
IBM Communications Server for Data Center Deployment
on AIX or Linux

CPI-C Programmer's Guide
Version 7.0

SC23-8591-01

���

IBM Communications Server for Data Center Deployment
on AIX or Linux

CPI-C Programmer's Guide
Version 7.0

SC23-8591-01

���

Note:
Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices,” on page 179.

Sixth Edition (December 2012)

This edition applies to IBM Communications Server for Data Center Deployment on AIX or Linux, Version 7.0,
program number 5725-H32, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to "Attn: z/OS Communications Server Information Development"

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1998, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Tables ix

Figures xi

About This Book xiii
Who Should Use This Book. xiii
How to Use This Book xiv

Organization of This Book xiv
Typographic Conventions xiv
Graphic Conventions xv

What Is New for This Release xv
Where to Find More Information xv

Chapter 1. Concepts 1
What Is CPI-C? 1

Communications Server CPI-C Option Set Support 1
Communication between Programs 2
Logical Unit 6.2 3
Sessions 3
Conversations 3
Contention 3
Characteristics 3
CPI-C Calls 3
The Conversation Process 4
Conversation Types 4

A Simple Mapped Conversation 4
Starting a Conversation 4
Sending Data 5
Receiving Data 5
Ending a Conversation 5

Confirmation Processing 5
Establishing the Synchronization Level 6
Sending a Confirmation Request 6
Receiving a Confirmation Request 6
Responding to a Confirmation Request 6
Deallocating the Conversation 7

Conversation States 7
The Program's View of the Conversation 8
State Changes 8
State Checks 8

Changing Conversation States 8
Initial States 10
Changing to Receive State 10
Changing to Send State 10

Side Information. 10
Basic Conversations. 11

Logical Records 11
Error Log Data 12

Multiple Conversations 12
Overview of Conversation Security 12

Conversation Security for Multiple Conversations 13
Already-Verified Conversation Security 14

Nonblocking Operation 14
CPI-C and LU 6.2 17

Chapter 2. Writing CPI-C Applications 19
CPI-C Call Summary 19

Starting a Conversation 19
Sending data 21
Receiving Data 22
Converting Data Between ASCII and EBCDIC . . 22
Confirming Receipt of Data and Reporting Errors 23
Issuing Calls in Nonblocking Mode 23
Issuing Calls in Blocking Mode 24
Getting Information 25
Ending a Conversation 25
Administering Side Information 26

Initial Conversation Characteristics 27
Side Information. 30

Local LU Alias 31
Partner LU Name 31
Partner Program Type and Name 31
Mode Name 31
Conversation Security Type 31
Security User ID and Password. 32
Application-Specified Side Information 32

Configuration 32
Specifying the Local TP Name 33

Specify_Local_TP_Name 33
Context 33
APPCTPN Environment Variable 33
Default Value. 34

Specifying the Local LU 34
Set_Local_LU_Name 35
Context 35
APPCLLU Environment Variable 35
Side Information. 36
Default Local LU 36
Control Point LU 36

How Programs Get Started 36
Invoked Program: Automatically Started. . . . 36
Invoked Program: User-Started 37

AIX or Linux Considerations 37
CPI-C Header File 37
Multiple Processes 37
Compiling and Linking the CPI-C Application. . 38

Windows Considerations 38
Windows CPI-C Files 38
Function Prototypes 39
Multiple Processes and Multiple Conversations 39
Windows Function Calls 39
Blocking Calls 40
Terminating Applications 41
Compiling and Linking CPI-C Applications. . . 41

Java CPI-C Considerations 42
Using Java CPI-C Classes 42
Usage Example 43
Compiling and Linking the Java CPI-C
Application 44
Running the Java CPI-C Application 45

Writing Portable Applications 46

© Copyright IBM Corp. 1998, 2012 iii

Chapter 3. CPI-C Calls 47
Information Provided for CPI-C Calls. 47

Data Types 47
Data Structures 48
Symbolic Constants. 48
Strings 48
Validity of Returned Parameters 48

Information Provided for Windows Function Calls 48
Accept_Conversation (cmaccp) 49

Function Call 49
Function Call for Java CPI-C. 49
Supplied Parameters 49
Returned Parameters 49
State When Issued 50
State Change 50
Usage Notes 50

Accept_Incoming (cmacci) 51
Function Call 51
Function Call for Java CPI-C. 51
Supplied Parameters 51
Returned Parameters 51
State When Issued 52
State Change 52
Usage Notes 52

Allocate (cmallc). 53
Function Call 53
Function Call for Java CPI-C. 53
Supplied Parameters 53
Returned Parameters 54
State When Issued 54
State Change 54
Usage Notes 54

Cancel_Conversation (cmcanc) 55
Function Call 55
Function Call for Java CPI-C. 55
Supplied Parameters 56
Returned Parameters 56
State When Issued 56
State Change 56
Usage Notes 56

Check_For_Completion (cmchck) 56
Function Call 57
Supplied Parameters 57
Returned Parameters 57
State When Issued 57
State Change 57
Usage Notes 57

Confirm (cmcfm) 58
Function Call 58
Function Call for Java CPI-C. 58
Supplied Parameters 58
Returned Parameters 58
State When Issued 59
State Change 60
Usage Notes 60

Confirmed (cmcfmd) 60
Function Call 60
Function Call for Java CPI-C. 60
Supplied Parameters 61
Returned Parameters 61
State When Issued 61

State Change 61
Usage Notes 62

Convert_Incoming (cmcnvi) 62
Function Call 62
Function Call for Java CPI-C. 63
Supplied Parameters 63
Returned Parameters 63
State When Issued 63
State Change 64
Usage Note 64

Convert_Outgoing (cmcnvo) 64
Function Call 64
Function Call for Java CPI-C. 64
Supplied Parameters 64
Returned Parameters 65
State When Issued 65
State Change 65
Usage Note 65

Deallocate (cmdeal). 65
Function Call 66
Function Call for Java CPI-C. 66
Supplied Parameters 66
Returned Parameters 66
State When Issued 67
State Change 67
Usage Notes 67

Delete_CPIC_Side_Information (xcmdsi) 68
Function Call 68
Supplied Parameters 68
Returned Parameters 68
State When Issued 68
State Change 68
Usage Notes 69

Extract_Conversation_Context (cmectx) 69
Function Call 69
Function Call for Java CPI-C. 69
Supplied Parameters 69
Returned Parameters 69
State When Issued 70
State Change 70
Usage Notes 70

Extract_Conversation_Security_Type (xcecst) . . . 70
Function Call 70
Supplied Parameters 71
Returned Parameters 71
State When Issued 72
State Change 72

Extract_Conversation_Security_User_ID (cmecsu) . . 72
Extract_Conversation_Security_User_ID (xcecsu) . . 72
Extract_Conversation_State (cmecs) 72

Function Call 72
Function Call for Java CPI-C. 73
Supplied Parameters 73
Returned Parameters 73
State When Issued 73
State Change 73

Extract_Conversation_Type (cmect) 73
Function Call 74
Function Call for Java CPI-C. 74
Supplied Parameters 74
Returned Parameters 74

iv IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

State When Issued 74
State Change 74

Extract_CPIC_Side_Information (xcmesi). 74
Function Call 75
Supplied Parameters 75
Returned Parameters 75
State When Issued 77
State Change 77
Usage Notes 77

Extract_Local_LU_Name (cmelln) 77
Function Call 77
Function Call for Java CPI-C. 77
Supplied Parameters 78
Returned Parameters 78
State When Issued 78
State Change 78
Usage Notes 78

Extract_Maximum_Buffer_Size (cmembs) 78
Function Call 79
Function Call for Java CPI-C. 79
Supplied Parameters 79
Returned Parameters 79
State When Issued 79
State Change 79

Extract_Mode_Name (cmemn) 79
Function Call 79
Function Call for Java CPI-C. 80
Supplied Parameters 80
Returned Parameters 80
State When Issued 80
State Change 80

Extract_Partner_LU_Name (cmepln) 80
Function Call 80
Function Call for Java CPI-C. 81
Supplied Parameters 81
Returned Parameters 81
State When Issued 81
State Change 81

Extract_Security_User_ID (cmesui or cmecsu) . . . 81
Function Call 82
Function Call for Java CPI-C. 82
Supplied Parameters 82
Returned Parameters 82
State When Issued 83
State Change 83
Usage Notes 83

Extract_Sync_Level (cmesl) 83
Function Call 83
Function Call for Java CPI-C. 83
Supplied Parameters 83
Returned Parameters 84
State When Issued 84
State Change 84

Extract_TP_Name (cmetpn) 84
Function Call 84
Function Call for Java CPI-C. 85
Supplied Parameters 85
Returned Parameters 85
State When Issued 85
State Change 85

Flush (cmflus) 85

Sources of Buffered Data 85
Function Call 86
Function Call for Java CPI-C. 86
Supplied Parameters 86
Returned Parameters 86
State When Issued 86
State Change 87

Initialize_Conversation (cminit) 87
Function Call 87
Function Call for Java CPI-C. 87
Supplied Parameters 87
Returned Parameters 88
State When Issued 88
State Change 88
Usage Notes 88

Initialize_For_Incoming (cminic) 88
Function Call 89
Function Call for Java CPI-C. 89
Supplied Parameters 89
Returned Parameters 89
State When Issued 89
State Change 89

Prepare_To_Receive (cmptr) 89
Function Call 90
Function Call for Java CPI-C. 90
Supplied Parameters 90
Returned Parameters 90
State When Issued 91
State Change 91
Usage Notes 91

Receive (cmrcv) 92
How a Program Receives Data 92
Function Call 93
Function Call for Java CPI-C. 93
Supplied Parameters 93
Returned Parameters 93
State When Issued 96
State Change 97
Usage Notes 99

Release_Local_TP_Name (cmrltp). 100
Function Call 100
Function Call for Java CPI-C 100
Supplied Parameters 100
Returned Parameters 100
State When Issued. 100
State Change 101
Usage Notes. 101

Request_To_Send (cmrts) 101
Action of the Partner Program. 101
When the Local Program Can Send Data . . . 101
Function Call 101
Function Call for Java CPI-C 101
Supplied Parameters 102
Returned Parameters 102
State When Issued. 102
State Change 102
Usage Notes. 102

Send_Data (cmsend) 103
Function Call 103
Function Call for Java CPI-C 103
Supplied Parameters 103

Contents v

Returned Parameters 104
State When Issued. 105
State Change 105
Usage Notes. 105

Send_Error (cmserr) 106
Function Call 106
Function Call for Java CPI-C 106
Supplied Parameters 106
Returned Parameters 106
State When Issued. 109
State Change 109
Usage Notes. 109

Set_Conversation_Context (cmsctx) 110
Function Call 110
Function Call for Java CPI-C 110
Supplied Parameters 110
Returned Parameters 110
State When Issued 111
State Change 111
Usage Notes 111

Set_Conversation_Security_Password (cmscsp) . . 111
Function Call 111
Function Call for Java CPI-C 112
Supplied Parameters 112
Returned Parameters 112
State When Issued 113
State Change 113
Usage Notes 113

Set_Conversation_Security_Password (xcscsp) . . 113
Set_Conversation_Security_Type (cmscst) 113

Function Call 113
Function Call for Java CPI-C 113
Supplied Parameters 114
Returned Parameters 114
State When Issued 115
State Change 115
Usage Notes 115

Set_Conversation_Security_Type (xcscst) 115
Set_Conversation_Security_User_ID (cmscsu) . . . 115

Function Call 116
Function Call for Java CPI-C 116
Supplied Parameters 116
Returned Parameters 116
State When Issued 117
State Change 117
Usage Notes 117

Set_Conversation_Security_User_ID (xcscsu) . . . 117
Set_Conversation_Type (cmsct) 117

Function Call 117
Function Call for Java CPI-C 117
Supplied Parameters 118
Returned Parameters 118
State When Issued 118
State Change 118
Usage Notes 118

Set_CPIC_Side_Information (xcmssi). 118
Function Call 119
Supplied Parameters 119
Returned Parameters 121
State When Issued. 122
State Change 122

Usage Notes. 122
Set_Deallocate_Type (cmsdt) 122

Function Call 122
Function Call for Java CPI-C 122
Supplied Parameters 122
Returned Parameters 123
State When Issued. 124
State Change 124
Usage Notes. 124

Set_Error_Direction (cmsed) 124
Function Call 124
Function Call for Java CPI-C 124
Supplied Parameters 125
Returned Parameters 125
State When Issued. 125
State Change 125
Usage Notes. 125

Set_Fill (cmsf) 126
Function Call 126
Function Call for Java CPI-C 126
Supplied Parameters 126
Returned Parameters 126
State When Issued. 127
State Change 127
Usage Notes. 127

Set_Local_LU_Name (cmslln) 127
Function Call 127
Function Call for Java CPI-C 127
Supplied Parameters 127
Returned Parameters 128
State When Issued. 128
State Change 128
Usage Notes. 128

Set_Log_Data (cmsld) 128
Function Call 129
Function Call for Java CPI-C 129
Supplied Parameters 129
Returned Parameters 129
State When Issued. 130
State Change 130
Usage Notes. 130

Set_Mode_Name (cmsmn) 130
Function Call 130
Function Call for Java CPI-C 130
Supplied Parameters 130
Returned Parameters 131
State When Issued. 131
State Change 131
Usage Notes. 132

Set_Partner_LU_Name (cmspln) 132
Function Call 132
Function Call for Java CPI-C 132
Supplied Parameters 132
Returned Parameters 133
State When Issued. 133
State Change 133
Usage Notes. 133

Set_Prepare_To_Receive_Type (cmsptr) 133
Function Call 133
Function Call for Java CPI-C 134
Supplied Parameters 134

vi IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Returned Parameters 134
State When Issued. 135
State Change 135
Usage Notes. 135

Set_Processing_Mode (cmspm) 135
Function Call 136
Supplied Parameters 136
Returned Parameters 136
State When Issued. 137
State Change 137
Usage Notes. 137

Set_Receive_Type (cmsrt) 137
Function Call 137
Function Call for Java CPI-C 137
Supplied Parameters 137
Returned Parameters 138
State When Issued. 138
State Change 138
Usage Notes. 138

Set_Return_Control (cmsrc). 138
Function Call 138
Function Call for Java CPI-C 138
Supplied Parameters 138
Returned Parameters 139
State When Issued. 139
State Change 139
Usage Notes. 139

Set_Send_Type (cmsst) 139
Function Call 140
Function Call for Java CPI-C 140
Supplied Parameters 140
Returned Parameters 140
State When Issued. 141
State Change 141
Usage Notes. 141

Set_Sync_Level (cmssl) 141
Function Call 141
Function Call for Java CPI-C 141
Supplied Parameters 142
Returned Parameters 142
State When Issued. 142
State Change 142
Usage Notes. 142

Set_TP_Name (cmstpn) 143
Function Call 143
Function Call for Java CPI-C 143
Supplied Parameters 143
Returned Parameters 144
State When Issued. 144
State Change 144
Usage Notes. 144

Specify_Local_TP_Name (cmsltp). 144
Function Call 144
Function Call for Java CPI-C 145
Supplied Parameters 145
Returned Parameters 145
State When Issued. 145
State Change 145
Usage Notes. 145

Specify_Windows_Handle (xchwnd). 146
Function Call 146

Supplied Parameters 146
Returned Parameters 147
State When Issued. 147
State Change 147

Test_Request_to_Send_Received (cmtrts) 147
Function Call 147
Function Call for Java CPI-C 147
Supplied Parameters 147
Returned Parameters 148
State When Issued. 148
State Change 148

Wait_For_Conversation (cmwait) 148
Function Call 149
Supplied Parameters 149
Returned Parameters 149
State When Issued. 150
State Change 150
Usage Notes. 150

WinCPICCleanup 151
Function Call 151
Supplied Parameters 151
Returned Values 151

WinCPICIsBlocking 151
Function Call 151
Supplied Parameters 152
Returned Values 152

WinCPICSetBlockingHook 152
Function Call 152
Supplied Parameters 152
Returned Values 152
Usage 152

WinCPICStartup 153
Function Call 153
Supplied Parameters 153
Returned Values 153

WinCPICUnhookBlockingHook 154
Function Call 154
Supplied Parameters 155
Returned Values 155

WinCPICSetEvent 155
Function Call 155
Supplied Parameters 155
Returned Parameters 155
Usage Notes. 156

WinCPICExtractEvent 156
Function Call 156
Supplied Parameters 156
Returned Parameters 156
Usage Notes. 156

Chapter 4. Sample CPI-C Transaction
Programs 159
Processing Overview 159
Pseudocode 159

CSAMPLE1 (Invoking Program) 159
CSAMPLE2 (Invoked TP) 160

Testing the TPs 160

Chapter 5. Sample Java CPI-C
Transaction Program 163

Contents vii

Overview. 163
Compiling and Linking the Sample Program . . . 163
Running the Sample Program 164

Appendix A. Return Code Values . . . 167

Appendix B. Common Return Codes 169
Return Codes from Any Partner Program 169
Non-CPI-C LU 6.2 Partner Program 172

Appendix C. Conversation State
Changes 175

Appendix D. Notices 179
Trademarks 181

Bibliography. 183
IBM Communications Server for AIX Publications 183
IBM Communications Server for Linux Publications 184
Systems Network Architecture (SNA) Publications 185
APPC Publications 185
Programming Publications 186

Index 187

Communicating your comments to
IBM. 189

viii IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Tables

1. Typographic Conventions xiv
2. Mapping Between X/Open Functions and IBM

CPI-C 2.0 Functions 2
3. A Simple Mapped Conversation 4
4. Confirmation Processing 5
5. Changing Conversation States. 8
6. Nonblocking Operation 15
7. Set_* Calls to Change Initial Conversation

Characteristics 20
8. Extract_* Calls and Actions 25
9. Calls to Add, Replace, Retrieve, or Delete Side

Information 26
10. Changing Initial Conversation Characteristics 27
11. Java CPI-C Constants 42
12. State Changes for the Allocate Call. 54
13. State Changes for the Confirm Call 60
14. State Changes for the Confirmed Call 61

15. Conversation States When Issuing the
Deallocate Call 67

16. State Changes for the Deallocate Call 67
17. State Changes for the Prepare_To_Receive Call 91
18. State Changes When the Receive Call Is Issued

in Receive State 97
19. State Changes When the Receive Call Is Issued

in Send State 97
20. State Changes When the Receive Call Is Issued

in Send-Pending State 98
21. State Changes When the Receive Call Is Issued

in Any Allowable State. 98
22. State Changes Caused by a Data Transmission

Error 99
23. State Changes for the Send_Data Call 105
24. State Changes for the Send_Error Call 109
25. Conversation State Changes. 176

© Copyright IBM Corp. 1998, 2012 ix

x IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Figures

1. Communication between Programs 2 2. Multiple Conversations 12

© Copyright IBM Corp. 1998, 2012 xi

xii IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

About This Book

This book is a guide for developing C-language or Java application programs that
use Common Programming Interface for Communications (CPI-C) to exchange
data in a Systems Network Architecture (SNA) environment.

This manual applies to IBM® Communications Server for Data Center Deployment
(Communications Server), program product number 5725-H32, which is an IBM
software product that enables a server running AIX®, or a computer running
Linux, to exchange information with other nodes on an SNA network.

There are three different installation variants of IBM Communications Server for
Data Center Deployment, depending on the hardware on which it operates:

IBM Communications Server for Data Center Deployment on AIX (CS/AIX)
IBM Communications Server for Data Center Deployment on AIX operates
on a server running AIX Version 6.1 or 7.1 base operating system.

IBM Communications Server for Data Center Deployment on Linux (CS Linux)
IBM Communications Server for Data Center Deployment on Linux
operates on the following:
v 32–bit Intel workstations running Linux (i686)
v 64–bit AMD64/Intel EM64T workstations running Linux (x86_64)
v IBM pSeries® computers running Linux (ppc64)

IBM Communications Server for Data Center Deployment on Linux for System
z® (CS Linux for System z)

IBM Communications Server for Data Center Deployment on Linux for
System z operates on System z mainframes running Linux for System z
(s390x).

In this book, the name Communications Server is used to indicate any of these
variants, and the term “Communications Server computer” is used to indicate any
type of computer running Communications Server, except where differences are
described explicitly.

The Communications Server implementation of CPI-C is based on IBM's
implementation of CPI-C in its OS/2 products (with modifications for the AIX /
Linux environment).

Programs written to use the Communications Server implementation of CPI-C can
exchange data with programs written to use other implementations of CPI-C that
adhere to the SNA Logical Unit (LU) 6.2 architecture.

This book applies to Version 7.0 of Communications Server.

Who Should Use This Book
This book is intended for experienced C or Java programmers who write Systems
Network Architecture (SNA) transaction programs for systems with
Communications Server. Programmers may or may not have prior experience with
SNA or the communication facilities of Communications Server.

© Copyright IBM Corp. 1998, 2012 xiii

Application programmers design and code transaction and application programs
that use the Communications Server programming interfaces to send and receive
data over an SNA network. They should be thoroughly familiar with SNA, the
remote program with which the transaction or application program communicates,
and the AIX or Linux operating system programming and operating environments.

More detailed information about writing application programs is provided in the
manual for each API. For additional information about Communications Server
publications, see the bibliography.

How to Use This Book
This section explains how information is organized and presented in this book.

Organization of This Book
This book is organized as follows:
v Chapter 1, “Concepts,” on page 1, introduces the fundamental concepts of CPI-C.

It is intended for programmers who are not familiar with CPI-C.
v Chapter 2, “Writing CPI-C Applications,” on page 19, contains general

information a CPI-C programmer needs when writing CPI-C Applications.
v Chapter 3, “CPI-C Calls,” on page 47, describes each CPI-C call in detail. Each

description includes the following: purpose, parameters, conversation states in
which the call can be issued, and conversation state changes after the call has
executed. Differences between the implementations of CPI-C for the different
operating systems, and between the implementations for C and Java
programs, are indicated where they occur.

v Chapter 4, “Sample CPI-C Transaction Programs,” on page 159, describes the
Communications Server CPI-C sample programs that illustrate the use of CPI-C
calls in a C program, and includes instructions for compiling, linking, and
running the programs.

v Chapter 5, “Sample Java CPI-C Transaction Program,” on page 163, describes the
Communications Server Java CPI-C sample program that illustrates the use of
CPI-C calls in a Java application, and includes instructions for compiling,
linking, and running the program.

v Appendix A, “Return Code Values,” on page 167, lists all the possible return
codes in the CPI-C interface in numerical order and gives their meanings.

v Appendix B, “Common Return Codes,” on page 169, documents certain return
codes that are common to several calls.

v Appendix C, “Conversation State Changes,” on page 175, provides information
about CPI-C conversation states: which CPI-C calls are permitted in each state,
and the state to which the conversation changes on return from each call.

Typographic Conventions
Table 1 shows the typographic styles used in this document.

Table 1. Typographic Conventions

Special Element Sample of Typography

Document title IBM Communications Server for Data Center
Deployment on AIX or Linux APPC
Programmer's Guide

File or path name cmc.h
Command or AIX / Linux utility vi

Who Should Use This Book

xiv IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Table 1. Typographic Conventions (continued)

Special Element Sample of Typography

Option or flag -I
Parameter or Motif field data_received; request_to_send_received
Literal value or selection that the user can
enter (including default values)

0; 32,767

Constant or signal CM_NONE
Return value CM_OK; CM_PRODUCT_SPECIFIC_ERROR
Variable representing a supplied value functionname
Environment variable APPCTPN
Programming verb RECEIVE
User input cc -I
Function, call, or entry point WinCPICSetEvent
Data structure WCPICDATA
Hexadecimal value 0x20

Graphic Conventions

UNIX

This symbol is used to indicate the start of a section of text that applies only to the
AIX or Linux operating system. It applies to AIX / Linux servers and to the IBM
Remote API Client running on AIX, Linux, Linux for pSeries or Linux for System z.

WINDOWS

This symbol is used to indicate the start of a section of text that applies to the IBM
Remote API Client on Windows.

This symbol indicates the end of a section of operating system specific text. The
information following this symbol applies regardless of the operating system.

What Is New for This Release
Communications Server for Data Center Deployment Version 7.0 is a follow-on
product to Distributed Communications Server Version 6.4, which continues to be
supported.

Where to Find More Information
See the bibliography for other books in the Communications Server library, as well
as books that contain additional information about topics related to SNA and AIX
/ Linux workstations.

How to Use This Book

About This Book xv

xvi IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Chapter 1. Concepts

This chapter introduces the fundamental concepts of CPI-C in a distributed
processing environment. The following topics are covered:
v What is CPI-C?
v An example of a simple mapped conversation
v Confirmation processing
v Conversation states
v How to change conversation states
v Side information
v Basic conversations
v Multiple conversations
v Conversation security
v Nonblocking operation
v CPI-C and LU 6.2

What Is CPI-C?
CPI-C stands for Common Programming Interface for Communications. CPI-C is a
portable application programming interface, or API, that enables peer-to-peer
communications among programs in an SNA environment.

CPI-C enables application programs distributed across a network to work together.
By communicating with each other and exchanging data, they can accomplish a
single processing task, such as querying a remote data base, copying a remote file,
or sending or receiving electronic mail.

These programs communicate as peers, on an equal (rather than hierarchical) basis.
Together, programs distributed across a local-area or wide-area network perform
distributed processing.

Communications Server CPI-C Option Set Support

UNIX

For C programs (not for Java programs), Communications Server CPI-C
implements IBM's CPI-C 2.0. It supports the mandatory CPI-C 2.0 conformance
class, Conversations, and the following optional conformance classes:
v LU 6.2
v Conversation-level nonblocking operation
v Server
v Data conversion routines
v Security

In addition, Communications Server CPI-C provides support for additional
functions that were defined as part of the X/Open CPI-C implementation and have
been incorporated into IBM CPI-C 2.0. Communications Server supports these
entry points for back-compatibility with existing CPI-C applications. Wherever

© Copyright IBM Corp. 1998, 2012 1

possible, CPI-C programmers should use the IBM CPI-C 2.0 versions of the
functions. The mapping between the X/Open functions and the IBM CPI-C 2.0
functions is shown in Table 2.

Table 2. Mapping Between X/Open Functions and IBM CPI-C 2.0 Functions

X/Open Function IBM CPI-C 2.0 Function

Extract_Conversation_Security_User_ID
(xcecsu)

Extract_Security_User_ID (cmesui)

Set_Conversation_Security_Password (xcscsp) Set_Conversation_Security_Password
(cmscsp)

Set_Conversation_Security_Type (xcscst) Set_Conversation_Security_Type (cmscst)
Set_Conversation_Security_User_ID (xcscsu) Set_Conversation_Security_User_ID (cmscsu)

WINDOWS

Communications Server CPI-C on Windows implements Windows CPI-C (as
defined by the WOSA SNA specification).

For Java programs, Communications Server implements Java CPI-C as in IBM's
CS/Windows product (the package COM.ibm.eNetwork.cpic). It also includes three
additional CPI-C functions (Set_Conversation_Context, Set_Local_LU_Name, and
Extract_Local_LU_Name) which are part of the standard Communications Server
CPI-C implementation but are not included in CS/Windows.

Communication between Programs
Many hardware and software elements in the SNA environment are required in
order for two programs to communicate with each other. The following diagram
illustrates the elements relevant to programmers.

Program A Program A

LU 1 LU 2

Conversation

Session

Figure 1. Communication between Programs

What Is CPI-C?

2 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Logical Unit 6.2
Each program is associated with a logical unit (LU), which is the program's access
point into the network. CPI-C uses LU type 6.2, which supports peer-to-peer
communications between LUs. Several programs can be associated with the same
LU.

Sessions
Before two programs can communicate, their LUs must be connected through an
LU-to-LU session—a logical connection between the two LUs. The session is
established using a particular mode—a set of networking characteristics that
determines how the LUs use the session.

An LU type 6.2 can have multiple sessions (two or more concurrent sessions with
different partner LUs) and parallel sessions (two or more concurrent sessions with
the same partner LU). During configuration, the System Administrator or user
determines how many sessions a particular LU supports and whether the LU
supports parallel sessions.

Conversations
The communication between the two programs occurs as a conversation within the
LU-to-LU session. A program can be involved in several conversations
simultaneously.

Contention
When both LUs attempt to allocate a conversation on the same session at the same
time, one must win (the contention winner) and one must lose (the contention
loser). The mode used by the two LUs specifies the number of contention winner
and contention loser sessions for each LU; the contention winner LU and the
contention loser LU are determined when the session is established.

In a session, the contention loser LU must ask permission from the contention
winner LU before allocating a conversation. The contention winner may or may
not grant permission. The contention winner LU, on the other hand, simply
allocates a conversation when desired.

Characteristics
A conversation has a set of internal values that control the overall operation of the
conversation and the behavior of individual calls. These values are called
characteristics.

CPI-C Calls
A program accesses CPI-C through CPI-C calls. Each call performs a particular
action such as starting or ending a conversation, sending or receiving data, setting
an option that determines how subsequent CPI-C calls will operate, or obtaining
information about the options currently in use. On each call, the program supplies
parameters to CPI-C, which performs the requested function and returns new
parameters to the program.

The program issuing the call is referred to as the local program; the other program
is referred to as the partner program. Similarly, the LU serving the local program is
the local LU; the LU serving the partner program is the partner LU.

What Is CPI-C?

Chapter 1. Concepts 3

Programs and LUs residing on other nodes in the network are also called remote
programs and remote LUs.

The Conversation Process
A conversation begins when both of the following happen:
v One program (the invoking program) instructs Communications Server to start

another program (the invoked program) and allocate a conversation between the
two programs.

v The invoked program notifies Communications Server that it is ready to
communicate with the invoking program.

During the conversation, the two programs exchange status information and
application data. Typically, a conversation ends when a program instructs
Communications Server to deallocate the conversation.

Conversation Types
A conversation can be mapped or basic.

In general, mapped conversations are used by application programs. These are
programs that accomplish tasks for end users. Mapped conversations are less
complex than basic conversations. In a mapped conversation, the programs send
and receive data one record at a time.

Basic conversations are normally used by service programs. These are programs
that provide services to other local programs. Basic conversations provide an
experienced LU 6.2 programmer with a greater degree of control over the
transmission and handling of data. For further information, see “Basic
Conversations” on page 11.

A Simple Mapped Conversation
The example below charts a simple mapped conversation. It shows the CPI-C calls
used to start the conversation, exchange data, and end it. The arrow indicates the
flow of data. Some call parameters and some return codes are also shown,
enclosed in parentheses.

Table 3. A Simple Mapped Conversation

Invoking Program Invoked Program

Initialize_Conversation
Allocate
Send_Data
Deallocate

→
Accept_Conversation
Receive
(data_received=CM_COMPLETE_DATA_RECEIVED)
(return_code=CM_DEALLOCATED_NORMAL)

Starting a Conversation
To start a conversation, the invoking program issues the following calls:

What Is CPI-C?

4 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v Initialize_Conversation, which requests CPI-C to set the characteristics of the
conversation.
The Initialize_Conversation call specifies a symbolic destination name, which is
associated with a CPI-C side information entry in the Communications Server
configuration. This entry specifies partner program, partner LU, mode, and
security information.

v Allocate, which requests that Communications Server establish a conversation
between the invoking program and the invoked program.

The invoked program issues the Accept_Conversation call, which informs
Communications Server that the invoked program is ready to begin a conversation
with the invoking program.

Sending Data
The Send_Data call puts one data record (containing application data to be
transmitted) into the local LU's send buffer which already contains the allocation
request. The transmission of the data to the partner program does not happen until
one of the following events occurs:
v The send buffer fills up
v The program issues a call that forces Communications Server to flush the buffer

(and send the data to the partner program)

The Deallocate call flushes the send buffer sending the allocation request and data
to the partner program.

Receiving Data
The Receive call receives the data record and status information from the partner
program. If no data or status information is currently available, the local program,
by default, waits for data to arrive.

The data_received parameter of the Receive call tells the program whether it
received data and if so, whether the data is complete or not.

Ending a Conversation
To end a conversation, one of the programs issues the Deallocate call, which causes
Communications Server to deallocate the conversation between the two programs.

Confirmation Processing
When a program sends data to its partner program, it can also request the partner
program to confirm that it has received the data successfully. The receiving
program must either confirm receipt of the data or indicate that an error has
occurred. The two programs are synchronized each time they exchange a
confirmation request and response. This is illustrated in Table 4.

Table 4. Confirmation Processing

Invoking Program Invoked Program

Initialize_Conversation
Set_Sync_Level
(sync_level=CM_CONFIRM)
Allocate
Send_Data

A Simple Mapped Conversation

Chapter 1. Concepts 5

Table 4. Confirmation Processing (continued)

Invoking Program Invoked Program

Confirm
→

Accept_Conversation
Receive
(data_received=CM_COMPLETE_DATA_RECEIVED)
(status_received=CM_CONFIRM_RECEIVED)
Confirmed

←
(return_code=CM_OK)
Send_Data
Deallocate

→
Receive
(status_received=CM_CONFIRM_DEALLOC_RECEIVED)
Confirmed

←
(return_code=CM_OK)

Establishing the Synchronization Level
The synchronization level is one of the conversation's characteristics. There are two
possible synchronization levels:
v CM_NONE, the default, under which confirmation processing does not occur
v CM_CONFIRM, under which the programs can request confirmation of receipt of

data and respond to such requests

The default synchronization level is CM_NONE; you can override this using the
Set_Sync_Level call.

Sending a Confirmation Request
Issuing the Confirm call does the following:
v It flushes the local LU's send buffer (which sends any data contained in the

buffer to the partner program)
v It sends a confirmation request, which the partner program receives through the

status_received parameter of a Receive call

After issuing the Confirm call, the invoking program waits for confirmation from
the invoked program.

Receiving a Confirmation Request
The status_received parameter of the Receive call indicates any future action
required by the local program.

In the previous example, the first Received call has a status_received of
CM_CONFIRM_RECEIVED, indicating that a confirmation is required before the partner
program can continue.

Responding to a Confirmation Request
The invoked program issues the Confirmed call to confirm receipt of data; this
frees the invoking program to resume processing.

Confirmation Processing

6 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Deallocating the Conversation
Because the synchronization level of the conversation is set to CM_CONFIRM, the
Deallocate call sends a confirmation request with the data flushed from the buffer.

For the second Receive call, status_received is CM_CONFIRM_DEALLOC_RECEIVED,
indicating that the partner program requires a confirmation, generated by the
Confirmed call, before the conversation can be deallocated.

Conversation States
The state of the conversation governs which CPI-C calls can be issued by the
program. For instance, a program cannot issue the Send_Data call if the
conversation is not in Send or Send-Pending state. Possible conversation states are
summarized in the list below.

Reset The conversation has not started or has been terminated.

Initialize
The conversation has been initialized successfully.

Send The program can send data to the partner program and request
confirmation. When the conversation is in Send state, the program can also
begin to receive data, which can cause the state to change to Receive.

Send-Pending
The program issued a Receive call and received data as well as a send
indicator (status_received = CM_SEND_RECEIVED), indicating that the program
can begin to send data. This state is similar to Send state, except that the
program can provide additional information when reporting errors (to
indicate whether it detected an error in the received data or in its own
processing).

Receive
The program can receive application data and status information from the
partner program. When the conversation is in Receive state, the program
can also send error information and request permission to send data.

Confirm
The program has received a request for confirmation of receipt of data; it
must respond positively or send error information to the partner program.

Confirm-Deallocate
The program has received a request for confirmation and must respond
positively or send error information. If the program responds positively,
the partner program deallocates the conversation.

Confirm-Send
The program has received a request for confirmation; it must respond
positively or send error information. After responding, the program can
begin to send data.

UNIX

Initialize-Incoming
The program has successfully issued Initialize_For_Incoming and obtained
a conversation ID. It can now issue Accept_Incoming to accept an
incoming conversation.

Confirmation Processing

Chapter 1. Concepts 7

WINDOWS

Pending-Post
The program has successfully issued the Receive call in nonblocking mode.
While the call is outstanding, it can issue a limited range of CPI-C calls on
this conversation, issue CPI-C calls on other conversations, or continue
with other processing.

The description of each CPI-C call includes information about the conversation
states in which it can be issued. For a table of which verbs can be issued in each
conversation state, see Appendix C, “Conversation State Changes,” on page 175.

The Program's View of the Conversation
It is the conversation rather than the program that is in a particular state. A
program can be conducting several conversations, each of which is in a different
state. If a conversation is said to be in Send state, this is from the viewpoint of the
local program. To the partner program, the conversation is in another state (such as
Receive).

State Changes
A change in the conversation state can result from any of the following:
v A call issued by the local program
v A call issued by the partner program
v An error condition

State Checks
A state check occurs when a program issues a CPI-C call, and the conversation is
not in the appropriate state. For instance, a state check would occur if a program
issued the Send_Data call while the conversation was in Receive state. When a
state check occurs, CPI-C does not execute the call; it returns state-check
information through the return_code parameter.

Changing Conversation States
In Table 5, the conversation states appear in the left and right margins. This table
shows how CPI-C calls can change the state of the conversation from Send to
Receive and from Receive to Send.

Table 5. Changing Conversation States

State Invoking Program Invoked Program State

Reset
Initialize_Conversation

Initialize
Set_Sync_Level
(sync_level=CM_CONFIRM)
Allocate

Send
Send_Data

Conversation States

8 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Table 5. Changing Conversation States (continued)

State Invoking Program Invoked Program State

Prepare_To_Receive Reset
→
Accept_Conversation

Receive
Receive
(status_received= CM_CONFIRM_SEND_RECEIVED)

Confirm-
Send

Confirmed
←

Send
(return_code=CM_OK)

Receive
Send_Data
Confirm
←

Receive
(status_received= CM_CONFIRM_RECEIVED)

Confirm
Request_To_Send
Confirmed

→
Receive

(return_code=CM_OK)
(request_to_send_received=
CM_REQ_TO_SEND_RECEIVED)
Prepare_To_Receive
←

Receive
(status_received=
CM_CONFIRM_SEND_RECEIVED)

Confirm-
Send

Confirmed
→

Send
(return_code=CM_OK)

Receive
Send_Data
Deallocate

→
Receive
(status_received= CM_CONFIRM_DEALLOC_RECEIVED)

Confirm-
Deallocate

Confirmed
←

Reset
(return_code=CM_OK)

Reset

Changing Conversation States

Chapter 1. Concepts 9

Initial States
Before the conversation is allocated, both programs are in Reset state.

After the conversation is allocated, the initial state is Send for the invoking
program and Receive for the invoked program.

Changing to Receive State
The Prepare_To_Receive call enables a program to change the conversation from
Send to Receive state. This call does the following:
v It flushes the local LU's send buffer.
v If the synchronization level is set to CM_CONFIRM, the Prepare_To_Receive call

sends a CM_CONFIRM_SEND indicator to the partner program through the
status_received parameter of a Receive call. This indicator tells the partner
program that a Confirmed response is expected before the partner program can
begin to send data.

Changing to Send State
The conversation state for a program changes from Receive to Send when its
partner program begins to receive data (by issuing the Prepare_To_Receive call).

The local program (for which the conversation is in Receive state) can inform the
partner program that it wants to send data, by issuing the Request_To_Send call.
This request is communicated to the partner program through the
request_to_send_received parameter. (In the previous example, this parameter is
shown on the Confirm call; it is also returned to Send_Data and other calls.)

Issuing the Request_To_Send call does not change the state of the conversation,
because the partner program can ignore it. When the partner program issues the
Prepare_To_Receive call, the conversation state changes to Receive for the partner
program. The local program receives the SEND indication on a subsequent
RECEIVE verb, and can then send data.

Side Information
The information required for two programs to communicate is stored in CPI-C side
information entries in the Communications Server configuration file. Each side
information entry is identified by a Symbolic Destination Name, which is the
sym_dest_name parameter specified by the Initialize_Conversation call. The
parameter sym_dest_name is an 8-byte ASCII character string and can contain any
displayable characters. It contains the following fields:
v Partner LU name
v Partner program type and name
v Mode name
v Conversation security type (see “Multiple Conversations” on page 12)
v Security user ID and password required to access the partner program

CPI-C also provides two mechanisms for an application to override the configured
side information entries, as follows. Both of these mechanisms apply only to the
application's own use of this information, and do not modify the original version
stored in the configuration file.

Changing Conversation States

10 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v The application can use the Set_CPIC_Side_Information,
Extract_CPIC_Side_Information, and Delete_CPIC_Side_Information calls to
manage its own local copy of complete side information entries. (These functions
are not available in Java CPI-C.)

v The application can use CPI-C Set_* functions (such as Set_Partner_LU_Name)
to override an individual parameter from the side information before allocating
the conversation.

For more information, see “Side Information” on page 30.

Basic Conversations
Basic conversations are normally used by service programs. These are programs
that provide services to other local programs. They are more complex than mapped
conversations but provide an experienced LU 6.2 programmer with a greater
degree of control over the transmission and handling of data. This section
summarizes the characteristics of basic conversations.

Logical Records
In a basic conversation, data is sent in the form of logical records. A logical record
is a record that has the general data stream (GDS) syntax described in this section.
For more information about GDS syntax, refer to IBM Systems Network Architecture:
Formats.

The sending TP must format the data into multiple logical records, and the
receiving TP must decode the logical records into usable data.

If a logical record is a single record, it consists of the following fields:
v A 2-byte record-length (LL) field
v A 2-byte GDS identifier (ID) field (for example, 0x12FF identifies the data as

application data)
v A data field that can range in length from 0 to 32,763 bytes

The first four bytes are called the LLID.

If a logical record has multiple parts, the first part has the same format as a single
record, and all subsequent parts consist of the following fields:
v A 2-byte record-length (LL) field
v A data field that can range in length from 0 to 32,765 bytes

The length recorded in the LL field includes the two bytes of the LL field (and the
two bytes of the ID field, if it is present). For example, a single part GDS with no
data has a value of 0x0004 for its LL field. The LL field must be in high-low
format, rather than byte-swapped format. For example, a length of 230 bytes is
represented as 0x00E6, rather than 0xE600.

Bit 0 of byte 0 of the LL (the most significant bit) is used to indicate length
continuation (segmentation). The following example shows ten bytes of data (each
data byte has the value DD) split into three GDS segments. The first and second
segments each contain four bytes of data, and the last segment contains two bytes
of data.

Side Information

Chapter 1. Concepts 11

The following values for the LL field are not valid:
v 0x0000

v 0x0001

v 0x8000

v 0x8001

Error Log Data
In case of an error or abend in a basic conversation, a program can send an error
message, in the form of a general data stream (GDS) error log variable, to the
partner LU.

Multiple Conversations
A program can be involved in several conversations simultaneously. Each
conversation requires an LU-to-LU session. Multiple conversations are not
supported if the application uses a dependent LU (for more information, see
“Specifying the Local LU” on page 34).

A common use of multiple conversations is to have an invoked program invoke
another program, which, in turn, invokes another program, and so on. In the
diagram below, program A invokes program B; program B invokes program C.

For more information about how CPI-C conversation security operates with
multiple conversations, see “Overview of Conversation Security.”

Overview of Conversation Security
You can use conversation security to require that the invoking program provide a
user ID and password before CPI-C allocates a conversation with the invoked TP.

In configuring the invoked TP, the System Administrator indicates whether to use
conversation security. If so, the invoking TP must provide a user ID and password
when allocating a conversation with the invoked program. These are either taken

8008 12FF DDDD DDDD
8006 DDDD DDDD
0004 DDDD

Program A Program B

LU 1 LU 2

Conversation

Session

Program C

LU 3

Conversation

Session

Figure 2. Multiple Conversations

Basic Conversations

12 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

from the side information or specified explicitly by the invoking program, and
must match a user ID and password configured for the invoked program.

Communications Server also supports LU-LU session security, which provides
security checking when starting the session between the local and remote LUs.
LU-LU session security is specified during configuration, and does not require any
action in CPI-C programs. For more information, refer to the IBM Communications
Server for Data Center Deployment on AIX or Linux Administration Guide.

Conversation Security for Multiple Conversations
In the example shown in “Multiple Conversations” on page 12, when program A
invokes program B and B then invokes C as a result of the conversation with A,
the configuration of C may indicate that it will accept an “already-verified”
security indication. In this case, the user ID and password supplied by A must still
be verified against the configuration for B. However, when B invokes C, it sets the
security_type conversation characteristic to “same”, and CPI-C sends to C the user
ID supplied by A and an indication that security has already been verified. For
more information, see “Set_Conversation_Security_Type (cmscst)” on page 113.

UNIX

If the program is involved in more than one pair of incoming and outgoing
conversations in this way, it needs to indicate which incoming conversation is to
provide the user ID for an outgoing conversation. To do this, CPI-C associates each
conversation with a specific “context ID”. This is assigned and used as follows:
v Each time the program successfully issues Accept_Conversation or

Accept_Incoming, CPI-C assigns a new context ID to the conversation. The
program can determine the value of this context ID by issuing
Extract_Conversation_Context with the appropriate conversation ID.

v The program's “current context” is normally the context ID associated with the
most recent Accept_Conversation or Accept_Incoming. The program can use
Set_Conversation_Context to set the current context to the context ID of another
of its incoming conversations (subject to the restriction described below).

v Any Allocate call is issued in the program's current context. This means that, if
the conversation security type is “same”, the user ID from the incoming
conversation associated with the current context ID will be sent to the partner
program.

In the previous example, program B must ensure that its current context is the
context associated with the incoming conversation from program A, before issuing
the Allocate call to program C. This ensures that A's user ID is sent on the
allocation request to program C. The current context will normally be the correct
one, unless B has issued another Accept_Conversation, Accept_Incoming, or
Set_Conversation_Context call since accepting the conversation from A.

When a program uses Set_Conversation_Context to change its current context,
Communications Server does not retain the information from the previous context
unless there is still at least one active conversation associated with it. This means
that, if B finishes the conversation with A and then changes its current context to
communicate with a different program, it will not be able to return to the first
context ID in order to allocate the conversation with C. If it needs to end the
conversation with A before allocating the conversation to C, it must allocate the
conversation to C before changing its current context to any other value.

Overview of Conversation Security

Chapter 1. Concepts 13

Already-Verified Conversation Security

UNIX

In some cases, a program may need to indicate “already verified” security when it
has not itself been invoked by another program, but has obtained and verified the
appropriate security information by another means (for example, by a user
entering a user ID and password during a logon sequence). Communications
Server supports this as follows:
v If the program specifying “already verified” was itself invoked by another

program, as described in “Conversation Security for Multiple Conversations” on
page 13, CPI-C sends the user ID from the current conversation context.

v Otherwise, CPI-C takes the AIX / Linux user name with which the program is
running, truncated to 10 characters if necessary, and uses this as the
conversation security user ID. Ensure that this name consists of valid AE-string
characters and is a valid user name for the program being invoked.

v If the application uses a different method of obtaining the security information
(for example, if it requires the user to specify a user ID and password explicitly,
rather than relying on the AIX / Linux system security), then it can use either of
the CPI-C functions Set_Conversation_Security_User_ID or
Set_CPIC_Side_Information to specify this user_id to CPI-C before allocating the
conversation.

Nonblocking Operation
This section does not apply to Java CPI-C. Java CPI-C functions always operate in
blocking mode; that is, the function does not return control to the application until
the requested processing has completed.

By default, CPI-C functions operate in blocking mode; that is, the function does not
return control to the application until the requested processing has completed. For
example, the Confirm function does not return until CPI-C has sent a confirmation
request to the partner application and received either an OK or an error response
from it.

CPI-C functions can also operate in nonblocking mode; that is, the function returns
control to the application immediately, even if the requested processing has not yet
completed. This enables the application to continue with other processing that is
not related to this conversation, and obtain the results of the verb processing at a
later stage.

UNIX

Overview of Conversation Security

14 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

The application can use the function Check_For_Completion to determine whether
a previous nonblocking function has now completed, or Wait_For_Conversation to
wait for it to complete. Table 6 shows an example of the use of nonblocking mode.

Table 6. Nonblocking Operation

Invoking Program Invoked Program

Initialize_Conversation
Allocate
Send_Data
Set_Processing Mode (CM_NON_BLOCKING)
Confirm

→
(return_code=CM_OPERATION_INCOMPLETE)
[Application can perform other processing not related to
this conversation.]

Accept_Conversation

Receive
(data_received=CM_COMPLETE_DATA_RECEIVED)
(status_received=CM_CONFIRM_RECEIVED)

Wait_For_Conversation
[Application is suspended until processing for the
previous Confirm has completed]

Confirmed
←

(Wait_For_Conversation returns, return_code=CM_OK,
conversation_return_code=CM_OK)
Send_Data
Deallocate

→
(return_code=CM_OPERATION_INCOMPLETE)
[Application performs other processing not related to
this conversation.]

Receive
(status_received=

CM_CONFIRM_DEALLOC_RECEIVED)
Confirmed

←
Check _For_Completion
(return_code=CM_OK)
Wait_For_Conversation
(return_code=CM_OK, conversation_return_code=CM_OK)
[Conversation is now deallocated.]

The following steps explain the processing shown in the previous example.
1. After allocating the conversation and sending some data, the invoking program

issues Set_Processing_Mode to set the processing mode to CM_NON_BLOCKING.
This indicates that subsequent functions on this conversation can operate in
nonblocking mode.

2. The invoking program then issues Confirm, which returns
CM_OPERATION_INCOMPLETE. This indicates that the function was issued
successfully and is operating in nonblocking mode.

3. The program can now perform other processing not related to this
conversation, including issuing CPI-C functions on other conversations. It can
also issue a limited range of CPI-C functions on this conversation (such as the

Nonblocking Operation

Chapter 1. Concepts 15

Extract_* functions). This is different from the IBM CPI-C 2.0 specification, in
which the program cannot issue any functions on this conversation other than
Wait_For_Conversation or Cancel_Conversation.

4. At some later time, the program issues Wait_For_Conversation to wait for the
previous nonblocking function to complete. Since the partner program has not
yet issued Confirmed, processing for the previous Confirm function has not
completed, so the invoking program is suspended.

5. When the partner program issues Confirmed, this completes the processing of
the invoking program's Confirm function. The Wait_For_Conversation function
then returns. The return_code of CM_OK indicates that Wait_For_Conversation
completed successfully; the conversation return_code of CM_OK indicates that the
Confirm function (for which it was waiting) completed successfully.

6. After sending additional data, the invoking program then issues Deallocate,
which returns CM_OPERATION_INCOMPLETE. This indicates that the function was
issued successfully and is operating in nonblocking mode. As before, the
program can now perform other processing not related to this conversation, but
cannot issue most CPI-C functions on this conversation.

7. The partner program receives the Deallocate request and replies with
Confirmed. This completes the processing for the Deallocate function.

8. The invoking program issues Check_For_Completion, to determine whether
any previous nonblocking functions on any of its conversations have
completed. Since the Deallocate processing has already completed,
Check_For_Completion returns with the conversation_ID of this conversation.

9. The program then issues Wait_For_Conversation, to get the result of the
Deallocate processing. This returns immediately because the Deallocate
processing has already completed.

WINDOWS

The application should use the Specify_Windows_Handle function before issuing
any verbs in nonblocking mode. This function specifies a Windows handle to
which CPI-C sends a message when the verb processing has completed. This
message notifies the application that the verb has completed; there is no need for
the application to issue an additional call to wait for the results of the verb
processing.

CPI-C can use an alternate method to indicate the verb has completed—signaling
an event handle. If the application registers an event with the conversation using
WinCPICSetEvent, then the application can call the Windows functions
WaitForSingleObject or WaitForMultipleObjects to wait to be notified of the
completion of the verb.

If the outstanding call is a Receive call, the application can issue the following calls
while Receive is outstanding:
v Request_To_Send
v Send_Error
v Test_Request_to_Send_Received
v Cancel_Conversation
v Deallocate

As an alternative to using Specify_Windows_Handle or WinCPICSetEvent as
described previously, the application can use Wait_For_Conversation, as for AIX /

Nonblocking Operation

16 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Linux systems. This function is provided for Windows systems to assist in
migrating applications from other operating system environments. However, the
use of blocking functions such as Wait_For_Conversation in the Windows
environment is strongly discouraged. If you are writing a new application
specifically for the Windows environment, use Specify_Windows_Handle and not
Wait_For_Conversation.

Note:

v Check_For_Completion, described previously for AIX / Linux systems, is
not supported on Windows systems.

v If the application uses one of the calls listed previously in nonblocking
mode while Receive is outstanding, it must use Specify_Windows_Handle.
It must not issue Wait_For_Conversation if another call is outstanding in
addition to Receive; the results of this call are undefined if more than one
call is outstanding on the same conversation.

CPI-C and LU 6.2
CPI-C applications can communicate with non-CPI-C LU 6.2 applications, such as
APPC.

CPI-C does not support the following features that are included in some LU 6.2
implementations:
v Sync Point/Back Out processing
v PIP data
v LOCKS=LONG
v MAP_NAME
v FMH_DATA

These must not be used in LU 6.2 applications if CPI-C is to communicate with
them.

Nonblocking Operation

Chapter 1. Concepts 17

18 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Chapter 2. Writing CPI-C Applications

This chapter contains information you will need when writing CPI-C application
programs. The following topics are covered:
v CPI-C call summary
v Initial conversation characteristics
v Side information
v Configuration
v Specifying the TP name and local LU name for a CPI-C program
v How programs get started

UNIX

v AIX or Linux considerations

WINDOWS

v Windows considerations

v Java CPI-C considerations
v Writing portable applications

CPI-C Call Summary
This section briefly describes each CPI-C call. They are grouped by function. For a
more detailed explanation of a particular call, see Chapter 3, “CPI-C Calls,” on
page 47.

The “names” of the calls are pseudonyms. The actual C function names appear in
parentheses after the pseudonym. For example Initialize_Conversation is the
pseudonym for a call. The actual function name is cminit.

It may also be necessary to set the local TP and LU names that the program will
use. For more information about this, see “Specifying the Local TP Name” on page
33 and “Specifying the Local LU” on page 34.

Starting a Conversation
The following calls are used to start a conversation between two programs. For
more information about this subject, see “How Programs Get Started” on page 36.

You may also need to set the local TP name and LU name that the program will
use. For information about setting these, see “Specifying the Local TP Name” on
page 33 and “Specifying the Local LU” on page 34.

WinCPICStartup

WINDOWS

© Copyright IBM Corp. 1998, 2012 19

This call registers the application as a Windows CPI-C application, and determines
whether the CPI-C software supports the level of function required by the
application.

A Windows CPI-C application that needs to be compatible with Microsoft SNA
Server and Windows Open System Architecture (WOSA) must use this call before
issuing any other CPI-C calls. If you are writing the application for use only on
Windows clients and you do not need to run it on SNA Server, there is no need to
use this call.

Initialize_Conversation (cminit)
This call is issued by the invoking program to obtain a conversation ID and to set
the initial values for the conversation's characteristics. The initial values are
derived from side information associated with the symbolic destination name, or
are CPI-C defaults.

Initialize_For_Incoming (cminic)
This call is used by the invoked program to obtain a conversation ID for an
incoming conversation which it will later accept with Accept_Incoming. This
enables the program to issue Accept_Incoming in nonblocking mode, if required,
instead of using Accept_Conversation which always operates in blocking mode.

Set_* Calls to Change Initial Conversation Characteristics
After issuing the Initialize_Conversation call, the invoking program can change the
initial conversation characteristics by issuing any of the calls listed in Table 7.
These calls can only be issued in Initialize state.

Table 7. Set_* Calls to Change Initial Conversation Characteristics

Call Sets

Set_Conversation_Type (cmsct) Conversation type
Set_Mode_Name (cmsmn) Mode name
Set_Partner_LU_Name (cmspln) Partner LU name
Set_TP_Name (cmstpn) Partner program's TP name
Set_Return_Control (cmsrc) Return control
Set_Sync_Level (cmssl) Synchronization level

UNIX

Set_Conversation_Context (cmsctx) Conversation context (groups this
conversation with a previous one)

Set_Conversation_Security_Type (cmscst) Conversation security type
Set_Conversation_Security_User_ID (cmscsu) Security user ID
Set_Conversation_Security_Password
(cmscsp)

Security password

Allocate (cmallc)
This call is issued by the invoking program to allocate a conversation with the
partner program, using the current conversation characteristics. The type of
conversation allocated depends on the conversation type characteristic (mapped or
basic).

CPI-C Call Summary

20 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Accept_Conversation (cmaccp)
This call is issued by the invoked program to accept the incoming conversation
and set certain conversation characteristics. Upon successful execution of this call,
CPI-C generates and returns a conversation identifier. Accept_Conversation always
operates in blocking mode.

Accept_Incoming (cmacci)

UNIX

This call is issued by the invoked program to accept an incoming conversation for
which it previously issued Initialize_For_Incoming. It is similar to
Accept_Conversation, but can operate in nonblocking mode if required
(Accept_Conversation always operates in blocking mode).

Sending data
The following calls are used to send data to the partner program.

Set_Send_Type (cmsst)
This call sets the conversation's send type. The send type specifies how data will
be sent by the Send_Data call. The Send_Data call can include the function of the
Flush, Confirm, Prepare_To_Receive, or Deallocate call (equivalent to issuing
Send_Data, followed by the other call), or it can simply send data without
performing any other function. The send type value affects all subsequent
Send_Data calls. It can be changed by issuing the Set_Send_Type call again.

Send_Data (cmsend)
This call puts data in the local LU's send buffer for transmission to the partner
program.

If the send type (specified by the Set_Send_Type call) includes the function of the
Flush, Confirm, Prepare_To_Receive, or Deallocate call, the data is transmitted to
the partner LU (and partner program) immediately. Otherwise, the data
accumulates in the local LU's send buffer, and is sent when one of the following
occurs:
v The send buffer fills up
v The local program issues one of the following calls, which flush the LU's send

buffer:
– Flush
– Confirm
– Deallocate
– Prepare_To_Receive
– Receive (with the receive type set to CM_RECEIVE_AND_WAIT)

Flush (cmflus)
This call sends the contents of the local LU's send buffer to the partner LU (and
program). If the send buffer is empty, no action takes place.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 21

Confirm (cmcfm)
This call sends the contents of the local LU's send buffer and a confirmation
request to the partner program and waits for confirmation.

Request_To_Send (cmrts)
This call notifies the partner program that the local program wants to send data.
The partner program can respond to this request by changing to Receive state so
that the local program changes to Send state, or can ignore the request.

Receiving Data
The following calls enable a program to receive data from its partner program.

Set_Prepare_To_Receive_Type (cmsptr)
This call sets the conversation's prepare-to-receive type, which specifies whether
subsequent Prepare_To_Receive calls will include Flush or Confirm functionality.
The prepare-to-receive type affects all subsequent Prepare_To_Receive calls. It can
be changed by issuing the Set_Prepare_To_Receive_Type call again.

Prepare_To_Receive (cmptr)
This call changes the state of the conversation for the local program from Send to
Receive, making it possible for the local program to begin receiving data. Before
changing the conversation state, this call performs the equivalent of the Flush or
Confirm call.

Set_Receive_Type (cmsrt)
This call sets the conversation's receive type, which specifies whether a program
issuing a Receive call will wait for data to arrive if data is not available. The
receive type value affects all subsequent Receive calls. It can be changed by issuing
the Set_Receive_Type call again.

Receive (cmrcv)
Issuing this call while the conversation is in Receive state causes the local program
to receive any data that is currently available from the partner program. If no data
is available and the receive type is set to CM_RECEIVE_AND_WAIT, the local program
waits for data to arrive. If the receive type is set to CM_RECEIVE_IMMEDIATE, the
program does not wait.

Issuing this call while the conversation is in Send or Send-Pending state is allowed
only if the receive type is set to CM_RECEIVE_AND_WAIT. This flushes the LU's send
buffer and changes the conversation state to Receive. The local program then
begins to receive data.

Set_Fill (cmsf)
This call sets the conversation's fill type, which specifies whether programs will
receive data in the form of logical records or as a specified length of data. It only
has an effect in basic conversations. The fill value affects all subsequent Receive
calls. It can be changed by issuing the Set_Fill call again.

Converting Data Between ASCII and EBCDIC
The following calls enable a program to translate local data from ASCII to EBCDIC
before sending it to the partner program, or translate data received from the
partner program from EBCDIC to ASCII. The program needs to use these functions
only if the partner program requires data to be in EBCDIC.

CPI-C Call Summary

22 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Convert_Incoming (cmcnvi)
This call converts an EBCDIC data string into ASCII.

Convert_Outgoing (cmcnvo)
This call converts an ASCII data string into EBCDIC.

WINDOWS

The program can also use the CSV CONVERT verb to convert data between ASCII
and EBCDIC. Refer to the IBM Communications Server for Data Center Deployment on
AIX or Linux CSV Programmer's Guide for more information.

Confirming Receipt of Data and Reporting Errors
The following calls confirm receipt of data or report an error.

Confirmed (cmcfmd)
This call replies to a confirmation request from the partner program. It informs the
partner program that the local program has not detected an error in the received
data. Because the program issuing the confirmation request waits for a
confirmation, the Confirmed call synchronizes the processing of the two programs.

Set_Error_Direction (cmsed)
This call specifies whether a program detected an error while receiving data or
while preparing to send data. Error direction is relevant only when a program
issues the Send_Error call in Send-Pending state.

Set_Log_Data (cmsld)
This call specifies a log message (log data) and its length to be sent to the partner
LU. This call only has an effect in basic conversations. If present, log data is sent
when the Send_Error call is issued or when the conversation is abnormally
deallocated. After the log data is sent CPI-C resets the log data to null and the log
data length to 0 (zero).

Send_Error (cmserr)
This call notifies the partner program that the local program has encountered an
application-level error. The local program can use the Send_Error call for such
purposes as informing the partner program of an error encountered in received
data, rejecting a confirmation request, or truncating an incomplete logical record it
is sending.

Issuing Calls in Nonblocking Mode
This section does not apply to Java CPI-C. Java CPI-C functions always operate in
blocking mode; that is, the function does not return control to the application until
the requested processing has completed. The functions described in this section are
not available in Java CPI-C.

The following calls enable the program to specify that subsequent CPI-C calls can
operate in nonblocking mode, to check whether a previous nonblocking call has
completed, or to wait for a nonblocking call to complete.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 23

For details on using nonblocking mode, see “AIX or Linux Considerations” on
page 37and “Windows Considerations” on page 38. (See also “Cancel_Conversation
(cmcanc)” on page 26; this cancels a previous nonblocking call and also deallocates
the conversation.)

Set_Processing_Mode (cmspm)
This call sets the conversation's processing mode to blocking (calls do not return
until processing has completed) or nonblocking (calls can return immediately even
though processing is not yet complete).

Check_For_Completion (cmchck)

UNIX

This call checks whether there is an outstanding nonblocking function on any of
the program's conversations for which processing has completed. If there is such a
function, it returns the conversation ID of the appropriate conversation; the
program then calls Wait_For_Conversation to get the results of the nonblocking
function. This call enables the program to check for completion of nonblocking
functions without having to suspend (unlike Wait_For_Conversation, which
suspends until a function has completed). Check_For_Completion does not return
the results of the previous call; the program must use Wait_For_Conversation to do
this before it can issue further calls on this conversation.

Wait_For_Conversation (cmwait)
This call waits for processing of a previous nonblocking function to complete. If
the program is involved in multiple concurrent conversations, this call acts across
all conversations, and returns when a function completes on any of them.

WINDOWS

The Wait_For_Conversation call is supported on Windows systems for
compatibility with other Windows CPI-C implementations; however, new Windows
applications should use Specify_Windows_Handle (described below) instead of this
call.

Specify_Windows_Handle (xchwnd)
This call specifies a Windows handle to which CPI-C posts the results of
nonblocking functions. The application receives a message from CPI-C, sent to this
Windows handle, when a nonblocking function completes; it does not need to use
Wait_For_Conversation to obtain the results of verb completion.

Issuing Calls in Blocking Mode
The following calls enable a Windows program to manage how subsequent CPI-C
calls operate in blocking mode. (See also “Set_Processing_Mode (cmspm)”; this
specifies whether subsequent calls operate in blocking mode or nonblocking
mode.) For more information about blocking calls, see “Blocking Calls” on page 40.

WinCPICIsBlocking
Checks whether there is a blocking CPI-C call outstanding for this
application.

CPI-C Call Summary

24 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

WinCPICSetBlockingHook
Specifies the blocking procedure that CPI-C uses while processing blocking
calls; this replaces CPI-C's default blocking procedure. The blocking
procedure is called repeatedly until CPI-C has finished processing the call.

WinCPICUnhookBlockingHook
Unregisters the blocking procedure specified by a previous
WinCPICSetBlockingHook call, so that CPI-C reverts to using the default
blocking procedure.

Getting Information
The following calls provide information to programs.

Extract_* Calls
The Extract_* calls, listed in Table 8 retrieve information about the characteristics of
a specified conversation.

Table 8. Extract_* Calls and Actions

Call Retrieves

Extract_Conversation_Security_Type
(xcecst)(not available in Java CPI-C)

Security type

Extract_Conversation_State (cmecs) Conversation state
Extract_Conversation_Type (cmect) Conversation type

UNIX

Extract_Conversation_Context (cmectx) Conversation context
Extract_Max_Buffer_Size (cmembs) Maximum size of data buffer used for

Send_Data and Receive calls
Extract_Security_User_ID (cmesui) Security user ID

WINDOWS

Extract_Conversation_Security_User_ID
(cmecsu)

Security user ID

Extract_Mode_Name (cmemn) Mode name
Extract_Partner_LU_Name (cmepln) Partner LU name
Extract_TP_Name (cmetpn) TP name that was specified on the incoming

Allocate request
Extract_Sync_Level (cmesl) Synchronization level

Test_Request_to_Send_Received (cmtrts)
This call determines whether a request-to-send notification has been received from
the partner program.

Ending a Conversation
The following calls end a conversation.

CPI-C Call Summary

Chapter 2. Writing CPI-C Applications 25

Set_Deallocate_Type (cmsdt)
This call specifies how the conversation is to be deallocated. The deallocation
instructions specified by this call take effect when the Deallocate call is issued or
when the send type is set to CM_SEND_AND_DEALLOCATE and the Send_Data call is
issued.

Deallocate (cmdeal)
This call deallocates a conversation between two programs. Before deallocating the
conversation, this call performs the equivalent of the Flush or Confirm call,
depending on the current conversation synchronization level and deallocate type.

Cancel_Conversation (cmcanc)
This call cancels any incomplete call on a conversation, and deallocates the
conversation. (An incomplete call is one that was issued in nonblocking mode and
returned CM_OPERATION_INCOMPLETE.)

In Java CPI-C, nonblocking calls are not supported and so there cannot be an
incomplete call outstanding. Cancel_Conversation is equivalent to Deallocate
except that it does not write log data to the local error log.

WinCPICCleanup

WINDOWS

This call unregisters the application as a Windows CPI-C application, after it has
finished issuing CPI-C calls.

A Windows CPI-C application that needs to be compatible with Microsoft SNA
Server and Windows Open System Architecture (WOSA) must use this call before
terminating, and must not issue any other CPI-C calls after it has issued this call. If
you are writing the application for use only on Windows clients and you do not
need to run it on SNA Server, there is no need to use this call.

Administering Side Information
These functions are not available in Java CPI-C.

The calls summarized in Table 9 enable CPI-C applications to add, replace, retrieve,
or delete side information entries.

Table 9. Calls to Add, Replace, Retrieve, or Delete Side Information

Call Action

Set_CPIC_Side_Information (xcmssi) Add or replace side information entry.
Extract_CPIC_Side_Information (xcmesi) Retrieve side information entry.
Delete_CPIC_Side_Information (xcmdsi) Delete side information entry.

CPI-C Call Summary

26 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Initial Conversation Characteristics
CPI-C maintains a set of internal values, called characteristics, for each
conversation. Some characteristics affect the overall operation of the conversation,
such as the conversation type. Others affect the operation of specific calls, such as
the receive type.

Many of these characteristics are initially derived from the side information stored
in the Communications Server configuration file; see “Side Information” on page
30. The Initialize_Conversation call specifies the symbolic destination name (the
sym_dest_name parameter) associated with the desired side information table entry.

Table 10 lists the conversation characteristics, how they are set or changed by the
following conversation start-up calls, and which call can change a given value.
v Initialize_Conversation
v Accept_Conversation
v Initialize_For_Incoming
v Accept_Incoming

UNIX

The calls Initialize_For_Incoming and Accept_Incoming are always used together.
A characteristic is normally set by one of these calls and not changed by the other.

WINDOWS

The Initialize_For_Incoming and Accept_Incoming calls are not supported on
Windows systems. All references to these calls should be ignored for Windows
systems.

For a complete explanation of a characteristic, see the description of the Set_* call
associated with it in Chapter 3, “CPI-C Calls,” on page 47. For example, the
conversation type is described in the section on the Set_Conversation_Type call.

Table 10. Changing Initial Conversation Characteristics

Conversation State

Initialize_Conversation sets: CM_INITIALIZE_STATE
Accept_Conversation sets: CM_RECEIVE_STATE
Initialize_For_Incoming sets: CM_INITIALIZE_INCOMING_STATE
Accept_Incoming sets: CM_RECEIVE_STATE
Can be changed by: Many CPI-C calls; see the State Change

sections at the end of each CPI-C call
description in Chapter 3, “CPI-C Calls,” on
page 47 for information about state changes
resulting from the call.

Conversation Type

Initialize_Conversation sets: CM_MAPPED_CONVERSATION

Initial Conversation Characteristics

Chapter 2. Writing CPI-C Applications 27

Table 10. Changing Initial Conversation Characteristics (continued)

Accept_Conversation sets: The value specified by the invoking program.
Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The value specified by the invoking program.
Can be changed by: Set_Conversation_Type

Deallocate Type

Initialize_Conversation sets: CM_DEALLOCATE_SYNC_LEVEL
Accept_Conversation sets: CM_DEALLOCATE_SYNC_LEVEL
Initialize_For_Incoming sets: CM_DEALLOCATE_SYNC_LEVEL
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Deallocate_Type

Error Direction

Initialize_Conversation sets: CM_RECEIVE_ERROR
Accept_Conversation sets: CM_RECEIVE_ERROR
Initialize_For_Incoming sets: CM_RECEIVE_ERROR
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Error_Direction

Fill

Initialize_Conversation sets: CM_FILL_LL
Accept_Conversation sets: CM_FILL_LL
Initialize_For_Incoming sets: CM_FILL_LL
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Fill

Log Data

Initialize_Conversation sets: Null string
Accept_Conversation sets: Null string
Initialize_For_Incoming sets: Null string
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Log_Data

Local LU Name

Initialize_Conversation sets: The local LU alias from one of a number of
different sources (see “Specifying the Local
LU” on page 34).

Accept_Conversation sets: The LU alias for the session the conversation
start-up request arrived on.

Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The LU alias for the session the conversation

start-up request arrived on.
Can be changed by: Set_Local_LU_Name

Mode Name

Initialize_Conversation sets: The mode name from the side information,
or a null string if no sym_dest_name is
specified.

Accept_Conversation sets: The mode name for the session the
conversation start-up request arrived on.

Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The mode name for the session the

conversation start-up request arrived on.
Can be changed by: Set_Mode_Name

Initial Conversation Characteristics

28 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Table 10. Changing Initial Conversation Characteristics (continued)

Partner LU Name

Initialize_Conversation sets: The partner LU name from the side
information, or a single blank if no
sym_dest_name is specified.

Accept_Conversation sets: The partner LU name for the session the
conversation start-up request arrived on.

Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The partner LU name for the session the

conversation start-up request arrived on.
Can be changed by: Set_Partner_LU_Name

Prepare-to-Receive Type

Initialize_Conversation sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL
Accept_Conversation sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL
Initialize_For_Incoming sets: CM_PREP_TO_RECEIVE_SYNC_LEVEL
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Prepare_To_Receive_Type

Processing Mode (Blocking or Nonblocking)

Initialize_Conversation sets: CM_BLOCKING
Accept_Conversation sets: CM_BLOCKING
Initialize_For_Incoming sets: CM_BLOCKING
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Processing_Mode

Receive Type

Initialize_Conversation sets: CM_RECEIVE_AND_WAIT
Accept_Conversation sets: CM_RECEIVE_AND_WAIT
Initialize_For_Incoming sets: CM_RECEIVE_AND_WAIT
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Receive_Type

Return Control

Initialize_Conversation sets: CM_WHEN_SESSION_ALLOCATED
Accept_Conversation sets: (Not applicable)
Initialize_For_Incoming sets: (Not applicable)
Accept_Incoming sets: (Not applicable)
Can be changed by: Set_Return_Control

Security Password

Initialize_Conversation sets: The password contained in the side
information, or a single blank if no
sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)
Initialize_For_Incoming sets: (Not applicable)
Accept_Incoming sets: (Not applicable)
Can be changed by: Set_Conversation_Security_Password

Security Type

Initialize_Conversation sets: The security type contained in the side
information, or CM_SECURITY_SAME if no
sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)
Initialize_For_Incoming sets: (Not applicable)

Initial Conversation Characteristics

Chapter 2. Writing CPI-C Applications 29

Table 10. Changing Initial Conversation Characteristics (continued)

Accept_Incoming sets: (Not applicable)
Can be changed by: Set_Conversation_Security_Type

Security User ID

Initialize_Conversation sets: The user ID contained in the side
information, or a single blank if no
sym_dest_name is specified.

Accept_Conversation sets: The value specified by the invoking program.
Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The value specified by the invoking program.
Can be changed by: Set_Conversation_Security_User_ID

Send Type

Initialize_Conversation sets: CM_BUFFER_DATA
Accept_Conversation sets: CM_BUFFER_DATA
Initialize_For_Incoming sets: CM_BUFFER_DATA
Accept_Incoming sets: (Not changed)
Can be changed by: Set_Send_Type

Synchronization Level

Initialize_Conversation sets: CM_NONE
Accept_Conversation sets: The value specified by the invoking program.
Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The value specified by the invoking program.
Can be changed by: Set_Sync_Level

TP Name of the Invoked Program (As Seen by the Invoking Program)

Initialize_Conversation sets: The TP name contained in the side
information, or a single blank if no
sym_dest_name is specified.

Accept_Conversation sets: (Not applicable)
Initialize_For_Incoming sets: (Not applicable)
Accept_Incoming sets: (Not applicable)
Can be changed by: Set_TP_Name

TP Name of the Invoked Program (As Seen by the Invoked Program)

Initialize_Conversation sets: (Not applicable)
Accept_Conversation sets: The value specified by the invoking program.
Initialize_For_Incoming sets: (Not set)
Accept_Incoming sets: The value specified by the invoking program.
Can be changed by: Specify_Local_TP_Name (to indicate one or

more names for which to accept incoming
allocates)

Side Information
The information required for two programs to communicate is stored in CPI-C side
information entries in the Communications Server configuration file. You will need
to coordinate with your System Administrator to ensure that it contains what you
need. For additional information about configuration, refer to the IBM
Communications Server for Data Center Deployment on AIX or Linux Administration
Guide.

Initial Conversation Characteristics

30 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Each side information entry is identified by a Symbolic Destination Name, which is
the sym_dest_name parameter specified by the Initialize_Conversation call. The
parameter sym_dest_name is an 8-byte ASCII character string and can contain any
displayable characters.

If you are developing commercial programs or programs that will be installed on
multiple machines within your organization, you may want to include logic to use
a different sym_dest_name for each copy of the program.

Each side information entry contains the following fields:
v Local LU alias
v Partner LU name
v Partner program type and name
v Mode name
v Conversation security type
v Security user ID and password
v Application-specified side information

Local LU Alias
This is the alias of the local LU to be used to allocate conversations. It consists of
up to eight ASCII characters. For the allowed characters, see “Set_Local_LU_Name
(cmslln)” on page 127.

Partner LU Name
This is the name by which the partner LU is known to the local program. It can be
an alias of up to eight ASCII characters or a fully qualified network name of up to
17 characters. For the allowed characters, see “Set_Partner_LU_Name (cmspln)” on
page 132.

Partner Program Type and Name
These fields indicate whether the partner program is an application program or
SNA service program, and the partner program name. An application program
name can contain up to 64 ASCII characters. A service program can contain up to
four characters. For the allowed characters, see “Set_TP_Name (cmstpn)” on page
143.

Mode Name
This name represents a set of characteristics to be used in an LU-to-LU session.
The mode name can contain up to eight ASCII characters. For the allowed
characters, see “Set_Mode_Name (cmsmn)” on page 130.

Conversation Security Type
This field indicates whether security will be used and if so, what type. The security
type can specify that CPI-C must send a user ID and password when allocating a
conversation with the invoked program. For an invoked program that in turn
invokes another program, the security type can inform the second invoked
program that security has already been verified.

For further information about conversation security, see
“Set_Conversation_Security_Type (cmscst)” on page 113.

Side Information

Chapter 2. Writing CPI-C Applications 31

Security User ID and Password
If the remote program uses conversation security, and does not accept an “already
verified” indication, a valid combination of user ID and password is required to
access the invoked program. The user ID and password can be up to 10 ASCII
characters. For the allowed characters, see “Set_Conversation_Security_User_ID
(cmscsu)” on page 115 and “Set_Conversation_Security_Password (cmscsp)” on
page 111.

Application-Specified Side Information

Note: The functions described in this section are not available in Java CPI-C. A
Java CPI-C application cannot maintain its own CPI-C side information
entries. However, it can override individual parameters in the side
information, or determine their values, by using Set_* or Extract_* functions
for each required parameter.

An application can override the side information stored in the configuration file to
maintain its own side information entries, using the following calls:
v Set_CPIC_Side_Information (to define a side information entry associated with a

specified sym_dest_name; if the sym_dest_name is already defined in the
configuration file, the new information overrides the configuration file)

v Delete_CPIC_Side_Information (to indicate that an entry defined by the
application, or one defined in the configuration file, is no longer available for
use by this application)

v Extract_CPIC_Side_Information (to return the contents of a side information
entry—either an entry defined by the application, or one defined in the
configuration file)

The modified information then applies only to this application; it does not affect
other applications, and does not change the configuration file. The modified
information is discarded when the application ends.

These calls are not part of IBM CPI-C 2.0; they are provided for compatibility with
X/Open CPI-C. In addition, in the side information structure used by these calls,
the user ID and password parameters are defined as eight characters (as in
X/Open CPI-C) instead of 10 (as in IBM CPI-C 2.0). This leads to the following
restrictions:
v If the partner application requires a user ID or password of more than eight

characters, you cannot specify it using Set_CPIC_Side_Information. You must
either use a side information entry defined in the configuration file, or define
one using Set_CPIC_Side_Information and then override the user ID or
password using the Set_Conversation_Security_User_ID or
Set_Conversation_Security_Password call.

v If the side information entry in the configuration file contains a user ID of more
than eight characters, you cannot extract it using
Extract_CPIC_Side_Information. You must use the Extract_Security_User_ID call.
(This does not apply to the password, because CPI-C does not allow the
application to extract it.)

Configuration
The following are considerations when configuring Communications Server:

Side Information

32 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v In addition to maintaining the side information (specified by sym_dest_name), the
System Administrator must define the following entities during configuration to
enable CPI-C applications to use Communications Server's LU 6.2 services:
– Modes
– Local LUs
– Partner LUs
– Invokable TPs
– Security user IDs and passwords
For further information, refer to the IBM Communications Server for Data Center
Deployment on AIX or Linux Administration Guide.

v If you want to enable autostart sessions, set the auto_act parameter on the mode.
For more information about defining modes, refer to IBM Communications Server
for Data Center Deployment on AIX or Linux Administration Guide.

Specifying the Local TP Name
When a program issues the Initialize_Conversation,
Initialize_Conversation_For_Incoming, or Accept_Conversation call, the CPI-C
library generates an instance of a transaction program (TP). You can specify the
name of this TP in a number of different ways, described below.

The methods are listed in order of precedence. This means that, if you specify a
name using the first method, the CPI-C library uses this name and ignores any
name that you specify using the second or later methods. If you do not use the
first method but specify a name using the second method, the CPI-C library uses
this name and ignores any name that you specify using the third or later methods,
and so on.
v For invoking programs, the TP name is only used as an identifier in log and

trace files.
v For operator-started invoked programs, the TP name must be set correctly

because the value is used to route inbound allocation requests to the appropriate
program. The Accept_Conversation, or Accept_Incoming call from the invoked
program completes when an inbound allocation request arrives for this TP name.

v For automatically-started invoked programs, the TP name need not be specified
because it is taken from the inbound allocation request.

Note: The local TP name is distinct from the partner TP name set in the
Set_TP_Name call.

Specify_Local_TP_Name
The program can use this call to specify the TP name.

Context
If there is another TP from which the context is copied, the TP name is taken from
that other TP. For more information about context, see “Multiple Conversations”
on page 12.

APPCTPN Environment Variable
The TP name can be specified using the APPCTPN environment variable.

UNIX

Configuration

Chapter 2. Writing CPI-C Applications 33

On AIX / Linux systems the TP name is specified in the APPCTPN environment
variable. This environment variable can be set in the following ways:
v The program can issue a putenv call
v You can set it in the AIX / Linux shell. For example, in the Korn shell you

would issue the following command:
export APPCTPN=MYTP

v If you are using automatically started invoked TPs, you can set it using the
environment field of the Communications Server invokable TP data file.

WINDOWS

On Windows systems the TP name can be specified either using the APPCTPN
environment variable, or in the registry. CPI-C checks the environment variable
first, and uses this name if it is specified; it uses the registry entry only if the
environment variable is not specified. You may need to use environment variables
if you are using Windows Terminal Server and need to run multiple copies of the
same application using different local LUs.

The registry key is
\\HKEY_LOCAL_MACHINE\SOFTWARE\SNA Client\SxClient\Parameters\MyExeName

where MyExeName is the file name of the program, without the .exe extension.

The APPCTPN value under this registry key specifies the TP name.

Default Value
If the TP name is not set by any of the methods described in the previous sections
then it is set to the default value CPIC_DEFAULT_TPNAME.

Specifying the Local LU
The local LU that an invoking CPI-C TP uses can be specified in a number of ways
which are described below.

Note: The local LU for an invoked TP is not specified like this, but is defined by
the partner LU value specified in the allocate request.

If the LU specified is a dependent LU, multiple concurrent conversations are
not supported (because dependent LUs cannot support multiple sessions).

The different ways that you can set the local LU alias are described in the
following sections. The methods are listed in order of precedence. This means that,
if you specify a local LU alias using the first method, the CPI-C library uses this
name and ignores any alias that you specify using the second or later methods. If
you do not use the first method but specify a local LU alias using the second
method, the CPI-C library uses this alias and ignores any alias that you specify
using the third or later methods, and so on.

Specifying the Local TP Name

34 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Set_Local_LU_Name
The program can issue this call to specify the local LU alias after the
Initialize_Conversation call has completed. This call only affects the TP from which
it is issued. It does not modify the side information stored in the configuration file.

Note: This call is not part of the standard CPI-C specification, and may not be
available in other implementations. You may want to avoid using this
function, or to restrict it to a few specific routines which can be modified
easily, if you need to ensure that your application can be used with other
CPI-C implementations.

Context
If there is another TP from which the context is copied, the local LU name is taken
from that other TP. For more information about context, see “Multiple
Conversations” on page 12.

APPCLLU Environment Variable
The local LU alias can be specified using the APPCLLU environment variable.

UNIX

On AIX / Linux systems this environment variable can be set in the following
ways:
v The program can issue a putenv call
v You can set it in the AIX / Linux shell. For example, in the Korn shell you

would issue the following command:
export APPCLLU=MYLU

WINDOWS

On Windows systems the local LU alias can be specified either using the APPCLLU
environment variable, or in the registry. CPI-C checks the environment variable
first, and uses this alias if it is specified; it uses the registry entry only if the
environment variable is not specified. You may need to use environment variables
if you are using Windows Terminal Server and need to run multiple copies of the
same application using different local LUs.

The registry key is
\\HKEY_LOCAL_MACHINE\SOFTWARE\SNA Client\SxClient\Parameters\MyExeName

where MyExeName is the file name of the program, less the .exe extension.

The APPCLLU value under this registry key specifies the local LU alias.

Specifying the Local LU

Chapter 2. Writing CPI-C Applications 35

Side Information
The local LU alias is part of the side information configured for each symbolic
destination name. TPs select which of these to use in the Initialize_Conversation
call.

Note: Programs can modify the side information. For more information, see
“Administering Side Information” on page 26.

Default Local LU
Local LUs can be configured to be a part of the default pool of APPC LUs. If no
other local LU alias is specified, any suitable LU from this pool is used.

Control Point LU
Communications Server normally has one control point (CP) LU defined on each
node. If no other local LU alias is defined then the CP LU is used.

How Programs Get Started
A conversation occurs between an invoking program and an invoked program. The
invoking program is started by a user entering a command or by a batch
command. The invoked program can either be started manually by a user or
automatically by Communications Server.

Invoked Program: Automatically Started
An invoked program can be configured to start automatically under one of the
following conditions:
v The first time an inbound allocation request is received by the LU that serves the

invoked program. A program started in this manner is called a queued,
automatically started program (or queued auto-started TP).
If the invoked program is not running, the first inbound allocation request starts
it; a response to the allocate request is held until the Accept_Conversation or
Accept_Incoming call in the invoked program is executed.
If the invoked program is already running, the inbound allocation request waits
until the invoked program issues another Accept_Conversation or
Accept_Incoming call, or until it finishes running and can be restarted.

v Each time an inbound allocation request is received by the LU that serves the
invoked program, a new instance of the program is loaded and started. A
program started in this manner is called a nonqueued, automatically started
program.

In general, the inbound allocation request waits until the invoked program is
started and issues an Accept_Conversation or Accept_Incoming call. However, the
definition of the invoked program's local LU includes a timeout value, so that the
inbound allocation request fails if the timeout is reached before the invoked
program issues an Accept_Conversation or Accept_Incoming call.

The definition of the invoked TP (in the Communications Server invokable TP data
file) includes a second timeout value, which determines how long an
Accept_Conversation or Accept_Incoming call waits for an inbound allocation
request. The call fails if this timeout is reached before an inbound allocation
request is received. This timeout value does not apply to a nonqueued program,
because the program is always started in response to an inbound allocation request
and so there is always one pending.

Specifying the Local LU

36 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Invoked Program: User-Started
If an invoked program is configured to be started by a user, the user can start the
invoked program either before or after the invoking program. A program started in
this manner is called a queued, operator-started program.

If the user starts the invoking program before starting the invoked program, the
inbound allocation request to the invoked program waits until the invoked
program is started and issues an Accept_Conversation or Accept_Incoming call.
However, the definition of the invoked program's local LU includes a timeout
value, so that the inbound allocation request fails if the timeout is reached before
the invoked program is started and issues an Accept_Conversation or
Accept_Incoming call.

If the user starts the invoked program before the invoking program issues the
Allocate call, the Accept_Conversation or Accept_Incoming call issued by the
invoked program waits for an inbound allocation request. The definition of the
invoked TP (in the Communications Server invokable TP data file) includes a
second timeout value, which determines how long an Accept_Conversation or
Accept_Incoming call waits for an inbound allocation request. The call fails if this
timeout is reached before an inbound allocation request is received.

AIX or Linux Considerations

UNIX

This section summarizes the information you need to consider when writing CPI-C
applications for AIX or Linux systems.

If you are writing Java CPI-C applications, see “Java CPI-C Considerations” on
page 42.

CPI-C Header File
The header file to be used with CPI-C applications is cmc.h. This file contains the
definitions of all CPI-C entry points. It also includes the common interface header
file values_c.h; these two files contain all the constants defined for supplied and
returned parameter values at the CPI-C interface. Both files are stored in
/usr/include/sna (AIX) or /opt/ibm/sna/include (Linux).

Multiple Processes
If the process that started the conversation forks to create a child process, the child
process cannot use the conversation_ID that was returned to the parent process. It
can, however, issue its own Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call to obtain its own conversation_ID.

Two or more instances of the same program can run as different processes, but
each instance will be assigned its own conversation_ID.

You can write an application in which one process contains many conversations,
each with its own conversation_ID. However, you need to design the application
carefully to avoid “deadlock” situations, in which a CPI-C call is unable to
complete because of the state of other conversations in the same process. This
might happen if the program is waiting on one conversation for information to be
sent to it before returning some other data, and another conversation from the

How Programs Get Started

Chapter 2. Writing CPI-C Applications 37

same process is waiting for this data before it can send the information originally
required by the first conversation. To some extent this can be avoided by using a
separate process for each conversation.

Compiling and Linking the CPI-C Application

AIX Applications
To compile and link 32–bit applications, use the following options:

-bimport:/usr/lib/sna/cpic_r.exp -I
/usr/include/sna

To compile and link 64–bit applications, use the following options:

-bimport:/usr/lib/sna/cpic_r64_5.exp -I
/usr/include/sna

Linux Applications
Before compiling and linking a CPI-C application, specify the directory where
shared libraries are stored, so that the application can find them at run time. To do
this, set the environment variable LD_RUN_PATH to /opt/ibm/sna/lib, or to
/opt/ibm/sna/lib64 if you are compiling a 64–bit application.

To compile and link 32–bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib -lcpic -lappc -lnof -lsna_r -lpthread -lpLiS

To compile and link 64–bit applications, use the following options:

-I /opt/ibm/sna/include -L
/opt/ibm/sna/lib64 -lcpic -lappc -lnof -lsna_r -lpthread -lpLiS

The option -lpLiS is required only if you will be running the application on a
Communications Server server; you do not need to use it if you are building the
application on an IBM Remote API Client and it will run only on the client. As an
alternative to using this option, you can set the the environment variable
LD_PRELOAD to /usr/lib/libpLiS.so before compiling and linking the application.

Windows Considerations

WINDOWS

This section summarizes processing considerations you need to be aware of when
developing programs on a Remote API Client on Windows.

If you are writing Java CPI-C applications, see “Java CPI-C Considerations” on
page 42.

Windows CPI-C Files
The header file to be used with Windows CPI-C applications is wincpic.h, which
contains the definitions of all CPI-C entry points, and the defined constants for
supplied and returned parameter values at the Windows CPI-C interface. This file

AIX or Linux Considerations

38 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

is installed in the subdirectory \sdk for 32–bit applications, or \sdk64 for 64–bit
applications, within the directory where you installed the Remote API Client on
Windows software.

The library used to link Windows CPI-C applications is \sdk\wcpic32.lib for
32–bit applications, or \sdk64\wcpic32.lib for 64–bit applications.

Function Prototypes
The function prototypes for CPI-C calls shown in Chapter 3, “CPI-C Calls,” on
page 47 are in the format used for AIX / Linux systems. For Windows systems,
replace “void functionname” with “void WINAPI functionname” for each call.

Multiple Processes and Multiple Conversations
Multiple processes cannot have the same conversation identifier. Only the process
that issues the Initialize_Conversation or Accept_Conversation call can use the
conversation ID returned by the call. Another process wanting to use CPI-C must
issue an Initialize_Conversation or Accept_Conversation call to obtain its own
conversation ID.

One program can engage in up to 64 simultaneous conversations.

Windows Function Calls
In addition to the standard CPI-C function calls, and the Windows-specific CPI-C
function call Specify_Windows_Handle, a Windows application also uses the
following functions:

WinCPICStartup
Registers the application as a Windows CPI-C user, and determines
whether the CPI-C software supports the level of function required by the
application.

WinCPICCleanup
Unregisters the application when it has finished using CPI-C.

WinCPICIsBlocking
Checks whether there is a blocking call outstanding for this application.
For more information about the circumstances in which this call may be
required, see “Blocking Calls” on page 40.

WinCPICSetBlockingHook
Specifies the blocking procedure that CPI-C uses while processing blocking
calls; this replaces CPI-C's default blocking procedure. The blocking
procedure is called repeatedly until processing for the blocking call has
completed. For more information, see “Blocking Calls” on page 40.

WinCPICUnhookBlockingHook
Unregisters the blocking procedure specified by a previous
WinCPICSetBlockingHook call, so that CPI-C reverts to using the default
blocking procedure.

WinCPICExtractEvent
Provides a method for an application to determine the Windows event
handle being used for a CPI-C conversation.

WinCPICSetEvent
Associates a Windows event handle with verb completion for a CPI-C
conversation.

Windows Considerations

Chapter 2. Writing CPI-C Applications 39

If the application needs to be compatible with Microsoft SNA Server and Windows
Open System Architecture (WOSA), it must call WinCPICStartup before attempting
to issue any CPI-C calls. If you are writing the application for use only on
Windows clients and you do not need to run it on SNA Server, there is no need to
use this call.

“Blocking Calls” provides more information about how blocking calls operate in
the Windows environment, and how the application should use the
WinCPICIsBlocking, WinCPICSetBlockingHook, and WinCPICUnhookBlockingHook calls.

If the application needs to be compatible with Microsoft SNA Server and Windows
Open System Architecture (WOSA), it must call WinCPICCleanup after it has
finished issuing CPI-C calls and before terminating; it must not attempt to issue
any more CPI-C calls after calling WinCPICCleanup. If you are writing the
application for use only on Windows clients and you do not need to run it on SNA
Server, there is no need to use this call.

The Windows function calls are described at the end of Chapter 3, “CPI-C Calls,”
on page 47.

Blocking Calls
This section describes how blocking CPI-C calls (calls issued with the
conversation's processing mode set to CM_BLOCKING) operate in the Windows
environment if the calling application is single-threaded. (Typically, a Windows
application would use multiple threads to avoid the problem of a blocking verb
blocking the entire application.)

The section also provides information that you need to be aware of when writing
applications to use blocking calls.

The Remote API Client provides support for blocking calls on Windows systems to
assist in migrating applications from other operating system environments.
However, the use of blocking calls in the Windows environment is strongly
discouraged. If you are writing a new application specifically for Windows, you
should do the following:
v Use the Specify_Windows_Handle function to specify a Windows handle to

which CPI-C posts the results of call completion
v Issue all CPI-C calls in nonblocking mode

Although a blocking call appears to suspend the application until CPI-C has
finished processing the call, the CPI-C library has to yield control of the system
while waiting for Communications Server to complete the processing, in order to
enable other processes to run. To do this, it uses a “blocking function”, which is
called repeatedly while the library is waiting; the function enables Windows
messages to be sent to other processes. For more information about this function,
see “Default Blocking Function” on page 41.

It is possible for the blocking function to send a message to the application that
issued the original blocking call; in this case, the application can be reentered even
though it has a blocking call outstanding. In these circumstances, the application
can continue with other processing not related to issuing CPI-C calls. However, it
cannot issue another blocking call while the first call is outstanding.

The application can check whether a blocking call is outstanding (that is, whether
it has been reentered as a result of a received message while the call was

Windows Considerations

40 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

outstanding) by using the WinCPICIsBlocking function, described in Chapter 3,
“CPI-C Calls,” on page 47. If this function indicates that a blocking call is
outstanding, the application should not attempt to issue further blocking CPI-C
calls. It can, however, do the following:
v Continue with other processing
v Issue CPI-C calls on other conversations for which the processing mode is

CM_NON_BLOCKING

Default Blocking Function
The standard blocking function used by the Windows CPI-C library is as follows:

BOOL DefaultBlockingHook (void) {
MSG msg;
/* get the next message if any */
if (PeekMessage (&msg,0,0,PM_NOREMOVE)) {

if (msg.message == WM_QUIT)
return FALSE; // let app process WM_QUIT

PeekMessage (&msg,0,0,PM_REMOVE);
TranslateMessage (&msg);
DispatchMessage (&msg);

}
/* TRUE if no WM_QUIT received */
return TRUE;
}

If the application needs to have other processing performed as part of the blocking
function, it can specify its own blocking function to replace the default one
provided by CPI-C. To do this, it uses the WinCPICSetBlockingHook call, described
in Chapter 3, “CPI-C Calls,” on page 47.

A blocking function must return FALSE if it receives a WM_QUIT message; this
means that CPI-C returns control to the application, which can then process the
message and terminate. Otherwise, the function must return TRUE.

Terminating Applications
If the application needs to be compatible with Microsoft SNA Server and Windows
Open System Architecture (WOSA), it should issue the WinCPICCleanup call when it
needs to close (for example, if it receives a WM_CLOSE message). If you are
writing the application for use only on Windows clients and you do not need to
run it on SNA Server, there is no need to use this call.

Compiling and Linking CPI-C Applications
This section provides information about compiling and linking CPI-C applications
on Windows systems.

Compiler Options for Structure Packing
The structures supplied and returned on some CPI-C calls are not packed. Do not
use compiler options that change this packing method. BYTE parameters are on
BYTE boundaries, WORD parameters are on WORD boundaries, and DWORD
parameters are on DWORD boundaries.

Header Files
The header file to be included in Windows CPI-C applications is named wincpic.h.
This file is installed in the subdirectory /sdk within the directory where you
installed the Windows Client software.

Windows Considerations

Chapter 2. Writing CPI-C Applications 41

Load-time linking
To link the application to CPI-C at load time, link the application to the library
wincpic32.lib.

Run-time linking
To link the application to CPI-C at run time, include the following calls in the
application:
v LoadLibrary to load the CPI-C dynamic link library wincpic32.dll

v GetProcAddress to specify WinCPIC as the entry point to the dynamic link library
v FreeLibrary when the library is no longer required

Java CPI-C Considerations
This section summarizes the information you need to consider when writing Java
CPI-C applications.

Using Java CPI-C Classes
The Java CPI-C package is named COM.ibm.eNetwork.cpic. This package consists
of a Java class that contains:
v A method for each of the supported CPI-C calls
v Classes for use as parameters to these calls

When writing a Java program to use the CPIC class, use the following import
statement in the Java source to import the CPIC package:

import COM.ibm.eNetwork.cpic.*;

Constant Values
The Java CPI-C class defines a number of constant values for the maximum length
in bytes of specific CPI-C parameters. These constants are shown in Table 11. You
should use these constants in your program rather than specifying the lengths
explicitly.

Table 11. Java CPI-C Constants

Parameter Length Java CPI-C Constant

Conversation ID Length CM_CID_SIZE
Context ID Length CM_CTX_SIZE
Log Data Size CM_LD_SIZE
Mode Name Length CM_MN_SIZE
Partner LU Name Length CM_PLN_SIZE
Security Password Length CM_PW_SIZE
Security User ID Length CM_UID_SIZE
Symbolic Destination Name Length CM_SDN_SIZE
Transaction Program (TP) Name length CM_TPN_SIZE

Parameter Type Classes
Many parameters used in CPI-C functions take one of a set of two or more defined
values. In the Java CPI-C package, each of these parameter types is defined as a
class containing the valid values. For example, the CPICSyncLevel class is used in

Windows Considerations

42 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

the functions Set_Sync_Level (cmssl) and Extract_Sync_Level (cmesl), and can take
a value of either CM_NONE or CM_CONFIRM.

The description of each CPI-C function in Chapter 3, “CPI-C Calls,” on page 47
gives the appropriate CPI-C parameter class type and the valid values. For
example, in Set_Sync_Level (cmssl), the sync_level parameter is listed as being of
type CPICSyncLevel, and the description of parameters for this function lists the
valid values as CM_NONE or CM_CONFIRM.

Because the constant values associated with a Java class are defined in the class,
you must access them by referring to the class as well as the specific value. For
example, to specify no confirm synchronization, you must set the sync_level
parameter of the Set_Sync_Level function to CPICSyncLevel.CM_NONE.

Each of these classes has the following methods in addition to the constructor:

int intValue()
Returns the value stored in the object.

int intValue(int_value)
Sets the value stored in the object to the supplied integer value int_value,
and returns the same value.

You can also set the value stored in an object during construction of the
object, by passing the value in as a parameter to the constructor.

boolean equals(int_value)
Returns true if the value stored in the object is equal to the supplied
integer value int_value.

boolean equals(supplied_object)
Returns true if the value stored in the object is equal to the value stored in
the supplied parameter supplied_object. supplied_object must itself be an
instance of one of the Java CPI-C parameter classes.

The class CPICReturnCode has the following additional method:

boolean isOK()
The application should call this method to determine whether the value
stored in a CPICReturnCode object is CM_OK. The class generates an exception
if the stored value is not CM_OK.

Usage Example
The following example illustrates how to set up your Java program to use the Java
CPI-C class, and how to make an individual CPI-C call.

To import the Java CPI-C package, include the following at the start of your
program's source code:

import COM.ibm.eNetwork.cpic.*;

To use Java CPI-C in your program, create an instance of the Java CPI-C class:

CPIC cpicObject = new CPIC();

The following steps illustrate how to make the call to each Java CPI-C function,
using the Initialize_Conversation (cminit) function as an example.
1. Create and initialize the parameters for the function:

Java CPI-C Considerations

Chapter 2. Writing CPI-C Applications 43

byte[] bConversationId = new byte[cpicObject.CM_CID_SIZE];
String sSymbolicDestination = "testprog";
CPICReturnCode cpicReturn = new CPICReturnCode(0);

Note the use of the constant CM_CID_SIZE to set the size of the byte array for
the conversation ID, and the use of the CPICReturnCode class to set the initial
value of this parameter to zero. The last line of this example could also be split
into two lines as follows:

CPICReturnCode cpicReturn = new CPICReturnCode();
cpicReturn.intValue(0);

2. Issue the function call:

cpicObject.cminit(bConversationId,
sSymbolicDestination,
cpicReturn);

3. Test the return code against a specific value:

if (cpicReturn.intValue() != CPICReturnCode.CM_PARAMETER_ERROR)
. . .

Alternatively, check whether the return code is CM_OK:

try
{

cpicReturn.isOK();
}
catch(CPICReturncode c)
{
. . . // cpicReturn is not set to CM_OK
}

Compiling and Linking the Java CPI-C Application

UNIX

Before compiling and linking a Java CPI-C application, specify the directory where
Java classes are stored. To do this, set and export the environment variable
CLASSPATH to /usr/lib/sna/java/cpic.jar:. (AIX) or /opt/ibm/sna/java/cpic.jar:. (Linux).

Compile and link the application using the Java compiler javac in the normal way.

WINDOWS

Compile and link the application using the Java compiler javac with the following
options:

javac -classpath install_dir/cpicjava.jar programname.java

Replace install_dir with the path of the IBM Remote API Client on Windows install
directory, and programname with the name of your Java CPI-C program source file.

Java CPI-C Considerations

44 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Running the Java CPI-C Application

UNIX

Before running a Java CPI-C application, you need to specify the directory where
libraries are stored, so that the application can find them at run time.

To do this, set and export the appropriate environment variables as follows.

For a 32–bit application on Linux:

export CLASSPATH=/opt/ibm/sna/java/cpic.jar:.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ibm/sna/lib
export LD_PRELOAD=/usr/lib/libpLiS.so

For a 64–bit application on Linux:

export CLASSPATH=/opt/ibm/sna/java/cpic.jar:.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ibm/sna/lib64
export LD_PRELOAD=/usr/lib64/libpLiS.so
export PATH=/opt/ibm/java2-ppc64-50/jre/bin:/opt/ibm/java2-ppc64-50/bin:$PATH

If you need to run an existing 32–bit application on a 64–bit system, you must
export the 32–bit version of LD_PRELOAD only for that application; other programs
may fail if they are run with this setting.

For a 32–bit application on AIX:

export CLASSPATH=/usr/lib/sna/cpic.jar:.

export LIBPATH=$LIBPATH:/usr/lib/sna
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/sna

For a 64–bit application on AIX:

export CLASSPATH=/usr/lib/sna/cpic.jar:.

export LIBPATH=$LIBPATH:/usr/lib/sna
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/sna
export PATH=/usr/java5_64/jre/bin:/usr/java5_64/bin:$PATH

You may also need to set and export the APPCTPN environment variable to specify
the local TP name for the application, as described in “Specifying the Local TP
Name” on page 33.

Run the application using the Java interpreter java in the normal way. For a 64–bit
application, you need to specify the library path as part of the command line, as
follows.

For Linux:

java -Djava.library.path=$LD_LIBRARY_PATH application-name . . .

Java CPI-C Considerations

Chapter 2. Writing CPI-C Applications 45

For AIX:

java -Djava.library.path=$LIBPATH application-name . . .

WINDOWS

Run the application using the Java interpreter java in the normal way.

Writing Portable Applications
The following guidelines are provided for writing CPI-C applications that they are
portable to other operating system environments or other CPI-C implementations:
v Include the CPI-C header file without any pathname prefix. Use include options

on the compiler to locate the file (see the appropriate section for your operating
system, earlier in this chapter). This enables the application to be used in an
environment with a different file system.

v Use the symbolic constant names for parameter values and return codes, not the
numeric values shown in the header file; this ensures that the correct value will
be used regardless of the way these values are stored in memory.

v Include a check for return codes other than those applicable to your current
operating system (for example using a “default” case in a switch statement), and
provide appropriate diagnostics.

v Some of the CPI-C functions provided by Communications Server are extensions
included for compatibility with X/Open CPI-C, or are not part of the standard
CPI-C specification, and may not be available in other implementations. Each of
these extension functions is identified by notes in the introduction to the
function description in Chapter 3, “CPI-C Calls,” on page 47.
– The X/Open functions are included to allow you to use existing applications

written for X/Open CPI-C with Communications Server. You should not use
these functions when writing new applications.

– If you use the extension functions in your application, you may need to
rewrite sections of the application for use in other environments. You may
want to restrict the use of these functions to a few specific routines, to allow
easier modification.

The following guidelines apply to Java CPI-C applications:
v The three functions Extract_Conversation_Context, Set_Conversation_Context,

and Set_Local_LU_Name are not part of the standard CPI-C specification, and
are not supported by IBM's Java CPI-C for CS/Windows. If you use these
functions in your Java CPI-C application, you may need to rewrite sections of
the application for use in other Java CPI-C environments. You may want to
restrict the use of these functions to a few specific routines, to allow easier
modification.

v The Java CPI-C class includes some CPI-C functions not described in this
manual, which are defined as part of the Java class but not supported. If you use
these unsupported functions in your application, it may compile successfully,
but the functions will return an error return code (CM_CALL_NOT_SUPPORTED) if the
application attempts to use them.

Java CPI-C Considerations

46 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Chapter 3. CPI-C Calls

This chapter describes the CPI-C function calls and the additional
Windows-specific function calls used by CPI-C applications. The following
information is included:
v An explanation of the information provided for the calls
v The call descriptions

Information Provided for CPI-C Calls
The following information is supplied for each CPI-C call described in this chapter:
v The pseudonym for the call, followed by the actual C function name in

parentheses (this information is in the section heading).
v The function prototype for the call, including the parameters used by the call

and the data type for each parameter. The prototype of each function is declared
in the file cmc.h (AIX / Linux systems) or wincpic.h (Windows systems).

WINDOWS

The function prototypes for CPI-C calls shown in Chapter 3, “CPI-C Calls” are in
the format used for AIX / Linux systems. For Windows systems, replace “void
functionname” with “void WINAPI functionname” for each call.

v The Java method definition for the CPI-C function, if it is supported in Java
CPI-C.

v A description of each supplied and returned parameter. The parameter names
are pseudonyms. The actual variable names for these parameters are declared by
the application program. The description includes the possible values of the
parameter.

v The conversation state or states in which the call can be issued.
v The state or states into which the conversation can change upon return from the

call. Conditions that do not cause a state change, such as parameter checks and
state checks, are not noted.

v Additional information describing the use of the call.

Data Types
For information on data types in Java CPI-C applications, see “Java CPI-C
Considerations” on page 42.

To improve the portability of CPI-C applications, the data types for the parameters
supplied to, and received from, CPI-C are established as symbolic constants by
#define statements in the CPI-C header file. For example, CM_INT32 represents a
32-bit integer type; CM_PTR represents a pointer type.

This chapter uses these symbolic constants to identify the data types for supplied
and returned parameters. When writing applications, you are advised to use these
symbolic constants rather than the actual data types.

© Copyright IBM Corp. 1998, 2012 47

Data Structures
This section does not apply to Java CPI-C applications, because none of the CPI-C
functions supported in Java CPI-C use data structures.

For some CPI-C calls, the application supplies a data structure in which
Communications Server can fill in parameters to return to the application. These
data structures may contain parameters marked as “reserved”; some of these
reserved parameters are used internally by the Communications Server software,
and others are not used in this version but may be used in future versions. Your
application must not attempt to access any of these reserved parameters; instead, it
must set the entire contents of the data structure to zero to ensure that all of these
parameters are zero, before it sets other parameters that are used by the verb. This
ensures that Communications Server will not misinterpret any of its internally-used
parameters, and also that your application will continue to work with future
Communications Server versions in which these parameters may be used to
provide new functions.

To set the data structure contents to zero, use memset:

memset(my_struct, 0, sizeof(my_struct));

Symbolic Constants
For information on symbolic constant values in Java CPI-C applications, see “Java
CPI-C Considerations” on page 42.

Most parameters supplied to and returned by CPI-C are 32-bit integers. To simplify
coding, the values for these parameters are represented by meaningful symbolic
constants, which are established by #define statements in the header file. For
example, the value CM_MAPPED_CONVERSATION represents the integer 1. For the sake
of portability and readability, use only the symbolic constants when writing
programs.

Strings
All strings are in ASCII format when passed across the CPI-C interface.

Validity of Returned Parameters
The parameters returned by CPI-C are valid only if the CPI-C call is executed
successfully, as indicated by a return code of CM_OK.

Information Provided for Windows Function Calls

WINDOWS

The following information is supplied for each of the Windows-specific function
calls described in this chapter:
v The name of the call; unlike the CPI-C function calls, these calls do not have

pseudonyms.
v A description of the call.
v The function prototype for the call, including the parameters used by the call

and the data type for each parameter. The prototype of each function is declared
in the file wincpic.h.

Information Provided for CPI-C Calls

48 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v A description of each supplied and returned parameter. The parameter names
are pseudonyms. The actual variable names for these parameters are declared by
the application program. The description includes the possible values of the
parameter.

v Additional information describing the use of the call.

Accept_Conversation (cmaccp)
The Accept_Conversation call is issued by the invoked program to accept the
incoming conversation and set certain conversation characteristics. For a list of
initial conversation characteristics, see Chapter 2, “Writing CPI-C Applications,” on
page 19.

Upon successful execution of this call, CPI-C generates an 8-byte conversation
identifier. This identifier is a required parameter for all other CPI-C calls issued by
the invoked program during this conversation.

Function Call
void cmaccp (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmaccp (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
There are no supplied parameters for this call.

Returned Parameters
After the call executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_ID
This is the identifier for the conversation. It is used by subsequent CPI-C
calls.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following conditions:
v No incoming Allocate request was received within the timeout

period specified in the configuration.
v The application has not specified any local TP names (or, for AIX

/ Linux systems,has released all specified names). The
application must have at least one local TP name before issuing

Information Provided for Windows Function Calls

Chapter 3. CPI-C Calls 49

this call. For more information about specifying local TP names,
see “Specifying the Local TP Name” on page 33.

v The application was started manually, but is defined in the
invokable TP data file as nonqueued. A nonqueued TP is started
automatically by Communications Server in response to a
conversation request (an incoming Attach); if you attempt to
start it manually, the Accept_Conversation call will fail because
there is no incoming Attach waiting for the application.

CM_PRODUCT_SPECIFIC_ERROR
See Appendix B, “Common Return Codes,” on page 169.

State When Issued
The conversation must be in Reset state.

State Change
If the call is successful, the conversation changes to Receive state. If the call fails,
the state remains unchanged.

Usage Notes®

The TP name can be specified in a number of ways. For more information about
specifying local TP names, see “Specifying the Local TP Name” on page 33. Before
issuing Accept_Conversation, the program can issue Specify_Local_TP_Name to
indicate one or more TP names for which it will accept incoming Allocates (these
names are in addition to names defined in other ways such as the APPCTPN
environment variable). If it specifies more than one TP name in this way, then it
can use the Extract_TP_Name call (after Accept_Conversation returns) to determine
which TP name the invoking program used.

UNIX

When Accept_Conversation returns CM_OK, a new conversation context is created
for the conversation, and this becomes the program's current context.

Accept_Conversation always operates in blocking mode; that is, it always suspends
until an incoming Allocate request is received. The following methods can be used
to avoid unnecessary delays:
v Ensure that the invokable TP configuration for this application specifies a small

timeout value, so that the Accept_Conversation call will return quickly (with
return_code CM_PROGRAM_STATE_CHECK) if there is no incoming Allocate request,
and then make the application retry Accept_Conversation later. The timeout
value is specified in the invokable TP data file; refer to the IBM Communications
Server for Data Center Deployment on AIX or Linux Administration Guide for more
information.

v Instead of using Accept_Conversation, use Accept_Incoming, which can operate
in nonblocking mode. Use the following sequence of calls:
– Initialize_For_Incoming (to obtain a conversation ID for the incoming

conversation)
– Set_Processing_Mode (to set the processing_mode for this conversation ID to

CM_NON_BLOCKING)
– Accept_Incoming
See the descriptions of these calls for more information.

Accept_Conversation (cmaccp)

50 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Accept_Incoming (cmacci)

UNIX

The Accept_Incoming call is issued by the invoked program to accept an incoming
conversation that has previously been initialized with Initialize_For_Incoming, and
to set certain conversation characteristics. For a list of initial conversation
characteristics, see “Initial Conversation Characteristics” on page 27.

Before issuing this call, the program can issue Set_Processing_Mode to set the
processing mode for the conversation to CM_NON_BLOCKING. This ensures that the
Accept_Incoming call and all subsequent CPI-C calls are issued in nonblocking
mode.

Function Call
void cmacci (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmacci (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation that was returned on the previous
Initialize_For_Incoming call. It is used to identify subsequent CPI-C calls
on this conversation.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
One of the following occurred:
v The conversation specified by conversation_ID is not in

Initialize-Incoming state.

Accept_Conversation (cmaccp)

Chapter 3. CPI-C Calls 51

v No incoming Allocate request was received within the timeout
period specified in the configuration.

v The application has released the local TP name specified, for
example, in the APPCTPN environment variable, and has not
specified any additional local TP names. The application must
have at least one local TP name before issuing this call. For more
information about specifying local TP names, see “Specifying the
Local TP Name” on page 33.

v The application was started manually, but is defined in the
invokable TP data file as nonqueued. A nonqueued TP is started
automatically by Communications Server in response to an
incoming Attach; if you attempt to start it manually, the
Accept_Incoming call will fail because there is no incoming
Attach waiting for the application.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation must be in Initialize-Incoming state.

State Change
If the call is successful, the conversation changes to Receive state. If the call fails,
the state remains unchanged.

Usage Notes
Issuing Initialize_For_Incoming followed by Accept_Incoming is equivalent to
issuing Accept_Conversation. The difference between the two methods of accepting
a conversation is that Accept_Conversation always operates in blocking mode,
whereas Accept_Incoming can operate in nonblocking mode. To accept a
conversation in nonblocking mode, the program issues the following sequence of
calls:

Initialize_For_Incoming (to obtain a conversation ID for the incoming
conversation)
Set_Processing_Mode (to set the processing_mode for this conversation ID to
CM_NON_BLOCKING)
Accept_Incoming

The TP name specified by the APPCTPN environment variable is normally the name
used to match incoming Allocates with this program. Before issuing
Accept_Incoming, the program can issue Specify_Local_TP_Name to indicate one
or more TP names for which it will accept incoming Allocates (these names replace
the name in APPCTPN). If it specifies more than one TP name in this way, then it can
use the Extract_TP_Name call (after Accept_Incoming returns) to determine which
TP name the invoking program used. For more information about specifying local
TP names, see “Specifying the Local TP Name” on page 33.

When Accept_Incoming returns CM_OK, a new conversation context is created for
the conversation, and this becomes the program's current context. When
Accept_Incoming returns CM_OPERATION_INCOMPLETE and a subsequent
Wait_For_Conversation returns the completion of Accept_Incoming as CM_OK, a new

Accept_Incoming (cmacci)

52 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

conversation context is created for the conversation, but the program's current
context is not changed. To use the new context, the program must issue
Extract_Conversation_Context for this conversation_ID to get the value of the
conversation's context, and Set_Conversation_Context to set the program's current
context to this value.

Allocate (cmallc)
The Allocate call is issued by the invoking program to allocate a conversation with
the partner program, using the current conversation characteristics. CPI-C can also
allocate a session between the local LU and partner LU if one does not already
exist.

The type of conversation allocated is based on the conversation type
characteristic—mapped or basic.

Once the conversation has been allocated by this call, the following conversation
characteristics cannot be changed:
v Conversation type
v Mode name
v Partner LU name
v Partner program name
v Return control
v Synchronization level
v Conversation security
v User ID
v Password

Function Call
void cmallc (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmallc (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the conversation identifier. The value of this parameter is returned
by the Initialize_Conversation call.

Accept_Incoming (cmacci)

Chapter 3. CPI-C Calls 53

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PARAMETER_ERROR
One of the following has occurred:
v The mode name derived from the side information or set by

Set_Mode_Name is not valid.
v The mode name is one of the names reserved for SNA internal

use (such as SNASVCMG); an application cannot use it.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_UNSUCCESSFUL
The conversation's return-control characteristic is set to
CM_IMMEDIATE, and the local LU does not have an available
contention winner session.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY
CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation must be in Initialize state.

State Change
State changes, summarized in Table 12, are based on the value of the return_code
parameter.

Table 12. State Changes for the Allocate Call

return_code New state

CM_OK Send
CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY

Reset

All others No change

Usage Notes
To send the allocation request immediately, the invoking program can issue the
Flush or Confirm call immediately after the Allocate call. Otherwise, the allocate
request accumulates with other data in the local LU's send buffer until the buffer is
full.

Allocate (cmallc)

54 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Because the allocation request is buffered and not sent immediately, the Allocate
call may return CM_OK, but the partner LU may subsequently reject the allocation
request generated by the Allocate call. This error is returned to the invoking
program on a subsequent call.

If the conversation's synchronization level is set to CM_CONFIRM, the invoking
program can immediately determine whether the allocation was successful by
issuing the Confirm call after the Allocate call.

UNIX

The program's current context at the time the Allocate call is issued becomes the
context for the new conversation when Allocate returns CM_OK. If the program is
using multiple contexts (as a result of accepting multiple conversations), it must set
the current context to the appropriate value before issuing the Allocate call.

Cancel_Conversation (cmcanc)
The Cancel_Conversation call ends a specified conversation, canceling any
incomplete operation (a previous call that returned with CM_OPERATION_INCOMPLETE)
on this conversation, and ends the session that the conversation was using. It is
equivalent to the Deallocate call with the deallocate_type parameter set to
CM_DEALLOCATE_ABEND, with the following differences:
v Deallocate cannot be used while an operation is incomplete;

Cancel_Conversation can be used, and will cancel the outstanding call.
v Deallocate writes the log data, if any, to the local error log; Cancel_Conversation

does not.

The results of the outstanding call are undefined, and will not be returned to the
application. For example, if Cancel_Conversation is used to cancel an outstanding
Send_Data call, some or all of the data may have been sent; if it is used to cancel
Send_Error, an error indication may or may not have been sent to the partner
program.

In Java CPI-C, nonblocking calls are not supported and so there cannot be an
incomplete call outstanding. Cancel_Conversation is equivalent to Deallocate
except that it does not write log data to the local error log.

Function Call
void cmcanc (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmcanc (

byte[] conversation_ID,
CPICReturnCode return_code

);

Allocate (cmallc)

Chapter 3. CPI-C Calls 55

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully. The specified conversation has been
deallocated, and any outstanding call on this conversation has been
canceled.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR
See Appendix B, “Common Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
If the return code is CM_OK, the conversation state changes to Reset.

Usage Notes
The partner program is notified of the end of the conversation with the return code
CM_DEALLOCATED_ABEND.

Check_For_Completion (cmchck)

UNIX

This function is not available in Java CPI-C.

The Check_For_Completion call checks whether a previous call that returned with
CM_OPERATION_INCOMPLETE has since completed. This call returns immediately
whether or not the previous call has completed; the application can then continue
with other processing if the previous call has not yet completed, or call
Wait_For_Conversation to obtain the results of the previous call if it has completed.

If the application is involved in multiple conversations, this call acts across all
conversations, and returns a “successful” return code if a previous call has
completed on any of them.

This call is not part of the standard CPI-C specification, and may not be available
in other implementations. The standard method for obtaining the results of an

Cancel_Conversation (cmcanc)

56 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

outstanding call is to issue Wait_For_Conversation, which operates in blocking
mode and waits until a call has completed.

Function Call
void cmchck (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Supplied Parameters
There are no supplied parameters for this call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_ID
The identifier for the conversation on which a previous outstanding call
has completed. For more information, see “Usage Notes.”

This value is relevant only if the return_code parameter is set to CM_OK.

return_code
Possible values are:

CM_OK The call executed successfully. A previously outstanding call on the
conversation specified by conversation_ID has completed.

CM_PROGRAM_STATE_CHECK
There are no previously incomplete calls outstanding. Either the
application has not issued any calls that returned
CM_OPERATION_INCOMPLETE, or it has already issued
Wait_For_Conversation to obtain the results of all such calls.

CM_UNSUCCESSFUL
There is at least one previously incomplete call outstanding, but
none has yet completed. The application should continue with
other processing and retry Check_For_Completion later. (This
return code is different from CM_PROGRAM_STATE_CHECK.)

State When Issued
The call is not associated with a specific conversation, so the conversation state is
not relevant. However, the application must have at least one conversation with an
incomplete operation outstanding.

State Change
There is no state change.

Usage Notes
If the return code from Check_For_Completion is CM_OK, the application should call
Wait_For_Conversation to obtain the results of the outstanding call.

If more than one call has completed since the application last issued
Check_For_Completion or Wait_For_Conversation, issuing Check_For_Completion
more than once does not necessarily return information about additional calls; it

Check_For_Completion (cmchck)

Chapter 3. CPI-C Calls 57

simply indicates that at least one call has completed, and therefore a subsequent
Wait_For_Conversation call will return immediately and not block. Each
Wait_For_Conversation call returns one incomplete operation; if there are multiple
incomplete operations (on different conversations), the application can issue a
further Check_For_Completion after Wait_For_Conversation to check whether
further calls have completed.

The Wait_For_Conversation call does not necessarily return the information for the
same call that was reported by Check_For_Completion.

Confirm (cmcfm)
The Confirm call sends the contents of the local LU's send buffer and a
confirmation request to the partner program and waits for confirmation.

In response to the Confirm call, the partner program normally issues the
Confirmed call to confirm that it has received the data without error. (If the
partner program encounters an error, it issues the Send_Error call or uses the
Deallocate call to abnormally deallocate the conversation.)

The program can issue the Confirm call only if the conversation's synchronization
level is CM_CONFIRM.

Function Call
void cmcfm (

unsigned char CM_PTR conversation_ID,
CM_Request_to_Send_Received CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmcfm (

byte[] conversation_ID,
CPICControlInformationReceived request_to_send_received,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

request_to_send_received
This is the request-to-send-received indicator. Possible values are:

Check_For_Completion (cmchck)

58 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_REQ_TO_SEND_RECEIVED
The partner program has issued the Request_To_Send call, which
requests the local program to change the conversation to Receive
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to one of the
following:
v CM_PROGRAM_PARAMETER_CHECK

v CM_PROGRAM_STATE_CHECK

return_code
Possible values are:

CM_OK The call executed successfully. The partner program has issued the
Confirmed call.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid.
v The local program attempted to use the Confirm call in a

conversation with a synchronization level of CM_NONE. The
synchronization level must be CM_CONFIRM.

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The conversation was not in Send or Send-Pending state.
v The basic conversation for the local program was in Send state,

and the local program did not finish sending a logical record.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_PRODUCT_SPECIFIC_ERROR
CM_PROGRAM_ERROR_PURGING
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SVC_ERROR_PURGING
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED

State When Issued
The conversation can be in Send or Send-Pending state.

Confirm (cmcfm)

Chapter 3. CPI-C Calls 59

State Change
State changes, summarized in Table 13, are based on the value of the return_code
parameter.

Table 13. State Changes for the Confirm Call

return_code New state

CM_OK (Call issued in Send state) No change
CM_OK (Call issued in Send-Pending state) Send
CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

Receive

CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
CM_SYNC_LEVEL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Usage Notes
The Confirm call waits for a response from the partner program. A response is
generated by one of the following CPI-C calls in the partner program:
v Confirmed
v Send_Error
v Deallocate with the conversation's deallocate type set to CM_DEALLOCATE_ABEND

Confirmed (cmcfmd)
The Confirmed call replies to a confirmation request from the partner program. It
informs the partner program that the local program has not detected an error in
the received data.

Because the program issuing the confirmation request waits for a confirmation, the
Confirmed call synchronizes the processing of the two programs.

Function Call
void cmcfmd (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmcfmd (

byte[] conversation_ID,
CPICReturnCode return_code

);

Confirm (cmcfm)

60 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
When the program issued this call the conversation was not in
Confirm, Confirm-Send, or Confirm-Deallocate state.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation must be in one of the following states when the program issues
this call:
v Confirm
v Confirm-Send
v Confirm-Deallocate

State Change
The new state is determined by the old state: the state of the conversation when
the local program issued the Confirmed call. The old state is indicated by the value
of the status_received parameter of the preceding Receive call. Table 14 summarizes
the possible state changes when return_code is set to CM_OK.

Table 14. State Changes for the Confirmed Call

Old state New state

Confirm Receive
Confirm-Send Send
Confirm-Deallocate Reset

Other return codes result in no state change.

Confirmed (cmcfmd)

Chapter 3. CPI-C Calls 61

Usage Notes
The following sections describe additional usage information for the Confirmed
call.

Sources of Confirmation Requests
A confirmation request is issued by one of the following calls in the partner
program:
v Confirm
v Prepare_To_Receive if the prepare-to-receive type is set to either

CM_PREP_TO_RECEIVE_CONFIRM or CM_PREP_TO_RECEIVE_SYNC_LEVEL and the
conversation's synchronization level is set to CM_CONFIRM

v Deallocate if the deallocate type is set to CM_DEALLOCATE_CONFIRM or to
CM_DEALLOCATE_SYNC_LEVEL and the conversation's synchronization level is set to
CM_CONFIRM

v Send_Data under the following circumstances:
– The send type is set to CM_SEND_AND_CONFIRM

– The send type is set to CM_SEND_AND_PREP_TO_RECEIVE and the
prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM

– The send type is set to CM_SEND_AND_PREP_TO_RECEIVE, the prepare-to-receive
type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the synchronization level is
set to CM_CONFIRM

– The send type is set to CM_SEND_AND_DEALLOCATE and the deallocate type is set
to CM_DEALLOCATE_CONFIRM

– The send type is set to CM_SEND_AND_DEALLOCATE, the deallocate type is set to
CM_DEALLOCATE_SYNC_LEVEL and the synchronization level is set to CM_CONFIRM

Receiving Confirmation Requests
A confirmation request is received by the local program through the status_received
parameter of the Receive call. The local program can issue the Confirmed call only
if the status_received parameter is set to one of the following values:
v CM_CONFIRM_RECEIVED

v CM_CONFIRM_SEND_RECEIVED

v CM_CONFIRM_DEALLOC_RECEIVED

Convert_Incoming (cmcnvi)
The Convert_Incoming call converts a character string from EBCDIC to ASCII. If
the partner application sends data consisting of EBCDIC character strings, the local
application can use Convert_Incoming to convert these strings to ASCII. (CPI-C
parameters other than the data in Send_Data and Receive calls, such as mode_name
and TP_name, are always specified in ASCII and do not require conversion.)

Function Call
void cmcnvi (

unsigned char CM_PTR string,
CM_INT32 CM_PTR string_length,
CM_RETURN_CODE CM_PTR return_code
);

Confirmed (cmcfmd)

62 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call for Java CPI-C
public native void cmcnvi (

byte[] string,
CPICLength string_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

string This is the EBCDIC string to be converted to ASCII. The CPI-C
specification states that the string can contain any of the following
characters (character set 640):

Uppercase A-Z, lowercase a-z, 0–9, the period (.) and space characters, and
the special characters < + (& *) ; - / , % _ > ? : ’ = "

In addition, Communications Server CPI-C also accepts the following
characters (which may not be supported by other CPI-C implementations):

! # $ @ \ { } ~

` (backward quotation mark)

| (solid vertical bar)

¦ (broken vertical bar)

¬ (NOT character)

¢ (cent)

The contents of this string (up to the number of characters specified in
string_length) will be replaced by the ASCII string resulting from the
conversion.

string_length
This is the number of characters to be converted (1–32,767).

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

string This is the ASCII string resulting from the conversion. This is valid up to
the number of characters specified in string_length.

return_code
Possible values are:

CM_OK The call executed successfully. The string parameter now contains
the converted ASCII string.

CM_PROGRAM_PARAMETER_CHECK
The buffer_length parameter specified a value that was not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

Convert_Incoming (cmcnvi)

Chapter 3. CPI-C Calls 63

State Change
There is no state change.

Usage Note
When data is being received in buffer format in a basic conversation (as specified
by the Set_Fill call), the data buffer can contain multiple logical records, each
consisting of a two-byte or four-byte header (LLID) followed by data. The
application must extract and convert each data string separately (not including the
headers). It must not attempt to convert the whole buffer in one operation because
this will make the header values not valid.

Convert_Outgoing (cmcnvo)
The Convert_Outgoing call converts a character string from ASCII to EBCDIC. If
the partner application requires data consisting of EBCDIC character strings, the
local application can use Convert_Outgoing to convert data from ASCII to EBCDIC
before sending it. (CPI-C parameters other than the data in Send_Data and Receive
calls, such as mode_name and TP_name, are always specified in ASCII and do not
require conversion.)

Function Call
void cmcnvo (

unsigned char CM_PTR string,
CM_INT32 CM_PTR string_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmcnvo (

byte[] string,
CPICLength string_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

string This is the ASCII string to be converted to EBCDIC. The CPI-C
specification states that the string can contain any of the following
characters (character set 640):

Uppercase A-Z, lowercase a-z, 0–9, the period (.) and space characters, and
the special characters < + (& *) ; - / , % _ > ? : ’ = "

In addition, Communications Server CPI-C also accepts the following
characters (which may not be supported by other CPI-C implementations):

! # $ @ \ { } ~

` (backward quotation mark)

| (solid vertical bar)

¦ (broken vertical bar)

¬ (NOT character)

¢ (cent)

Convert_Incoming (cmcnvi)

64 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

The contents of this string (up to the number of characters specified in
string_length) will be replaced by the EBCDIC string resulting from the
conversion.

string_length
This is the number of characters to be converted (1–32,767).

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

string This is the EBCDIC string resulting from the conversion. This is valid up to
the number of characters specified in string_length.

return_code
Possible values are:

CM_OK The call executed successfully. The string parameter now contains
the converted EBCDIC string.

CM_PROGRAM_PARAMETER_CHECK
The buffer_length parameter specified a value that was not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

State Change
There is no state change.

Usage Note
When data is being sent in buffer format in a basic conversation (as specified by
the Set_Fill call), the data buffer can contain multiple logical records, each
consisting of a two-byte or four-byte header (LLID) followed by data. The
application must convert each data string separately (not including the headers). It
must not attempt to convert the whole buffer in one operation because this will
make the header values not valid.

Deallocate (cmdeal)
The Deallocate call deallocates a conversation between two programs.

Before deallocating the conversation, this call performs the equivalent of either the
Flush call or the Confirmed call, depending on the current conversation
synchronization level and deallocate type. The deallocate type is set by the
Set_Deallocate_Type call.

The partner program receives the deallocation notification through one of the
following parameters:
v status_received = CM_CONFIRM_DEALLOC_RECEIVED

v return_code = CM_DEALLOCATED_NORMAL

v return_code = CM_DEALLOCATED_ABEND

Convert_Outgoing (cmcnvo)

Chapter 3. CPI-C Calls 65

After this call has successfully executed, the conversation ID is no longer valid.

Function Call
void cmdeal (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmdeal (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully, the conversation is deallocated.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The following state errors can occur when the deallocate type
indicates a normal deallocation (CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH, CM_DEALLOCATE_CONFIRM):
v The conversation is not in Send or Send-Pending state
v The conversation is in Send state, but the program did not finish

sending a logical record

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

The following return codes can be returned when the deallocate type is set
to CM_DEALLOCATE_CONFIRM or when it is set to CM_DEALLOCATE_SYNC_LEVEL
and the conversation's synchronization level is set to CM_CONFIRM. For an
explanation of these return codes, see Appendix B, “Common Return
Codes,” on page 169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

Deallocate (cmdeal)

66 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SVC_ERROR_PURGING
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED
CM_PROGRAM_ERROR_PURGING
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

State When Issued
The conversation can be in one of the states shown in Table 15 when the program
issues the Deallocate call. This depends on the value of the conversation's
deallocate_type parameter, set by the Set_Deallocate_Type call.

Table 15. Conversation States When Issuing the Deallocate Call

Deallocate type Allowed state

CM_DEALLOCATE_FLUSH CM_DEALLOCATE_CONFIRM
CM_DEALLOCATE_SYNC_LEVEL

Send or Send-Pending

CM_DEALLOCATE_ABEND Any except Reset

State Change
State changes, summarized in Table 16, are based on the value of the return_code
parameter.

Table 16. State Changes for the Deallocate Call

return_code New state

CM_OK Reset
CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

Receive

CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
CM_SYNC_LEVEL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

Reset

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Usage Notes
If the conversation's deallocate type is set to CM_DEALLOCATE_ABEND and the log data
length is greater than 0 (zero), the local LU writes the log data (specified by the
Set_Log_Data call) to the local error log file and to the partner LU. For information
about log data, see “Set_Log_Data (cmsld)” on page 128.

Deallocate (cmdeal)

Chapter 3. CPI-C Calls 67

After the Deallocate call has been executed, the log data length is set to 0 (zero)
and the log data is set to null.

Delete_CPIC_Side_Information (xcmdsi)
This function is not available in Java CPI-C.

The Delete_CPIC_Side_Information call deletes a side information entry that the
application has previously specified using Set_CPIC_Side_Information, or specifies
that an entry in the configuration file is no longer available for use by this
application. This entry is identified through the symbolic destination name.

This call is provided for compatibility with X/Open CPI-C and with the Windows
CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call
void xcmdsi (

unsigned char CM_PTR key,
unsigned char CM_PTR sym_dest_name,
CM_RETURN_CODE CM_PTR return_code
);

Supplied Parameters
The supplied parameters are:

key This parameter is ignored.

sym_dest_name
This parameter specifies the symbolic destination name of the entry to be
deleted. It is an 8-byte ASCII character string and can contain any
displayable characters.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The sym_dest_name parameter has specified a nonexistent side
information entry.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The call is not associated with a conversation.

State Change
There is no state change.

Deallocate (cmdeal)

68 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Usage Notes
This call does not modify the side information held in the configuration file; the
change applies only to this application. Communications Server stores the
modified information in memory associated with this operating system process; the
change is discarded when the process ends. For more details, see “Side
Information” on page 30.

Extract_Conversation_Context (cmectx)

UNIX

The Extract_Conversation_Context call returns the context for a specified
conversation. This enables the program to set its current context to the required
value (using Set_Conversation_Context) before starting a new conversation, to
ensure that the new conversation uses the same context.

Function Call
void cmectx (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR context_ID,
CM_INT32 CM_PTR context_ID_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmectx (

byte[] conversation_ID,
byte[] context_ID,
CPICLength context_ID_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

context_ID
This parameter contains the context of the specified conversation. It is
valid only if the return_code parameter is CM_OK.

context_ID_length
This parameter contains the length of context_ID (1–32 bytes). It is valid
only if the return_code parameter is CM_OK.

return_code
Possible values are:

Delete_CPIC_Side_Information (xcmdsi)

Chapter 3. CPI-C Calls 69

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation specified by conversation_ID is in Initialize or
Initialize-Incoming state.

For an explanation of the following return code, see Appendix B,
“Common Return Codes,” on page 169.

CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation can be in any state except Reset, Initialize, or Initialize-Incoming.

State Change
There is no state change.

Usage Notes
This call does not set the program's current context to the extracted value. The
program must call Set_Conversation_Context to do this.

An application uses Extract_Conversation_Context, followed by
Set_Conversation_Context, in the following situations:
v When it is involved in multiple conversations, and wants to allocate a new

conversation using the same context as an existing conversation.
v When a CPI-C call that assigns a new context completes in nonblocking mode.

For example, if Accept_Incoming completes immediately with return_code CM_OK,
the program's current context is set to the context of the new conversation;
however, if Accept_Incoming returns CM_OPERATION_INCOMPLETE, a subsequent
Wait_For_Conversation that returns the result of Accept_Incoming does not
change the program's current context. The program must use
Extract_Conversation_Context and Set_Conversation_Context to set the current
context to the correct value.

Extract_Conversation_Security_Type (xcecst)
This function is not available in Java CPI-C.

The Extract_Conversation_Security_Type call returns the security type for a
specified conversation.

This call is provided for compatibility with X/Open CPI-C and with the Windows
CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call
void xcecst (

unsigned char CM_PTR conversation_ID,
XC_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,
CM_RETURN_CODE CM_PTR return_code
);

Extract_Conversation_Context (cmectx)

70 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

conversation_security_type
This specifies the information the partner LU requires in order to validate
access to the invoked program. Possible values are:

UNIX

CM_SECURITY_NONE
The invoked program uses no conversation security.

CM_SECURITY_SAME
This value is used when the invoked program, which has been
invoked with a valid user ID and password, invokes another
program (as illustrated in Chapter 1, “Concepts,” on page 1. If
program A invokes program B with a valid user ID and password,
and program B in turn invokes program C, then if program B
specifies the value CM_SECURITY_SAME, CPI-C will send an
already-verified indicator to the LU for program C. This indicator
tells program C not to require the password (if program C is
configured to accept an already-verified indicator).

CM_SECURITY_PROGRAM
The invoked program uses conversation security and thus requires
a user ID and password.

CM_SECURITY_PROGRAM_STRONG
As for CM_SECURITY_PROGRAM, except that the local node must not
send the password across the network in clear text format. This
value can be used only if the remote system supports password
substitution.

WINDOWS

XC_SECURITY_NONE
Equivalent to CM_SECURITY_NONE

XC_SECURITY_SAME
Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM
Equivalent to CM_SECURITY_PROGRAM

return_code
Possible values are:

CM_OK The call executed successfully.

Extract_Conversation_Security_Type (xcecst)

Chapter 3. CPI-C Calls 71

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Extract_Conversation_Security_User_ID (cmecsu)

WINDOWS

This call is the Windows CPI-C equivalent of the AIX / Linux CPI-C call
Extract_Security_User_ID (cmesui). The two calls are used in exactly the same way,
except that the names are different. For more information about
Extract_Conversation_Security_User_ID, see “Extract_Security_User_ID (cmesui or
cmecsu)” on page 81, and replace the AIX / Linux function name and pseudonym
with the Windows function name and pseudonym as indicated.

Extract_Conversation_Security_User_ID (xcecsu)
This function is not available in Java CPI-C.

This call returns the user ID being used in a specified conversation.

The call provides compatibility for applications using the X/Open CPI-C
definition. It has been incorporated into IBM CPI-C 2.0 as the call
Extract_Security_User_ID (cmesui). Use cmesui whenever possible to enable greater
portability of your program to other platforms.

The parameters on this call are identical to those on the cmesui call. For more
information about cmesui, see “Extract_Security_User_ID (cmesui or cmecsu)” on
page 81.

Extract_Conversation_State (cmecs)
The Extract_Conversation_State call returns the state of the specified conversation.

Function Call
void cmecs (

unsigned char CM_PTR conversation_ID,
CM_CONVERSATION_STATE CM_PTR conversation_state,
CM_RETURN_CODE CM_PTR return_code
);

Extract_Conversation_Security_Type (xcecst)

72 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call for Java CPI-C
public native void cmecs (

byte[] conversation_ID,
CPICConversationState conversation_state,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_state
This specifies the conversation state. Possible values are:

CM_INITIALIZE_STATE
CM_INITIALIZE_INCOMING_STATE
CM_SEND_STATE
CM_RECEIVE_STATE
CM_SEND_PENDING_STATE
CM_CONFIRM_STATE
CM_CONFIRM_SEND_STATE
CM_CONFIRM_DEALLOCATE_STATE

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Extract_Conversation_Type (cmect)
The Extract_Conversation_Type call returns the conversation type (mapped or
basic) of the specified conversation.

Extract_Conversation_State (cmecs)

Chapter 3. CPI-C Calls 73

Function Call
void cmect (

unsigned char CM_PTR conversation_ID,
CM_CONVERSATION_TYPE CM_PTR conversation_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmect (

byte[] conversation_ID,
CPICConversationType conversation_type,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_type
This parameter specifies the conversation type. Possible values are:

CM_BASIC_CONVERSATION
CM_MAPPED_CONVERSATION

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Extract_CPIC_Side_Information (xcmesi)
This function is not available in Java CPI-C.

The Extract_CPIC_Side_Information call returns the side information for an entry
number or symbolic destination name.

Extract_Conversation_Type (cmect)

74 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

This call is provided for compatibility with X/Open CPI-C and with the Windows
CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call
void xcmesi (

CM_INT32 CM_PTR entry_number,
unsigned char CM_PTR sym_dest_name,
SIDE_INFO CM_PTR side_info_entry,
CM_INT32 CM_PTR side_info_entry_length,
CM_RETURN_CODE CM_PTR return_code
);

typedef struct side_info_entry
{
unsigned char sym_dest_name[8]; /* symbolic destination name */
unsigned char partner_LU_name[17]; /* Fully qualified partner LU */

/* name */
unsigned char reserved[3]; /* Reserved */
XC_TP_NAME_TYPE TP_name_type; /* TP name type */
unsigned char TP_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */
XC_CONVERSATION_SECURITY_TYPE

conversation_security_type; /* Conversation security type */
unsigned char security_user_ID[8]; /* User ID */
unsigned char security_password[8]; /* Password */
} SIDE_INFO;

Supplied Parameters
The supplied parameters are:

entry_number
This parameter is ignored.

sym_dest_name
This parameter specifies the symbolic destination name to search for. It is
an 8-byte ASCII character string and can contain any displayable
characters.

side_info_entry_length

UNIX

This value must always be set to sizeof(SIDE_INFO).

WINDOWS

This value must always be set to 124.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

side_info_entry
This parameter specifies the contents of a side information entry, as
follows.

Extract_CPIC_Side_Information (xcmesi)

Chapter 3. CPI-C Calls 75

side_info_entry.sym_dest_name
Symbolic destination name which identifies the side information entry. The
parameter sym_dest_name is an 8-byte ASCII character string and can
contain any displayable characters.

side_info_entry.partner_LU_name
Fully qualified name of the partner LU. This name is composed of two
character strings each of 1–8 bytes, concatenated by a dot.

side_info_entry.TP_name_type
The type of the target TP (the valid characters for a TP name are
determined by the TP type). Possible values are:

XC_APPLICATION_TP
Application TP. All characters in the TP name must be valid ASCII
characters.

XC_SNA_SERVICE_TP
Service TP. The TP name must be specified as an 8–character ASCII
string representing the hexadecimal digits of a 4-character name.
For example, if the hexadecimal representation of the name is
0x21F0F0F8, set the TP_name parameter to the 8–character string
“21F0F0F8”.

The first character (represented by two bytes) must be a
hexadecimal value in the range 0x0–0x3F, excluding 0x0E and 0x0F;
the remaining characters (each represented by two bytes) must be
valid EBCDIC characters.

side_info_entry.TP_name
TP name of the target TP.

side_info_entry.mode_name
Name of the mode used to access the target TP.

side_info_entry.conversation_security_type
Specifies whether the target TP uses conversation security. Possible values
are:

XC_SECURITY_NONE
The target TP does not use conversation security.

XC_SECURITY_PROGRAM
The target TP uses conversation security. The security_user_ID and
security_password parameters specified below will be used to access
the target TP.

XC_SECURITY_SAME
The target TP uses conversation security, and can accept an
“already verified” indicator from the local TP. (This indicates that
the local TP was itself invoked by another TP, and has verified the
security user ID and password supplied by this TP.) The
security_user_ID parameter specified below will be used to access
the target TP; no password is required.

side_info_entry.security_user_ID
User ID used to access the partner TP. This parameter is not required if the
conversation_security_type parameter is set to XC_SECURITY_NONE.

For compatibility with X/Open CPI-C, this verb only returns eight
characters for the user ID, although security user IDs can be up to 10
characters. To ensure that you obtain the complete user ID, you should

Extract_CPIC_Side_Information (xcmesi)

76 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

extract it explicitly using the Extract_Security_User_ID call
(Extract_Conversation_Security_User_ID for Windows systems), instead of
relying on the value returned here.

side_info_entry.security_password
This parameter is reserved; password information is never returned to the
application.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The sym_dest_name parameter is not valid
v The side_info_entry_length parameter is not set to

sizeof(SIDE_INFO)

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

State Change
There is no state change.

Usage Notes
If the security user ID in the side information is not set, the security user ID field
is returned filled with spaces.

Extract_Local_LU_Name (cmelln)
The Extract_Local_LU_Name call returns the alias of the local LU for a specified
conversation.

This call is not part of the standard CPI-C specification, and may not be available
in other implementations. In particular, it is not supported in other Java CPI-C
implementations.

Function Call
void cmelln (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR lu_alias,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmelln (

byte[] conversation_ID,
byte[] lu_alias,
CPICReturnCode return_code

);

Extract_CPIC_Side_Information (xcmesi)

Chapter 3. CPI-C Calls 77

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

lu_alias
LU alias of the local LU.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
There is no local LU associated with the conversation specified by
conversation_ID. This error occurs when the conversation is in
Initialize or Initialize-Incoming state and no local LU has been
specified by any of the methods described in “Specifying the Local
LU” on page 34.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

If the conversation is in Initialize or Initialize-Incoming state, this call can return
the LU alias only if it has already been specified by one of the methods described
in “Specifying the Local LU” on page 34.

State Change
There is no state change.

Usage Notes
The LU alias returned by this call does not have to be set by Set_Local_LU_Name,
as described in “Set_Local_LU_Name (cmslln)” on page 127. Any of the methods
described in “Specifying the Local LU” on page 34 can be used.

Extract_Maximum_Buffer_Size (cmembs)
The Extract_Maximum_Buffer_Size call returns the maximum size of a CPI-C data
buffer. This defines the maximum amount of data that can be sent in one
Send_Data call or received in one Receive call.

Extract_Local_LU_Name (cmelln)

78 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Communications Server CPI-C always uses a data buffer size of 32,767 bytes.
However, for compatibility with other CPI-C implementations (or with future
versions of Communications Server), an application should not rely on this value,
and should use this call to determine the largest buffer size it can use.

Function Call
void cmembs (

CM_INT32 CM_PTR maximum_buffer_size,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmembs (

CPICLength maximum_bufer_size,
CPICReturnCode return_code

);

Supplied Parameters
There are no supplied parameters for this call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

maximum_buffer_size
This parameter specifies the length of the data buffer.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with any conversation.

State Change
There is no state change.

Extract_Mode_Name (cmemn)
The Extract_Mode_Name call returns the mode name and mode name length for a
specified conversation.

Function Call
void cmemn (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR mode_name,
CM_INT32 CM_PTR mode_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Extract_Maximum_Buffer_Size (cmembs)

Chapter 3. CPI-C Calls 79

Function Call for Java CPI-C
public native void cmemn (

byte[] conversation_ID,
byte[] mode_name,
CPICLength mode_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

mode_name
This parameter specifies the starting address of the mode name.

mode_name_length
This parameter specifies the length of the mode name.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Extract_Partner_LU_Name (cmepln)
The Extract_Partner_LU_Name call returns the partner LU name and partner LU
name length for a specified conversation. This can be an alias name of up to eight
bytes or a fully qualified network name of up to 17 bytes.

Function Call
void cmepln (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR partner_LU_name,
CM_INT32 CM_PTR partner_LU_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Extract_Mode_Name (cmemn)

80 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call for Java CPI-C
public native void cmepln (

byte[] conversation_ID,
byte[] partner_LU_name,
CPICLength partner_LU_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

partner_LU_name
This parameter specifies the variable containing the partner LU name. (The
program must supply a pointer to a suitable variable.)

partner_LU_name_length
This parameter specifies the length of the partner LU name.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation specified by conversation_ID is in
Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset or Initialize-Incoming.

State Change
There is no state change.

Extract_Security_User_ID (cmesui or cmecsu)
The Extract_Security_User_ID call returns the user ID being used in a specified
conversation.

WINDOWS

Extract_Partner_LU_Name (cmepln)

Chapter 3. CPI-C Calls 81

This call is named Extract_Conversation_Security_User_ID, with the pseudonym
cmecsu, for compatibility with the Windows CPI-C interface.

Function Call
void cmesui (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_user_ID,
CM_INT32 CM_PTR security_user_ID_length,
CM_RETURN_CODE CM_PTR return_code
);

WINDOWS

For Windows systems, replace cmesui with cmecsu.

Function Call for Java CPI-C
public native void cmesui (

byte[] conversation_ID,
byte[] security_user_ID,
CPICLength security_user_ID_length,
CPICReturnCode return_code

);

WINDOWS

For Windows systems, replace cmesui with cmecsu.

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

security_user_ID
This specifies the user ID used to establish the conversation.

security_user_ID_length
This specifies the length of security_user_ID.

Extract_Security_User_ID (cmesui or cmecsu)

82 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

The range for this value is 1–10 characters (AIX / Linux systems), or 1–8
characters (Windows systems). If the security_user_ID_length is set to 0
(zero), the security_user_ID_length parameter is ignored; this is equivalent to
setting security_user_ID to a null string.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
The security_user_ID value is not blank-padded. It is meaningful only up to
security_user_ID_length.

Extract_Sync_Level (cmesl)
The Extract_Sync_Level call returns the synchronization level for a specified
conversation.

Function Call
void cmesl (

unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR sync_level,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmesl (

byte[] conversation_ID,
CPICSyncLevel sync_level,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Extract_Security_User_ID (cmesui or cmecsu)

Chapter 3. CPI-C Calls 83

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

sync_level
This parameter indicates the synchronization level of the conversation.
Possible values are:

CM_NONE
The programs will not perform confirmation processing.

CM_CONFIRM
The programs can perform confirmation processing.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation specified by conversation_ID is in
Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset or Initialize-Incoming.

State Change
There is no state change.

Extract_TP_Name (cmetpn)
The Extract_TP_Name call returns the TP name and TP name length of the
invoked TP for a specified conversation.

An application that has used the Specify_Local_TP_Name call to accept incoming
Allocates for more than one TP name, and has subsequently issued
Accept_Conversation or Accept_Incoming to accept an incoming Allocate, can use
this call to determine which TP name was specified on the incoming Allocate.

Function Call
void cmetpn (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR TP_name,
CM_INT32 CM_PTR TP_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Extract_Sync_Level (cmesl)

84 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call for Java CPI-C
public native void cmetpn (

byte[] conversation_ID,
byte[] TP_name,
CPICLength TP_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

TP_name
This parameter specifies the starting address of the TP name.

TP_name_length
This parameter specifies the length of the TP name.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation is in Reset or Initialize-Incoming state.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset or Initialize-Incoming.

State Change
There is no state change.

Flush (cmflus)
The Flush call sends the contents of the local LU's send buffer to the partner LU
(and program). If the send buffer is empty, no action takes place.

Sources of Buffered Data
Data processed by the Send_Data call accumulates in the local LU's send buffer
until one of the following happens:

Extract_TP_Name (cmetpn)

Chapter 3. CPI-C Calls 85

v The local program issues the Flush call or other call that flushes the LU's send
buffer. (Some send types, set by the Set_Send_Type call, include flush
functionality.)

v The buffer is full.

The allocation request generated by the Allocate call and error information
generated by the Send_Error call are also buffered.

Function Call
void cmflus (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmflus (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation.

The value of this parameter is returned by the Initialize_Conversation,
Initialize_For_Incoming, or Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation was not in Send or Send-Pending state when the
program issued this call.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation must be in Send or Send-Pending state.

Flush (cmflus)

86 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

State Change
If the call completes successfully (return_code = CM_OK), the conversation is in Send
state.

Other return codes result in no state change.

Initialize_Conversation (cminit)
The Initialize_Conversation call is issued by the invoking program to obtain an
8-byte conversation ID and to set the initial values for the conversation's
characteristics.

The initial values are CPI-C defaults or are derived from side information
associated with the symbolic destination name. For more information about initial
values and side information, see Chapter 2, “Writing CPI-C Applications,” on page
19.

Upon successful execution of this call, CPI-C generates a conversation identifier.
This identifier is a required parameter for all other CPI-C calls issued for this
conversation by the invoking program.

Initial values can be changed by the Set_* calls.

Function Call
void cminit (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR sym_dest_name,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cminit (

byte[] conversation_ID,
String sym_dest_name,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

sym_dest_name
This parameter specifies the symbolic destination name—the name
associated with a side information entry loaded from the Communications
Server configuration file or defined by Set_CPIC_Side_Information calls.

The parameter is an 8-byte ASCII character string and can contain any
displayable characters. This parameter can also be set to eight spaces. In
this case, the invoking program must issue the following calls before
issuing the Allocate call:
v Set_Mode_Name
v Set_Partner_LU_Name
v Set_TP_Name

For more details about the side information entry, see
“Set_CPIC_Side_Information (xcmssi)” on page 118.

Flush (cmflus)

Chapter 3. CPI-C Calls 87

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_ID
This is the identifier for the conversation. It is used by subsequent CPI-C
calls.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following occurred:
v The value specified by sym_dest_name does not match a symbolic

destination name defined in the configuration file or one
specified by the program using Set_CPIC_Side_Information.

v The conversation_ID parameter is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation is in Reset state.

State Change
If the return_code is CM_OK, the conversation changes to Initialize state. For other
return codes, the conversation state remains unchanged.

Usage Notes
If the side information contains a value that is not valid for a conversation
characteristic, or if a Set_* call sets it to a value that is not valid, then the error is
returned on the Allocate call.

Initialize_For_Incoming (cminic)

UNIX

The Initialize_For_Incoming call is issued by the invoked program to obtain an
8-byte conversation ID. The program then accepts the conversation using the
Accept_Incoming call.

Issuing Initialize_For_Incoming followed by Accept_Incoming is equivalent to
issuing Accept_Conversation. The difference is that Set_Processing_Mode can be
issued between Initialize_For_Incoming and Accept_Incoming to ensure that
Accept_Incoming operates in nonblocking mode, whereas Accept_Conversation
always operates in blocking mode.

Initialize_Conversation (cminit)

88 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call
void cminic (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cminic (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
There are no supplied parameters for this call.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

conversation_ID
This is the identifier for the conversation. It is used by subsequent CPI-C
calls.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation is in Reset state.

State Change
If the return_code is CM_OK, the conversation changes to Initialize state. Otherwise
the conversation state remains unchanged.

Prepare_To_Receive (cmptr)
The Prepare_To_Receive call changes the state of the conversation for the local
program from Send to Receive. Before changing the conversation state, this call
performs the equivalent of one of the following:
v The Flush call, sending the contents of the local LU's send buffer to the partner

LU (and program), if either of the following conditions is true:
– The conversation's prepare-to-receive type is set to CM_PREP_TO_RECEIVE_FLUSH

– The prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the
conversation's synchronization level is set to CM_NONE

v The Confirm call, sending the contents of the local LU's send buffer and a
confirmation request to the partner program, if either of the following conditions
is true:

Initialize_For_Incoming (cminic)

Chapter 3. CPI-C Calls 89

– The conversation's prepare-to-receive type is set to
CM_PREP_TO_RECEIVE_CONFIRM

– The prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and the
conversation's synchronization level is set to CM_CONFIRM

The prepare-to-receive type is set by the Set_Prepare_To_Receive_Type call; the
synchronization level is set by the Set_Sync_Level call.

After this call has successfully executed, the local program can receive data.

Function Call
void cmptr (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmptr (

byte[] conversation_ID,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The conversation state is not Send or Send-Pending
v The basic conversation is in Send state. However, the program

did not finish sending a logical record

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

The following return codes can occur if the conversation's
prepare-to-receive type is set to CM_PREP_TO_RECEIVE_CONFIRM or if the
prepare-to-receive type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, and the

Prepare_To_Receive (cmptr)

90 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

conversation's synchronization level is set to CM_CONFIRM. For an
explanation of them, see Appendix B, “Common Return Codes,” on page
169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_PROGRAM_ERROR_PURGING
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SVC_ERROR_PURGING
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

State When Issued
The conversation can be in Send or Send-Pending state.

State Change
State changes, summarized in Table 17, are based on the value of the return_code
parameter.

Table 17. State Changes for the Prepare_To_Receive Call

return_code New state

CM_OK Receive
CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

Receive

CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
CM_SYNC_LEVEL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_DEALLOCATED_ABEND
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

Reset

CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

Reset

All others No change

Usage Notes
The conversation does not change to Send (or Send-Pending) for the partner
program until the partner program receives one of the following values through
the status_received parameter of the Receive call:
v CM_SEND_RECEIVED

v CM_CONFIRM_SEND_RECEIVED and replies with the Confirmed or Send_Error call

Prepare_To_Receive (cmptr)

Chapter 3. CPI-C Calls 91

Receive (cmrcv)
The Receive call receives any data that is currently available from the partner
program.

If no data is currently available and the receive type (set by the Set_Receive_Type
call) is set to CM_RECEIVE_AND_WAIT, the local program waits for data to arrive. If the
receive type is set to CM_RECEIVE_IMMEDIATE, the local program does not wait.

WINDOWS

If the Receive call is issued in nonblocking mode (specified by a previous
Set_Processing_Mode call), the application can issue the following calls while
Receive is outstanding:
v Request_To_Send
v Send_Error
v Test_Request_to_Send_Received
v Cancel_Conversation
v Deallocate

If the application uses one of these calls in nonblocking mode while the Receive
call is outstanding, it must use Specify_Windows_Handle to enable CPI-C to return
the results of nonblocking calls. It must not issue Wait_For_Conversation if another
call is outstanding in addition to Receive; the results of this call are undefined if
more than one call is outstanding on the same conversation.

How a Program Receives Data
The process for receiving data is as follows:
v The local program issues a Receive call until it finishes receiving a complete unit

of data. The local program may need to issue the Receive call several times in
order to receive a complete unit of data. The data_received parameter indicates
whether the receipt of data is finished.
The data received can be any of the following:
– One data record transmitted in a mapped conversation
– One logical record transmitted in a basic conversation with the conversation's

fill characteristic set to CM_FILL_LL

– A buffer of data received independent of its logical record format in a basic
conversation with the fill characteristic set to CM_FILL_BUFFER

Once a complete unit of data has been received, the local program can
manipulate it.

v The local program determines the next action to be taken based on the control
information received through the status_received parameter. The local program
may need to issue the Receive call again to receive the control information.

The conversation type is set by the Set_Conversation_Type call; the fill
characteristic is set by the Set_Fill call.

Receive (cmrcv)

92 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call
void cmrcv (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR buffer,
CM_INT32 CM_PTR requested_length,
CM_DATA_RECEIVED_TYPE CM_PTR data_received,
CM_INT32 CM_PTR received_length,
CM_STATUS_RECEIVED CM_PTR status_received,
CM_INT32 CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmrcv (

byte[] conversation_ID,
byte[] buffer,
CPICLength requested_length,
CPICDataReceivedType data_received,
CPICLength received_length,
CPICStatusReceived status_received,
CPICControlInformationReceived request_to_send_received,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

requested_length
This indicates the maximum number of bytes of data the local program is
to receive.

The range for this value is 0–32,767.

buffer This is the address of the buffer to contain the data received by the local
program.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

buffer The application's data buffer contains data if the following conditions are
true:
v The data_received parameter is set to a value other than

CM_NO_DATA_RECEIVED

v The return_code parameter is set to CM_OK or to CM_DEALLOCATED_NORMAL

data_received
This parameter indicates whether the program received data. The following
are possible values. These codes are not relevant unless return_code is set to
CM_OK or CM_DEALLOCATED_NORMAL.

CM_DATA_RECEIVED can be returned if the conversation's fill characteristic is
set to CM_FILL_BUFFER, indicating that the program is receiving data
independent of its logical format. The local program received data until
requested_length or end of data was reached.

Receive (cmrcv)

Chapter 3. CPI-C Calls 93

The end of the data is indicated by either of the following:
v A change to another conversation state, based on the return_code,

status_received, and data_received parameters
v An error condition

If the conversation's receive type is set to CM_RECEIVE_IMMEDIATE, the data
received can be less than requested_length if a smaller amount of data has
arrived from the partner program.

CM_COMPLETE_DATA_RECEIVED
In a mapped conversation, this parameter indicates that the local
program has received a complete data record or the last part of a
data record.

In a basic conversation with the fill characteristic set to CM_FILL_LL,
this value indicates that the local program has received a complete
logical record or the end of a logical record.

CM_INCOMPLETE_DATA_RECEIVED
In a mapped conversation, this value indicates that the local
program has received an incomplete data record, the
requested_length parameter specified a value less than the length of
the data record (or less than the remainder of the data record if
this is not the first Receive call to read the record). The amount of
data received is equal to the requested_length parameter.

In a basic conversation with the fill characteristic set to CM_FILL_LL,
this value indicates that the local program has received an
incomplete logical record. The amount of data received is equal to
the requested_length parameter. (If the received data was truncated,
the length of the data will be less than requested_length.)

Upon receiving this value, the local program normally reissues the
Receive call to receive the next part of the record.

CM_NO_DATA_RECEIVED
The program did not receive data.

Note: If the return_code parameter is set to CM_OK, status information may
be available through the status_received parameter.

received_length
This indicates the number of bytes of data the local program received on
this Receive call. If the return_code or data_received parameter indicates that
the program received no data, this value is not relevant.

status_received
This parameter indicates changes in the status of the conversation. These
codes are not relevant unless return_code is set to CM_OK. Possible values are:

CM_NO_STATUS_RECEIVED
No conversation status change was received on this call.

CM_SEND_RECEIVED
For the partner program, the conversation has entered Receive
state. For the local program, the conversation is now in Send state
if no data was received on this call, or Send-Pending state if data
was received on this call.

Upon receiving this value, the local program normally uses the
Send_Data call to begin sending data.

Receive (cmrcv)

94 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_CONFIRM_DEALLOC_RECEIVED
The partner program has issued the Deallocate call with
confirmation requested. For the local program the conversation is
now in Confirm-Deallocate state.

Upon receiving this value, the local program normally issues the
Confirmed call.

CM_CONFIRM_RECEIVED
The partner program has issued the Confirm call. For the local
program the conversation is in Confirm state.

Upon receiving this value, the local program normally issues the
Confirmed call.

CM_CONFIRM_SEND_RECEIVED
For the partner program, the conversation has entered Receive
state and a request for confirmation has been received by the local
program. For the local program, the conversation is now in
Confirm-Send state.

The program normally responds by issuing the Confirmed call.
Upon successful execution of the Confirmed call, the conversation
changes to Send state for the local program.

request_to_send_received
This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program has issued the Request_To_Send call, which
requests the local program to change the conversation to Receive
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to one of the
following:
v CM_PROGRAM_PARAMETER_CHECK

v CM_PROGRAM_STATE_CHECK

return_code
Possible values are:

CM_OK The call executed successfully.

CM_UNSUCCESSFUL
The receive type is set to CM_RECEIVE_IMMEDIATE, and no data or
status information is currently available from the partner program.

CM_DEALLOCATED_NORMAL
The conversation has been deallocated normally. The partner
program issued the Deallocate call with the conversation's
deallocate type set to one of the following:
v CM_DEALLOCATE_FLUSH

v CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the
conversation specified as CM_NONE

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid

Receive (cmrcv)

Chapter 3. CPI-C Calls 95

v The value specified by requested_length is out of range

If the program receives this return code, the other returned
parameters are not valid.

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The receive type is set to CM_RECEIVE_AND_WAIT and the

conversation state is not Receive, Send, or Send-Pending
v The receive type is set to CM_RECEIVE_IMMEDIATE and the

conversation state is not Receive
v The basic conversation is in Send state, the receive type is set to

CM_RECEIVE_AND_WAIT, and the program did not finish sending a
logical record

If the program receives this return code, the other returned
parameters are not valid.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC (basic conversation only)
CM_DEALLOCATED_ABEND_TIMER (basic conversation only)
CM_OPERATION_INCOMPLETE (only if receive_type = CM_RECEIVE_AND_WAIT)
CM_OPERATION_NOT_ACCEPTED
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_PRODUCT_SPECIFIC_ERROR
CM_PROGRAM_ERROR_NO_TRUNC
CM_PROGRAM_ERROR_PURGING
CM_PROGRAM_ERROR_TRUNC (basic conversation only)
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED
CM_SVC_ERROR_NO_TRUNC (basic conversation only)
CM_SVC_ERROR_PURGING (basic conversation only)
CM_SVC_ERROR_TRUNC (basic conversation only)

State When Issued
The conversation can be in Receive, Send, or Send-Pending state.

If receive_type is set to CM_RECEIVE_IMMEDIATE, the conversation must be in Receive
state.

WINDOWS

If the application successfully issues the Receive call in nonblocking mode, the
conversation changes state twice. On the initial return of the call, the conversation
changes to Pending-Post state. After CPI-C returns the results of the call
processing, the conversation state change is as described below.

Receive (cmrcv)

96 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Issuing the Call in Send or Send-Pending State
Issuing the Receive call while the conversation is in Send or Send-Pending state
causes the local LU to send the information in its send buffer and a send indicator
to the partner program. Based on data_received and status_received parameters, the
conversation may change to Receive state for the local program. For more
information, see “State Change.”

State Change
The new conversation state is determined by the following factors:
v The state the conversation is in when the program issues the call
v The return_code parameter
v The data_received and status_received parameters

Call Issued in Receive State
The state changes shown in Table 18 can occur when the Receive call is issued with
the conversation in Receive state and the return_code is CM_OK.

Table 18. State Changes When the Receive Call Is Issued in Receive State

data_received status_received New state

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED No change

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED Send-Pending

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED Send

If return_code is set to CM_UNSUCCESSFUL, meaning that the receive_type is set to
CM_RECEIVE_IMMEDIATE and no data is available, there is no state change.

Call Issued in Send State
The state changes shown in Table 19 can occur when the Receive call is issued with
the conversation in Send state and the return_code is CM_OK.

Table 19. State Changes When the Receive Call Is Issued in Send State

data_received status_received New state

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED Receive

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED Send-Pending

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED No change

Call Issued in Send-Pending State
The state changes shown in Table 20 on page 98 can occur when the Receive call is
issued with the conversation in Send-Pending state and the return_code is CM_OK.

Receive (cmrcv)

Chapter 3. CPI-C Calls 97

Table 20. State Changes When the Receive Call Is Issued in Send-Pending State

data_received status_received New state

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

CM_NO_STATUS_RECEIVED Receive

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED

CM_SEND_RECEIVED No change

CM_NO_DATA_RECEIVED CM_SEND_RECEIVED Send

Call Issued in Any Allowed State
The following sections summarize state changes that can occur when the Receive
call is issued in any allowed state.

Confirmation Processing
The following state changes can occur under the following conditions:
v The return_code is CM_OK.
v The data_received parameter is set to CM_DATA_RECEIVED,

CM_COMPLETE_DATA_RECEIVED, or CM_NO_DATA_RECEIVED.
v The status_received parameter indicates a change to a confirm state, as shown in

Table 21.

Table 21. State Changes When the Receive Call Is Issued in Any Allowable State

status_received New state

CM_CONFIRM_DEALLOC_RECEIVED Confirm-Deallocate
CM_CONFIRM_SEND_RECEIVED Confirm-Send
CM_CONFIRM_RECEIVED Confirm

Normal Deallocation
If the return_code parameter is set to CM_DEALLOCATED_NORMAL, the conversation
changes to Reset state.

Abends
The following abend conditions, indicated by the return_code parameter, cause the
conversation to change to Reset state:

CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_SVC_ERROR_TRUNC
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

Errors
The state changes shown in Table 22 on page 99 can occur when a data
transmission error is encountered. (This is indicated by one of the following return

Receive (cmrcv)

98 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

codes: CM_PROGRAM_ERROR_PURGING, CM_PROGRAM_ERROR_NO_TRUNC,
CM_SVC_ERROR_PURGING, or CM_SVC_ERROR_NO_TRUNC.)

Table 22. State Changes Caused by a Data Transmission Error

return_code Old state New state

CM_PROGRAM_ERROR_PURGING Receive No change
CM_PROGRAM_ERROR_NO_TRUNC Receive No change
CM_SVC_ERROR_PURGING Send Receive
CM_SVC_ERROR_NO_TRUNC Send-Pending Receive

Usage Notes
The following sections describe additional usage information for the Receive call.

Truncated Records
If the partner program truncates a logical record, the local program receives
notification of the truncation through the return_code parameter on the next Receive
call.

Setting the Requested_Length Parameter to Zero
If a program issues the Receive call with requested_length set to 0 (zero), the call is
executed as usual.

However, the data_received and status_received parameters are not set on the same
Receive call. (One exception to this situation is the null record sent over a mapped
conversation, described in the next paragraph.)

In a mapped conversation in which data is available from the partner program, the
data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. If a null record is
available (send_length in the Send_Data call issued by the partner program is set to
0), the data_received parameter is set to CM_COMPLETE_DATA_RECEIVED with the
received_length parameter set to 0 (zero).

In a basic conversation in which data is available and the fill characteristic is set to
CM_FILL_LL, the data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. If
the fill characteristic is set to CM_FILL_BUFFER, the data_received is set to
CM_DATA_RECEIVED.

String Translation
The LU does not automatically perform any conversion between EBCDIC and
ASCII on the received string of data before putting it in buffer.

If the remote program sends data in EBCDIC, the local program can use the
Convert_Incoming call to convert the received data to ASCII.

WINDOWS

The local program can also use the CSV CONVERT verb to convert the received
data to ASCII. Refer to the IBM Communications Server for Data Center Deployment
on AIX or Linux CSV Programmer's Guide for more information.

Receive (cmrcv)

Chapter 3. CPI-C Calls 99

Release_Local_TP_Name (cmrltp)

UNIX

The Release_Local_TP_Name call is issued by a program to indicate that it will no
longer accept incoming Allocate requests for a TP name. The TP name may have
been specified using any of the methods described in “Specifying the Local TP
Name” on page 33.

Function Call
void cmrltp (

unsigned char CM_PTR TP_name,
CM_INT32 CM_PTR TP_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmrltp (

byte[] TP_name,
CPICLength TP_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

TP_name
This parameter specifies the starting address of the TP name. This must be
a TP name that the program has previously specified on a
Specify_Local_TP_Name call.

TP_name_length
This parameter specifies the length of the name (1–64 characters).

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by TP_name is not a TP name associated

with this program
v The value specified by TP_name_length is out of range

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

Release_Local_TP_Name (cmrltp)

100 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the names associated with the program remain
unchanged.

If an Accept_Incoming call is outstanding at the time this call is issued, it may
accept an incoming Allocate for the name specified on this call. However,
subsequent Accept_Conversation or Accept_Incoming calls will not accept
incoming Allocates for this name.

If a program releases all its TP names, including the name specified by the APPCTPN
environment variable (if any), then it cannot issue any further Accept_Conversation
or Accept_Incoming calls unless it first specifies a new local TP name. For more
information, see “Specifying the Local TP Name” on page 33.

Request_To_Send (cmrts)
The Request_To_Send call notifies the partner program that the local program
wants to send data.

Action of the Partner Program
In response to this request, the partner program can change the conversation to
Receive state by issuing one of the following calls:
v Receive with receive_type set to CM_RECEIVE_AND_WAIT

v Prepare_To_Receive
v Send_Data with send_type set to CM_SEND_AND_PREP_TO_RECEIVE

The partner program can also ignore the request to send.

When the Local Program Can Send Data
The conversation state changes to Send for the local program when the local
program receives one of the following values through the status_received parameter
of a subsequent Receive call:
v CM_SEND_RECEIVED

v CM_CONFIRM_SEND_RECEIVED and replies with a Confirmed call

Function Call
void cmrts (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmrts (

byte[] conversation_ID,
CPICReturnCode return_code

);

Release_Local_TP_Name (cmrltp)

Chapter 3. CPI-C Calls 101

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation is not in Receive, Send, Send-Pending, Confirm,
Confirm-Send, or Confirm-Deallocate state.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation can be in any of the following states: Receive, Send,
Send-Pending, Confirm, Confirm-Send, Confirm-Deallocate, or Pending-Post.

State Change
There is no state change.

Usage Notes
The request-to-send notification is received by the partner program through the
request_to_send_received parameter of the following calls:
v Confirmed
v Receive
v Send_Data
v Send_Error
v Test_Request_to_Send_Received

Request-to-send notification is sent to the partner program immediately; CPI-C
does not wait until the send buffer fills up or is flushed. Consequently, the
request-to-send notification may arrive out of sequence. For example, if the local
program is in Send state and issues the Prepare_To_Receive call followed by the
Request_To_Send call, the partner program, in Receive state, may receive the
request-to-send notification before it receives the send notification. For this reason,
the request-to-send notification can be reported to a program through the Receive
call.

Request_To_Send (cmrts)

102 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Upon receiving a request-to-send notification, the partner LU retains the
notification until the partner program issues a call that returns the parameter
request_to_send_received. The LU retains only one request-to-send notification per
conversation, so the partner program may not be notified of every
Request_To_Send issued by the local program.

Send_Data (cmsend)
The Send_Data call puts data in the local LU's send buffer for transmission to the
partner program.

The data collected in the local LU's send buffer is transmitted to the partner LU
(and partner program) when one of the following occurs:
v The send buffer fills up.
v The local program issues a Flush, Confirm, or Deallocate call or other call that

flushes the LU's send buffer. (Some send types, set by the Set_Send_Type call,
include flush functionality.)

The data to be sent can be either of the following:
v A complete data record on a mapped conversation. A complete data record is a

string of the length specified by the send_length parameter.
v A complete logical record, or part of a logical record, on a basic conversation.

The length of a complete logical record is determined by the LL value. (One
logical record can end and a new one begin in the middle of the string of data to
be sent.)

Function Call
void cmsend (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR buffer,
CM_INT32 CM_PTR send_length,
CM_Request_to_Send_Received CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsend (

byte[] conversation_ID,
byte[] buffer,
CPICLength buffer_length,
CPICControlInformationReceived request_to_send_received,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

buffer This parameter specifies the address of the buffer containing the data to be
put in the local LU's send buffer.

send_length
This is the number of bytes of data to be put in the local LU's send buffer.

Request_To_Send (cmrts)

Chapter 3. CPI-C Calls 103

The range for this value is 0–32,767.

For mapped conversations, if send_length is set to 0, a null data record is
sent to the partner program.

For basic conversations, if send_length is set to 0 (zero), no data is sent. The
buffer parameter is ignored. However, the other parameters are valid.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

request_to_send_received
This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program has issued the Request_To_Send call, which
requests the local program to change the conversation to Receive
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter is set to
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by send_length is out of range
v This is a basic conversation, and the first 2 bytes of the buffer

parameter contain a logical record length that is not valid
(0x0000, 0x0001, 0x8000, or 0x8001)

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The conversation state is not Send or Send-Pending.
v The basic conversation is in Send state and the send type is set

to CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE, or
CM_SEND_AND_PREP_TO_RECEIVE. However, the data does not end
on a logical record boundary. Send_Data can be issued in the
middle of a logical record only when the send type is set to
CM_SEND_AND_DEALLOCATE, and the deallocate type is set to
CM_DEALLOCATE_ABEND.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_PRODUCT_SPECIFIC_ERROR
CM_PROGRAM_ERROR_PURGING

Send_Data (cmsend)

104 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SVC_ERROR_PURGING
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED

State When Issued
The conversation must be in Send or Send-Pending state when the program issues
this call.

State Change
When the return_code parameter is set to CM_OK, the new conversation state depends
on the send_type parameter, as shown in Table 23.

Table 23. State Changes for the Send_Data Call

send_type New state

CM_BUFFER_DATA Send
CM_SEND_AND_FLUSH Send
CM_SEND_AND_CONFIRM Send
CM_SEND_AND_PREP_TO_RECEIVE Receive
CM_SEND_AND_DEALLOCATE Reset

For a return_code value of CM_PROGRAM_ERROR_PURGING or CM_SVC_ERROR_PURGING, the
conversation changes to Receive state. For other non-OK values, the conversation
changes to Reset state.

Usage Notes
The LU does not automatically perform any conversion between ASCII and
EBCDIC on the string of data to be sent.

If the remote program requires data to be sent in EBCDIC, the local program can
use the Convert_Outgoing call to convert the data to EBCDIC before sending it.

WINDOWS

The local program can also use the CSV CONVERT verb to convert the data to
EBCDIC before sending it. Refer to the IBM Communications Server for Data Center
Deployment on AIX or Linux CSV Programmer's Guide for more information.

Send_Data (cmsend)

Chapter 3. CPI-C Calls 105

Send_Error (cmserr)
The Send_Error call notifies the partner program that the local program has
encountered an application-level error. The local program can use the Send_Error
for such purposes as informing the partner program of an error encountered in
received data, rejecting a confirmation request, or truncating an incomplete logical
record it is sending.

The Send_Error call flushes the local LU's send buffer and sends the partner
program the contents of the send buffer followed by the error notification.

The error notification is sent to the partner as one of the following return_code
values:
v CM_PROGRAM_ERROR_TRUNC

v CM_PROGRAM_ERROR_NO_TRUNC

v CM_PROGRAM_ERROR_PURGING

Upon successful execution of this call, the conversation is in Send state for the
local program and in Receive state for the partner program.

Function Call
void cmserr (

unsigned char CM_PTR conversation_ID,
CM_Request_to_Send_Received CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmserr (

byte[] conversation_ID,
CPICControlInformationReceived request_to_send_received,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameter is:

conversation_ID
This is the identifier for the conversation. The value of this parameter was
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

request_to_send_received
This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program has issued the Request_To_Send call, which
requests the local program to change the conversation to Receive
state.

Send_Error (cmserr)

106 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program has not issued the Request_To_Send call.

This value is not relevant if return_code is set to
CM_PROGRAM_PARAMETER_CHECK or CM_STATE_CHECK.

return_code
The possible return codes vary depending on the conversation state when
the call is issued. Send state

If the program issues the call with the conversation in Send state the
following return codes are possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_PRODUCT_SPECIFIC_ERROR
CM_PROGRAM_ERROR_PURGING
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SVC_ERROR_PURGING
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED

Receive state or Pending-Post state

If the call is issued in Receive state or Pending-Post state, the following
return codes are possible:

CM_OK Because incoming information is purged when the Send_Error call
is issued in Receive state or Pending-Post state, CM_OK is generated
instead of the following:

CM_PROGRAM_ERROR_NO_TRUNC
CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_NO_TRUNC
CM_SVC_ERROR_PURGING
CM_PROGRAM_ERROR_TRUNC
CM_SVC_ERROR_TRUNC

Common return codes
For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

Send_Error (cmserr)

Chapter 3. CPI-C Calls 107

CM_DEALLOCATED_NORMAL
Because incoming information is purged when the Send_Error call
is issued in Receive state or Pending-Post state,
CM_DEALLOCATED_NORMAL is generated instead of the following:

CM_CONVERSATION_TYPE_MISMATCH
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

Send-Pending state

If the call is issued in Send-Pending state, the following return codes are
possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER
CM_PRODUCT_SPECIFIC_ERROR
CM_PROGRAM_ERROR_PURGING
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_SVC_ERROR_PURGING

Confirm, Confirm-Send, or Confirm-Deallocate state

If the call is issued in Confirm, Confirm-Send, or Confirm-Deallocate state,
the following return codes are possible:

CM_OK The call executed successfully.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

Other states

Issuing the Send_Error call with the conversation in Reset, Initialize, or
Initialize-Incoming state is illegal. The following return codes are possible:

CM_OPERATION_NOT_ACCEPTED
See Appendix B, “Common Return Codes,” on page 169.

Send_Error (cmserr)

108 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation state is not Send, Receive, Confirm,
Confirm-Send, Confirm-Deallocate, or Send-Pending.

State When Issued
The conversation can be in any state except Initialize, Initialize-Incoming, or Reset.

State Change
The new state is determined by the return_code parameter. Possible state changes
are summarized in Table 24.

Table 24. State Changes for the Send_Error Call

return_code New state

CM_OK Send
CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTLY
CM_SECURITY_NOT_VALID
CM_SYNC_LEVEL_NOT_SUPPORTED_PGM
CM_SYNC_LEVEL_NOT_SUPPORTED_LU
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

Reset

CM_RESOURCE_FAILURE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY

Reset

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

Reset

CM_DEALLOCATED_NORMAL Reset
CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

Receive

All others No change

Usage Notes
The following sections describe additional usage information for the Send_Error
call.

Sending Log Data
In basic conversations, the local program can use the Set_Log_Data call to specify
error log data to be sent to the partner LU. If the basic conversation's log data
length characteristic is greater than 0 (zero), the LU formats the data and stores it
in the send buffer.

After the Send_Error call is completed, the log data length is set to 0 (zero) and the
log data to null.

Purged Data
If the conversation is in Receive state or Pending-Post state when the program
issues the Send_Error call, incoming data is purged by CPI-C. This data includes
the following:
v Data sent by the Send_Data call
v Confirmation requests

Send_Error (cmserr)

Chapter 3. CPI-C Calls 109

v Deallocation requests if the conversation's deallocate type is set to
CM_DEALLOCATE_CONFIRM or to CM_DEALLOCATE_SYNC_LEVEL with the
synchronization level set to CM_CONFIRM

CPI-C does not purge an incoming request-to-send indicator.

Send-Pending State
If the conversation is in Send-Pending state, the local program can issue the
Set_Error_Direction call to specify whether the error being reported resulted from
the received data or from the processing of the local program after successfully
receiving the data.

Set_Conversation_Context (cmsctx)

UNIX

The Set_Conversation_Context call sets the program's current context to a value
that was previously returned on an Extract_Conversation_Context call. This
enables the program to start a new conversation using the same context as a
previous one.

For more information about conversation contexts, see “Multiple Conversations”
on page 12.

Function Call
void cmsctx (

unsigned char CM_PTR context_ID,
CM_INT32 CM_PTR context_ID_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsctx (

byte[] context_ID,
CPICLength context_ID_length,
CPICReturnCode return_code

);

Note: This call is not part of the standard Java CPI-C specification, and is not
supported in other Java CPI-C implementations.

Supplied Parameters
The supplied parameters are:

context_ID
This parameter specifies the required context.

context_ID_length
This parameter specifies the length of context_ID (1–32 bytes).

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Send_Error (cmserr)

110 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following cases:
v The value specified by context_ID is not the context of any of the

program's current conversations, or of its most recent
conversation.

v The value specified by context_ID_length is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
An application uses Set_Conversation_Context in the following situations:
v When it is involved in multiple conversations, and wants to allocate a new

conversation using the same context as an existing conversation.
v When a CPI-C call that assigns a new context completes in nonblocking mode.

For example, if Accept_Incoming completes immediately with return_code CM_OK,
the program's current context is set to the context of the new conversation;
however, if Accept_Incoming returns CM_OPERATION_INCOMPLETE, a subsequent
Wait_For_Conversation that returns the result of Accept_Incoming does not
change the program's current context. The program must use
Extract_Conversation_Context and Set_Conversation_Context to set the current
context to the correct value.

Set_Conversation_Security_Password (cmscsp)
The Set_Conversation_Security_Password call is issued by the invoking program to
specify the password required to access the invoked program. This call has an
effect on the conversation only if the conversation security type is
CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG (AIX / Linux systems), or
XC_SECURITY_PROGRAM (Windows systems). It overrides the initial password from
the side information specified by the Initialize_Conversation call. This call cannot
be issued after the Allocate call has been issued.

Function Call
void cmscsp (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_password,
CM_INT32 CM_PTR security_password_length,
CM_RETURN_CODE CM_PTR return_code
);

Set_Conversation_Context (cmsctx)

Chapter 3. CPI-C Calls 111

Function Call for Java CPI-C
public native void cmscsp (

byte[] conversation_ID,
byte[] security_password,
CPICLength security_password_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

security_password
This specifies the password required to access the partner program. This
parameter is a character string of 1–10 characters(AIX / Linux systems), or
1–8 characters (Windows systems), and is case-sensitive. It must match the
password for the user ID configured for the partner program.

The following characters are allowed:
v Uppercase and lowercase letters
v Numerals 0–9
v Special characters $, #, @, and . (period)

security_password_length
This specifies the length of security_password.

The range for this value is 1–10 characters (AIX / Linux systems), or 1–8
characters (Windows systems). If the security_password_length is set to 0
(zero), the security_password parameter is ignored; this is equivalent to
setting security_password to a null string.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by security_password_length is out of range

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The conversation is not in Initialize state
v The conversation's security type is not set to

CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

Set_Conversation_Security_Password (cmscsp)

112 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
A user ID is required in addition to the password. This can be obtained from the
side information entry specified on the previous Initialize_Conversation call, or the
program can specify it using Set_Conversation_Security_User_ID.

A password that is not valid is not detected until the allocation request, generated
by the Allocate call, is sent to the partner LU. The error is returned to the invoking
program on a subsequent call.

If the return code is not CM_OK, the security_password and security_password_length
conversation characteristics are unchanged.

Set_Conversation_Security_Password (xcscsp)
This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the password required to
access the invoked program.

The xcscsp call provides compatibility for applications using the X/Open CPI-C
definition. It has been incorporated into IBM CPI-C 2.0 as the call
Set_Conversation_Security_Password (cmscsp). Use cmscsp whenever possible to
enable greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscsp call. For more
information about cmscsp, see “Set_Conversation_Security_Password (cmscsp)” on
page 111.

Set_Conversation_Security_Type (cmscst)
The Set_Conversation_Security_Type call is issued by the invoking program to
specify the information the partner LU requires in order to validate access to the
invoked program. This call overrides the initial security type from the side
information specified by the Initialize_Conversation call. This call cannot be issued
after the Allocate has been issued.

Function Call
void cmscst (

unsigned char CM_PTR conversation_ID,
XC_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmscst (

byte[] conversation_ID,
CPICConversationSecurityType conversation_security_type,
CPICReturnCode return_code

);

Set_Conversation_Security_Password (cmscsp)

Chapter 3. CPI-C Calls 113

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

conversation_security_type
This specifies the information the partner LU requires in order to validate
access to the invoked program. Based on the conversation security
established for the invoked program during configuration, use one of the
following values:

UNIX

CM_SECURITY_NONE
The invoked program uses no conversation security.

CM_SECURITY_SAME
The invoked program uses conversation security, and is configured
to accept an already-verified indicator (as described in “Overview
of Conversation Security” on page 12). The user ID from the local
program's current context (at the time the Allocate call is issued)
will be sent to the invoked program, together with an
already-verified indicator. This indicator tells the invoked program
not to require the password.

CM_SECURITY_PROGRAM
The invoked program uses conversation security and thus requires
a user ID and password. The security information will be taken
from the current conversation characteristics (at the time the
Allocate call is issued).

CM_SECURITY_PROGRAM_STRONG
As for CM_SECURITY_PROGRAM, except that the local node must not
send the password across the network in clear text format. This
value can be used only if the remote system supports password
substitution.

WINDOWS

XC_SECURITY_NONE
Equivalent to CM_SECURITY_NONE

XC_SECURITY_SAME
Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM
Equivalent to CM_SECURITY_PROGRAM

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

Set_Conversation_Security_Type (cmscst)

114 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID or conversation_security_type
is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the conversation_security_type is unchanged.

Set_Conversation_Security_Type (xcscst)
This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the information the partner
LU requires in order to validate access to the invoked program. This call overrides
the initial security type from the side information specified by the
Initialize_Conversation call.

The call provides compatibility for applications using the X/Open CPI-C
definition. It has been incorporated into IBM CPI-C 2.0 as the call
Set_Conversation_Security_Type (cmscst). Use cmscst whenever possible to enable
greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscst call. For more
information about cmscst, see “Set_Conversation_Security_Type (cmscst)” on page
113.

Set_Conversation_Security_User_ID (cmscsu)
The Set_Conversation_Security_User_ID call is issued by the invoking program to
specify the user ID required to access to the invoked program. It overrides the
initial user ID from the side information specified by the Initialize_Conversation
call.

This call cannot be issued after the Allocate call has been issued. This call is not
valid if the conversation security type is CM_SECURITY_NONE (AIX / Linux systems)
or XC_SECURITY_NONE (Windows systems).

Set_Conversation_Security_Type (cmscst)

Chapter 3. CPI-C Calls 115

Function Call
void cmscsu (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_user_ID,
CM_INT32 CM_PTR security_user_ID_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmscsu (

byte[] conversation_ID,
byte[] security_user_ID
CPICLength security_user_ID_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

security_user_ID
This specifies the user ID required to access the partner program. This
parameter is a character string of 1–10 characters (AIX / Linux systems), or
1–8 characters (Windows systems), and is case-sensitive.

The following characters are allowed:
v Uppercase and lowercase letters
v Numerals 0–9
v Special characters $, #, @, and . (period)

security_user_ID_length
This specifies the length of security_user_ID. This range for this value is
1–10 characters (AIX / Linux systems), or 1–8 characters (Windows
systems). If the length is 0 (zero), the security_user_ID parameter is ignored;
this is equivalent to setting security_user_ID to a null string.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid.
v The value specified by security_user_ID_length is out of range.

CM_PROGRAM_STATE_CHECK
One of the following has occurred:
v The conversation is not in Initialize state.
v The conversation's security type is set to CM_SECURITY_NONE.

Set_Conversation_Security_User_ID (cmscsu)

116 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return code is not CM_OK, the security_user_ID and security_user_ID_length
conversation characteristics are unchanged.

A user ID that is not valid is not detected until the allocation request, generated by
the Allocate call, is sent to the partner LU. The error is returned to the invoking
program on a subsequent call.

Set_Conversation_Security_User_ID (xcscsu)
This function is not available in Java CPI-C.

This call is issued by the invoking program to specify the user ID required to
access the invoked program.

The xcscsu call provides compatibility for applications using the X/Open CPI-C
definition. It has been incorporated into IBM CPI-C 2.0 as the call
Set_Conversation_Security_User_ID (cmscsu). Use cmscsu whenever possible to
enable greater portability of your program to other platforms.

The parameters on this call are identical to those on the cmscsu call. For more
information about cmscsu, see “Set_Conversation_Security_User_ID (cmscsu)” on
page 115.

Set_Conversation_Type (cmsct)
The Set_Conversation_Type call is issued by the invoking program to define a
conversation as being mapped or basic. This call overrides the default conversation
type established by the Initialize_Conversation call. The default conversation type
is CM_MAPPED_CONVERSATION. This call cannot be issued after the Allocate has been
issued.

Function Call
void cmsct (

unsigned char CM_PTR conversation_ID,
CM_CONVERSATION_TYPE CM_PTR conversation_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsct (

byte[] conversation_ID,
CPICConversationType conversation_type,
CPICReturnCode return_code

);

Set_Conversation_Security_User_ID (cmscsu)

Chapter 3. CPI-C Calls 117

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

conversation_type
This parameter specifies the type of conversation to be allocated by the
Allocate call. Possible values are:

CM_BASIC_CONVERSATION
CM_MAPPED_CONVERSATION

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID or conversation_type is not

valid.
v The conversation_type parameter specifies a mapped conversation,

but the fill characteristic is set to CM_FILL_BUFFER, which is
incompatible with mapped conversations. Before changing the
conversation type to mapped, you must issue the Set_Fill call to
change the fill type to CM_FILL_LL.

v The conversation_type parameter specifies a mapped conversation.
However, a previous Set_Log_Data call, allowed only in basic
conversations, is still in effect.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return code is not CM_OK, the conversation_type conversation characteristic is
unchanged.

Set_CPIC_Side_Information (xcmssi)
This function is not available in Java CPI-C.

Set_Conversation_Type (cmsct)

118 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

The Set_CPIC_Side_Information call specifies a side information entry for use by
this application. A CPI-C side information entry associates a set of conversation
characteristics with a symbolic destination name.

Side information entries are defined in the Communications Server configuration
file. This call specifies an additional entry for use by this application, or overrides
the definition in the configuration file (or the application's local definition) if the
specified symbolic destination name already exists.

This call is provided for compatibility with X/Open CPI-C and with the Windows
CPI-C specification; it is not included in IBM CPI-C 2.0.

Function Call
void xcmssi (

unsigned char CM_PTR key,
SIDE_INFO CM_PTR side_info_entry,
CM_INT32 CM_PTR side_info_entry_length,
CM_RETURN_CODE CM_PTR return_code
);

typedef struct side_info_entry
{

unsigned char sym_dest_name[8]; /* symbolic destination name */
unsigned char partner_LU_name[17]; /* Fully qualified partner LU name*/
unsigned char reserved[3]; /* Reserved */
XC_TP_NAME_TYPE TP_name_type; /* TP name type */
unsigned char TP_name[64]; /* TP name */
unsigned char mode_name[8]; /* Mode name */
XC_CONVERSATION_SECURITY_TYPE

conversation_security_type; /* Conversation security type*/
unsigned char security_user_ID[8]; /* User ID */
unsigned char security_password[8]; /* Password */

} SIDE_INFO;

Supplied Parameters
The supplied parameters are:

key This parameter is ignored.

side_info_entry
This parameter specifies the contents of a side information entry, as
follows. Each field in the structure must be left-justified. Pad fields on the
right with spaces as necessary.

side_info_entry.sym_dest_name
Symbolic destination name which identifies the side information entry. The
parameter sym_dest_name is an 8-byte ASCII character string and can
contain any displayable characters.

side_info_entry.partner_LU_name
Fully qualified name of the partner LU. This name is composed of two
character strings concatenated by a dot. Each name must can have a
maximum length of eight bytes with no embedded spaces; valid characters
are uppercase A–Z and numerals 0–9.

side_info_entry.TP_name_type
The type of the target TP (the valid characters for a TP name are
determined by the TP type). Allowed values:

XC_APPLICATION_TP
Application TP. All characters in the TP name must be valid ASCII
characters.

Set_CPIC_Side_Information (xcmssi)

Chapter 3. CPI-C Calls 119

XC_SNA_SERVICE_TP
Service TP. The TP name must be specified as an 8–character ASCII
string representing the hexadecimal digits of a 4-character name.
For example, if the hexadecimal representation of the name is
0x21F0F0F8, set the tp_name parameter to the 8–character string
“21F0F0F8”.

The first character (represented by two bytes) must be a
hexadecimal value in the range 0x0–0x3F, excluding 0x0E and 0x0F;
the remaining characters (each represented by two bytes) must be
valid EBCDIC characters.

side_info_entry.TP_name
TP name of the target TP.

Set_CPIC_Side_Information is the only CPI-C call that lets you specify an
SNA service TP as the partner program. See the description of the
TP_name_type parameter above for more information on how to specify the
TP name.

side_info_entry.mode_name
Name of the mode used to access the target TP.

For a mapped conversation, the mode name SNASVCMG is reserved for
SNA internal use; the Allocate call will fail if you use this name. You are
recommended not to use SNASVCMG in a basic conversation, or
CPSVCMG (another SNA reserved name) in either type of conversation.

side_info_entry.conversation_security_type
Specifies whether the target TP uses conversation security. Allowed values:

UNIX

CM_SECURITY_NONE
The target TP does not use conversation security.

CM_SECURITY_PROGRAM
The target TP uses conversation security. The security_user_ID and
security_password parameters specified below will be used to access
the target TP.

CM_SECURITY_SAME
The target TP uses conversation security, and can accept an
“already verified” indicator from the local TP. (This indicates that
the local TP was itself invoked by another TP, and has verified the
security user ID and password supplied by this TP.) The
security_user_ID parameter specified below will be used to access
the target TP; no password is required.

CM_SECURITY_PROGRAM_STRONG
As for CM_SECURITY_PROGRAM, except that the local node must not
send the password across the network in clear text format. This
value can be used only if the remote system supports password
substitution.

WINDOWS

XC_SECURITY_NONE
Equivalent to CM_SECURITY_NONE

Set_CPIC_Side_Information (xcmssi)

120 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

XC_SECURITY_SAME
Equivalent to CM_SECURITY_SAME

XC_SECURITY_PROGRAM
Equivalent to CM_SECURITY_PROGRAM

side_info_entry.security_user_ID
User ID used to access the partner TP. This parameter is not required if the
conversation_security_type parameter is set to CM_SECURITY_NONE.

side_info_entry.security_password
Password used to access the partner TP. This parameter is required only if
the conversation_security_type parameter is set to CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

UNIX

For compatibility with X/Open CPI-C, this verb only allows eight
characters for the user ID and password, although security user IDs can be
up to 10 characters. If the partner TP requires a user ID or password of 9
or 10 characters, you must specify it explicitly using the
Set_Conversation_Security_User_ID or
Set_Conversation_Security_Password call.

side_info_entry_length
This value must always be set to sizeof(SIDE_INFO).

WINDOWS

side_info_entry_length
This value must always be set to 124.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v A value specified in the side_info_entry structure is not valid
v The first character of the side_info_entry contains a space

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

Set_CPIC_Side_Information (xcmssi)

Chapter 3. CPI-C Calls 121

State When Issued
The conversation can be in any state.

State Change
There is no state change.

Usage Notes
This call does not modify the side information held in the configuration file; the
change applies only to this application. Communications Server stores the
modified information in memory associated with this operating system process; the
change is discarded when the process ends (or when the application issues the
Delete_CPIC_Side_Information call to remove the entry). For more details, see
“Side Information” on page 30.

If the return_code is not CM_OK, the side information is unchanged.

String parameters in the side information that are not valid (for example,
specifying a nonexistent partner LU) are not detected until the Allocate call is
issued. The error is returned on a call following Allocate.

Set_Deallocate_Type (cmsdt)
The Set_Deallocate_Type call specifies how the conversation is to be deallocated.
This call overrides the default deallocate type established by the
Initialize_Conversation or Accept_Conversation call. The default deallocate type is
CM_DEALLOCATE_SYNC_LEVEL.

The deallocation instructions specified by this call, take effect when the Deallocate
call is issued or when the send type is set to CM_SEND_AND_DEALLOCATE and the
Send_Data call is issued.

Function Call
void cmsdt (

unsigned char CM_PTR conversation_ID,
CM_DEALLOCATE_TYPE CM_PTR deallocate_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsdt (

byte[] conversation_ID,
CPICDeallocateType deallocate_type,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

Set_CPIC_Side_Information (xcmssi)

122 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

deallocate_type
This parameter specifies how to perform the deallocation. Possible values
are:

CM_DEALLOCATE_ABEND
The conversation is to be deallocated abnormally, unconditionally.
A program should specify CM_DEALLOCATE_ABEND when it encounters
an error preventing the successful completion of a transaction.

If the conversation is in Send state, CPI-C sends the contents of the
local LU's send buffer to the partner program before deallocating
the conversation. If the conversation is in Receive state, incoming
data may be purged. For a basic conversation in Send state, logical
record truncation may occur.

CM_DEALLOCATE_CONFIRM
This value sends the partner program the contents of the local LU's
send buffer and a request to confirm the deallocation. The
application cannot use this value if the conversation's
synchronization level is CM_NONE.

This request for deallocation confirmation is sent by the Deallocate
call or by the Send_Data call with the send type set to
CM_SEND_AND_DEALLOCATE. The conversation is deallocated normally
when the partner program issues the Confirmed call, responding to
the confirmation request.

CM_DEALLOCATE_FLUSH
This value sends the contents of the local LU's send buffer to the
partner program before deallocating the conversation normally.

CM_DEALLOCATE_SYNC_LEVEL
This value uses the conversation's synchronization level to
determine how to deallocate the conversation. A default
synchronization level is established by the Initialize_Conversation
call and can be overridden by the Set_Sync_Level call.

If the synchronization level of the conversation is set to the default,
CM_NONE, the contents of the local LU's send buffer are sent to the
partner program and the conversation is deallocated normally.

If the synchronization level of the conversation is CM_CONFIRM, the
contents of the local LU's send buffer and a request to confirm the
deallocation are sent to the partner program. This request for
deallocation confirmation is sent by Deallocate call, or by the
Send_Data call with the send type set to CM_SEND_AND_DEALLOCATE.
The conversation is deallocated normally when the partner
program issues the Confirmed call, responding to the confirmation
request.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

Set_Deallocate_Type (cmsdt)

Chapter 3. CPI-C Calls 123

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID or deallocate_type is not

valid
v The deallocate_type parameter specifies CM_DEALLOCATE_CONFIRM,

but the conversation's synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the deallocate_type conversation characteristic is
unchanged.

You can set deallocate_type to CM_FLUSH if the synchronization level of the
conversation is set to CM_NONE or CM_CONFIRM.

The value CM_DEALLOCATE_FLUSH is equivalent to CM_DEALLOCATE_SYNC_LEVEL with
the conversation's synchronization level set to CM_NONE.

The value CM_DEALLOCATE_CONFIRM is equivalent to CM_DEALLOCATE_SYNC_LEVEL with
the conversation's synchronization level set to CM_CONFIRM.

Set_Error_Direction (cmsed)
The Set_Error_Direction call specifies whether a program detected an error while
receiving data or while preparing to send data. This call overrides the default error
direction established by the Initialize_Conversation or Accept_Conversation call.
The default error direction is CM_RECEIVE_ERROR.

Error direction is relevant only when a program issues the Send_Error call in
Send-Pending state immediately after issuing the Receive call and receiving data
(data_received is a value other than CM_NO_DATA_RECEIVED) and a send indicator
(status_received = CM_SEND_RECEIVED).

Function Call
void cmsed (

unsigned char CM_PTR conversation_ID,
CM_ERROR_DIRECTION CM_PTR error_direction,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsed (

byte[] conversation_ID,
CPICErrorDirection error_direction,
CPICReturnCode return_code

);

Set_Deallocate_Type (cmsdt)

124 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

error_direction
This parameter specifies the direction in which data was flowing when the
program encountered an error. Possible values are:

CM_RECEIVE_ERROR
An error occurred in the data received from the partner program.

CM_SEND_ERROR
An error occurred while the local program prepared to send data
to the partner program.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID or error_direction is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the error_direction conversation characteristic is
unchanged.

When the conversation is in Send-Pending state, the program issues the Send_Error
call if it detects errors in the received data or if an error occurred while the local
program prepared to send data. The program must supply the error direction
information using the Set_Error_Direction call before issuing the Send_Error call
because the LU cannot tell which kind of error occurred (receive or send). The new
error direction remains in effect until a subsequent Set_Error_Direction changes it.

When the Send_Error call is issued, the partner program receives one of the
following return codes:
v CM_PROGRAM_ERROR_PURGING if error_direction is set to CM_RECEIVE_ERROR

v CM_PROGRAM_ERROR_NO_TRUNC if error_direction is set to CM_SEND_ERROR

Set_Error_Direction (cmsed)

Chapter 3. CPI-C Calls 125

Set_Fill (cmsf)
The Set_Fill call specifies whether programs will receive data in the form of logical
records or as a specified length of data. This call is allowed only in basic
conversations. It overrides the default fill established by the Initialize_Conversation
or Accept_Conversation call. The default fill is CM_FILL_LL.

The fill value affects all subsequent Receive calls. It can be changed by issuing the
Set_Fill call again.

Function Call
void cmsf (

unsigned char CM_PTR conversation_ID,
CM_FILL CM_PTR fill,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsf (

byte[] conversation_ID,
CPICFill fill,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

fill This parameter specifies the form in which programs will receive data.
Possible values are:

CM_FILL_BUFFER
The local program receives data until the number of bytes specified
by the requested_length parameter of the Receive call is reached, or
until the end of the data. Data is received without regard for the
logical-record format.

CM_FILL_LL
Data is received in logical-record format. The data received can be
any of the following:
v A complete logical record
v A portion of a logical record equal to the requested_length

parameter of the Receive call
v The end of a logical record

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

Set_Fill (cmsf)

126 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by the conversation_ID or fill parameter is not

valid
v The current conversation is mapped. The fill parameter does not

apply to mapped conversations

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the fill conversation characteristic is unchanged.

Set_Local_LU_Name (cmslln)
The Set_Local_LU_Name call is issued by the invoking program to specify the
local LU for a conversation. This call overrides the system-defined Local LU
derived from the side information when Initialize_Conversation was issued, and
any Local LU specified by the APPCLLU environment variable. This call cannot be
issued after the Allocate has been issued. Issuing this call has no effect on the side
information itself.

This call is not part of the standard CPI-C specification, and may not be available
in other implementations. In particular, it is not supported in other Java CPI-C
implementations.

Function Call
void cmslln (

unsigned char CM_PTR Conversation_ID,
unsigned char CM_PTR lu_alias,
CM_INT32 CM_PTR lu_alias_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmslln (

byte[] conversation_ID,
byte[] lu_alias,
CPICLength lu_alias_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

Set_Fill (cmsf)

Chapter 3. CPI-C Calls 127

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

lu_alias
This parameter specifies the starting address of the LU alias. The LU alias
can contain up to eight ASCII characters.

lu_alias_length
This parameter specifies the length of the LU alias. The range for this value
is 0–8 bytes. If lu_alias_length is 0 (zero), the LU alias is set to all zeros.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by lu_alias_length is out of range (greater

than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the lu_alias conversation characteristic is unchanged.

Specifying a value for lu_alias that is not valid (a name that is not permitted by the
configuration file) is not detected until the Allocate call is issued.

Set_Log_Data (cmsld)
The Set_Log_Data call specifies a log message (log data) and its length to be sent
to the partner LU. This call is allowed only in basic conversations. It overrides the
default log data, which is null, and the default log data length, which is 0 (zero).

Set_Local_LU_Name (cmslln)

128 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call
void cmsld (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR log_data,
CM_INT32 CM_PTR log_data_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsld (

byte[] conversation_ID,
byte[] log_data,
CPICLength log_data_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

log_data
Address of data buffer containing error information. This data is sent to
the local error log and to the partner LU.

This parameter is used by the Send_Error call if log_data_length is greater
than 0 (zero).

The program must format the error data as a General Data Stream (GDS)
error log variable. For further information, refer to the IBM publication
IBM Systems Network Architecture: LU 6.2 Reference: Peer Protocols.

log_data_length
This parameter specifies the length of the log data.

The range for this value is 0–512 bytes.

A length of 0 (zero) indicates that there is no log data. The log_data
parameter is ignored, and the log_data conversation characteristic is set to a
null string.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid.
v The conversation type is set to mapped.
v The value specified by log_data_length is out of range (greater

than 512 or less than 0).

Set_Log_Data (cmsld)

Chapter 3. CPI-C Calls 129

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the log_data and log_data_length conversation
characteristics are unchanged.

The log data specified by the Set_Log_Data call is sent to the partner LU when the
local program issues one of the following calls:
v Send_Error
v Deallocate with the conversation's deallocate_type set to CM_DEALLOCATE_ABEND

v Send_Data with the conversation's send_type set to CM_SEND_AND_DEALLOCATE and
the deallocate_type set to CM_DEALLOCATE_ABEND

After sending the log data to the partner LU, the local LU resets the log data to
null and the log data length to 0 (zero).

CPI-C automatically converts the log data from ASCII to EBCDIC as required.

Set_Mode_Name (cmsmn)
The Set_Mode_Name call is issued by the invoking program to specify the mode
name for a conversation. This call overrides the system-defined mode name
derived from the side information when the Initialize_Conversation call was
issued. This call cannot be issued after the Allocate has been issued. Issuing this
call has no effect on the side information itself.

Function Call
void cmsmn (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR mode_name,
CM_INT32 CM_PTR mode_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsmn (

byte[] conversation_ID,
byte[] mode_name,
CPICLength mode_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

Set_Log_Data (cmsld)

130 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

mode_name
This parameter specifies the starting address of the mode name (the name
of a set of networking characteristics defined during configuration). The
mode name can contain up to eight ASCII characters. The following
characters are allowed:
v Uppercase letters
v Numerals 0–9

The first character of the name must be a letter, or can be # for one of the
SNA-defined modes such as #INTER. For information about SNA-defined
modes, see the IBM Communications Server for Data Center Deployment on
AIX or Linux Administration Guide.

The value of mode_name must match the name of a mode associated with
the partner LU during configuration.

For a mapped conversation, the mode name SNASVCMG is reserved for
SNA internal use; the Allocate call will fail if you use this name. You are
recommended not to use SNASVCMG in a basic conversation, or
CPSVCMG (another SNA reserved name) in either type of conversation.

mode_name_length
This parameter specifies the length of the mode name.

The range for this value is 0–8 bytes.

If mode_name_length is set to 0 (zero), the Set_Mode_Name call is ignored.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by mode_name_length is out of range (greater

than 8 or less than 0).

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Set_Mode_Name (cmsmn)

Chapter 3. CPI-C Calls 131

Usage Notes
If the return_code is not CM_OK, the mode_name conversation characteristic is
unchanged.

Specifying a value for mode_name that is not valid (a name that is not permitted by
the configuration file) is not detected until the Allocate call is issued.

Set_Partner_LU_Name (cmspln)
The Set_Partner_LU_Name call is issued by the invoking program to specify the
partner LU name. This call overrides the partner LU name derived from the side
information when the Initialize_Conversation call was issued. This call cannot be
issued after the Allocate has been issued. Issuing this call has no effect on the side
information itself.

Function Call
void cmspln (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR partner_LU_name,
CM_INT32 CM_PTR partner_LU_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmspln (

byte[] conversation_ID,
byte[] partner_LU_name,
CPICLength partner_LU_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

partner_LU_name
This parameter specifies the starting address of the partner LU name. The
following characters are allowed:
v Uppercase letters
v Numerals 0–9

The partner LU name can be either of the following:
v An alias consisting of 1–8 ASCII characters.
v A fully qualified network name consisting of 2–17 ASCII characters. A

period (.) separates the network ID (which can be 0–8 characters) from
the network LU name (which can be 1–8 characters). If the network ID is
zero characters long, the period is still required.

If the partner LU is specified by its alias, this must match the alias defined
for a partner LU in the Communications Server configuration.

partner_LU_name_length
This parameter specifies the length of the partner LU name.

The range for this value is 1–17.

Set_Mode_Name (cmsmn)

132 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by partner_LU_name_length is out of range

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the partner_LU_name conversation characteristic is
unchanged.

Specifying a value for partner_LU_name that is not valid (a name not permitted by
the configuration) is not detected until the Allocate call is issued.

Set_Prepare_To_Receive_Type (cmsptr)
The Set_Prepare_To_Receive_Type call specifies how the subsequent
Prepare_To_Receive calls will be executed. It overrides the default
prepare-to-receive processing established by the Initialize_Conversation or
Accept_Conversation call. By default, the prepare-to-receive processing is based on
the synchronization level of the conversation.

The prepare to receive type affects all subsequent Prepare_To_Receive calls. It can
be changed by issuing the Set_Prepare_To_Receive_Type call again.

Function Call
void cmsptr (

unsigned char CM_PTR conversation_ID,
CM_PREPARE_TO_RECEIVE_TYPE CM_PTR prepare_to_receive_type,
CM_RETURN_CODE CM_PTR return_code
);

Set_Partner_LU_Name (cmspln)

Chapter 3. CPI-C Calls 133

Function Call for Java CPI-C
public native void cmsptr (

byte[] conversation_ID,
CPICPrepareToReceiveType prepare_to_receive_type,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

prepare_to_receive_type
This parameter specifies how subsequent Prepare_To_Receive calls will be
executed. Possible values are:

CM_PREP_TO_RECEIVE_CONFIRM
This value sends the partner program the contents of the LU's send
buffer and a confirmation request. Upon receipt of confirmation,
the conversation changes to Receive state.

CM_PREP_TO_RECEIVE_FLUSH
This value sends the partner program the contents of the local LU's
send buffer and changes the conversation to Receive state.

CM_PREP_TO_RECEIVE_SYNC_LEVEL
This value uses the conversation's synchronization level to
determine prepare-to-receive processing. A default synchronization
level is established by the Initialize_Conversation call and can be
overridden by the Set_Sync_Level call.

If the synchronization level of the conversation is set to the default,
CM_NONE, the contents of the local LU's send buffer are sent to the
partner program and the conversation changes to Receive state.

If the synchronization level of the conversation is CM_CONFIRM, the
contents of the local LU's send buffer and a request for
confirmation are sent to the partner program. The conversation
changes to Receive state when the partner program issues the
Confirmed call, responding to the confirmation request.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by the prepare_to_receive_type or

conversation_ID parameter is not valid

Set_Prepare_To_Receive_Type (cmsptr)

134 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v The prepare_to_receive_type parameter is set to
CM_PREP_TO_RECEIVE_CONFIRM, but the conversation's
synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the prepare_to_receive_type conversation characteristic
is unchanged.

Set_Processing_Mode (cmspm)
This function is not available in Java CPI-C. Java CPI-C functions always operate
in blocking mode; that is, the function does not return control to the application
until the requested processing has completed.

The Set_Processing_Mode call specifies whether subsequent CPI-C calls will return
when the required operation is complete (blocking mode), or return immediately
even if the operation is not complete (nonblocking mode). The default processing
mode, established by the Initialize_Conversation or Accept_Conversation call, is
CM_BLOCKING (blocking mode).

UNIX

If the conversation's processing mode is nonblocking, CPI-C calls issued on this
conversation can return immediately with a return code of
CM_OPERATION_INCOMPLETE to indicate that the requested operation has not been
completed. The application can then perform other processing not related to this
conversation, or can issue any of the following calls:
v Check_For_Completion, to determine whether any outstanding call (on this or

any other conversation) has completed
v Wait_For_Conversation, to wait for this call to complete
v Cancel_Conversation, to cancel the outstanding call and deallocate the

conversation

WINDOWS

A Windows application can use the Wait_For_Conversation call, as described
previously. However, the recommended method for handling nonblocking calls is
to use Specify_Windows_Handle. This function, which must be issued before any
nonblocking calls, specifies a Windows handle to which CPI-C sends a message
when the call processing has completed. The application checks the results of the

Set_Prepare_To_Receive_Type (cmsptr)

Chapter 3. CPI-C Calls 135

call when it receives this message, and does not use Wait_For_Conversation.
Check_For_Completion, described previously for AIX / Linux systems, is not
supported on Windows systems.

If the outstanding call is a Receive call, a Windows application can issue the
Request_To_Send, Send_Error, Test_Request_to_Send_Received, or Deallocate calls
in addition to those listed previously. For more information, see “Receive (cmrcv)”
on page 92.

The processing mode affects all subsequent CPI-C calls. It can be changed by
issuing the Set_Processing_Mode call again.

Function Call
void cmspm (

unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR processing_mode,
CM_RETURN_CODE CM_PTR return_code
);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation or Accept_Conversation call.

processing_mode
This parameter specifies whether subsequent CPI-C calls will be executed
in blocking or nonblocking mode. Possible values are:

CM_BLOCKING
Subsequent CPI-C calls will not return until the operation is
complete.

CM_NON_BLOCKING
Subsequent CPI-C calls will return immediately after the operation
is initiated, whether or not it has completed.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by the processing_mode or conversation_ID
parameter is not valid.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

Set_Processing_Mode (cmspm)

136 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the processing_mode conversation characteristic is
unchanged.

Set_Receive_Type (cmsrt)
The Set_Receive_Type call specifies how the program will receive data on
subsequent Receive calls. It overrides the default receive type established by the
Initialize_Conversation or Accept_Conversation call. By default, the program waits
for data to arrive if it is not available when the Receive call is issued.

The receive type value affects all subsequent Receive calls. It can be changed by
issuing the Set_Receive_Type call again.

Function Call
void cmsrt (

unsigned char CM_PTR conversation_ID,
CM_RECEIVE_TYPE CM_PTR receive_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsrt (

byte[] conversation_ID,
CPICReceiveType receive_type,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

receive_type
This parameter specifies how data is to be received by the program on the
subsequent Receive calls. Possible values are:

CM_RECEIVE_AND_WAIT
The local program receives any data that is currently available
from the partner program. If no data is currently available, the
local program waits for data to arrive.

CM_RECEIVE_IMMEDIATE
The local program receives any data currently available from the
partner program. If no data is available, the local program does not
wait.

Set_Processing_Mode (cmspm)

Chapter 3. CPI-C Calls 137

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID or receive_type is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the receive_type conversation characteristic is
unchanged.

Set_Return_Control (cmsrc)
The Set_Return_Control call is issued by the invoking program to specify whether
the Allocate call returns immediately if a session is not available, or waits for a
session to be allocated.

This call overrides the default return control established by the
Initialize_Conversation call. By default, CPI-C waits for the session to be allocated.
This call cannot be issued after the Allocate call has been issued.

For further information about sessions, see Chapter 2, “Writing CPI-C
Applications,” on page 19.

Function Call
void cmsrc (

unsigned char CM_PTR conversation_ID,
CM_RETURN_CONTROL CM_PTR return_control,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsrc (

byte[] conversation_ID,
CPICReturnControl return_control,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

Set_Receive_Type (cmsrt)

138 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

return_control
This parameter specifies when the local LU, acting on the Allocate call,
should return control to the local program. The following are allowed
values:

CM_IMMEDIATE
The LU allocates a contention winner session, if one is immediately
available, and returns control to the program.

CM_WHEN_SESSION_ALLOCATED
The LU does not return control to the program until it allocates a
session or encounters certain errors. If a session is not available,
the program waits for one. (If the session limit is 0, the LU returns
control immediately.)

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID or return_control is not valid.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the return_control conversation characteristic is
unchanged.

If the LU is unable to allocate a session, the notification is returned on the Allocate
call.

Set_Send_Type (cmsst)
The Set_Send_Type call specifies how data will be sent by the next Send_Data call.
It overrides the default send type established by the Initialize_Conversation or
Accept_Conversation call. The default send type is CM_BUFFER_DATA, indicating that
data only (and no control information) is to be sent.

Set_Return_Control (cmsrc)

Chapter 3. CPI-C Calls 139

The send type value affects all subsequent Send_Data calls. It can be changed by
issuing the Set_Send_Type call again.

Function Call
void cmsst (

unsigned char CM_PTR conversation_ID,
CM_SEND_TYPE CM_PTR send_type,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmsst (

byte[] conversation_ID,
CPICSendType send_type,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation, Initialize_For_Incoming, or
Accept_Conversation call.

send_type
This parameter specifies how data is to be sent by subsequent Send_Data
calls. Possible values are:

CM_BUFFER_DATA
The data pointed to by the Send_Data call is stored in a buffer
until the buffer fills up or is flushed.

CM_SEND_AND_FLUSH
The data pointed to by the Send_Data call is to be sent
immediately. This is equivalent to Send_Data, with the send_type
set to CM_BUFFER_DATA, followed by Flush.

CM_SEND_AND_CONFIRM
The data is to be sent immediately with a request for confirmation.
This is equivalent to Send_Data, with the send_type set to
CM_BUFFER_DATA, followed by Confirm.

CM_SEND_AND_PREP_TO_RECEIVE
The data is to be sent immediately along with notification to the
partner program that the conversation state for the sending
program is changing to Receive. This is equivalent to Send_Data,
with the send_type set to CM_BUFFER_DATA, followed by
Prepare_To_Receive.

CM_SEND_AND_DEALLOCATE
The data is to be sent immediately along with deallocation
notification. This is equivalent to Send_Data, with the send_type set
to CM_BUFFER_DATA, followed by Deallocate.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

Set_Send_Type (cmsst)

140 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID or send_type is not valid
v The send_type parameter is set to CM_SEND_AND_CONFIRM, but the

conversation's synchronization level is set to CM_NONE

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation can be in any state except Reset.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the send_type conversation characteristic is
unchanged.

Using send_type values other than CM_BUFFER_DATA enables you to reduce the
number of calls issued, because with these values a Send_Data call can include the
function of another CPI-C call.

Set_Sync_Level (cmssl)
The Set_Sync_Level call is issued by the invoking program to specify the
synchronization level of the conversation. The synchronization level determines
whether the programs synchronize their processing through the Confirm and
Confirmed calls.

This call overrides the synchronization level established by the
Initialize_Conversation call. The default synchronization level is CM_NONE, indicating
no synchronization. This call cannot be issued after the Allocate call has been
issued.

Function Call
void cmssl (

unsigned char CM_PTR conversation_ID,
CM_SYNC_LEVEL CM_PTR sync_level,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmssl (

byte[] conversation_ID,
CPICSyncLevel sync_level,
CPICReturnCode return_code

);

Set_Send_Type (cmsst)

Chapter 3. CPI-C Calls 141

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

sync_level
This parameter specifies the synchronization level of the conversation.
Possible values are:

CM_NONE
The programs will not perform confirmation processing.

CM_CONFIRM
The programs can perform confirmation processing.

A third level, sync point, is provided by some CPI-C implementations, but
is not supported by Communications Server CPI-C.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID or sync_level is not valid
v The sync_level parameter specifies CM_NONE but one of the

following has occurred:
– The send_type parameter is set to CM_SEND_AND_CONFIRM

– The prepare_to_receive_type parameter is set to
CM_PREP_TO_RECEIVE_CONFIRM

– The deallocate_type parameter is set to CM_DEALLOCATE_CONFIRM

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the sync_level conversation characteristic is
unchanged.

Set_Sync_Level (cmssl)

142 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Set_TP_Name (cmstpn)
The Set_TP_Name call is issued by the invoking program to specify the partner
program name. This call overrides the partner program name derived from the
side information when the Initialize_Conversation call was issued. This call cannot
be issued after the Allocate call has been issued. Issuing this call has no effect on
the side information itself.

This call functions differently from Specify_Local_TP_Name. Set_TP_Name is
issued by the invoking program, to specify the name of the program it wants to
allocate a conversation with; Specify_Local_TP_Name is issued by the invoked
program, to specify a name for which it will accept incoming Allocate requests.

Function Call
void cmstpn (

unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR TP_name,
CM_INT32 CM_PTR TP_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmstpn (

byte[] conversation_ID,
byte[] TP_name,
CPICLength TP_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation. The value of this parameter is
returned by the Initialize_Conversation call.

TP_name
This parameter specifies the starting address of the partner program name.
The program name can contain up to 64 characters. The following
characters are allowed:
v Uppercase and lowercase letters
v Numerals 0–9 and . (period)
v The following special characters: < > () + - & *; / , % _ ? : ’ = "

(valid only if the partner program is a CPI-C program) $ # @ (valid only
if the partner program is an APPC program)

You cannot use the Set_TP_Name call to specify the name of an SNA
service TP, which contains characters that are not allowed for this call. You
can, however, use the Set_CPIC_Side_Information call to do this.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length
This parameter specifies the length of the partner program name.

The range for this value is 1–64.

Set_TP_Name (cmstpn)

Chapter 3. CPI-C Calls 143

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_STATE_CHECK
The conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by conversation_ID is not valid
v The value specified by TP_name_length is out of range

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
The conversation must be in Initialize state.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the TP_name conversation characteristic is
unchanged.

Specify_Local_TP_Name (cmsltp)
The Specify_Local_TP_Name call is issued by a CPI-C application to specify a local
TP name for which it will accept incoming Allocate requests.

Instead of using this call, you can set the local TP name in other ways such as by
using the APPCTPN environment variable. For more information about setting the
local TP name, see “Specifying the Local TP Name” on page 33. The
Specify_Local_TP_Name call is required only when a single application wishes to
accept incoming Allocates for more than one local TP name; it can use APPCTPN for
one name, but must use this call to specify additional names. (After issuing the
Accept_Conversation or Accept_Incoming call to accept an incoming Allocate
request, it can use Extract_TP_Name to determine which of the names was
specified by the partner application.)

This call functions differently from Set_TP_Name. Set_TP_Name is issued by the
invoking program, to specify the name of the program it wants to allocate a
conversation with; Specify_Local_TP_Name is issued by the invoked program, to
specify a name for which it will accept incoming Allocate requests.

Function Call
void cmsltp (

unsigned char CM_PTR TP_name,
CM_INT32 CM_PTR TP_name_length,
CM_RETURN_CODE CM_PTR return_code
);

Set_TP_Name (cmstpn)

144 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Function Call for Java CPI-C
public native void cmsltp (

byte[] TP_name,
CPICLength TP_name_length,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

TP_name
This parameter specifies the starting address of the TP name. The name
can contain up to 64 characters. The following characters are allowed:
v Uppercase and lowercase letters
v Numerals 0–9
v The special characters: . < > () + - & *; / , % _ ? : ’ = "

You cannot use the Specify_Local_TP_Name call to specify the name of an
SNA service TP, which contains characters that are not allowed for this call.

Double-byte character sets, such as Kanji, are not supported.

TP_name_length
This parameter specifies the length of the name.

The range for this value is 1–64.

Returned Parameters
After the verb executes, Communications Server returns the following parameters:

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One of the following has occurred:
v The value specified by TP_name is a reserved name, or contains

one or more characters that are not valid.
v The value specified by TP_name_length is out of range.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

State Change
There is no state change.

Usage Notes
If the return_code is not CM_OK, the TP names for which this program will accept
incoming Allocate requests are unchanged.

Specify_Local_TP_Name (cmsltp)

Chapter 3. CPI-C Calls 145

If an Accept_Incoming call is outstanding at the time this call is issued, it will not
accept an incoming Allocate for the name specified on this call. However,
subsequent Accept_Conversation or Accept_Incoming calls will accept incoming
Allocates for this name.

Specify_Windows_Handle (xchwnd)

WINDOWS

The Specify_Windows_Handle call is issued by a CPI-C application to specify a
Windows handle to which CPI-C will send a message each time a nonblocking
CPI-C function completes. This provides an alternative mechanism to using
Wait_For_Conversation (as on AIX / Linux systems) to wait for completion of the
function. If you are writing a new CPI-C application for Windows systems, you
should use this mechanism and not Wait_For_Conversation.

To use nonblocking calls and receive messages to indicate their completion, the
application must issue the following calls before issuing a nonblocking call:
v RegisterWindowMessage, to obtain the message identifier that CPI-C will use for

messages indicating completion of a nonblocking CPI-C function. This is a
standard Windows function call, not specific to CPI-C; refer to your Windows
documentation for more information about the function. The application must
pass the value WIN_CPIC_ASYNC_COMPLETE_MESSAGE to the function; the returned
value is a message identifier, as described below. (There is no need to issue the
call again before subsequent CPI-C calls; the returned value will be the same for
all calls issued by the application.)

v Set_Processing_Mode, to set the conversation's processing mode to
CM_NON_BLOCKING.

v Specify_Windows_Handle, to specify the handle to which the completion
message is sent.

Each time a nonblocking CPI-C function completes, CPI-C posts a message to the
window handle specified on the Specify_Windows_Handle call. The format of the
message is as follows:
v The message identifier is the value returned from the RegisterWindowMessage

call.
v The lParam argument contains the conversation ID of the CPI-C call that has

completed.
v The wParam argument contains the conversation return_code parameter from the

CPI-C call that has completed. The possible values for this parameter depend on
the individual call.

Function Call
void xchwnd (

HWND hwnd,
CM_RETURN_CODE CM_PTR return_code
);

Supplied Parameters
The supplied parameter is:

hwnd A window handle that CPI-C will use to post a message indicating that a
nonblocking function has completed.

Specify_Local_TP_Name (cmsltp)

146 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The supplied parameter was not a valid Windows handle.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

State When Issued
This call is not associated with a conversation.

State Change
There is no state change associated with this call.

When CPI-C sends a message to indicate that a nonblocking call has completed,
the state change is dependent on the function that completed and its return code.

Test_Request_to_Send_Received (cmtrts)
The Test_Request_to_Send_Received call determines whether a request-to-send
notification has been received from the partner program.

Function Call
void cmtrts (

unsigned char CM_PTR conversation_ID,
CM_Request_to_Send_Received CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code
);

Function Call for Java CPI-C
public native void cmtrts (

byte[] conversation_ID,
CPICControlInformationReceived request_to_send_received,
CPICReturnCode return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation.

The value of this parameter is returned by the Initialize_Conversation,
Initialize_For_Incoming, or Accept_Conversation call.

Specify_Windows_Handle (xchwnd)

Chapter 3. CPI-C Calls 147

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

request_to_send_received
This is the request-to-send-received indicator. Possible values are:

CM_REQ_TO_SEND_RECEIVED
The partner program has issued the Request_To_Send call, which
requests the local program to change the conversation to Receive
state.

CM_REQ_TO_SEND_NOT_RECEIVED
The partner program has not issued the Request_To_Send call.

This value is not relevant if the return_code parameter contains a value
other than CM_OK.

return_code
Possible values are:

CM_OK The call executed successfully.

CM_PROGRAM_PARAMETER_CHECK
The value specified by conversation_ID is not valid.

CM_PROGRAM_STATE_CHECK
The conversation is in a state that is not valid.

For an explanation of the following return codes, see Appendix B,
“Common Return Codes,” on page 169.

CM_OPERATION_NOT_ACCEPTED
CM_PRODUCT_SPECIFIC_ERROR

State When Issued
The conversation must be in Receive, Send, Send-Pending, or Pending-Post state.

State Change
There is no state change.

Wait_For_Conversation (cmwait)
This function is not available in Java CPI-C. Java CPI-C functions always operate
in blocking mode; that is, the function does not return control to the application
until the requested processing has completed.

The Wait_For_Conversation call waits for completion of a previous CPI-C call that
returned CM_OPERATION_INCOMPLETE.

If processing for the previous call has already finished when
Wait_For_Conversation is issued, this call returns immediately; otherwise it blocks
until CPI-C has finished processing the incomplete operation. If the application is
involved in multiple conversations, this call waits on all conversations, and returns
as soon as a call completes on any of them.

WINDOWS

Test_Request_to_Send_Received (cmtrts)

148 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

New applications written for Windows systems should use
Specify_Windows_Handle to obtain the results of nonblocking calls, instead of
using Wait_For_Conversation. See “Specify_Windows_Handle (xchwnd)” on page
146. The Wait_For_Conversation call is provided for compatibility with other CPI-C
implementations, but is not recommended for use by Windows applications.

In particular, if the application issues the Receive call in nonblocking mode and
then issues other calls in nonblocking mode on the same conversation while
Receive is outstanding, it must use Specify_Windows_Handle. It must not issue
Wait_For_Conversation while more than one call is outstanding on the same
conversation; the results of Wait_For_Conversation in this situation are undefined.

Function Call
void cmwait (

unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR conversation_return_code,
CM_RETURN_CODE CM_PTR return_code
);

Supplied Parameters
There are no supplied parameters for this call.

Returned Parameters
After the verb executes, Communications Server returns parameters to indicate
whether the execution was successful and, if not, to indicate the reason the
execution was unsuccessful.

conversation_ID
This is the identifier for the conversation on which the outstanding call
completed.

conversation_return_code
This is the return code from the completed call (which previously returned
CM_OPERATION_INCOMPLETE). The possible values for this parameter depend
on which call was outstanding. For more information, see the description
of the specific call.

This value is not relevant if the return_code parameter contains a value
other than CM_OK.

return_code
Possible values are:

CM_OK The Wait_For_Conversation call executed successfully. The
conversation_return_code parameter indicates whether the previous
incomplete operation completed successfully.

CM_PROGRAM_STATE_CHECK
There was no incomplete operation outstanding.

CM_PRODUCT_SPECIFIC_ERROR
For an explanation of this return code, see Appendix B, “Common
Return Codes,” on page 169.

Wait_For_Conversation (cmwait)

Chapter 3. CPI-C Calls 149

WINDOWS

CM_SYSTEM_EVENT
The call was terminated by an operating system event, rather than
by the completion of a previous CPI-C call.

State When Issued
The call is not associated with a specific conversation, so the conversation state is
not relevant. However, the application must have at least one conversation with an
incomplete operation outstanding.

State Change
If return_code is set to CM_OK, the state change depends on the outstanding call that
completed, and on the return code from that call (the conversation_return_code
parameter on this call). For more information, see the description of the specific
call. If return_code is not CM_OK, there is no state change.

Usage Notes
This call does not change the program's current context (even if the outstanding
operation that has completed is one that would normally do this, such as
Accept_Incoming). If necessary, the program can use Extract_Conversation_Context
for the conversation_ID returned on this call, to get the value of the conversation
context, and Set_Conversation_Context to set its current context to this value.

If no previously outstanding call has completed, this call blocks (and the
application's processing is suspended) until one completes.

UNIX

To check for completed calls without blocking, the application can use
Check_For_Completion (which always returns immediately) to determine whether
a call has completed, and call Wait_For_Conversation only when
Check_For_Completion indicates that a call has completed (and therefore
Wait_For_Conversation will return immediately).

If there are multiple outstanding calls (on different conversations), each
Wait_For_Conversation call returns one outstanding call. After issuing
Wait_For_Conversation, the application can check whether any other calls have
completed by issuing Check_For_Completion.

WINDOWS

A Windows application can use Wait_For_Conversation, as described previously.
However, the recommended method of handling nonblocking calls is to use
Specify_Windows_Handle. This function, which must be issued before any
nonblocking calls, specifies a Windows handle to which CPI-C sends a message
when the call processing has completed. The application checks the results of the

Wait_For_Conversation (cmwait)

150 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

call when it receives this message, and does not use Wait_For_Conversation.
Check_For_Completion, described previously for AIX / Linux systems, is not
supported on Windows systems.

WinCPICCleanup

WINDOWS

The application uses this function to unregister as a Windows CPI-C user, after it
has finished issuing CPI-C calls.

A Windows CPI-C application that needs to be compatible with Microsoft SNA
Server and Windows Open System Architecture (WOSA) must use this call after it
has finished issuing CPI-C calls and before it terminates. If you are writing the
application for use only on Windows clients and you do not need to run it on SNA
Server, there is no need to use this call.

Function Call
BOOL WINAPI WinCPICCleanup (void);

Supplied Parameters
There are no supplied parameters for this call.

Returned Values
The return value from the function is one of the following:

TRUE The application was unregistered successfully.

FALSE An error occurred during processing of the call, and the application was
not unregistered. Check the log files for messages indicating the cause of
the failure.

WinCPICIsBlocking

WINDOWS

The application uses this function to check whether there is a blocking CPI-C call
outstanding (a call issued with the conversation's processing mode set to
CM_BLOCKING). For more information about blocking calls, see “Windows
Considerations” on page 38.

Function Call
BOOL WINAPI WinCPICIsBlocking (void);

Wait_For_Conversation (cmwait)

Chapter 3. CPI-C Calls 151

Supplied Parameters
There are no supplied parameters for this function.

Returned Values
The return value from the function is one of the following:

TRUE There is a blocking CPI-C call outstanding. If necessary, the application can
use Cancel_Conversation or Deallocate to cancel the call and end the
conversation.

FALSE There is no blocking CPI-C call outstanding.

WinCPICSetBlockingHook

WINDOWS

The application uses this call to specify its own blocking function, which CPI-C
will use instead of the default blocking function. For more information about how
the blocking function operates, and on the functions it must perform, see “Blocking
Calls” on page 40.

Function Call
FARPROC WINAPI WinCPICSetBlockingHook (FARPROC lpBlockFunc);

Supplied Parameters
The supplied parameter is:

lpBlockFunc
The procedure instance address of the application's blocking function. The
application should use the MakeProcInstance call to obtain this address;
refer to your Windows documentation for more information.

Returned Values
The return value is the procedure instance address of the previous blocking
function. If the application is using more than one blocking function, and will need
to restore the previous blocking function later, it should save this address; it can
then issue WinCPICSetBlockingHook again using the saved value, to restore the
previous blocking function. If it is using only one blocking function, or will not
need to restore the previous value, it can ignore the return value from this call.

Usage
The new blocking function remains in effect until the application issues one of the
following calls:
v WinCPICSetBlockingHook (with a different procedure instance address), to specify

a new blocking function or to restore a previous one
v WinCPICUnhookBlockingHook (described below), to stop using the current blocking

function and return to the default blocking function.

WinCPICIsBlocking

152 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

WinCPICStartup

WINDOWS

The application uses this function to register as a Windows CPI-C user, and to
determine whether the CPI-C software supports the Windows CPI-C version that it
requires.

A Windows CPI-C application that needs to be compatible with Microsoft SNA
Server and Windows Open System Architecture (WOSA) must use this call before
issuing any other CPI-C calls. If you are writing the application for use only on
Windows clients and you do not need to run it on SNA Server, there is no need to
use this call.

Function Call
int WINAPI WinCPICStartup (

WORD wVersionRequired;
LPWCPICDATA lpData;

)

typedef struct
{

WORD wVersion;
char szDescription[128];

} WCPICDATA;

Supplied Parameters
The supplied parameter is:

wVersionRequired
The version of Windows CPI-C that the application requires.
Communications Server supports version 1.0.

The low-order byte of this parameter specifies the major version number,
and the high-order byte specifies the minor version number. For example:

Version wVersionRequired

1.0 0x0001
1.1 0x0101
2.0 0x0002

If the application can use more than one version, it should specify the
highest version that it can use.

Returned Values
The return value from the function is one of the following:

0 (zero)
The application was registered successfully, and the Windows CPI-C
software supports either the version number specified by the application or

WinCPICSetBlockingHook

Chapter 3. CPI-C Calls 153

a lower version. The application should check the version number in the
WCPICDATA structure (see the description that follows) to ensure that it is
high enough.

WCPICVERNOTSUPPORTED
The version number specified by the application was lower than the lowest
version supported by the Windows CPI-C software. The application was
not registered.

WCPICSYSNOTREADY
The Communications Server software has not been started, or the local
node is not active. The application was not registered.

If the return value from WinCPICStartup is 0 (zero), the WCPICDATA structure
contains information about the support provided by the Windows CPI-C software.
If the return value is nonzero, the contents of this structure are undefined and the
application should not check them. The parameters in this structure are as follows:

wVersion
The Windows CPI-C version number that the software supports, in the
same format as the wVersionRequired parameter (see the previous
explanation). Communications Server supports version 1.0.

If the software supports the requested version number, this parameter is
set to the same value as the wVersionRequired parameter; otherwise it is set
to the highest version that the software supports, which will be lower than
the version number supplied by the application. The application must
check the returned value and take action as follows:
v If the returned version number is the same as the requested version

number, the application can use this Windows CPI-C implementation.
v If the returned version number is lower than the requested version

number, the application can use this Windows CPI-C implementation
but must not attempt to use features that are not supported by the
returned version number. If it cannot do this because it requires features
not available in the lower version, it should fail its initialization and not
attempt to issue any CPI-C calls.

szDescription
A text string describing the Windows CPI-C software.

WinCPICUnhookBlockingHook

WINDOWS

The application uses this call to remove its own blocking function, which it has
previously specified using WinCPICSetBlockingHook, and revert to using CPI-C's
default blocking function.

Function Call
BOOL WINAPI WinCPICUnhookBlockingHook (void);

WinCPICStartup

154 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Supplied Parameters
There are no supplied parameters for this function.

Returned Values
The return value is one of the following:

TRUE The blocking function was removed successfully; any further blocking calls
will use the default blocking function.

FALSE The call did not complete successfully.

WinCPICSetEvent

WINDOWS

The application uses this function to associate an event handle with verb
completion for the specified conversation.

Function Call
VOID WINAPI WinCPICSetEvent (

unsigned char CM_PTR conversation_ID,
HANDLE CM_PTR event_handle,
CM_INT32 CM_PTR return_code

);

Supplied Parameters
The supplied parameters are:

conversation_ID
This is the identifier for the conversation for which this event is used. This
parameter is returned by the initial Accept_Conversation call.

event_handle
This is the handle of the event that is to be cleared when an asynchronous
verb on the conversation completes. This parameter can replace an
already-defined event or remove an already-defined event (by having
NULL as the parameter).

Returned Parameters
return_code

Possible values are:

CM_OK The WinCPICSetEvent function executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One or more of the parameters passed to this function are invalid.

CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous operation on this conversation
is incomplete and the WinCPICSetEvent call was not accepted.

WinCPICUnhookBlockingHook

Chapter 3. CPI-C Calls 155

Usage Notes
When a verb is issued on a nonblocking conversation, it returns
CM_OPERATION_INCOMPLETE if it is going to complete asynchronously. If an event has
been registered with the conversation, then the application can call
WaitForSingleObject or WaitForMultipleObjects to be notified of the completion
of the verb. When the verb has completed, the application must call
Wait_for_Conversation to determine the return code for the asynchronous verb.

It is the responsibility of the application to reset the event.

WinCPICExtractEvent

WINDOWS

The application uses this function to determine the event handle being used for a
CPI-C conversation.

Function Call
VOID WINAPI WinCPICExtractEvent (

unsigned char CM_PTR conversation_ID,
HANDLE CM_PTR event_handle,
CM_INT32 CM_PTR return_code

);

Supplied Parameters
The supplied parameter for this function is:

conversation_ID
This is the identifier for the conversation for which this event is used. This
parameter is returned by the initial Accept_Conversation call.

Returned Parameters
event_handle

This is the handle of the event being used by this conversation. If no
handle has been registered, this parameter returns a NULL value.

return_code
Possible values are:

CM_OK The WinCPICExtractEvent function executed successfully.

CM_PROGRAM_PARAMETER_CHECK
One or more of the parameters passed to this function are invalid.

Usage Notes
When a verb is issued on a nonblocking conversation, it returns
CM_OPERATION_INCOMPLETE if it is going to complete asynchronously. If an event has
been registered with the conversation, then the application can call
WaitForSingleObject or WaitForMultipleObjects to be notified of the completion
of the verb. WinCPICExtractEvent enables a CPI-C application to determine this

WinCPICSetEvent

156 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

event handle. When the verb has completed, the application must call
Wait_for_Conversation to determine the return code for the asynchronous verb.

The Cancel_Conversation function can be called to cancel an operation and
conversation.

If no event has been registered, then the asynchronous verb completes by posting a
message to the window that the application has registered with the CPI-C library.

WinCPICExtractEvent

Chapter 3. CPI-C Calls 157

WinCPICExtractEvent

158 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Chapter 4. Sample CPI-C Transaction Programs

This chapter describes the Communications Server sample CPI-C transaction
programs, which illustrate the use of CPI-C calls in AIX / Linux applications. For
information on using CPI-C calls in a Java application, see Chapter 5, “Sample Java
CPI-C Transaction Program,” on page 163.

The following information is provided:
v Processing overview of the two programs
v Pseudocode for each program
v Instructions for compiling, linking, and running the two programs

Processing Overview
The programs presented in this chapter enable you to browse through a file on
another system. The user is presented with a single data block at a time, in
hexadecimal and character format. After each block, a user can request the next
block, request the previous block, or quit.

CSAMPLE1 (the invoking program) sends a file name to CSAMPLE2 (the invoked
program). If CSAMPLE2 locates the file, it returns the first block to CSAMPLE1;
otherwise, it deallocates the conversation and ends.

If CSAMPLE1 receives a block, it displays the block on the screen and waits for the
user to enter F for forward, B for backward, or Q for quit. If the user selects
forward or backward, CSAMPLE1 sends the request to CSAMPLE2 which in turn
sends the appropriate block. This process continues until the user selects the quit
option, at which time CSAMPLE1 deallocates the conversation and both programs
end.

If the user asks for the next block and CSAMPLE2 has sent the last one,
CSAMPLE2 wraps to the beginning of file. Similarly, CSAMPLE2 wraps to send
the last block if the user requests the previous one and the first block is displayed.

Neither program attempts to recover from errors. A bad return code from CPI-C
causes the program to terminate with an explanatory message.

Pseudocode
This section contains the pseudocode for the transaction programs, CSAMPLE1
and CSAMPLE2.

The sample programs are provided as csample1.c and csample2.c, in the directory
/usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples (Linux).

CSAMPLE1 (Invoking Program)
The pseudocode for CSAMPLE1 (the invoking program) is as follows:

initialize
allocate
send data (data = filename)
do while no error and prompt not Q

receive

© Copyright IBM Corp. 1998, 2012 159

if data block received
display data block

else if permission to send received
get user prompt (F, B, or Q)
if prompt = F or B /* Not Q */

send data (data = prompt)
endif

endif
end do
deallocate

CSAMPLE2 (Invoked TP)
The pseudocode for CSAMPLE2 (the invoked TP) is as follows:

initialize
do while conversing

receive
if data received

if first time (data = filename)
open file
if file not found

deallocate
set conversing false

endif
else (data = prompt)

read and store prompt
endif
if (conversing)

read file block
send data (file block)

endif
else if deallocate received

set conversing false
endif

end while conversing
close file

Testing the TPs
After examining the source code for CSAMPLE1 and CSAMPLE2, you may want
to test the programs.

Although CPI-C is normally used for communications between programs on
separate computers, you may find it convenient to run both programs on the same
computer for testing purposes.

To compile and link the programs, take the following steps.
1. Copy the two files csample1.c and csample2.c from the directory

/usr/lib/sna/samples (AIX) or /opt/ibm/sna/samples (Linux)to a private
directory.

2. To compile and link the programs for AIX, use the following commands:

cc -o csample1 -I /usr/include/sna -bimport:/usr/lib/sna/cpic_r.exp csample1.c

cc -o csample2 -I /usr/include/sna -bimport:/usr/lib/sna/cpic_r.exp csample2.c

To compile and link the programs for Linux, use the following commands:
gcc -o csample1 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lcpic -lappc -lsna_r -lpLiS -lpthread csample1.c

gcc -o csample2 -I /opt/ibm/sna/include -L /opt/ibm/sna/lib -lcpic -lappc -lsna_r -lpLiS -lpthread csample2.c

Pseudocode

160 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

To run the programs, perform the following steps. Note that some of these steps
involve updating the Communications Server configuration, which is usually
performed by the System Administrator.

The programs can run on the same computer, or on separate computers. In the
following steps, the “source computer” is the computer where the invoking
program CSAMPLE1 runs, and the “target computer” is the computer where the
invoked program CSAMPLE2 runs.
1. If you are running the programs on separate computers, configure the

communications link to support CP-CP sessions between the source and target
computers. See IBM Communications Server for Data Center Deployment on AIX
or Linux Administration Guide for more information.

2. Configure a mode with mode name LOCMODE.
3. Configure a logical unit (LU) on the source computer for CSAMPLE1 (the

invoking program). Specify TPLU1 as both the LU name and LU alias. Leave
the default values for the other parameters.

4. Configure a symbolic destination name on the source computer. Do the
following:
v For Name, specify CPICTEST

v For Local LU, select Local LU alias and specify TPLU1 as the LU alias.
v For Partner LU, specify the fully-qualified name netname.TPLU2, where

netname is the SNA network name of the target computer.
v For Mode, specify LOCMODE.
v For Partner TP, specify TPNAME2.

Leave the default values for other parameters.
5. Configure an LU on the target computer for CSAMPLE2 (the invoked

program). Specify TPLU2 as both the LU name and LU alias. Leave the default
values for the other parameters.

6. Configure the invoked TP in the Communications Server invokable TP data
file on the target computer. Refer to the IBM Communications Server for Data
Center Deployment on AIX or Linux Administration Guide for more information.
v For the TP name parameter, specify TPNAME2 (the name specified by the

invoking TP).
v For Full path to TP executable, enter the full path name of the executable file

csample2.
v For the User ID parameter, specify your AIX / Linux user ID on the target

computer.
v Leave the default values for other parameters.

7. If the invoked TP is to run with a user_id of root, change the permissions on
the executable file to allow it to do so. Use the following command:

chmod +s csample2

8. Start the Communications Server software using this configuration file.
9. Set the following environment variables:
v APPCLLU to TPLU1 (the name of the local LU for csample1)
v APPCTPN to TPNAME1

10. Start the invoking program, csample1. This program requires one parameter,
the full path name (on the target computer) of the file to be displayed. For
example:

csample1 /usr/jim/myfile

Testing the TPs

Chapter 4. Sample CPI-C Transaction Programs 161

11. Enter F or B to display blocks of the requested file. Use Q to end the invoking
program; the invoked program will end as well.

Testing the TPs

162 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Chapter 5. Sample Java CPI-C Transaction Program

This chapter describes the Communications Server sample Java CPI-C transaction
program JPing, which illustrates the use of CPI-C calls in a Java application. For
information on using CPI-C calls in a standard C program, see Chapter 4, “Sample
CPI-C Transaction Programs,” on page 159.

The following information is provided:
v Overview of the program
v Instructions for compiling, linking, and running the program

Overview
The sample Java CPI-C program, JPing (in the file /usr/lib/sna/samples/JPing.java
(AIX) or /opt/ibm/sna/samples/JPing.java (Linux)) is a simple Java implementation
of the standard APPC function aping, which is used to check connectivity with a
remote node. For more information about aping, refer to the IBM Communications
Server for Data Center Deployment on AIX or Linux APPC Application Suite User's
Guide or the IBM Communications Server for Data Center Deployment on AIX or Linux
Administration Command Reference.

You can optionally specify a symbolic destination name identifying the partner LU
to be contacted, the number of ping iterations to be attempted, and the size of the
information sent at each iteration.

For more information about the operation of the program, see the comments in the
program source file.

Compiling and Linking the Sample Program
After examining the source code for JPing, you may want to build and test the
program.

UNIX

Before compiling and linking a Java CPI-C application, specify the directory where
Java classes are stored. To do this, set and export the environment variable
CLASSPATH to /usr/lib/sna/java/cpic.jar:. (AIX) or /opt/ibm/sna/java/cpic.jar:. (Linux).

To compile and link the program, take the following steps.
1. Copy the file JPing.java from the directory /usr/lib/sna/samples (AIX) or

/opt/ibm/sna/samples (Linux)to a private directory.
2. From the private directory, compile and link the application using the Java

compiler javac in the normal way, using the following command:

javac JPing.java

You should see that the file JPing.class has been generated.

© Copyright IBM Corp. 1998, 2012 163

WINDOWS

Compile and link the application using the Java compiler javac with the following
options:

javac -classpath install_dir/cpicjava.jar JPing.java

Replace install_dir with the path of the IBM Remote API Client on Windows install
directory.

You should see that the file JPing.class has been generated.

Running the Sample Program

UNIX

Before running a Java CPI-C application, you need to specify the directory where
libraries are stored, so that the application can find them at run time. For Linux,
you also need to set an additional environment variable to ensure that Java CPI-C
works correctly with LiS Streams.

To do this, set and export the appropriate environment variables as follows.

For a 32–bit application on Linux:

export CLASSPATH=/opt/ibm/sna/java/cpic.jar:.

export LD_LIBRARY_PATH=/opt/ibm/sna/lib
export LD_PRELOAD=/usr/lib/libpLiS.so

For a 64–bit application on Linux:

export CLASSPATH=/opt/ibm/sna/java/cpic.jar:.

export LD_LIBRARY_PATH=/opt/ibm/sna/lib64
export LD_PRELOAD=/usr/lib64/libpLiS.so
export PATH=/opt/ibm/java2-ppc64-50/jre/bin:/opt/ibm/java2-ppc64-50/bin:$PATH

For a 32–bit application on AIX:

export CLASSPATH=/usr/lib/sna/cpic.jar:.
export LD_LIBRARY_PATH=/usr/lib/sna
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/sna

For a 64–bit application on AIX:

export CLASSPATH=/usr/lib/sna/cpic.jar:.

export LD_LIBRARY_PATH=/usr/lib/sna

Compiling and Linking the Sample Program

164 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/sna
export PATH=/usr/java5_64/jre/bin:/usr/java5_64/bin:$PATH

You may also need to set and export the APPCTPN environment variable to specify
the local TP name for the application, as described in “Specifying the Local TP
Name” on page 33.

Running the program involves updating the Communications Server configuration
to include a symbolic destination name identifying the partner LU. This task is
usually performed by the System Administrator. The following steps are required:
v For Symbolic Destination Name, specify JPING.
v For Partner TP Name Type, specify Application Program.
v For Partner TP Name, specify APINGD.
v For Partner LU, specify the fully-qualified name of the partner LU you want to

contact.
v For Mode Name, specify #INTER.

Leave the default values for other parameters.

Run the application using the Java interpreter java in the normal way. Use the
following command:

java JPing [sym_dest_name] [
-i num_iterations] [-s data_len]

sym_dest_name indicates the symbolic destination name to be used by the program.
If you do not specify this option, the default is JPING.

The -i option indicates the number of ping iterations to be performed. If you do
not specify this option, the default is 2.

The -s option indicates the number of bytes of data to be sent to the partner
program. If you do not specify this option, the default is 100.

For more information about how the number of ping iterations and the data length
are used, refer to the description of aping in the IBM Communications Server for
Data Center Deployment on AIX or Linux APPC Application Suite User's Guide or the
IBM Communications Server for Data Center Deployment on AIX or Linux
Administration Command Reference.

Running the Sample Program

Chapter 5. Sample Java CPI-C Transaction Program 165

166 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Appendix A. Return Code Values

This appendix lists all the possible return codes in the CPI-C interface in numerical
order. The values are defined in the header file cmc.h(for AIX / Linux) or
wincpic.h (for Windows).

You can use this appendix as a reference to check the meaning of a return code
received by your application.
CM_OK 0
CM_ALLOCATE_FAILURE_NO_RETRY 1
CM_ALLOCATE_FAILURE_RETRY 2
CM_CONVERSATION_TYPE_MISMATCH 3
CM_PIP_NOT_SPECIFIED_CORRECTLY 5
CM_SECURITY_NOT_VALID 6
CM_SYNC_LVL_NOT_SUPPORTED_LU 7
CM_SYNC_LVL_NOT_SUPPORTED_PGM 8
CM_TPN_NOT_RECOGNIZED 9
CM_TP_NOT_AVAILABLE_NO_RETRY 10
CM_TP_NOT_AVAILABLE_RETRY 11
CM_DEALLOCATED_ABEND 17
CM_DEALLOCATED_NORMAL 18
CM_PARAMETER_ERROR 19
CM_PRODUCT_SPECIFIC_ERROR 20
CM_PROGRAM_ERROR_NO_TRUNC 21
CM_PROGRAM_ERROR_PURGING 22
CM_PROGRAM_ERROR_TRUNC 23
CM_PROGRAM_PARAMETER_CHECK 24
CM_PROGRAM_STATE_CHECK 25
CM_RESOURCE_FAILURE_NO_RETRY 26
CM_RESOURCE_FAILURE_RETRY 27
CM_UNSUCCESSFUL 28
CM_DEALLOCATED_ABEND_SVC 30
CM_DEALLOCATED_ABEND_TIMER 31
CM_SVC_ERROR_NO_TRUNC 32
CM_SVC_ERROR_PURGING 33
CM_SVC_ERROR_TRUNC 34
CM_OPERATION_INCOMPLETE 35
CM_SYSTEM_EVENT 36
CM_OPERATION_NOT_ACCEPTED 37
CM_CONVERSATION_ENDING 38
CM_SEND_RCV_MODE_NOT_SUPPORTED 39
CM_BUFFER_TOO_SMALL 40
CM_EXP_DATA_NOT_SUPPORTED 41
CM_DEALLOC_CONFIRM_REJECT 42
CM_ALLOCATION_ERROR 43
CM_RETRY_LIMIT_EXCEEDED 44
CM_NO_SECONDARY_INFORMATION 45
CM_SECURITY_NOT_SUPPORTED 46
CM_SECURITY_MUTUAL_FAILED 47
CM_CALL_NOT_SUPPORTED 48
CM_PARM_VALUE_NOT_SUPPORTED 49
CM_TAKE_BACKOUT 100
CM_DEALLOCATED_ABEND_BO 130
CM_DEALLOCATED_ABEND_SVC_BO 131
CM_DEALLOCATED_ABEND_TIMER_BO 132
CM_RESOURCE_FAIL_NO_RETRY_BO 133
CM_RESOURCE_FAILURE_RETRY_BO 134
CM_DEALLOCATED_NORMAL_BO 135
CM_CONV_DEALLOC_AFTER_SYNCPT 136
CM_INCLUDE_PARTNER_REJECT_BO 137

© Copyright IBM Corp. 1998, 2012 167

Return Code Values

168 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Appendix B. Common Return Codes

This appendix describes the return codes that are common to several CPI-C calls.
The return codes are listed in alphabetical order. Return codes generated when the
partner program is a non-CPI-C LU 6.2 program are listed separately.

Call-specific return codes are described in the documentation for the individual
calls in Chapter 3, “CPI-C Calls,” on page 47.

Return Codes from Any Partner Program
The following return codes can occur with any partner program. (Other return
codes, which can only occur when the partner program is not a CPI-C program,
are listed separately.)

CM_ALLOCATION_FAILURE_NO_RETRY
The conversation cannot be allocated because of a permanent condition,
such as a configuration error or session protocol error. To determine the
error, the System Administrator should examine the error log file. Do not
attempt to retry the allocation until the error has been corrected.

CM_ALLOCATION_FAILURE_RETRY
The conversation could not be allocated because of a temporary condition,
such as a link failure. The reason for the failure is logged in the system
error log. Retry the allocation.

CM_CALL_NOT_SUPPORTED
This return code is used only in Java CPI-C applications.

The application used a CPI-C function that is defined in the Java CPI-C
class but is not supported.

CM_CONVERSATION_TYPE_MISMATCH
The partner LU or program does not support the conversation type (basic
or mapped) specified in the allocation request.

CM_DEALLOCATED_ABEND
The conversation has been deallocated for one of the following reasons:
v The partner program has issued the Deallocate call with the deallocate

type set to CM_DEALLOCATE_ABEND. If the conversation is in Receive state
for the partner program when this call is issued by the local program,
data sent by the local program and not yet received by the partner
program is purged.

v The partner program has terminated normally but did not deallocate the
conversation before terminating.

v The local program issued the Cancel_Conversation call, which cancels all
outstanding asynchronous CPI-C calls on the conversation.

CM_DEALLOCATED_NORMAL
This return code does not indicate an error.

The partner program issued the Deallocate call with the deallocate type set
to one of the following:
v CM_DEALLOCATE_FLUSH

© Copyright IBM Corp. 1998, 2012 169

v CM_DEALLOCATE_SYNC_LEVEL with the synchronization level of the
conversation specified as CM_NONE

CM_OK The call executed successfully.

CM_OPERATION_INCOMPLETE
The call was issued successfully, and is operating in nonblocking mode;
that is, control has been returned to the program even though processing
for the call has not yet completed.

The program can continue with any processing not related to this
conversation (including issuing CPI-C calls on other conversations). On this
conversation, it can issue a limited range of CPI-C calls (such as the
Extract_* calls). This is different from the IBM CPI-C 2.0 specification in
which the program cannot issue any calls on this conversation except
Wait_For_Conversation or Cancel_Conversation.

UNIX

At a later time, the application can issue Check_For_Completion to
determine whether the outstanding nonblocking call has completed,
Wait_For_Conversation to wait for it to complete, or Cancel_Conversation
to cancel the outstanding call and end the conversation.

WINDOWS

If the application has used Specify_Windows_Handle to receive notification
of asynchronous call completion, it should not issue further calls on this
conversation until it has received this notification. Otherwise, the
application can issue Wait_For_Conversation to wait for the nonblocking
call to complete, or Cancel_Conversation to cancel the outstanding call and
end the conversation.

CM_OPERATION_NOT_ACCEPTED
The call cannot be issued because of one of the following conditions:
v There is a nonblocking call outstanding on this conversation. The

program can continue with any processing not related to this
conversation (including issuing CPI-C calls on other conversations), but
cannot issue most CPI-C calls on this conversation.

UNIX

At a later time, the application can issue Check_For_Completion to
determine whether an outstanding nonblocking call has completed,
Wait_For_Conversation to wait for it to complete, or
Cancel_Conversation to cancel the outstanding call and end the
conversation.

v The program is running in a DCE multi-threaded environment, and
there is a call outstanding on this conversation from another thread of
the program. Only one call for each conversation can be outstanding at
any one time.

WINDOWS

Return Codes from Any Partner Program

170 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

If the application has used Specify_Windows_Handle to receive
notification of asynchronous call completion, it should not issue further
calls on this conversation until it has received this notification.
Otherwise, the application can issue Wait_For_Conversation to wait for
the nonblocking call to complete, or Cancel_Conversation to cancel the
outstanding call and end the conversation.

CM_PARAMETER_ERROR
A parameter referred to by CPI-C is not valid. The parameter that is not
valid is one that can be supplied either by the program or by another
component outside the program's control (such as the configuration file).
For example, the mode_name parameter may have been specified by the
program using Set_Mode_Name, or may have been taken from the side
information entry specified by the sym_dest_name parameter.

CM_PRODUCT_SPECIFIC_ERROR
When CPI-C generates a CM_PRODUCT_SPECIFIC_ERROR return code, it makes
an entry in the log file indicating the cause of the error and any action
required. Refer to the IBM Communications Server for Data Center Deployment
on AIX or Linux Administration Guide for more information about
interpreting these messages.

CM_PROGRAM_ERROR_NO_TRUNC
The partner program has issued the Send_Error call while in Send state or
in Send-Pending state with the error direction set to CM_SEND_ERROR. Data
was not truncated.

CM_PROGRAM_ERROR_PURGING
One of the following conditions has occurred:
v The partner program issued the Send_Error call while in Receive or

Confirm state. Data sent but not yet received is purged.
v The partner program has issued the Send_Error call while in

Send-Pending state with the error direction set to CM_RECEIVE_ERROR.
Data was not purged.

CM_PROGRAM_ERROR_TRUNC
The partner program in a basic conversation has issued a Send_Error call
while in Send state, before finishing sending a complete logical record. The
local program may have received the first part of the logical record
through a Receive call.

CM_PROGRAM_PARAMETER_CHECK
The program supplied a parameter that is not valid to the call. For details,
see individual calls in Chapter 3, “CPI-C Calls,” on page 47.

CM_PROGRAM_STATE_CHECK
The call issued is not allowed in the current conversation state, or is not
appropriate because of the current setting of a conversation characteristic.
For details, see individual calls in Chapter 3, “CPI-C Calls,” on page 47.

CM_RESOURCE_FAILURE_NO_RETRY
One of the following conditions has occurred:
v The conversation was terminated prematurely because of a permanent

condition. Do not attempt to retry until the error has been corrected.
v The partner program did not deallocate the conversation before

terminating normally.

Return Codes from Any Partner Program

Appendix B. Common Return Codes 171

CM_RESOURCE_FAILURE_RETRY
The conversation was terminated prematurely because of a temporary
condition, such as modem failure. Retry the conversation.

CM_SECURITY_NOT_VALID
The user ID or password specified in the allocation request was not
accepted by the partner LU.

CM_SYNC_LVL_NOT_SUPPORTED_PGM
The partner program does not support the synchronization level specified
in the allocation request.

CM_SYNC_LVL_NOT_SUPPORTED_LU
The partner LU does not support the synchronization level specified in the
allocation request.

CM_TP_NOT_AVAILABLE_NO_RETRY
The partner LU cannot start the program specified in the allocation request
because of a permanent condition. The reason for the error may be logged
on the remote node. Do not retry the allocation until the cause of the error
has been corrected.

CM_TP_NOT_AVAILABLE_RETRY
The partner LU cannot start the program specified in the allocation request
because of a temporary condition. The reason for the error may be logged
on the remote node. Retry the allocation.

CM_TPN_NOT_RECOGNIZED
The partner LU does not recognize the program name specified in the
allocation request.

CM_UNSUCCESSFUL
The call was not executed successfully. This return code occurs in the
following cases:
v The program issued Allocate with the return_control parameter set to

CM_IMMEDIATE, and Communications Server was unable to assign a
session for the conversation immediately.

v The program issued Receive with the receive_type parameter set to
CM_RECEIVE_IMMEDIATE, and no data or control information from the
partner program was currently available.

UNIX

v The program issued Check_For_Completion, and no outstanding
nonblocking function had completed on any of the program's
conversations.

Non-CPI-C LU 6.2 Partner Program
The following return codes can occur when the partner program is a non-CPI-C
LU 6.2 program, for example an APPC TP. The verbs described in these paragraphs
are LU 6.2 verbs.

CM_DEALLOCATED_ABEND_SVC
The conversation has been deallocated for one of the following reasons:
v The partner program has issued the DEALLOCATE verb with TYPE set

to ABEND_SVC.

Return Codes from Any Partner Program

172 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

v The partner program did not deallocate the conversation before
terminating.

If the conversation is in Receive state for the partner program when this
call is issued by the local program, data sent by the local program and not
yet received by the partner program is purged.

CM_DEALLOCATED_ABEND_TIMER
The conversation has been deallocated because the partner program has
issued the DEALLOCATE verb with TYPE set to ABEND_TIMER. If the
conversation is in Receive state for the partner program when this call is
issued by the local program, data sent by the local program and not yet
received by the partner program is purged.

CM_PIP_NOT_SPECIFIED_CORRECTLY
The allocation request was rejected by a non-CPI-C LU 6.2 program. The
partner program requires one or more PIP data variables, and CPI-C does
not support PIP data.

CM_SVC_ERROR_NO_TRUNC
The partner program (or partner LU) issued a SEND_ERROR verb with the
TYPE parameter set to SVC during a basic conversation while in Send state.
Data was not truncated.

CM_SVC_ERROR_PURGING
While in Send state, the partner program (or partner LU) issued a
SEND_ERROR verb with the TYPE parameter set to SVC. Data sent to the
partner program may have been purged.

CM_SVC_ERROR_TRUNC
The partner program (or partner LU) in a basic conversation issued a
SEND_ERROR verb with the TYPE parameter set to SVC while in Recieve
or Confirm state, before finishing sending a complete logical record. The
local program may have received the first part of the logical record.

Non-CPI-C LU 6.2 Partner Program

Appendix B. Common Return Codes 173

Non-CPI-C LU 6.2 Partner Program

174 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Appendix C. Conversation State Changes

Table 25 on page 176 shows the conversation states in which each CPI-C function
call can be issued, and the state change which occurs on completion of the call.

In some cases, the state change depends on the return code from the call; in most
cases, there is no state change for non-OK return codes. Where no return codes are
shown, a return code of CM_OK causes the state change shown, and any non-OK
return code causes no state change (except as described in the note that follows).
Where there are different state changes according to the return code, the applicable
values are listed in the Return codes column.

The possible conversation states are shown as column headings. Against each call,
the following information is given under each heading to indicate the results of
issuing the call in this state:

X The call cannot be issued in this state.

T, I, II, S, SP, R, C, CS, CD, or PP
Indicates the state of the conversation after the call has completed: Reset
(R), Initialize (I), Initialize-Incoming (II), Send (S), Send-Pending (SP),
Receive (R), Confirm (C), Confirm-Send (CS), Confirm-Deallocate (CD), or
Pending-Post (PP).

(blank)
The return code shown cannot occur in this state.

See function
See the description of this function in Chapter 3, “CPI-C Calls,” on page 47.
The changes in the conversation state depend on the returned parameters
from the call.

Note: The conversation will always enter Reset state if any of the following return
codes are received:
v CM_ALLOCATION_FAILURE_NO_RETRY, CM_ALLOCATION_FAILURE_RETRY
v CM_CONVERSATION_TYPE_MISMATCH

v CM_DEALLOCATED_NORMAL, CM_DEALLOCATED_ABEND
v CM_PIP_NOT_SPECIFIED_CORRECTLY

v CM_RESOURCE_FAILURE_RETRY, CM_RESOURCE_FAILURE_NO_RETRY
v CM_SECURITY_NOT_VALID, CM_SYNC_LVL_NOT_SUPPORTED_PGM,

CM_SYNC_LVL_NOT_SUPPORTED_LU

v CM_TPN_NOT_RECOGNIZED, CM_TP_NOT_AVAILABLE_RETRY,
CM_TP_NOT_AVAILABLE_NO_RETRY

UNIX

Pending-Post state does not apply to AIX / Linux systems. All references to this
state should be ignored.

WINDOWS

© Copyright IBM Corp. 1998, 2012 175

Initialize-Incoming state does not apply to Windows systems. All references to this
state should be ignored.

The Windows-specific function calls are not associated with a particular
conversation, and have no effect on conversation states. They are not listed in this
appendix.

Table 25. Conversation State Changes

CPI-C Call and primary_rc Values State in Which Issued

Reset

(T)

Init

(I)

Init-

Inc

(II)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

Accept_Conversation R X X X X X X X X X

Accept_Incoming X X R X X X X X X X

Allocate X X X X X X X X X

CM_OK S

(Allocate failure) T

Cancel_Conversation X T T T T T T T T T

Check_For_Completion T I II S SP R C CS CD X

Confirm X X X X X X X X

CM_OK S S

(Program error,SVC error) R R

Confirmed X X X X X X R S T X

Convert_Incoming,Convert_Outgoing T I II S SP R C CS CD X

Deallocate (Abend) X

CM_OK T T T T T T T T T

(Program error,SVC error) R R R R R R R R R

Deallocate (other) X X X X X X X X

CM_OK T T

(Program error,SVC error) R R

Delete_CPIC_Side_Information T I II S SP R C CS CD X

Extract_Conversation_Context X X X S SP R C CS CD X

Extract_Conversation_Security_Type X I II S SP R C CS CD X

Extract_Conversation_State X I II S SP R C CS CD X

Extract_Conversation_Type X I II S SP R C CS CD X

Extract_CPIC_Side_Information T I II S SP R C CS CD X

Extract_Local_LU_Name X I II S SP R C CS CD X

Extract_Maximum_Buffer_Size T I II S SP R C CS CD X

Extract_Mode_Name X I II S SP R C CS CD X

Extract_Partner_LU_Name X I X S SP R C CS CD X

Extract_Security_User_ID X I II S SP R C CS CD X

Extract_Sync_Level X I X S SP R C CS CD X

Extract_TP_Name X I X S SP R C CS CD X

Flush X X X S S X X X X X

Initialize_Conversation I X X X X X X X X X

Conversation State Changes

176 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Table 25. Conversation State Changes (continued)

CPI-C Call and primary_rc Values State in Which Issued

Reset

(T)

Init

(I)

Init-

Inc

(II)

Send

(S)

Send

Pend

(SP)

Recv

(R)

Confm

(C)

Confm

Send

(CS)

Confm

Deall

(CD)

Pend

Post

(PP)

Initialize_For_Incoming II X X X X X X X X X

Prepare_To_Receive X X X X X X X X

CM_OK, Program error, SVC error R R

Receive (receive type
CM_RECEIVE_IMMEDIATE)

X X X X X See
function

X X X X

Receive (receive type
CM_RECEIVE_AND_WAIT)

X X X See
function

See
function

See
function

X X X X

Release_Local_TP_Name I X X X X X X X X X

Request_To_Send X X X S SP R C CS CD PP

Send_Data X X X See
function

See
function

X X X X X

Send_Error X X X

CM_OK S S S S S S S

Program error, SVC error R R R R R R PP

Set_Conversation_Context X I II S SP R C CS CD X

Set_Conversation_Security_Password X I X X X X X X X X

Set_Conversation_Security_Type X I X X X X X X X X

Set_Conversation_Security_User_ID X I X X X X X X X X

Set_Conversation_Type X I X X X X X X X X

Set_CPIC_Side_Information T I II S SP R C CS CD X

Set_Deallocate_Type X I II S SP R C CS CD X

Set_Error_Direction X I II S SP R C CS CD X

Set_Fill X I II S SP R C CS CD X

Set_Local_LU_Name X I X X X X X X X X

Set_Log_Data X I II S SP R C CS CD X

Set_Mode_Name X I X X X X X X X X

Set_Partner_LU_Name X I X X X X X X X X

Set_Prepare_To_Receive_Type X I II S SP R C CS CD X

Set_Processing_Mode X I II S SP R C CS CD X

Set_Receive_Type X I II S SP R C CS CD X

Set_Return_Control X I X X X X X X X X

Set_Send_Type X I II S SP R C CS CD X

Set_Sync_Level X I X X X X X X X X

Set_TP_Name X I X X X X X X X X

Specify_Local_TP_Name T I II S SP R C CS CD X

Test_Request_To_Send_Received X X X S SP R X X X PP

Wait_For_Conversation Can be issued in any state; new state depends on the outstanding call that completed, and
the return code from that call. See the information for the appropriate call.

Conversation State Changes

Appendix C. Conversation State Changes 177

Conversation State Changes

178 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2012 179

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any
kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

180 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

® (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. ® Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Appendix D. Notices 181

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

182 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Bibliography

The following IBM publications provide information about the topics discussed in
this library. The publications are divided into the following broad topic areas:
v IBM Communications Server for AIX
v IBM Communications Server for Linux
v Systems Network Architecture (SNA)
v Advanced Program-to-Program Communication (APPC)
v Programming

For IBM Communications Server for AIX and IBM Communications Server for
Linux books, brief descriptions are provided. For other books, only the titles and
order numbers are shown here.

IBM Communications Server for AIX Publications
The IBM Communications Server for AIX library comprises the following books. In
addition, softcopy versions of these documents are provided on the CD-ROM. See
IBM Communications Server for AIX Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for AIX Migration Guide (SC31-8585)

This book explains how to migrate from Communications Server for AIX Version
4 Release 2 or earlier to IBM Communications Server for AIX Version 6.

v IBM Communications Server for AIX Quick Beginnings (GC31-8583)
This book is a general introduction to IBM Communications Server for AIX,
including information about supported network characteristics, installation,
configuration, and operation.

v IBM Communications Server for AIX Administration Guide (SC31-8586)
This book provides an overview of SNA and IBM Communications Server for
AIX, and information about IBM Communications Server for AIX configuration
and operation.

v IBM Communications Server for AIX Administration Command Reference (SC31-8587)
This book provides information about SNA and IBM Communications Server for
AIX commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer's Guide
(SC23-8591)
This book provides information for experienced “C” or Java programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer's Guide
(SC23-8592)
This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer's Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

© Copyright IBM Corp. 1998, 2012 183

v IBM Communications Server for AIX or Linux CSV Programmer's Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer's Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for AIX NOF Programmer's Guide (SC31-8595)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for AIX Diagnostics Guide (SC31-8588)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User's Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for AIX.

v IBM Communications Server for AIX Glossary (GC31-8589)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for AIX library.

IBM Communications Server for Linux Publications
The IBM Communications Server for Linux library comprises the following books.
In addition, softcopy versions of these documents are provided on the CD-ROM.
See IBM Communications Server for Linux Quick Beginnings for information about
accessing the softcopy files on the CD-ROM. To install these softcopy books on
your system, you require 9–15 MB of hard disk space (depending on which
national language versions you install).
v IBM Communications Server for Linux Quick Beginnings (GC31-6768 and

GC31-6769)
This book is a general introduction to IBM Communications Server for Linux,
including information about supported network characteristics, installation,
configuration, and operation. There are two versions of this book:

GC31-6768 is for IBM Communications Server for Linux on the i686, x86_64,
and ppc64 platforms
GC31-6769 is for IBM Communications Server for Linux for System z.

v IBM Communications Server for Linux Administration Guide (SC31-6771)
This book provides an overview of SNA and IBM Communications Server for
Linux, and information about IBM Communications Server for Linux
configuration and operation.

v IBM Communications Server for Linux Administration Command Reference
(SC31-6770)
This book provides information about SNA and IBM Communications Server for
Linux commands.

v IBM Communications Server for AIX or Linux CPI-C Programmer's Guide
(SC23-8591)
This book provides information for experienced “C” or Java programmers about
writing SNA transaction programs using the IBM Communications Server CPI
Communications API.

v IBM Communications Server for AIX or Linux APPC Programmer's Guide
(SC23-8592)

184 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

This book contains the information you need to write application programs
using Advanced Program-to-Program Communication (APPC).

v IBM Communications Server for AIX or Linux LUA Programmer's Guide (SC23-8590)
This book contains the information you need to write applications using the
Conventional LU Application Programming Interface (LUA).

v IBM Communications Server for AIX or Linux CSV Programmer's Guide (SC23-8589)
This book contains the information you need to write application programs
using the Common Service Verbs (CSV) application program interface (API).

v IBM Communications Server for AIX or Linux MS Programmer's Guide (SC23-8596)
This book contains the information you need to write applications using the
Management Services (MS) API.

v IBM Communications Server for Linux NOF Programmer's Guide (SC31-6778)
This book contains the information you need to write applications using the
Node Operator Facility (NOF) API.

v IBM Communications Server for Linux Diagnostics Guide (SC31-6779)
This book provides information about SNA network problem resolution.

v IBM Communications Server for AIX or Linux APPC Application Suite User's Guide
(SC23-8595)
This book provides information about APPC applications used with IBM
Communications Server for Linux.

v IBM Communications Server for Linux Glossary (GC31-6780)
This book provides a comprehensive list of terms and definitions used
throughout the IBM Communications Server for Linux library.

Systems Network Architecture (SNA) Publications
The following books contain information about SNA networks:
v Systems Network Architecture: Format and Protocol Reference Manual—Architecture

Logic for LU Type 6.2 (SC30-3269)
v Systems Network Architecture: Formats (GA27-3136)
v Systems Network Architecture: Guide to SNA Publications (GC30-3438)
v Systems Network Architecture: Network Product Formats (LY43-0081)
v Systems Network Architecture: Technical Overview (GC30-3073)
v Systems Network Architecture: APPN Architecture Reference (SC30-3422)
v Systems Network Architecture: Sessions between Logical Units (GC20-1868)
v Systems Network Architecture: LU 6.2 Reference—Peer Protocols (SC31-6808)
v Systems Network Architecture: Transaction Programmer's Reference Manual for LU

Type 6.2 (GC30-3084)
v Systems Network Architecture: 3270 Datastream Programmer's Reference (GA23-0059)
v Networking Blueprint Executive Overview (GC31-7057)
v Systems Network Architecture: Management Services Reference (SC30-3346)

APPC Publications
The following books contain information about Advanced Program-to-Program
Communication (APPC):
v APPC Application Suite V1 User's Guide (SC31-6532)
v APPC Application Suite V1 Administration (SC31-6533)
v APPC Application Suite V1 Programming (SC31-6534)

Bibliography 185

v APPC Application Suite V1 Online Product Library (SK2T-2680)
v APPC Application Suite Licensed Program Specifications (GC31-6535)
v z/OS V1R2.0 Communications Server: APPC Application Suite User's Guide

(SC31-8809)

Programming Publications
The following books contain information about programming:
v Common Programming Interface Communications CPI-C Reference (SC26-4399)
v Communications Server for OS/2 Version 4 Application Programming Guide

(SC31-8152)

186 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Index

A
Accept_Conversation 49
Accept_Incoming 51
AIX applications

compiling and linking 38
Allocate call 53
allocating a conversation

confirming the allocation 55
errors 55
using Allocate call 53

application program interface 1
application TP 4
ASCII-EBCDIC data conversion 22

B
basic conversation

characteristics of 11
types 4

blocking calls, Windows 40
blocking mode 14
buffer size 78

C
Cancel_Conversation 55
Check_For_Completion 56
CM_ALLOCATION_FAILURE_NO_RETRY 169
CM_ALLOCATION_FAILURE_RETRY 169
CM_CALL_NOT_SUPPORTED 169
CM_CONVERSATION_TYPE_MISMATCH 169
CM_DEALLOCATED_ABEND 169
CM_DEALLOCATED_ABEND_SVC 172
CM_DEALLOCATED_ABEND_TIMER 173
CM_DEALLOCATED_NORMAL 169
CM_OK 170
CM_OPERATION_INCOMPLETE 170
CM_OPERATION_NOT_ACCEPTED 170
CM_PARAMETER_ERROR 171
CM_PIP_NOT_SPECIFIED_CORRECTLY 173
CM_PRODUCT_SPECIFIC_ERROR 171
CM_PROGRAM_ERROR_NO_TRUNC 171
CM_PROGRAM_ERROR_PURGING 171
CM_PROGRAM_ERROR_TRUNC 171
CM_PROGRAM_PARAMETER_CHECK 171
CM_PROGRAM_STATE_CHECK 171
CM_RESOURCE_FAILURE_NO_RETRY 171
CM_RESOURCE_FAILURE_RETRY 172
CM_SECURITY_NOT_VALID 172
CM_SVC_ERROR_NO_TRUNC 173
CM_SVC_ERROR_PURGING 173
CM_SVC_ERROR_TRUNC 173
CM_SYNC_LVL_NOT_SUPPORTED_LU 172
CM_SYNC_LVL_NOT_SUPPORTED_PGM 172
CM_TP_NOT_AVAILABLE_NO_RETRY 172
CM_TP_NOT_AVAILABLE_RETRY 172
CM_TPN_NOT_RECOGNIZED 172
CM_UNSUCCESSFUL 172
communications between TPs 2
compiling AIX applications 38

compiling and linking 41
compiling Linux applications 38
configuration information 32, 69, 119,

122
Confirm call 58
Confirm state 7
Confirm-Deallocate state 7
Confirm-Send state 7
confirmation processing 5
confirmation request

and Confirm call 58
receiving 6, 62
responding to 6, 60
sending 6

confirmed 60
contention winners and losers 3
context 69, 110
conversation

allocating 4
basic 4
contention 3
deallocating 4, 7, 26, 65
ending 5, 25
mapped 4
security 12
starting 4
state 7
synchronization level 6
TP's view of the conversation 8

conversation characteristics
associated with symbolic destination

name 119
considerations with Allocate 53
initial values 20, 87, 88
setting with Accept_Conversation 49
setting with Accept_Incoming 51

conversation ID 87, 88
conversation identifier 49
conversation security

overview 12
password 111
type 113, 115
user ID 115

conversation state
changes 8, 175
changing 8
description 7
getting 72
initial 10

conversation type
basic 4
mapped 4
setting 117
with Allocate call 53
with Extract_Conversation_Type

call 73
conversations, multiple 12
conversion between ASCII and

EBCDIC 105
conversion between EBCDIC and

ASCII 99

Convert_Incoming call 62
Convert_Outgoing call 64
converting data between ASCII and

EBCDIC 22
CPI-C calls

overview 3
summarized by function 19

D
data

receiving 5
sending 5

data buffer, size 78
data record 5, 126
data types 47
data, receiving 92
Deallocate call 65
deallocate type 67, 122
deallocating a conversation 65
deallocation, receiving notification from

the partner program 65
Delete_CPIC_Side_Information 68
distributed transaction processing 1

E
EBCDIC-ASCII data conversion 22
error direction 124
error log data 12, 67, 109, 128
error messages 171
error return codes 169
errors, reporting 106
Extract_Conversation_Context 69
Extract_Conversation_Security_Type 70
Extract_Conversation_Security_User_ID 72
Extract_Conversation_State 72
Extract_Conversation_Type 73
Extract_CPIC_Side_Information 74
Extract_Local_LU_Name 77
Extract_Maximum_Buffer_Size 78
Extract_Mode_Name 79
Extract_Partner_LU_Name 80
Extract_Security_User_ID 81
Extract_Sync_Level 83
Extract_TP_Name 84

F
fill conversation characteristic 126
Flush 85
flushing the local LU's send buffer 5, 85
function calls for CPI-C,

Windows-specific 39

I
immediate allocation of a

conversation 54

© Copyright IBM Corp. 1998, 2012 187

Initialize state 7
Initialize_Conversation 87
Initialize_For_Incoming 88
Initialize-Incoming state 7
invoked program

nonqueued, automatically started 36
queued, automatically started 36
queued, operator-started 37
starting 36

invoked TP 4
invoking program, starting 36
invoking TP 4

J
Java CPI-C

classes 42
compiling and linking an

application 44, 163
constants 42
parameter types 43
running an application 45
usage example 43
writing programs 42

L
linking AIX applications 38
linking Linux applications 38
Linux applications

compiling and linking 38
local LU 3
local TP 3
log data 67, 109, 128
logical records 11, 126
logical unit (LU)

local LU 3
LU 6.2 3
partner LU 3
remote LU 4

LU name, partner 80
LU-to-LU sessions 3

M
mapped conversation 4, 117
maximum buffer size 78
mode 3
mode name 79, 130
multiple processes 37
multiple sessions 3

N
nonblocking mode 14
nonblocking operation 14
nonqueued, automatically started

program 36

P
parallel sessions 3
partner LU 3
partner LU name 80, 132
partner program name 143

partner TP 3
partner TP name 143
password, conversation security 111
Pending-Post state, Windows 8
prepare to receive type 133
Prepare_To_Receive 89
processing mode 135

Q
queued, automatically started

program 36
queued, operator-started program 37

R
Receive 92
Receive state

changing to 10, 89
definition 7

receive type 137
receiving data

calls enabling 22
waiting for data 137
with Receive call 5, 92

Release_Local_TP_Name 100
remote LU 4
remote TP 4
reporting errors 106
Request_To_Send 101
request-to-send notification

on Request_To_Send call 102
testing for 147

Reset state 7
return codes 167
return codes, common 169
return control 138

S
sample Java CPI-C program 163
sample programs

overview 159
pseudocode 159

security type 70
Send state

changing to 10
definition 7

send type 139
Send_Data 103
Send_Error 106
Send-Pending state 7
sending data 85

calls used for 21
using the Request_To_Send call 101
using the Send_Data call 5, 103

service TP 4
session allocation, waiting for 138
sessions, LU-to-LU 3
Set_Conversation_Context 110
Set_Conversation_Security_Password 111,

113
Set_Conversation_Security_Type 113,

115
Set_Conversation_Security_User_ID 115,

117

Set_Conversation_Type 117
Set_CPIC_Side_Information 119
Set_Deallocate_Type 122
Set_Error_Direction 124
Set_Fill 126
Set_Local_LU_Name 127
Set_Log_Data 128
Set_Mode_Name 130
Set_Partner_LU_Name 132
Set_Prepare_To_Receive_Type 133
Set_Processing_Mode 135
Set_Receive_Type 137
Set_Return_Control 138
Set_Send_Type 139
Set_Sync_Level 141
Set_TP_Name 143
side information 68, 74, 119
Specify_Local_TP_Name 144
Specify_Windows_Handle 146
state changes 175
state of a conversation 72
symbolic constants 47
symbolic destination name 31, 68, 119
synchronization level

and Extract_Sync_Level 83
establishing 6
setting 141

synchronizing with the partner
program 60

T
Test_Request_to_Send_Received 147
TP communications 2
TP name 84
transaction programs (TPs)

invoked TP 4
invoking TP 4
local TP 3
partner TP 3
remote TP 4

translation (EBCDIC-ASCII) 99, 105

U
user ID, conversation security 77, 81,

115

W
Wait_For_Conversation 148
waiting for session to be allocated 138
WinCPICCleanup call 151
WinCPICIsBlocking call 151
WinCPICStartup call 153
Windows considerations 38

188 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

Communicating your comments to IBM

If you especially like or dislike anything about this document, use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send your comments to us in any of the following ways:
v To send comments by FAX, use this number: 1+919-254-1258
v To send comments electronically, use this address: comsvrcf@us.ibm.com
v To send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS® Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies.

© Copyright IBM Corp. 1998, 2012 189

190 IBM Communications Server for Data Center Deployment on AIX or Linux CPI-C Programmer's Guide

����

Product Number: 5725-H32

Printed in USA

SC23-8591-01

	Contents
	Tables
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Organization of This Book
	Typographic Conventions
	Graphic Conventions

	What Is New for This Release
	Where to Find More Information

	Chapter 1. Concepts
	What Is CPI-C?
	Communications Server CPI-C Option Set Support
	Communication between Programs
	Logical Unit 6.2
	Sessions
	Conversations
	Contention
	Characteristics
	CPI-C Calls
	The Conversation Process
	Conversation Types

	A Simple Mapped Conversation
	Starting a Conversation
	Sending Data
	Receiving Data
	Ending a Conversation

	Confirmation Processing
	Establishing the Synchronization Level
	Sending a Confirmation Request
	Receiving a Confirmation Request
	Responding to a Confirmation Request
	Deallocating the Conversation

	Conversation States
	The Program's View of the Conversation
	State Changes
	State Checks

	Changing Conversation States
	Initial States
	Changing to Receive State
	Changing to Send State

	Side Information
	Basic Conversations
	Logical Records
	Error Log Data

	Multiple Conversations
	Overview of Conversation Security
	Conversation Security for Multiple Conversations
	Already-Verified Conversation Security

	Nonblocking Operation
	CPI-C and LU 6.2

	Chapter 2. Writing CPI-C Applications
	CPI-C Call Summary
	Starting a Conversation
	WinCPICStartup
	Initialize_Conversation (cminit)
	Initialize_For_Incoming (cminic)
	Set_* Calls to Change Initial Conversation Characteristics
	Allocate (cmallc)
	Accept_Conversation (cmaccp)
	Accept_Incoming (cmacci)

	Sending data
	Set_Send_Type (cmsst)
	Send_Data (cmsend)
	Flush (cmflus)
	Confirm (cmcfm)
	Request_To_Send (cmrts)

	Receiving Data
	Set_Prepare_To_Receive_Type (cmsptr)
	Prepare_To_Receive (cmptr)
	Set_Receive_Type (cmsrt)
	Receive (cmrcv)
	Set_Fill (cmsf)

	Converting Data Between ASCII and EBCDIC
	Convert_Incoming (cmcnvi)
	Convert_Outgoing (cmcnvo)

	Confirming Receipt of Data and Reporting Errors
	Confirmed (cmcfmd)
	Set_Error_Direction (cmsed)
	Set_Log_Data (cmsld)
	Send_Error (cmserr)

	Issuing Calls in Nonblocking Mode
	Set_Processing_Mode (cmspm)
	Check_For_Completion (cmchck)
	Wait_For_Conversation (cmwait)
	Specify_Windows_Handle (xchwnd)

	Issuing Calls in Blocking Mode
	Getting Information
	Extract_* Calls
	Test_Request_to_Send_Received (cmtrts)

	Ending a Conversation
	Set_Deallocate_Type (cmsdt)
	Deallocate (cmdeal)
	Cancel_Conversation (cmcanc)
	WinCPICCleanup

	Administering Side Information

	Initial Conversation Characteristics
	Side Information
	Local LU Alias
	Partner LU Name
	Partner Program Type and Name
	Mode Name
	Conversation Security Type
	Security User ID and Password
	Application-Specified Side Information

	Configuration
	Specifying the Local TP Name
	Specify_Local_TP_Name
	Context
	APPCTPN Environment Variable
	Default Value

	Specifying the Local LU
	Set_Local_LU_Name
	Context
	APPCLLU Environment Variable
	Side Information
	Default Local LU
	Control Point LU

	How Programs Get Started
	Invoked Program: Automatically Started
	Invoked Program: User-Started

	AIX or Linux Considerations
	CPI-C Header File
	Multiple Processes
	Compiling and Linking the CPI-C Application
	AIX Applications
	Linux Applications

	Windows Considerations
	Windows CPI-C Files
	Function Prototypes
	Multiple Processes and Multiple Conversations
	Windows Function Calls
	Blocking Calls
	Default Blocking Function

	Terminating Applications
	Compiling and Linking CPI-C Applications
	Compiler Options for Structure Packing
	Header Files
	Load-time linking
	Run-time linking

	Java CPI-C Considerations
	Using Java CPI-C Classes
	Constant Values
	Parameter Type Classes

	Usage Example
	Compiling and Linking the Java CPI-C Application
	Running the Java CPI-C Application

	Writing Portable Applications

	Chapter 3. CPI-C Calls
	Information Provided for CPI-C Calls
	Data Types
	Data Structures
	Symbolic Constants
	Strings
	Validity of Returned Parameters

	Information Provided for Windows Function Calls
	Accept_Conversation (cmaccp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes®

	Accept_Incoming (cmacci)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Allocate (cmallc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Cancel_Conversation (cmcanc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Check_For_Completion (cmchck)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Confirm (cmcfm)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Confirmed (cmcfmd)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes
	Sources of Confirmation Requests
	Receiving Confirmation Requests

	Convert_Incoming (cmcnvi)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Note

	Convert_Outgoing (cmcnvo)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Note

	Deallocate (cmdeal)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Delete_CPIC_Side_Information (xcmdsi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Conversation_Context (cmectx)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Conversation_Security_Type (xcecst)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Conversation_Security_User_ID (cmecsu)
	Extract_Conversation_Security_User_ID (xcecsu)
	Extract_Conversation_State (cmecs)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Conversation_Type (cmect)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_CPIC_Side_Information (xcmesi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Local_LU_Name (cmelln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Maximum_Buffer_Size (cmembs)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Mode_Name (cmemn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Partner_LU_Name (cmepln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_Security_User_ID (cmesui or cmecsu)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Extract_Sync_Level (cmesl)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Extract_TP_Name (cmetpn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Flush (cmflus)
	Sources of Buffered Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Initialize_Conversation (cminit)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Initialize_For_Incoming (cminic)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Prepare_To_Receive (cmptr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Receive (cmrcv)
	How a Program Receives Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	Issuing the Call in Send or Send-Pending State

	State Change
	Call Issued in Receive State
	Call Issued in Send State
	Call Issued in Send-Pending State
	Call Issued in Any Allowed State
	Confirmation Processing
	Normal Deallocation
	Abends
	Errors

	Usage Notes
	Truncated Records
	Setting the Requested_Length Parameter to Zero
	String Translation

	Release_Local_TP_Name (cmrltp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Request_To_Send (cmrts)
	Action of the Partner Program
	When the Local Program Can Send Data
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Send_Data (cmsend)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Send_Error (cmserr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes
	Sending Log Data
	Purged Data
	Send-Pending State

	Set_Conversation_Context (cmsctx)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Password (cmscsp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Password (xcscsp)
	Set_Conversation_Security_Type (cmscst)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_Type (xcscst)
	Set_Conversation_Security_User_ID (cmscsu)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Conversation_Security_User_ID (xcscsu)
	Set_Conversation_Type (cmsct)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_CPIC_Side_Information (xcmssi)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Deallocate_Type (cmsdt)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Error_Direction (cmsed)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Fill (cmsf)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Local_LU_Name (cmslln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Log_Data (cmsld)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Mode_Name (cmsmn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Partner_LU_Name (cmspln)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Prepare_To_Receive_Type (cmsptr)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Processing_Mode (cmspm)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Receive_Type (cmsrt)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Return_Control (cmsrc)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Send_Type (cmsst)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_Sync_Level (cmssl)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Set_TP_Name (cmstpn)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Specify_Local_TP_Name (cmsltp)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	Specify_Windows_Handle (xchwnd)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Test_Request_to_Send_Received (cmtrts)
	Function Call
	Function Call for Java CPI-C
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change

	Wait_For_Conversation (cmwait)
	Function Call
	Supplied Parameters
	Returned Parameters
	State When Issued
	State Change
	Usage Notes

	WinCPICCleanup
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICIsBlocking
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICSetBlockingHook
	Function Call
	Supplied Parameters
	Returned Values
	Usage

	WinCPICStartup
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICUnhookBlockingHook
	Function Call
	Supplied Parameters
	Returned Values

	WinCPICSetEvent
	Function Call
	Supplied Parameters
	Returned Parameters
	Usage Notes

	WinCPICExtractEvent
	Function Call
	Supplied Parameters
	Returned Parameters
	Usage Notes

	Chapter 4. Sample CPI-C Transaction Programs
	Processing Overview
	Pseudocode
	CSAMPLE1 (Invoking Program)
	CSAMPLE2 (Invoked TP)

	Testing the TPs

	Chapter 5. Sample Java CPI-C Transaction Program
	Overview
	Compiling and Linking the Sample Program
	Running the Sample Program

	Appendix A. Return Code Values
	Appendix B. Common Return Codes
	Return Codes from Any Partner Program
	Non-CPI-C LU 6.2 Partner Program

	Appendix C. Conversation State Changes
	Appendix D. Notices
	Trademarks

	Bibliography
	IBM Communications Server for AIX Publications
	IBM Communications Server for Linux Publications
	Systems Network Architecture (SNA) Publications
	APPC Publications
	Programming Publications

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	W

	Communicating your comments to IBM

