
Using Multiple Step Processes to Improve Performance for
Connect:Direct UNIX

Users of Connect:Direct UNIX in a heavy work load environment can. build Processes
so they will execute in the least amount of time to improve performance. This paper
describes the most efficient way to create a Process to improve throughput.

Many users of Connect:Direct transfer one or two hundred files per day while other users
of Connect:Direct transfer thousands of large files per day. To increase throughput and
improve performance, use multiple steps in a Connect:Direct Process script when
Connect:Direct is transferring files to the same node
A sample process script called d_dir/ndm/bin/sample.cd is provided.

One Step Process – Least Efficient
Most Process open and build the network connection, transfer one file, and tear down the
network connection. This is a one step Process.

Following is a sample one step Process script:

Sample process snode=remote_node

step01
 copy from (file =/cdunix/ndm/bin/Direct
 pnode
)
 ckpt = 2M
 compress = extended
 to (file = /export/home/jsmith/cddelete.me
 snode
 disp = new
 sysopts=”:datatype=binary:”
)

pend;

 sample_process.cd

The majority of session time in this sample is spent managing the network connection.
The time spent building the session connection, and then tearing it down after the transfer
may take longer than the time it takes to transfer a file.

Most users build simple scripts to submit a Process like the sample shown above. Then,
during a company’s batch cycles, they release multiple Processes to their job queue.
Even though Connect:Direct can handle this load, it still must wait while network
connectivity is constructed and deconstructed for each Process. This method is not the
most efficient and can affect performance in a heavy workload environment.

Multiple Step Process – Most Efficient

Most of these delays can be removed by building Process scripts that contain multiple
steps – instead of just one step.

Here is an example of a Process script with multiple steps.

Sample process snode=remote_node

step01
copy from (file =/cdunix/ndm/bin/file_01 pnode)
 ckpt = 2M compress = extended
 to (file = /export/home/jsmith/file_01 snode
 disp = new sysopts=”:datatype=binary:”)

step02
copy from (file =/cdunix/ndm/bin/file_02 pnode)
 ckpt = 2M compress = extended
 to (file = /export/home/jsmith/file_02 snode
 disp = new sysopts=”:datatype=binary:”)
step03
copy from (file =/cdunix/ndm/bin/file_03 pnode)
 ckpt = 2M compress = extended
 to (file = /export/home/jsmith/file_03 snode
 disp = new sysopts=”:datatype=binary:”)

pend;

sample2_multi_step.cd

In this example, three files are sent within one Process script, by using three Process
steps. This example illustrates the manually entry of the file names. However, this script
can be built using variables and to include as many steps as needed to transfer files.
Variables allow you to provide file names at runtime. The Connect:Direct Process script
text is limited to 64K. The three-step Process example above is only 623 bytes.

Another way to achieve multiple step processes is to use the wild card feature included
with Connect:Direct version 3.4.00 or later. The wild card feature builds the steps for the
Process script at runtime. Below is a sample script that uses wild cards:

Sample process snode=remote_node

step01
copy from (file =/cdunix/ndm/stage_01/* pnode)
 ckpt = 2M compress = extended
 to (file = /export/home/batch/ snode
 disp = new sysopts=”:datatype=binary:”)

pend;

sample_wildcard.cd

When this Process runs, Connect:Direct obtains a list of all files in the stage_01 Directory
and then sends them to the remote node, placing them in the batch Directory. After all
files have been sent, the network connection is closed.

These examples illustrate a few ways of creating multiple Process scripts. Using multiple
steps in your Process scripts improves throughput by eliminating the need to establish a
network connection between each file transfer. Other ways to create multiple step
Processes include shell scripts or hard coded Process scripts.

The backlog caused by single-step Processes is not clear during initial testing since only a
handful of jobs are submitted. The backlog is evident when thousands of jobs are started
in a production level environment.

Using multiple steps in Process scripts eliminates most backlog situations by eliminating
duplicated network management tasks.

Sterling Commerce provides this document for reference purposes only. Your use of the
information contained herein is done at your own risk. Sterling Commerce does not
control or guarantee the accuracy, relevance, timeliness, or completeness of this
information. YOU UNDERSTAND AND AGREE THAT THE DOCUMENTS ARE
PROVIDED "AS IS" WITHOUT REPRESENTATION, CONDITION, WARRANTY
OR GUARANTEE OF ANY KIND WHETHER WRITTEN, ORAL, EXPRESS OR
IMPLIED, IN FACT OR IN LAW. STERLING COMMERCE SPECIFICALLY
DISCLAIMS AND EXCLUDES THE IMPLIED CONDITIONS AND WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. Further, the views
expressed in this document are not the views of Sterling Commerce and Sterling
Commerce does not endorse mentioned products or services. This document does not
constitute user documentation for any Sterling Commerce product or service.

	Using Multiple Step Processes to Improve Performance for Connect:Direct UNIX
	One Step Process – Least Efficient
	Multiple Step Process – Most Efficient

