
IBM Communications Server for Data Center Deployment
on AIX or Linux

LUA Programmer's Guide
Version 7.0

SC23-8590-01

���

IBM Communications Server for Data Center Deployment
on AIX or Linux

LUA Programmer's Guide
Version 7.0

SC23-8590-01

���

Note:
Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices,” on page 155.

Sixth Edition (December 2012)

This edition applies to IBM Communications Server for Data Center Deployment on AIX or Linux, Version 7.0,
program number 5725-H32, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1998, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Tables v

Figures vii

About This Book. ix
Who Should Use This Book ix
How to Use This Book x

Organization of This Book x
Typographic Conventions x
Graphic Conventions xi

What Is New for This Release xi
Where to Find More Information xi

Chapter 1. Concepts 1
What Is LUA? 1
Choosing Which Interface to Use 1
LUs and Sessions 2

Configuration 4
LUA Verbs 5

RUI Verb Summary 5
SLI Verb Summary 5
Asynchronous Verb Completion 6

A Sample LUA Communication Sequence 7
LUA Compatibility 10

Chapter 2. Designing and Writing LUA
Applications 13
LUA Entry Points for AIX or Linux Applications . . 13

RUI Function Call 14
SLI Function Call 14
Supplied Parameters 14
Returned Values 14
Usage 14
Callback Routine for Asynchronous Verb
Completion 15

LUA Entry Points for Windows Applications . . . 16
RUI 17
WinRUIStartup 18
WinRUI 20
WinRUIGetLastInitStatus 22
WinRUICleanup 25
GetLuaReturnCode 25
SLI 26
WinSLIStartup 27
WinSLI 29
WinSLICleanup 31

Issuing an LUA Verb 31
SNA Information 34

BIND Checking: RUI 34
BIND Checking: SLI 34
Negative Responses and SNA Sense Codes . . . 35
Pacing 36
Segmentation 37

Modification of Nonstandard Host
Response/Request Header (RH) Bits 37
Courtesy Acknowledgments 37
Purging Data to End of Chain 37

SNA Information for RUI Primary 38
Responsibilities of the Primary RUI application 38
Pacing 38
Segmentation 39
Restrictions 39
Courtesy Acknowledgments 39
Purging Data to End of Chain 39

Configuration Information 40
Data Link Control (DLC), Port, and Link Station
(LS) 40
LU 40
LU Pool (Optional) 40

AIX or Linux Considerations 40
LUA Header File 41
Multiple Processes and Multiple Sessions . . . 41
Compiling and Linking the LUA Application . . 41

Windows Considerations 41
Multiple Sessions and Multiple Tasks 41
Compiling and Linking LUA Programs 41
Terminating Applications 42

Writing Portable Applications 42

Chapter 3. LUA VCB Structure 45
LUA Verb Control Block (VCB) Format 45

LUA_VERB_RECORD Data Structure. 46
Common Data Structure 46
Specific Data Structure. 52

Chapter 4. RUI Verbs. 55
RUI_BID 55

Supplied Parameters 55
Returned Parameters 56
Interaction with Other Verbs. 61
Usage and Restrictions 61

RUI_INIT 61
Supplied Parameters 62
Returned Parameters 64
Interaction with Other Verbs. 67
Usage and Restrictions 68

RUI_INIT_PRIMARY 68
Supplied Parameters 68
Returned Parameters 69
Interaction with Other Verbs. 71
Usage and Restrictions 72

RUI_PURGE 72
Supplied Parameters 72
Returned Parameters 73
Interaction with Other Verbs. 76

RUI_READ 76
Supplied Parameters 76
Returned Parameters 78

© Copyright IBM Corp. 1998, 2012 iii

Interaction with Other Verbs. 83
Usage and Restrictions 84

RUI_REINIT 84
Supplied Parameters 84
Returned Parameters 85
Interaction with Other Verbs. 87
Usage and Restrictions 88

RUI_TERM 88
Supplied Parameters 88
Returned Parameters 89
Interaction with Other Verbs. 92

RUI_WRITE 92
Supplied Parameters 92
Returned Parameters 94
Interaction with Other Verbs. 98
Usage and Restrictions 98

Chapter 5. SLI Verbs 99
SLI_BID 99

Supplied Parameters 99
Returned Parameters 100
Interaction with Other Verbs 105
Usage and Restrictions 105

SLI_CLOSE 106
Supplied Parameters 106
Returned Parameters 107
Interaction with Other Verbs 111
Usage and Restrictions 111

SLI_OPEN 112
Supplied Parameters 112
Return Value from SLI Entry Point 116
Returned Parameters 116
Interaction with Other Verbs 120
Usage and Restrictions 120

SLI_PURGE 120
Supplied Parameters 121
Returned Parameters 121
Interaction with Other Verbs 124

SLI_RECEIVE 125
Supplied Parameters 125
Returned Parameters 126
Interaction with Other Verbs 132
Usage and Restrictions 133

SLI_SEND 133
Supplied Parameters 134
Returned Parameters 136

Interaction with Other Verbs 141
Usage and Restrictions 141

SLI_BIND_ROUTINE. 142
Supplied Parameters 142
Returned Parameters 142
Interaction with Other Verbs 143
Usage and Restrictions 143

SLI_SDT_ROUTINE 143
Supplied Parameters 143
Returned Parameters 144
Interaction with Other Verbs 144
Usage and Restrictions 144

SLI_STSN_ROUTINE 144
Supplied Parameters 144
Returned Parameters 145
Interaction with Other Verbs 145
Usage and Restrictions 145

Chapter 6. Sample LUA Application 147
Processing Overview 147
Testing the Application 148

Host Requirements 149
Configuration for the Sample Application . . . 149
Compiling and Linking the Sample Application 149
Running the Sample Application 149

Appendix A. Return Code Values . . . 151
Primary Return Codes 151
Secondary Return Codes 151

Appendix B. Notices 155
Trademarks 157

Bibliography. 159
IBM Communications Server for AIX Publications 159
IBM Communications Server for Linux Publications 160
Systems Network Architecture (SNA) Publications 161
APPC Publications 161
Programming Publications 162

Index 163

Communicating your comments to
IBM. 165

iv IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Tables

1. Typographic Conventions x
2. SLI_SEND Parameter Settings based on

Message Type 141

© Copyright IBM Corp. 1998, 2012 v

vi IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Figures

1. SNA Components Used for LUA
Communications 3

2. SNA Components Used for RUI Primary
Communications 4

3. RUI Communication Sequence 9
4. SLI Communication Sequence 10
5. Program Flow for the Sample LUA

Application 148

© Copyright IBM Corp. 1998, 2012 vii

viii IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

About This Book

This book is a guide for developing C-language application programs that use the
Conventional Logical Unit Application (LUA) interface to communicate with a
Systems Network Architecture (SNA) host computer.

This manual applies to IBM® Communications Server for Data Center Deployment
(Communications Server), program product number 5725-H32, which is an IBM
software product that enables a server running AIX®, or a computer running
Linux, to exchange information with other nodes on an SNA network.

There are three different installation variants of IBM Communications Server for
Data Center Deployment, depending on the hardware on which it operates:

IBM Communications Server for Data Center Deployment on AIX (CS/AIX)
IBM Communications Server for Data Center Deployment on AIX operates
on a server running AIX Version 6.1 or 7.1 base operating system.

IBM Communications Server for Data Center Deployment on Linux (CS Linux)
IBM Communications Server for Data Center Deployment on Linux
operates on the following:
v 32–bit Intel workstations running Linux (i686)
v 64–bit AMD64/Intel EM64T workstations running Linux (x86_64)
v IBM pSeries® computers running Linux (ppc64)

IBM Communications Server for Data Center Deployment on Linux for System
z® (CS Linux for System z)

IBM Communications Server for Data Center Deployment on Linux for
System z operates on System z mainframes running Linux for System z
(s390x).

In this book, the name Communications Server is used to indicate any of these
variants, and the term “Communications Server computer” is used to indicate any
type of computer running Communications Server, except where differences are
described explicitly.

The IBM Communications Server for Data Center Deployment on AIX or Linux
implementation of LUA is based on the IBM implementation of the
Request/Response Unit Interface (RUI) in its OS/2 products (such as
Communications Server for OS/2), with modifications for the AIX / Linux
environment.

This book applies to Version 7.0 of Communications Server.

Who Should Use This Book
This book is intended for experienced C programmers who write Systems Network
Architecture (SNA) transaction programs for systems with Communications Server.
Programmers may or may not have prior experience with SNA or the
communication facilities of Communications Server.

Application programmers design and code transaction and application programs
that use the Communications Server programming interfaces to send and receive

© Copyright IBM Corp. 1998, 2012 ix

data over an SNA network. They should be thoroughly familiar with SNA, the
remote program with which the transaction or application program communicates,
and the AIX / Linux operating system programming and operating environments.

More detailed information about writing application programs is provided in the
manual for each API. For additional information about Communications Server
publications, see the Bibliography.

How to Use This Book
This section explains how information is organized and presented in this book.

Organization of This Book
This book is organized as follows:
v Chapter 1, “Concepts,” on page 1, introduces the fundamental concepts of LUA.

It is intended for programmers who are not familiar with LUA.
v Chapter 2, “Designing and Writing LUA Applications,” on page 13, contains

general information a programmer needs when writing LUA applications. This
chapter also includes information about SNA concepts relevant to the design of
LUA applications, and on compiling and linking an LUA application.

v Chapter 3, “LUA VCB Structure,” on page 45, describes the structure of the Verb
Control Block (VCB) used for all LUA verbs.

v Chapter 4, “RUI Verbs,” on page 55, describes each RUI verb in detail. Each
description includes the following: purpose, verb record format, supplied
parameters and returned values, and details on how the verb interacts with
other RUI verbs.

v Chapter 5, “SLI Verbs,” on page 99, describes each SLI verb in detail. Each
description includes the following: purpose, verb record format, supplied
parameters and returned values, and details on how the verb interacts with
other SLI verbs.

v Chapter 6, “Sample LUA Application,” on page 147, describes the
Communications Server sample LUA application that illustrates the use of LUA
RUI verbs. This chapter also includes instructions for compiling, linking, and
running the sample application (including the Communications Server
configuration steps necessary).

v Appendix A, “Return Code Values,” on page 151, lists all the possible return
codes in the LUA interface in numerical order and gives their meanings.

Typographic Conventions
Table 1 shows the typographic styles used in this document.

Table 1. Typographic Conventions

Special Element Sample of Typography

Emphasized words back up files before deleting
Document title IBM Communications Server for Data Center

Deployment on AIX or Linux APPC
Programmer's Guide

File or path name /usr/spool/uucp/myfile.bkp
Program or application snaadmin
Command or AIX / Linux utility define_node; cd
General reference to all commands of a
particular type

query_* (indicates all of the administration
commands that query details of a resource)

Who Should Use This Book

x IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Table 1. Typographic Conventions (continued)

Special Element Sample of Typography

Option or flag -i
Parameter or Motif field opcode; LU name
Literal value or selection that the user can
enter (including default values)

255; On node startup

Constant or signal AP_GET_LU_STATUS
Return value AP_INVALID_FORMAT; 0; −1
Variable representing a supplied value filename; LU_name; user_ID
Environment variable PATH
Programming verb GET_LU_STATUS
User input 0p1
Computer output CLOSE
Function, call, or entry point ioctl
Data structure termios
3270 key ENTER
Keyboard keys Ctrl+D; Enter
Hexadecimal value 0x20

Graphic Conventions

UNIX

This symbol is used to indicate the start of a section of text that applies only to the
AIX or Linux operating system. It applies to AIX / Linux servers and to the IBM
Remote API Client running on AIX, Linux, Linux for pSeries or Linux for System z.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM
Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The
information following this symbol applies regardless of the operating system.

What Is New for This Release
Communications Server for Data Center Deployment Version 7.0 is a follow-on
product to Distributed Communications Server Version 6.4, which continues to be
supported.

Where to Find More Information
See the bibliography for other books in the Communications Server library, as well
as books that contain additional information about topics related to SNA and AIX
/ Linux workstations.

How to Use This Book

About This Book xi

xii IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 1. Concepts

This chapter introduces the fundamental concepts of LUA—the Conventional LU
(Logical Unit) Application Programming Interface (API).

The topics covered in this chapter are as follows:
v What is LUA?
v Choosing which interface to use (RUI or SLI)
v LUs and sessions
v LUA verbs
v A sample LUA communication sequence
v LUA compatibility

What Is LUA?
LUA (the Conventional LU Application Programming Interface) is an API that
enables you to write Communications Server applications to communicate with
host applications.

The LUA interface is provided at the request/response unit (RU) level, allowing
the programmer control over the Systems Network Architecture (SNA) messages
sent between Communications Server and the host. It can be used to communicate
with any of the LU types 0, 1, 2, or 3 at the host; it is up to the application to send
the appropriate SNA messages as required by the host application.

For example, you can use LUA to write a 3270 emulation program that
communicates with a host 3270 application; a simple version of this is included as
a sample LUA application with Communications Server, and described in
Chapter 6, “Sample LUA Application,” on page 147.

UNIX

If your Communications Server system supports SNA Gateway for
communications with downstream PUs, you can also write an LUA application
that acts as the SNA primary for communications with secondary LUs on these
downstream PUs. This allows you to emulate a host application on the
Communications Server node, or to offload processing from a host application to
the Communications Server node. This function is described as “Primary RUI”; it
is specific to Communications Server and may not be provided by other LUA
implementations.

Choosing Which Interface to Use
LUA includes two different programming interfaces at different levels:

© Copyright IBM Corp. 1998, 2012 1

v The Request Unit Interface (RUI) is provided at the request/response unit (RU)
level, allowing the programmer control over the Systems Network Architecture
(SNA) messages sent between Communications Server and the host. It is up to
the application to build and send the appropriate SNA messages as required by
the host application.
The RUI interface supports SNA Function Management Profiles 2, 3, 4, 7, and 18,
and SNA Transmission Services Profiles 2, 3, 4, and 7.

v The Session-Level Interface (SLI) is a higher-level interface, allowing the
programmer to work at a logical message level rather than being concerned with
the detail of individual RUs. For example:
– The session can be established and terminated with a single SLI verb (rather

than with a sequence of RUI verbs corresponding to the individual RUs
involved in session startup and termination).

– The SLI library controls chaining when the application needs to send or
receive data that is longer than the maximum RU length specified in the
BIND.

– For most SNA commands sent to the host, the SLI library can build the
appropriate RU at the request of the application.

The SLI interface supports SNA Function Management Profiles 3 and 4, and
SNA Transmission Services Profiles 3 and 4.

An application can use only one of these interfaces for each session. For example,
if it starts a session using the RUI, it cannot subsequently issue SLI verbs on that
session.

You should consider the following points before deciding which API to use.
v The SLI handles some of the detail of individual RUs and their contents,

simplifying the processing required in the application. The RUI requires the
application to deal with each RU individually.

v The RUI provides control over the detailed contents of RUs sent to the host, and
allows the use of a wide range of SNA bind profiles. The SLI does not provide
the same degree of control or flexibility.

UNIX

v The RUI includes Primary RUI(AIX / Linux only), which allows you to write an
application that acts as an SNA primary for communications with downstream
PUs. The SLI interface does not provide this function.

LUs and Sessions
Figure 1 on page 3, shows the SNA components used for LUA communications
with a host.

Choosing Which Interface to Use

2 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

An LUA application uses an LU of type 0–3 that communicates with the host
system by means of the Communications Server node. There are three sessions
between the Communications Server node and the host node, as follows:
v The physical unit-system services control point (PU-SSCP) session, between the

PU 2.1 and the host's system services control point (SSCP); this is used for
controlling the PU.

v The SSCP session, between the Communications Server LU and the SSCP; this is
used for controlling the LU.

v The LU session, between the Communications Server LU and the host LU; this is
used for data transfer between the LU and the host application.

The LUA application programming interface enables applications to send and
receive data on the SSCP session and on the LU session. It does not provide access
to the PU-SSCP session. An LUA application can send data on this session using
the Management Services (MS) verb TRANSFER_MS_DATA; for more information,
refer to the IBM Communications Server for Data Center Deployment on AIX or Linux
MS Programmer's Guide.

WINDOWS

For Windows operating systems, TRANSFER_MS_DATA is provided as part of the
Common Service Verb (CSV) API; for more information, refer to the IBM
Communications Server for Data Center Deployment on AIX or Linux CSV Programmer's
Guide.

UNIX

Figure 2 on page 4, shows the SNA components used for LUA communications
using RUI primary to a downstream LU.

LUA
application

LUA LU

Node

Host
application

Host LU

Host
SSCP

LU Session

SSCP Session

PU-SSCP Session

Figure 1. SNA Components Used for LUA Communications

LUs and Sessions

Chapter 1. Concepts 3

An RUI Primary application uses an LU of type 0–3 that communicates with the
downstream LU by means of the Communications Server node. From the point of
the downstream LU, the Communications Server LU acts as the host LU, and the
Communications Server node acts as the host SSCP. The three sessions between
these components, and the restrictions on access to these sessions, are equivalent to
those for an LUA application communicating with a host.

Each of the LU sessions provides two priorities of messages: normal and
expedited. Expedited flow messages take precedence over other messages waiting
to be transmitted on the same session. There are four different flows on which a
message can be sent or received:
v SSCP session, expedited flow
v LU session, expedited flow
v SSCP session, normal flow
v LU session, normal flow

The LU session normal flow carries application data; the other flows are used for
control messages and start-up.

The Communications Server implementation of LUA does not enable applications
to send data on the SSCP expedited flow, and will not return data to an application
on this flow.

Configuration
Each LU used by an LUA application must be configured using the Motif
administration program, the command-line administration program, or the node
operator facility (NOF) API (for more information, refer to the IBM Communications
Server for Data Center Deployment on AIX or Linux Administration Guide or the IBM
Communications Server for Data Center Deployment on AIX or Linux NOF
Programmer's Guide). In addition, the Communications Server configuration may
include LU pools. A pool is a group of LUs with similar characteristics, such that
an application can use any free LU from the group. This can be used to allocate

Primary RUI
application

LUA LU

Node

LUA
application

Downstream
LU

Downstream
PU

LU Session

SSCP Session

PU-SSCP Session

Figure 2. SNA Components Used for RUI Primary Communications

LUs and Sessions

4 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUs on a first-come, first-served basis when there are more applications than LUs
available, or to provide a choice of LUs on different connections.

LUA Verbs
An application accesses LUA through LUA verbs. Each verb supplies parameters to
LUA, which performs the desired function and returns parameters to the
application.

RUI Verb Summary
The following list contains a brief summary of each of the LUA RUI verbs (for a
detailed explanation of each verb, see Chapter 4, “RUI Verbs,” on page 55):

RUI_BID
This verb enables the application to determine when information from the
host is available to be read.

RUI_INIT
This verb sets up the SSCP session for an LUA application.

UNIX

RUI_INIT_PRIMARY
This verb sets up the SSCP session for an LUA application acting as the
SNA primary for communications with a downstream LU.

RUI_PURGE
This verb cancels an outstanding RUI_READ verb.

RUI_READ
This verb receives data or status information sent from the host to the LUA
application's LU, on either the SSCP session or the LU session.

UNIX

RUI_REINIT
This verb re-establishes the SSCP session for an LUA application after a
session failure. It is intended for use by an application that was using an
LU from a pool, and needs to re-establish the session using the same LU in
order to continue its processing.

RUI_TERM
This verb ends the SSCP session for an LUA application. It also brings
down the LU session if it is active.

RUI_WRITE
This verb sends data to the host on either the SSCP session or the LU
session.

SLI Verb Summary
The following list contains a brief summary of each of the LUA SLI verbs (for a
detailed explanation of each verb, see Chapter 5, “SLI Verbs,” on page 99):

LUs and Sessions

Chapter 1. Concepts 5

SLI_BID
This verb enables the application to determine when information from the
host is available to be read.

SLI_CLOSE
This verb ends the session for an LUA application.

SLI_OPEN
This verb sets up the session for an LUA application.

SLI_PURGE
This verb cancels an outstanding SLI_RECEIVE verb.

SLI_RECEIVE
This verb receives data or status information sent from the host to the LUA
application's LU, on either the SSCP session or the LU session.

SLI_SEND
This verb sends data to the host on either the SSCP session or the LU
session.

On the SLI_OPEN verb, the application can optionally specify the addresses of its
own routines to process BIND, STSN, and SDT requests from the host. If it
provides these routines, and a request of the appropriate type arrives from the
host, LUA sends an additional verb to the appropriate application-supplied routine
to allow it to process the request, as follows.

SLI_BIND_ROUTINE
LUA sends this verb to the application-supplied BIND routine when a
BIND request arrives from the host. The application can accept the BIND,
negotiate BIND parameters, or reject the BIND as described in “SNA
Information” on page 34.

If the application does not provide a BIND routine, LUA performs limited
BIND checking and responds to the host appropriately.

SLI_STSN_ROUTINE
LUA sends this verb to the application-supplied STSN routine when an
STSN request arrives from the host. The application can respond to the
STSN or reject it with an appropriate SNA sense code, as described in
“SNA Information” on page 34.

If the application does not provide an STSN routine, LUA returns a
positive response indicating that no data is available.

SLI_SDT_ROUTINE
LUA sends this verb to the application-supplied SDT routine when an SDT
request arrives from the host. The application can respond to the SDT or
reject it with an appropriate SNA sense code, as described in “SNA
Information” on page 34.

If the application does not provide an SDT routine, LUA returns a positive
response.

Asynchronous Verb Completion
Some LUA verbs complete quickly, after some local processing (for example the
RUI_PURGE verb); however, most verbs take some time to complete, because they
require messages to be sent to and received from the node or from the host
application. Because of this, LUA is implemented as an asynchronous interface;

LUA Verbs

6 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

control can be returned to the application while a verb is still in progress, so the
application is free to continue with further processing (including issuing other
LUA verbs).

UNIX

When the verb completes, LUA calls a callback routine supplied by the application.
This routine may perform further processing on the returned data, issue further
LUA verbs, or simply act as an indicator that the verb has completed.
v RUI verbs may complete synchronously or asynchronously. The application

should check the primary return code in the VCB to determine which
completion mode applies for each verb.

v SLI verbs always complete asynchronously. After issuing the verb, the
application must not access the VCB until its callback routine has been called. It
can process the VCB either from within the callback routine, or from the
program's main thread of execution after the callback routine has completed.

WINDOWS

When the verb completes, LUA either posts a message to a window handle
supplied by the application or signals an event handle supplied by the application.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

A Sample LUA Communication Sequence
Figure 3 on page 9, shows a sample LUA communication sequence using RUI
verbs, and Figure 4 on page 10, shows the equivalent sequence using SLI verbs.

In the RUI example, the application performs the following steps:
1. Issues the RUI_INIT verb to establish the SSCP session. The RUI_INIT verb

does not complete until Communications Server has received an activate logical
unit (ACTLU) message from the host and sent a positive response; however,
these messages are handled by Communications Server and not exposed to the
LUA application.

2. Sends an INITSELF message to the SSCP, to request a BIND, and reads the
response.

3. Reads a BIND message from the host, and writes the response. This establishes
the LU session.

4. Reads an SDT message from the host, which indicates that initialization is
complete and data transfer can begin.

5. Sends a chain of data consisting of three RUs (the last indicates that a definite
response is required), and reads the response.

6. Reads a chain of data consisting of two RUs, and writes the response.
7. Reads an UNBIND message from the host, and writes the response. This

terminates the LU session.

LUA Verbs

Chapter 1. Concepts 7

8. Issues the RUI_TERM verb to terminate the SSCP session. (Communications
Server sends a NOTIFY message to the host and waits for a positive response;
however, these messages are handled by Communications Server and not
exposed to the LUA application.)

The SLI example shows the same sequence of messages flowing between the host
and the application. The SLI verbs used are similar to those used in the RUI
example, but note the following differences:
v SLI_OPEN handles the complete session initialization; the application does not

need to read and write each individual RU in the initialization sequence, as in
the RUI example.

v LUA uses the application's BIND and SDT routines (specified on SLI_OPEN) to
allow the application to process the BIND and SDT messages from the host.
These routines must return synchronously. All other SLI verbs complete
asynchronously.

v SLI_RECEIVE and SLI_SEND handle complete chains of data, so the application
needs only one verb to receive or send the data even though it is long enough to
require two or three RUs. (In the RUI example, the application must receive or
send each RU with a separate verb.)

The list that follows shows the abbreviations used in Figure 3 on page 9and
Figure 4 on page 10.

SSCP norm SSCP session, normal flow

LU norm LU session, normal flow
LU exp LU session, expedited flow
+rsp Positive response to the indicated message
BC Begin chain
MC Middle of chain
EC End chain
CD Change direction indicator set
RQD Definite response required

Figure 3 on page 9, shows the RUI verbs used to start a session, exchange data,
and end the session, and the SNA messages sent and received. The arrows indicate
the direction in which SNA messages flow.

A Sample LUA Communication Sequence

8 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Figure 4 on page 10, shows the equivalent SLI verbs used for the same SNA
message sequence.

INITSELF

ACTLU

RUI_READ (SSCP norm)

RUI_WRITE return

LUA Application LU Host Application
RUI_INIT

RUI_INIT return

RUI_WRITE (SSCP norm)

RUI_WRITE return

RUI_READ (SSCP norm)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_READ (LU norm)

RUI_READ return

RUI_READ (LU norm)

RUI_READ return

RUI_READ (LU norm)

RUI_READ return

RUI_WRITE (LU norm)

RUI_WRITE return

RUI_READ (LU exp)

RUI_READ return

RUI_WRITE (LU exp)

RUI_WRITE return

RUI_TERM

RUI_TERM return

ACTLU

ACTLU +rsp

INITSELF +rsp

BIND

BIND +rsp

SDT

SDT +rsp

data, BC

data, MC

data, EC,CD,RQD

data +rsp

data +BC

data, EC,RQD

data, +rsp

UNBIND

UNBIND, +rsp

(NOTIFY)

(NOTIFY +rsp)

Figure 3. RUI Communication Sequence

A Sample LUA Communication Sequence

Chapter 1. Concepts 9

LUA Compatibility

UNIX

The RUI_INIT_PRIMARY and RUI_REINIT verbs are extensions to the standard
LUA interface specification. They are not available on a Remote API Client on
Windows, and may not be available in other LUA implementations.

INITSELF

ACTLU

SLI Application LU Host Application
SLI_OPEN

SLI_BIND_ROUTINE return

SLI_SDT_ROUTINE return

SLI_BIND_ROUTINE

SLI_SDT_ROUTINE

SLI_OPEN completion

SLI_SEND (LU norm)

SLI_SEND completion

SLI_RECEIVE (LU norm)

SLI_RECEIVE completion

SLI_RECEIVE (LU norm)

SLI_RECEIVE completion

SLI_SEND (LU norm)

SLI_SEND completion

SLI_RECEIVE (SSCP norm)

SLI_RECEIVE completion

(Primary rc STATUS,
secondary rc NOT_READY)

SLI_CLOSE

SLI_CLOSE completion

ACTLU

ACTLU +rsp

INITSELF +rsp

BIND

BIND +rsp

SDT

SDT +rsp

data, BC

data, MC

data, EC,CD,RQD

data +rsp

data +BC

data, EC,RQD

data, +rsp

UNBIND

UNBIND, +rsp

(NOTIFY)

(NOTIFY +rsp)

Figure 4. SLI Communication Sequence

LUA Compatibility

10 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

WINDOWS

The implementation of LUA on the Remote API Client on Windows is designed to
be compatible with Windows LUA (as defined by the WOSA SNA specification);
applications written for Windows LUA can be used with the Remote API Client
without modification.

LUA Compatibility

Chapter 1. Concepts 11

LUA Compatibility

12 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 2. Designing and Writing LUA Applications

The information contained in this chapter will help you write LUA application
programs. The following topics are covered:
v LUA entry points for AIX or Linux applications
v LUA entry points for Windows applications
v Issuing an LUA verb
v SNA information
v Configuration information
v AIX or Linux considerations
v Windows considerations
v Writing portable applications

LUA Entry Points for AIX or Linux Applications

UNIX

Applications running on AIX or Linux access LUA using the RUI or SLI function
call, specifying the address of a Verb Control Block (VCB) containing information
for an LUA verb. Communications Server returns control to the application
immediately.

The returned VCB contains a value indicating whether verb processing is still in
progress or has completed.
v In some cases, verb processing is still in progress when control returns to the

application; Communications Server then uses an application-supplied callback
routine to return the results of the verb processing.

v In other cases, verb processing is complete when Communications Server returns
control to the application; Communications Server does not use the application's
callback routine. This applies particularly if the verb failed LUA's initial
parameter checks or state checks and so cannot be acted on.

v For SLI_OPEN, if the initial checks succeed, the SLI function call returns a
non-zero value representing the session ID of the new session. Communications
Server then uses the application-supplied callback routine in the same way as
for other verbs. The application can use the new session ID to issue a limited
range of subsequent verbs on the session, without waiting for the callback
routine to be called. For details of which verbs can be issued in this situation,
see “Interaction with Other Verbs” on page 120.

Note: Because of the way operating system callback routines operate, it is possible
that the application's callback routine will be called before control returns to
the application from its initial function call for the verb. This means that, if
the callback routine modifies or deletes the returned VCB, the program's
main thread of execution may be unable to check the VCB parameters to
determine that the verb is operating asynchronously. You may need to take
account of this in your application design.

The entry points RUI and SLI are defined in the LUA header file
/usr/include/sna/lua_c.h (AIX) or /opt/ibm/sna/include/lua_c.h (Linux).

© Copyright IBM Corp. 1998, 2012 13

RUI Function Call
void RUI(verb)
LUA_VERB_RECORD * verb;

SLI Function Call
AP_UINT32 SLI(verb)
LUA_VERB_RECORD * verb;

Supplied Parameters
Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the
verb being issued. The VCB structure is defined in the LUA header file
lua_c.h, and is described in Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values
For RUI, and for all SLI verbs except for SLI_OPEN, the entry point does not
return a value. The returned parameters in the VCB indicate whether the verb has
completed synchronously or will complete asynchronously; after the verb has
completed, the VCB contains the results of the verb.

For SLI_OPEN, the entry point returns a value indicating whether the VCB passed
LUA's initial checks:
v A return value of 0 (zero) indicates that the verb failed LUA's initial checks (for

example because the application supplied incorrect parameters).
Communications Server will not call the application-supplied callback routine.

v A non-zero value represents the session ID of the new session that SLI_OPEN
will start.
This return value does not indicate that the verb has completed.
Communications Server will call the application-supplied callback routine to
indicate SLI_OPEN completion when the session has been set up.

For more information, see “Usage.”

Usage
Sometimes LUA is sometimes able to complete all the processing for a verb as soon
as it is issued. This applies particularly if the verb failed LUA's initial parameter
checks or state checks and so cannot be acted on. When this happens, the verb

LUA Entry Points for AIX or Linux Applications

14 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

returns synchronously; the primary return code is set to a value other than
LUA_IN_PROGRESS, and the lua_flag2.async bit is set to 0 (zero). (For information
about these returned parameters, see Chapter 4, “RUI Verbs,” on page 55 or
Chapter 5, “SLI Verbs,” on page 99.)

At other times, LUA must wait for information from the remote LU or from the
node before it can complete the verb. In this case, the verb returns asynchronously;
the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 1. The application can now perform other processing, or wait for notification
from LUA that the verb has completed. LUA issues this notification by setting the
primary return code to its final value, leaving lua_flag2.async set to 1.

As part of the supplied VCB, the application supplies a pointer to a callback
routine (in the lua_post_handle parameter). If the verb completes synchronously,
LUA does not call the callback routine. If the verb completes asynchronously, LUA
indicates the verb completion by calling the callback routine with one
parameter—a pointer to the original verb control block (VCB). For more
information, see “Callback Routine for Asynchronous Verb Completion.”

Note:

1. It is not possible for an application to predict whether a particular verb
will complete synchronously or asynchronously.

2. If the lua_flag2.async parameter indicates that the verb will complete
asynchronously, the program's main thread of execution should not
access any other parameters in the VCB at this point. When LUA calls
the callback routine, the application can then access the VCB parameters.

3. Because of the way operating system callback routines operate, it is
possible that the application's callback routine will be called before
control returns to the application from its initial function call for the
verb. This means that, if the callback routine modifies or deletes the
returned VCB, the program's main thread of execution may be unable to
check the VCB parameters to determine that the verb is operating
asynchronously. You may need to take account of this in your application
design.

Callback Routine for Asynchronous Verb Completion
To enable an LUA verb to complete asynchronously, the application must supply a
pointer to a callback routine. This section describes how Communications Server
uses this routine, and the functions that it must perform.

Function Call
void callback (verb)
LUA_VERB_RECORD * verb;
{ .

.
}

Supplied Parameters
Communications Server calls the routine with the following parameter:

verb Pointer to the VCB supplied by the application, including the returned
parameters set by Communications Server. The callback routine may
perform all the necessary processing on the returned parameters in the
VCB, or may simply set a variable to inform the main program that the
verb has completed.

LUA Entry Points for AIX or Linux Applications

Chapter 2. Designing and Writing LUA Applications 15

Note: Because of the way operating system callback routines operate, it is possible
that the application's callback routine will be called before control returns to
the application from its initial function call for the verb. This means that, if
the callback routine modifies or deletes the returned VCB, the program's
main thread of execution may be unable to check the VCB parameters to
determine that the verb is operating asynchronously. You may need to take
account of this in your application design.

Returned Values
There are no returned values.

LUA Entry Points for Windows Applications

WINDOWS

A Windows application accesses LUA using the following functions:

RUI Issues an RUI verb. If the verb completes asynchronously, LUA indicates
the completion by signaling an event handle supplied by the application.

WinRUIStartup
Registers the application as a Windows RUI user, and determines whether
the LUA software supports the level of function required by the
application.

WinRUI Issues an RUI verb. If the verb completes asynchronously, LUA will
indicate the completion by posting a message to the application window.

WinRUIGetLastInitStatus
Checks the status of an RUI session (initiated by a previous RUI_INIT verb
that is still outstanding), requests notification of changes to the session
status, or cancels this notification.

WinRUICleanup
Unregisters the application when it has finished using RUI .

GetLuaReturnCode
Generates a printable character string for the primary and secondary return
codes obtained on an LUA verb.

SLI Issues an SLI verb. If the verb completes asynchronously, LUA indicates
the completion by signaling an event handle supplied by the application.

WinSLIStartup
Registers the application as a Windows SLI user, and determines whether
the LUA software supports the level of function required by the
application.

WinSLI Issues an SLI verb. If the verb completes asynchronously, LUA will indicate
the completion by posting a message to the application window.

WinSLICleanup
Unregisters the application when it has finished using SLI.

An RUI application must call WinRUIStartup before attempting to issue any LUA
verbs using the WinRUI call.

While an RUI_INIT verb is outstanding, the application can use
WinRUIGetLastInitStatus to determine the status of the LUA session initiated by
this verb; it can then cancel the RUI_INIT verb if necessary. The

LUA Entry Points for AIX or Linux Applications

16 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

WinRUIGetLastInitStatus function can be used to check the current status without
requesting notification of subsequent changes, to request asynchronous notification
of subsequent changes to the session status, or to cancel a previous request for
notification of status changes.

If a verb returns with non-LUA_OK return codes, the application can use
GetLuaReturnCode to obtain a text string representation of these return codes,
which can be used to generate standard error messages.

When it has finished issuing LUA verbs using the WinRUI call, it must call
WinRUICleanup before terminating; it must not attempt to issue any more RUI verbs
after calling WinRUICleanup.

An SLI application must call WinSLIStartup before attempting to issue any LUA
verbs using the WinSLI call.

If a verb returns with non-LUA_OK return codes, the application can use
GetLuaReturnCode to obtain a text string representation of these return codes,
which can be used to generate standard error messages.

When it has finished issuing LUA verbs using the WinSLI call, it must call
WinSLICleanup before terminating; it must not attempt to issue any more SLI verbs
after calling WinSLUICleanup.

The following sections describe these functions.

RUI
The application uses this function to issue an LUA RUI verb. If the verb completes
asynchronously, LUA indicates the completion by signaling an event handle
supplied by the application.

The application does not need to issue a WinRUIStartup verb before making this
call.

Function Call
void WINAPI RUI(verb)
LUA_VERB_RECORD FAR * verb;

Supplied Parameters
Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the
verb being issued. The VCB structure is defined in the LUA header file
winlua.h; this file is installed in the subdirectory \sdk for 32–bit
applications, or \sdk64 for 64–bit applications, within the directory where
you installed the Windows Client software. For an explanation of the VCB
structure, see Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 17

internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values
The entry point does not return a value. When the call returns, the application can
examine the parameters in the VCB to determine whether the verb has completed
synchronously or will complete asynchronously. For more information, see
“Usage.”

Usage
Sometimes LUA is able to complete all the processing for a verb as soon as it is
issued. When this happens, the verb returns synchronously; the primary return
code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 0 (zero). (For information about these returned parameters, see Chapter 4, “RUI
Verbs,” on page 55.)

At other times, LUA must wait for information from the remote LU or from the
node before it can complete the verb. In this case, the verb returns asynchronously;
the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 1. The application can now perform other processing, or wait for notification
from LUA that the verb has completed. LUA issues this notification by setting the
primary return code to its final value, leaving the lua_flag2.async bit set to 1.

As part of the supplied VCB, the application supplies an event handle in the
lua_post_handle parameter. The event must be in the nonsignaled state and the
handle must have EVENT_MODIFY_STATE access to the event. If the verb
completes synchronously, LUA does not signal this event handle. If the verb
completes asynchronously, LUA indicates the verb completion by signaling the
event handle.

The application issues a WaitForSingleObject or WaitForMultipleObject call to
wait on the event handle. When the event is signaled, the application examines the
primary return code and secondary return code to check for errors.

It is not possible for an application to predict whether a particular verb will
complete synchronously or asynchronously.

WinRUIStartup
The application uses this function to register as a Windows RUI user, and to
determine whether the LUA software supports the Windows LUA version that it
requires.

Function Call
int WINAPI WinRUIStartup (

WORD wVersionRequired;
LUADATA far * lpData;

)
typedef struct
{

WORD wVersion;
char szDescription[41];

} LUADATA;

LUA Entry Points for Windows Applications

18 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Supplied Parameters
Supplied parameter is:

wVersionRequired
The version of Windows LUA that the application requires.
Communications Server supports Version 1.0.

The low-order byte specifies the major version number, and the high-order
byte specifies the minor version number. For example:

Version wVersionRequired
1.0 0x0001
1.1 0x0101
2.0 0x0002

If the application can use more than one version, it should specify the
highest version that it can use.

Returned Values
The return value from the function is one of the following:

0 (zero)
The application was registered successfully, and the Windows LUA
software supports either the version number specified by the application or
a lower version. The application should check the version number in the
LUADATA structure to ensure that it is high enough.

WLUAVERNOTSUPPORTED
The version number specified by the application is not supported by the
Windows LUA software. The application was not registered.

WLUAINITREJECT
The application has already called WinRUIStartup and registered
successfully. It must not call this function more than once.

WLUASYSNOTREADY
The Communications Server software has not been started, or the local
node is not active. The application was not registered.

WLUAFAILURE
An operating system error occurred during initialization of the Windows
LUA software. The application was not registered. Check the log files for
messages indicating the cause of the failure.

If the return value from WinRUIStartup is 0 (zero), the LUADATA structure contains
information about the support provided by the Windows LUA software. If the
return value is nonzero, the contents of this structure are undefined and the
application should not check them. The parameters in this structure are as follows:

wVersion
The Windows LUA version number that the software supports, in the same
format as the wVersionRequired parameter (see “Supplied Parameters”).
Communications Server supports Version 1.0.

If the software supports the requested version number, this parameter is
set to the same value as the wVersionRequired parameter; otherwise it is set
to the highest version that the software supports, which will be lower than
the version number supplied by the application. The application must
check the returned value and take action as follows:

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 19

v If the returned version number is the same as the requested version
number, the application can use this Windows LUA implementation.

v If the returned version number is lower than the requested version
number, the application can use this Windows LUA implementation but
must not attempt to use features that are not supported by the returned
version number. If it cannot do this because it requires features not
available in the lower version, it should fail its initialization and not
attempt to issue any LUA verbs.

szDescription
A text string describing the Windows LUA software.

WinRUI
The application uses this function to issue an RUI verb. If the verb completes
asynchronously, LUA will indicate the completion by posting a message to the
application's window handle.

Before using the WinRUI call for the first time, the application must use
RegisterWindowMessage to obtain the message identifier that LUA will use for
messages indicating asynchronous verb completion. For more information, see
“Usage” on page 21.

Function Call
int WINAPI WinRUI (

HWND hWnd,
LUA_VERB_RECORD far * lpVCB

);

For the definition of the LUA_VERB_RECORD structure, see Chapter 3, “LUA VCB
Structure,” on page 45.

Supplied Parameters
Supplied parameters are:

hWnd A window handle that LUA will use to post a message indicating
asynchronous verb completion.

lpVCB A pointer to the VCB structure for the verb. For the WinRUI function, the
lua_post_handle parameter is reserved; leave it as 0 (zero).

For more information about the VCB structure, see Chapter 3, “LUA VCB
Structure,” on page 45. For more information about on its usage for
individual verbs, see Chapter 4, “RUI Verbs,” on page 55.

Note: The LUA VCB contains many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

LUA Entry Points for Windows Applications

20 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

memset(vcb, 0, sizeof(vcb));

Returned Values
The return value from the function is one of the following:

0 (zero)
The function call was accepted, and the LUA verb will be processed. The
application should check the lua_flag2.async parameter in the VCB structure
to determine whether the verb has already completed synchronously or
will complete asynchronously, as described in “Synchronous and
Asynchronous Verb Completion.”

WLUAINVALIDHANDLE
The supplied hWnd parameter was not a valid window handle.

WLUASTARTUPNOTCALLED
The application has not issued the WinRUIStartup call, which is required
before issuing any LUA verbs.

For information about the parameters returned in the VCB structure, see the
descriptions of individual verbs in Chapter 4, “RUI Verbs,” on page 55.

Usage
Before using WinRUI for the first time, the application must use the
RegisterWindowMessage call to obtain the message identifier that LUA will use for
messages indicating asynchronous verb completion. RegisterWindowMessage is a
standard Windows function call, not specific to LUA; refer to your Windows
documentation for more information about the function. (There is no need to issue
the call again before subsequent LUA verbs; the returned value will be the same
for all calls issued by the application.)

The application must pass the string WinRUI to the function; the returned value is a
message identifier (the value returned from the RegisterWindowMessage call).

Each time an LUA verb that was issued using the WinRUI entry point completes
asynchronously, LUA posts a message to the window handle specified on the
WinRUI call. The format of the message is as follows:
v The message identifier is the value returned from the RegisterWindowMessage

call.
v The lParam argument contains the address of the VCB that was supplied to the

original WinRUI call; the application can use this address to access the returned
parameters in the VCB structure.

v The wParam argument is undefined.

Synchronous and Asynchronous Verb Completion
Sometimes LUA is able to complete all the processing for a verb as soon as it is
issued. When this happens, the verb returns synchronously; the primary return
code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 0 (zero). (For information about these returned parameters, see Chapter 4, “RUI
Verbs,” on page 55.)

To enable the verb to return asynchronously, the application supplies a window
handle to the LUA entry point. If the verb completes synchronously, LUA does not
use this window handle. If the verb completes asynchronously, LUA indicates the
verb completion by posting a message to this window handle; the message
includes a pointer to the original VCB.

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 21

It is not possible for an application to predict whether a particular verb will
complete synchronously or asynchronously.

Verbs can be issued from a callback, but they will not always complete
asynchronously. Such verbs may be returned synchronously if they fail from within
the library. The application should not reissue the failed verb from within the
callback.

If the user repeatedly issues RUI_INITs in parallel from the callback context, the
RUI_INITs will eventually fail with a memory error. However, if verbs are issued
from the application thread, allowing the availability of all the system memory,
more attempts will complete successfully.

WinRUIGetLastInitStatus
The application uses this function to determine the status of a previous RUI_INIT
verb that is still outstanding. It can use the returned information to decide whether
to cancel the session initiation (by issuing RUI_TERM) or to wait for the session to
be established.

The function can be used to do any of the following:
v Request information about the current status of the session initiated by a specific

RUI_INIT verb.
v Request asynchronous notification of changes to session status for a specific

session or for all sessions. When the session status changes, LUA will indicate
this by either posting a message to the application's window handle or by
signaling the application's event handle.

v Cancel a previous request for asynchronous notification of changes to session
status.

Before using the WinRUI call for the first time, the application must use
WinRUIStartup to register as a Windows LUA application. If it requires
asynchronous notification of status changes, it must also use
RegisterWindowMessage to obtain the message identifier that LUA will use for this
notification. For more information about these calls, see “WinRUIStartup” on page
18 and “Usage” on page 24.

Function Call
int WINAPI WinRUIGetLastInitStatus (

DWORD Sid,
HANDLE StatusHandle,
DWORD NotifyType,
BOOL ClearPrevious

);

Supplied Parameters
Supplied parameters are:

Sid To obtain information about the session status for a specific RUI_INIT
verb, or to cancel a previous request for notification of session status
changes for this verb, specify the session ID returned on the initial return
from the RUI_INIT verb.

To request notification on session status changes for all outstanding
RUI_INIT verbs, specify 0 (zero). In this case, the StatusHandle parameter
must specify a valid Windows handle, because the information will always
be returned asynchronously.

LUA Entry Points for Windows Applications

22 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

To cancel notification of session status changes for all outstanding
RUI_INIT verbs, specify 0 (zero).

StatusHandle
To obtain the current session status for a specific RUI_INIT verb, without
requesting notification of subsequent changes, specify a null handle.

To request notification on session status changes, either for a specific
RUI_INIT verb or for all outstanding RUI_INIT verbs, specify a Windows
handle or an event handle that LUA will use when the session status
changes.

If the ClearPrevious parameter is set to TRUE, to cancel a previous
notification request, LUA ignores this parameter.

NotifyType
If requesting asynchronous notification, this parameter determines how
LUA should identify the RUI_INIT verb on the asynchronous notification
message. Allowed values:

WLUA_NTFY_MSG_CORRELATOR
The StatusHandle parameter contains a window handle. Identify the
verb using the lua_correlator value supplied on the RUI_INIT verb.

WLUA_NTFY_MSG_SID
The StatusHandle parameter contains a window handle. Identify the
verb using the lua_sid value returned on the RUI_INIT verb.

WLUA_NTFY_EVENT
The StatusHandle parameter contains an event handle.

If the StatusHandle parameter is null (to request current status information),
or if the ClearPrevious parameter is set to TRUE (to cancel a previous
notification request), LUA ignores this parameter.

ClearPrevious
To cancel a previous notification request, set this parameter to TRUE; LUA
ignores the StatusHandle and ClearPrevious parameters. To request either
current status or notification of future status changes, set this parameter to
FALSE.

Returned Values
If the function completed successfully, the return value from the function is one of
the following:

WLUALINKINACTIVE
The communications link to the host is not yet active.

WLUAPUINACTIVE
The communications link to the host is active, but an activate physical unit
(ACTPU) has not yet been received.

WLUAPUACTIVE
An ACTPU has been received from the host.

WLUAPUREACTIVATED
The PU has been reactivated by the host.

WLUALUINACTIVE
The communications link to the host is active, and an ACTPU has been
received, but an ACTLU has not yet been received.

WLUALUACTIVE
The LU is active.

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 23

WLUALUREACTIVATED
The LU has been reactivated.

WLUAGETLU
The application is establishing contact with the node.

If the application requested notification of status changes, one of these values will
be included in a Windows message sent to the application each time the status
changes. For more information, see “Usage.”

The following return values indicate that the function failed:

WLUASYSNOTREADY
The SNA software is not running.

WLUANTFYINVALID
The NotifyType parameter was set to a value that was not valid.

WLUAINVALIDHANDLE
The supplied StatusHandle parameter was not a valid window handle.

WLUASTARTUPNOTCALLED
The application has not issued the WinRUIStartup call, which is required
before issuing any LUA verbs.

WLUAUNKNOWN
Internal error: the session status is unknown.

WLUASIDINVALID
The supplied Sid parameter did not match the session ID of an outstanding
RUI_INIT verb.

WLUASIDZERO
The application supplied a zero session ID (indicating all sessions), but
did not specify either a Windows handle (to indicate asynchronous
notification) or a ClearPrevious value of TRUE (to clear a previous
notification request).

WLUAGLOBALHANDLER
The application has previously requested notification of status changes for
all RUI_INIT verbs; it cannot request notification for a specific session
unless it first clears the “all sessions” notification.

Usage
If the application is requesting asynchronous notification of status changes using a
Windows message, it must use the RegisterWindowMessage call before its first
WinRUIGetLastInitStatus call, to obtain the message identifier that LUA will use
for messages indicating status changes.

The RegisterWindowMessage call is a standard Windows function call, not specific
to LUA; refer to your Windows documentation for more information about the
function. (There is no need to issue the call again before subsequent calls to this
function; the returned value will be the same for all calls issued by the
application.)

The application must pass the string “WinRUI” to the function; the returned value is
a message identifier (the value returned from the RegisterWindowMessage call).

Each time the session status changes, LUA posts a message to the window handle
specified on the WinRUI call. The format of the message is as follows:

LUA Entry Points for Windows Applications

24 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

v The message identifier is the value returned from the RegisterWindowMessage
call.

v The lParam argument contains either the correlator value supplied to the original
RUI_INIT verb or the session ID returned on the original RUI_INIT verb, as
defined by the NotifyType parameter. The application can use this value to
correlate the message with the original verb.

v The wParam argument contains the session status (one of the values listed for
successful execution in “Returned Values” on page 23), or the value WLUAUNKNOWN
if an internal error occurred during processing.

If the application is requesting asynchronous notification of status changes using
an event handle, implement it as follows:
WinRUIGetLastInitStatus(Sid,EventHandle,WLUA_NOTIFY_EVENT,FALSE);

The event whose handle is given will be signaled when a change in state occurs.
Since no information is returned when an event is signaled, a further call must be
issued to determine the status, as follows:
Status = WinRUIGetLastInitStatus(Sid,NULL,0,FALSE);

Note: In this case, a Sid must be specified.

WinRUICleanup
The application uses this function to unregister as a Windows RUI user, after it has
finished issuing RUI verbs.

Function Call
BOOL WINAPI WinRUICleanup (void);

Supplied Parameters
There are no supplied parameters for this function.

Returned Values
The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was
not unregistered. Check the log files for messages indicating the cause of
the failure.

GetLuaReturnCode
The application uses this function to obtain a printable character string indicating
the primary and secondary return codes from a supplied VCB. The string can be
used to generate application error messages for non-LUA_OK return codes.

Function Call
int WINAPI GetLuaReturnCode (

struct LUA_COMMON FAR * vcbptr,
unsigned int buffer_length,
unsigned char far * buffer_addr

);

Supplied Parameters
Supplied parameters are:

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 25

vcbptr A pointer to the VCB structure for the verb. For more information about
the VCB structure and on its usage for individual verbs, see Chapter 4,
“RUI Verbs,” on page 55.

buffer_length
The length (in bytes) of the buffer supplied by the application to hold the
returned data string. The recommended length is 256 bytes.

buffer_addr
The address of the buffer supplied by the application to hold the returned
data string.

Returned Values
The return value from the function is one of the following:

0 (zero)
The function completed successfully.

0x20000001
LUA could not read from the supplied VCB, or could not write to the
supplied data buffer.

0x20000002
The supplied data buffer is too small to hold the returned character string.

0x20000003
The dynamic link library, LUASTR32.DLL, which generates the returned
character strings for this function, could not be loaded.

If the return value is 0 (zero), the returned character string is in the buffer
identified by the buffer_addr parameter. This string is terminated by a null character
(binary zero), but does not include a trailing new-line (\n) character.

SLI
The application uses this function to issue an LUA SLI verb. If the verb completes
asynchronously, LUA indicates the completion by signaling an event handle
supplied by the application.

Function Call
void WINAPI SLI(verb)
LUA_VERB_RECORD FAR * verb;

Supplied Parameters
Supplied parameter is:

verb Pointer to a Verb Control Block (VCB) that contains the parameters for the
verb being issued. The VCB structure is defined in the LUA header file
winlua.h; this file is installed in the subdirectory /sdk within the directory
where you installed the Windows Client software. For an explanation of
the VCB structure, see Chapter 3, “LUA VCB Structure,” on page 45.

Note: The LUA VCB contains many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its

LUA Entry Points for Windows Applications

26 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

Returned Values
The entry point does not return a value. When the call returns, the application can
examine the parameters in the VCB to determine whether the verb has completed
synchronously or will complete asynchronously. For more information, see
“Usage.”

Usage
Sometimes LUA is able to complete all the processing for a verb as soon as it is
issued. When this happens, the verb returns synchronously; the primary return
code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 0 (zero). (For information about these returned parameters, see Chapter 5, “SLI
Verbs,” on page 99.)

At other times, LUA must wait for information from the remote LU or from the
node before it can complete the verb. In this case, the verb returns asynchronously;
the primary return code is set to LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 1. The application can now perform other processing, or wait for notification
from LUA that the verb has completed. LUA issues this notification by setting the
primary return code to its final value, leaving the lua_flag2.async bit set to 1.

As part of the supplied VCB, the application supplies an event handle in the
lua_post_handle parameter. The event must be in the nonsignaled state and the
handle must have EVENT_MODIFY_STATE access to the event. If the verb
completes synchronously, LUA does not signal this event handle. If the verb
completes asynchronously, LUA indicates the verb completion by signaling the
event handle.

The application issues a WaitForSingleObject or WaitForMultipleObject call to
wait on the event handle. When the event is signaled, the application examines the
primary return code and secondary return code to check for errors.

It is not possible for an application to predict whether a particular verb will
complete synchronously or asynchronously.

WinSLIStartup
The application uses this function to register as a Windows SLI user, and to
determine whether the LUA software supports the Windows LUA version that it
requires.

Function Call
int WINAPI WinSLIStartup (

WORD wVersionRequired;
LUADATA far * lpData;

)
typedef struct
{

WORD wVersion;
char szDescription[41];

} LUADATA;

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 27

Supplied Parameters
Supplied parameter is:

wVersionRequired
The version of Windows LUA that the application requires.
Communications Server supports Version 1.0.

The low-order byte specifies the major version number, and the high-order
byte specifies the minor version number. For example:

Version wVersionRequired
1.0 0x0001
1.1 0x0101
2.0 0x0002

If the application can use more than one version, it should specify the
highest version that it can use.

Returned Values
The return value from the function is one of the following:

0 (zero)
The application was registered successfully, and the Windows LUA
software supports either the version number specified by the application or
a lower version. The application should check the version number in the
LUADATA structure to ensure that it is high enough.

WLUAVERNOTSUPPORTED
The version number specified by the application is not supported by the
Windows LUA software. The application was not registered.

WLUAINITREJECT
The application has already called WinSLIStartup and registered
successfully. It must not call this function more than once.

WLUASYSNOTREADY
The Communications Server software has not been started, or the local
node is not active. The application was not registered.

WLUAFAILURE
An operating system error occurred during initialization of the Windows
LUA software. The application was not registered. Check the log files for
messages indicating the cause of the failure.

If the return value from WinSLIStartup is 0 (zero), the LUADATA structure contains
information about the support provided by the Windows LUA software. If the
return value is nonzero, the contents of this structure are undefined and the
application should not check them. The parameters in this structure are as follows:

wVersion
The Windows LUA version number that the software supports, in the same
format as the wVersionRequired parameter (see “Supplied Parameters” on
page 19). Communications Server supports Version 1.0.

If the software supports the requested version number, this parameter is
set to the same value as the wVersionRequired parameter; otherwise it is set
to the highest version that the software supports, which will be lower than
the version number supplied by the application. The application must
check the returned value and take action as follows:

LUA Entry Points for Windows Applications

28 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

v If the returned version number is the same as the requested version
number, the application can use this Windows LUA implementation.

v If the returned version number is lower than the requested version
number, the application can use this Windows LUA implementation but
must not attempt to use features that are not supported by the returned
version number. If it cannot do this because it requires features not
available in the lower version, it should fail its initialization and not
attempt to issue any LUA verbs.

szDescription
A text string describing the Windows LUA software.

WinSLI
The application uses this function to issue an SLI verb. If the verb completes
asynchronously, LUA will indicate the completion by posting a message to the
application's window handle.

Before using the WinSLI call for the first time, the application must use
RegisterWindowMessage to obtain the message identifier that LUA will use for
messages indicating asynchronous verb completion. For more information, see
“Usage” on page 30.

Function Call
int WINAPI WinSLI (

HWND hWnd,
LUA_VERB_RECORD far * lpVCB

);

For the definition of the LUA_VERB_RECORD structure, see Chapter 3, “LUA VCB
Structure,” on page 45.

Supplied Parameters
Supplied parameters are:

hWnd A window handle that LUA will use to post a message indicating
asynchronous verb completion.

lpVCB A pointer to the VCB structure for the verb. For the WinSLI function, the
lua_post_handle parameter is reserved; leave it as 0 (zero).

For more information about the VCB structure, see Chapter 3, “LUA VCB
Structure,” on page 45. For more information about on its usage for
individual verbs, see Chapter 5, “SLI Verbs,” on page 99.

Note: The LUA VCB contains many parameters marked as “reserved”;
some of these are used internally by the Communications Server
software, and others are not used in this version but may be used in
future versions. Your application must not attempt to access any of
these reserved parameters; instead, it must set the entire contents of
the VCB to zero to ensure that all of these parameters are zero,
before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its
internally-used parameters, and also that your application will
continue to work with future Communications Server versions in
which these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 29

memset(vcb, 0, sizeof(vcb));

Returned Values
The return value from the function is one of the following:

0 (zero)
The function call was accepted, and the LUA verb will be processed. The
application should check the lua_flag2.async parameter in the VCB structure
to determine whether the verb has already completed synchronously or
will complete asynchronously, as described in “Synchronous and
Asynchronous Verb Completion.”

WLUAINVALIDHANDLE
The supplied hWnd parameter was not a valid window handle.

WLUASTARTUPNOTCALLED
The application has not issued the WinSLIStartup call, which is required
before issuing any SLI verbs.

For information about the parameters returned in the VCB structure, see the
descriptions of individual verbs in Chapter 5, “SLI Verbs,” on page 99.

Usage
Before using WinSLI for the first time, the application must use the
RegisterWindowMessage call to obtain the message identifier that LUA will use for
messages indicating asynchronous verb completion. RegisterWindowMessage is a
standard Windows function call, not specific to LUA; refer to your Windows
documentation for more information about the function. (There is no need to issue
the call again before subsequent LUA verbs; the returned value will be the same
for all calls issued by the application.)

The application must pass the string WinSLI to the function; the returned value is a
message identifier (the value returned from the RegisterWindowMessage call).

Each time an LUA verb that was issued using the WinSLI entry point completes
asynchronously, LUA posts a message to the window handle specified on the
WinSLI call. The format of the message is as follows:
v The message identifier is the value returned from the RegisterWindowMessage

call.
v The lParam argument contains the address of the VCB that was supplied to the

original WinSLI call; the application can use this address to access the returned
parameters in the VCB structure.

v The wParam argument is undefined.

Synchronous and Asynchronous Verb Completion
Sometimes LUA is able to complete all the processing for a verb as soon as it is
issued. When this happens, the verb returns synchronously; the primary return
code is set to a value other than LUA_IN_PROGRESS, and the lua_flag2.async bit is set
to 0 (zero). (For information about these returned parameters, see Chapter 5, “SLI
Verbs,” on page 99.)

To enable the verb to return asynchronously, the application supplies a window
handle to the LUA entry point. If the verb completes synchronously, LUA does not
use this window handle. If the verb completes asynchronously, LUA indicates the
verb completion by posting a message to this window handle; the message
includes a pointer to the original VCB.

LUA Entry Points for Windows Applications

30 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

It is not possible for an application to predict whether a particular verb will
complete synchronously or asynchronously.

Verbs can be issued from a callback, but they will not always complete
asynchronously. Such verbs may be returned synchronously if they fail from within
the library. The application should not reissue the failed verb from within the
callback.

If the user repeatedly issues SLI_OPENs in parallel from the callback context, the
SLI_OPENs will eventually fail with a memory error. However, if verbs are issued
from the application thread, allowing the availability of all the system memory,
more attempts will complete successfully.

WinSLICleanup
The application uses this function to unregister as a Windows SLI user, after it has
finished issuing SLI verbs.

Function Call
BOOL WINAPI WinSLICleanup (void);

Supplied Parameters
There are no supplied parameters for this function.

Returned Values
The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was
not unregistered. Check the log files for messages indicating the cause of
the failure.

Issuing an LUA Verb
The steps required to issue an LUA verb are as follows. The examples indicate the
use of the RUI_INIT verb.
1. Include the LUA header file in the application's source code.

UNIX

#include < lua_c.h>

WINDOWS

#include < winlua.h >

UNIX

2. Set up a callback function that LUA will use to indicate that the verb has
completed asynchronously. (For more information, see “LUA Entry Points for
AIX or Linux Applications” on page 13.)

LUA Entry Points for Windows Applications

Chapter 2. Designing and Writing LUA Applications 31

void callback(verb)
LUA_VERB_RECORD * verb;
{

.

.

.
}

WINDOWS

If this is the first LUA verb from the application, and the application will be
issuing RUI verbs using the WinRUI call, issue the WinRUIStartup call to
initialize the application's use of LUA. Similarly, if the application will be
issuing SLI verbs using the WinSLI call, issue the WinSLIStartup call to initialize
the application's use of LUA. (For more information, see “LUA Entry Points for
Windows Applications” on page 16.) This call must be issued once before the
application's first LUA verb; it must not be repeated before subsequent verbs.
Also issue the RegisterWindowMessage call, to obtain the message identifier that
LUA will use when posting messages to indicate the completion of an LUA
verb. (For more information, see “LUA Entry Points for Windows Applications”
on page 16.) This call must be issued once before the application's first LUA
verb; there is no need to repeat it before subsequent verbs.

3. Create a variable for the VCB structure.
LUA_VERB_RECORD rui_init;

The LUA_VERB_RECORD structure is declared in the header file lua_c.h (AIX
/ Linux applications) or winlua.h (Windows applications); for an explanation
of the VCB structure, see Chapter 3, “LUA VCB Structure,” on page 45.

4. Clear (set to 0) the variables within the VCB.
memset(rui_init, 0, sizeof(rui_init));

LUA requires that all reserved parameters, and all parameters not required by
the particular verb being issued, must be set to 0 (zero). For details about
reserved parameters, see “LUA Verb Control Block (VCB) Format” on page 45.
The simplest way to do this is to set the entire VCB to zeros before setting the
parameters required for this particular verb.

5. Assign values to the VCB parameters that supply information to LUA.
rui_init.common.lua_verb = LUA_VERB_RUI
rui_init.common.lua_verb_length = sizeof(LUA_COMMON);
rui_init.common.lua_opcode = LUA_OPCODE_RUI_INIT;
memcpy (rui_init.common.lua_luname, "THISLU ", 8);

UNIX

rui_init.common.lua_post_handle = (unsigned long) callback;

WINDOWS

The rui_init.common.lua_post_handle parameter is reserved; leave it as 0 (zero).

The values LUA_VERB_RUI and LUA_OPCODE_RUI_INIT are symbolic
constants. These constants are defined in the header file lua_c.h (AIX / Linux
applications) or winlua.h (Windows applications); you are recommended to use

Issuing an LUA Verb

32 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

the symbolic constants and not the integer values, for portability between
different systems. (For more information, see “Writing Portable Applications”
on page 42.)

6. Invoke LUA. The address of the VCB structure is a parameter to the function
call.

UNIX

RUI (&rui_init);

WINDOWS

The WinRUI entry point requires an additional parameter, which is a window
handle for the window to which LUA will post a message indicating
asynchronous completion of the verb.
WinRUI (handle, (LUA_VERB_RECORD far *) &rui_init);

7. Check the lua_flag2.async parameter to find out whether the verb has completed
synchronously or will complete asynchronously.
if (rui_init.common.lua_flag2.async)
{

/* verb will complete asynchronously */
/* using the supplied callback routine */
/* continue with other processing */
.
.
.

}
else
{

/* verb has completed synchronously */
/* callback routine will not be called */
/* process the returned values here */
.
.
.

}

If the lua_flag2.async parameter indicates that the verb will complete
asynchronously, the program's main thread of execution should not access any
other parameters in the VCB at this point. When LUA calls the callback routine,
the application can then access the VCB parameters.

8. Use the variables returned by LUA. If Step 7 indicates that the verb will
complete asynchronously, this step must not be performed until the verb has
completed; on AIX / Linux systems, the processing is typically done by the
callback routine. If Step 7 indicates that the verb has completed synchronously,
the processing should be done by the main code path because the callback
routine will not be called.
if(rui_init.common.lua_prim_rc == LUA_OK)
{

/* Init OK */
.
.
.

}
else
{

/* Do error routine */

Issuing an LUA Verb

Chapter 2. Designing and Writing LUA Applications 33

.

.

.
}

SNA Information
This section explains some SNA information that you need to consider when
writing Communications Server LUA applications for communications with a host.
If you are writing an RUI Primary application for communications with a
downstream LU, see “SNA Information for RUI Primary” on page 38.

This guide does not attempt to explain SNA concepts in detail. If you need specific
information about SNA message flows, refer to the documentation for the host
application for which you are designing your Communications Server LUA
application.

BIND Checking: RUI
During initialization of the LU session, the host sends a BIND message to the
Communications Server LUA application that contains information such as RU
sizes to be used by the LU session. Communications Server returns this message to
the LUA application on an RUI_READ verb. It is the responsibility of the LUA
application to check that the parameters specified on the BIND are suitable. The
application has the following options:
v Accept the BIND as it is, by issuing an RUI_WRITE verb containing an OK

response to the BIND. No data needs to be sent on the response.
v Try to negotiate one or more BIND parameters (this is only permitted if the

BIND is negotiable). To do this, the application issues an RUI_WRITE verb
containing an OK response, but including the modified BIND as data.

v Reject the BIND by issuing an RUI_WRITE verb containing a negative response,
using an appropriate SNA sense code as data.

For more information about the RUI_WRITE verb, see Chapter 4, “RUI Verbs,” on
page 55.

Validation of the BIND parameters, and ensuring that all messages sent are
consistent with them, is the responsibility of the LUA application. However, the
following two restrictions apply:
v Communications Server rejects any RUI_WRITE verb that specifies an RU length

greater than the size specified on the BIND.
v Communications Server requires the BIND to specify that the secondary LU is

the contention winner, and that error recovery is the responsibility of the
contention loser.

BIND Checking: SLI
During initialization of the LU session, the host sends a BIND message to the
Communications Server LUA application that contains information such as RU
sizes to be used by the LU session.

On the SLI_OPEN verb, the application can optionally specify the address of its
own routine to process BIND requests from the host. If it has done so, LUA sends
an additional verb SLI_BIND_ROUTINE to the application-supplied routine to

Issuing an LUA Verb

34 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

allow it to process the request, as follows. It is the responsibility of the LUA
application to check that the parameters specified on the BIND are suitable. The
application has the following options:
v Accept the BIND as it is, by returning the SLI_BIND_ROUTINE verb with a

primary return code of OK. The application does not modify the data buffer
containing the BIND.

v Try to negotiate one or more BIND parameters (this is only permitted if the
BIND is negotiable). To do this, the application returns the SLI_BIND_ROUTINE
verb with a primary return code of OK, but including the modified BIND in the
data buffer.

v Reject the BIND by returning the SLI_BIND_ROUTINE verb with a primary
return code of LUA_NEGATIVE_RESPONSE, and replacing the BIND request in the
data buffer with an appropriate SNA sense code.

Validation of the BIND parameters, and ensuring that all messages sent are
consistent with them, is the responsibility of the LUA application. However,
Communications Server requires the BIND to specify that the secondary LU is the
contention winner, and that error recovery is the responsibility of the contention
loser.

Negative Responses and SNA Sense Codes
SNA sense codes may be returned to an LUA application in the following cases:
v When the host sends a negative response to a request from the LUA application,

this includes an SNA sense code indicating the reason for the negative response.
This is reported to the application on a subsequent RUI_READ or SLI_RECEIVE
verb, as follows:
– The primary return code is LUA_OK.
– The Request/Response Indicator, Response Type Indicator, and Sense Data

Included Indicator are all set to 1, indicating a negative response that includes
sense data.

– The data returned by the RUI_READ or SLI_RECEIVE verb is the SNA sense
code.

v When Communications Server receives data that is not valid from the host, it
generally sends a negative response to the host and does not pass the data that
is not valid to the LUA application. This is reported to the application on a
subsequent RUI_READ or RUI_BID verb, or SLI_RECEIVE / SLI_BID, as
follows:
– The primary return code is LUA_NEGATIVE_RSP.
– The secondary return code is the SNA sense code sent to the host.

v In some cases, Communications Server detects that data supplied by the host is
not valid, but cannot determine the correct sense code to send. In this case, it
passes the data that is not valid in an Exception Request (EXR) to the LUA
application on an RUI_READ or SLI_RECEIVE verb as follows:
– The Request/Response Indicator is set to 0 (zero), indicating a request.
– The Sense Data Included Indicator is set to 1, indicating that sense data is

included (this indicator is normally used only for a request).
– The message data is replaced by a suggested SNA sense code.
The application must then send a negative response to the message; it may use
the sense code suggested by Communications Server, or may alter it.

SNA Information

Chapter 2. Designing and Writing LUA Applications 35

v Communications Server may send a sense code to the application to indicate
that data supplied by the application was not valid. This is reported to the
application on the RUI_WRITE or SLI_SEND verb that supplied the data, as
follows:
– The primary return code is LUA_UNSUCCESSFUL.
– The secondary return code is the SNA sense code.

Distinguishing SNA Sense Codes from Other Secondary Return
Codes

Note: The byte ordering used in LUA secondary return codes means that the most
significant byte of the numeric value is the last byte, not the first byte.

For a secondary return code that is not a sense code, the two most significant bytes
of this value are always 0 (zero). As an example, 0x01000000 (LUA_INVALID_LUNAME)
is a standard LUA secondary return code and not a sense code.

For an SNA sense code, the two most significant bytes are nonzero; the most
significant byte gives the sense code category, and the next byte identifies a
particular sense code within that category. (The remaining bytes may contain
additional information, or may be 0.) As an example, 0x00000108
(LUA_RESOURCE_NOT_AVAILABLE) is a sense code.

All LUA secondary return codes, including those that are SNA sense codes, are
listed in Appendix A, “Return Code Values,” on page 151.

Information about SNA Sense Codes
If you need information about a returned sense code, refer to IBM's Systems
Network Architecture: Formats. The sense codes are listed in numerical order by
category.

You can also retrieve online help information about a specific SNA sense code
generated on the Communications Server computer, by typing sna -getsense
followed by either the category and modifier (the first four digits) or the entire
sense code (all eight digits) on the command line. For more information, see IBM
Communications Server for Data Center Deployment on AIX or Linux Diagnostics Guide.

Pacing
Pacing is handled by the LUA interface; an LUA application does not need to
control pacing, and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is
determined by the BIND), an RUI_WRITE or SLI_SEND verb may take some time
to complete. This is because Communications Server has to wait for a pacing
response from the host before it can send more data.

If an LUA application is used to transfer large quantities of data in one direction,
either to the host or from the host (for example, a file transfer application), then
the host configuration should specify that pacing is used in that direction; this is to
ensure that the node receiving the data is not flooded with data and does not run
out of data storage.

SNA Information

36 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Segmentation
Segmentation of RUs is handled by the LUA interface. LUA always passes
complete RUs to the application, and the application should pass complete RUs to
LUA.

Modification of Nonstandard Host Response/Request Header
(RH) Bits

A host may send data to an LUA application with the BB (begin bracket) and RQE
(request exception) options set but without the EB (end bracket) option (begin
bracket and exception response but no end bracket). This combination of options is
not strictly valid in SNA, but is used by some host applications.

In order to support these host applications, Communications Server modifies the
host data to specify definite response rather than exception response before
sending it to the application.

Courtesy Acknowledgments
Communications Server keeps a record of requests received from the host in order
to correlate any response sent by the application with the appropriate request.
When the application sends a response, Communications Server correlates this
with the data from the original request, and can then free the storage associated
with it.

If the host specifies exception response only (a negative response can be sent but a
positive response should not be sent), Communications Server must still keep a
record of the request in case the application subsequently sends a negative
response. If the application does not send a response, the storage associated with
this request cannot be freed.

Because of this, Communications Server allows the LUA application to issue a
positive response to an exception-response-only request from the host (this is
known as a courtesy acknowledgment). The response is not sent to the host, but is
used by Communications Server to clear the storage associated with the request.

Purging Data to End of Chain
When the host sends a chain of request units to an LUA application, the
application may wait until the last RU in the chain is received before sending a
response, or it may send a negative response to an RU that is not the last in the
chain. If a negative response is sent mid-chain, Communications Server purges all
subsequent RUs from this chain, and does not send them to the application.

When Communications Server receives the last RU in the chain, it indicates this to
the application by setting the primary return code of an RUI_READ or RUI_BID
verb, or SLI_RECEIVE / SLI_BID, to LUA_NEGATIVE_RSP with a 0 (zero) secondary
return code.

The host may terminate the chain by sending a message such as CANCEL while in
mid-chain. In this case, the CANCEL message is returned to the application on an
RUI_READ or SLI_RECEIVE verb, and the LUA_NEGATIVE_RSP return code (see
“Negative Responses and SNA Sense Codes” on page 35) is not used.

SNA Information

Chapter 2. Designing and Writing LUA Applications 37

SNA Information for RUI Primary
This section explains some SNA information that you need to consider when
writing Communications Server RUI Primary applications for communications
with a downstream LU.

This guide does not attempt to explain SNA concepts in detail. If you need specific
information about SNA message flows, refer to the documentation for the host
application for which you are designing your Communications Server LUA
application.

Responsibilities of the Primary RUI application
A Primary RUI application has control of both LU-SSCP and PLU-SLU sessions at
the Request/Response Unit (RU) level, and can send and receive SNA RUs on
these sessions. The PU-SSCP session is internal to Communications Server and the
Primary RUI application cannot access it.

Because a Primary RUI application works at the RU level, it has a large degree of
control over the data flow to and from the secondary LU. However, it takes greater
responsibility than a regular LUA application for ensuring that the SNA messages
it sends are valid and that the RU level protocols (for example bracketing and
chaining) are used correctly. In particular, note that Communications Server does
not attempt to verify the validity of RUs sent by a Primary RUI application.

The Primary RUI application is responsible for:
v Initializing downstream LUs using RUI_INIT_PRIMARY, and terminating them

using RUI_TERM
v Processing NOTIFY messages from the secondary LU as secondary applications

start and stop
v Processing INIT-SELF and TERM-SELF to activate and deactivate the PLU-SLU

session
v Building, sending, receiving and parsing 3270 datastream messages in data RUs
v Implementing RU level protocols (request control, bracketing, chaining,

direction)
v Cryptography (if required)
v Compression (if required).

Pacing
Pacing is handled by the LUA interface; an LUA application does not need to
control pacing, and should never set the Pacing Indicator flag.

If pacing is being used on data sent from the LUA application to the host (this is
determined by the BIND), an RUI_WRITE verb may take some time to complete.
This is because Communications Server has to wait for a pacing response from the
host before it can send more data.

If an LUA application is used to transfer large quantities of data in one direction,
either to the host or from the host (for example, a file transfer application), then
the host configuration should specify that pacing is used in that direction; this is to
ensure that the node receiving the data is not flooded with data and does not run
out of data storage.

SNA Information for RUI Primary

38 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Segmentation
Segmentation of RUs is handled by the LUA interface. LUA always passes
complete RUs to the application, and the application should pass complete RUs to
LUA.

Restrictions
Communications Server does not support the following for Primary RUI
applications:
v Downstream PUs over DLUR
v Dynamically Defined Dependent LUs (DDDLU)
v Sending STSN (to reset sequence numbers, the application should UNBIND and

re-BIND the session).

Courtesy Acknowledgments
Communications Server keeps a record of requests received from the host in order
to correlate any response sent by the application with the appropriate request.
When the application sends a response, Communications Server correlates this
with the data from the original request, and can then free the storage associated
with it.

If the host specifies exception response only (a negative response can be sent but a
positive response should not be sent), Communications Server must still keep a
record of the request in case the application subsequently sends a negative
response. If the application does not send a response, the storage associated with
this request cannot be freed.

Because of this, Communications Server allows the LUA application to issue a
positive response to an exception-response-only request from the host (this is
known as a courtesy acknowledgment). The response is not sent to the host, but is
used by Communications Server to clear the storage associated with the request.

Purging Data to End of Chain
When the host sends a chain of request units to an LUA application, the
application may wait until the last RU in the chain is received before sending a
response, or it may send a negative response to an RU that is not the last in the
chain. If a negative response is sent mid-chain, Communications Server purges all
subsequent RUs from this chain, and does not send them to the application.

When Communications Server receives the last RU in the chain, it indicates this to
the application by setting the primary return code of an RUI_READ or RUI_BID
verb to LUA_NEGATIVE_RSP with a 0 (zero) secondary return code.

The host may terminate the chain by sending a message such as CANCEL while in
mid-chain. In this case, the CANCEL message is returned to the application on an
RUI_READ verb, and the LUA_NEGATIVE_RSP return code (see “Negative Responses
and SNA Sense Codes” on page 35) is not used.

SNA Information for RUI Primary

Chapter 2. Designing and Writing LUA Applications 39

Configuration Information
The Communications Server configuration file, which is set up and maintained by
the System Administrator, contains information that is required for LUA
applications to communicate. For additional information, refer to the IBM
Communications Server for Data Center Deployment on AIX or Linux Administration
Guide.

UNIX

For a Primary RUI application communicating with a downstream LU, the only
configuration required is the downstream LU (or a Downstream PU template).

The following components must be configured for use with an LUA application
communicating with a host:

Data Link Control (DLC), Port, and Link Station (LS)
The communications components that Communications Server uses to
communicate with the remote host computer.

LU
An LU of type 0–3, with an LU number that matches that of a suitable LU on the
host.

LU Pool (Optional)
If required, you can configure more than one LU for use by the application, and
group the LUs into a pool. This means that an application can specify the pool
rather than a specific LU when attempting to start a session, and will be assigned
the least recently used LU from the pool.

An LUA application indicates to Communications Server that it wants to start a
session by issuing an RUI_INIT or SLI_OPEN verb with an LU name. This name
must match the name of an LU of type 0–3, or of an LU pool, in the configuration
file. Communications Server uses this name as follows:
v If the name supplied is the name of an LU that is not in a pool, a session will be

assigned using that LU if it is available (that is, if it is not already in use by a
program).

v If the name supplied is the name of an LU pool, or the name of any LU within
the pool, a session will be assigned using the named LU, if it is available, or
otherwise the least recently used LU in the pool. The RUI_INIT or SLI_OPEN
verb returns the name of the actual LU assigned (which may not be the same as
the name specified). The application can then use this returned LU name on
subsequent LUA verbs to identify the session.

AIX or Linux Considerations

UNIX

Configuration Information

40 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

This section summarizes processing considerations of which you must be aware
when developing LUA applications on an AIX or Linux computer.

LUA Header File
The header file to be used with LUA applications is lua_c.h. This file contains the
definitions of the LUA entry points and the LUA VCBs. It also includes the
common interface header file values_c.h; these two files contain all the constants
defined for supplied and returned parameter values at the LUA interface. The file
values_c.h also includes definitions of parameter types such as AP_UINT16 that are
used in the LUA VCBs.

These two files are stored in /usr/include/sna (AIX) or /opt/ibm/sna/include
(Linux).

Multiple Processes and Multiple Sessions
If the process that issued RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN then forks
to create a child process, the child process cannot issue any LUA verbs on the
session started by the parent process; the verbs will fail with return codes
LUA_UNSUCCESSFUL and LUA_INVALID_PROCESS. It can, however, issue another
RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN to obtain its own session.

A single process may simultaneously use more than one LUA session, by issuing
multiple RUI_INIT, RUI_INIT_PRIMARY, or SLI_OPEN verbs. Each session must
use a different LU, but two or more sessions may use the same pool.

Two or more instances of the same LUA application can be run as different
processes, but they must use different LUs. This can be done either by providing a
mechanism for specifying the LU name at run time, or by using LU pools; if the
two processes specify the same pool, they will be allocated different LUs from that
pool.

Compiling and Linking the LUA Application

Windows Considerations

WINDOWS

This section summarizes processing considerations of which you must be aware
when developing LUA applications on a Windows client.

Multiple Sessions and Multiple Tasks
A single task may simultaneously use more than one LUA session, by issuing
multiple RUI_INIT or SLI_OPEN verbs. Each session must use a different LU, but
two or more sessions may use the same pool.

Two or more instances of the same LUA application can be run as different tasks,
but they must use different LUs. This can be done by using LU pools; the two
tasks can specify the same pool, and will be allocated different LUs from that pool.

Compiling and Linking LUA Programs
This section provides information about compiling and linking LUA programs on a
Windows client.

AIX or Linux Considerations

Chapter 2. Designing and Writing LUA Applications 41

Compiler Options for Structure Packing
The VCB structures for LUA verbs are not packed. Do not use compiler options
that change this packing method.

DWORD parameters are on DWORD boundaries, WORD parameters are on
WORD boundaries, and BYTE parameters are on BYTE boundaries.

Header File
The header file to be included in Windows LUA applications is named winlua.h.
This file is installed in the subdirectory \sdk for 32–bit applications, or \sdk64 for
64–bit applications, within the directory where you installed the Remote API Client
on Windows software.

Load-Time Linking
To link the program to LUA at load time, link the program to the winsli32.lib
library (for SLI) or winrui32.lib library (for RUI). This file is stored in the
subdirectory \sdk for 32–bit applications, or \sdk64 for 64–bit applications,

within the directory where you installed the Windows Client software

Run-Time Linking
To link the program to LUA at run-time, include the following calls in the
program:
v LoadLibrary to load the LUA dynamic link library winsli32.dll (for SLI) or

winrui32.dll (for RUI).
v GetProcAddress to specify each of the LUA entry points required (such as SLI)
v FreeLibrary when the library is no longer required.

Terminating Applications
If an application must close (for example, if it receives a WM_CLOSE message as a
result of an ALT F4 from a user), it should call the WinRUICleanup or
WinSLICleanup function before terminating. If it does not do this, then the
application is left in an indeterminate state, although as much cleanup as possible
is done when the Windows LUA software detects that the application has
terminated.

Writing Portable Applications
Communications Server's implementation of LUA is designed to be compatible
with the implementation provided by IBM's OS/2 Extended Edition. However,
there are a few differences between the implementations that are due to
fundamental operating system differences. These operating system differences are
indicated in the individual verb descriptions. In particular:
v The RUI_REINIT verb is an extension to the standard LUA interface

specification. It is not available on the Remote API Client on Windows, and may
not be available in other LUA implementations.

v Other LUA implementations generate certain additional return codes that are not
returned by the Communications Server implementation; they may also make
use of parameters that are reserved for Communications Server.

Windows Considerations

42 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

v OS/2 and Windows implementations use far pointers (far *) in all cases; AIX /
Linux implementations do not have a concept of far and near pointers, so the
word far must be omitted for AIX / Linux implementations.

v The asynchronous verb return feature is supported differently by different
operating systems. You may need to rewrite the sections of an LUA application
written for one operating system that relate to asynchronous verb returns if you
are porting the application to another operating system.

v Other LUA implementations may not support LU pools.

The following guidelines are provided for writing Communications Server LUA
applications so that they will be portable to other environments:
v Include the LUA header file without any path name prefix. This enables the

application to be used in an environment with a different file system. Use
include options on the compiler to locate the file (see “Compiling and Linking
the LUA Application” on page 41).

v Use the symbolic constant names for parameter values and return codes, not the
numeric values shown in the header file; this ensures that the correct value will
be used regardless of the way these values are stored in memory.

v When accessing SNA sense codes in a data buffer, use the symbolic constants
rather than the numeric values; this ensures that the byte storage order will be
correct for your particular system.

v Include a check for return codes other than those applicable to your current
operating system (for example using a “default” case in a switch statement), and
provide appropriate diagnostics.

v Ensure that any parameters shown as reserved are set to 0 (zero).
v Set the lua_verb_length parameter as described in Chapter 4, “RUI Verbs,” on

page 55 or Chapter 5, “SLI Verbs,” on page 99..

Writing Portable Applications

Chapter 2. Designing and Writing LUA Applications 43

Writing Portable Applications

44 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 3. LUA VCB Structure

This chapter contains details of the LUA verb control block structure used for all
LUA verbs.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX /
Linux operating system) or winlua.h (Windows operating system)for many
parameter values. For portability, use the symbolic constant and not the numeric
value when setting values for supplied parameters, or when testing values of
returned parameters. The file values_c.h also includes definitions of parameter
types such as AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

LUA Verb Control Block (VCB) Format
The verb control block consists of two parts:
v Common data structure, used for all verbs
v Specific data structure, used only for the following verbs:

– RUI_BID
– The extended version of RUI_INIT (in the AIX / Linux environment)
– SLI_BID
– SLI_OPEN
– SLI_SEND

The definition of some parts of the VCB structure, in particular the ordering of bit
fields, varies between different operating systems. For clarity, only one version of
the ordering is shown here, although both versions are defined in the header file.
When setting or testing values in bit fields, the application should access
individual bits by name, to avoid dependencies on the bit ordering, rather than
using bitwise AND or OR operations on complete bytes.

UNIX

To allow for these differences, the LUA header file contains the following
information:
v A #include statement for the file /usr/include/sna/svconfig.h (AIX) or

/opt/ibm/sna/include/svconfig.h (Linux).
v The type definition for bit fields in the LUA data structures. This definition

ensures that the data structures are stored in the correct format. The definition
depends on the setting of PUCHARQD, which is in the file svconfig.h.

Note: The LUA VCB contains many parameters marked as “reserved”; some of
these are used internally by the Communications Server software, and
others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters;

© Copyright IBM Corp. 1998, 2012 45

instead, it must set the entire contents of the VCB to zero to ensure that all
of these parameters are zero, before it sets other parameters that are used by
the verb. This ensures that Communications Server will not misinterpret any
of its internally-used parameters, and also that your application will
continue to work with future Communications Server versions in which
these parameters may be used to provide new functions.

To set the VCB contents to zero, use memset:

memset(vcb, 0, sizeof(vcb));

LUA_VERB_RECORD Data Structure
typedef struct
{

struct LUA_COMMON common;
struct LUA_SPECIFIC specific;

} LUA_VERB_RECORD;

Common Data Structure

UNIX

struct LUA_COMMON
{

AP_UINT16 lua_verb; /* Verb Code */
AP_UINT16 lua_verb_length; /* Length of Verb Record */
AP_UINT16 lua_prim_rc; /* Primary Return Code */
AP_UINT32 lua_sec_rc; /* Secondary Return Code */
AP_UINT16 lua_opcode; /* Verb Operation Code */
AP_UINT32 lua_correlator; /* User Correlation Field */
unsigned char lua_luname[8]; /* Local LU Name */
AP_UINT16 lua_extension_list_offset; /* Offset of DLL Extention List*/
AP_UINT16 lua_cobol_offset; /* Offset of Cobol Extension */
AP_UINT32 lua_sid; /* Session ID */
AP_UINT16 lua_max_length; /* Receive Buffer Length */
AP_UINT16 lua_data_length; /* Data Length */
char * lua_data_ptr; /* Data Buffer Pointer */
unsigned long lua_post_handle; /* Posting handle */

struct LUA_TH { /* LUA TH Fields */
BIT_FIELD_TYPE flags_fid : 4; /* Format Identification Type 2 */
BIT_FIELD_TYPE flags_mpf : 2; /* Segmenting Mapping Field */
BIT_FIELD_TYPE flags_odai : 1; /* OAF-DAF Assignor Indicator */
BIT_FIELD_TYPE flags_efi : 1; /* Expedited Flow Indicator */
BIT_FIELD_TYPE : 8; /* Reserved Field */
unsigned char daf; /* Destination Address Field */
unsigned char oaf; /* Originating Address Field */
unsigned char snf[2]; /* Sequence Number Field */
} lua_th;

struct LUA_RH { /* LUA RH Fields */
BIT_FIELD_TYPE rri : 1; /* Request-Response Indicator */
BIT_FIELD_TYPE ruc : 2; /* RU Category */
BIT_FIELD_TYPE : 1; /* Reserved Field */
BIT_FIELD_TYPE fi : 1; /* Format Indicator */
BIT_FIELD_TYPE sdi : 1; /* Sense Data Included Ind */
BIT_FIELD_TYPE bci : 1; /* Begin Chain Indicator */
BIT_FIELD_TYPE eci : 1; /* End Chain Indicator */

BIT_FIELD_TYPE dr1i : 1; /* DR 1 Indicator */
BIT_FIELD_TYPE lcci : 1; /* LCC Indicator */
BIT_FIELD_TYPE dr2i : 1; /* DR 2 Indicator */
BIT_FIELD_TYPE ri : 1; /* Response Indicator */
BIT_FIELD_TYPE : 2; /* Reserved Field */

LUA Verb Control Block (VCB) Format

46 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

BIT_FIELD_TYPE qri : 1; /* Queued Response Indicator */
BIT_FIELD_TYPE pi : 1; /* Pacing Indicator */

BIT_FIELD_TYPE bbi : 1; /* Begin Bracket Indicator */
BIT_FIELD_TYPE ebi : 1; /* End Bracket Indicator */
BIT_FIELD_TYPE cdi : 1; /* Change Direction Indicator */
BIT_FIELD_TYPE : 1; /* Reserved Field */
BIT_FIELD_TYPE csi : 1; /* Code Selection Indicator */
BIT_FIELD_TYPE edi : 1; /* Enciphered Data Indicator */
BIT_FIELD_TYPE pdi : 1; /* Padded Data Indicator */
BIT_FIELD_TYPE : 1; /* Reserved Field */
} lua_rh;

struct LUA_FLAG1 { /* LUA_FLAG1 */
BIT_FIELD_TYPE bid_enable : 1; /* Bid Enabled Indicator */
BIT_FIELD_TYPE reserv1 : 1; /* reserved */
BIT_FIELD_TYPE close_abend : 1; /* Close Immediate Flag */
BIT_FIELD_TYPE nowait : 1; /* Don’t Wait for Data Flag */
BIT_FIELD_TYPE sscp_exp : 1; /* SSCP expedited flow */
BIT_FIELD_TYPE sscp_norm : 1; /* SSCP normal flow */
BIT_FIELD_TYPE lu_exp : 1; /* LU expedited flow */
BIT_FIELD_TYPE lu_norm : 1; /* lu normal flow */
} lua_flag1;

unsigned char lua_message_type; /* sna message command type */

struct LUA_FLAG2 { /* LUA_FLAG2 */
BIT_FIELD_TYPE bid_enable : 1; /* Bid Enabled Indicator */
BIT_FIELD_TYPE async : 1; /* flags asynchronous verb */

completion */
BIT_FIELD_TYPE : 2; /* reserved */
BIT_FIELD_TYPE sscp_exp : 1; /* SSCP expedited flow */
BIT_FIELD_TYPE sscp_norm : 1; /* SSCP normal flow */
BIT_FIELD_TYPE lu_exp : 1; /* LU expedited flow */
BIT_FIELD_TYPE lu_norm : 1; /* lu normal flow */
} lua_flag2;

unsigned char lua_resv56[7]; /* Reserved Field */
unsigned char lua_encr_decr_option; /* Cryptography Option */

} ;

WINDOWS

struct LUA_COMMON
{

unsigned short lua_verb; /* Verb Code */
unsigned short lua_verb_length; /* Length of Verb Record */
unsigned short lua_prim_rc; /* Primary Return Code */
unsigned long lua_sec_rc; /* Secondary Return Code */
unsigned short lua_opcode; /* Verb Operation Code */
unsigned long lua_correlator; /* User Correlation Field */
unsigned char lua_luname[8]; /* Local LU Name */
unsigned short lua_extension_list_offset; /* Offset of DLL Extention List*/
unsigned short lua_cobol_offset; /* Offset of Cobol Extension */
unsigned long lua_sid; /* Session ID */
unsigned short lua_max_length; /* Receive Buffer Length */
unsigned short lua_data_length; /* Data Length */
char far *lua_data_ptr; /* Data Buffer Pointer */
unsigned long lua_post_handle; /* Posting handle */

struct LUA_TH { /* LUA TH Fields */
unsigned char flags_fid : 4; /* Format Identification Type 2 */
unsigned char flags_mpf : 2; /* Segmenting Mapping Field */
unsigned char flags_odai : 1; /* OAF-DAF Assignor Indicator */
unsigned char flags_efi : 1; /* Expedited Flow Indicator */
unsigned char : 8; /* Reserved Field */

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 47

unsigned char daf; /* Destination Address Field */
unsigned char oaf; /* Originating Address Field */
unsigned char snf[2]; /* Sequence Number Field */
} lua_th;

struct LUA_RH { /* LUA RH Fields */
unsigned char rri : 1; /* Request-Response Indicator */
unsigned char ruc : 2; /* RU Category */
unsigned char : 1; /* Reserved Field */
unsigned char fi : 1; /* Format Indicator */
unsigned char sdi : 1; /* Sense Data Included Ind */
unsigned char bci : 1; /* Begin Chain Indicator */
unsigned char eci : 1; /* End Chain Indicator */

unsigned char dr1i : 1; /* DR 1 Indicator */
unsigned char lcci : 1; /* LCC Indicator */
unsigned char dr2i : 1; /* DR 2 Indicator */
unsigned char ri : 1; /* Response Indicator */
unsigned char : 2; /* Reserved Field */
unsigned char qri : 1; /* Queued Response Indicator */
unsigned char pi : 1; /* Pacing Indicator */

unsigned char bbi : 1; /* Begin Bracket Indicator */
unsigned char ebi : 1; /* End Bracket Indicator */
unsigned char cdi : 1; /* Change Direction Indicator */
unsigned char : 1; /* Reserved Field */
unsigned char csi : 1; /* Code Selection Indicator */
unsigned char edi : 1; /* Enciphered Data Indicator */
unsigned char pdi : 1; /* Padded Data Indicator */
unsigned char : 1; /* Reserved Field */
} lua_rh;

struct LUA_FLAG1 { /* LUA_FLAG1 */
unsigned char bid_enable : 1; /* Bid Enabled Indicator */
unsigned char reserv1 : 1; /* reserved */
unsigned char close_abend : 1; /* Close Immediate Flag */
unsigned char nowait : 1; /* Don’t Wait for Data Flag */
unsigned char sscp_exp : 1; /* SSCP expedited flow */
unsigned char sscp_norm : 1; /* SSCP normal flow */
unsigned char lu_exp : 1; /* LU expedited flow */
unsigned char lu_norm : 1; /* lu normal flow */
} lua_flag1;

unsigned char lua_message_type; /* sna message command type */

struct LUA_FLAG2 { /* LUA_FLAG2 */
unsigned char bid_enable : 1; /* Bid Enabled Indicator */
unsigned char async : 1; /* flags asynchronous verb */

completion */
unsigned char : 2; /* reserved */
unsigned char sscp_exp : 1; /* SSCP expedited flow */
unsigned char sscp_norm : 1; /* SSCP normal flow */
unsigned char lu_exp : 1; /* LU expedited flow */
unsigned char lu_norm : 1; /* lu normal flow */
} lua_flag2;

unsigned char lua_resv56[7]; /* Reserved Field */
unsigned char lua_encr_decr_option; /* Cryptography Option */

} ;

The following list explains the fields in these data structures.

lua_verb
Identifies this as an LUA verb.

Possible values:

LUA Verb Control Block (VCB) Format

48 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_VERB_RUI
RUI verb.

LUA_VERB_SLI
SLI verb.

lua_verb_length
Length of the verb control block (VCB).

lua_prim_rc
Primary return code set by LUA.

lua_sec_rc
Secondary return code set by LUA.

lua_opcode
Verb operation code that identifies the LUA verb being issued.

lua_correlator
A four-byte correlator that you can use to correlate this verb with other
processing in your application. LUA does not use this parameter.

lua_luname
The LU name used by the LUA session (in ASCII). This can be an LU
name or an LU pool name; for more information, see “RUI_INIT” on page
61 or “SLI_OPEN” on page 112.

UNIX

For RUI_INIT_PRIMARY, this must match the dslu_name parameter of a
downstream LU configured for use with SNA Gateway (or a downstream
LU created implicitly by defining a downstream LU template).

lua_extension_list_offset
This field is reserved.

lua_cobol_offset
This field is reserved.

lua_sid The session ID of the LUA session on which this verb is issued.

lua_max_length
The length of the buffer supplied to RUI_READ, RUI_INIT_PRIMARY, or
SLI_RECEIVE to receive data, or the total length of a waiting RU returned
to RUI_BID.

lua_data_length
The length of the data to be sent, or the actual length of data received.

lua_data_ptr
A pointer to the data to be sent, or the data buffer to receive data.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 49

WINDOWS

If the VCB is used in an RUI or SLI function call, set this field to an event
handle. If the VCB is used in a WinRUI or WinSLI function call, this field is
reserved.

lua_th A data structure containing the TH (transmission header) of the message
sent or received, as follows:

lua_th.flags_fid
Format Identification type 2: 4 bits

lua_th.flags_mpf
Segmenting mapping field: 2 bits

lua_th.flags_odai
Origin Address Field-Destination Address Field (OAF-DAF)
Assignor Indicator

lua_th.flags_efi
Expedited Flow Indicator

lua_th.daf
DAF (Destination address field)

lua_th.oaf
OAF (Originating address field)

lua_th.snf
Sequence Number Field

lua_rh A data structure containing the RH (request/response header) of the
message sent or received, as follows:

lua_rh.rri
Request-Response Indicator

lua_rh.ruc
RU category: 2 bits

lua_rh.fi
Format Indicator

lua_rh.sdi
Sense Data Included Indicator

lua_rh.bci
Begin Chain Indicator

lua_rh.eci
End Chain Indicator

lua_rh.dr1i
Definite Response 1 Indicator

lua_rh.lcci
Length-Checked Compression Indicator

lua_rh.dr2i
Definite Response 2 Indicator

LUA Verb Control Block (VCB) Format

50 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_rh.ri
Exception Response Indicator (for a request), or Response Type
Indicator (for a response)

lua_rh.qri
Queued Response Indicator

lua_rh.pi
Pacing Indicator

lua_rh.bbi
Begin Bracket Indicator

lua_rh.ebi
End Bracket Indicator

lua_rh.cdi
Change Direction Indicator

lua_rh.csi
Code Selection Indicator

lua_rh.edi
Enciphered Data Indicator

lua_rh.pdi
Padded Data Indicator

lua_flag1
A data structure containing flags for messages supplied by the application,
as follows:

lua_flag1.bid_enable
Bid Enable Indicator

lua_flag1.close_abend
Close Immediate Indicator

lua_flag1.nowait
No Wait For Data flag

lua_flag1.sscp_exp
SSCP expedited flow

lua_flag1.sscp_norm
SSCP normal flow

lua_flag1.lu_exp
LU expedited flow

lua_flag1.lu_norm
LU normal flow

lua_message_type
The type of SNA message received by an RUI_READ or SLI_RECEIVE
verb (or indicated to an RUI_BID or SLI_BID verb)

lua_flag2
A data structure containing flags for messages returned by LUA, as
follows:

lua_flag2.bid_enable
Bid Enabled Indicator

lua_flag2.async
Asynchronous verb completion flag

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 51

lua_flag2.sscp_exp
SSCP expedited flow

lua_flag2.sscp_norm
SSCP normal flow

lua_flag2.lu_exp
LU expedited flow

lua_flag2.lu_norm
LU normal flow

lua_encr_decr_option
Cryptography option. For SLI, this parameter is reserved and must be set
to zero.

Specific Data Structure
The specificdata structure is included for the following verbs:
v RUI_BID
v Extended form of RUI_INIT
v SLI_BID
v SLI_OPEN
v SLI_SEND
union LUA_SPECIFIC
{
struct SLI_OPEN open;
unsigned char lua_sequence_number[2];
unsigned char lua_peek_data[12];
struct RUI_INIT init;
} ;

UNIX

struct SLI_OPEN
{

unsigned char lua_init_type; /* Type of Session Initiation */
unsigned char lua_session_type; /* How to process host UNBIND */
AP_UINT16 lua_wait; /* Secondary Retry Wait Time */

struct LUA_EXT_ENTRY
{

unsigned char lua_routine_type; /* Extension Routine Type */
unsigned long lua_routine_ptr; /* Ptr to Extension Routine */

} lua_open_extension[MAX_EXTENSIONS];

char reserved[93]; /* Padding */
unsigned char lua_ending_delim; /* Extension List Delimiter */

};

WINDOWS

struct SLI_OPEN
{

unsigned char lua_init_type; /* Type of Session Initiation */
unsigned char lua_session_type; /* How to process host UNBIND */
AP_UINT16 lua_wait; /* Secondary Retry Wait Time */

struct LUA_EXT_ENTRY
{

unsigned char lua_routine_type; /* Extension Routine Type */

LUA Verb Control Block (VCB) Format

52 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

unsigned char lua_module_name[9]; /* Extension DLL module name */
unsigned char lua_procedure_name[33]; /* Procedure name to call */

} lua_open_extension[MAX_EXTENSIONS];

char reserved[93]; /* Padding */
unsigned char lua_ending_delim; /* Extension List Delimiter */

};

struct RUI_INIT
{
unsigned char rui_init_format;
unsigned char lua_puname[8];
unsigned char lua_lunumber;
unsigned char wait_for_link;
};

For RUI_BID and SLI_BID, this data structure contains the following field:

lua_peek_data
Up to 12 bytes of the data waiting to be read.

UNIX

For the extended form of the RUI_INIT verb, this data structure contains the
following fields. For more information about the extended form of RUI_INIT, see
“RUI_INIT” on page 61.

rui_init_format
Reserved—this parameter must be set to 0 (zero).

lua_puname
The name of the local PU that owns the LU to be used for this session. The
PU name must be specified in the definition of an LS or of an internal PU
in the Communications Server configuration.

lua_lunumber
The LU number of the LU to be used for this session. This must match the
LU number of a type 0–3 LU that is configured for the PU name specified
by lua_puname.

wait_for_link
Normally, if the application issues RUI_INIT for an LU that cannot
currently be used because the underlying communications link is inactive,
the RUI_INIT verb fails. Set this parameter to 1 to override this default
behavior so that LUA waits for the link and LU to become active before
RUI_INIT completes, or 0 (zero) to use the default behavior.

WINDOWS

The extended form of the RUI_INIT verb does not apply to Windows. The
RUI_INIT data structure is not used.

LUA Verb Control Block (VCB) Format

Chapter 3. LUA VCB Structure 53

For SLI_OPEN, this data structure contains the following fields. See “SLI_OPEN”
on page 112 for detailed information about these parameters.

lua_init_type
Specifies how LUA initiates the session (whether the primary or secondary
is responsible for session initiation, and the sequence of SNA messages
required).

lua_session_type
Specifies how LUA should process an UNBIND type X'01' (normal):
whether this is a normal or dedicated session.

lua_wait
Retry timeout (in seconds) for secondary-initiated session startup.

lua_open_extension
Structure containing information about the application's SLI_OPEN
extension routines, if any.

lua_open_extension.lua_routine_type
Type of extension routine (BIND, SDT, or STSN).

UNIX

lua_open_extension.lua_routine_ptr
Pointer to the extension routine entry point.

WINDOWS

lua_open_extension.lua_module_name
Name of the DLL containing the extension module.

lua_open_extension.lua_procedure_name
Procedure name to call within the extension module DLL.

lua_ending_delim
The Communications Server SLI interface does not use this parameter; it is
provided for compatibility with applications originally written for other
SLI implementations.

For SLI_SEND, this data structure contains the following field.

lua_sequence_number
The sequence number of the RU that LUA uses to send the data (or of the
first RU, if the data requires a chain of RUs). This is stored in line format.

LUA Verb Control Block (VCB) Format

54 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 4. RUI Verbs

This chapter contains a description of each LUA RUI verb. The following
information is provided for each verb:
v Purpose of the verb.
v Parameters (VCB fields) supplied to and returned by LUA. The description of

each parameter includes information about the valid values for that parameter,
and any additional information necessary.

v Interaction with other verbs.
v Additional information describing the use of the verb.

For details of the Verb Control Block (VCB) used for all verbs, see Chapter 3, “LUA
VCB Structure,” on page 45.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX /
Linux operating system) or winlua.h (Windows operating system)for many
parameter values. For portability, use the symbolic constant and not the numeric
value when setting values for supplied parameters, or when testing values of
returned parameters. The file values_c.h also includes definitions of parameter
types such as AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

RUI_BID
The RUI_BID verb is used by the application to determine when a received
message is waiting to be read. This enables the application to determine what data,
if any, is available before issuing the RUI_READ verb.

When a message is available, the RUI_BID verb returns with details of the message
flow on which it was received, the message type, the TH and RH of the message,
and up to 12 bytes of message data.

The main difference between RUI_BID and RUI_READ is that RUI_BID enables the
application to check the data without removing it from the incoming message
queue, so it can be left and accessed at a later stage. The RUI_READ verb removes
the message from the queue, so once the application has read the data it must
process it.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_RUI_BID

© Copyright IBM Corp. 1998, 2012 55

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session (as returned on the RUI_INIT or
RUI_INIT_PRIMARY verb).

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous RUI_INIT or RUI_INIT_PRIMARY verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb completed successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

RUI_BID

56 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_max_length
The total number of bytes in the waiting message.

lua_data_length
The number of bytes of data returned in the lua_peek_data parameter; from
0 to 12.

lua_th The TH of the received message.

lua_rh The RH of the received message.

lua_message_type
Message type of the received message that will be one of the following:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

UNIX

The following values can be returned only to an RUI primary application
(one that started the session using RUI_INIT_PRIMARY):

LUA_MESSAGE_TYPE_INIT_SELF

LUA_MESSAGE_TYPE_NOTIFY

LUA_MESSAGE_TYPE_TERM_SELF

RUI_BID

Chapter 4. RUI Verbs 57

lua_flag2
One of the following flags will be set to 1 to indicate on which message
flow the data was received:

lua_flag2.sscp_exp

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

lua_peek_data
The first 12 bytes of the message data (or all of the message data if it is
shorter than 12 bytes)

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_BID_ALREADY_ENABLED
The RUI_BID verb was rejected because a previous RUI_BID verb
was already outstanding for this session. Only one RUI_BID can be
outstanding for each session at any time.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

RUI_BID

58 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION
An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed
successfully for the LU name specified on this verb, or the session
has failed.

Negative Response Sent to Host: The following return code indicates that
Communications Server detected an error in the data received from the host.
Instead of passing the received message to the application on an RUI_READ verb,
Communications Server discards the message (and the rest of the chain if it is in a
chain), and sends a negative response to the host. LUA informs the application on
a subsequent RUI_READ or RUI_BID verb that a negative response was sent.

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
The secondary return code contains the sense code sent to the host on the
negative response. See “SNA Information” on page 34, for information
about interpreting the sense code values that can be returned.

A 0 (zero) secondary return code indicates that, following a previous
RUI_WRITE of a negative response to a message in the middle of a chain,
Communications Server has now received and discarded all messages from
this chain.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the RUI_INIT or RUI_INIT_PRIMARY
verb for this session. Only the process that started a session can
issue verbs on that session.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

RUI_BID

Chapter 4. RUI Verbs 59

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated. Contact your System Administrator if
necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the session was started using RUI_INIT (not
RUI_INIT_PRIMARY) and the secondary return code is not
LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an
RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be
issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued
for the same LU.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

lua_prim_rc

RUI_BID

60 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
The RUI_INIT or RUI_INIT_PRIMARY verb must complete successfully before this
verb can be issued.

Only one RUI_BID for each session can be outstanding at any one time.

After the RUI_BID verb has completed successfully, it may be re-issued by setting
the lua_flag1.bid_enable parameter on a subsequent RUI_READ verb. If the verb is
to be re-issued in this way, the application program must not free or modify the
storage associated with the RUI_BID verb record.

If a message arrives from the host when an RUI_READ and an RUI_BID are both
outstanding, the RUI_READ completes and the RUI_BID is left in progress.

Usage and Restrictions
Each message that arrives will only be bid once. Once an RUI_BID verb has
indicated that data is waiting on a particular session flow, the application should
issue the RUI_READ verb to receive the data. Any subsequent RUI_BID will not
report data arriving on that session flow until the message which was bid has been
accepted by issuing an RUI_READ verb.

The following items describe the difference between the lua_max_length and
lua_data_length parameters returned on this verb:
v The lua_max_length parameter indicates the length of the waiting message. When

issuing the RUI_READ verb to accept the message, the application should
supply a data buffer of at least this size, to ensure that the message can be
received without truncation.

v The lua_data_length parameter indicates the length of data in lua_peek_data. If this
is less than 12, indicating that the waiting message is shorter than 12 bytes, the
remaining bytes in lua_peek_data are undefined and the application should not
attempt to examine them.

RUI_INIT
The RUI_INIT verb establishes the SSCP-LU session for a given LU, or establishes
an SSCP-LU session for the least recently used LU in a given LU pool.

UNIX

In general, the application specifies the name of an LU or an LU pool to be used
for the session. Communications Server also provides an extended form of
RUI_INIT, in which the application can identify the LU by specifying its PU name
and LU number instead of its LU name; this function is not supported by other
LUA implementations. The differences between the normal and extended versions
of RUI_INIT are indicated where appropriate in the parameter descriptions in this
section.

RUI_BID

Chapter 4. RUI Verbs 61

If the RUI application acts as an SNA primary for communications with a
downstream LU, it must use RUI_INIT_PRIMARY instead of RUI_INIT.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

UNIX

Set this to sizeof(LUA_VERB_RECORD).

For compatibility with other LUA implementations, the value
sizeof(LUA_COMMON) is also accepted if you are using the standard form of
RUI_INIT and not the extended form.

WINDOWS

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_INIT

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU or LU pool for which you want to start the
session. This must match the name of an LU of type 0–3, or of an LU pool,
configured for Communications Server. The name is used as follows:
v If the name is the name of an LU that is not in a pool, Communications

Server attempts to start the session using this LU. An application can
start multiple sessions by using multiple RUI_INIT verbs with a
different LU for each verb; it cannot start more than one session for the
same LU.

v If the name is the name of an LU pool, or the name of an LU within a
pool, Communications Server attempts to start the session using the
named LU, if it is available, or otherwise the least recently used LU from
the pool. An application can start multiple sessions using the same pool;
Communications Server will assign a different LU from the pool for each
session. The name of the actual LU used for the session is a returned
parameter on the RUI_INIT verb.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

RUI_INIT

62 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

UNIX

The application can use the extended form of RUI_INIT to identify the LU
by its PU name and LU number, instead of by its LU name. To do this, set
lua_luname to eight binary zeros, and specify the PU name and LU number
in the lua_puname and lua_lunumber parameters.

lua_post_handle

UNIX

A pointer to a callback routine. If the verb completes asynchronously, LUA
will call this routine to indicate completion of the verb.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_encr_decr_option
Session-level cryptography option. Communications Server accepts the
following two values:

0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the application
program.

Any other value will result in the return code LUA_ENCR_DECR_LOAD_ERROR.
(Values in the range 1 to 127, indicating user-defined encryption and
decryption routines, are supported by OS/2 Extended Edition's LUA
implementation but not by Communications Server.)

UNIX

The following parameters are used only if the lua_luname parameter is set to eight
binary zeros (the extended form of RUI_INIT). If lua_luname specifies the LU name
(the standard form of RUI_INIT), these parameters are reserved.

lua_puname
The name of the PU that owns the LU to be used for the session. The
name must be in ASCII, padded with spaces on the right (0x20). It must
match a PU name defined in the Communications Server configuration.

lua_lunumber
The LU number of the LU to be used for the session. This must match the
LU number of a type 0–3 LU configured to use the specified PU.

RUI_INIT

Chapter 4. RUI Verbs 63

An application can start multiple sessions by using multiple RUI_INIT
verbs with a different LU for each verb; it cannot start more than one
session for the same LU.

wait_for_link
Normally, if the application issues RUI_INIT for an LU that cannot
currently be used because the underlying communications link is inactive,
the RUI_INIT verb fails. Set this parameter to 1 to override this default
behavior so that LUA waits for the link and LU to become active before
RUI_INIT completes, or 0 (zero) to use the default behavior.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 if the verb
completed synchronously. (RUI_INIT will always complete asynchronously,
unless it returns an error such as LUA_PARAMETER_CHECK.)

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc
LUA_OK

lua_sid A session ID for the new session. This can be used by subsequent verbs to
identify this session.

lua_luname
The name of the LU used by the new session. If the LU name in the
request parameters specified an LU pool, or if the application used the
extended form of RUI_INIT and specified the PU name and LU number
instead of the LU name, Communications Server uses this parameter to
return the name of the actual LU assigned to the session. Subsequent verbs
must use this returned name (not the name specified in the request
parameters) to identify the session.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An RUI_TERM verb was issued before the RUI_INIT had
completed.

RUI_INIT

64 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_INVALID_LUNAME
The LU identified by the lua_luname parameter could not be found
on any active nodes.Check that the LU name or LU pool name is
defined in the configuration file and that the node on which it is
configured has been started.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

UNIX

The following parameters are used only if the lua_luname parameter is set
to eight binary zeros (the extended form of RUI_INIT). If lua_luname
specifies the LU name (the standard form of RUI_INIT), these parameters
are reserved.

LUA_INVALID_FORMAT
The reserved parameter rui_init_format was set to a nonzero value.

LUA_INVALID_PUNAME
The lua_puname parameter did not match any PU name defined in
the Communications Server configuration.

LUA_INVALID_LUNUMBER
The lua_lunumber parameter did not match the number of a type
0–3 LU defined to use the specified PU.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

RUI_INIT

Chapter 4. RUI Verbs 65

LUA_DUPLICATE_RUI_INIT
An RUI_INIT verb is currently being processed for this session.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_COMMAND_COUNT_ERROR
The verb specified the name of an LU pool, or the name of an LU
in a pool, but all LUs in the pool are in use.

LUA_ENCR_DECR_LOAD_ERROR
The verb specified a value for lua_encr_decr_option other than 0 or
128.

LUA_INVALID_PROCESS
The LU specified by the lua_luname parameter is in use by another
process.

LUA_LINK_NOT_STARTED
The connection to the host has not been started; none of the links it
could use are active.

(any other value)
Any other secondary return code here is an SNA sense code. For
information about interpreting the SNA sense codes that can be
returned, see “SNA Information” on page 34.

The following sense code values are specific to Communications Server,
and may indicate mismatches between the Communications Server
configuration and the host configuration:

0x10020000
The host has not sent an activate physical unit (ACTPU) for the PU
that owns the requested LU.

0x10110000
The host has not sent an ACTLU for the requested LU. This
generally indicates that the LU is not configured at the host.

0x10120000
The host has not sent an ACTLU for the requested LU. The host
supports DDDLU (Dynamic Definition of Dependent LUs), but
DDDLU processing for this LU has failed.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
This return code indicates one of the following conditions:
v The Remote API Client software was not started. Start the

Remote API Client before running your application.
v There are no active Communications Server nodes. The local

node that owns the requested LU, or a local node that owns one

RUI_INIT

66 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

or more LUs in the requested LU pool, must be started before
you can use LUA verbs. Contact your System Administrator if
necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this
LU can be reinitialized using an RUI_REINIT. If it is not
reinitialized, then an RUI_TERM must be issued before an
RUI_INIT can be issued for the same LU.

lua_sec_rc

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
This verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verb that can be
issued for this session is RUI_TERM (which will terminate a pending RUI_INIT).

All other verbs issued on this session must identify the session using one of the
following returned parameters from this verb:

RUI_INIT

Chapter 4. RUI Verbs 67

v The session ID, returned to the application in the lua_sid parameter
v The LU name, returned to the application in the lua_luname parameter

Usage and Restrictions
The RUI_INIT verb completes after an ACTLU is received from the host. If
necessary, the verb waits indefinitely. If an ACTLU has already been received prior
to the RUI_INIT verb, LUA sends a NOTIFY to the host to inform it that the LU is
ready for use. Neither the ACTLU or NOTIFY is visible to the LUA application.

Once the RUI_INIT verb has completed successfully, this session uses the LU for
which the session was started. No other LUA session (from this or any other
application) can use the LU until the RUI_TERM verb is issued.

If the RUI_INIT verb returns with an LUA_IN_PROGRESS primary return code then
the Session ID will be returned in the lua_sid parameter. This Session ID is the
same as that returned when the verb completes successfully and can be used with
the RUI_TERM verb to terminate an outstanding RUI_INIT verb.

RUI_INIT_PRIMARY

UNIX

The RUI_INIT_PRIMARY verb establishes the SSCP-LU session for an SNA
Primary application that is communicating with a downstream LU. (If the RUI
application acts as an SNA secondary and communicates with a host LU, it must
use RUI_INIT instead of RUI_INIT_PRIMARY.)

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_INIT_PRIMARY

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU for which you want to start the session. This
must match the name of a downstream LU configured for use with SNA
Gateway, or an LU created implicitly from a downstream LU template.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_max_length
The length of a buffer supplied to receive a copy of the ACTLU(+RSP) RU
received from the downstream PU. If the application does not need to

RUI_INIT

68 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

receive this information, it can specify a null pointer in the lua_data_ptr
parameter, in which case it does not need to provide a data buffer.

lua_data_ptr
A pointer to the buffer supplied to receive a copy of the ACTLU(+RSP) RU
received from the downstream PU. If the application does not need to
receive this information, it can specify a null pointer, and the information
will not be returned.

lua_post_handle
A pointer to a callback routine. If the verb completes asynchronously, LUA
will call this routine to indicate completion of the verb. For more
information, see Chapter 2, “Designing and Writing LUA Applications,” on
page 13.

lua_encr_decr_option
Session-level cryptography option. Communications Server accepts the
following two values:

0 Session-level cryptography is not used.

128 Encryption and decryption are performed by the application
program.

Any other value will result in the return code LUA_ENCR_DECR_LOAD_ERROR.
(Values in the range 1 to 127, indicating user-defined encryption and
decryption routines, are supported by OS/2 Extended Edition's LUA
implementation but not by Communications Server.)

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 if the verb
completed synchronously. (RUI_INIT_PRIMARY will always complete
asynchronously, unless it returns an error such as LUA_PARAMETER_CHECK.)

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc
LUA_OK

lua_sid A session ID for the new session. This can be used by subsequent verbs to
identify this session.

lua_data_length
The length of the ACTLU(+RSP) RU received from the downstream PU.
LUA places the data in the buffer specified by lua_data_ptr.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

RUI_INIT_PRIMARY

Chapter 4. RUI Verbs 69

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An RUI_TERM verb was issued before the RUI_INIT_PRIMARY
had completed.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_INVALID_LUNAME
The LU identified by the lua_luname parameter could not be found
on any active nodes.Check that the LU name is defined in the
configuration file and that the nodeon which it is configured has
been started.

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT_PRIMARY
An RUI_INIT_PRIMARY verb is currently being processed for this
session.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_ENCR_DECR_LOAD_ERROR
The verb specified a value for lua_encr_decr_option other than 0 or
128.

LUA_INVALID_PROCESS
The LU specified by the lua_luname parameter is in use by another
process.

RUI_INIT_PRIMARY

70 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

(any other value)
Any other secondary return code here is an SNA sense code. For
information about interpreting the SNA sense codes that can be
returned, see “SNA Information” on page 34.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
This return code indicates one of the following conditions:
v The Remote API Client software was not started. Start the

Remote API Client before running your application.
v There are no active Communications Server nodes. The local

node that owns the requested downstream LU must be started
before you can use LUA verbs. Contact your System
Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

An RUI_TERM must be issued before another
RUI_INIT_PRIMARY can be issued for the same LU.

lua_sec_rc

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
This verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verb that can be
issued for this session is RUI_TERM (which will terminate a pending
RUI_INIT_PRIMARY).

RUI_INIT_PRIMARY

Chapter 4. RUI Verbs 71

All other verbs issued on this session must identify the session using one of the
following parameters from this verb:
v The session ID, returned to the application in the lua_sid parameter
v The LU name, supplied bythe application in the lua_luname parameter

Usage and Restrictions
The RUI_INIT_PRIMARY verb completes after an ACTLU positive response is
received from the downstream LU. If necessary, the verb waits indefinitely. If the
application needs to check the contents of this ACTLU positive response, it can do
so by supplying a data buffer on RUI_INIT_PRIMARY (using the lua_max_length
and lua_data_ptr parameters) in which Communications Server returns the contents
of the received message.

Once the RUI_INIT_PRIMARY verb has completed successfully, this session uses
the LU for which the session was started. No other LUA session (from this or any
other application) can use the LU until the RUI_TERM verb is issued, or until an
LUA_SESSION_FAILURE primary return code is received.

If the RUI_INIT_PRIMARY verb returns with an LUA_IN_PROGRESS primary return
code then the Session ID will be returned in the lua_sid parameter. This Session ID
is the same as that returned when the verb completes successfully and can be used
with the RUI_TERM verb to terminate an outstanding RUI_INIT_PRIMARY verb.

RUI_PURGE
The RUI_PURGE verb cancels a previous RUI_READ. An RUI_READ may wait
indefinitely if it is sent without using the lua_flag1.nowait (immediate return)
option, and no data is available on the specified flow; RUI_PURGE forces the
waiting verb to return (with the primary return code LUA_CANCELLED).

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_PURGE

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the RUI_INIT or
RUI_INIT_PRIMARY verb.

RUI_INIT_PRIMARY

72 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous RUI_INIT or RUI_INIT_PRIMARY verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_ptr
A pointer to the RUI_READ VCB that is to be purged.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb completed successfully, the following parameters are returned:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

RUI_PURGE

Chapter 4. RUI Verbs 73

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter was set to 0 (zero).

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION
An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed
successfully for the LU name specified on this verb, or the session
has failed.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

RUI_PURGE

74 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the RUI_INIT or RUI_INIT_PRIMARY
verb for this session. Only the process that started a session can
issue verbs on that session.

LUA_NO_READ_TO_PURGE
Either the lua_data_ptr parameter did not contain a pointer to an
RUI_READ VCB, or the RUI_READ verb completed before the
RUI_PURGE verb was issued.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the session was started using RUI_INIT (not
RUI_INIT_PRIMARY) and the secondary return code is not
LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an
RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be
issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued
for the same LU.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

RUI_PURGE

Chapter 4. RUI Verbs 75

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

Interaction with Other Verbs
This verb can only be used when an RUI_READ has been issued and is pending
completion (that is, the primary return code is IN_PROGRESS).

RUI_READ
The RUI_READ verb receives data or status information sent from the host to the
application's LU.

You can specify a particular message flow (LU normal, LU expedited, SSCP
normal, or SSCP expedited) from which to read data, or you can specify more than
one message flow. You can have multiple RUI_READ verbs outstanding, provided
that no two of them specify the same flow.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_READ

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

RUI_PURGE

76 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the RUI_INIT or
RUI_INIT_PRIMARY verb.

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous RUI_INIT or RUI_INIT_PRIMARY verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_max_length
The length of the buffer supplied to receive the data.

lua_data_ptr
A pointer to the buffer supplied to receive the data.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_flag1 parameters
Set the lua_flag1.nowait parameter to 1 if you want the RUI_READ verb to
return as soon as possible whether or not data is available to be read, or
set it to 0 (zero) if you want the verb to wait for data before returning.

Note: Setting the lua_flag1.nowait parameter to 1 does not mean that the
verb will complete synchronously. The LUA library needs to
communicate with the local node to determine whether or not any
data is available, and this normally requires an asynchronous verb
return to avoid blocking the application. The parameter means that,
if there is no data available immediately, the asynchronous verb
return will occur as soon as possible to indicate this.

Set the lua_flag1.bid_enable parameter to 1 to re-enable the most recent
RUI_BID verb (equivalent to issuing RUI_BID again with exactly the same
parameters as before), or set it to 0 (zero) if you do not want to re-enable
RUI_BID. Re-enabling the previous RUI_BID re-uses the VCB originally
allocated for it, so this VCB must not have been freed or modified. (For
more information, see “Interaction with Other Verbs” on page 83.)

RUI_READ

Chapter 4. RUI Verbs 77

Set one or more of the following flags to 1 to indicate which message flow
to read data from:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available will be
returned. The order of priorities (highest first) is: SSCP expedited, LU
expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2
group will be set to indicate which flow the data was read from (see
“Returned Parameters”).

The Communications Server implementation of LUA does not return data
on the SSCP expedited flow. The application can set the sscp_exp flag, for
compatibility with other LUA implementations, but data will never be
returned on this flow.

Returned Parameters
LUA always returns the following parameters:

lua_flag2.async
This parameter is set to 1 if the verb completed asynchronously, or 0 if the
verb completed synchronously.

lua_flag2.bid_enable
This parameter is set to 1 if an RUI_BID was successfully re-enabled, or to
0 if it was not re-enabled.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution or Truncated Data
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

The following parameters are returned if the verb completes successfully. They are
also returned if the verb returns with truncated data because the lua_data_length
parameter supplied was too small (see “Other Conditions” on page 81).

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length
The length of the data received. LUA places the data in the buffer specified
by lua_data_ptr.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received
message.

lua_message_type
Message type of the received message that will be one of the following:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

RUI_READ

78 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_CLEAR

LUA_MESSAGE_TYPE_CRV

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SHUTD

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_SDT

LUA_MESSAGE_TYPE_STSN

LUA_MESSAGE_TYPE_UNBIND

UNIX

The following values can be returned only to an RUI primary application
(one that started the session using RUI_INIT_PRIMARY):

LUA_MESSAGE_TYPE_INIT_SELF

LUA_MESSAGE_TYPE_NOTIFY

LUA_MESSAGE_TYPE_TERM_SELF

lua_flag2 parameters
One of the following flags will be set to 1, to indicate on which message
flow the data was received:

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

The Communications Server implementation of LUA does not return data
on the SSCP expedited flow, and so the sscp_exp flag will never be set
(although it may be set by other LUA implementations).

RUI_READ

Chapter 4. RUI Verbs 79

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb or by an internal
error:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
Possible values are:

LUA_PURGED
This RUI_READ verb has been canceled by an RUI_PURGE verb.

LUA_TERMINATED
An RUI_TERM verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_BID_ALREADY_ENABLED
The lua_flag1.bid_enable parameter was set to re-enable an RUI_BID
verb, but the previous RUI_BID verb was still in progress.

LUA_DUPLICATE_READ_FLOW
The flow flags in the lua_flag1 group specified one or more session
flows for which an RUI_READ verb was already outstanding. Only
one RUI_READ at a time can be waiting on each session flow.

LUA_INVALID_FLOW
None of the lua_flag1 flow flags was set. At least one of these flags
must be set to 1 to indicate which flow or flows to read from.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_NO_PREVIOUS_BID_ENABLED
The lua_flag1.bid_enable parameter was set to re-enable an RUI_BID

RUI_READ

80 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

verb, but there was no previous RUI_BID verb that could be
enabled. (For more information, see “Interaction with Other Verbs”
on page 83.)

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION
An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed
successfully for the LU name specified on this verb, or the session
has failed.

Negative Response Sent to Host: The following primary return code indicates
one of the following two cases, which can be distinguished by the secondary
return code:
v Communications Server detected an error in the data received from the host.

Instead of passing the received message to the application on an RUI_READ
verb, Communications Server discards the message (and the rest of the chain if
it is in a chain), and sends a negative response to the host. LUA informs the
application on a subsequent RUI_READ or RUI_BID verb that a negative
response was sent.

v The LUA application previously sent a negative response to a message in the
middle of a chain. Communications Server has purged subsequent messages in
this chain, and is now reporting to the application that all messages from the
chain have been received and purged.

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
A nonzero secondary return code contains the sense code sent to the host
on the negative response. This indicates that Communications Server
detected an error in the host data, and sent a negative response to the host.
For information about interpreting the sense code values that can be
returned, see “SNA Information” on page 34.

A 0 (zero) secondary return code indicates that, following a previous
RUI_WRITE of a negative response to a message in the middle of a chain,
Communications Server has now received and discarded all messages from
this chain.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

RUI_READ

Chapter 4. RUI Verbs 81

lua_sec_rc
Possible values are:

LUA_DATA_TRUNCATED
The lua_data_length parameter was smaller than the actual length of
data received on the message. Only lua_data_length bytes of data
were returned to the verb; the remaining data was discarded.
Additional parameters are also returned if this secondary return
code is obtained; see “Successful Execution or Truncated Data” on
page 78.

LUA_NO_DATA
The lua_flag1.nowait parameter was set to indicate immediate return
without waiting for data, and no data was currently available on
the specified session flow or flows.

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the RUI_INIT or RUI_INIT_PRIMARY
verb for this session. Only the process that started a session can
issue verbs on that session.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the session was started using RUI_INIT (not
RUI_INIT_PRIMARY) and the secondary return code is not
LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an
RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be
issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued
for the same LU.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

RUI_READ

82 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

lua_prim_rc
LUA_COMM_SUBSYSTEM_NOT_LOADED

The Remote API Client software was not started, or the node was either
not started or not configured properly for LUA applications. Check the
Communications Server LUA configuration parameters and start the
Remote API Client and the node before running your application.

Interaction with Other Verbs
The RUI_INIT or RUI_INIT_PRIMARY verb must have completed successfully
before this verb can be issued.

While an existing RUI_READ is pending, you can issue another RUI_READ only if
it specifies a different session flow or flows from pending RUI_READs; you cannot
have more than one RUI_READ outstanding for the same session flow.

The lua_flag1.bid_enable parameter can only be used if the following are true:
v RUI_BID has already been issued successfully and has completed
v The storage allocated for the RUI_BID verb has not been freed or modified
v No other RUI_BID is pending

If you use this parameter to re-enable a previous RUI_BID, at least one of the
message flow flags on RUI_READ must still be set, to indicate the flow or flows on
which the application will accept data. If the first data to be received is on a flow
accepted by the RUI_READ verb, RUI_READ will return with this data, and
RUI_BID will not return. Otherwise, RUI_BID will return to indicate that there is
data to be read (since RUI_BID accepts data on all flows, it will always accept the
data if RUI_READ does not). The application must then issue another RUI_READ
on the appropriate flow to obtain the data.

RUI_READ

Chapter 4. RUI Verbs 83

If you want to use RUI_BID to handle data on all flows, rather than having the
data on a particular flow handled by RUI_READ in preference to RUI_BID, you
need to re-issue RUI_BID explicitly instead of using RUI_READ to re-enable the
previous RUI_BID.

Usage and Restrictions
If the data received is longer than the lua_max_length parameter, it will be
truncated; only lua_max_length bytes of data will be returned. The primary and
secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED will also be
returned.

Once a message has been read using the RUI_READ verb, it is removed from the
incoming message queue, and cannot be accessed again. (The RUI_BID verb may
be used as a non-destructive read; the application can use it to check the type of
data available, but the data remains on the incoming queue and need not be used
immediately.)

Pacing may be used on the primary-to-secondary half-session (this is specified in
the host configuration), in order to protect the LUA application from being flooded
with messages. If the LUA application is slow to read messages, Communications
Server delays the sending of pacing responses to the host in order to slow it down.

RUI_REINIT

UNIX

The RUI_REINIT verb re-establishes the SSCP-LU session after a session failure. It
is intended for use by an application that was using an LU from a pool, and needs
to ensure that it accesses the same LU in order to continue processing. (Normally,
an application recovers from a session failure by issuing RUI_TERM followed by a
second RUI_INIT; however, if the application was using an LU from a pool, the
second RUI_INIT will not necessarily get the same LU as the original one.)

This verb cannot be used to restart a Primary RUI session (one that was started
using RUI_INIT_PRIMARY).

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record. Set this to
sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_REINIT

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU that was being used by the failed session.

RUI_READ

84 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

This must match the name returned on the original RUI_INIT verb (not
necessarily the same as the name that was supplied to the verb).

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on
the previous RUI_INIT verb for the failed session.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle
A pointer to a callback routine. If the verb completes asynchronously, LUA
will call this routine to indicate completion of the verb. For more
information, see Chapter 2, “Designing and Writing LUA Applications,” on
page 13.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 if the verb
completed synchronously. (RUI_REINIT will always complete
asynchronously, unless it returns an error such as LUA_PARAMETER_CHECK.)

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameter:

lua_prim_rc
LUA_OK

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An RUI_TERM verb was issued before the RUI_REINIT had
completed.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

RUI_REINIT

Chapter 4. RUI Verbs 85

lua_sec_rc
Possible values are:

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_NO_RUI_SESSION
An RUI_INIT verb has not previously completed successfully for
the specified LU name or session ID.

LUA_DUPLICATE_RUI_INIT
An RUI_REINIT verb is currently being processed for this session.

LUA_REINIT_INVALID
Session failure has not occurred for this session.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS
The original RUI_INIT verb was issued from a different operating
system process.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
This return code indicates one of the following conditions:
v The Remote API Client software was not started. Start the

Remote API Client before running your application.
v There are no active Communications Server nodes. The local

node that owns the requested LU, or a local node that owns one
or more LUs in the requested LU pool, must be started before
you can use LUA verbs. Contact your System Administrator if
necessary.

lua_prim_rc

RUI_REINIT

86 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this
LU can be reinitialized using an RUI_REINIT. If it is not
reinitialized, then an RUI_TERM must be issued before an
RUI_INIT can be issued for the same LU.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
This verb can only be issued if a previous LUA verb has returned with primary
return code LUA_SESSION_FAILURE, and with a secondary return code other than
LUA_RUI_LOGIC_ERROR.

Until this verb has completed successfully, the only other LUA verb that can be
issued for this session is RUI_TERM (which will terminate a pending
RUI_REINIT).

RUI_REINIT

Chapter 4. RUI Verbs 87

Usage and Restrictions
The RUI_REINIT verb completes after an ACTLU is received from the host. If
necessary, the verb waits indefinitely. If an ACTLU has already been received prior
to the RUI_REINIT verb, the verb returns immediately with primary return code
LUA_OK.

Once the RUI_REINIT verb has completed successfully, this session uses the LU for
which the session was started. No other LUA session (from this or any other
application) can use the LU until the RUI_TERM verb is issued, or until an
LUA_SESSION_FAILURE primary return code is received.

If the secondary return code is not LUA_RUI_LOGIC_ERROR, then this LU can be
reinitialized using an RUI_REINIT. If it is not reinitialized, then an RUI_TERM
must be issued before an RUI_INIT can be issued for the same LU.

The session ID of the restarted session is the same as the session ID before the
failure. Unlike RUI_INIT, RUI_REINIT does not return this session ID; the
application should either use the session ID that was returned to the original
RUI_INIT verb, or access the session using its LU name.

RUI_TERM
The RUI_TERM verb ends both the LU session and the SSCP session for a given
LU.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_TERM

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the RUI_INIT or
RUI_INIT_PRIMARY verb (or the LU name that was specified on an
outstanding RUI_INIT, RUI_INIT_PRIMARY, or RUI_REINIT verb).

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

RUI_REINIT

88 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_sid The session ID of the session. This must match a session ID returned on a
previous RUI_INIT or RUI_INIT_PRIMARY verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 if the verb
completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

RUI_TERM

Chapter 4. RUI Verbs 89

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_NO_RUI_SESSION
Either there is no LUA session with the LU name specified on this
verb, or the session has failed.

If the RUI_TERM verb was issued to cancel an outstanding
RUI_INIT, RUI_INIT_PRIMARY, or RUI_REINIT verb, using the
lua_luname parameter supplied to the outstanding verb, this return
code may indicate that the RUI_INIT, RUI_INIT_PRIMARY, or
RUI_REINIT completed before this verb was processed. The verb
may have completed unsuccessfully (and so there is no session), or
RUI_INIT may have completed successfully using a different LU
from the pool specified by lua_luname (and so there is no session
for the specified LU name).

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_COMMAND_COUNT_ERROR
An RUI_TERM was already pending when the verb was issued.

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the RUI_INIT or RUI_INIT_PRIMARY
verb for this session. Only the process that started a session can
issue verbs on that session.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

RUI_TERM

90 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

RUI_TERM

Chapter 4. RUI Verbs 91

Interaction with Other Verbs
This verb may be issued at any time after the RUI_INIT, RUI_INIT_PRIMARY, or
RUI_REINIT verb has been issued (whether or not it has completed).

If any other LUA verb is pending when RUI_TERM is issued, no further
processing on the pending verb will take place, and it will return with a primary
return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.

UNIX

If the session was started using RUI_INIT_PRIMARY, Communications Server
terminates the session by sending DACTLU to the downstream LU. RUI_TERM
does not wait for the DACTLU response before returning. The application can
reissue RUI_INIT_PRIMARY as soon as RUI_TERM has finished, to start a new
session with the downstream LU; however, Communications Server cannot process
this RUI_INIT_PRIMARY until it has received the DACTLU response, and so the
RUI_INIT_PRIMARY may take some time to complete.

RUI_WRITE
The RUI_WRITE verb sends an SNA request or response unit from the LUA
application to the host, over either the LU session or the SSCP session.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_RUI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_COMMON).

lua_opcode
LUA_OPCODE_RUI_WRITE

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the RUI_INIT or
RUI_INIT_PRIMARY verb.

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

RUI_TERM

92 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_sid The session ID of the session. This must match a session ID returned on a
previous RUI_INIT or RUI_INIT_PRIMARY verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_length
The length of the supplied data. When sending data on the LU normal
flow, the maximum length is as specified in the BIND received from the
host; for all other flows the maximum length is 256 bytes.

When sending a positive response, this parameter is normally set to 0
(zero). LUA will complete the response based on the supplied sequence
number. In the case of a positive response to a BIND or STSN, an extended
response is allowed, so a nonzero value may be used.

When sending a negative response, set this parameter to the length of the
SNA sense code (four bytes), which is supplied in the data buffer.

lua_data_ptr
A pointer to the buffer containing the supplied data.

For a request, or a positive response that requires data, the buffer should
contain the entire RU. The length of the RU must be specified in
lua_data_length.

For a negative response, the buffer should contain the SNA sense code.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an RUI function call, set this field to an event handle.
If the VCB is used in a WinRUI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_th.snf
Required only when sending a response. The sequence number of the
request to which this is the response.

lua_rh When sending a request, most of the lua_rh bits must be set to correspond
to the RH (request header) of the message to be sent. Do not set lua_rh.pi
and lua_rh.qri; these will be set by LUA.

When sending a response, only the following two lua_rh bits are used. The
others must be 0 (zero). The lua_rh bits are:

lua_rh.rri
Set to 1 to indicate a response

lua_rh.ri
Set to 0 for a positive response, or 1 for a negative response

RUI_WRITE

Chapter 4. RUI Verbs 93

lua_flag1 parameters
Set one of the following flags to 1 to indicate which message flow the data
is to be sent on:

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

One and only one of the flags must be set to 1. Communications Server
does not allow applications to send data on the SSCP expedited flow (the
lua_flag1.sscp_exp flag).

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by
LUA. You may need to save the value of lua_th.snf (the sequence number)
for correlation with responses from the host.

lua_rh The completed RH of the message written, including the fields filled in by
LUA.

lua_flag2 parameters
One of the following flags will be set to 1 to indicate which message flow
the data was sent on:

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

The Communications Server implementation of LUA does not allow
applications to send data on the SSCP expedited flow, and so will never set
the sscp_exp flag (although other LUA implementations may set it).

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

RUI_WRITE

94 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
The verb was canceled because an RUI_TERM verb was issued for
this session.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_DUPLICATE_WRITE_FLOW
An RUI_WRITE was already outstanding for the session flow
specified on this verb (the session flow is specified by setting one
of the lua_flag1 flow flags to 1). Only one RUI_WRITE at a time can
be outstanding on each session flow.

LUA_INVALID_FLOW
The lua_flag1.sscp_exp flow flag was set, indicating that the message
should be sent on the SSCP expedited flow. Communications
Server does not allow applications to send data on this flow.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_MULTIPLE_WRITE_FLOWS
More than one of the lua_flag1 flow flags was set to 1. One and
only one of these flags must be set to 1, to indicate which session
flow the data is to be sent on.

LUA_REQUIRED_FIELD_MISSING
This return code indicates one of the following cases:
v None of the lua_flag1 flow flags was set. One and only one of

these flags must be set to 1.
v The RUI_WRITE verb was used to send a response, and the

response required more data than was supplied.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

RUI_WRITE

Chapter 4. RUI Verbs 95

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_MODE_INCONSISTENCY
The SNA message sent on the RUI_WRITE was not valid at this
time. This is caused by trying to send data on the LU session
before the session is bound. Check the sequence of SNA messages
sent.

LUA_NO_RUI_SESSION
An RUI_INIT or RUI_INIT_PRIMARY verb has not yet completed
successfully for the LU name specified on this verb, or the session
has failed.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_FUNCTION_NOT_SUPPORTED
This return code indicates one of the following cases:
v The lua_rh.fi bit (Format Indicator) was set to 1, but the first byte

of the supplied RU was not a recognized request code.
v The lua_rh.ruc parameter (RU category) specified the Network

Control (NC) category; Communications Server does not allow
applications to send requests in this category.

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the RUI_INIT or RUI_INIT_PRIMARY
verb for this session. Only the process that started a session can
issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS
The application used RUI_WRITE to send a positive response to a
BIND message received from the host. However, the
Communications Server node cannot accept the BIND parameters
as specified, and has sent a negative response to the host. For more
information about the BIND profiles accepted by Communications
Server, see “SNA Information” on page 34.

LUA_RSP_CORRELATION_ERROR
When using RUI_WRITE to send a response, the lua_th.snf
parameter (which indicates the sequence number of the received
message being responded to) did not contain a valid value.

RUI_WRITE

96 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_RU_LENGTH_ERROR
The lua_data_length parameter contained a value that was not valid.
When sending data on the LU normal flow, the maximum length is
as specified in the BIND received from the host; for all other flows
the maximum length is 256 bytes.

(any other value)
Any other secondary return code here is an SNA sense code
indicating that the supplied SNA data was not valid or could not
be sent. For information about interpreting the SNA sense codes
that can be returned, see “SNA Information” on page 34.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed.

If the session was started using RUI_INIT (not
RUI_INIT_PRIMARY) and the secondary return code is not
LUA_RUI_LOGIC_ERROR, then this LU can be reinitialized using an
RUI_REINIT. If it is not reinitialized, then an RUI_TERM must be
issued before an RUI_INIT or RUI_INIT_PRIMARY can be issued
for the same LU.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

RUI_WRITE

Chapter 4. RUI Verbs 97

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

Interaction with Other Verbs
The RUI_INIT or RUI_INIT_PRIMARY verb must be issued successfully before this
verb can be issued.

While an existing RUI_WRITE is pending, you can issue a second RUI_WRITE
only if it specifies a different session flow from the pending RUI_WRITE; that is,
you cannot have more than one RUI_WRITE outstanding for the same session
flow.

The RUI_WRITE verb can be issued on the SSCP normal flow at any time after a
successful RUI_INIT or RUI_INIT_PRIMARY verb. RUI_WRITE verbs on the LU
expedited or LU normal flows are permitted only after a BIND has been received,
and must abide by the protocols specified on the BIND.

Usage and Restrictions
Successful completion of RUI_WRITE indicates that the message was queued
successfully to the data link; it does not necessarily indicate that the message was
sent successfully, or that the host accepted it.

Pacing may be used on the secondary-to-primary half-session (this is specified on
the BIND), in order to prevent the LUA application from sending more data than
the Communications Server LU or the host LU can handle. If this is the case, an
RUI_WRITE on the LU normal flow may be delayed by LUA and may take some
time to complete.

RUI_WRITE

98 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 5. SLI Verbs

This chapter contains a description of each LUA SLI verb. The following
information is provided for each verb:
v Purpose of the verb.
v Parameters (VCB fields) supplied to and returned by LUA. The description of

each parameter includes information about the valid values for that parameter,
and any additional information necessary.

v Interaction with other verbs.
v Additional information describing the use of the verb.

For details of the Verb Control Block (VCB) used for all verbs, see Chapter 3, “LUA
VCB Structure,” on page 45.

Symbolic constants are defined in the header files lua_c.h and values_c.h (AIX /
Linux operating system) or winlua.h (Windows operating system)for many
parameter values. For portability, use the symbolic constant and not the numeric
value when setting values for supplied parameters, or when testing values of
returned parameters. The file values_c.h also includes definitions of parameter
types such as AP_UINT16 that are used in the LUA VCBs.

Parameters marked as “reserved” should always be set to 0 (zero).

SLI_BID
The SLI_BID verb is used by the application to determine when a received
message is waiting to be read. This enables the application to determine what data,
if any, is available before issuing the SLI_RECEIVE verb.

When a message is available, the SLI_BID verb returns with details of the message
flow on which it was received, the message type, the TH and RH of the message,
and up to 12 bytes of message data.

The main difference between SLI_BID and SLI_RECEIVE is that SLI_BID enables
the application to check the data without removing it from the incoming message
queue, so it can be left and accessed at a later stage. The SLI_RECEIVE verb
removes the message from the queue, so once the application has read the data it
must process it.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_BID

© Copyright IBM Corp. 1998, 2012 99

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session (as returned on the SLI_OPEN verb).

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous SLI_OPEN verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb completed successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

SLI_BID

100 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_data_length
The number of bytes of data returned in the lua_peek_data parameter; from
0 to 12.

lua_th The TH of the received message.

lua_rh The RH of the received message.

lua_message_type
Message type of the received message, which is one of the following:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIND

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

LUA_MESSAGE_TYPE_STSN

The SLI uses the application's LUA interface extension routines to receive
and respond to the BIND and STSN requests.

lua_flag2
One of the following flags will be set to 1 to indicate on which message
flow the data was received:

lua_flag2.sscp_exp

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

lua_peek_data
The first 12 bytes of the message data (or all of the message data if it is
shorter than 12 bytes)

If lua_rh.rri is off (request unit) and lua_rh.sdi is on (sense data included),
this indicates that LUA has converted a request unit sent by the host into
an exception request (EXR). In this case, bytes 0–3 of lua_peek_data contain
the sense data associated with the exception, and bytes 4–6 contain up to
the first 3 bytes of the original request unit.

SLI_BID

Chapter 5. SLI Verbs 101

Successful Execution: Status Information
If the verb returned LUA status information instead of data, LUA returns the
following parameters:

lua_prim_rc
LUA_STATUS

lua_sec_rc

LUA_READY
The SLI session is now ready to process additional commands. This
status is used after a previous LUA_NOT_READY status was reported,
or after an SLI_CLOSE verb completed with lua_prim_rc set to
LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or
RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY
The SLI session has been temporarily suspended for one of the
following reasons:
v A CLEAR command was received. The session resumes when an

SDT command is received.
v An UNBIND command type X'02' (BIND forthcoming) was

received. The session is suspended until a BIND, optional CRV
and STSN, and SDT commands are received; it resumes after the
SDT. Any user extension routines that were supplied by the
original SLI_OPEN verb will be called again.

v An UNBIND command type X'01' (normal) was received, and
the SLI_OPEN verb for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED. The session is suspended until a
BIND, optional CRV and STSN, and SDT commands are
received; it resumes after the SDT. Any user extension routines
that were supplied by the original SLI_OPEN verb will be called
again.

The application should issue another SLI_BID or SLI_RECEIVE to
receive the READY status when the session resumes. It can continue
to issue SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow
data even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE
The application issued SLI_OPEN with type
LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has
now completed. The application can now issue SLI_SEND and
SLI_RECEIVE verbs for SSCP normal-flow data.

LUA_SESSION_END_REQUESTED
The host has sent a SHUTD command, requesting the application
to shut down the session. The application should issue SLI_CLOSE
as soon as it is ready to close the session.

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

SLI_BID

102 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An SLI_CLOSE verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_INVALID_LUNAME
The LU identified by the lua_luname parameter could not be found
on any active nodes.Check that the LU name or LU pool name is
defined in the configuration file and that the node on which it is
configured has been started.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_NO_SLI_SESSION
An SLI_OPEN verb has not yet completed successfully for the LU
specified on this verb, or the session has failed.

LUA_SLI_BID_PENDING
The SLI_BID verb was rejected because a previous SLI_BID verb

SLI_BID

Chapter 5. SLI Verbs 103

was already outstanding for this session. Only one SLI_BID can be
outstanding for each session at any time.

Negative Response Sent to Host: The following return code indicates that
Communications Server detected an error in the data received from the host.
Instead of passing the received message to the application on an SLI_RECEIVE
verb, Communications Server discards the message (and the rest of the chain if it is
in a chain), and sends a negative response to the host. LUA informs the application
on a subsequent SLI_RECEIVE or SLI_BID verb that a negative response was sent.

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
The secondary return code contains the sense code sent to the host on the
negative response. See “SNA Information” on page 34, for information
about interpreting the sense code values that can be returned.

A 0 (zero) secondary return code indicates that, following a previous
SLI_SEND of a negative response to a message in the middle of a chain,
Communications Server has now received and discarded all messages from
this chain.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the SLI_OPEN verb for this session. Only
the process that started a session can issue verbs on that session.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated. Contact your System Administrator if
necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND
This return code indicates that the host sent an UNBIND command

SLI_BID

104 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

to end the session. This value can occur only if the SLI_OPEN verb
for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED.

LUA_RUI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

WINDOWS

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
The SLI_OPEN verb must complete successfully before this verb can be issued.

Only one SLI_BID for each session can be outstanding at any one time.

After the SLI_BID verb has completed successfully, it may be re-issued by setting
the lua_flag1.bid_enable parameter on a subsequent SLI_RECEIVE verb. If the verb is
to be re-issued in this way, the application program must not free or modify the
storage associated with the SLI_BID verb record.

If a message arrives from the host when an SLI_RECEIVE and an SLI_BID are both
outstanding, the SLI_RECEIVE completes and the SLI_BID is left in progress.

Usage and Restrictions
Each message that arrives will only be bid once. Once an SLI_BID verb has
indicated that data is waiting on a particular session flow, the application should
issue the SLI_RECEIVE verb to receive the data. Any subsequent SLI_BID will not

SLI_BID

Chapter 5. SLI Verbs 105

report data arriving on that session flow until the message which was bid has been
accepted by issuing an SLI_RECEIVE verb.

If there is data available on more than one session flow, the data on the
highest-priority flow will be returned to the application. The flow priorities are as
follows (highest to lowest):
v SSCP expedited
v LU expedited
v SSCP normal
v LU normal

Once a message has been read using the SLI_RECEIVE verb, it is removed from
the incoming message queue, and cannot be accessed again. The application can
use SLI_BID as a non-destructive read to check the type of data available and
determine how to process it, and then issue a subsequent SLI_RECEIVE to collect
the data. However, if it issues the SLI_RECEIVE with multiple lua_flag1 flags set to
accept data on more than one flow, it may receive a different message from the one
identified in the SLI_BID, if data arrived on a higher-priority flow between the
SLI_BID and SLI_RECEIVE verbs. To ensure that it receives the same message that
was identified in the SLI_BID, it should set the lua_flag1 flags on SLI_RECEIVE to
accept data only on the flow identified in the SLI_BID response.

The lua_data_length parameter indicates the length of data in lua_peek_data. If this is
less than 12, indicating that the waiting message is shorter than 12 bytes, the
remaining bytes in lua_peek_data are undefined and the application should not
attempt to examine them.

SLI_CLOSE
The SLI_CLOSE verb ends both the LU session and the SSCP session for a given
LU.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_CLOSE

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the SLI_OPEN verb (or the
LU name that was specified on an outstanding SLI_OPEN verb).

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

SLI_BID

106 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous SLI_OPEN verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

lua_flag1 parameters
Set the lua_flag1.close_abend parameter to 1 if you want the session to be
closed immediately, or set it to 0 (zero) if you want the SLI to go through
the normal exchange of SNA messages with the host to close the session
gracefully. For more details of normal or abend close processing, see
“Usage and Restrictions” on page 111.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

SLI_CLOSE

Chapter 5. SLI Verbs 107

lua_sec_rc
Possible values are:

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_INVALID_LUNAME
The LU identified by the lua_luname parameter could not be found
on any active nodes.Check that the LU name or LU pool name is
defined in the configuration file and that the node on which it is
configured has been started.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_CLOSE_PENDING
The application issued SLI_CLOSE (normal) when an SLI_CLOSE
(either normal or abend) was already in progress, or issued
SLI_CLOSE (abend) when an SLI_CLOSE (abend) was already in
progress. A second SLI_CLOSE is valid only if it is an an
SLI_CLOSE (abend) following an earlier SLI_CLOSE (normal).

LUA_NO_SLI_SESSION
Either there is no LUA session with the LU name specified on this
verb, or the session has failed.

If the SLI_CLOSE verb was issued to cancel an outstanding
SLI_OPEN verb, using the lua_luname parameter supplied to the
outstanding verb, this return code may indicate that the SLI_OPEN
completed before this verb was processed. The verb may have
completed unsuccessfully (and so there is no session), or
SLI_OPEN may have completed successfully using a different LU
from the pool specified by lua_luname (and so there is no session
for the specified LU name).

SLI_CLOSE

108 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by a message sent from the host:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
Possible values are:

LUA_RECEIVED_UNBIND_HOLD
This SLI_CLOSE verb has been canceled by an UNBIND type 0x02
(UNBIND with BIND forthcoming) from the host. The session is
not closed; the application should issue SLI_BID or SLI_RECEIVE
to get status information. Any user extension routines specified by
the application on the SLI_OPEN verb will be called again when
the host sends the new BIND.

LUA_RECEIVED_UNBIND_NORMAL
This SLI_CLOSE verb has been canceled by an UNBIND type 0x01
(normal UNBIND) from the host, and the lua_session_type
parameter on the SLI_OPEN that started the session was set to
LUA_SESSION_TYPE_DEDICATED. The session is not closed; the
application should issue SLI_BID or SLI_RECEIVE to get status
information. Any user extension routines specified by the
application on the SLI_OPEN verb will be called again when the
host sends the new BIND. If the application wants to end the
session without waiting for a new BIND, it should issue
SLI_CLOSE (abend).

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the SLI_OPEN verb for this session. Only
the process that started a session can issue verbs on that session.

LUA_NAU_INOPERATIVE
A required SNA component (such as the LUA LU) is not active or
is in an abnormal state.

LUA_NO_SESSION
The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

The following return codes indicate that the verb did not complete successfully for
other reasons:

SLI_CLOSE

Chapter 5. SLI Verbs 109

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_NEGATIVE_RSP_CHASE
This return code indicates that the LUA session has been closed
because SLI received a negative response to a CHASE command.

LUA_NEGATIVE_RSP_SHUTD
This return code indicates that the LUA session has been closed
because SLI received a negative response to a SHUTD command.

LUA_NEGATIVE_RSP_RSHUTD
This return code indicates that the LUA session has been closed
because SLI received a negative response to an RSHUTD
command.

LUA_RECEIVED_UNBIND
This return code indicates that the host sent an UNBIND command
to end the session. This value can occur only if the SLI_OPEN verb
for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED.

LUA_UNEXPECTED_SNA_SEQUENCE
This return code indicates that the LUA session has been closed
because SLI received an unexpected SNA message from the host.

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

SLI_CLOSE

110 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

Interaction with Other Verbs
This verb may be issued at any time after the SLI_OPEN verb has been issued. If
SLI_OPEN has not yet completed and the application wants to cancel it, it should
do so by issuing SLI_CLOSE with lua_flag1.close_abend set to 1 (indicating an
abnormal close).

While an SLI_CLOSE (normal) is pending, the application can issue an SLI_CLOSE
(abend) if it determines that it needs to end the session quickly without waiting for
normal close processing.

If any other LUA verb is pending when SLI_CLOSE is issued, no further
processing on the pending verb will take place, and it will return with a primary
return code of LUA_CANCELLED.

After this verb has completed, no other LUA verb can be issued for this session.
The application can issue SLI_OPEN for the same LU or a different LU, to start a
new session.

Usage and Restrictions
Session close processing may be initiated either by the host (primary-initiated
close) or by the LUA application (secondary-initiated close), as follows. In both
cases the application normally sets lua_flag1.close_abend to 0 (zero), indicating a
normal close in which LUA and the host exchange the usual sequence of messages
to end the session.

Primary-initiated close
The host initiates close processing by sending a SHUTD command, which
is returned to the application as a status value of
LUA_SESSION_END_REQUESTED on an SLI_BID or SLI_RECEIVE verb.

When the application is ready to close the session, it responds by issuing
SLI_CLOSE. This results in the following sequence of messages between
LUA and the host.
v LUA sends CHASE to the host and receives the response.
v LUA sends Shutdown Complete (SHUTC) to the host and receives the

response.
v Optionally, the host sends CLEAR; LUA receives this and sends the

response.
v The host sends UNBIND; LUA receives this and sends the response.
v LUA stops the RUI session, and the SLI_CLOSE verb returns.

Secondary-initiated close
The application initiates close processing by issuing SLI_CLOSE. This
results in the following sequence of messages between LUA and the host.
v LUA sends RSHUTD to the host and receives the response.

SLI_CLOSE

Chapter 5. SLI Verbs 111

v Optionally, the host sends CLEAR; LUA receives this and sends the
response.

v The host sends UNBIND; LUA receives this and sends the response.
v LUA stops the RUI session, and the SLI_CLOSE verb returns.

While an SLI_CLOSE (normal) is in progress, the host may interrupt it by sending
one of the following messages:
v UNBIND type 0x02 (UNBIND with BIND forthcoming)
v UNBIND type 0x01 (normal UNBIND), if the lua_session_type parameter on the

SLI_OPEN that started the session was set to LUA_SESSION_TYPE_DEDICATED

In either of these cases, the SLI_CLOSE verb returns with the primary return code
CANCELLED. The session is not closed; the application should issue SLI_BID or
SLI_RECEIVE to get status information. Any user extension routines specified by
the application on the SLI_OPEN verb will be called again when the host sends the
new BIND.

If the application needs to end the session quickly without waiting for the usual
message sequence, or to close a dedicated session without waiting for a new BIND
after the host has send UNBIND (normal), it does this by issuing SLI_CLOSE with
lua_flag1.close_abend set to 1. This ends the SLI session; LUA will do all the required
cleanup processing to inform the host that the session has ended.

Before issuing SLI_CLOSE (normal), with lua_flag1.close_abend set to 0 (zero), the
application should ensure that it has received all outstanding messages from the
host and sent all the required responses. If a response is required and has not been
sent, LUA automatically changes the close type and performs CLOSE (abend)
processing as above.

SLI_OPEN
The SLI_OPEN verb establishes the SNA session for a given LU, or for the least
recently used LU in a given LU pool.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_OPEN

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU or LU pool for which you want to start the
session. This must match the name of an LU of type 0–3, or of an LU pool,
configured for Communications Server. The name is used as follows:

SLI_CLOSE

112 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

v If the name is the name of an LU that is not in a pool, Communications
Server attempts to start the session using this LU. An application can
start multiple sessions by using multiple SLI_OPEN verbs with a
different LU for each verb; it cannot start more than one session for the
same LU.

v If the name is the name of an LU pool, or the name of an LU within a
pool, Communications Server attempts to start the session using the
named LU, if it is available, or otherwise the least recently used LU from
the pool. An application can start multiple sessions using the same pool;
Communications Server will assign a different LU from the pool for each
session. The name of the actual LU used for the session is a returned
parameter on the SLI_OPEN verb.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_data_length
The length of the unformatted LOGON or INITSELF data supplied in the
lua_data_ptr parameter, or zero if no data is to be supplied.

lua_data_ptr
A pointer to the message, if any, that must be sent to the host to start the
session. This depends on the lua_init_type parameter, as follows.
v If lua_init_type is LUA_INIT_TYPE_SEC_IS, the application must provide an

INITSELF request unit containing the required user information such as
the mode name and PLU name.

v If lua_init_type is LUA_INIT_TYPE_SEC_LOG, the application must provide
an unformatted LOGON message to be sent on the SSCP normal flow.

v If lua_init_type is LUA_INIT_TYPE_PRIM or LUA_INIT_TYPE_PRIM_SSCP, this
parameter is not used and the application must supply a null pointer.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously. (If the verb fails LUA's initial checks
and the SLI entry point returns zero, LUA will not call this routine.)

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_encr_decr_option
This parameter is reserved and must be set to zero.

lua_init_type
Specifies how LUA should initiate the session. Possible values are:

SLI_OPEN

Chapter 5. SLI Verbs 113

LUA_INIT_TYPE_SEC_IS
Secondary-initiated: send the application's INITSELF message
(indicated by lua_data_ptr) to the host.

LUA_INIT_TYPE_SEC_LOG
Secondary-initiated: send the application's unformatted LOGON
message (indicated by lua_data_ptr) to the host.

LUA_INIT_TYPE_PRIM
Primary-initiated: wait for a BIND from the host.

LUA_INIT_TYPE_PRIM_SSCP
Primary-initiated with SSCP access: allow the application to issue
SLI_SEND and SLI_RECEIVE verbs on the SSCP normal flow, so
that it can provide its own INITSELF or LOGON messages and
receive their responses. After issuing SLI_OPEN, the application
can issue SLI_BID or SLI_RECEIVE to get the status indication
INIT_COMPLETE, and can then use SLI_SEND and SLI_RECEIVE to
send INITSELF or LOGON messages and receive their responses.

lua_session_type
Specifies how LUA should process an UNBIND type X'01' (normal).
Possible values are:

LUA_SESSION_TYPE_NORMAL
Send a positive response, and issue RUI_TERM so that a
NOTIFY(disabled) is sent to the SSCP. The SSCP-LU flow is
disabled.

LUA_SESSION_TYPE_DEDICATED
Send a positive response, and suspend the SLI session until BIND,
optional CRV and STSN, and SDT commands are received.
NOTIFY(disabled) is not sent to the SSCP. In this case the
application can end the suspended session, without waiting for a
new BIND from the host, by issuing SLI_CLOSE (abend).

lua_wait
Timeout (in seconds) for retrying a secondary-initiated session initiation.
This parameter is ignored if lua_init_type is LUA_INIT_TYPE_PRIM or
LUA_INIT_TYPE_PRIM_SSCP.

LUA retries the session initiation after this timeout (by resending the
application's INITSELF or LOGON message) if the host responds to the
initial attempt with one of the following messages.
v A negative response to the INITSELF or LOGON with a secondary

return code of RESOURCE_NOT_AVAILABLE, SESSION_LIMIT_EXCEEDED,
SSCP_LU_SESS_NOT_ACTIVE, or SESSION_SERVICE_PATH_ERROR.

v A Network Services Procedure Error (NSPE) message.
v A NOTIFY command, which indicates a procedure error.

If this parameter is set to zero, LUA does not retry the session initiation.

lua_open_extension
Information about the application's SLI_OPEN extension routines, if any.
This parameter is an array of structures, each of which holds information
about a specific extension routine.

The application can specify 0–3 extension routines, each of which identifies
the application's routine for handling a specific SNA message during
session initialization (as indicated by the lua_routine_type parameter). These
must be specified in consecutive elements in the array, starting with the

SLI_OPEN

114 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

first; the supplied entries must end with one in which
lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END,
indicating the end of the list.

lua_open_extension.lua_routine_type
Type of extension routine. Possible values are:

LUA_ROUTINE_TYPE_BIND
Routine for checking and responding to a BIND message
from the host.

LUA_ROUTINE_TYPE_SDT
Routine for checking and responding to an SDT message
from the host.

LUA_ROUTINE_TYPE_STSN
Routine for checking and responding to an STSN message
from the host.

LUA_ROUTINE_TYPE_END
This value indicates the end of the list of extension
routines. It must be used in the array element immediately
following the other routines (or in the first array element if
the application is not specifying any extension routines).

UNIX

lua_open_extension.lua_routine_ptr
Pointer to the extension routine entry point. This parameter is not
used in the last array entry, in which
lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

LUA calls this entry point with the SLI_BIND_ROUTINE,
SLI_SDT_ROUTINE, or SLI_STSN_ROUTINE verb, according to
the value of the lua_routine_type parameter.

WINDOWS

lua_open_extension.lua_module_name
Name of the DLL containing the extension module. This parameter
is not used in the last array entry, in which
lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

lua_open_extension.lua_procedure_name
Procedure name to call within the extension module DLL. This
parameter is not used in the last array entry, in which
lua_open_extension.lua_routine_type is set to LUA_ROUTINE_TYPE_END.

LUA calls this entry point with the SLI_BIND_ROUTINE,
SLI_SDT_ROUTINE, or SLI_STSN_ROUTINE verb, according to
the value of the lua_routine_type parameter.

lua_ending_delim
The Communications Server SLI interface does not use this parameter; it is
provided for compatibility with applications originally written for other
SLI implementations.

SLI_OPEN

Chapter 5. SLI Verbs 115

Return Value from SLI Entry Point
The SLI_OPEN verb is the only verb for which the SLI entry point returns a value.
v If the verb fails LUA's initial checks (for example because the application

supplied incorrect parameters), the SLI function call returns a value of zero to
indicate this. The application should check the lua_prim_rc and lua_sec_rc
parameters to determine the cause of the failure. Communications Server does
not call the application-supplied callback routine.

v If the initial checks succeed, the SLI function call returns a non-zero value
representing the session ID of the new session. If lua_init_type was set to
LUA_INIT_TYPE_PRIM_SSCP, the application can use this session ID for subsequent
SLI_BID or SLI_RECEIVE verbs on the SSCP normal flow (to receive the
INIT_COMPLETE status indicator), and then for SLI_SEND and SLI_RECEIVE verbs
on this flow.
Communications Server then uses the application-supplied callback routine in
the same way as for other SLI verbs.

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters.

lua_prim_rc
LUA_OK

lua_sid A session ID for the new session. This is the same as the return value from
the SLI entry point for this verb, and can be used by subsequent verbs to
identify this session.

lua_luname
The name of the LU used by the new session. If the LU name in the
request parameters specified an LU pool, Communications Server uses this
parameter to return the name of the actual LU assigned to the session.
Subsequent verbs must use this returned name (not the name specified in
the request parameters) to identify the session.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

SLI_OPEN

116 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_TERMINATED
An SLI_CLOSE verb was issued before the SLI_OPEN had
completed.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_DATA_LENGTH_ERROR
The lua_init_type parameter specified a secondary-initiated session,
but the application did not supply the required data to be sent to
the host.

LUA_INVALID_LUNAME
The LU identified by the lua_luname parameter could not be found
on any active nodes.Check that the LU name or LU pool name is
defined in the configuration file and that the node on which it is
configured has been started.

LUA_INVALID_OPEN_DATA
The lua_init_type parameter was set to LUA_INIT_TYPE_SEC_IS, but
the data buffer indicated by lua_data_ptr did not contain a valid
INITSELF command.

LUA_INVALID_OPEN_INIT_TYPE
The lua_init_type parameter was not set to a valid value.

LUA_INVALID_OPEN_ROUTINE_TYPE
The lua_routine_type parameter was not set to a valid value.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_INVALID_SESSION_TYPE
The lua_session_type parameter was not set to a valid value.

LUA_INVALID_SLI_ENCR_OPTION
The lua_encr_decr_option parameter was not set to a valid value. For
Communications Server, this parameter must be set to 0 (zero).

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained a value that was not valid.

SLI_OPEN

Chapter 5. SLI Verbs 117

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc

LUA_DUPLICATE_RUI_INIT
An SLI_OPEN verb is currently being processed for this session.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_COMMAND_COUNT_ERROR
The verb specified the name of an LU pool, or the name of an LU
in a pool, but all LUs in the pool are in use.

LUA_INVALID_PROCESS
The LU specified by the lua_luname parameter is in use by another
process.

LUA_LINK_NOT_STARTED
The connection to the host has not been started; none of the links it
could use are active.

LUA_SESSION_ALREADY_OPEN
The application supplied an LU name for which a session has
already been started.

LUA_NAU_INOPERATIVE
A required SNA component (such as the LUA LU) is not active or
is in an abnormal state.

LUA_NO_SESSION
The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

(any other value)
Any other secondary return code here is an SNA sense code. For
information about interpreting the SNA sense codes that can be
returned, see “SNA Information” on page 34.

SLI_OPEN

118 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

The following sense code values are specific to Communications Server,
and may indicate mismatches between the Communications Server
configuration and the host configuration:

0x10020000
The host has not sent an activate physical unit (ACTPU) for the PU
that owns the requested LU.

0x10110000
The host has not sent an ACTLU for the requested LU. This
generally indicates that the LU is not configured at the host.

0x10120000
The host has not sent an ACTLU for the requested LU. The host
supports DDDLU (Dynamic Definition of Dependent LUs), but
DDDLU processing for this LU has failed.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
This return code indicates one of the following conditions:
v The Remote API Client software was not started. Start the

Remote API Client before running your application.
v There are no active Communications Server nodes. The local

node that owns the requested LU, or a local node that owns one
or more LUs in the requested LU pool, must be started before
you can use LUA verbs. Contact your System Administrator if
necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
The LUA session has failed because of a problem with the
communications link or with the host LU.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

SLI_OPEN

Chapter 5. SLI Verbs 119

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
The SLI_OPEN verb must be the first LUA verb issued for the session.

Until this verb has completed successfully, the only other LUA verbs that can be
issued for this session are:
v SLI_CLOSE with lua_flag1.close_abend set to 1 (indicating an abnormal close),

which will cancel the pending SLI_OPEN
v If lua_init_type was set to LUA_INIT_TYPE_PRIM_SSCP:

– SLI_BID or SLI_RECEIVE to get the INIT_COMPLETE status indication
– SLI_SEND and SLI_RECEIVE for SSCP normal-flow data, to send INITSELF

or LOGON messages and receive their responses.

All other verbs issued on this session must identify the session using one of the
following returned parameters from this verb:
v The session ID, returned to the application in the lua_sid parameter (and as the

return value from the SLI entry point)
v The LU name, returned to the application in the lua_luname parameter

Usage and Restrictions
Once the SLI_OPEN verb has completed successfully, this session uses the LU for
which the session was started. No other LUA session (from this or any other
application) can use the LU until the SLI_CLOSE verb is issued, or until an
LUA_SESSION_FAILURE primary return code is received.

If the SLI_OPEN verb returns with an LUA_IN_PROGRESS primary return code, the
Session ID will be returned in the lua_sid parameter. This Session ID is the same as
that returned when the verb completes successfully, and can be used to issue other
verbs on the session.

SLI_PURGE
The SLI_PURGE verb cancels a previous SLI_RECEIVE. An SLI_RECEIVE may
wait indefinitely if it is sent without using the lua_flag1.nowait (immediate return)
option, and no data is available on the specified flow; SLI_PURGE forces the
waiting verb to return (with the primary return code LUA_CANCELLED).

SLI_OPEN

120 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_PURGE

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the SLI_OPEN verb.

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous SLI_OPEN verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_ptr
A pointer to the SLI_RECEIVE VCB that is to be purged.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

Returned Parameters
LUA always returns the following parameter:

SLI_PURGE

Chapter 5. SLI Verbs 121

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb completed successfully, the following parameters are returned:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
An SLI_CLOSE verb was issued while this verb was pending.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter was set to 0 (zero).

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

SLI_PURGE

122 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_NO_RECEIVE_TO_PURGE
The lua_data_ptr parameter was not set to the address of a previous
SLI_RECEIVE VCB.

LUA_NO_SLI_SESSION
An SLI_OPEN verb has not yet completed successfully for the LU
name specified on this verb, or the session has failed.

LUA_SLI_PURGE_PENDING
An SLI_PURGE verb was already pending when this verb was
issued. Only one SLI_PURGE can be outstanding at a time.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the SLI_OPEN verb for this session. Only
the process that started a session can issue verbs on that session.

LUA_NO_RECEIVE_TO_PURGE
The previous SLI_RECEIVE verb completed before the application
issued SLI_PURGE. This is not an error condition, so the
application program should be designed to handle this without
reporting errors.

LUA_NAU_INOPERATIVE
A required SNA component (such as the LUA LU) is not active or
is in an abnormal state.

LUA_NO_SESSION
The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

SLI_PURGE

Chapter 5. SLI Verbs 123

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND
This return code indicates that the host sent an UNBIND command
to end the session. This value can occur only if the SLI_OPEN verb
for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
This verb can only be used when an SLI_RECEIVE has been issued and is pending
completion (that is, the primary return code is IN_PROGRESS).

SLI_PURGE

124 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

SLI_RECEIVE
The SLI_RECEIVE verb receives a complete chain of data, or status information,
sent from the host to the application's LU.

You can specify a particular message flow (LU normal, LU expedited, SSCP
normal, or SSCP expedited) from which to read data, or you can specify more than
one message flow. You can have multiple SLI_RECEIVE verbs outstanding,
provided that no two of them specify the same flow.

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_RECEIVE

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the SLI_OPEN verb.

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous SLI_OPEN verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_max_length
The length of the buffer supplied to receive the data.

lua_data_ptr
A pointer to the buffer supplied to receive the data.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

SLI_RECEIVE

Chapter 5. SLI Verbs 125

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_flag1 parameters
Set the lua_flag1.nowait parameter to 1 if you want the SLI_RECEIVE verb
to return as soon as possible whether or not data is available to be read, or
set it to 0 (zero) if you want the verb to wait for data before returning.

Note:

1. Setting the lua_flag1.nowait parameter to 1 does not mean that the
verb will complete synchronously. The LUA library needs to
communicate with the local node to determine whether or not
any data is available, and this requires an asynchronous verb
return to avoid blocking the application. The parameter means
that, if there is no data available immediately, the asynchronous
verb return will occur as soon as possible to indicate this.

2. If the first RU of a multiple-RU chain is available when the
application issues SLI_RECEIVE, the lua_flag1.nowait parameter is
ignored; SLI_RECEIVE waits until the complete chain of data has
arrived before returning.

Set the lua_flag1.bid_enable parameter to 1 to re-enable the most recent
SLI_BID verb (equivalent to issuing SLI_BID again with exactly the same
parameters as before), or set it to 0 (zero) if you do not want to re-enable
SLI_BID. Re-enabling the previous SLI_BID re-uses the VCB originally
allocated for it, so this VCB must not have been freed or modified. (For
more information, see “Interaction with Other Verbs” on page 132.)

Set one or more of the following flags to 1 to indicate which message flow
to read data from:

lua_flag1.sscp_exp

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

If more than one flag is set, the highest-priority data available will be
returned. The order of priorities (highest first) is: SSCP expedited, LU
expedited, SSCP normal, LU normal. The equivalent flag in the lua_flag2
group will be set to indicate which flow the data was read from (see
“Returned Parameters”).

The Communications Server implementation of LUA does not return data
on the SSCP expedited flow. The application can set the sscp_exp flag, for
compatibility with other LUA implementations, but data will never be
returned on this flow.

Returned Parameters
LUA always returns the following parameters:

SLI_RECEIVE

126 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

lua_flag2.bid_enable
This parameter is set to 1 if an SLI_BID was successfully re-enabled, or to 0
if it was not re-enabled.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution or Truncated Data
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

The following parameters are returned if the verb completes successfully. They are
also returned if the verb returns with truncated data because the lua_data_length
parameter supplied was too small (see “Other Conditions” on page 131).

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_data_length
The length of the data received. LUA places the data in the buffer specified
by lua_data_ptr.

If lua_rh.rri is off (request unit) and lua_rh.sdi is on (sense data included),
this indicates that LUA has converted a request unit sent by the host into
an exception request (EXR). In this case, bytes 0–3 of the data buffer
contain the sense data associated with the exception, and bytes 4–6 contain
up to the first 3 bytes of the original request unit.

lua_th Information from the transmission header (TH) of the received message.

lua_rh Information from the request/response header (RH) of the received
message.

lua_message_type
Message type of the received message, which is one of the following:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

SLI_RECEIVE

Chapter 5. SLI Verbs 127

LUA_MESSAGE_TYPE_SBI

LUA_MESSAGE_TYPE_SIGNAL

lua_flag2 parameters
One of the following flags will be set to 1, to indicate on which message
flow the data was received:

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

The Communications Server implementation of LUA does not return data
on the SSCP expedited flow, and so the sscp_exp flag will never be set
(although it may be set by other LUA implementations).

Successful Execution: Status Information

Note: SLI_RECEIVE can return status information only if there is no SLI_BID verb
outstanding. If both verbs are in progress when status information becomes
available, the status is returned on the SLI_BID verb, and the SLI_RECEIVE
remains in progress.

If the verb returned LUA status information instead of data, LUA returns the
following parameters:

lua_prim_rc
LUA_STATUS

lua_sec_rc

LUA_READY
The SLI session is now ready to process additional commands. This
status is used after a previous LUA_NOT_READY status was reported,
or after an SLI_CLOSE verb completed with lua_prim_rc set to
LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or
RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY
The SLI session has been temporarily suspended for one of the
following reasons:
v A CLEAR command was received. The session resumes when an

SDT command is received.
v An UNBIND command type X'02' (BIND forthcoming) was

received. The session is suspended until a BIND, optional CRV
and STSN, and SDT commands are received; it resumes after the
SDT. Any user extension routines that were supplied by the
original SLI_OPEN verb will be called again.

v An UNBIND command type X'01' (normal) was received, and
the SLI_OPEN verb for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED. The session is suspended until a
BIND, optional CRV and STSN, and SDT commands are
received; it resumes after the SDT. Any user extension routines
that were supplied by the original SLI_OPEN verb will be called
again.

The application should issue another SLI_BID or SLI_RECEIVE to
receive the READY status when the session resumes. It can continue

SLI_RECEIVE

128 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

to issue SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow
data even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE
The application issued SLI_OPEN with type
LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has
now completed. The application can now issue SLI_SEND and
SLI_RECEIVE verbs for SSCP normal-flow data.

LUA_SESSION_END_REQUESTED
The host has sent a SHUTD command, requesting the application
to shut down the session. The application should issue SLI_CLOSE
as soon as it is ready to close the session.

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb or by a message
from the host:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc
Possible values are:

LUA_PURGED
This SLI_RECEIVE verb has been canceled by an SLI_PURGE verb.

LUA_TERMINATED
An SLI_CLOSE verb was issued while this verb was pending.

LUA_CANCEL_COMMAND_RECEIVED
The host sent a CANCEL command to cancel the remainder of the
chain of data being received.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained a value that was not valid.

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_BID_ALREADY_ENABLED
The lua_flag1.bid_enable parameter was set to re-enable an SLI_BID
verb, but the previous SLI_BID verb was still in progress.

SLI_RECEIVE

Chapter 5. SLI Verbs 129

LUA_INVALID_FLOW
None of the lua_flag1 flow flags was set. At least one of these flags
must be set to 1 to indicate which flow or flows to read from.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_NO_PREVIOUS_BID_ENABLED
The lua_flag1.bid_enable parameter was set to re-enable an SLI_BID
verb, but there was no previous SLI_BID verb that could be
enabled. (For more information, see “Interaction with Other Verbs”
on page 132.)

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_NO_SLI_SESSION
An SLI_OPEN verb has not yet completed successfully for the LU
name specified on this verb, or the session has failed.

LUA_RECEIVE_ON_FLOW_PENDING
The flow flags in the lua_flag1 group specified one or more session
flows for which an SLI_RECEIVE verb was already outstanding.
Only one SLI_RECEIVE at a time can be waiting on each session
flow.

Negative Response Sent to Host: The following primary return code indicates
that Communications Server detected an error in the data received from the host.
Instead of passing the received message to the application on an SLI_RECEIVE
verb, Communications Server discards the message and sends a negative response
to the host. LUA informs the application on a subsequent SLI_RECEIVE or
SLI_BID verb that a negative response was sent.

lua_prim_rc
LUA_NEGATIVE_RSP

lua_sec_rc
The sense code sent to the host on the negative response. This indicates
that Communications Server detected an error in the host data, and sent a

SLI_RECEIVE

130 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

negative response to the host. For information about interpreting the sense
code values that can be returned, see “SNA Information” on page 34.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_DATA_TRUNCATED
The lua_data_length parameter was smaller than the actual length of
data received on the message. Only lua_data_length bytes of data
were returned to the verb; the remaining data was discarded.
Additional parameters are also returned if this secondary return
code is obtained; see “Successful Execution or Truncated Data” on
page 127.

LUA_NO_DATA
The lua_flag1.nowait parameter was set to indicate immediate return
without waiting for data, and no data was currently available on
the specified session flow or flows.

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the SLI_OPEN verb for this session. Only
the process that started a session can issue verbs on that session.

LUA_NAU_INOPERATIVE
A required SNA component (such as the LUA LU) is not active or
is in an abnormal state.

LUA_NO_SESSION
The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.

SLI_RECEIVE

Chapter 5. SLI Verbs 131

Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND
This return code indicates that the host sent an UNBIND command
to end the session. This value can occur only if the SLI_OPEN verb
for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED.

LUA_RUI_WRITE_FAILURE
An RUI_WRITE verb used in processing this SLI verb has failed
with an unexpected error return code.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
The SLI_OPEN verb must have completed successfully before this verb can be
issued.

While an existing SLI_RECEIVE is pending, you can issue another SLI_RECEIVE
only if it specifies a different session flow or flows from pending SLI_RECEIVEs;
you cannot have more than one SLI_RECEIVE outstanding for the same session
flow.

The lua_flag1.bid_enable parameter can only be used if the following are true:
v SLI_BID has already been issued successfully and has completed
v The storage allocated for the SLI_BID verb has not been freed or modified
v No other SLI_BID is pending

SLI_RECEIVE

132 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

If you use this parameter to re-enable a previous SLI_BID, at least one of the
message flow flags on SLI_RECEIVE must still be set, to indicate the flow or flows
on which the application will accept data. If the first data to be received is on a
flow accepted by the SLI_RECEIVE verb, SLI_RECEIVE will return with this data,
and SLI_BID will not return. Otherwise, SLI_BID will return to indicate that there
is data to be read (since SLI_BID accepts data on all flows, it will always accept the
data if SLI_RECEIVE does not). The application must then issue another
SLI_RECEIVE on the appropriate flow to obtain the data.

If you want to use SLI_BID to handle data on all flows, rather than having the
data on a particular flow handled by SLI_RECEIVE in preference to SLI_BID, you
need to re-issue SLI_BID explicitly instead of using SLI_RECEIVE to re-enable the
previous SLI_BID.

Usage and Restrictions
If the data received is longer than the lua_max_length parameter, it will be
truncated; only lua_max_length bytes of data will be returned. The primary and
secondary return codes LUA_UNSUCCESSFUL and LUA_DATA_TRUNCATED will also be
returned.

If the SLI_RECEIVE verb sets bits in lua_flag1 to accept data on more than one
flow, and there is data available on more than one of the specified flows, the data
on the highest-priority flow will be returned to the application. The flow priorities
are as follows (highest to lowest):
v SSCP expedited
v LU expedited
v SSCP normal
v LU normal

Once a message has been read using the SLI_RECEIVE verb, it is removed from
the incoming message queue, and cannot be accessed again. The application can
use SLI_BID as a non-destructive read to check the type of data available and
determine how to process it, and then issue a subsequent SLI_RECEIVE to collect
the data. However, if it issues the SLI_RECEIVE with multiple lua_flag1 flags set to
accept data on more than one flow, it may receive a different message from the one
identified in the SLI_BID, if data arrived on a higher-priority flow between the
SLI_BID and SLI_RECEIVE verbs. To ensure that it receives the same message that
was identified in the SLI_BID, it should set the lua_flag1 flags on SLI_RECEIVE to
accept data only on the flow identified in the SLI_BID response.

Pacing may be used on the primary-to-secondary half-session (this is specified in
the host configuration), in order to protect the LUA application from being flooded
with messages. If the LUA application is slow to read messages, Communications
Server delays the sending of pacing responses to the host in order to slow it down.

SLI_SEND
The SLI_SEND verb sends an SNA request or response unit from the LUA
application to the host, over either the LU session or the SSCP session.

An application can have at most two SLI_SEND verbs outstanding at a time, which
must be on different session flows.

SLI_RECEIVE

Chapter 5. SLI Verbs 133

Supplied Parameters
The application supplies the following parameters:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

Set this to sizeof(LUA_VERB_RECORD).

lua_opcode
LUA_OPCODE_SLI_SEND

lua_correlator
Optional. A four-byte value that you can use to correlate this verb with
other processing within your application. LUA does not use or change this
information.

lua_luname
The name in ASCII of the LU used by the session. This must match the LU
name of an active LUA session, as returned on the SLI_OPEN verb.

This parameter is required only if the lua_sid parameter is 0 (zero). If a
session ID is supplied in lua_sid, LUA does not use this parameter.

This parameter must be eight bytes long; pad on the right with spaces,
0x20, if the name is shorter than eight characters.

lua_sid The session ID of the session. This must match a session ID returned on a
previous SLI_OPEN verb.

This parameter is optional; if you do not specify the session ID, you must
specify the LU name for the session in the lua_luname parameter.

lua_data_length
The length of the supplied data.

When sending a positive response, this parameter is normally set to 0
(zero). LUA will complete the response based on the supplied sequence
number. In the case of a positive response to a BIND or STSN, an extended
response is allowed, so a nonzero value may be used.

When sending a negative response, set this parameter to the length of the
SNA sense code (four bytes), which is supplied in the data buffer.

lua_data_ptr
A pointer to the buffer containing the supplied data.

For a request, or a positive response that requires data, the buffer should
contain the entire RU. The length of the RU must be specified in
lua_data_length.

For a negative response, the buffer should contain the SNA sense code.

lua_post_handle

UNIX

A pointer to a callback routine that LUA will call to indicate completion if
the verb completes asynchronously.

WINDOWS

SLI_SEND

134 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

If the VCB is used in an SLI function call, set this field to an event handle.
If the VCB is used in a WinSLI function call, this field is reserved.

For more information, see Chapter 2, “Designing and Writing LUA Applications,”
on page 13.

lua_th.snf
Required only when sending a response. The sequence number of the
request to which this is the response.

lua_rh When sending a request, most of the lua_rh bits must be set to correspond
to the RH (request header) of the message to be sent. Do not set lua_rh.pi
and lua_rh.qri; these will be set by LUA.

When sending a response, only the following two lua_rh bits are used. The
others must be 0 (zero). The lua_rh bits are:

lua_rh.rri
Set to 1 to indicate a response

lua_rh.ri
Set to 0 for a positive response, or 1 for a negative response

lua_flag1 parameters
Set one of the following flags to 1 to indicate which message flow the data
is to be sent on:

lua_flag1.lu_exp

lua_flag1.sscp_norm

lua_flag1.lu_norm

One and only one of the flags must be set to 1.Communications Server
does not allow applications to send data on the SSCP expedited flow (the
lua_flag1.sscp_exp flag).

lua_message_type
Message type of the message to be sent. Possible values are:

LUA_MESSAGE_TYPE_LU_DATA

LUA_MESSAGE_TYPE_SSCP_DATA

LUA_MESSAGE_TYPE_RSP

LUA_MESSAGE_TYPE_BID

LUA_MESSAGE_TYPE_BIS

LUA_MESSAGE_TYPE_CANCEL

LUA_MESSAGE_TYPE_CHASE

LUA_MESSAGE_TYPE_LUSTAT_LU

LUA_MESSAGE_TYPE_LUSTAT_SSCP

LUA_MESSAGE_TYPE_QC

LUA_MESSAGE_TYPE_QEC

LUA_MESSAGE_TYPE_RELQ

LUA_MESSAGE_TYPE_RTR

SLI_SEND

Chapter 5. SLI Verbs 135

LUA_MESSAGE_TYPE_SBI

Returned Parameters
LUA always returns the following parameter:

lua_flag2.async
This flag is set to 1 if the verb completed asynchronously, or 0 (zero) if the
verb completed synchronously.

Other returned parameters depend on whether the verb completed successfully;
see the following sections.

Successful Execution
If the verb executes successfully, LUA returns the following parameters:

lua_prim_rc
LUA_OK

lua_sid If the application specified the lua_luname parameter when issuing this
verb, rather than specifying the session ID, LUA supplies the session ID.

lua_th The completed TH of the message written, including the fields filled in by
LUA. You may need to save the value of lua_th.snf (the sequence number)
for correlation with responses from the host.

lua_flag2 parameters
One of the following flags will be set to 1 to indicate which message flow
the data was sent on:

lua_flag2.lu_exp

lua_flag2.sscp_norm

lua_flag2.lu_norm

The Communications Server implementation of LUA does not allow
applications to send data on the SSCP expedited flow, and so will never set
the sscp_exp flag (although other LUA implementations may set it).

lua_sequence_number
The sequence number of the RU that LUA uses to send the data (or of the
first RU, if the data requires a chain of RUs). This is stored in line format.

Successful Execution: Status Information
If the verb returned LUA status information, LUA returns the following
parameters:

lua_prim_rc
LUA_STATUS

lua_sec_rc

LUA_READY
The SLI session is now ready to process additional commands. This
status is used after a previous LUA_NOT_READY status was reported,
or after an SLI_CLOSE verb completed with lua_prim_rc set to
LUA_CANCELLED and lua_sec_rc set to RECEIVED_UNBIND_HOLD or
RECEIVED_UNBIND_NORMAL.

LUA_NOT_READY
The SLI session has been temporarily suspended for one of the
following reasons:

SLI_SEND

136 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

v A CLEAR command was received. The session resumes when an
SDT command is received.

v An UNBIND command type X'02' (BIND forthcoming) was
received. The session is suspended until a BIND, optional CRV
and STSN, and SDT commands are received; it resumes after the
SDT. Any user extension routines that were supplied by the
original SLI_OPEN verb will be called again.

v An UNBIND command type X'01' (normal) was received, and
the SLI_OPEN verb for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED. The session is suspended until a
BIND, optional CRV and STSN, and SDT commands are
received; it resumes after the SDT. Any user extension routines
that were supplied by the original SLI_OPEN verb will be called
again.

The application should issue SLI_BID or SLI_RECEIVE to receive
the READY status when the session resumes. It can continue to issue
SLI_SEND and SLI_RECEIVE verbs for SSCP normal-flow data
even though the session status is LUA_NOT_READY.

LUA_INIT_COMPLETE
The application issued SLI_OPEN with type
LUA_OPEN_TYPE_PRIM_SSCP, and the underlying RUI_INIT verb has
now completed. The application can now issue SLI_SEND and
SLI_RECEIVE verbs for SSCP normal-flow data.

LUA_SESSION_END_REQUESTED
The host has sent a SHUTD command, requesting the application
to shut down the session. The application should issue SLI_CLOSE
as soon as it is ready to close the session.

Unsuccessful Execution
If a verb does not complete successfully, LUA returns a primary return code to
indicate the type of error and a secondary return code to provide specific details
about the reason for unsuccessful execution.

Verb Canceled: The following return codes indicate that the verb did not
complete successfully because it was canceled by another verb:

lua_prim_rc
LUA_CANCELLED

lua_sec_rc

LUA_TERMINATED
The verb was canceled because an SLI_CLOSE verb was issued for
this session.

Parameter Check: The following return codes indicate that the verb did not
complete successfully because a supplied parameter was in error:

lua_prim_rc
LUA_PARAMETER_CHECK

lua_sec_rc
Possible values are:

LUA_BAD_DATA_PTR
The lua_data_ptr parameter contained a value that was not valid.

SLI_SEND

Chapter 5. SLI Verbs 137

LUA_BAD_SESSION_ID
The lua_sid parameter did not match the session ID of any active
LUA LU session.

LUA_INVALID_FLOW
More than one of the lua_flag1 flow flags was set to 1. One and
only one of these flags must be set to 1, to indicate which session
flow the data is to be sent on.

The lua_flag1.sscp_exp flow flag was set, indicating that the message
should be sent on the SSCP expedited flow. Communications
Server does not allow applications to send data on this flow.

LUA_INVALID_MESSAGE_TYPE
The lua_message_type parameter was not set to a valid value.

UNIX

LUA_INVALID_POST_HANDLE
The lua_post_handle parameter was not a valid pointer to a callback
routine.

LUA_REQUIRED_FIELD_MISSING
None of the lua_flag1 flow flags was set. One and only one of these
flags must be set to 1.

LUA_RESERVED_FIELD_NOT_ZERO
A reserved field in the verb record, or a parameter that is not used
by this verb, was set to a nonzero value.

LUA_VERB_LENGTH_INVALID
The value of the lua_verb_length parameter was less than the length
of the verb record required for this verb.

LUA_DATA_LENGTH_ERROR
The application used SLI_SEND to send LUSTAT to the host, but
did not provide the required 4 bytes of status information.

State Check: The following return codes indicate that the verb was issued in a
session state in which it was not valid:

lua_prim_rc
LUA_STATE_CHECK

lua_sec_rc
Possible values are:

LUA_MAX_NUMBER_OF_SENDS
The application already had two SLI_SEND verbs in progress
when it issued this verb. An application can have at most two
SLI_SEND verbs outstanding at a time, which must be on different
session flows.

LUA_NO_SLI_SESSION
An SLI_OPEN verb has not yet completed successfully for the LU
name specified on this verb, or the session has failed.

LUA_SEND_ON_FLOW_PENDING
An SLI_SEND was already outstanding for the session flow

SLI_SEND

138 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

specified on this verb (the session flow is specified by setting one
of the lua_flag1 flow flags to 1). Only one SLI_SEND at a time can
be outstanding on each session flow.

Other Conditions: The following return codes indicate that the verb record
supplied was valid, but the verb did not complete successfully:

lua_prim_rc
LUA_UNSUCCESSFUL

lua_sec_rc
Possible values are:

LUA_INVALID_PROCESS
The operating system process that issued this verb was not the
same process that issued the SLI_OPEN verb for this session. Only
the process that started a session can issue verbs on that session.

LUA_INVALID_SESSION_PARAMETERS
The application used SLI_SEND to send a positive response to a
BIND message received from the host. However, the
Communications Server node cannot accept the BIND parameters
as specified, and has sent a negative response to the host. For more
information about the BIND profiles accepted by Communications
Server, see “SNA Information” on page 34.

LUA_RSP_CORRELATION_ERROR
When using SLI_SEND to send a response, the lua_th.snf parameter
(which indicates the sequence number of the received message
being responded to) did not contain a valid value.

LUA_RU_LENGTH_ERROR
The lua_data_length parameter contained a value that was not valid.
When sending data on the LU normal flow, the maximum length is
as specified in the BIND received from the host; for all other flows
the maximum length is 256 bytes.

LUA_NAU_INOPERATIVE
A required SNA component (such as the LUA LU) is not active or
is in an abnormal state.

LUA_NO_SESSION
The SNA session to the remote LU is not active.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

(any other value)
Any other secondary return code here is an SNA sense code
indicating that the supplied SNA data was not valid or could not
be sent. For information about interpreting the SNA sense codes
that can be returned, see “SNA Information” on page 34.

SLI_SEND

Chapter 5. SLI Verbs 139

The following return codes indicate that the verb did not complete successfully for
other reasons:

lua_prim_rc

LUA_COMM_SUBSYSTEM_ABENDED
A required Communications Server software component (such as
the node) has terminated or has been stopped. Contact your
System Administrator if necessary.

lua_prim_rc

LUA_COMM_SUBSYSTEM_NOT_LOADED
The Remote API Client software was not started, or the node was
either not started or not configured properly for LUA applications.
Check the Communications Server LUA configuration parameters
and start the Remote API Client and the node before running your
application.

lua_prim_rc

LUA_SESSION_FAILURE
The LUA session has failed. To restart it, the application can reissue
SLI_OPEN.

lua_sec_rc
Possible values are:

LUA_LU_COMPONENT_DISCONNECTED
This return code indicates that the LUA session has failed because
of a problem with the communications link or with the host LU.

LUA_RECEIVED_UNBIND
This return code indicates that the host sent an UNBIND command
to end the session. This value can occur only if the SLI_OPEN verb
for this session specified lua_session_type
LUA_SESSION_TYPE_DEDICATED.

LUA_SLI_LOGIC_ERROR
This return code indicates one of the following:
v The host system has violated SNA protocols
v An internal error was detected within LUA

Attempt to reproduce the problem with SNA tracing active (contact
your System Administrator if necessary), and check that the host is
sending correct data. If this does not solve the problem, contact
your Communications Server support personnel.

lua_prim_rc

LUA_INVALID_VERB
Either the lua_verb parameter or the lua_opcode parameter was not
valid. The verb did not execute.

lua_prim_rc

LUA_STACK_TOO_SMALL
The stack size of the application is too small for LUA to complete
the request. Increase the stack size of your application.

lua_prim_rc

LUA_UNEXPECTED_DOS_ERROR
An operating system error occurred.

SLI_SEND

140 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_sec_rc
This value is the operating system return code. Check your operating
system documentation for the meaning of this return code.

Interaction with Other Verbs
The SLI_OPEN verb must be issued successfully before this verb can be issued.

While an existing SLI_SEND is pending, you can issue a second SLI_SEND only if
it specifies a different session flow from the pending SLI_SEND; that is, you cannot
have more than one SLI_SEND outstanding for the same session flow. You cannot
have more than two SLI_SENDs outstanding in total.

The SLI_SEND verb can be issued on the SSCP normal flow at any time after a
successful SLI_OPEN verb that specifies primary-initiated session initiation with
SSCP access. SLI_SEND verbs on other flows or for other session initiation types
are permitted only after a BIND has been received, and must abide by the
protocols specified on the BIND.

Usage and Restrictions
Table 2 shows the valid settings for various parameters on SLI_SEND, depending
on the type of SNA message being sent.

Table 2. SLI_SEND Parameter Settings based on Message Type

SLI_SEND
parameter

LU_DATA,
SSCP_DATA

RSP BID,
BIS,
RTR

CHASE QC QEC,
RELQ,
SBL, SIG RQR

LUSTAT_LU,
LUSTAT_SSCP

lua_rh FI, DR1I, DR2I, RI,
BBI, EBI, CDI, CSI,
EDI

RI SDI, QRI SDI, QRI,
EBI, CDI

SDI 0 SDI, QRI,
DR1I, DR2I,
RI, BBI, EBI,
CDI

lua_th 0 SNF 0 0 0 0 0
lua_data_ptr Required (null if

no data)
Required
(null if no
data)

null null null null Required

lua_data_length Required Required (0
if no data)

0 0 0 0 Required

lua_flag1 flow
flags

0 Required (set
one)

0 0 0 0 0

When the application sends an SNA response, it must do the following. LUA will
fill in the appropriate request code based on the supplied sequence number.
v Set lua_message_type to LUA_MESSAGE_TYPE_RSP.
v Set lua_th.snf to the sequence number of the request to which this is a response.
v Set the appropriate lua_flag1 flow flag.
v For a positive response that requires only the request code, set both lua_rh.ri and

lua_data_length to 0 (zero).
v For a negative response:

– Set lua_rh.ri to 1.
– Set lua_data_ptr to point to an appropriate SNA sense code.
– Set lua_data_length to 4 (the length of the sense code).

SLI_SEND

Chapter 5. SLI Verbs 141

Successful completion of SLI_SEND indicates that the message was queued
successfully to the data link; it does not necessarily indicate that the message was
sent successfully, or that the host accepted it.

Pacing may be used on the secondary-to-primary half-session (this is specified on
the BIND), in order to prevent the LUA application from sending more data than
the Communications Server LU or the host LU can handle. If this is the case, an
SLI_SEND on the LU normal flow may be delayed by LUA and may take some
time to complete.

SLI_BIND_ROUTINE
This verb is sent from LUA to the application (using the BIND extension routine
entry point supplied by the application on the SLI_OPEN verb), and not from the
application to LUA.

The SLI_BIND_ROUTINE verb passes a BIND request from the host to the LUA
application. The application can accept the BIND as it is, modify it in an attempt to
negotiate the BIND parameters, or reject it with an appropriate SNA sense code.

Supplied Parameters
LUA supplies the the following parameters to the application:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

lua_opcode
LUA_OPCODE_SLI_BIND_ROUTINE

lua_luname
The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length
The length of the supplied BIND RU.

lua_data_ptr
A pointer to the buffer containing the supplied BIND RU.

lua_th The TH parameters from the BIND.

lua_rh The RH parameters from the BIND.

Returned Parameters
The parameters returned by the application depend on whether the verb
completed successfully; see the following sections.

Successful Execution: BIND Accepted or Negotiated
If the application decides to accept or negotiate the BIND, it returns the following
parameters:

lua_prim_rc
LUA_OK

lua_data_ptr
A pointer to the buffer containing the supplied BIND RU. If the application

SLI_SEND

142 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

is accepting the BIND as is, it must not modify the contents of the buffer; if
it is attempting to negotiate one or more parameters in the BIND, it must
modify the data to set the appropriate parameters to its preferred values.

Unsuccessful Execution: BIND Rejected
If the application decides to reject the BIND, it returns the following parameters:

lua_prim_rc
LUA_NEGATIVE_RSP

lua_data_length
The length of the returned SNA sense code (in the lua_data_ptr parameter).

lua_data_ptr
A pointer to the buffer containing the SNA sense code associated with the
application's reason for rejecting the BIND.

Interaction with Other Verbs
LUA will call this routine from within its processing of the SLI_OPEN verb (after
the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions
There is no asynchronous return mechanism for the application's extension
routines. The routine must return synchronously.

SLI_SDT_ROUTINE
This verb is sent from LUA to the application (using the SDT extension routine
entry point supplied by the application on the SLI_OPEN verb), and not from the
application to LUA.

The SLI_SDT_ROUTINE verb passes an SDT request from the host to the LUA
application. The application can respond with an SDT response, or reject it with an
appropriate SNA sense code.

Supplied Parameters
LUA supplies the the following parameters to the application:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

lua_opcode
LUA_OPCODE_SLI_SDT_ROUTINE

lua_luname
The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length
The length of the supplied SDT RU.

lua_data_ptr
A pointer to the buffer containing the supplied SDT RU.

lua_th The TH parameters from the SDT.

SLI_BIND_ROUTINE

Chapter 5. SLI Verbs 143

lua_rh The RH parameters from the SDT.

Returned Parameters
The parameters returned by the application depend on whether the verb
completed successfully; see the following sections.

Successful Execution: SDT Response
If the application decides to accept the SDT, it returns the following parameters:

lua_prim_rc
LUA_OK

lua_data_ptr
A pointer to the buffer containing the supplied SDT response RU.

Unsuccessful Execution: SDT Rejected
If the application decides to reject the SDT, it returns the following parameters:

lua_prim_rc
LUA_NEGATIVE_RSP

lua_data_length
The length of the returned SNA sense code (in the lua_data_ptr parameter).

lua_data_ptr
A pointer to the buffer containing the SNA sense code associated with the
application's reason for rejecting the SDT.

Interaction with Other Verbs
LUA will call this routine from within its processing of the SLI_OPEN verb (after
the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions
There is no asynchronous return mechanism for the application's extension
routines. The routine must return synchronously.

SLI_STSN_ROUTINE
This verb is sent from LUA to the application (using the STSN extension routine
entry point supplied by the application on the SLI_OPEN verb), and not from the
application to LUA.

The SLI_STSN_ROUTINE verb passes an STSN request from the host to the LUA
application. The application can respond with an STSN response, or reject it with
an appropriate SNA sense code.

Supplied Parameters
LUA supplies the the following parameters to the application:

lua_verb
LUA_VERB_SLI

lua_verb_length
The length in bytes of the LUA verb record.

lua_opcode
LUA_OPCODE_SLI_STSN_ROUTINE

SLI_SDT_ROUTINE

144 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

lua_luname
The name in ASCII of the LU used by the session.

lua_sid The session ID of the session.

lua_data_length
The length of the supplied STSN RU.

lua_data_ptr
A pointer to the buffer containing the supplied STSN RU.

lua_th The TH parameters from the STSN.

lua_rh The RH parameters from the STSN.

Returned Parameters
The parameters returned by the application depend on whether the verb
completed successfully; see the following sections.

Successful Execution: STSN Response
If the application decides to accept the STSN, it returns the following parameters:

lua_prim_rc
LUA_OK

lua_data_ptr
A pointer to the buffer containing the supplied STSN response RU.

Unsuccessful Execution: STSN Rejected
If the application decides to reject the STSN, it returns the following parameters:

lua_prim_rc
LUA_NEGATIVE_RSP

lua_data_length
The length of the returned SNA sense code (in the lua_data_ptr parameter).

lua_data_ptr
A pointer to the buffer containing the SNA sense code associated with the
application's reason for rejecting the STSN.

Interaction with Other Verbs
LUA will call this routine from within its processing of the SLI_OPEN verb (after
the application issues SLI_OPEN and before its asynchronous return).

Usage and Restrictions
There is no asynchronous return mechanism for the application's extension
routines. The routine must return synchronously.

SLI_STSN_ROUTINE

Chapter 5. SLI Verbs 145

146 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Chapter 6. Sample LUA Application

This chapter describes the Communications Server sample LUA program
lsample.c, written for the AIX / Linux operating system, which illustrates the use
of LUA RUI verbs. This file is stored in the directory /usr/lib/sna/samples (AIX) or
/opt/ibm/sna/samples (Linux).

The following information is provided:
v Processing overview of the application
v Instructions for compiling, linking, and running the application

Processing Overview
The application is a very simple 3270 emulation program. It provides an
unformatted display of screen data sent from the host (on both the LU and SSCP
sessions), together with status messages (indicating whether the application is
connected to the LU session or the SSCP session). When a definite-response request
is received from the host, a positive response is sent automatically. Data typed in
by the user is sent to the host, with the exception of two special keystrokes:

[(left square bracket)
Toggles between the LU and SSCP sessions

] (right square bracket)
Terminates the application

Once it has completed some initialization processing, the program essentially
consists of two main loops: one reading data from the host and one sending data
supplied by the user to the host. These are implemented as follows:

The read loop uses recursive calls to the RUI_READ verb. The following
processing is performed by the callback routine, which LUA calls when the verb
completes asynchronously:
v Any screen data is written to the screen
v Any session status information is processed
v If a response is required, a positive response is built and sent
v The RUI_READ verb is then re-issued to continue the loop

If the verb completes synchronously, the same routine used as a callback routine is
called explicitly on return. This ensures that the same processing is done whatever
the type of return.

The write loop reads data from the keyboard. If either of the two special
keystrokes is supplied, it is acted on; otherwise, the incoming data is translated to
extended binary coded decimal interchange code (EBCDIC) (using the CSV
CONVERT verb) to be sent to the host on either the LU session or the SSCP
session, depending on which the application is currently connected to. The data is
sent using the RUI_WRITE verb; again, the callback routine is used whether or not
the verb returns asynchronously. The program waits for a semaphore to be cleared
by the callback routine before continuing with the loop.

© Copyright IBM Corp. 1998, 2012 147

When the user types the] keystroke to terminate the application, the program
breaks out of the write loop and issues the RUI_TERM verb to end the session. The
session is also terminated if the read loop encounters a non-LUA_OK return code
from the RUI_READ verb.

The program flow can be represented by the diagram shown in Figure 5:

Testing the Application
After examining the source code for the sample application, you may want to test
it. The following steps are required:
1. Ensure that you have access to a suitable host computer against which you can

run the application
2. Compile and link the application
3. Configure Communications Server for use with LUA (this task will normally be

performed by your System Administrator)
4. Run the application

Issue_verb

Initialization

Issue_read

Control returns
to application

Callback
routine

read_done
Read data from

keyboard

other_done

Response
required?

Issue_rsp

rsp_done

Yes

No

Figure 5. Program Flow for the Sample LUA Application

Processing Overview

148 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

These steps are explained in more detail in the following sections.

Host Requirements
To run the sample application, you will need an LU on the host computer. Because
the sample application is emulating a 3270 display terminal, the LU must be
configured at the host as a 3270 display LU (LU type 2) such as 3278 or 3279. The
LU number assigned at the host must be used when configuring the LU on
Communications Server.

Configuration for the Sample Application
Communications Server must be configured to include the required LU. This task
is usually performed by the System Administrator. The following components are
required:
v A DLC, port, and LS
v An LU of type 0–3, with an LU number which matches that of a suitable LU on

the host

These components can be given any names you wish; the only information
required by the application is the LU to be used for the session. This is passed to
the application as a single command-line parameter (the LU name), or as two
command-line parameters (the PU name and LU number). The following items
also apply to LU configuration:
v The LU number configured for this LU in the Communications Server

configuration must match the LU number assigned at the host.
v You can configure an LU pool for use with the application, containing one or

more LUs. To access the pool, you can then supply either the name of the pool
or the name of any LU within it; the least recently used LU from the pool will
be used.

Compiling and Linking the Sample Application
To compile and link the program for an AIX or Linux system, take the following
steps.
1. Copy the file lsample.c from /usr/lib/sna/samples (AIX) or

/opt/ibm/sna/samples (Linux) to a private directory.
2. To compile and link the program for AIX, use the following command:

cc -o lsample -I /usr/include/sna -bimport:/usr/lib/sna/lua.exp -bimport:/usr/lib/sna/csv.exp

To compile and link the program for Linux, use the following command:

gcc -o lsample -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -llua -lsna -lcsv -lpLiS -lpthre

Running the Sample Application
This section assumes you have compiled and linked the sample application as
described in “Compiling and Linking the Sample Application.”

The sample application uses the CSV interface as well as LUA; it includes calls to
the CSV CONVERT verb to translate user-supplied data from ASCII to EBCDIC
before sending it to the host, and to translate data received from the host into
ASCII before displaying it on the screen. This translation uses a user-defined
translation table (Table G), which is stored in a file on the Communications Server

Testing the Application

Chapter 6. Sample LUA Application 149

computer. A suitable file, luatblg.dat, is supplied with the LUA sample application
program source, in the directory /usr/lib/sna/samples (AIX) or
/opt/ibm/sna/samples (Linux).

To run the sample application, follow these steps:
1. Ensure that the Communications Server software is started, and that the LS to

the host is active; contact your System Administrator if necessary.
2. Set the environment variable SNATBLG to the name of the file containing the

Table G translation table. Include the full path of the file if it is not in the
current directory.

3. Start the application by entering one of the following commands:

lsample luname

lsample puname lunumber

In this example, luname is the name of the LU you configured for this
application (or the name of the LU pool or any LU within it).
In this example, puname is the name of the PU that owns the required LU, and
lunumber is the LU number (specified as a decimal number).
The application will display the message LU active when it has successfully
established a session to the host.

4. Enter data as you would normally do to log on and access host applications.
5. To switch between the LU session and the SSCP session, press the [(left square

bracket) key followed by Enter.
The application will display the message LU session or SSCP session to
indicate the session you are currently connected to. It also switches
automatically when a BIND or UNBIND message is received.

6. When you have finished with host applications, follow any steps you would
normally take to end the applications and log off.

7. To terminate the application, press the] (right square bracket) key followed by
Enter.
The application will display the message Closedown followed by Terminated
to indicate that it has ended the session with the host. There may also be a
“Read failed” message, with return codes that indicate that an outstanding
RUI_READ verb was canceled by the RUI_TERM verb.

Testing the Application

150 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Appendix A. Return Code Values

This appendix lists all the possible return codes in the LUA interface in numerical
order. The values are defined in the LUA header file lua_c.h (for AIX / Linux) or
winlua.h (for Windows).

You can use this appendix as a reference to check the meaning of a return code
received by your application.

Primary Return Codes
The following primary return codes are used in LUA applications.
LUA_OK 0x0100
LUA_STATE_CHECK 0x0200
LUA_COMM_SUBSYSTEM_ABENDED 0x03F0
LUA_COMM_SUBSYSTEM_NOT_LOADED 0x04F0
LUA_INVALID_VERB_SEGMENT 0x08F0
LUA_SESSION_FAILURE 0x0F00
LUA_UNEXPECTED_DOS_ERROR 0x11F0
LUA_UNSUCCESSFUL 0x1400
LUA_STACK_TOO_SMALL 0x15F0
LUA_NEGATIVE_RSP 0x1800
LUA_CANCELLED 0x2100
LUA_IN_PROGRESS 0x3000
LUA_STATUS 0x4000
LUA_INVALID_VERB 0xFFFF

Secondary Return Codes
The following secondary return codes are used in LUA applications.
LUA_SEC_RC_OK 0x00000000
LUA_INVALID_LUNAME 0x01000000
LUA_BAD_SESSION_ID 0x02000000
LUA_DATA_TRUNCATED 0x03000000
LUA_BAD_DATA_PTR 0x04000000
LUA_DATA_SEG_LENGTH_ERROR 0x05000000
LUA_RESERVED_FIELD_NOT_ZERO 0x06000000
LUA_INVALID_POST_HANDLE 0x07000000
LUA_PURGED 0x0C000000
LUA_BID_VERB_SEG_ERROR 0x0F000000
LUA_NO_PREVIOUS_BID_ENABLED 0x10000000
LUA_NO_DATA 0x11000000
LUA_BID_ALREADY_ENABLED 0x12000000
LUA_VERB_RECORD_SPANS_SEGMENTS 0x13000000
LUA_INVALID_FLOW 0x14000000
LUA_NOT_ACTIVE 0x15000000
LUA_VERB_LENGTH_INVALID 0x16000000
LUA_REQUIRED_FIELD_MISSING 0x19000000
LUA_READY 0x30000000
LUA_NOT_READY 0x31000000
LUA_INIT_COMPLETE 0x32000000
LUA_SESSION_END_REQUESTED 0x33000000
LUA_NO_SLI_SESSION 0x34000000
LUA_SESSION_ALREADY_OPEN 0x35000000
LUA_INVALID_OPEN_INIT_TYPE 0x36000000
LUA_INVALID_OPEN_DATA 0x37000000
LUA_UNEXPECTED_SNA_SEQUENCE 0x38000000
LUA_NEG_RSP_FROM_BIND_ROUTINE 0x39000000
LUA_NEG_RSP_FROM_CRV_ROUTINE 0x3A000000

© Copyright IBM Corp. 1998, 2012 151

LUA_NEG_RSP_FROM_STSN_ROUTINE 0x3B000000
LUA_CRV_ROUTINE_REQUIRED 0x3C000000
LUA_STSN_ROUTINE_REQUIRED 0x3D000000
LUA_INVALID_OPEN_ROUTINE_TYPE 0x3E000000
LUA_MAX_NUMBER_OF_SENDS 0x3F000000
LUA_SEND_ON_FLOW_PENDING 0x40000000
LUA_INVALID_MESSAGE_TYPE 0x41000000
LUA_RECEIVE_ON_FLOW_PENDING 0x42000000
LUA_DATA_LENGTH_ERROR 0x43000000
LUA_CLOSE_PENDING 0x44000000
LUA_NEGATIVE_RSP_CHASE 0x46000000
LUA_NEGATIVE_RSP_SHUTC 0x47000000
LUA_NEGATIVE_RSP_RSHUTD 0x48000000
LUA_NO_RECEIVE_TO_PURGE 0x4A000000
LUA_CANCEL_COMMAND_RECEIVED 0x4D000000
LUA_RUI_WRITE_FAILURE 0x4E000000
LUA_INVALID_SESSION_TYPE 0x4F000000
LUA_SLI_BID_PENDING 0x51000000
LUA_SLI_PURGE_PENDING 0x52000000
LUA_PROCEDURE_ERROR 0x53000000
LUA_INVALID_SLI_ENCR_OPTION 0x54000000
LUA_RECEIVED_UNBIND 0x55000000
LUA_RECEIVED_UNBIND_HOLD 0x56000000
LUA_RECEIVED_UNBIND_NORMAL 0x57000000
LUA_SLI_LOGIC_ERROR 0x7F000000
LUA_TERMINATED 0x80000000
LUA_NO_RUI_SESSION 0x81000000
LUA_DUPLICATE_RUI_INIT 0x82000000
LUA_INVALID_PROCESS 0x83000000
LUA_API_MODE_CHANGE 0x85000000
LUA_COMMAND_COUNT_ERROR 0x87000000
LUA_NO_READ_TO_PURGE 0x88000000
LUA_MULTIPLE_WRITE_FLOWS 0x89000000
LUA_DUPLICATE_READ_FLOW 0x8A000000
LUA_DUPLICATE_WRITE_FLOW 0x8B000000
LUA_LINK_NOT_STARTED 0x8C000000
LUA_INVALID_ADAPTER 0x8D000000
LUA_ENCR_DECR_LOAD_ERROR 0x8E000000
LUA_ENCR_DECR_PROC_ERROR 0x8F000000
LUA_INVALID_PUNAME 0x90000000
LUA_UNAUTHORIZED_ACCESS 0x90020000
LUA_INVALID_LUNUMBER 0x91000000
LUA_INVALID_FORMAT 0x92000000
LUA_DUPLICATE_RUI_REINIT 0x93000000
LUA_REINIT_INVALID 0x94000000
LUA_TCPCV_LENGTH_INVALID 0x95000000
LUA_LINK_NOT_STARTED_RETRY 0x95FF0000
LUA_NEG_RSP_FROM_SDT_ROUTINE 0x96000000
LUA_NEG_NOTIFY_RSP 0xBE000000
LUA_RUI_LOGIC_ERROR 0xBF000000
LUA_COBOL_NOT_SUPPORTED 0xC0000000
LUA_DUPLICATE_RUI_INIT_PRIMARY 0xC2000000
LUA_LU_INOPERATIVE 0xFF000000

The following secondary return codes are SNA sense codes. They are listed both in
the standard byte ordering used by LUA and in the byte ordering used for SNA
sense codes in SNA reference manuals.
LUA_RESOURCE_NOT_AVAILABLE 0x00000108 (SNA sense 0801 0000)
LUA_RU_DATA_ERROR 0x00000110 (SNA sense 1001 0000)
LUA_INCORRECT_SEQUENCE_NUMBER 0x00000120 (SNA sense 2001 0000)
LUA_INVALID_SC_OR_NC_RH 0x00000140 (SNA sense 4001 0000)
LUA_RU_LENGTH_ERROR 0x00000210 (SNA sense 1002 0000)
LUA_CHAINING_ERROR 0x00000220 (SNA sense 2002 0000)
LUA_FUNCTION_NOT_SUPPORTED 0x00000310 (SNA sense 1003 0000)
LUA_BRACKET 0x00000320 (SNA sense 2003 0000)
LUA_BB_NOT_ALLOWED 0x00000340 (SNA sense 4003 0000)

Secondary Return Codes

152 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

LUA_NAU_INOPERATIVE 0x00000380 (SNA sense 8003 0000)
LUA_DIRECTION 0x00000420 (SNA sense 2004 0000)
LUA_EB_NOT_ALLOWED 0x00000440 (SNA sense 4004 0000)
LUA_SESSION_LIMIT_EXCEEDED 0x00000508 (SNA sense 0805 0000)
LUA_DATA_TRAFFIC_RESET 0x00000520 (SNA sense 2005 0000)
LUA_NO_SESSION 0x00000580 (SNA sense 8005 0000)
LUA_DATA_TRAFFIC_QUIESCED 0x00000620 (SNA sense 2006 0000)
LUA_EXCEPTION_RSP_NOT_ALLOWED 0x00000640 (SNA sense 4006 0000)
LUA_CATEGORY_NOT_SUPPORTED 0x00000710 (SNA sense 1007 0000)
LUA_DATA_TRAFFIC_NOT_RESET 0x00000720 (SNA sense 2007 0000)
LUA_DEFINITE_RSP_NOT_ALLOWED 0x00000740 (SNA sense 4007 0000)
LUA_NO_BEGIN_BRACKET 0x00000820 (SNA sense 2008 0000)
LUA_PACING_NOT_SUPPORTED 0x00000840 (SNA sense 4008 0000)
LUA_MODE_INCONSISTENCY 0x00000908 (SNA sense 0809 0000)
LUA_SC_PROTOCOL_VIOLATION 0x00000920 (SNA sense 2009 0000)
LUA_CD_NOT_ALLOWED 0x00000940 (SNA sense 4009 0000)
LUA_IMMEDIATE_REQ_MODE_ERROR 0x00000A20 (SNA sense 200A 0000)
LUA_NO_RESPONSE_NOT_ALLOWED 0x00000A40 (SNA sense 400A 0000)
LUA_BRACKET_RACE_ERROR 0x00000B08 (SNA sense 800B 0000)
LUA_QUEUED_RESPONSE_ERROR 0x00000B20 (SNA sense 200B 0000)
LUA_CHAINING_NOT_SUPPORTED 0x00000B40 (SNA sense 400B 0000)
LUA_ERP_SYNC_EVENT_ERROR 0x00000C20 (SNA sense 200C 0000)
LUA_BRACKETS_NOT_SUPPORTED 0x00000C40 (SNA sense 400C 0000)
LUA_RSP_BEFORE_SENDING_REQ 0x00000D20 (SNA sense 200D 0000)
LUA_CD_NOT_SUPPORTED 0x00000D40 (SNA sense 400D 0000)
LUA_RSP_CORRELATION_ERROR 0x00000E20 (SNA sense 200E 0000)
LUA_RSP_PROTOCOL_ERROR 0x00000F20 (SNA sense 200F 0000)
LUA_INCORRECT_USE_OF_FI 0x00000F40 (SNA sense 400F 0000)
LUA_ALTERNATE_CODE_NOT_SUPPORT 0x00001040 (SNA sense 4001 0000)
LUA_INCORRECT_RU_CATEGORY 0x00001140 (SNA sense 4011 0000)
LUA_INSUFFICIENT_RESOURCES 0x00001208 (SNA sense 0812 0000)
LUA_INCORRECT_REQUEST_CODE 0x00001240 (SNA sense 4012 0000)
LUA_BB_REJECT_NO_RTR 0x00001308 (SNA sense 0813 0000)
LUA_INCORRECT_SPEC_OF_SDI_RTI 0x00001340 (SNA sense 4013 0000)
LUA_BB_REJECT_RTR 0x00001408 (SNA sense 0814 0000)
LUA_INCORRECT_DR1I_DR2I_ERI 0x00001440 (SNA sense 4014 0000)
LUA_INCORRECT_USE_OF_QRI 0x00001540 (SNA sense 4015 0000)
LUA_INCORRECT_USE_OF_EDI 0x00001640 (SNA sense 4016 0000)
LUA_INCORRECT_USE_OF_PDI 0x00001740 (SNA sense 4017 0000)
LUA_RECEIVER_IN_TRANSMIT_MODE 0x00001B08 (SNA sense 081B 0000)
LUA_REQUEST_NOT_EXECUTABLE 0x00001C08 (SNA sense 081C 0000)
LUA_INVALID_SESSION_PARAMETERS 0x00002108 (SNA sense 0821 0000)
LUA_UNIT_OF_WORK_ABORTED 0x00002408 (SNA sense 0824 0000)
LUA_FM_FUNCTION_NOT_SUPPORTED 0x00002608 (SNA sense 0826 0000)
LUA_LU_COMPONENT_DISCONNECTED 0x00003108 (SNA sense 0831 0000)
LUA_INVALID_PARAMETER_FLAGS 0x00003308 (SNA sense 0833 0000)
LUA_INVALID_PARAMETER 0x00003508 (SNA sense 0835 0000)
LUA_CRYPTOGRAPHY_INOPERATIVE 0x00004808 (SNA sense 0848 0000)
LUA_REQ_RESOURCES_NOT_AVAIL 0x00004B08 (SNA sense 084B 0000)
LUA_SSCP_LU_SESSION_NOT_ACTIVE 0x00005708 (SNA sense 0857 0000)
LUA_SYNC_EVENT_RESPONSE 0x00006708 (SNA sense 0867 0000)
LUA_SESSION_SERVICE_PATH_ERROR 0x00007D08 (SNA sense 087D 0000)
LUA_NEGOTIABLE_BIND_ERROR 0x01003508 (SNA sense 0835 0001)
LUA_REC_CORR_TABLE_FULL 0x01007808 (SNA sense 0878 0001)
LUA_NON_UNIQ_ID 0x011000C0 (SNA sense C000 1001)
LUA_INV_NAU_ADDR 0x012000C0 (SNA sense C000 2001)
LUA_BIND_FM_PROFILE_ERROR 0x02003508 (SNA sense 0835 0002)
LUA_SSCP_PLU_SESS_NOT_ACTIVE 0x02005708 (SNA sense 0857 0002)
LUA_SEND_CORR_TABLE_FULL 0x02007808 (SNA sense 0878 0002)
LUA_NON_UNIQ_NAU_AD 0x021000C0 (SNA sense C000 1002)
LUA_INV_ADPT_NUM 0x022000C0 (SNA sense C000 2002)
LUA_BIND_TS_PROFILE_ERROR 0x03003508 (SNA sense 0835 0003)
LUA_SSCP_SLU_SESS_INACT 0x03005708 (SNA sense 0857 0003)
LUA_SLU_SESSION_LIMIT_EXCEEDED 0x0A000508 (SNA sense 0805 000A)
LUA_BIND_LU_TYPE_ERROR 0x0E003508 (SNA sense 0835 000E)
LUA_HDX_BRACKET_STATE_ERROR 0x21010510 (SNA sense 1005 0121)
LUA_RESPONSE_ALREADY_SENT 0x22010510 (SNA sense 1005 0122)

Secondary Return Codes

Appendix A. Return Code Values 153

LUA_EXR_SENSE_INCORRECT 0x23010510 (SNA sense 1005 0123)
LUA_RESPONSE_OUT_OF_ORDER 0x24010510 (SNA sense 1005 0124)
LUA_CHASE_RESPONSE_REQUIRED 0x25010510 (SNA sense 1005 0125)

Secondary Return Codes

154 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2012 155

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any
kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

156 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Appendix B. Notices 157

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

158 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Bibliography

The following IBM publications provide information about the topics discussed in
this library. The publications are divided into the following broad topic areas:
v IBM Communications Server for AIX
v IBM Communications Server for Linux
v Systems Network Architecture (SNA)
v Advanced Program-to-Program Communication (APPC)
v Programming

For IBM Communications Server for AIX and IBM Communications Server for
Linux books, brief descriptions are provided. For other books, only the titles and
order numbers are shown here.

IBM Communications Server for AIX Publications
The IBM Communications Server for AIX library comprises the following books. In
addition, softcopy versions of these documents are provided on the CD-ROM. See
IBM Communications Server for AIX Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version
4 Release 2 or earlier to IBM Communications Server for AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)
This book is a general introduction to IBM Communications Server for AIX,
including information about supported network characteristics, installation,
configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)
This book provides an overview of SNA and IBM Communications Server for
AIX, and information about IBM Communications Server for AIX configuration
and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)
This book provides information about SNA and IBM Communications Server for
AIX commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer's Guide
(SC23-8591)
This book provides information for experienced “C” or Java programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer's Guide
(SC23-8592)
This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer's Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

© Copyright IBM Corp. 1998, 2012 159

v IBM Communications Server for AIX or Linux CSV Programmer's Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer's Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer's Guide (SC31-8595)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User's Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for AIX library.

IBM Communications Server for Linux Publications
The IBM Communications Server for Linux library comprises the following books.
In addition, softcopy versions of these documents are provided on the CD-ROM.
See IBM Communications Server for Linux Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for Linux Quick Beginnings (GC31-6768 and

GC31-6769)
This book is a general introduction to IBM Communications Server for Linux,
including information about supported network characteristics, installation,
configuration, and operation. There are two versions of this book:

GC31-6768 is for IBM Communications Server for Linux on the i686, x86_64,
and ppc64 platforms
GC31-6769 is for IBM Communications Server for Linux for System z.

v IBM Communications Server for Linux Administration Guide (SC31-6771)
This book provides an overview of SNA and IBM Communications Server for
Linux, and information about IBM Communications Server for Linux
configuration and operation.

v IBM Communications Server for Linux Administration Command Reference
(SC31-6770)
This book provides information about SNA and IBM Communications Server for
Linux commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer's Guide
(SC23-8591)
This book provides information for experienced “C” or Java programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer's Guide
(SC23-8592)

160 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer's Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX or Linux CSV Programmer's Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer's Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for Linux NOF Programmer's Guide (SC31-6778)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for Linux Diagnostics Guide (SC31-6779)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User's Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for Linux.

v IBM Communications Server for Linux Glossary (GC31-6780)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for Linux library.

Systems Network Architecture (SNA) Publications
The following books contain information about SNA networks:
v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)
v Systems Network Architecture: Formats (GA27-3136)
v Systems Network Architecture: Guide to SNA Publications (GC30-3438)
v Systems Network Architecture: Network Product Formats (LY43-0081)
v Systems Network Architecture: Technical Overview (GC30-3073)
v Systems Network Architecture: APPN Architecture Reference (SC30-3422)
v Systems Network Architecture: Sessions between Logical Units (GC20-1868)
v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)
v Systems Network Architecture: Transaction Programmer's Reference Manual for LU

Type 6.2 (GC30-3084)
v Systems Network Architecture: 3270 Datastream Programmer's Reference (GA23-0059)
v Networking Blueprint Executive Overview (GC31-7057)
v Systems Network Architecture: Management Services Reference (SC30-3346)

APPC Publications
The following books contain information about Advanced Program-to-Program
Communication (APPC):
v APPC Application Suite V1 User's Guide (SC31-6532)
v APPC Application Suite V1 Administration (SC31-6533)
v APPC Application Suite V1 Programming (SC31-6534)

Bibliography 161

v APPC Application Suite V1 Online Product Library (SK2T-2680)
v APPC Application Suite Licensed Program Specifications (GC31-6535)
v z/OS V1R2.0 Communications Server: APPC Application Suite User's Guide

(SC31-8809)

Programming Publications
The following books contain information about programming:
v Common Programming Interface Communications CPI-C Reference (SC26-4399)
v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

162 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Index

A
ACTLU 7
AIX / Linux environment

considerations 41
ASCII to EBCDIC translation 149
asynchronous verb completion 7, 15

B
BIND 7
BIND parameters, negotiating 34, 35

C
callback routine 7, 15
CANCEL 37, 39
child process 41
common data structure 46, 47
compatibility, with IBM OS/2 Extended

Edition 42
compiling and linking 41
configuration information 4, 40
courtesy acknowledgment 37, 39
CSV CONVERT verb 149

E
EBCDIC to ASCII translation 149
entry point 13
establishing the SSCP session 7
expedited flow 4

F
function calls for LUA 16

G
GetLuaReturnCode call 25

I
INITSELF 7

L
LU pools 4, 41
LU session 3
LU types 1
LUA concepts 1
LUA definition 1
LUA entry point 13

Windows 16
LUA verb, issuing 31
LUA verbs summary

RUI 5
SLI 5

LUA_VERB_RECORD data structure 46

M
multiple processes 41

N
normal flow 4
NOTIFY 8

P
pacing 36

RUI primary 38
portability to other environments 42
primary return codes 151
PU-SSCP session 3
purging 37, 39

R
reserved parameters 42, 45, 55, 99
return codes

primary 151
secondary 151

RU 1, 2
RUI 2
RUI and SLI, comparison 1
RUI entry point 13
RUI verbs summary 5
RUI_BID

interaction with other verbs 61
returned parameters 56
supplied parameters 55
usage and restrictions 61

RUI_INIT
interaction with other verbs 67
supplied parameters 62
usage and restrictions 68

RUI_INIT_PRIMARY
interaction with other verbs 71
supplied parameters 68
usage and restrictions 72

RUI_PURGE
interaction with other verbs 76
returned parameters 73
supplied parameters 72

RUI_READ
interaction with other verbs 83
returned parameters 78
supplied parameters 76
usage and restrictions 84

RUI_REINIT
interaction with other verbs 87
returned parameters 85
supplied parameters 84
usage and restrictions 88

RUI_TERM
interaction with other verbs 92
returned parameters 89
supplied parameters 88

RUI_WRITE
interaction with other verbs 98
returned parameters 94
supplied parameters 92
usage and restrictions 98

S
sample application

configuration 149
host requirements 149
processing overview 147
running 149
testing 148

sample LUA communication sequence 7
SDT 7
secondary return codes 151
segmentation 37

RUI primary 39
SLI 2
SLI and RUI, comparison 1
SLI entry point 13
SLI verbs summary 5
SLI_BID

interaction with other verbs 105
returned parameters 100
supplied parameters 99
usage and restrictions 105

SLI_BIND_ROUTINE
interaction with other verbs 143
returned parameters 142, 143
supplied parameters 142
usage and restrictions 143

SLI_CLOSE
interaction with other verbs 111
returned parameters 107
supplied parameters 106
usage and restrictions 111

SLI_OPEN
interaction with other verbs 120
returned parameters 116
supplied parameters 112
usage and restrictions 120

SLI_PURGE
interaction with other verbs 124
returned parameters 121
supplied parameters 121

SLI_RECEIVE
interaction with other verbs 132
returned parameters 126
supplied parameters 125
usage and restrictions 133

SLI_SDT_ROUTINE
interaction with other verbs 144
returned parameters 144
supplied parameters 143
usage and restrictions 144

© Copyright IBM Corp. 1998, 2012 163

SLI_SEND
interaction with other verbs 141
returned parameters 136
supplied parameters 134
usage and restrictions 141

SLI_STSN_ROUTINE
interaction with other verbs 145
returned parameters 145
supplied parameters 144
usage and restrictions 145

SNA components required for LUA
communications 2, 3

SNA information 34
RUI Primary 38

SNA messages, relationship to LUA
verbs 8

SNA sense codes 35, 43
values 152

specific data structure 52
SSCP 3
SSCP session 3
synchronous verb completion 15, 21, 30

U
UNBIND 7

V
VCB

common data structure 45
format 45
specific data structure 45
structure 14

W
window handle 7
Windows environment

considerations 41

164 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

Communicating your comments to IBM

If you especially like or dislike anything about this document, use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send your comments to us in any of the following ways:
v To send comments by FAX, use this number: 1+919-254-1258
v To send comments electronically, use this address: comsvrcf@us.ibm.com
v To send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS® Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1998, 2012 165

166 IBM Communications Server for Data Center Deployment on AIX or Linux LUA Programmer's Guide

����

Product Number: 5725-H32

Printed in USA

SC23-8590-01

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What Is New for This Release
	Where to Find More Information

	Chapter 1. Concepts
	What Is LUA?
	Choosing Which Interface to Use
	LUs and Sessions
	Configuration

	LUA Verbs
	RUI Verb Summary
	SLI Verb Summary
	Asynchronous Verb Completion

	A Sample LUA Communication Sequence
	LUA Compatibility

	Chapter 2. Designing and Writing LUA Applications
	LUA Entry Points for AIX or Linux Applications
	RUI Function Call
	SLI Function Call
	Supplied Parameters
	Returned Values
	Usage
	Callback Routine for Asynchronous Verb Completion
	Function Call
	Supplied Parameters
	Returned Values

	LUA Entry Points for Windows Applications
	RUI
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinRUIStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinRUI
	Function Call
	Supplied Parameters
	Returned Values
	Usage
	Synchronous and Asynchronous Verb Completion

	WinRUIGetLastInitStatus
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinRUICleanup
	Function Call
	Supplied Parameters
	Returned Values

	GetLuaReturnCode
	Function Call
	Supplied Parameters
	Returned Values

	SLI
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinSLIStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinSLI
	Function Call
	Supplied Parameters
	Returned Values
	Usage
	Synchronous and Asynchronous Verb Completion

	WinSLICleanup
	Function Call
	Supplied Parameters
	Returned Values

	Issuing an LUA Verb
	SNA Information
	BIND Checking: RUI
	BIND Checking: SLI
	Negative Responses and SNA Sense Codes
	Distinguishing SNA Sense Codes from Other Secondary Return Codes
	Information about SNA Sense Codes

	Pacing
	Segmentation
	Modification of Nonstandard Host Response/Request Header (RH) Bits
	Courtesy Acknowledgments
	Purging Data to End of Chain

	SNA Information for RUI Primary
	Responsibilities of the Primary RUI application
	Pacing
	Segmentation
	Restrictions
	Courtesy Acknowledgments
	Purging Data to End of Chain

	Configuration Information
	Data Link Control (DLC), Port, and Link Station (LS)
	LU
	LU Pool (Optional)

	AIX or Linux Considerations
	LUA Header File
	Multiple Processes and Multiple Sessions
	Compiling and Linking the LUA Application

	Windows Considerations
	Multiple Sessions and Multiple Tasks
	Compiling and Linking LUA Programs
	Compiler Options for Structure Packing
	Header File
	Load-Time Linking
	Run-Time Linking

	Terminating Applications

	Writing Portable Applications

	Chapter 3. LUA VCB Structure
	LUA Verb Control Block (VCB) Format
	LUA_VERB_RECORD Data Structure
	Common Data Structure
	Specific Data Structure

	Chapter 4. RUI Verbs
	RUI_BID
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_INIT
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_INIT_PRIMARY
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_PURGE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	RUI_READ
	Supplied Parameters
	Returned Parameters
	Successful Execution or Truncated Data
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_REINIT
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	RUI_TERM
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	RUI_WRITE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	Chapter 5. SLI Verbs
	SLI_BID
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_CLOSE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_OPEN
	Supplied Parameters
	Return Value from SLI Entry Point
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_PURGE
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Unsuccessful Execution

	Interaction with Other Verbs

	SLI_RECEIVE
	Supplied Parameters
	Returned Parameters
	Successful Execution or Truncated Data
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_SEND
	Supplied Parameters
	Returned Parameters
	Successful Execution
	Successful Execution: Status Information
	Unsuccessful Execution

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_BIND_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: BIND Accepted or Negotiated
	Unsuccessful Execution: BIND Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_SDT_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: SDT Response
	Unsuccessful Execution: SDT Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	SLI_STSN_ROUTINE
	Supplied Parameters
	Returned Parameters
	Successful Execution: STSN Response
	Unsuccessful Execution: STSN Rejected

	Interaction with Other Verbs
	Usage and Restrictions

	Chapter 6. Sample LUA Application
	Processing Overview
	Testing the Application
	Host Requirements
	Configuration for the Sample Application
	Compiling and Linking the Sample Application
	Running the Sample Application

	Appendix A. Return Code Values
	Primary Return Codes
	Secondary Return Codes

	Appendix B. Notices
	Trademarks

	Bibliography
	IBM Communications Server for AIX Publications
	IBM Communications Server for Linux Publications
	Systems Network Architecture (SNA) Publications
	APPC Publications
	Programming Publications

	Index
	A
	B
	C
	E
	F
	G
	I
	L
	M
	N
	P
	R
	S
	U
	V
	W

	Communicating your comments to IBM

