAA** bit is set to 0, the **LONGLBA** bit is set to 0 in the returned parameter data. See the "Mode Sense (6)" on page 7 command for a description of all other fields and operation of this command.

Persistent Reserve In

The **PERSISTENT RESERVE IN** command is used to obtain information about persistent reservations and reservation keys (that is, registrations) that are active within the device server.

This command is used with the **PERSISTENT RESERVE OUT** command.

Use the following table to review the parameters for the MODE SENSE (6) command.

Table 9. Persistent Reserve In (5Eh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (5Eh)									
1	Reserved SERVICE ACTION										
2											
6				Kese	rvea						
7											
8		ALLOCATION LENGTH									
9		CONTROL									

The **SERVICE ACTION** field specifies which **PERSISTENT RESERVE IN** parameter data to return to the data-in buffer. If an unsupported service action is requested, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Code	Name	Description
00h	READ KEYS	Reads all registered reservation keys (that is, registrations)
01h	READ RESERVATION	Reads the current persistent reservations
02h	REPORT CAPABILITIES	Returns capability information

Table 10. Supported PERSISTENT RESERVE IN service action codes

Persistent Reserve Out

The **PERSISTENT RESERVE OUT** command is used to request service actions that reserve a logical unit for the exclusive or shared use of a particular IT nexus.

Use the following table to review the parameters for the **Persistent Reserve Out** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (5Fh)								
1		Reserved		SERVICE ACTION						
2		SCOPE TYPE								
3										
4				Kese	rveu					
5					νι ι ενιστμ					
8		ALLOCATION LENGTH								
9		CONTROL								

Table 11. Persistent Reserve Out (5Fh)

If a **PERSISTENT RESERVE OUT** command is attempted, but there are insufficient resources to complete the operation, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of INSUFFICIENT REGISTRATION RESOURCES.

The **SCOPE** field specifies the scope to which the persistent reservation applies. If the scope contains any value other than 0h (LU SCOPE), the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **TYPE** field specifies the characteristics of the persistent reservation that is established for all logical blocks within the logical unit. If the requested type is not implemented, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Prevent Allow Medium Removal

The **PREVENT ALLOW MEDIUM REMOVAL** command requests that the logical unit enable or disable the removal of the medium.

Use the following table to review the parameters for the **PREVENT ALLOW MEDIUM REMOVAL** command.

Table 12. Prevent Allow Medium Removal (1Eh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0								

Table 12. Prevent Allow Medium Removal (1Eh) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
1		ODERATION CODE (1EL)										
3		OPERATION CODE (IEh)										
4		Reserved PREVENT										
5	CONTROL											

All fields are ignored. The **PREVENT ALLOW MEDIUM REMOVAL** command always returns a status of GOOD upon completion.

Read (6)

Use the **LOGICAL BLOCK ADDRESS** field to specify the first logical block that is accessed by the **READ** (6) command.

If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

Use the following table to review the parameters for the **READ (6)** command.

Table 13. Read (6) (08h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (08H)									
1		Reserved									
2											
3		LOGICAL BLOCK ADDRESS									
4		TRANSFER LENGTH									
5		CONTROL									

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to read and transfer to the data-in buffer. The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. A **TRANSFER LENGTH** field that is set to 0 specifies that 256 logical blocks are read. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

Read (10)

The **READ (10)** command requests that the device server read the specified logical block or blocks and transfer them to the data-in buffer.

Use the following table to review the parameters for the **READ (10)** command.

Table 14. R	ead (10)	(28h)
-------------	----------	-------

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (28h)									
1		RDPROTECT	-	DPO	FUA	Reserved	F. NV	Obsolete			
2											
5		LOGICAL BLOCK ADDRESS									

Table 14. Read (10) (28h) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
6		Reserved		GROUP NUMBER							
7		TDANCEED I ENICTLI									
8		IKANSPEK LENGIH									
9		CONTROL									

If a **READ (10)** command is received with the **RDPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **DPO** (disable page-out), **FUA** (force unit access), and **FUA NV** (force unit access nonvolatile cache) bits are ignored.

The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **GROUP NUMBER** field is ignored.

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be read and transferred to the data-in buffer, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that no logical blocks is read. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

Read (12)

The **READ (12) (A8h)** command requests that the device server read the specified logical block or blocks and transfer them to the data-in buffer.

Use the following table to review the parameters for the **READ (12)** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (A8h)									
1	RDPROTECT			DPO	FUA	Reserved	F. NV	Obsolete			
2											
5		LOGICAL BLOCK ADDRESS									
6				TDANCEEI	DIENCTU						
9				IKANSFEI	A LEINGI II						
10	Restrict.	Restrict. Reserved GROUP NUMBER									
11				CON	TROL						

Table 15. READ (12) (A8h)

See the "Read (10)" on page 10 command for a description of the fields and operation of this command.

Read (16)

The **READ (16) (88h)** command requests that the device server read the specified logical block or blocks and transfer them to the data-in buffer.

Use the following table to review the parameters for the READ (16) command.

Tahla	16	Road	(16)	(ggh)
Table	10.	пеаи	(10)	(0011)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	OPERATION CODE (88h)										
1		RDPROTECT	1	DPO	FUA	Reserved	F. NV	Obsolete			
2											
9]	LOGICAL BLOCK ADDRESS									
10				TDANCEED	LENCTH						
13				INANSFER	LEINGIN						
14	Rest. Reserved GROUP NUMBER										
15				CONT	ROL						

See the "Read (10)" on page 10 command for a description of the fields and operation of this command.

Read Buffer

The **READ BUFFER** command is used with the **WRITE BUFFER** command as a diagnostic function for testing memory in the SCSI device and the integrity of the service delivery subsystem.

The **READ BUFFER** command does not alter the medium.

Use the following table to review the parameters for the **READ BUFFER** command.

Table 17. Read Buffer

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0			(OPERATION	CODE (3Ch)				
1		Reserved				MODE				
2				OPERATIO	ON CODE					
3		BUFFER ID								
4		DI JEFED OFFICET								
5				DUFFER	OFFSEI					
6					NI I ENICTH					
7		ALLOCATION LENGTH								
8				CON	TROL					

Use the **MODE** field to define the function of this command and the meaning of the fields within the command descriptor block (CDB). If the **MODE** field contains an unsupported mode, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Table 18. Supported READ BUFFER MODE field values

Mode	Description
02h	Data
03h	Descriptor

Table 18. Supported READ BUFFER MODE field values (continued)
--	---

Mode	Description
0Ah	Echo buffer
0Bh	Echo buffer descriptor
1Ah	Enable expander communications protocol and Echo buffer

If the **READ BUFFER** command returns a status of GOOD, the amount of read buffer data returned to the data-in buffer is the minimum of the amount of data available. Alternatively, the read buffer data returned is the amount that is specified in the **ALLOCATION LENGTH** field in the CDB.

Read Capacity (10)

Use the **READ CAPACITY (10)** command to request that the device server transfer 8 bytes of parameter data.

The **READ CAPACITY (10)** command can also be used to describe the capacity and medium format of the direct-access block device to the data-in buffer.

Use the following table to review the parameters for the **READ CAPACITY (10)** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0				OPERATION	CODE (25h))					
1				Reserved				Obsolete			
2		LOCICAL BLOCK ADDRESS									
3		LOGICAL BLOCK ADDRESS									
4				Poso	mud						
5				Kese	iveu						
6	Reserved										
7		CONTROL									

Table 19. Read Capacity (10) (25h)

The obsolete byte 1, bit 0 was defined in a previous standard as the relative address (RELADR) and is ignored.

A **PMI** (partial medium indicator) bit that is set to 0 specifies that the device server return information about the last logical block on the direct-access block device.

A **PMI** bit that is set to 1 specifies that the device server return information about the last logical block after that specified in the **LOGICAL BLOCK ADDRESS** field before a substantial vendor-specific delay in transfer is encountered. There is no logical block address (LBA) after which a substantial delay occurs in this device; therefore, the value that is returned when the **PMI** bit is set to 1 will be equal to the value returned when the **PMI** bit is set to 0.

If the **PMI** bit is set to 0 and the **LOGICAL BLOCK ADDRESS** field is not set to 0, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Table 20. Read Capacity (10) parameter data

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0		RETURNED LOCICAL BLOCK ADDRESS										
3		RETURNED LOGICAL BLOCK ADDRESS										
4												
7]			DLUCK	LENGIH							

If the **PMI** bit is set to 0, the **RETURNED LOGICAL BLOCK ADDRESS** field is set to the lower of the following options:

- The logical block address (LBA) of the last logical block on the device
- FFFFFFFFh

If the **PMI** bit is set to 1, the **RETURNED LOGICAL BLOCK ADDRESS** field is set to the lower of the following options:

- The last LBA after that specified in the **LOGICAL BLOCK ADDRESS** field of the CDB before a substantial vendor-specific delay in data transfer can be encountered
- FFFFFFFFh

The **BLOCK LENGTH** field contains the number of bytes of user data in the logical block that is indicated by the **RETURNED LOGICAL BLOCK ADDRESS** field. This value does not include protection information or extra information (for example, ECC bytes) recorded on the medium. This value is either 512 or 4096.

Read Capacity (16)

Use the **READ CAPACITY (16)** command to request that the device server sends parameter data to the data-in buffer. The parameter data includes information on the capacity and medium format of the direct-access block device.

This command is implemented as a service action of the **SERVICE ACTION IN** operation code.

Use the following table to review the parameters for the **READ CAPACITY (16)** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0				OPERATION	CODE (9eh))				
1		Reserved			SERV	ICE ACTION	[(10h)			
2		LOCICAL BLOCK ADDRESS								
3		LOGICAL BLOCK ADDRESS								
4					NI I ENICTU					
5				ALLOCATIC	IN LEINGIII					
6		Reserved PMI						PMI		
7	CONTROL									

Table 21. Read Capacity (16) (9Eh/10h)

A **PMI** (partial medium indicator) bit that is set to 0 specifies that the device server return information on the last logical block on the direct- access block device.

A **PMI** bit that is set to 1 specifies that the device server return information on the last logical block after that specified in the **LOGICAL BLOCK ADDRESS** field before a substantial vendor-specific delay in

transfer might be encountered. There is no logical block address (LBA) after which a substantial delay will occur in this device; therefore, the value returned when the **PMI** bit is set to 1 will be equal to the value returned when the **PMI** bit is set to 0.

If the PMI bit is set to 0 and the **LOGICAL BLOCK ADDRESS** field is not set to 0, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB. The **ALLOCATION LENGTH** field specifies the amount of **READ CAPACITY** parameter data to transfer to the data-in buffer. When the read capacity response returns a status of G00D, the number of bytes of parameter data that is returned is the minimum of 32 or the allocation length that is specified in the command descriptor block (CDB).

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0			DETIIDN							
7			KETUKI	NED LOGICA	AL DLOCK A	DDRE55				
8				PLOCK	ENCTH					
11		DLOCK LENGIH								
12			Rese	erved			RTO EN	PROT EN		
13		Rese	rved		LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT					
14				Paga	wood					
31				Kese	rveu					

Table 22. Read Capacity (16) parameter data

The **RETURNED LOGICAL BLOCK ADDRESS** field and **BLOCK LENGTH** field of the **READ CAPACITY** (16) parameter data are the same as in the **READ CAPACITY** (10) parameter data. The maximum value that is returned in the **RETURNED LOGICAL BLOCK ADDRESS** field is FFFFFFFF FFFFFFF. The **RTO EN** (reference tag own enable) and **PROT EN** (protection enabled) bits are both set to 0 in the returned **READ CAPACITY** parameter data. The **LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT** field is 3 if the device is configured with 512-byte logical blocks, and the field is 0 if you have a device that uses 4 kb blocks.

Release (6)

The **RELEASE (6)** command is used to release a previously reserved logical unit.

Use the following table to review the parameters for the **RELEASE (6)** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (17h)									
1		Reserved Obsolete									
2		Obsolete									
3				Deep	wrod						
4		Keserved									
5		CONTROL									

Table 23. Release (6) (17h)

The **RELEASE (6)** command does not release third-party reservations. A reservation is only released by a **RELEASE** command from the initiator that made the reservation. If an application client attempts to release a reservation that is not currently valid or held by another initiator, the command returns a status of GOOD without altering any other reservation.

Obsolete byte 1 bit 0 and bytes 2 - 4 provide an obsolete way to release previously reserved extents within a logical unit. If byte 1, bit 0 is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Release (10)

The **RELEASE (10)** command is used to release a previously reserved logical unit.

Use the following table to review the parameters for the **RELEASE (10)** command.

Table 24. Release (10) (57h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0				OPERATION	CODE (57h)						
1		Reserved		3RDPTY	Reserved		LONGID	Obsolete			
2		Obsolete									
3	THIRD-PARTY DEVICE ID										
4											
6				Kese	rved						
7			г		I ICT I ENICTI	u					
8		PAKAMETER LIST LENGTH									
9				CON	TROL						

A reservation is only released by a **RELEASE** command from the initiator that made the reservation. If an application client attempts to release a reservation that is not currently valid or held by another initiator, the command returns a status of GOOD without altering any other reservation.

Obsolete byte 1 bit 0 and bytes 2 - 4 provide an obsolete way to release previously reserved extents within a logical unit. If byte 1, bit 0 is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

If the **3RDPTY** (third-party) bit is set to 0, then a third-party release is not requested. The release is attempted for the initiator sending the **RELEASE (10)** command. In addition, the **LONGID** and **PARAMETER LIST LENGTH** fields are ignored.

If the **3RDPTY** bit is set to 1, then the reservation is released, but only if the initiator ID, **3RDPTY** bit, and **THIRD-PARTY DEVICE ID** field are identical when compared to the **RESERVE** command that established the reservation. Device ID formats are protocol specific. If the **LONGID** field is set to 0, the device ID is contained within the **THIRD-PARTY DEVICE ID** field. If the **LONGID** field is set to 1, the device ID is contained in the parameters that are located in the data-out buffer. In addition, the **THIRD-PARTY DEVICE ID** field in the command descriptor block (CDB) is ignored.

The **PARAMETER LIST LENGTH** field specifies the length in bytes of the release parameter list that is contained in the data-out buffer. If the **LONGID** bit is set to 1 and the parameter list length is not 8, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Report Device Identifier

The **REPORT DEVICE IDENTIFIER** command requests that the device server send device identification information to the application client.

As defined in the SCC-2 standard, the **REPORT DEVICE IDENTIFIER** command is the **REPORT PERIPHERAL DEVICE/COMPONENT DEVICE IDENTIFIER** service action of the **MAINTENANCE IN** command.

Use the following table to review the parameters for the **REPORT DEVICE IDENTIFIER** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (A3h)								
1		Reserved			SERV	ICE ACTION	J (05h)			
2				Deee						
3		Keserved								
4		Restricted								
5										
6						r				
9				ALLOCATIC	JIN LEINGIT.	L				
10		Reserved Restr. Reserv						Reserved		
11		CONTROL								

Table 25. Report Device Identifier (A3h/05h)

When the **REPORT DEVICE IDENTIFIER** command response returns a status of G00D, the number of bytes of parameter data that is returned is the minimum of the amount available. Alternatively, the parameter data that is returned is the amount that is specified in the **ALLOCATION LENGTH** field in the command descriptor block (CDB).

Table 26. Report Device Identifier parameter data

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0		IDENITIEIED I ENICTLI (n. 2)										
3		IDEN IIFIEK LENGIH (n-3)										
4												
n				IDEN.	ΙΓΙΕΚ							

The **IDENTIFIER LENGTH** field indicates the length in bytes of the **IDENTIFIER** field. The identifier length is initially equal to 0, and is only changed by a successful **SET DEVICE IDENTIFIER** command. The **IDENTIFIER** field is the last value written by a successful **SET DEVICE IDENTIFIER** command. The identifier persists through logical unit reset operations, I T nexus losses, media format operations, and media replacement. The same identifier is returned to all application clients.

Report LUNS

The **REPORT LUNS** command is used to request that the logical unit inventory of the peripheral device that is accessible to the I T nexus is sent to the application client.

This device includes only logical unit numbers for logical units that have a **PERIPHERAL QUALIFIER** value of 000b.

Use the following table to review the parameters for the **REPORT LUNS** command.

Table 27. Report LUNs (A0h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0				OPERATION	CODE (xxh)		
1				Rese	erved			

Table 27. Report LUNs (A0h) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
2		SELECT REPORT									
3				Door	mund						
4				Kese	erved						
5					NI I ENICT	п					
6				ALLOCAIR	JN LENGI	11					
7		Reserved									
8		CONTROL									

The list contains the logical units that are accessible to the I T nexus with the following addressing methods:

- Logical unit addressing method
- Peripheral device addressing method
- Flat space addressing method

If there are no logical units, the **LUN LIST LENGTH** field is 0. The list contains only known logical units, if any. If there are no known logical units, the **LUN LIST LENGTH** field is 0. The list contains all logical units that are accessible to the I T nexus.

Table 28	Supported	SELECT	REPORT	field values
Tuble 20.	Supported	OLLOI		neia values

Mode	Description
00h	The list contains the logical units that are accessible to the I T nexus with the following addressing methods: logical unit addressing method, peripheral device addressing method; and flat space addressing method. If there are no logical units, the LUN LIST LENGTH field is 0.
01h	The list contains only known logical units, if any. If there are no known logical units, the LUN LIST LENGTH field is 0.
02h	The list contains all logical units that are accessible to the I T nexus.

When the **REPORT LUNS** command returns a status of GOOD, the number of bytes of parameter data that is returned is the minimum of the amount available. Alternatively, the parameter data that is returned is the amount that is specified in the **ALLOCATION LENGTH** field in the command descriptor block (CDB).

If the **ALLOCATION LENGTH** field is less than 16 bytes, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **LUN LIST LENGTH** field contains the length in bytes of the LUN list that is available to be transferred. The LUN list length is the number of logical unit numbers in the logical unit inventory that is multiplied by eight.

Table 29. REPORT LUNS parameter data

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1										
2		LUN LIST LENGTH (n-3)								
3										
4				Kese	rvea					

Table 29. REPORT LUNS parameter data (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
5										
6				First	LUN					
n-7				Last	TINI					
n				Last	LUIN					

Request Sense

The **REQUEST SENSE** command requests that the device server transfer sense data to the application client.

Use the following table to review the parameters for the **REQUEST SENSE** command.

Table 30. Request Sense (03h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (03h)									
1		Reserved DESC									
2				Paga	mud						
3				Kese	iveu						
4		ALLOCATION LENGTH									
5		CONTROL									

The **DESC** (descriptor format) bit specifies which sense data format is returned. If the **DESC** bit is set to 0, fixed-format sense data is returned. If the **DESC** bit is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **ALLOCATION LENGTH** field specifies the amount of sense data to transfer to the data-in buffer. When the request sense response returns a status of G00D, the number of bytes of parameter data that is returned is the minimum of 18 or the allocation length that is specified in the command descriptor block (CDB).

Table 31. Fixed-format sense data

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 9					
0	VALID		RESPONSE CODE (70h)							
1			Obsolete							
2	FILMRK	EOM	ILI	Reserved		SENSI	e key			
3										
6				INFORM	ATION					
7			ADDI	TIONAL SEN	ISE LENGTH	H (n-7)				
8			COMM		EIC INEODM					
11			COMIN	AND-5FECH		ATION				
12			A	DDITIONAL	SENSE COE	DE				
13			ADDITI	ONAL SENS	e code qu	ALIFIER				
14		FIELD REPLACEABLE UNIT CODE								
15	SKSV									
16				SENSE KEY	Y SPECIFIC					

Table 31. Fixed-format sense data (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
18 - n				Additional	sense bytes			

The **ILI** bit specifies the amount of sense data to transfer to the data-in buffer. When the request sense response returns a status of G00D, the number of bytes of parameter data that is returned is the minimum of 18 or the allocation length that is specified in the command descriptor block (CDB).

Reserve (6)

The **RESERVE (6)** command is used to reserve a logical unit.

Use the following table to review the parameters for the **RESERVE (6)** command.

Table 32. Reserve (6) (16h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (16h)									
1		Reserved Obsolete									
2				Oha	-1-t-						
4		Obsolete									
5	CONTROL										

If the logical unit is reserved for another initiator, the command is ended with a reservation conflict status.

Obsolete byte 1 bit 0 and bytes 2 - 4 provide an obsolete way to reserve extents within a logical unit. If byte 1, bit 0 is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Reserve (10)

The **RESERVE (10)** command is used to reserve a logical unit.

Use the following table to review the parameters for the **RESERVE (10)** command.

Table 33. Reserve (10) (56h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit						
0		OPERATION CODE (56h)									
1		Reserved		3RDPTY	Rese	erved	LONGID	Obsolete			
2		Obsolete									
3		THIRD-PARTY DEVICE ID									
4				Deep	wood						
5				Kese	iveu						
6			г		I ICT I ENICT	ц					
7		FARAMETER LIST LENGTH									
8				CON	TROL						

If the logical unit is reserved for another initiator, the command is ended with a reservation conflict status.

Obsolete byte 1 bit 0 and bytes 2 - 4 provide an obsolete way to reserve extents within a logical unit. If byte 1, bit 0 is set to 1, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

If the **3RDPTY** (third-party) bit is set to 0, then a third-party reservation is not requested. The reservation is attempted for the initiator that sends the **RESERVE (10)** command. In addition, the **LONGID** and **PARAMETER LIST LENGTH** fields are ignored.

If the **3RDPTY** bit is set to 1, then the reservation is attempted on the specified logical unit for the SCSI device that is specified in the **THIRD-PARTY DEVICE ID** field. Device ID formats are protocol specific. If a third-party reservation is requested and the **LONGID** field is set to 0, the device ID is contained within the **THIRD-PARTY DEVICE ID** field. If the **LONGID** field is set to 1, the device ID is contained in the parameters that are located in the data-out buffer. In addition, the **THIRD-PARTY DEVICE ID** field in the command descriptor block (CDB) is ignored.

The **PARAMETER LIST LENGTH** field specifies the length in bytes of the reserve parameter list that is contained in the data-out buffer. If the **LONGID** bit is set to 1 and the parameter list length is not 8, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB. The extra sense code might be INVALID PARAMETER LIST LENGTH.

Seek (6)

The **SEEK (6)** command requests that the logical drive perform a seek to the specified logical block address.

Use the following table to review the parameters for the SEEK (6) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0		OPERATION CODE (0bh)										
1		Reserved										
2						DECC						
3				LUGICAL D	LUCK ADL	JKE55						
4		Reserved										
5		CONTROL										

Table 34. Seek (6) (0Bh)

All fields are ignored. The SEEK 6 command always returns a status of GOOD upon completion.

Seek (10)

The **SEEK (10)** command requests that the logical drive perform a seek to the specified logical block address.

Use the following table to review the parameters for the SEEK (10) command.

Table 35. Seek (10) (2bh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (2bh)								
1		Reserved								
2										
5		LOGICAL BLOCK ADDRESS								

Table 35. Seek (10) (2bh) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
6				Daaa	J				
8		Keserved							
9		CONTROL							

All fields are ignored. The SEEK (10) command always returns a status of GOOD upon completion.

Send Diagnostic

The **SEND DIAGNOSTIC** command is used to request the device server to run diagnostic operations on the SCSI target device, on the logical unit, or on both.

Use the following table to review the parameters for the **SEND DIAGNOSTIC** command.

Table 36. Send Diagnostic (1Dh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (1Dh)									
1	SE	SELF-TEST CODE PF Reserved ST DOL UOL									
2		Reserved									
3											
4		PARAMETER LIST LENGTH									
5		CONTROL									

All fields are ignored. The **SEND DIAGNOSTIC** command always returns a status of GOOD upon completion.

Start Stop Unit

The **START STOP UNIT** command requests that the device server change the power condition of the logical unit, or requests that the device server load or eject the medium.

Use the following table to review the parameters for the **START STOP UNIT** command.

Table 37. Start Stop Unit (1Bh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0				OPERATION	CODE (1Bh)					
1		Reserved IMMED									
2		Decement									
3		KeserVed									
4		POWER CONDITION Reserved LOEJ START									
5	CONTROL										

Regardless of whether the **IMMED** (immediate) bit is set to 0 or 1, the command always immediately returns status after the operation is complete because there is no rotating medium to start or stop.

If the **START STOP UNIT** command is received with the **POWER CONDITION** field set to **FORCE IDLE 0 (Ah)** or **FORCE STANDBY 0 (Bh)**, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB. All other values for the **POWER CONDITION** field other than 0 are ignored. The **LOEJ** (load eject) and **START** bits are ignored.

Synchronize Cache (10)

The **SYNCHRONIZE CACHE (10)** command requests that the device server ensures that the specified logical blocks have their most recent data values that are recorded in nonvolatile cache or recorded on the medium, or both, based on the **SYNC NV** bit.

Use the following table to review the parameters for the SYNCHRONIZE CACHE (10) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0			·	OPERATION	N CODE (3	5h)		·			
1			Reserved	1		SYNC NV	IMMED	Obsolete			
2		LOCICAL BLOCK ADDRESS									
5		LOGICAL BLOCK ADDRESS									
6		R	eserved			GROUP	NUMBER				
7				NIIMPED	OF BLOCK	rc					
8		NUMBER OF BLOCKS									
9		CONTROL									

Table 38. Synchronize Cache (10) (35h)

The SYNC NV bit, IMMED (immediate) bit, GROUP NUMBER field, and NUMBER OF BLOCKS field is ignored.

The LOGICAL BLOCK ADDRESS field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. Otherwise, the command returns a status of GOOD upon completion.

Synchronize Cache (16)

The **SYNCHRONIZE CACHE (16)** command requests that the device server ensures that the specified logical blocks have their most recent data values that are recorded in nonvolatile cache or recorded on the medium, or both based on the **SYNC NV** bit.

Use the following table to review the parameters for the SYNCHRONIZE CACHE (16) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (91h)								
1		Reserved SYNC NV IMMED Reserved								
2										
9		LOGICAL BLOCK ADDRESS								
10										
13		NUMBER OF BLOCKS								
14		Reserved GROUP NUMBER								
15	CONTROL									

Table 39. Synchronize Cache (16) (91h)

See the "Synchronize Cache (10)" command for definitions of fields and operation of this command.

Test Unit Ready

The **TEST UNIT READY** command provides a means to check if the logical unit is ready.

Use the following table to review the parameters for the **TEST UNIT READY** command.

Table 40. Test Unit Ready (00h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		OPERATION CODE (00h)							
1		Decemend							
4		Keserved							
5		CONTROL							

The **TEST UNIT READY** command always completes with a status of GOOD.

Verify (10)

Use the **VERIFY (10)** command to request that the device server verify the specified logical block or blocks on the medium.

Use the following table to review the parameters for the **Verify (10)** command.

Table 41. Verify (10) (2Fh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0				OPERATION	CODE (2Fh)							
1		WRPROTECT	,	DPO	Rese	erved	BYTCHK	Obsolete				
2		LOGICAL BLOCK ADDRESS										
5		LOGICAL DLOCK ADDRESS										
6	Restr.	Rese	rved		G	ROUP NUME	BER					
7				VEDIEICATIC	NI I ENICTU							
8		VERIFICATION LENGTT										
9	CONTROL											

If a **VERIFY (10)** command is received with the **VRPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. All other fields are ignored, and the command returns a status of GOOD in all other cases.

Verify (12)

The **VERIFY (12)** command requests that the device server verify the specified logical block or blocks on the medium.

Use the following table to review the parameters for the **VERIFY (12)** command.

Table 42. Verify (12) (2Fh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		OPERATION CODE (2Fh)							

Table 42. Verify (12) (2Fh) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1	VRPROTECT		DPO	Res	erved	BYTCHK	Obsolete			
2			Ι			200		•		
5		LOGICAL BLOCK ADDRESS								
6										
9				VENIFICATIO	JN LEINGII	1				
10	Restricted	Restricted Reserved GROUP NUMBER								
11	CONTROL									

See the "Verify (10)" on page 24 command for a description of the fields and operation of this command.

Verify (16)

Table 43. Verify (16) (8Fh)

The **VERIFY (16)** command requests that the device server verify the specified logical block or blocks on the medium.

Use the following table to review the parameters for the **VERIFY (16)** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0				OPERATION	CODE (8Fh))					
1		VRPROTECT	•	DPO	Rese	erved	BYTCHK	Reserved			
2		LOGICAL BLOCK ADDRESS									
9		LOGICAL BLOCK ADDRESS									
10				VEDIEICATI		r					
13				VERIFICATI	UN LEINGIH	L					
14	Restr.	Restr. Reserved GROUP NUMBER									
15		CONTROL									

See the "Verify (10)" on page 24 command for a description of the fields and operation of this command.

Write (6)

The **WRITE (6)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer and write them.

Use the following table to review the parameters for the **WRITE (6)** command.

Table 44. Write (6) (0Ah)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (0Ah)									
1		Reserved									
2											
3		LOGICAL BLOCK ADDRESS									
4		TRANSFER LENGTH									
5		CONTROL									

The LOGICAL BLOCK ADDRESS field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be transferred from the data-out buffer and written, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that 256 logical blocks are written. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

Write (10)

B 0

The **WRITE (10)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer and write them.

Use the following table to review the parameters for the WRITE (10) command.

/te	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
		OPERATION CODE (2h)										
		WRPROTECT DPO FUA Reserved FUA NV Obsolete										
		LOGICAL BLOCK ADDRESS										
		Reserved			GF	ROUP NUMB	ER					
		IKANSFEK LENGIH										
				CON	TROL							

Table 45. Write (10) (2Ah)

If a **WRITE (10)** command is received with the **WRPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The DPO (disable page-out), FUA (force unit access), and FUA NV (force unit access nonvolatile cache) bits are ignored.

The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **GROUP NUMBER** field is ignored. The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be transferred from the data-out buffer and written, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that no logical blocks are written. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key that is set to ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

Write (12)

The **WRITE (12)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer and write them.

Use the following table to review the parameters for the WRITE (12) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (AAh)									
1		WRPROTECT DPO FUA Reserved FUA NV Obsolete									
2											
5		LOGICAL BLOCK ADDRESS									
6											
9		TRANSFER LENGTH									
10	Restr.	Restr. Reserved GROUP NUMBER									
11				CON	TROL						

Table 46. Write (12) (AAh)

If a **WRITE (12)** command is received with the **WRPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **DPO** (disable page out), **FUA** (force unit access), and **FUA NV** (force unit access nonvolatile cache) bits are ignored.

The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be transferred from the data-out buffer and written, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that no logical blocks are written. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

The **GROUP NUMBER** field is ignored.

Write (16)

The **WRITE (16)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer and write them.

Use the following table to review the parameters for the **WRITE (16)** command.

Table 47. Write (16) (8Ah)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (8Ah)								
1		WRPROTECT	-	DPO	FUA	Reserved	FUA NV	Reserved		

Table 47. Write (16) (8Ah) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
2			I			CC.			
9			L	JGICAL DLU	CK ADDRE	55			
10				TDANCEED	LENCTH				
13		IKANSFER LENGIH							
14	Restr.	Restr. Reserved GROUP NUMBER							
15		CONTROL							

If a **WRITE (16)** command is received with the **WRPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **DPO** (disable page out), **FUA** (force unit access), and **FUA NV** (force unit access nonvolatile cache) bits are ignored.

The LOGICAL BLOCK ADDRESS field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be transferred from the data-out buffer and written, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that no logical blocks are written. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

The GROUP NUMBER field is ignored.

Write and Verify (10)

The **WRITE AND VERIFY (10)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer, write them to the medium, and then verify that they are correctly written.

Use the following table to review the parameters for the WRITE AND VERIFY (10) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0		OPERATION CODE (2Eh)										
1		WRPROTECT DPO Reserved BYTCHK Obsolete										
2			Ţ			20						
5		LOGICAL BLOCK ADDRESS										
6		Reserved GROUP NUMBER										
7				TPANCEEP	IENCTH							
8		IKAN5FEK LENGIH										
9				CONT	ROL							

Table 48. Write and Verify (10) (2Eh)

If a **WRITE AND VERIFY (10)** command is received with the **WRPROTECT** field set to any value other than 000b, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

The **DPO** (disable page-out) and **BYTCHK** (byte check) bits are ignored. The **LOGICAL BLOCK ADDRESS** field specifies the first logical block that is accessed by this command. If the logical block address exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE.

The **GROUP NUMBER** field is ignored.

The **TRANSFER LENGTH** field specifies the number of contiguous logical blocks of data to be transferred from the data-out buffer and written, starting with the logical block specified by the **LOGICAL BLOCK ADDRESS** field. A **TRANSFER LENGTH** field that is set to 0 specifies that no logical blocks are written. If the logical block address plus the transfer length exceeds the capacity of the medium, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST, and an extra sense code of LOGICAL BLOCK ADDRESS OUT OF RANGE. The **TRANSFER LENGTH** field is constrained by the **MAXIMUM TRANSFER LENGTH** field in the Block Limits VPD page.

Write and Verify (12)

The **WRITE AND VERIFY (12)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer, write them to the medium, and then verify that they are correctly written.

Use the following table to review the parameters for the WRITE AND VERIFY (12) command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0		OPERATION CODE (AEh)										
1		WRPROTECT DPO Reserved BYTCHK Obsolete										
2												
5		LOGICAL BLOCK ADDRESS										
6				TDANCEEI	D I ENICTU							
9				IKANSFEI	X LEINGIII							
10	Restr.	Restr. Reserved GROUP NUMBER										
11				CON	TROL							

Table 49. Write and Verify (12) (AEh)

See the WRITE AND VERIFY (10) command for a description of the fields and operation of this command.

Write and Verify (16)

The **WRITE AND VERIFY (16)** command requests that the device server transfer the specified logical block or blocks from the data-out buffer, write them to the medium, and then verify that they are correctly written.

Use the following table to review the parameters for the WRITE AND VERIFY (16) command.

Table 50. Write and Verify (16) (8Eh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0		OPERATION CODE (8Eh)									
1		WRPROTECT	Γ	DPO	Res	erved	BYTCHK	Obsolete			

Table 50. Write and Verify (16) (8Eh) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
2			Ţ			20			
9			Ľ	JGICAL DLU	CK ADDRE	60			
10					LENCTH				
13		TRANSFER LENGTH							
14	Restr.	Restr. Reserved GROUP NUMBER							
15		CONTROL							

See the WRITE AND VERIFY (10) command for a description of the fields and operation of this command.

Write Buffer

The **WRITE BUFFER** command is used with the **READ BUFFER** command as a diagnostic function for testing logical unit memory in the SCSI target device and for testing the integrity of the service delivery subsystem.

The **WRITE BUFFER** does not alter the medium.

Use the following table to review the parameters for the **WRITE BUFFER** command.

Table 51. Write Buffer (3Bh)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		OPERATION CODE (3Bh)								
1		Reserved MODE								
2		BUFFER ID								
3		DUFFER OFFET								
5				DOTTER	OFFSET					
6			D	DAMETED	I ICT I ENICT	ינו				
8		PAKAMETEK LIST LENGTH								
9		CONTROL								

The **MODE** determines the function of this command and the meaning of the fields within the command descriptor block (CDB). If the **MODE** field contains an unsupported mode, the command is ended with a status of CHECK CONDITION. The status also includes a sense key of ILLEGAL REQUEST and an extra sense code of INVALID FIELD IN CDB.

Table 52. Supported WRITE BUFFER MODE field values

Mode	Mode Description
02h	Data
0Ah	Echo buffer
1Ah	Enable expander communications protocol and the echo buffer

Task management functions

Learn about the SCSI task management functions available for your system.

The SCSI task management supported functions follow:

• Terminate task

- Target reset
- Logical unit reset
- Clear task set
- Abort task set
- Clear the auto contingent allegiance (ACA) condition, to recover from an error and resume a queue of SCSi commands for the device.

If an unsupported task management function is received, the command is ended with an appropriate no support response that depends on the transport protocol in use.

Inquiry responses

Learn about the various inquiry responses.

Standard inquiry data

When an **INQUIRY** command is received with the **EVPD** bit that is set to 0, the device returns standard inquiry data.

All **Obsolete** and **Reserved** fields are set to 0.

The following table lists the response to a standard inquiry request.

Table 53. Standard Inquiry data

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	PERIP	HERAL QUA	LIFIER	PERIPHERA	L DEVICE T	YPE			
1	RMB				Reserved				
2				VERSIC	N=05h				
3	Obsolete	Obsolete	NACA=0	HS=1h	R	ESPONSE DA	TA FORMAT	=2h	
4			А	DDITIONAL	LENGTH=51	Bh			
5	SCCS=0	ACC=0	TPC	GS=0	3PC=0	Rese	erved	PRT=0	
6	BQ=0	3Q=0 ES=0 VS=0 MP=1h MC=0 Obsolete A16=0							
7	Obs	olete	WB16=0	SYNC=0	LINK=0	Obsolete	CQ=1h	VS=0	
8									
15		T10 VENDOR IDENTIFICATION							
16			ות			NT			
31			F1	NODUCI IDE	INTIFICATIO	2N			
32			ות		ZEION LEV	₽ I			
35			F1	NODUCI KEV	ISION LEVI	CL			
36				Vandar	apocific				
55				venuor	specific				
56		Rese	erved		CLOC	KING=0	QAS=0	IUS=0	
57				Rese	rved				
58				VERSION DE	COUDTOD 1				
59				VERSION DE	SCRIPTOR J	L			
72)			
73				VERSION DE	SCRIPTOR &)			

Table 53. Standard Inquiry data (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
74				Dese				
95				Kese	rved			

Table 54. Reported PERIPHERAL QUALIFIER field values

PQ	Description
000b	The logical unit is a valid logical unit, and the host that sends the command has access to the logical unit. That is, any further commands that are sent by this host to this logical unit are accepted into the task queue.
001b	The logical unit on which the command is received is LUN 0, but that logical unit is not configured or the host that sent the command does not have access to the logical unit. That is, any commands that are sent by this host to this logical unit are not accepted into the task queue.
011b	The logical unit on which the command is received is not LUN 0 and the logical unit is not configured. That is, any commands that are sent by this host to this logical unit are not accepted into the task queue.

Table 55. Reported PERIPHERAL DEVICE TYPE field values

PQ	Description
00h	The logical unit is a direct-access logical unit. This value is returned if the PERIPHERAL QUALIFIER field contains a 000b or 001b.
1Fh	The logical unit type is unknown. This value is returned if the PERIPHERAL QUALIFIER field contains a 011b.

The **PRODUCT REVISION** field contains 4 ASCII digits that represent the product revision. The product revision changes with each firmware release. Bytes 36 - 45 (the first 10 bytes of the Vendor-specific field) contain the logical-unit serial number (that is, the same number reported in the **INQUIRY VPD** field). The format of the serial number is 10 ASCII digits, with the first 6 digits representing the IEEE-registered Company ID followed by 4 digits that represent the logical unit.

Number	Value	Description
1	0060h	SAM-3 (no version)
2	0d80h	FC-PH-3 (no version)
3	0d60h	FC-AL-2 (no version)
4	0a00h	FCP-3 (no version)
5	0300h	SPC-3 (no version)
6	0320h	SBC-2 (no version)
7	0000h	No standard identified
8	0000h	No standard identified

 Table 56. Fibre Channel VERSION DESCRIPTOR field values

Table 57. InfiniBand VERSION DESCRIPTOR field values

Number	Value	Description
1	0060h	SAM-3 (no version)
2	0940h	SRP (no version)
3	0300h	SPC-3 (no version)

Number	Value	Description
4	0320h	SBC-2 (no version)
5	0000h	No standard identified
6	0000h	No standard identified
7	0000h	No standard identified
8	0000h	No standard identified

Table 57. InfiniBand VERSION DESCRIPTOR field values (continued)

Vital product data

When an **INQUIRY** command is received with the **EVPD** bit that is set to 1, the device returns the vital product data (VPD) page that was requested.

Use the following tables to review the parameters for the VPD pages.

Table 58. Supported VPD Pages (00h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE									
1				PAGE CO	ODE=00h					
2				Rese	erved					
3				PAGE LEN	NGTH=06h					
4				00)h					
5				80)h					
6				83	3h					
7		85h								
8		B0h								
9				B	1h					

For a description of the **PERIPHERAL QUALIFIER** and **PERIPHERAL DEVICE TYPE** fields, see "Standard inquiry data" on page 31.

Table 59. Unit Serial Number Page (80h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE									
1				PAGE CO	DDE=80h					
2		Reserved								
3				PAGE LEN	GTH=0Ah					
4										
13			1.	KODUCI SEI						

For a description of the **PERIPHERAL QUALIFIER** and **PERIPHERAL DEVICE TYPE** fields, see "Standard inquiry data" on page 31.

Table 60. PRODUCT SERIAL NUMBER field

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0				IEEE Com							
5		IEEE Company ID									
6											
9				Logica	l Unit						

Table 61. Device Identification Page (83h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
0	PERIP	HERAL QUA	LIFIER		PERIPH	IERAL DEVIC	CE TYPE						
1				PAGE CO	DDE=83h								
2		Reserved											
3		PAGE LENGTH=46h											
4		PROTOCOL	IDENTIFIER		CODE SET=	2h							
5	PIV=0 I	Reserved	ASSOC.=00b)		IDENTIFIE	R TYPE=1h						
6				Rese	rved								
7]	IDENTIFIER 1	LENGTH=22	h							
8			Т1() VENDOR II)FNITIFIC ATI	ON							
15			110										
16			יק	RODUCT IDF	NTIFIC ATIC	N							
31			1.			/1 N							
32				SFRIAL	MBFR								
41				JERMET	VOWIDEIX								
42													
43	PIV=0 I	Reserved	ASSOC.=00b)		IDENTIFIE	R TYPE=2h						
44				Rese	rved								
45]	IDENTIFIER	LENGTH=08	h							
46				IFFF CON	IPANY ID								
48													
49			VENDOR SP	FCIFIC FXTF	NSION IDF	NTIFIFR (LU)	1						
50			VENDOR										
51			VENDOR SPI	FCIFIC FXTF	NSION IDEN	TIFIER (SNI))						
53			VENDOR OF				/						
54		PROTOCOL	IDENTIFIER			CODE	SET=1h						
55	PIV=1	Reserved	ASSO	C.=01b		IDENTIFIE	R TYPE=4h						
56				Rese	rved								
57]	IDENTIFIER 1	LENGTH=041	h							
58		Obsolata											
59				003	olete								
60			REI AT	IVF TARCET	PORT IDEN	TIFIFR							
61			KELAI										
62		PROTOCOL	IDENTIFIER			CODE	SET=1h						

Table 61. Device Identification Page (83h) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
63	PIV=1	Reserved	ASSO	C.=00b		IDENTIFIE	R TYPE=2h				
64		Reserved									
65		IDENTIFIER LENGTH=08h									
66											
68		IEEE COMPANY ID									
69			VENDOR	SDECIEIC EV	TENCION IE	ENTIFIED					
70			VENDOK	SPECIFIC EX	TENSION IL	ENTIFIER					
71											
73			VENDOR	SPECIFIC EX	I ENSION IL	ENTIFIER					

For a description of the **PERIPHERAL QUALIFIER** and **PERIPHERAL DEVICE TYPE** fields, see "Standard inquiry data" on page 31.

If the **ASSOCIATION** field contains a 01b (that is, a target port) or 10b (that is, a SCSI target device) and the **PIV** bit is set to 1, the **PROTOCOL IDENTIFIER** field contains 0h if the interface is Fibre Channel. Alternatively, if the interface uses InfiniBand technology, the **PROTOCOL IDENTIFIER** field contains 4h. Otherwise, the **PROTOCOL IDENTIFIER** field can be ignored.

The SERIAL NUMBER field contains ASCII data for the product's vendor-assigned serial number.

Byte	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 B									
0	PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE									
1				PAGE CO	DDE=85h					
2				Rese	rved					
3		PA	GE LENGTH	(n-3) Networ	k services de	scriptor list (4	1- n)			
4	Reserved	ASSO	C.=10b		SEF	RVICE TYPE=	:03h			
5				Rese	rved					
6			NETV		ESS I ENICTL	I(n,7)				
7		NETWORK ADDRESS LENGTH (n-7)								
8				NETWORK	ADDRESS					
n				INE I WORK	ADDRE55					

Table 62. Management Network Addresses Page (85h)

For a description of the **PERIPHERAL QUALIFIER** and **PERIPHERAL DEVICE TYPE** fields, see "Standard inquiry data" on page 31.

The **NETWORK ADDRESS** field contains a null-padded and null-ended ASCII digit that represents the system management IP address in the form scheme://xxx.xxx.xxx.One or more IP addresses can be specified, depending on the system configuration.

Table 63. Block Limits Page (B0h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	PERIP	HERAL QUA	LIFIER	PERIPHERAL DEVICE TYPE				
1				PAGE CC	DE=B0h			

Table 63. Block Limits Page (B0h) (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
2		Reserved										
3		PAGE LENGTH (0Ch)										
4		Reserve										
5		Keserve										
6												
7			OF HMAL I	KANSFER LI	INGTH GRA	ANULAKITI						
8			MAY		NCEED I EN	CTU						
11		MAXIMUM TRANSFER LENGTH										
12												
15			OP	IIWAL IKAN	ISPEN LEIN	111						

Table 64. Block Device Characteristics Addresses Page (B1h)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	PERIP	HERAL QUA	LIFIER		PERIPHERAL DEVICE TYPE							
1				PAGE CO	DDE=B1h							
2		PACE LENCTH (003Ch)										
3		PAGE LENGTH (003Ch)										
4												
5			1			E						
6				Rese	erved							
7		Rese	erved		Ν	NOMINAL FO	ORM FACTO	R				
8		Decence d										
63				Kese	iveu							

For a description of the **PERIPHERAL QUALIFIER** and **PERIPHERAL DEVICE TYPE** fields, see "Standard inquiry data" on page 31.

Mode page parameters

Learn about the supported mode parameters.

Use the following table to review the supported mode page parameters.

Table	65.	Supported	Mode	Pages
rubio	00.	Capponica	mouo	, ugoo

Page	Paga nama
coue	rage name
01h	Read/write error recovery page
02h	Disconnect/reconnect page
03h	Format device page
04h	Rigid disk device geometry page
07h	Verify error recovery page
08h	Caching page
0Ah	Control page

Table 65. Supported Mode Pages (continued)

Page code	Page name
0Bh	Medium types supported page
18h	Fibre Channel specific LUN page
19h	Fibre Channel specific port page
1Ch	Information exceptions control page

The following subtopics describe the supported mode parameter payloads. The parameters that are listed are returned to the data-out buffer when a **MODE SENSE** command is run, and are returned when some support is being changed to the parameters that are specified in the data-out buffer when a MODE SELECT command is run.

Read/write error recovery

The read/write error recovery mode page specifies the error recovery parameters that the device server will use for any command that runs a read or write operation to the medium (for example, **READ** commands, **WRITE** commands, and **WRITE AND VERIFY** commands).

Use the following table to review the parameters for the read/write recovery mode page.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	PS=0 SPF=0 PAGE CODE=01h 1 3										
1		PAGE LENGTH=0Ah									
2	AWRE=0	ARRE=0	TB=0	RC=0	EER=0	2PER=0	DTE=0	DCR=0			
3				READ RETR	Y COUNT=0						
4											
6		Obsolete									
7	Reserved										
8				WRITE RETR	XY COUNT=0						
9	Reserved										
10											
11			-	NECOVERT I		J					

Table 66. Read/write error recovery page

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Disconnect/reconnect

The disconnect/reconnect mode page provides the application client the means to tune the performance of the service delivery subsystem.

Use the following table to learn about the disconnect/reconnect page parameters.

Table 67. Disconnect/reconnect page

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	PS=0	SPF=0		PAGE CODE=02h							
1		PAGE LENGTH=0Eh									
2		BUFFER FULL RATIO=0									

Table 67. Disconnect/reconnect page (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
3	BUFFER EMPTY RATIO=0											
4			т			0						
5												
6		DISCONNECT TIME I IMIT-03										
7		DISCONNECT TIME LIMIT=03										
8												
9			(CONNECT II	ME LIMIT=	J						
10			1			0						
11			ľ		UK51 SIZE=	0						
12	EMDP=0		FAIR ARB.=0		DIMM=0		DTDC=0					
13		Reserved										
14												
15				FIK51 DUK	51 51ZE=0							

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Format device

The format device page contains parameters that specify the medium format.

Table 68. Format device page

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0	PS=0	SPF=0			PAGE CO	DDE=03h						
1				PAGE LEN	IGTH=16h							
2					ER ZONIE-0							
3				INACKS II	IN ZOINE-0							
4			٨١ ٦٢	DNIATE CECT	OPS DED 70	NE-0						
5		ALIEKNATE SECTORS PER ZONE=0										
6		ALTEDNIATE TRACKS DED ZONE-0										
7			ALIL	NNAIE IKA	CK5 FER ZC	JINE=0						
8			ΔΙΤΕΡΝΙΔ	τε τρλονς		AL LINUT-0						
9			ALIENNA	IE IKACK5	FER LOGICA	AL UNIT=0						
10			CT	CTOPS DED	$TP \land CV = 0.02$	Ob						
11			51	CIOK5 FER	INACK-002	.011						
12						OP_0200b						
13			DAIADII	LES FER FIII	SICAL SECT	OK-020011						
14				INITEDI								
15		IN I EKLEAVE=0										
16			-	FDACK SKEI		n						
17				INACK SKEV	V FACTOR=	U						

Table 68. Format device page (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
18		CYLINDER SKEW FACTOR=0									
19											
20	SSEC=1	HSEC=1	RMB=0	SURF=0		Rese	erved				
21											
23]	Reserved									

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Verify error recovery

The verify error recovery mode page specifies the error recovery parameters that the device server uses when the **VERIFY** command is run and specifies the verify operation of the **WRITE AND VERIFY** command.

Use the following table to review the parameters for the verify error recovery mode page.

Table 69. Verify error recovery page

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	PS=0	SPF=0		PAGE CODE=07h							
1		PAGE LENGTH=0Ah									
2		Reserved EER=0 PER=0 DTE=0 DCR									
3		VERIFY RETRY COUNT=0									
4		Obsolete									
5				Deeg	wood						
9				Kese	rveu						
10											
11			VENI	FI KECUVE	NI IIVIE LIN	111=0					

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Caching

The caching mode page defines the parameters that affect the use of the cache.

Table 70. Caching page

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0			PS=0 SPF=0 PAGE CODE=08h								
1	PAGE LENGTH=12h										
2	IC=0	ABPF=0	CAP=0	DISC=0	SIZE=0	WCE	MF=0	RCD=0			
3	DEMAN	DEMAND READ RETENTION PRIORITY=0 WRITE RETENTION PRIORITY=0									
4				DDE EETCU	ED A NICEED I	ENICTH_0					
5	DISABLE PKE-FEICH IKANSFEK LENGIH=0										
6											
7					KE-FEICH=U	1					

Table 70. Caching page (continued)

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
8					DE EETCU_()								
9			-		KE-FEICH=()								
10			MAV		ETCH CEILI	NC = 0								
11														
12	FSW=0	FSW=0 LBCSS=0 DRA=0 Vendor specific=0 Reserved NVDIS=0												
13		-	NUM	IBER OF CAC	CHE SEGMEN	ITS=0								
14					MENIT CIZE_()								
15			,	CACHE SEGI	VIEINI SIZE=()								
16		Reserved												
17														
19		Obsolete												

This mode page is readable by the **MODE SENSE** command, and the **WCE** bit can be changed by the **MODE SELECT** command. No other fields can be changed.

The write cache-enabled **WCE** bit specifies whether write caching is enabled for this logical unit. By default, this bit is set to 1. If the bit was changed by a **MODE SELECT** command, the bit can return 0.

Control

The control mode page provides control over SCSI features that are applicable to all device types (for example, task set management and error logging).

Byte	Bit 7	Bit 6	Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0										
0				PS	=0 SPF=0 PA	GE CODE=0	Ah						
1				PAGE LEN	GTH=0Ah								
2		TST=0		TMF=0	Reserved	DSENSE	GLTSD	RLEC=0					
3	QUEL	JE ALGORIT	HM MODIFI	ER=1h	Reserved	QERR=0	Obse	olete					
4	VS=0	RAC=0	UA INTLC	CK CTRL=0	SWP=0		Obsolete						
5	ATO=0 TAS=0 Reserved AUTOLOAD MODE=0												
6				Oha	lata								
7				Obst	nete								
8			BUC	V TIMEOUT		TEL							
9			DUS		TERIOD-FI	ггп							
10		EVTENDED CELE TECT COMPLETION TIME 00101											
11		EXTENDED SELF-TEST COMPLETION TIME=0010h											

Table 71. Control page

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Medium types supported

The medium types supported mode page contains a list of the medium types that are implemented by the device server for logical units.

Table 72. Medium types supported page

Byte	Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0											
0	PS=0	SPF=0	'F=0 PAGE CODE=0Bh											
1				PAGE LEN	NGTH=06h									
2		Pacamuad												
3		Keserved												
4			MEDI	UM TYPE O	NE SUPPOR	ГED=0								
5			MEDI	UM TYPE TW	VO SUPPOR	TED=0								
6		MEDIUM TYPE THREE SUPPORTED=0												
7	MEDIUM TYPE FOUR SUPPORTED=0													

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Fibre Channel logical-unit control

The Fibre Channel logical-unit control mode page contains those parameters that select Fibre Channel Protocol (FCP) logical unit operations.

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
0	PS=0	SPF=0			PAGE CO	ODE=18h								
1			PAGE LENGTH=06h											
2		Reserved PROTOCOL IDENTIFIER=0h												
3				Reserved				EPDC=0						
4		Description												
5		Reserveu												

Table 73. Fibre Channel logical unit control page

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Fibre Channel port control

The Fibre Channel port-control mode page contains those parameters that select the Fibre Channel protocol (FCP) operation options.

Table 74. Fibre Channel port-control page

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0	PS=0	SPF=0			PAGE C	ODE=19h					
1				PAGE LEN	JGTH=06h						
2		Reserved PROTOCOL IDENTIFIER=0h									
3	DTFD=0	PLPB=0	=0 DDIS=0 DLM=0 RHA=0 ALWI=0 DTIPE=0 D								
4				Rese	rved						
5				Rese	rved						
6			Reserved			RF	R TOV UNITS	5=0			

Table 74. Fibre Channel port-control page (continued)

Byte	Bit 7	Bit 6	Bit 5 Bit 4		Bit 3 Bit 2		Bit 1	Bit 0
7	SE	Q. INITIATIV	E RESOURCH	E RECOVERY	TIMEOUT V	ALUE (RR T	OV SEQ INIT)=0

This mode page is only readable by the **MODE SENSE** command. The mode page cannot be changed by the **MODE SELECT** command.

Informational exceptions control

The informational-exceptions-control mode page defines the methods that are used by the device server to control the reporting and the operations of specific informational exception conditions.

This information only applies to informational exceptions that report an extra sense code of FAILURE PREDICTION THRESHOLD EXCEEDED or an extra sense code of WARNING to the application client.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0						
0	PS=0	SPF=0			PAGE CO	ODE=1Ch								
1				PAGE LEN	IGTH=0Ah									
2	PERF=0	Reserved	EBF=0	EW=0	DE=0	TEST=0	Reserved	LE=0						
3														
4				ΙΝΙΤΈΡΙΛΑΙ	TIMEP_0									
7				INTERVAL	L IIIVIEK-U									
8														
11	REPORT COUNT=0													

Table 75. Informational-exceptions-control page

This mode page is only readable by the **MODE SENSE** command. this mode cannot be changed by the **MODE SELECT** command.

Fibre Channel command set

Learn about the **Fibre Channel** command set including supported versions, supported Fibre Channel link services, and Fibre Channel login options.

Supported versions

Learn about the Fibre Channel specification versions supported by the storage system.

The Fibre Channel specifications supported by the storage system include:

- Fibre Channel Protocol 3 (FCP-3)
- Fibre Channel 3rd Generation Physical Interface (FC-PH-3)
- Fibre Channel Arbitrated Loop (FC-AL-2)

Supported Fibre Channel link services

Learn about the supported Fibre Channel link services for each type of frame. The frames include basic link service, basic link service reply, extended link service, and extended link service reply.

Table 76. Link services supported

Type of frame	Link service
Basic link service frames	Abort Sequence (ABTS), Remove Connection (RMC), and No Operation (NOP)

Table 76. Link services supported (continued)

Type of frame	Link service
Basic link service reply frames	Basic Accept (BA ACC), and Basic Reject (BA RJT)
Extended link service frames	N Port Login (PLOGI), Fabric Login (FLOGI), Logout (LOGO), Read Timeout Value (RTV), Read Link Error Status Block (RLS), Echo (ECHO), Test (TEST), Reinstate Recovery Qualifier (RRQ), Read Exchange Concise (REC), Process Login (PRLI), Process Logout (PRLO), Address Discovery (ADISC), Port Discovery (PDISC), Fabric Address Notification (FAN), Registered State Change Notification (RSCN), and State Change Registration (SCR)
Extended link service reply frames	Accept (ACC) and Link Service Reject (LS RJT)

Fibre Channel port login

Learn about the Fibre Channel port login content layout.

Bytes	Byte contents															
0 - 15	03	XX	XX	XX	XX	XX	XX	CR	XX	FS	FS	XX	XX	XX	XX	XX
16 - 31	XX	XX	XX	XX	XX	PN	NN	NN	NN	NN						
32 - 47	NN	NN	NN	NN	XX											
48 - 115	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX

Table 77. Port login (PLOGI) payload

Legend

- **CR** Credit Limit
- FS Receive buffer field size
- NN Node name
- **PN** Port name
- XX Ignored

Fibre Channel process login

Learn about the Fibre Channel process login.

Table 78. Fibre Channel process login (PRLI) payload

Bytes		Byte contents														
0 - 15	20	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX
16 - 19	XX	XX	XX	XX												

• XX - Ignored

Fibre Channel fabric login accept page

Learn about the Fibre Channel fabric login accept (ACC) page

Table 79. Fibre Channel fabric login accept (ACC)

Bytes		Byte contents														
0 - 15	02	XX	XX	XX	XX	XX	XX	CR	1X	FS	FS	XX	XX	XX	XX	XX

Bytes		Byte contents														
16 - 31	XX	XX	XX	XX	PN	NN	NN	NN	NN							
32 - 47	NN	NN	NN	NN	XX											
48 - 115	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX	XX

Table 79. Fibre Channel fabric login accept (ACC) (continued)

Legend

- CR Credit Limit
- FS Receive buffer field size
- NN Node name
- **PN** Port name
- XX Ignored

Task management functions

Only one task management function can be specified in any frame.

Table 80. Fibre Channel SCSI FCP task management functions

Task name	Bit location
Terminate task	1000 0000b
Clear ACA	0100 0000Ь
Target reset	0010 0000Ь
Logical unit reset	0001 0000Ь
Clear task set	0000 0100Ь
Abort task set	0000 0010Ь

InfiniBand information units

Learn about the InfiniBand information units.

Supported versions

Learn about the supported versions of the InfiniBand specification.

The InfiniBand specifications supported by the storage system follow:

- SRP
- IBTA-1.2

Port login payload

Learn about the port login payload.

The login content includes the following information:

Table 81. Login request (SRP LOGIN REQ) payload

Bytes		Byte contents														
0 - 15	00	XX	XX	XX	XX	XX	XX	XX	TG							

Bytes		Byte contents														
16 - 31	ML	ML	ML	ML	XX	XX	XX	XX	BF	BF	X0	PN	NN	NN	NN	NN
32 - 47	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP	IP
48 - 63	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP	TP

Table 81. Login request (SRP LOGIN REQ) payload (continued)

Legend

- BF Required buffer
- **IP** Initiator port identifier
- ML Requested maximum initiator to target IU length
- NN Node name
- TG Tag
- **TP** Target port identifier
- XX Ignored

Task management functions

Only one task management function can be specified in any frame.

Table 82. InfiniBand SCSI SRP task management functions

Task Name	Bit location
Terminate task	1000 0001b
Clear ACA	0100 0000b
Logical unit reset	0000 1000b
Clear task set	0000 0100b
Abort task set	0000 0010b

Sense data

Learn about the SCSI sense keys including the key or code and name.

The following tables list the sense keys.

Table 83. SCSI sense keys

Key	Name
00h	No sense
01h	Recovered error
02h	Not ready
03h	Medium error
05h	Illegal request
06h	Unit attention
0Bh	Aborted command

Table 84. Additional sense codes

Code	Name
0000h	No additional sense information
1100h	Unrecoverable read error
1800h	Recovered data with error-correcting code (ECC)
1a00h	Parameter list length error
2000h	Invalid command operation
2100h	Logical block address out of range
2400h	Invalid field In command descriptor block (CDB)
2500h	LUN not supported
2900h	Device reset occurred
2c00h	Command sequence error reported
3f0eh	LUN data has changed
4900h	Invalid message error
4e00h	Overlapped commands attempted
5504h	Insufficient registration resources

Notices

This information was developed for products and services offered in the U.S.A.

The manufacturer may not offer the products, services, or features discussed in this document in other countries. Consult the manufacturer's representative for information on the products and services currently available in your area. Any reference to the manufacturer's product, program, or service is not intended to state or imply that only that product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any intellectual property right of the manufacturer may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any product, program, or service.

The manufacturer may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to the manufacturer.

For license inquiries regarding double-byte character set (DBCS) information, contact the Intellectual Property Department in your country or send inquiries, in writing, to the manufacturer.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: THIS PUBLICATION IS PROVIDED "AS IS " WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. The manufacturer may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to websites not owned by the manufacturer are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this product and use of those websites is at your own risk.

The manufacturer may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact the manufacturer.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning products not produced by this manufacturer was obtained from the suppliers of those products, their published announcements or other publicly available sources. This manufacturer has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to products not produced by this manufacturer. Questions on the capabilities of products not produced by this manufacturer should be addressed to the suppliers of those products.

All statements regarding the manufacturer's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

The manufacturer's prices shown are the manufacturer's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to the manufacturer, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. The manufacturer, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. The manufacturer shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

INFINIBAND, InfiniBand Trade Association, and the INFINIBAND design marks are trademarks and/or service marks of the INFINIBAND Trade Association.

Terms and conditions

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability: These terms and conditions are in addition to any terms of use for the IBM website.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative works of these publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights: Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the Publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Printed in USA