
1

ClearCase Change Management Integration FAQ

Question

How can I configure ClearCase to integrate with ClearQuest, Rational Team Concert, or
Atlassian JIRA?

Answer

I. Table of Contents

• Overview

• CMI Configuration

• CMI Administration

• Use

• Compatibility with CTE/RTC Eclipse integration

• Comparison of UCM/CQ Integration (SQUID) and CMI

• Migrating from the V2 Perl Base ClearCase Integration to CMI

• Migrating from the UCM/CQ Integration (SQUID) to CMI

• Examples

• Troubleshooting

II. Overview

ClearCase supports integrations with Change Management systems such as Rational ClearQuest
(CQ), Rational Team Concert (RTC), and Atlassian JIRA through the Change Management
Integration (CMI). The integrations require some initial configuration; after which you can work
with UCM activities or base ClearCase versions that are associated with the tasks.

The Change Management Integration allows for flexible configurations and a lightweight
connection to one or more Change Management systems (CQ, RTC, or JIRA). It is highly
customizable to fit numerous configuration requirements while not requiring extensive
knowledge of the integration for end users.

2

III. CMI Configuration

Note: For the CMI integration to work properly with ClearQuest:

• ClearCase must be installed on the ClearQuest Web Server.

• The ClearCase installation on the client must point to the same ClearCase Registry as the
ClearCase installation on the ClearQuest Web Server so that the VOBs can be found.

1. ClearCase and Change Management Prerequisites

There are a few prerequisites before CMI can be configured and used:

• UCM VOB feature level: UCM PVOBs must be at feature level 7 in order to use CMI.

• CQ OSLC Links package: When using CMI with ClearQuest, the CQ record types in use
must have the OSLC Links package applied to them. This can be done in the same
manner as applying any other package in CQ. The OSLC Links package version should not
have any impact on CMI functionality. If adding the OSLC Links package to an existing CQ
schema or user database, the ClearQuest CM Server needs to be restarted after that
change.

2. Configuring ClearCase VOBs

Before using the integration, it must be configured at the VOB level and the stream (UCM) or
branch type level (base CC). Configuring a VOB for CMI involves making one or more attribute
types and running a mkcmprovider command on the VOB. These attribute types are required in
order to use CMI.

Use the -shared option to create the type in replicated VOBs, if more than one replica will be
using the integration.

If the attribute type is created in an admin VOB, a local copy of the attribute type must be

created in all participating client VOB families. The local copy of the type must be created at the
site which masters the global type. A local copy can be made using the cleartool cptype
command, for example, for the CC_CMI_TASK attribute type:

cleartool cptype -nc attype:CC_CMI_TASK@\adminvob CC_CMI_TASK@\clientvob

• Base CC
Three attribute types must be created for a base CC VOB:

o CC_CMI_CONTEXT
o CC_CMI_PROVIDERS
o CC_CMI_TASK

Examples:
cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@<VOB tag>

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@<VOB tag>

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@<VOB tag>

3

• UCM
Only one attribute type needs to be made for a UCM Project VOB:

o CC_CMI_PROVIDERS

Example:
cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\<PVOB

tag>

• mkcmprovider
After creating the appropriate attribute types it is necessary to run a mkcmprovider
command on the VOB. The arguments required are the same for all Change
Management adapter types (CQ, RTC, and JIRA). The contents of each argument will
differ.

o -vob
This specifies the VOB we are configuring for CMI. In a UCM environment this
will be the Project VOB.

o -version

The CMI adapter version. There is currently only one version – v1_0.
o -description

This can be used to enter custom details about this particular configuration. It
should be enclosed in quotation marks.

o -type

Specifies which Change Management adapter type this provider is – CQ (cmcq),
RTC (cmrtc), or JIRA (cmjira).

o -connection

The base URL for the Change Management provider must be part of this
argument as a key:value pair. It can also contain any custom key:value pairs that
do no conflict with keys used by the integration.
The base URL key is case sensitive. The key for CQ and JIRA providers is baseurl.
The key for RTC providers is baseUrl.

o Provider name
Each provider must be given a unique name to match between the VOB and the
branch type or stream. It is possible to configure multiple providers on each VOB
and/or branch type or stream.

Examples:
cleartool mkcmprovider -vob <VOB tag> -version v1_0 -description "RTC

Provider" -type cmrtc -connection baseUrl:http[s]://<RTC

server> rtc_provider

cleartool mkcmprovider -vob <VOB tag> -version v1_0 -description "CQ

Provider" -type cmcq -connection baseurl:http[s]://<CQ Web

server>/cqweb/oslc cq_provider

cleartool mkcmprovider -vob <VOB tag> -version v1_0 -description “JIRA

Provider” -type cmjira -connection baseurl:http[s]://<JIRA server>

JIRA_provider

4

3. Configuring CM Provider

After running the mkcmprovider on the desired VOB it must also be run on either a branch type
(base CC) or a stream (UCM) with the same provider name.

• Base CC
o Mkcmprovider

▪ Brtype
When configuring a Change Management provider for a base CC
environment it must be done on the VOB and on an existing branch type.
Specify the branch type with this argument.

• UCM
o Mkcmprovider

▪ -stream
When configuring a Change Management provider for a UCM
environment it must be done on the Project VOB and on an existing
stream. Specify the stream with this argument. Streams will inherit
provider configurations from their parent streams by default unless
overridden.

▪ -enable
This option can be used to enable or disable a provider on a specific
stream. When a provider is disabled no CMI associations or policies will
apply but existing associations will not be removed.

▪ -options
Use this to specify policies and other preferences for this provider that
are not specific to the adapter type (RTC, CQ, or JIRA). Each option must
be specified as a key:value pair. Options include:

▪ validate
Whenever a CC operation is executed that would perform or check for a
task association with a version (checkin) or activity (setactivity), CMI will
check with the Change Management system (remote server) to see if the
task exists. If the task does not exist, the CC operation will be blocked.
This is mostly useful when using the CLI as users must manually enter the
provider task values in that case. The default value is false for Base CC
and true for UCM.

An example use-case for validate being false would be if all of your users
are on the CLI and your Change Management system goes down or is
unavailable. Setting validate to false would allow those users to continue
working by performing checkin or setact and using any task ID they wish.
Note that setting validate back to true will not make any new
associations on the Change Management system if they were not able to
be created while the system was unavailable. Any failed task associations
that could not be performed while the remote system was unavailable
will be logged in the cmi_repair_log which can be used to retry the task
associations (see the "Repairing failed CMI actions" section).

5

Example:
-options validate:true

▪ reqProvTask
This option enforces or relaxes the policy that for the CM provider
configured on a stream/brtype an activity/version must have a task
association.This policy is enforced at checkin (base CC) and setactivity
(UCM). When this policy is enabled it is required to have a provider task
association at checkin/setactivity for a version/activity. The default value
is true.

An example use-case for reqProvTask is to have it false on an integration
stream where scripted jobs that set activities occur so as to not hinder
their progress but have it true on the child streams where normal
development occurs.

Example:
-options reqProvTask:true

▪ reqAnyTask
This option enforces or relaxes the policy that for any CM provider
configured on a stream/brtype an activity/version must have a task
association. When this policy is enabled it is required to have any task
association from at least one enabled provider at checkin/setactivity for a
version/activity. The reqProvTask policy overrides (takes precedence
over) reqAnyTask. The default value is false.

With a single provider on a stream/brtype this policy behaves identically
to reqProvTask. With multiple providers on a stream/brtype this policy
allows them to act as if they were one provider in terms of task selection
requirements. Meaning a CMI setup with this policy on two providers
prov1 and prov2 will require a user to select a task from either prov1 or
prov2 (inclusive) in order to satisfy the policy requirements.

An example use-case for reqAnyTask would be if you have two Change
Management systems (remote servers) that are used interchangeably for
development work assignments. By setting up two providers on a
brtype/stream and setting reqAnyTask to true for both (and reqProvTask
to false for both) developers will be allowed to choose a task from either
Change Management system for their version/activity.

Example:
-options reqAnyTask:true

6

o Base CC specific policies
There are two policies available only for base CC providers (on a brtype):

o ciVerifyProv
This option enforces the policy that checkin should be blocked if the Change
Management system server (CQ, RTC, or JIRA) is unavailable. When this policy is
enabled and a checkin operation is performed, CMI will verify that the provider
has access to the remote Change Management system. The default value is false.

Example:
-options ciVerifyProv:true

o ciVerifyUser
This option enforces the policy that checkin should be blocked if user
authentication fails. When this policy is enabled and a checkin operation is
performed, CMI will verify that the user authentication is valid. The default value
is false.

Example:
-options ciVerifyUser:true

• UCM specific options
o activityFormat

This option is used to specify a default activity ID when creating an activity with a
CMI task. The following macros are supported:

%task-id – inserts the task’s ID into the activity ID
%stream-name – inserts the stream’s name into the activity ID

When using the activityFormat option the activity’s Headline will also be
populated from the task’s corresponding field.

CQ – Headline (customizable)
RTC – Title
JIRA - Summary

Examples:
activityFormat:CQ%task-id

▪ activity:CQSAMPL00000040

activityFormat:RTC%stream-name_%task-id

▪ activity:RTCmy-dev-stream_1234

7

o -context
The -context argument is used to specify details for the distinct (CQ, RTC, or JIRA)
Change Management adapter. It can also be used to specify custom key:value
pairs as long as the keys do not conflict with any keys used by CMI. It must
contain a list of comma-separated key:value pairs. The CMI-defined keys are
case-sensitive. The value string for the -context option should be enclosed in
quotation marks.

• CQ
It is necessary to specify at least two key:value pairs when configuring a CQ provider.

o userdb
The user database from CQ. This key is always required.

o dbset
The database set (or connection name) from CQ. This key is always required.

o queryuri
Used for presenting available tasks (records) for association to users through the
CLI or GUI. The queryuri is used when reqProvTask or reqAnyTask are true for a
given stream/brtype to present the user with a list of tasks to choose for
association with their activity/version. It should be URL-encoded (e.g. spaces
converted to %20). This key is not required but is strongly recommended as
users must manually add associations with the command line without it.

The queryuri can either be the full URL for a corresponding CQ OSLC query or
just the specific query URI starting with the "rcm.name" parameter.

Example:
queryuri:http(s)://cqserver1/cqweb/oslc/repo/MYDBSET/db/MYDB/quer

y/?rcm.name=Public%20Queries/All%20Defects

queryuri:rcm.name=Public%20Queries/All%20Defects

o customQueryField
This option is only necessary when using a field other than “Headline” in the CQ
record type. It is used to specify an alternate field for CMI to use for displaying
query results.

8

o In the default CQ out-of-the-box schema, the “Headline” field is mapped to the
OSLC field dcterms:title. Both fields are required for CMI, but the “Headline”
requirement can be customized with this key.

▪ Choose the ClearQuest field in your record type to use instead of
"Headline." This field is displayed when you run a query through CMI.

▪ Add that field to the "Query Presentation" of the ClearQuest query that
you plan to use with CMI (this means that the field must be displayed
when you run the query).

▪ Map the field to dcterms:title in oslc-mappings.xml on the ClearQuest
Web Server. Refer to the ClearQuest Knowledge Center for instructions:
http://www-
01.ibm.com/support/knowledgecenter/SSSH5A_8.0.0/com.ibm.rational.c
learquest.cli.doc/topics/r_oslc_mappings_xml.htm.

▪ For the -context option of the mkcmprovider command (on a branch type
or UCM stream) set the key queryuri to the query you modified earlier
and set the key customQueryField to the chosen ClearQuest field.

Example:
For the record type Defect, this example substitutes the field "Summary" for
the field "Headline."

Edit oslc-mappings.xml:

<oslcRecordConfig type="cq.record:Defect@CQDBSET/DB1">

<oslcFieldMapping name="dcterms:title" field="Summary"/>

</oslcRecordConfig>

o Run the mkcmprovider command for a UCM stream or base ClearCase branch
type, as applicable:

UCM:
cleartool mkcmprovider -stream dev1@\pvob1 -context

“queryuri:query,customQueryField:Summary” ucm_provider

Base CC:
cleartool mkcmprovider -brtype main@\vob1 -context

“queryuri:query,customQueryField:Summary” base_provider

http://www-01.ibm.com/support/knowledgecenter/SSSH5A_8.0.0/com.ibm.rational.clearquest.cli.doc/topics/r_oslc_mappings_xml.htm
http://www-01.ibm.com/support/knowledgecenter/SSSH5A_8.0.0/com.ibm.rational.clearquest.cli.doc/topics/r_oslc_mappings_xml.htm
http://www-01.ibm.com/support/knowledgecenter/SSSH5A_8.0.0/com.ibm.rational.clearquest.cli.doc/topics/r_oslc_mappings_xml.htm

9

• cmtrans
This is used to perform state transitions on ClearQuest records when specific
ClearCase actions (UCM: set activity or deliver complete; Base: checkout) are
performed. This is done using the default transition for a given record type
defined in the ClearQuest schema being used with CMI. This key is optional.

Specifying a state transition is done with a 4-tuple of key:value pairs. Note that
these key:value pairs are separate by semicolons (;) instead of commas (,).

For both Base and UCM CC the transition keys are:
cmtrans:

[vobOp:<operation>;

 recordType:<record type>;

 startState:<record state>;

 endState:<another record state>]

[...]

Each […] block represents one transition rule. The entire cmtrans block must be
specified on a single line with no breaks. As many […] blocks as are necessary
can be specified within the cmtrans key. In order for a […] block to be valid it
must contain the 4 following key:value pairs. If one of the key:value pairs below
does not exist for given transition rule ([…]), the rule will be ignored.

• vobOp
This is the ClearCase VOB operation for which the transition will occur. Valid
choices for UCM are: set_activity and deliver_complete. Valid choices for Base
ClearCase are: checkout.

o recordType
This specifies the ClearQuest record type to transition for the given vobOp. If
you'd like to have the same transition defined for different CQ record types they
must each be specified individually.

Examples:
Defect, BaseCMActivity, etc.

o startState
This indicates the starting state that a ClearQuest record must be in for a CMI
transition to occur. If the ClearQuest record’s state does not match the
startState, that particular transition rule will be ignored but that will not prevent
CMI from looking for other matching startStates.

Examples:
Submitted, Assigned, Opened, or Resolved

10

o endState
This is the destination state that CMI will attempt to reach by using each record's
default transitions. It can involve as many actions as are necessary to complete
the transition and get to the destination state.

Examples:
Assigned, Opened, Resolved, or Closed

CMI will stop performing a defined transition rule on a record if any of the
following occur:

▪ There is no default action for the current state.
▪ There are unpopulated fields that must be populated in order to perform

the default action.
▪ There is an error from ClearQuest when performing a transition.
▪ The record ends up back in the startState.
▪ More than one vobOp, recordType, and startState triplet with the same

values is defined.

Examples:
-context "userdb:<CQ DB>,dbset:<CQ DBSET>,queryuri:http[s]://<CQ

Web URL>/cqweb/oslc/repo/<CQ DBSET>/db/<CQ DB>

/query/?rcm.name=Public%20Queries/All%20Defects"

-context "userdb:<CQ DB>,dbset:<CQ DBSET>,

cmtrans:

[vobOp:set_activity;

 recordType:Defect;

 startState:Submitted;

 endState:Assigned]

[vobOp:deliver_complete;

 recordType:Defect;

 startState:Assigned;

 endState:Complete],

queryuri:http[s]://<CQ Web URL>/cqweb/oslc/repo/<CQ DBSET>/db/<CQ

DB>/query/?rcm.name=Public%20Queries/All%20Defects"

Note: Line breaks included in the above example are for clarification purposes
only and must not be included when a mkcmprovider command is run.

11

o RTC
The queryUri is not required but is strongly recommended as users must manually add
associations with the command line without it.

The cmtrans key is optional. The actions key is optional – it is only used to specify
custom state transition actions to take in RTC with cmtrans.

▪ queryUri
Used for presenting available tasks (work items) for association to users through
the CLI or GUI. The queryUri is used when reqProvTask or reqAnyTask are true
for a given stream/brtype to present the user with a list of tasks to choose for
association with their activity/version. It should be URL-encoded (e.g. spaces
converted to %20). Note the difference between RTC (queryUri) and CQ
(queryuri).

▪ disableRTCBridge
This is used to disable the functionality that is automatically provided when CTE
and RTC are installed in the same Eclipse shell. This is to allow CMI to have full
control of the end user experience in CTE. See the “Compatibility with CTE/RTC
Eclipse integration” section for more details.

▪ cmtrans
This is used to perform state transitions on RTC work items when specific
ClearCase actions (UCM: set activity or deliver complete; Base: checkout) are
performed. This is done using a set of default transition actions defined by CMI
for a given work item type or by specifying your own with the actions key.
Defining cmtrans for RTC uses the same format as CQ (see above) except the
recordType key is replaced by the workItemType key.

Specifying a state transition is done with a 4-tuple of key:value pairs. Note that
these key:value pairs are separate by semicolons (;) instead of commas (,).

For both Base and UCM CC the transition keys are:
cmtrans:

[vobOp:<operation>;

 workItemType:<record type>;

 startState:<record state>;

 endState:<another record state>]

[...]

Each […] block represents one transition rule. As many […] blocks as are
necessary can be specified within the cmtrans key. In order for a […] block to be
valid it must contain the 4 following key:value pairs. If one of the key:value pairs
below does not exist for given transition rule ([…]), the rule will be ignored.

12

▪ vobOp
This is the ClearCase VOB operation for which the transition will occur. Valid
choices for UCM are: set_activity and deliver_complete. Valid choices for Base
ClearCase are: checkout.

▪ workItemType
This specifies the RTC work item type to transition for the given vobOp. If you'd
like to have the same transition defined for different RTC work item types they
must each be specified individually.

Examples:
Defect, Task, Story, Epic, Adoption Item, etc.

▪ startState
This indicates the starting state that a RTC work item must be in for a CMI
transition to occur. If the work item’s state does not match the startState, that
particular transition rule will be ignored but that will not prevent CMI from
looking for other matching startStates.

Examples:
New, In Progress, or Reopened

▪ endState
This is the destination state that CMI will attempt to reach by using each work
item’s defined transition actions. It can involve as many actions as are necessary
to complete the transition and get to the destination state.

Examples:
In Progress, Resolved, or Verified

13

▪ actions
CMI provides several default actions for transitions that will automatically be
used by any defined rules in cmtrans. There are predefined actions for the
following work item types in the format startState : defaultAction (human-
readable name):

▪ Defect
New : com.ibm.team.workitem.defectWorkflow.action.startWorking
(Start Working)
In Progress : com.ibm.team.workitem.defectWorkflow.action.resolve
(Resolve)
Resolved : com.ibm.team.workitem.defectWorkflow.action.verify (Verify)

▪ Task
New : com.ibm.team.workitem.taskWorkflow.action.startWorking (Start
Working)
In Progress : com.ibm.team.workitem.taskWorkflow.action.resolve
(Resolve)

▪ Story
New : com.ibm.team.apt.story.define (Start Working)

In Progress : com.ibm.team.apt.storyWorkflow.action.a2 (Complete
Development)
Implemented : com.ibm.team.apt.storyWorkflow.action.a7 (Complete
Testing)

▪ Epic
New : com.ibm.team.apt.epic.workflow.action.a1 (Start Working)
In Progress : com.ibm.team.apt.epic.workflow.action.a7 (Complete)

▪ Adoption Item
Proposed : com.ibm.team.rtc.workflow.adoption.action.a2 (Approve)
Approved : com.ibm.team.rtc.workflow.adoption.action.a3 (Complete)

The CMI-provided default actions require no extra configuration beyond
specifying the desired state transitions in the configuration of a branch
type or stream. They are included with CMI whether or not you have
defined any default actions of your own. The CMI-provided default
actions are always used unless they are overridden by your configuration.
If an applicable user-defined default action is found in the context of the
provider configuration (see below), the CMI-provided default action is
ignored.

You can define your own actions that override the predefined CMI
default actions. Defining actions to be used for RTC state transitions is
similar to defining the state transitions.

14

Example:
actions:

[workItemType:Defect;

startState:In Progress;

defaultAction:com.ibm.team.workitem.defectWorkflow.action.resolve

;

resolution:3;

resolutionComment:Works as Designed]

More examples are included in the Examples section later.

Note: The 4-tuple key:value pairs are separate by semicolons (;) instead of
commas (,). The above example is a 5-tuple due to the addition of a comment
key. This key is not part of the Change Management Integration nor is it a
reserved key. It is allowed as a convenience to make the resolution human-
readable.

For both Base and UCM CC, the action keys are identical:
actions:
[workItemType:<work item type>;

 startState<work item state>;

 defaultAction:<RTC action to perform>;

 resolution:<optional resolution choice>]

[…]

▪ workItemType

This specifies the Rational Team Concert work item type to apply the action
to.

Examples:
Defect, Task, Story, Epic, Adoption Item, etc.

If you’d like to have the same action defined for both Defect and Task they
must each be specified individually.

▪ startState
This indicates the starting state that a Rational Team Concert work item must
be in to perform the given action. If a work item is not in the state specified
when CMI attempts to perform the action on the work item, then there will
be no action taken for that work item.

Examples:
New, In Progress, Resolved, etc.

15

▪ defaultAction
This is the default action that will be taken for all transitions that use the
workItemType and startState defined above. This must come from the
Process Configuration Source of the RTC Project Area. The Process
Configuration Source cannot be accessed through the RTC Web Client and
must be accessed through the Eclipse Client.

To access the Process Configuration Source, open the RTC client and open
the relevant Project Area. There is a tab in the Project Area named “Process
Configuration Source” that contains XML for the Project Workflow.

Example for Defect and the New state:

<state group="open"

icon="processattachment:/workflow/open.gif" id="s1" name="New"

showResolution="false">

<action

id="com.ibm.team.workitem.defectWorkflow.action.startWorking"/

>

<action

id="com.ibm.team.workitem.defectWorkflow.action.resolve"/>

</state>

The action id is used to define the defaultAction in CMI. In order to perform
the “Start Working” action above the defaultAction would be
“com.ibm.team.workitem.defectWorkflow.action.startWorking”, the
startState would be “New”, and the workItemType would be “Defect”.

16

▪ resolution
When an action would result in a state that also has a Resolution (e.g.
Defect's Resolved state), users can specify the Resolution RTC should use. If
you do not specify a Resolution, RTC will use the first Resolution in the list.
For the work item type Defect, the available resolutions for the action
“Resolve” are:
<action icon="processattachment:/workflow/resolve.gif"

id="com.ibm.team.workitem.defectWorkflow.action.resolve"

name="Resolve" state="s3">

<resolution id="r1"/>

<resolution id="r2"/>

<resolution id="r3"/>

<resolution id="r4"/>

<resolution id="r5"/>

<resolution id="r8"/>

</action>

The resolutions are designated with numbers (in the default workflow) when
specifying them in the CMI configuration. So using resolution id “r1” would
be “1” in the actions. The readable names for the resolutions are also
contained in the Process Configuration Source. In the example below the
Resolution “r1” is “Fixed” and Resolution “r4” is “Works for Me”:

<resolution icon="processattachment:/workflow/reject.gif"

id="r5" name="Invalid"/>

<resolution icon="processattachment:/workflow/works.gif"

id="r4" name="Works for Me"/>

<resolution icon="processattachment:/workflow/wontdo.gif"

id="r3" name="Works as Designed"/>

<resolution icon="processattachment:/workflow/duplicate.gif"

id="r2" name="Duplicate"/>

<resolution icon="processattachment:/workflow/close.gif"

id="r1" name="Fixed"/>

<resolution icon="processattachment:/workflow/unresolve.gif"

id="r0" name="Unresolved"/>

<resolution icon="processattachment:/workflow/close.gif"

id="r8" name="Fixed Upstream"/>

17

• JIRA
▪ queryuri

Used for presenting available tasks (issues) for association to users through the
CLI or GUI. The queryuri is used when reqProvTask or reqAnyTask are true for a
given stream/brtype to present the user with a list of tasks to choose for
association with their activity/version. It should be URL-encoded (e.g. spaces
converted to %20).

▪ Provider name
The provider name specified on a stream/brtype must match what was used to
setup the same provider on the VOB.

▪ Using a data file (-data)
It is possible to store some of the CMI mkcmprovider arguments in a text file and
use that file with the command. Enclosing quotation marks are not required in
the data file. This option cannot be used in conjunction with -type, -version, -
description, -options, or -context. The following arguments can be specified in a
data file:

▪ version
▪ type
▪ description
▪ connection.baseurl or connection.baseUrl
▪ queryuri or queryUri
▪ userdb
▪ dbset
▪ disableRTCBridge
▪ cmtrans
▪ actions
▪ cmi_options.activityFormat
▪ cmi_options.validate
▪ cmi_options.reqProvTask
▪ cmi_options.reqAnyTask
▪ cmi_options.ciVerifyProv
▪ cmi_options.ciVerifyUser

18

Any other key=value pairs specified that are not recognized will be put in the
provider’s context. This allows custom key=value pairs to be specified with the -
data option. Any custom keys must not contain “cmi_options”, “connection” or
match any of the keys used by CMI above.

Example:
type=cmcq

version=v1_0

description=CQ Provider

connection.baseurl=http://hostname.com/cqweb/oslc

userdb=CQWAN

dbset=SAMPL
queryuri=rcm.name=Public%20Queries/All%20Defects

cmtrans=[vobOp:set_activity;recordType:Defect;startState:Ready;en

dState:Complete][vobOp:set_activity;recordType:BaseCMActivity;sta

rtState:Submitted;endState:Assigned]

cmi_options.ciVerifyProv=true
cmi_options.ciVerifyUser=true

http://hostname.com/cqweb/oslc

19

IV. CMI Administration

• Listing provider details
o lsprovider

This command can be used to describe the currently configured provider on a
VOB, stream, or brtype. It supports a default level of detail, less detail with -
short, and more detail with -long.

▪ VOB

Use the lsprovider command with the -vob option to describe the
currently configured provider at the VOB level for base or UCM CC.

Usage: lsprovider [-short | -long] {[-vob vob-
selector[,...]][-replica replica-selector[,...]]}

[provider_name ...]

Example:
cleartool lsprovider -long -vob test_vob test_prov

▪ UCM

Use the lsprovider command with the -stream option to describe the
currently configured CM provider at the stream level.

Usage: lsprovider [-short | -long] {[-stream stream-
selector[,...]]} [provider_name ...]

Example:
cleartool lsprovider -short -stream test_dev@\test_proj

▪ Base CC

Use the lsprovider command with the -brtype option to describe the
currently configured CM provider at the stream level.

Usage: lsprovider [-short | -long] {[[-pname pname[,...]][-
brtype brtype_name[,...]]]} [provider_name ...]

Example:
cleartool lsprovider -brtype main@\test_vob test_prov

20

• Making changes to an existing CMI configuration

Existing provider configurations on VOBs, brtypes, or streams can be modified with the
mkcmprovider command by using the -replace flag.

• Changing the VOB provider

Specify the options to be modified (along with the -replace flag) as with a normal
mkcmprovider command. If the -connection is being modified its entire contents must
be provided as individual key:value pairs are not parsed by mkcmprovider. This will
usually only include the baseurl (or baseUrl) key and its value but could include any
custom key:value pairs.

Usage: mkcmprovider {-vob vob-selector | -replica replica-selector} -
replace {-data prov-info-file | -type <type> -version <version> -

description <description> -connection <connection_info>} provider_name

Examples:
cleartool mkcmprovider -vob test_vob -replace -description “New

description” test_prov

cleartool mkcmprovider -vob test_vob2 -replace -connection

“baseurl:http[s]://<server URL>/cqweb/oslc” test_prov2

• Changing the Branch Type or Stream provider

This process is the same as changing the VOB provider but if the -context is being
modified its entire contents must be provided. For CQ this includes the userdb, dbset,
and queryuri.

Usage: mkcmprovider {-brtype <brtype-name>} -replace [{-data context-
info-file | -context <context-string> [-options <cmi_options>]}]

provider_name

mkcmprovider {-stream <stream name>} -replace {[-options <cmi_options>]

-context <context_options> | -data [info_file]} {-enable [true|false]}

provider_name

Examples:
mkcmprovider -brtype main@\test_vob -replace -options reqProvTask:false

test_prov

mkcmprovider -stream test_dev@\test_pvob -replace -context

“queryuri:http[s]://<CQ server

URL>/cqweb/oslc,dbset:9.0.0,userdb:SAMPL” test_prov

21

• Removing an existing CMI configuration

Use the rmprovider command on either a VOB, brtype, or stream with the provider
name to remove the provider configuration. Removing a provider on a VOB will also
automatically remove the same provider at the stream/brtype level. Removing a
provider on a brtype or stream will not automatically remove the same provider on the
corresponding VOB. Removing a provider from a VOB or a stream/brtype will not
remove associations already created on versions, activities, or Change Management
system tasks.

Usage: rmprovider {-vob vob-selector | -replica replica-selector | -
brtype brtype-selector | -stream stream-selector} provider_name

Example:
cleartool rmprovider -vob test_vob test_prov

• Restricting access to mkcmprovider and rmprovider commands

System administrators may wish to restrict access to these commands to avoid
inadvertent or malicious use. There are two ways to do this: locks and triggers.

If a ClearCase VOB is locked, no changes of any kind are allowed by anyone except users
in the "Excluded users" list. For example, an administrator might lock a VOB excluding
the administrative account, during the configuration process, so that no other user can
make changes until the configuration is complete. Similarly, a branch or stream may be
locked to prevent modification by unauthorized users. The use of locks is a coarse
approach, because while the object is locked, no operations of any kind can take place
on the object. Finer control may be accomplished with triggers.

Triggers may be used to detect and control the use of the mkcmprovider and
rmprovider commands on branch types and streams. In a base-ClearCase environment a
trigger can be attached to the "mkattr" or "rmattr" operation on a branch type. In this
case, the ClearCase trigger environment variable CLEARCASE_ATTYPE will be set to
"CC_CMI_CONTEXT" when the trigger fires. In a UCM environment, a trigger can be
attached to the "chstream" operation. In this case, the ClearCase trigger environment
variable CLEARCASE_CMI_OP will be set to either "mkcmprovider" or "rmprovider."

22

• Repairing failed CMI actions

When one of the following CMI actions fails:

o Associate
o Disassociate
o State transition

The details necessary to perform the action at a later time are saved in the
cmi_repair_log file, which can be found in the CC log directory for any CCLC client or on
the CCRC WAN Server machine for CCRC users. Using clmutil, the actions saved in
cmi_repair_log can be run again as the user running the command (instead of the
original user) to correct any discordance (e.g. missing associations on Change
Management tasks).

You must be set to a view when you run clmutil cmi_repair, and (except when using -
preview) you must be root (on UNIX or Linux) or a member of the Administrator group
and the ClearCase group on Windows.

If desired, you may copy the file cmi_repair_log to another location before attempting
the repair. In this case, specify the -repair_file option and enter the path name of the
copied file.

Note: Without the -repair_file option, clmutil will attempt to rename the
cmi_repair_log file to cmi_repair_log.backup so that the original file may continue to
collect new errors as they occur. The backup file will be used as the source for repair
operations.

Credentials must be registered with the cmiregister command before running the repair
tool (see the cmiregister section below).

The -verbose option displays additional diagnostic information.

The -preview option displays what would have been repaired but does not actually
perform the repairs.

Usage: clmutil cmi_repair [-verbose] [-preview] [-migrate] [-repair_file
pathname]

Example:
clmutil cmi_repair -verbose -repair_file cmi_repair_log

23

• When the Change Management system is unavailable

The most reliable way of temporarily disabling CMI is to:

• UCM

Set the -enable argument to false for the configured providers corresponding to the
unavailable Change Management provider. This can be done with a mkcmprovider -
replace command.

• Base CC

Remove the provider from the impacted brtypes with an rmprovider command or
create another attribute type for this purpose and chtype the provider attribute (to re-
enable use chtype to change the attribute back to the original type).

24

V. Use

• Credential Registering

When using CCLC (dynamic or snapshot views) credentials can be stored in an encrypted
format in a user’s home directory with the cmiregister command. For CTE the
credentials can be read from the encrypted file or users can be prompted for their
credentials when necessary.

o cmiregister

Using cmiregister is necessary when using the CLI with CMI. Each provider being
used must have credentials registered for it. Registering credentials requires:

▪ Provider type
This will either be -cq, -rtc, or -jira depending on the corresponding
provider on the VOB and stream/brtype.

▪ Provider name
This must match the name of the provider on the VOB and
stream/brtype.

▪ Username
Enter the login name used for the Change Management system.

▪ Password
Enter the password used for the Change Management system. If no
password is necessary, this does not need to be specified.

Usage: cmiregister add -<provider type> -name <provider-
name> [-userdb <database-name>] [-dbset dbset-name>] -

username <username> [-password <password>]

Examples:
cmiregister add -cq -name test_cq -userdb SAMPL -dbset 9.0.0 -

username cquser -password cqpass

cmiregister add -rtc -name test_rtc -username rtcuser -password

rtcpass

25

• CTE in both CCRC and CCLC
o CCLC (dynamic / snapshot views)

▪ When using CTE in CCLC, stored credentials in cmiregister will automatically
be used if they already exist.

▪ If the stored credentials in cmiregister are incorrect or out of date the user
will be prompted to login to the Change Management system using the same
login prompts CC and CQ use and the stored credentials will be updated.

▪ Credentials entered through CTE in CCLC without stored credentials in
cmiregister are never stored permanently. They can be stored in memory
temporarily in the same manner as remote CC or CQ credentials by checking
the "Store and reuse credentials" box.

o CCRC (automatic / web views)
▪ When using CTE in CCRC, stored credentials in cmiregister are never used.
▪ The user will be prompted to login to the Change Management system using

the same login prompts CC and CQ use.
▪ Credentials entered through CTE in CCRC are never stored permanently. They

can be stored in memory temporarily in the same manner as CC or CQ
credentials by checking the "Store and reuse credentials" box.

o CCLC Native UI

It is necessary to store encrypted credentials with the cmiregister command in order
to use CMI with any of the CCLC native UIs (e.g. xclearcase or ClearCase Explorer).

• General Behavior and CLI
o UCM

▪ mkactivity

Running a default mkact command will make use of the activityFormat for
the activity ID and pull the task’s headline for the activity Headling if the
activity being created is given a CMI task to associate with. A task can be
specified by using the -task flag with the mkact command. The mkact
command cannot be blocked by CMI – meaning that even if the setact that
normally follows mkact fails the activity will still be created.

Usage: mkactivity [-c comment | -cfile pname | -cq | -cqe | -
nc] [-headline headline] [-in stream-selector] [-nset] [-

force] [-tasks task-selector[,...]] [activity-selector ...]

Example:
cleartool mkactivity -task SAMPL00000045@test_cq

26

▪ setactivity

The setact command (including the setact done by mkact) will check the
reqProvTask and reqAnyTask policies. If either are enabled for a provider on
the stream, then the user will be required to have at least one association to
a Change Management task for the activity before setact can succeed.

For each enabled provider on the stream with reqProvTask enabled, the user
must associate at least one task from that Change Management system in
order to set the activity. If there are three providers on a stream (prov1,
prov2, and prov3) and two of them (prov 1 & prov2) have reqProvTask
enabled (and none have reqAnyTask enabled), then the user will be required
to associate any activity they’re performing setact on with at least one task
from each of those two Change Management systems (TASK1@prov1 &
TASK2@prov2).

If any enabled provider on the stream has reqAnyTask enabled, the user
must associate at least one task from any Change Management system in
order to set the activity. If there are three providers on a stream (prov1,
prov2, and prov3) and any one of them (prov3) has reqAnyTask enabled (and
none have reqProvTask enabled), then the user will be required to associate
any activity they wish to set to a view with at least one task from any of
those three Change Management systems (TASK1@prov1 or TASK2@prov2
or TASK3@prov3).

▪ lsactivity -find

The lsactivity -find command allows a user to find available Change
Management tasks to associate with activities. A queryuri or queryUri must
be defined in a provider’s context (see above) in order to run this command.
It uses the defined queryuri or queryUri for the provider specified (or all
providers on the stream if none are specified) to generate a list of available
Change Management tasks.

Usage: lsactivity -find [-provider provider_name] [-in stream-
selector | -view view-tag | -cview | activity-selector]

Example:
cleartool lsactivity -find -provider test_prov -cview

▪ rmactivity

Removing an activity with an association will remove that association on the
Change Management system task.

27

o Base CC
▪ settask

The cleartool settask command associates a default task, or list of default
tasks, with a view. When a ClearCase element is created, checked out or
checked in, the version created is associated by default with a task, or tasks,
that have been previously associated with the view by this command. The
settask command is only available via the command line but the currently set
task will be used by the CC GUIs.

The cleartool settask -find command allows a user to find available Change
Management tasks to use with cleartool settask to associate with versions. A
queryuri or queryUri must be defined in a provider’s context (see above) in
order to run this command. It uses the defined queryuri or queryUri for the
provider specified (or all providers on the brtype if none are specified) to
generate a list of available Change Management tasks.

Usage:
settask -find [-provider provider_name] {-pname pname | -

brtype brtype_name}

settask [-view view-tag] {task-selector | [[-add_task task-

selector[...] [-remove_task [task-selector[...]]] | -none }

Examples:
1. Set task1, which is located at provider CQPROV, for the current view:

cleartool settask task1@CQPROV

2. Replace task1 with task2 as the default task for the current view. (Note:
The simple form from example 1 should be used unless working with
multiple providers):
cleartool settask -add task2@CQPROV -rem task1@CQPROV

3. Clear the default task from the current view. A new version (created
through cleartool mkelem or checkout) must have its task set explicitly
with cleartool chtask before it can be checked in:
cleartool settask -none

4. Find available tasks for one of the above examples:
cleartool settask -find -brtype main@\my_vob

▪ lstask

The cleartool lstask command lists the default task(s) associated with a view.

Usage: lstask -view view-tag | -cview

Example: cleartool lstask -cview

28

▪ chtask

The cleartool chtask command changes the task, or tasks, associated with an
existing ClearCase version.

Usage: chtask [-view view-tag] [-remove_task task-selector,...]
[-add_task task-selector,...] pname …

Example: Replace task1 with task2 on the current version of test.c:
cleartool chtask -rem task1@CQPROV -add task2@CQPROV test.c

▪ checkout

When performing a checkout, a user can optionally associate a task with the
checked out version by having a currently set task for the view (achieved
with the settask command above). The reqProvTask and reqAnyTask policies
do not apply to checkout.

▪ checkin

When performing a checkin, a user can associate a task with the version
being checked in. This is accomplished by either having an association
already on the checked out version (for the command line) or choosing a
required task from the task selection dialog in a CC GUI. When using the
command line, the checked out version must already have an association for
the checked in version to also have an association. If the checked out version
does not already have an association, one can be added with the chtask
command.

If there is an association for a given task on the checked out version and the
checked in version is being associated with the same task, then the checked
out version association will be removed and a new association will be added
for the checked in version. The Change Management system task will
essentially be updated to have an association with the checked in version.

▪ uncheckout

Performing an uncheckout on a version with an association will remove that
association from the Change Management system task.

▪ rmver

Removing a version with an association will remove that association from the
Change Management system task.

29

• CCLC Native UI (ClearCase Explorer or xclearcase)
o UCM

▪ setactivity
Performing a setactivity, when reqProvTask or reqAnyTask are enabled
(requiring a task association) and the activity does not already have
associated tasks that satisfy reqProvTask or reqAnyTask, will display a
prompt showing the results of the relevant provider queries (queryuri or
queryUri) for the user to select one or more tasks from.

o Base CC
▪ checkin

Performing a checkin, when reqProvTask or reqAnyTask are enabled
(requiring a task association) and the version being checked in does not
already have associated tasks that satisfy reqProvTask or reqAnyTask, will
display a prompt showing the results of the relevant provider queries
(queryuri or queryUri) for the user to select one or more tasks from.

• CTE (RCP and Eclipse Extension Offering)
o Local view credential prompting

When using CTE with a CCLC view type (dynamic or snapshot) the user can either use
cmiregister (see above) or be prompted by CTE to enter their Change Management
system credentials. Out of date credentials stored with cmiregister will be updated
by the CTE prompt if valid credentials are provided.

o Remote view credential prompting

When using CTE with a CCRC view type (web or automatic) the user will always be
prompted by CTE to enter their Change Management system credentials. The
cmiregister tool is not used for remote views.

o UCM
▪ setactivity

Performing a setactivity, when reqProvTask or reqAnyTask are enabled
(requiring a task association) and the activity does not already have
associated tasks that satisfy reqProvTask or reqAnyTask, will display a
prompt showing the results of the relevant provider queries (queryuri or
queryUri) for the user to select one or more tasks from.

30

o Base CC
▪ checkin

Performing a checkin, when reqProvTask or reqAnyTask are enabled
(requiring a task association) and the version being checked in does not
already have associated tasks that satisfy reqProvTask or reqAnyTask, will
display a prompt showing the results of the relevant provider queries
(queryuri or queryUri) for the user to select one or more tasks from.

VI. Compatibility with CTE/RTC Eclipse integration

When CTE and RTC are installed into the same Eclipse Shell an integration (also known as the
CTE/RTC Bridge) is automatically enabled with similar behavior to UCM CMI. It allows
associations to be made between activities and work items. This integration is controlled
entirely by the end user in their Eclipse preferences. This means that the end user decides
whether or not to require task associations and which tasks are available for association.

When CMI is configured for UCM with RTC, the CTE/RTC Eclipse integration can pick up some
settings from CMI to offer some control over the task requirements for the end user.

• The reqProvTask setting on the CMI configuration overrides any settings the user
changes in their Eclipse preferences.

• The activityFormat specified in CMI is used by the CTE/RTC Eclipse integration.

It is possible to disable the functionality offered by the CTE/RTC Bridge Eclipse integration when
using CMI with the disableRTCBridge keyword.

31

VII. Comparison of UCM/CQ Integration (SQUID) and CMI

Local and remote connections

• CMI
With all available adapters (CQ, RTC, and JIRA), CMI uses a web connection [http(s)] to
contact the Change Management server.

• SQUID
Prior to 9.0, SQUID allowed both local and web connections to CQ. As of 9.0, only web
connections are allowed.

Note: For either integration (CMI or web connections in SQUID) to work properly with
ClearQuest:

• ClearCase must be installed on the ClearQuest Web Server.

• The ClearCase installation on the client must point to the same ClearCase Registry as the
ClearCase installation on the ClearQuest Web Server so that the VOBs can be found.

Project and stream configuration

• CMI
Each CMI provider is configured at a stream level with inheritance for child streams.

• SQUID
There is only configuration at the UCM project level – meaning all streams under that
UCM project must use the integration.

Base CC support

• CMI
The same functionality for UCM is provided for Base CC through CMI.

• SQUID
There is no Base CC functionality for this integration.

New record creation

• CMI
If a new record is required, the user must create one in CQ before attempting a CC
operation requiring an association.

• SQUID
The web connection does not have this capability.

CTE support

• CMI
The integration is fully supported in CTE but it does not directly utilize the CQ
functionality provided by CTE.

• SQUID
Local connections are no longer supported through CTE. Web connections are fully
supported in CTE and include direct usage of CQ including WorkOn and running CQ
queries.

32

StartWork from CQ

• CMI
There is no direct connection from CQ back to CC with CMI so the StartWork option is
not available.

• SQUID
StartWork can be used to set a CQ record as the current activity from a CQ local client.
This option is not available in CQ Web.

Displaying CQ records instead of activities

• CMI
Activities are displayed as they normally would be without the integration.

• SQUID
Activities cannot be displayed and CQ records are instead always used.

Linking activities to records

• CMI
The integration creates links between the activity and the record (task).

• SQUID
The IDs and Headlines are made to match between the activity and CQ record and the
stream, VOB, and view fields are populated in the record.

CQ server connection to CC

• CMI
There is no direct connection from the CQ server to CC.

• SQUID
The UCM package involves calls back to CC from CQ for verification and activity update
purposes.

UCM Package

• CMI
The only CQ package required and used by CMI is the OSLC Links package.

• SQUID
The UCM Package is required for this integration and enforces strict control over the
related fields – including the UCM project, stream, view, and fetching the activity’s
change set.

Policy support

• CMI
The policies available in CMI mostly govern task selection for a given activity or version
and blocking setact/checkin if the requirements are not met.

• SQUID
The policies here are for performing various actions in CQ via scripts either before or
after specific CC operations.

33

Policy GUI

• CMI
There is no GUI to modify the CMI policies.

• SQUID
The CC Project Explorer GUI allows modification of the integration’s policies. They can
also be modified with local CQ clients (not web).

Querying for records

• CMI
Records can be queried by running a settask -find command or perfoming an action in a
CC GUI when a record (task) is required. This is only possible when a queryuri is defined
in the stream or brtype configuration.

• SQUID
Records are fetched using a pre-defined query.

Custom query support

• CMI
The query is fully customizable – any valid query can be used.

• SQUID
There is limited customization available – only through CTE can non-default queries be
run for a web connection.

State transitions

• CMI
All state transitions are optional and customizable.

• SQUID
Specific state transitions are done automatically and some are available with policies.

Custom state transitions

• CMI
Since there are no automatically enforced transitions with CMI they are all
customizable.

• SQUID
State transitions cannot be customized.

Trigger support

• CMI
Configuring CMI can be restricted with triggers on mkcmprovider and rmprovider.

• SQUID
Configuring SQUID can be restricted with triggers on chproj or mkproj.

34

Configuration inheritance

• CMI
Configurations (providers) from parent streams are automatically inherited by child
streams. An explicit configuration on a child stream will disable the inheritance

• SQUID
Since the integration is configured on a per-project basis there is no inheritance.

Multiple CM server connections

• CMI
Multiple Change Management providers can be configured on each stream/brtype.

• SQUID
Only one CQ database can be linked per project.

Non-CQ CM support

• CMI
In addition to CQ adapter support, CMI also supports RTC and JIRA adapters.

• SQUID
There is no support beyond CQ.

Smart card authentication

• CMI
Smart card authentication is supported for Change Management systems through
(embedded) GSKit.

• SQUID
There is no smart card authentication support for CQ through SQUID.

Discordance repair

• CMI
The cmi_repair_log keeps track of failed actions (associations, disassociations, and
transitions) that can be repaired later with clmutil.

• SQUID
A scan can be run to correct out of sync activities/records with ucmutil.

Atomic checkin

• CMI
When performing an atomic checkin from a GUI, CMI provides an “apply to all” option
for task selection.

• SQUID
There is no atomic checkin support.

Migration from Perl V2 Base CC integration

• CMI
All existing links from the Perl V2 Base CC integration can be migrated to the CMI
format.

• SQUID
There is no migration from the Base CC integration to SQUID.

35

VIII. Migrating from the V2 Perl Base ClearCase Integration to
CMI

CMI supports a two-step process for migrating from the V2 Perl integration to CMI.

• In the first step, a new utility, cmi_migrate.pl, is used to generate a file listing all
versions that require task associations.

• In the second step, the clmutil utility is run in migrate mode to parse the generated file
and create the task associations on the versions and to update the links tab on the
ClearQuest records.

The migration does not remove the CrmRequest hyperlinks that were created by the V2
integration, but it is recommended that the V2 integration be disabled after the migration
process has been completed.

Apply the OSLC Links package to the database used in the integration. This package is required
for CMI to be configured with ClearQuest.

Running cmi_migrate.pl.

• We recommend that the VOB be locked -nusers for the User running the utility, so that
other users do not accidentally generate new hyperlinks that will then have to be
parsed. You must run the utility in a view, using ratlperl. Note that you may need to
modify your PATH to include /opt/rational/common/bin.

Run ratlperl cmi_migrate.pl.

• The cmi_migrate utility will request that you enter the desired mode; enter “base” to
migrate from the V2 perl integration. The cmi_migrate utility will then request that you
enter the vobtag of the VOB you wish to migrate, the name of an existing temp
directory, and names for two files it will generate (default names are suggested). It will
then parse the V2 integration's config.pl file, and store extracted information in a file
with the (default) name cmi_migration.txt, in the specified temp directory.

• At this point you can choose to enter CMI configuration information for all of the
brtypes that require migration, or you can quit the utility and modify the
cmi_migration.txt file manually. If you choose to quit, you can run the script again to
resume the migration process. If you choose to continue, you will be prompted for a
description for the CMI provider, a query uri, and a name for the provider. Once the
configuration is complete, cmi_migrate will create attribute types required by CMI, will
run the mkcmprovider command to configure the VOB and the participating brtypes,
and will generate a migration version information file with the (default) name
cmi_migration_versions.txt, that will contain entries for all VOB element and directory
versions that require task associations in CMI.

36

Running clmutil in migrate mode.

• Once the migration version information file has been generated, you can use the clmutil
utility to generate the actual task associations. This utility must be run as root on UNIX
or as Privileged User on Windows. It is installed in <ClearCase-home>/bin

• If your VOB has ACLs enabled, you must ensure that User has permissions to modify
elements. For example, you may use the cleartool chpolicy command to add
permissions for root to the DefaultPolicy:
> cleartool chpolicy -nc -kind element -add User:root -permission Full

DefaultPolicy

• You must be set to a view when you run clmutil in migrate mode. Any user can preview
its actions by running:
> clmutil cmi_repair -verbose -preview -migrate -repair_file

<migrate_versions_file_pname>

• The migrate_versions_file_pname must be the full path to the version information file
generated by cmi_migrate.pl. In preview mode clmutil will list all of the CMI actions that
would be attempted.

• Before creating the task associations, you must use the cmiregister command to store
the necessary credentials for CMI. As root or Privileged User run
> cmiregister add -cq -name <provider-name> -userdb <database-name> -

dbset <dbset-name> -username <username> [-password <password>]

• Supply a password only if one is needed by your ClearQuest installation.

• To perform the actual work, run the utility as root or Privileged User, in a view, without
the -preview option:
> clmutil cmi_repair -verbose -migrate -repair_file

<migrate_versions_file_pname>

• You will see output for each association that is created. After the utility completes, you
can describe a version on an instance of a participating brtype to view the associated
tasks, and you can check the Links tab on the ClearQuest record to view the version
information. The migration process does not remove the hyperlinks that used as
artifacts for the V2 Perl integration.

37

IX. Migrating from the UCM/CQ Integration (SQUID) to CMI

The Change Management Integration (CMI) supports a two-step process for migrating from
SQUID to CMI.

• In the first step, the utility cmi_migrate.pl is used to generate a file listing all activities in
a user-specified project VOB that require task associations, based upon a user-specified
list of CQ-enabled projects to migrate. It also performs cleartool operations to configure
the project VOB and the streams associated with the specified projects for CMI, based
upon user input.

• In the second step, the clmutil utility is run in migrate mode to parse the generated file
and create the task associations on the activities and to update the Links tab on the
ClearQuest records.

Apply the OSLC Links package to the database used in the integration. This package is required
for CMI to be configured with ClearQuest.

General considerations when migrating from SQUID to CMI:

• The migration does not remove the artifacts that were created by the SQUID
integration, but it is recommended that the SQUID integration be placed in suspend
mode or disabled after the migration process has been completed. Note that disabling
the SQUID integration is irreversible and will remove all artifacts it has created in the
VOB. If you do not yet want to disable the SQUID integration, you can instead suspend it
temporarily. This can be done with the following command:
>cleartool chproject -crmenable user_dbname [-force] -suspend

project_selector

• Suspending the SQUID integration will keep all of the existing artifacts in place but will
not create any new ones. Note that resuming the SQUID integration will prompt you to
sync any unlinked activities to new CQ records. A suspended SQUID integration can be
resumed with the following command:
>cleartool chproject -crmenable user_dbname [-force] -resume

project_selector

• A view context is required to resume a suspended SQUID integration. The -force option
skips both the confirmation to suspend or resume the integration as well as the
confirmation to sync each unlinked activity to a new CQ record (when resuming). If the -
force option is not specified, then ClearCase will prompt the user to confirm each
activity individually.

38

Running the cmi_migrate.pl.

• We recommend that the project VOB be locked -nusers for the User running the utility,
so that other users do not accidentally generate new SQUID artifacts that will then have
to be parsed. You must run the utility in a view context, using ratlperl. Note that you
may need to modify your PATH, for example, on UNIX to include
/opt/rational/common/bin.
> ratlperl cmi_migrate.pl

• The cmi_migrate utility will request that you enter the desired mode; enter “ucm” to
migrate from the SQUID integration. The utility will then request you to enter the VOB
tag of the VOB you wish to migrate, the name of an existing temp directory, names for
two files it will generate (default names are suggested), and a list of projects you wish to
migrate. The utility will display a list of all streams in those projects. In the following
UNIX example, User responses appear in italics.
>Enter mode: 'base' for base-ClearCase, 'ucm' for UCM, or return to

quit: ucm

>Enter the VOB tag to migrate or return to quit: /test309_pvob

>VOB tag validated.

>Enter a temp directory for use with the migration or return to quit:

/var/tmp

>Enter a file name to store migration configuration information or

return to use the default (cmi_migration.txt): <CR>

>Enter a file name to store migration activity information or return to

use the default (cmi_migration_activities.txt):<CR>

>Enter a comma-separated list of projects to migrate (e.g.,

"proj1,proj2") or return to quit:

>test309

>Validate project test309@/test309_pvob is clearquest enabled for user

database SAMPL.

>Extracting information from crmregister ...

>Found the user database

SAMPL.

>Finding streams in project test309@/test309_pvob ...

test309_int@/test309_pvob

test309_dev@/test309_pvob

39

• At this point you can choose to enter CMI configuration information for all of the
streams that require migration, or you can quit the utility and modify the
cmi_migration.txt file manually. If you choose to quit, you can run the script again to
resume the migration process. If you choose to continue, for each stream found in the
specified projects, you will be asked if you wish to configure it now, configure it
manually later, or skip configuration for it. You would choose to skip configuring a child
stream, for instance, if you wanted it to inherit CMI configuration from its parent
stream. (If you explicitly configure a child stream in CMI, it will not inherit any settings
from its parent stream.) If you choose to configure the stream now, you will be
prompted for a description for the CMI provider, a Query URI, and a name for the
provider.
>Do you wish to enter CMI configuration for streams now? [y]

>Enter 'n' to enter the information manually later.

> y

>Note that child streams inherit CMI configuration from their parent

streams unless you explicitly configure them.

>Do you want to configure stream test309_int@/test309_pvob?

>Enter 'y' to configure it now, 'n' to enter the information manually

later, or 's' to skip configuring it.

>y

>Please enter the remaining information for:

Stream:test309_int@/test309_pvob

UserDB:SAMPL

DBSet:9.0.0

Server URL:http(s)://some-host-name:12080/cqweb/oslc

>Enter the description (e.g. "CQ Web Server 1"):"New CQ Provider"

>Enter the query URI (e.g. "rcm.name=Public%20Queries/All%20Defects")

or return to enter no query URI:

rcm.name=Public%20Queries/All%20Defects

>Enter the Provider Name (e.g. "CQPROV1"): CQPROV1

>Do you want to configure stream test309_dev@/test309_pvob?

>Enter 'y' to configure it now, 'n' to enter the information manually

later, or 's' to skip configuring it.

>s

• Once the configuration is complete, cmi_migrate will create the attribute type required
by CMI, will run the mkcmprovider command to configure the VOB and the participating
streams, and will generate a migration activities information file with the (default) name
cmi_migration_activities.txt, that will contain entries for all VOB activities that require
task associations in CMI.

40

Manually completing entries in the cmi_migration.txt file.

• If you choose to manually enter configuration details for a stream, cmi_migrate will
create a partially populated entry in the cmi_migration.txt file. You must complete the
entry with a Description of the CQ Provider, a Query URI, and a provider Name. The
Query URI is optional, and this field may be left blank. The completed entries should be
separated by a blank line:
Stream:test309_int@\test309_pvob

UserDB:SAMPL

DBSet:9.0.0

Server URL:http(s)://some-host-name:12080/cqweb/oslc

Version:v1_0

Description:"New CQ Provider"

Query:rcm.name=Public%20Queries/All%20Defects

Name:CQPROV1

Stream:test309_dev@\test309_pvob

UserDB:SAMPL

DBSet:9.0.0

Server URL:http(s)://some-host-name:12080/cqweb/oslc

Version:v1_0

Description:”New CQ Provider”

Query:

Name:CQPROV1

Running clmutil in migrate mode.

• Once the migration activities information file has been generated, you can use the
clmutil utility to generate the actual task associations. This utility must be run as root on
UNIX or as Privileged User on Windows. It is installed in <ClearCase-home>/bin.

• You must be in a view context when you run clmutil in migrate mode. Any user can
preview its actions by running:
> clmutil cmi_repair -verbose -preview -migrate -repair_file

<migrate_activities_file_pname>

• The migrate_activities_file_pname must be the full path to the activities information file
generated by cmi_migrate.pl. In preview mode clmutil will list all of the CMI actions that
would be attempted.

• Before creating the task associations, you must use the cmiregister command to store
the necessary credentials for CMI. As root or Privileged User run:
> cmiregister add -cq -name <provider-name> -userdb <database-name> -

dbset <dbset-name> -username <username> [-password <password>]

• Supply a password only if one is needed by your ClearQuest installation.

• To perform the actual work, run the utility as root or Privileged User, in a view context,
without the -preview option:
> clmutil cmi_repair -verbose -migrate -repair_file

<migrate_activities_file_pname>

• You will see output for each association that is created. After the utility completes, you
can describe an activity in a participating stream to view the associated tasks, and you
can check the Links tab on the ClearQuest record to view the activity information. The
migration process does not remove the artifacts that were created on the activities by
the SQUID integration.

41

X. Examples

Base CC with CQ

• Pre-existing VOB base_vob_1

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_1

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_1

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_1

cleartool mkcmprovider -vob vob:\base_vob_1 -version v1_0 -description

"CQ Web Server 1" -type cmcq -connection

baseurl:https://cqweb1:12443/cqweb/oslc cq_test_1

cleartool mkcmprovider -brtype main@\base_vob_1 -options

reqProvTask:true -context

"queryuri:https://cqweb1:12443/cqweb/oslc/repo/9.0.0/db/SAMPL/query/?rcm.nam
e=Public%20Queries/All%20Defects,dbset:9.0.0,userdb:SAMPL" cq_test_1

cmiregister add -cq -name cq_test_1 -userdb SAMPL -dbset 9.0.0 -

username test_1 -password pass_1

This example sets up one CQ provider, cq_test_1, on the branch type main. The provider
will require task associations with versions on that branch type when performing a
checkin.

Other branch types are not impacted and won’t be able to perform CMI associations
without their own CMI configuration. Additional branch types can reuse the VOB level
configuration, e.g:

cleartool mkcmprovider -brtype mine@\base_vob_1 -options

reqProvTask:true -context

"queryuri:https://cqweb1:12443/cqweb/oslc/repo/9.0.0/db/SAMPL/query/?rcm.nam
e=Public%20Queries/All%20Defects,dbset:9.0.0,userdb:SAMPL" cq_test_1

42

Base CC with CQ (using -data for mkcmprovider commands)

• Pre-existing VOB base_vob_1

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_1

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_1

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_1

cleartool mkcmprovider -vob vob:\base_vob_1 -data

cmi_base_cq_data.txt cq_test_1

cleartool mkcmprovider -brtype main@\base_vob_1 -data

cmi_base_cq_data.txt cq_test_1

cmiregister add -cq -name cq_test_1 -userdb SAMPL -dbset 9.0.0 -

username test_1 -password pass_1

• cmi_base_cq_data.txt contents:

type=cmcq

version=v1_0

description= CQ Web Server 1

connection.baseurl=https://cqweb1:12443/cqweb/oslc

queryuri=https://cqweb1:12443/cqweb/oslc/repo/9.0.0/db/SAMPL/query/?rcm

.name=Public%20Queries/All%20Defects

dbset=9.0.0

userdb= SAMPL

cmi_options.reqProvTask=true

This example sets up one CQ provider, cq_test_1, on the branch type main. The provider
will require task associations with versions on that branch type when performing a
checkin.

43

Base CC with CQ State Transitions

• Pre-existing VOB base_vob_2

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_2

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_2

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_2

cleartool mkcmprovider -vob vob:\base_vob_2 -version v1_0 -description

"CQ Web Server 2" -type cmcq -connection

baseurl:https://cqweb2:12443/cqweb/oslc cq_test_2

cleartool mkcmprovider -brtype main@\base_vob_2 -options validate:true

-context "

cmtrans:[vobOp:checkout;recordType:Defect;startState:Submitted;endState

:Assigned],queryuri:https://cqweb2:12443/cqweb/oslc/repo/TEST/db/SAMPL/query
/?rcm.name=Personal%20Queries/test%20CMI,dbset:TEST,userdb:SAMPL" cq_test_2

cmiregister add -cq -name cq_test_2 -userdb SAMPL -dbset TEST -username

test_2 -password pass_2

This example sets up one CQ provider, cq_test_2, on the branch type main. The provider
will require task associations with versions on that branch type when performing a
checkin since the default value for reqProvTask is true. It will also validate that any
associated tasks exist at the Change Management server during checkin.

With the given cmtrans configuration (for state transitions), any time a checkout is
performed with an associated CQ Defect in the Submitted state the record will be
transitioned to the Assigned state.

44

Base CC with RTC

• Pre-existing VOB base_vob_3

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_3

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_3

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_3

cleartool mkcmprovider -vob vob:\base_vob_3 -version v1_0 -description

"RTC Server 3" -type cmrtc -connection baseUrl:https://rtcserver3:9443/ccm
rtc_test_3

cleartool mkcmprovider -brtype main@\base_vob_3 -context "queryUri:

web/projects/cmi%20project%20(Change%20Management)#action=com.ibm.team.

workitem.runSavedQuery&id=_rwGz4FeIEeOjR5YNkvoFJg&refresh=true"

rtc_test_3

cmiregister add -rtc -name rtc_test_3 -username test_3 -password pass_3

This example sets up one RTC provider, rtc_test_3, on the branch type main. The
provider will require task associations with versions on that branch type when
performing a checkin since the default value for reqProvTask is true.

45

Base CC with RTC State Transitions

• Pre-existing VOB base_vob_4

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_4

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_4

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_4

cleartool mkcmprovider -vob vob:\base_vob_4 -version v1_0 -description

"RTC Server 4" -type cmrtc -connection baseUrl:https://rtcserver4:9443/ccm
rtc_test_4

cleartool mkcmprovider -brtype main@\base_vob_4 -context "queryUri:

web/projects/cmi%20project%20(Change%20Management)#action=com.ibm.team.

workitem.runSavedQuery&id=_rwGz4FeIEeOjR5YNkvoFJg&refresh=true,

cmtrans:[vobOp:checkout;workItemType:Task;startState:New;endState:In

Progress][vobOp:checkout;workItemType:Defect;startState:New;endState:In

Progress]" rtc_test_4

cmiregister add -rtc -name rtc_test_4 -username test_4 -password pass_4

This example sets up one RTC provider, rtc_test_4, on the branch type main. The
provider will require task associations with versions on that branch type when
performing a checkin since the default value for reqProvTask is true.

It will also attempt to perform state transitions for Tasks and Defects on checkouts.

If an associated Task is in the New state when a checkout is performed, then CMI will
attempt to transition it to the In Progress state using the CMI-defined default actions.

If an associated Defect is in the New state when a checkout is performed, then CMI will
attempt to transition it to the In Progress state using the CMI-defined default actions.

Note that even though the state transitions for Task and Defect appear to be the same
they must each be defined separately.

46

Base CC with JIRA

• Pre-existing VOB base_vob_5

cleartool mkattype -shared -nc -vtype string CC_CMI_CONTEXT@\base_vob_5

cleartool mkattype -shared -nc -vtype string CC_CMI_TASK@\base_vob_5

cleartool mkattype -shared -nc -vtype string

CC_CMI_PROVIDERS@\base_vob_5

cleartool mkcmprovider -vob vob:\base_vob_5 -version v1_0 -description

"JIRA Server 5" -type cmjira -connection

baseurl:http://jiraserver5:8080 jira_test_5

cleartool mkcmprovider -brtype main@\base_vob_5 -context

"queryuri:http://jiraserver5:8080/rest/api/latest/search?jql=project+%3D+IP+ORDER+
BY+summary+ASC%2C+updatedDate+DESC" jira_test_5

cmiregister add -jira -name jira_test_5 -username test_5 -password

pass_5

This example sets up one JIRA provider, jira_test_5, on the branch type main. The
provider will require task associations with versions on that branch type when
performing a checkin since the default value for reqProvTask is true.

47

UCM with CQ

• Pre-existing PVOB pvob_6, pre-existing integration stream int_6 and child development
stream dev_6

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_6

cleartool mkcmprovider -vob \pvob_6 -version v1_0 -description "CQ Web

Server 6" -type cmcq -connection baseurl:https://cqweb6:12443/cqweb/oslc
cq_test_6

cleartool mkcmprovider -stream int_6@\pvob_6 -options

validate:true,activityFormat:CQ%task-id -context

"userdb:DB1,dbset:CQDB,queryuri:https://cqweb6:12443/cqweb/oslc/repo/CQDB/d
b/DB1/query/?rcm.name=Public%20Queries/All%20Defects" -enable "true"
cq_test_6

cmiregister add -cq -name cq_test_6 -userdb DB1 -dbset CQDB -username

test_6 -password pass_6

This example sets up on CQ provider, cq_test_6, on the integration stream int_6. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true. It will also validate that any associated tasks
exist at the Change Management server during setact.

When creating a new activity with the -tasks option, a user can use the automatically
generated ID to create an activity with an ID of CQ<record ID> and the record’s Headline
as the activity headline.

Since the integration stream (int_6) has a CMI configuration all of its child streams will
inherit that configuration unless they are explicitly overridden. This means that the dev
stream (dev_6) will have the same behavior and will show the inherited provider with an
lsprovider command.

48

UCM with CQ (using -data for mkcmprovider commands)

• Pre-existing PVOB pvob_6, pre-existing integration stream int_6 and child development
stream dev_6

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_6

cleartool mkcmprovider -vob \pvob_6 -data cmi_ucm_cq_data.txt cq_test_6

cleartool mkcmprovider -stream int_6@\pvob_6 -data ucm_cq_data.txt -

enable "true" cq_test_6

cmiregister add -cq -name cq_test_6 -userdb DB1 -dbset CQDB -username

test_6 -password pass_6

• cmi_ucm_cq_data.txt contents:

type=cmcq

version=v1_0

description=CQ Web Server 6

connection.baseurl=https://cqweb6:12443/cqweb/oslc

cmi_options.validate=true

cmi_options.activityFormat=CQ%task-id

userdb=DB1

dbset=CQDB

queryuri=https://cqweb6:12443/cqweb/oslc/repo/CQDB/db/DB1/query/?rcm.na

me=Public%20Queries/All%20Defects

This example sets up on CQ provider, cq_test_6, on the integration stream int_6. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true. It will also validate that any associated tasks
exist at the Change Management server during setact.

When creating a new activity with the -tasks option, a user can use the automatically
generated ID to create an activity with an ID of CQ<record ID> and the record’s Headline
as the activity headline.

Since the integration stream (int_6) has a CMI configuration all of its child streams will
inherit that configuration unless they are explicitly overridden. This means that the dev
stream (dev_6) will have the same behavior and will show the inherited provider with an
lsprovider command.

49

UCM with CQ State Transitions

• Pre-existing PVOB pvob_7, pre-existing integration stream int_7 and child development
stream dev_7

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_7

cleartool mkcmprovider -vob \pvob_7 -version v1_0 -description "CQ Web

Server 7" -type cmcq -connection

baseurl:https://cqweb7:12443/cqweb/oslc cq_test_7

cleartool mkcmprovider -stream int_7@\pvob_7 -options

activityFormat:CQ%task-id -context "userdb:DB1,dbset:CQDB,

cmtrans:[vobOp:set_activity;recordType:Defect;startState:Submitted;endS

tate:Assigned][vobOp:deliver_complete;recordType:Defect;startState:Assi

gned;endState:Complete],queryuri:https://cqweb7:12443/cqweb/oslc/repo/CQDB/
db/DB1/query/?rcm.name=Public%20Queries/All%20Defects" -enable "true"
cq_test_7

cmiregister add -cq -name cq_test_7 -userdb DB1 -dbset CQDB -username

test_7 -password pass_7

This example sets up one CQ provider, cq_test_7, on the integration stream int_7. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true.

When creating a new activity with the -tasks option, a user can use the automatically
generated ID to create an activity with an ID of CQ<record ID> and the record’s Headline
as the activity headline.

If an associated Defect is in the Submitted state when a setactivity is performed on the
associated activity, then CMI will attempt to transition the Defect to the Assigned state
using the CQ-defined default actions.

If an associated Defect is in the Assigned state when a deliver complete is performed on
the associated activity, then CMI will attempt to transition the Defect to the Complete
state using the CQ-defined default actions.

50

UCM with RTC

• Pre-existing PVOB pvob_8, pre-existing integration stream int_8 and child development
stream dev_8

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_8

cleartool mkcmprovider -vob \pvob_8 -version v1_0 -description "RTC

Server 8" -type cmrtc -connection

baseUrl:https://rtcserver8:9443/ccm rtc_test_8

cleartool mkcmprovider -stream int_8@\pvob_8 -context "queryUri:

web/projects/CMI%20Project%206.0%20(Change%20Management)#action=com.ibm

.team.workitem.runSavedQuery&id=_boaAwIe_EeW0Co056aprIQ&refresh=true" -

enable "true" rtc_test_8

cmiregister add -rtc -name rtc_test_8 -username test_8 -password pass_8

This example sets up one RTC provider, rtc_test_8, on the integration stream int_8. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true.

51

UCM with RTC State Transitions

• Pre-existing PVOB pvob_9, pre-existing integration stream int_9 and child development
stream dev_9

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_9

cleartool mkcmprovider -vob \pvob_9 -version v1_0 -description "RTC

Server 9" -type cmrtc -connection

baseUrl:https://rtcserver9:9443/ccm rtc_test_9

cleartool mkcmprovider -stream int_9@\pvob_9 -context "queryUri:

web/projects/CMI%20Project%206.0%20(Change%20Management)#action=com.ibm

.team.workitem.runSavedQuery&id=_boaAwIe_EeW0Co056aprIQ&refresh=true,cm

trans:[vobOp:set_activity;workItemType:Defect;startState:New;endState:I

n Progress][vobOp:deliver_complete;workItemType:Defect;startState:In

Progress;endState:Resolved][vobOp:set_activity;workItemType:Defect;star

tState:Reopened;endState:In

Progress],actions:[workItemType:Defect;startState:In

Progress;defaultAction:com.ibm.team.workitem.defectWorkflow.action.reso

lve;resolution:3;resolutionComment:Works as

Designed][workItemType:Defect;startState:Reopened;defaultAction:com.ibm

.team.workitem.defectWorkflow.action.startWorking]" -enable "true"

rtc_test_9

cmiregister add -rtc -name rtc_test_9 -username test_9 -password pass_9

This example sets up one RTC provider, rtc_test_9, on the integration stream int_9. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true.

It will also attempt to perform state transitions for Defects on setactivity and deliver -
complete.

If an associated Defect is in the New state when a setactivity is performed, then CMI will
attempt to transition it to the In Progress state using the CMI-defined default actions.

If an associated Defect is in the In Progress state when a deliver -complete is performed,
then CMI will attempt to transition it to the Resolved state using the user-defined
action.

Note that the user-defined action here also has a comment under the
resolutionComment key to indicate what “resolution:3” refers to. The
resolutionComment key is not required and is not part of the CMI reserved keywords
used for setup.

If an associated Defect is in the Reopened state when a setactivity is performed, then
CMI will attempt to transition it to the In Progress state using the user-defined action.

52

UCM with RTC State Transitions (using -data for mkcmprovider commands)

• Pre-existing PVOB pvob_9, pre-existing integration stream int_9 and child development
stream dev_9

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_9

cleartool mkcmprovider -vob \pvob_9 -data cmi_ucm_rtc_data.txt

rtc_test_9

cleartool mkcmprovider -stream int_9@\pvob_9 -data cmi_ucm_rtc_data.txt

-enable "true" rtc_test_9

cmiregister add -rtc -name rtc_test_9 -username test_9 -password pass_9

• cmi_ucm_rtc_data.txt contents:

type=cmrtc

version=v1_0

description=RTC Server 9

connection.baseUrl=https://rtcserver9:9443/ccm

queryuri=web/projects/CMI%20Project%206.0%20(Change%20Management)#actio

n=com.ibm.team.workitem.runSavedQuery&id=_boaAwIe_EeW0Co056aprIQ&refres

h=true

cmtrans=[vobOp:set_activity;workItemType:Defect;startState:New;endState

:In Progress][vobOp:deliver_complete;workItemType:Defect;startState:In

Progress;endState:Resolved][vobOp:set_activity;workItemType:Defect;star

tState:Reopened;endState:In Progress]

actions=[workItemType:Defect;startState:In

Progress;defaultAction:com.ibm.team.workitem.defectWorkflow.action.reso

lve;resolution:3;resolutionComment:Works as

Designed][workItemType:Defect;startState:Reopened;defaultAction:com.ibm

.team.workitem.defectWorkflow.action.startWorking]

This example sets up one RTC provider, rtc_test_9, on the integration stream int_9. This
provider will require task associations with activities when they are set to a view since
the default value for reqProvTask is true.

It will also attempt to perform state transitions for Defects on setactivity and deliver -
complete. See the example preceding this one for more details on the state transitions
CMI will attempt.

53

UCM with JIRA

• Pre-existing PVOB pvob_10, pre-existing integration stream int_10 and child
development stream dev_10

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_10

cleartool mkcmprovider -vob \pvob_10 -version v1_0 -description “JIRA

Server 10" -type cmjira -connection baseurl:http://jiraserver10:8080

jira_test_10

cleartool mkcmprovider -stream dev_10@\pvob_10 -context

"queryuri:http://jiraserver10:8080/rest/api/latest/search?jql=project+%3D+IP+ORDER
+BY+summary+ASC%2C+updatedDate+DESC" -enable "true" jira_test_10

cmiregister add -jira -name jira_test_10 -username test_10 -password

pass_10

This example sets up one JIRA provider, jira_test_10, on the development stream
dev_10. This provider will require task associations with activities when they are set to a
view since the default value for reqProvTask is true.

54

UCM with JIRA (using -data for mkcmprovider commands)

• Pre-existing PVOB pvob_10, pre-existing integration stream int_10 and child
development stream dev_10

cleartool mkattype -shared -nc -vtype string CC_CMI_PROVIDERS@\pvob_10

cleartool mkcmprovider -vob \pvob_10 -data cmi_ucm_jira_data.txt

jira_test_10

cleartool mkcmprovider -stream dev_10@\pvob_10 -data

cmi_ucm_jira_data.txt -enable "true" jira_test_10

cmiregister add -jira -name jira_test_10 -username test_10 -password

pass_10

• cmi_ucm_jira_data.txt contents:

type=cmjira

version=v1_0

description=JIRA Server 10

connection.baseurl=http://jiraserver10:8080

queryuri=http://jiraserver10:8080/rest/api/latest/search?jql=project+%3

D+IP+ORDER+BY+summary+ASC%2C+updatedDate+DESC

my_custom_key=my_custom_value

This example sets up one JIRA provider, jira_test_10, on the development stream
dev_10. This provider will require task associations with activities when they are set to a
view since the default value for reqProvTask is true.

This example also contains a custom key:value pair in the data file that will be stored in
the context and will appear with an lsprovider command:

>cleartool lsprovider -long -stream dev_10@\pvob_10

stream "dev_10"

change management provider "jira_test_10"

enabled: true

type "cmjira"

version "v1_0"

description : JIRA Server 10

baseurl : http://jiraserver10:8080
my_custom_key : my_value

queryuri :
http://jiraserver10:8080/rest/api/latest/search?jql=project+%3D+IP+ORDER+BY+summ
ary+ASC%2C+updatedDate+DESC reqAnyTask : false reqProvTask : true validate : true

55

XI. Troubleshooting

CMI log

CMI messages are logged in <CC_VAR>\log\cmi_log. Where <CC_VAR> = <ClearCase Home>\var
(Windows).

Any errors logged may indicate configuration and/or Change Management operation errors.

As some errors may lead to potential discordance between ClearCase and the Change
Management server (CQ, RTC, or JIRA) with respect to version association, periodic review of
the log file for information usable for off-line resolution is recommended.

ClearCase CMI tracing

The CMI libraries that directly interact with the rest of ClearCase have trace settings that are
enabled and used in the same manner as other CC subsystems. The subsystem here is CMI. The
TRACE_VERBOSITY can be up to 5.

Example (Windows):
set TRACE_VERBOSITY=4

set TRACE_SUBSYS=CMI

ClearCase CMI tracing with CTE

The CMI CC tracing can be enabled when using CTE by putting the trace settings in the
server.conf file located in: <ClearCase Home>\config\ccrc\server.conf. This file can be created if
it does not exist. These trace settings work with remote (on the CCRC WAN Server) and local
(on the client machine) view types.

Add the following settings to enable CMI tracing:

ccrcTraceLevel=5

ccrcTraceSubsystem=CMI

The traces will go in the <CC_VAR>\log\trace\<username> directory.

56

CM Adapter tracing

The CMI libraries that contact the Change Management server (CQ, RTC, or JIRA) have their
own tracing settings that can be enabled with mkcmprovider on a VOB as part of the -
connection argument.

The tracelevel can be up to 5. The tracesubsystems are: CMOSLC, CMCQ, CMRTC, and CMJIRA.
The CMOSLC system applies to CQ, RTC, and JIRA. The remaining three subsystems apply to CQ,
RTC, and JIRA (respectively). Each subsystem being traced is separated by a colon (:).

The traces will be written to the <CC_VAR>\log\cm_trace\<username> directory. The user
being traced will need to have write permission for the cm_trace directory.

Example:
cleartool mkcmprovider -vob <VOB_TAG> -version v1_0 -description "CQ trace" -

type cmcq -connection

“baseurl:http://cqtraceserver:12080/cqweb/oslc,tracelevel:4,tracesubsystem:CM

OSL…” CQ_PROV

SSL certificates

Please refer to the following technote for SSL specific issues:
https://www.ibm.com/support/pages/node/541765

http://cqtraceserver:12080/cqweb/oslc,tracelevel:4,tracesubsystem:CMOSLC:CMCQ
http://cqtraceserver:12080/cqweb/oslc,tracelevel:4,tracesubsystem:CMOSLC:CMCQ
https://www.ibm.com/support/pages/node/541765

