
Code optimization with the IBM XL
compilers on Power architectures

IBM

December 2018

References in this document to IBM products, programs, or services do not imply that IBM intends to make these
available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not
intended to state or imply that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

IBM, the IBM logo, ibm.com, AIX, DB2, Db2, Domino, Lotus, Power, POWER, POWER6, POWER7, POWER8,
POWER9, Power Architecture, Power Systems, PowerPC, z Systems, z/OS, and z/VM are trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

NVIDIA and CUDA are either registered trademarks or trademarks of NVIDIA Corporation in the United States,
other countries, or both.

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

www.ibm.com/legal/copytrade.shtml

Chapter 1. Introduction

The IBM® XL compiler family offers C, C++, and Fortran compilers on operating
systems including AIX®, Linux, Linux on z Systems®, z/OS®, and z/VM®, which
are built on an industry wide reputation for robustness, versatility, and standards
compliance. The XL compilers provide industry leading optimizations along with
outstanding quality. Optimized code executes with greater speed and uses less
machine resources, making you more productive.

The optimization features of the XL compilers offer a wide range of optimization
levels, giving you the flexibility to trade off compile time against runtime
performance. You also have the ability to tailor optimization levels and settings to
meet the needs of your application and development environment.

This document introduces the most important optimization capabilities of the XL
compilers on Power® architectures and describes the compiler options, source
constructs, and techniques that you can use to maximize the performance of your
application.

A compiler that properly exploits the inherent opportunities of POWER® hardware
offers significant advantages. A program compiled with full optimization typically
runs substantially faster than the same program compiled without optimization. In
some cases the improvement can be a doubling or more in execution speed.

© Copyright IBM Corp. 2018 1

2 Code optimization with the IBM XL compilers on Power architectures

Chapter 2. The XL compiler family

The IBM XL family encompasses three core languages: C, C++, and Fortran. The
supported operating systems include AIX, Linux, Linux on z Systems, z/OS, and
z/VM, on IBM Power Systems™ and IBM Z.

The following link contains the XL compiler family product web pages where you
can find download information about the full versions, the Community Editions,
and the trial versions if available:
v https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-

family
v https://www.ibm.com/us-en/marketplace/ibm-fortran-compiler-family

A brief history
The XL compiler family has grown from the development work of the first
Power-based AIX systems at IBM since the mid 1980s. Since then, the IBM
compiler team has delivered ongoing and significant enhancements in terms of
new functional capabilities, improved optimization technology, and platform
exploitation of the latest IBM Power Systems. The XL compilers also share
optimization components with several key IBM mainframe z Systems compilers
allowing for shared enhancements between compilers.

The compiler development team at IBM works closely with the hardware and
operating system development teams. This allows the compilers to take advantage
of the latest hardware and operating system capabilities, and the compiler team
can influence the design for some hardware and operating systems, such as AIX
systems, so that subsequent compiler versions can exploit these design features for
better performance.

The optimization technology in the XL compiler family of compilers is used to
build performance-critical customer code, and is key to the success of many
performance-sensitive IBM products such as AIX and Db2®. The IBM XL family of
compilers is also used for publishing industry leading benchmark results, such as
Standard Performance Evaluation Corporation (SPEC) results.

© Copyright IBM Corp. 2018 3

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family
https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family
https://www.ibm.com/us-en/marketplace/ibm-fortran-compiler-family

4 Code optimization with the IBM XL compilers on Power architectures

Chapter 3. Optimization technology overview

Optimization techniques for the XL compilers on Power architectures are built on a
foundation of common components and techniques that are then customized for
the C, C++, and Fortran languages. All three language parser components emit an
intermediate language that is processed by the interprocedural analysis (IPA)
optimizer and the optimizing code generator. The languages also share a set of
language-independent high-performance runtime libraries to support capabilities
such as symmetric multiprocessing (SMP) and high-performance mathematical
calculations.

The XL compilers, by sharing common components across languages and hardware
platforms, give you the ability to exploit a wide range of optimization techniques
in all three languages. When the IPA optimizer is enabled, the IPA optimizer can
combine and optimize code from all three languages simultaneously when linking
an application.

Below are some of the optimization highlights that the XL family of compilers
offers:
v Five distinct optimization levels, as well as many additional options that allow

you to tailor the optimization process for your application
v Code generation and tuning for specific hardware chipsets, as well as the ability

to generate code for a lower level of processor for backwards compatibility and
tune the code for a newer level of processor for optimal performance on newer
systems

v Interprocedural optimization and inlining using IPA
v High order transformations using HOT
v Profile-directed feedback (PDF) optimization
v User-directed optimization with directives and source-level intrinsic functions

that give you direct access to Power, Vector Multimedia eXtension (VMX) and
Vector Scalar eXtension (VSX) instructions

v Optimization of OpenMP programs and auto-parallelization capabilities to
exploit SMP systems

v Automatic parallelization of calculations using vector machine instructions and
high-performance mathematical libraries

Note: IBM XL C/C++ for AIX, V16.1 that is invoked by the xlclang and xlclang++
invocation command does not support OpenMP and SMP.

For more information, see www.ibm.com/software/products/en/ccompfami and
www.ibm.com/software/products/en/fortcompfami.

© Copyright IBM Corp. 2018 5

http://www.ibm.com/software/products/en/ccompfami
http://www.ibm.com/software/products/en/fortcompfami

6 Code optimization with the IBM XL compilers on Power architectures

Chapter 4. Optimization levels

The optimizer includes five base optimization levels:
v -O0, best for getting the most debugging information
v -O2, intense low-level optimization that benefits most programs
v -O3, more intense low-level optimization analysis and base-level loop analysis
v -O4, all of -O3 plus detailed loop analysis and basic whole-program analysis at

link time
v -O5, all of -O4 and detailed whole-program analysis at link time

Optimization progression
When you increase the optimization level for performance benefits, possible
trade-offs can also occur.

Optimization levels and options

The following table details the compiler options implied by each level and options
that you are recommended to use with each level.

Table 1. Optimization levels and options

Base optimization level
Additional options implied
by level

Additional recommended
options

-O0 None -qarch

-O2 -qmaxmem=8192

-qnostrict_induction

-qarch

-qtune

-O3 ▌1▐ -qhot=level=0 ▌2▐

-qignerrno (C/C++)

-qmaxmem=-1

-qnostrict

-qsimd=auto ▌3▐

-qinline=noauto:level=5

-qarch

-qtune

-O4 All of -O3 plus:

-qhot

-qipa

-qarch=auto

-qtune=auto

-qcache=auto

-qarch

-qtune

-qcache

-O5 All of -O4 plus:

-qipa=level=2

-qarch

-qtune

-qcache

© Copyright IBM Corp. 2018 7

Table 1. Optimization levels and options (continued)

Notes:

1. Starting from IBM XL Fortran for Linux, V15.1.4 for little endian distributions and IBM
XL C/C++ for AIX, V16.1, -O3 implies -qhot. The -Ofast option is provided, which is
equivalent to -O3. -qhot without any suboptions implies -qhot=level=1.

2. Starting from IBM XL C/C++ for Linux, V13.1.4 for little endian distributions and IBM
XL C/C++ for AIX, V16.1, the -Ofast option is provided, which is equivalent to -O3
-qhot -D__FAST_MATH__.

3. On AIX and Linux for big endian distributions, -qsimd=auto is implied if you are
compiling on a POWER7®, POWER8®, or POWER9™ machine with the -O3, -O4 or -O5
optimization level. On Linux for little endian distributions, -qsimd=auto is implied
with the -O3, -O4 or -O5 optimization level.

While the previous table provides a list of the most common compiler options for
optimization, the XL compiler family offers optimization facilities for almost any
application. For example, you can also use -qsmp=auto with the base optimization
levels if you desire automatic parallelization of your application.

Note: IBM XL C/C++ for AIX, V16.1 invoked by the xlclang or xlclang++
invocation command does not support the -qsmp option.

Tradeoffs in using higher optimization levels

In general, higher optimization levels take additional compilation time and
resources. Specifying additional optimization options beyond the base optimization
levels might increase compilation time. For an application with long compilation
time, you should take compilation time into consideration when you choose the
optimization level and options.

It is important to test your application at lower optimization levels before moving
on to higher levels, or adding optimization options. If an application does not
execute correctly when built with -O0, it is unlikely to execute correctly when built
with -O2. Even subtly nonconforming code can cause the optimizer to perform
unexpected transformations, especially at the highest optimization levels. All XL
compilers have options to limit optimizations for nonconforming code, but it is
best to correct code rather than limit your optimization opportunities. One such
option is -qalias=noansi (XL C/C++), which is particularly useful in tracking
down unexpected application behavior due to a violation of the ANSI aliasing
rules.

Also, it is important to validate your application performance at different
optimization levels. While the compiler does more aggressive optimizations at
higher optimization levels, for some applications a lower optimization level may
provide better performance than a higher optimization level.

A note about tuning

Choosing the right hardware architecture level or family of architecture levels
becomes even more important at -O2 and higher. This allows you to compile for a
general set of targets but have the code run best on a particular target. If you
choose a family of hardware targets, the -qtune option can direct the compiler to
emit code consistent with the architecture choice, but will execute optimally on the
chosen tuning hardware target.

8 Code optimization with the IBM XL compilers on Power architectures

Optimization level 0 (-O0)
At -O0, XL compilers minimize optimization transformations to your applications.
Limited optimization occurs at -O0 even if you specify no other optimization
options. The limited optimization analysis generally results in a shorter
compilation time than the optimizations conducted on other optimization levels.

To debug your code, you can compile with -O0 and -g. It is usually easier to
debug code without optimization, because optimization can reorder code and make
it difficult to step through.

When debugging SMP code, you can specify -qsmp=noopt to perform only the
minimal transformations necessary to parallelize your code and preserve maximum
debug capability.

Note: IBM XL C/C++ for AIX, V16.1 invoked by the xlclang or xlclang++
invocation command does not support the -qsmp option.

Optimization level 2 (-O2)
After successfully compiling, executing, and debugging your application using
-O0, you can recompile it at -O2. -O2 exposes your application to a comprehensive
set of low-level transformations that apply to subprogram or compilation unit
scopes and to include some inlining. Optimizations at -O2 attempt to find a
balance between improving performance and limiting the impact on compile time
and system resources. You can increase the memory available to some of the
optimizations enabled by -O2 by providing a larger value for the -qmaxmem
option. Specifying -qmaxmem=-1 lets the optimizer use memory as needed
without checking for limits.

The -O2 option can perform a number of beneficial optimizations as follows:
v Common subexpression elimination - Eliminates redundant expressions.
v Constant propagation - Evaluates constant expressions at compile time.
v Dead code elimination - Eliminates instructions that a particular control flow

does not reach, or that generate an unused result.
v Dead store elimination - Eliminates unnecessary variable assignments.
v Global coloring register allocation - Globally assigns user variables to registers.
v Instruction scheduling for the target machine.
v Loop unrolling and software pipelining - Simplifies loop control flow and

reorders loop instructions to create looser data dependencies.
v Moving loop-invariant code out of loops.
v Pointer aliasing improvements to enhance other optimizations.
v Simplifying control flow.
v Strength reduction and effective use of addressing modes.
v Widening, which merges adjacent load, stores, or other operations.
v Value numbering - Simplifies algebraic expressions, by eliminating redundant

computations.

To debug your code, you can also compile it with -O2 and -gN, where N is an
integer in the range of 0 and 91 inclusive representing a trade-off between full
optimization and full debuggability. This takes advantage of the compiler support

Chapter 4. Optimization levels 9

for optimized debugging. Using -O2 and -gN is suitable when you want to deploy
your application with debugging enabled but still want to benefit from most
compiler optimizations provided at -O2.

Exception: 1. Starting from V13.1.6, IBM XL C/C++ for Linux for little endian
distributions, N can be 0, 1, 2, 8, or 9. In previous releases of IBM XL C/C++ for
Linux for little endian distributions, N can be 0, 1, or 2. In IBM XL C/C++ for AIX,
V16.1 that is invoked by the xlclang or xlclang++ invocation command, N can be
0, 1, and 2.

Optimization level 3 (-O3)
-O3 is an intensified version of -O2. The compiler performs additional low-level
transformations and removes limits on -O2 transformations, as -qmaxmem defaults
to the -1 (unlimited) value. Optimizations encompass larger program regions and
attempt more analysis. Starting from IBM XL Fortran for Linux, V15.1.4 for little
endian distributions, -O3 implies -qhot=level=1. For other IBM XL compilers on
IBM Power Systems, -O3 implies -qhot=level=0. -qhot enables high-order loop
analysis and transformation.

-O3 can perform transformations that are not always beneficial to all programs,
and it attempts several optimizations that can be both memory and time intensive.
However, most applications benefit from this extra optimization.

Some general differences with -O2 are as follows:
v Better loop scheduling and transformation
v Increased optimization scope
v Specialized optimizations that might not help all programs
v Optimizations that require large amounts of compile time or space
v Elimination of implicit memory usage
v Activation of -qinline=auto, which allows additional inlining
v Activation of -qnostrict, which allows some reordering of floating-point

computations and potential exceptions

Because -O3 implies the -qnostrict option, certain floating-point semantics of your
application can be altered to gain execution speed. These typically involve
precision trade-offs; examples are as follows:
v Reordering of floating-point computations.
v Reordering or elimination of possible exceptions (for example, division by zero

or overflow).
v Combining multiple floating-point operations into single machine instructions;

for example, replacing an add then multiply with a single more accurate and
faster floating-point multiply-and-add instruction

You can still gain most of the benefits of -O3 while preserving precise
floating-point semantics by specifying -qstrict. This is only necessary if absolutely
precise floating-point computational accuracy, as compared with -O0 or -O2
results, is important. You can also specify -qstrict if your application is sensitive to
floating-point exceptions, or if the order and manner in which floating-point
arithmetic is evaluated is important. Largely, without -qstrict, the difference in
computed values on any one source-level operation is very small compared to
lower optimization levels. However, the difference can compound if the operation
involved is in a loop structure, and the difference becomes additive.

10 Code optimization with the IBM XL compilers on Power architectures

You can use the -qstrict option and its suboptions for fine-grain control of strict
IEEE conformance. The -qstrict=vectorprecision suboption allows more control
over optimizations and transformations that violate strict program semantics. This
suboption disables vectorization in loops where it might produce different results
in vectorized iterations than in non-vectorized ones.

-O3 implies the -qignerrno option. Some system library functions set errno when
an exception occurs. When -qignerrno is in effect, the setting and subsequent side
effects of errno are ignored. This option allows the compiler to perform
optimizations that assume errno is not modified by system calls, for example,
replacing a call to sqrt or sqrtf with a hardware square root instruction.

When -qarch=pwr7 or higher is in effect, -qsimd=auto is implied at an
optimization level of -O3 or higher. When -qsimd=auto is in effect, the compiler
converts certain operations that are performed in a loop on successive elements of
an array into vector instructions. These instructions calculate several results at one
time, which is faster than calculating each result sequentially. Applying this option
is useful for applications with significant image processing demands.

The -Ofast option is provided in the following products:
v IBM XL Fortran for Linux, starting from V15.1.4 for little endian distributions

and IBM XL Fortran for AIX, V16.1 where the -Ofast option is equivalent to -O3.
v IBM XL C/C++ for Linux, starting from V13.1.4 for little endian distributions

and IBM XL C/C++ for AIX, V16.1 where the -Ofast option is equivalent to -O3
-qhot -D__FAST_MATH__.

Optimization level 4 (-O4)
-O4 is a way to specify -O3 with several additional optimization options. The most
important of the additional options is -qipa=level=1 which performs
interprocedural analysis (IPA).

IPA optimization extends program analysis beyond individual files and
compilation units to the entire application. IPA analysis can propagate values and
inline code from one compilation unit to another. Global data structures can be
reorganized or eliminated, and many other transformations become possible when
the entire application is visible to the IPA optimizer.

To make full use of IPA optimizations, you must specify -O4 on the compilation
and the link steps of your application build. At compilation time, important
optimizations occur at the compilation-unit level, as well as preparation for
link-stage optimization. IPA information is written into the object files produced.
At the link step, the IPA information is read from the object files and the entire
application is analyzed. The analysis results in a restructured and rewritten
application, which subsequently has the lower-level -O3 style optimizations
applied to it before linking. Object files containing IPA information can also be
used safely by the system linker without using IPA on the link step.

-O4 implies the following optimization options beyond IPA:
v -qhot enables a set of high-order transformation optimizations that are most

effective when optimizing loop constructs.
v -qarch=auto and -qtune=auto are enabled, and assume that the machine on

which you are compiling is the machine on which you will execute your
application. If the architecture of your build machine is incompatible with the

Chapter 4. Optimization levels 11

machine that will execute the application, you will need to specify different
-qarch and -qtune options after the -O4 option to override -qarch=auto and
-qtune=auto.

v -qcache=auto assumes that the cache configuration of the machine on which you
are compiling is the machine on which you will execute your application. If you
are executing your application on a different machine, specify correct cache
values, or use -qnocache to disable the auto suboption.

v -qinline=auto instructs the compiler to treat every function as a potential
candidate for inlining.

v -qsimd=auto is implied if -qarch=pwr7 or higher is in effect.

Optimization level 5 (-O5)
-O5 is the highest base optimization level including all -O4 optimizations and
setting -qipa to level 2. That change, like the difference between -O2 and -O3,
broadens and deepens IPA optimization analysis and performs even more intense
whole-program analysis. -O5 consumes the most compile time and machine
resource of any optimization level. You should only use -O5 once you have
finished debugging and your application works as expected at lower optimization
levels.

If your application contains both C/C++ and Fortran code compiled using XL
compilers, you can increase performance by compiling and linking the code with
the -O5 option.

The following options are also implied by -O5:
v -qarch=auto

v -qtune=auto

v -qcache=auto

v -qinline=auto

v -qsimd=auto if -qarch=pwr7 or higher is in effect

12 Code optimization with the IBM XL compilers on Power architectures

Chapter 5. Processor optimization capabilities

The AIX and Linux compilers target the full range of Power processors that those
operating systems support. Both AIX and Linux compilers support the VMX vector
instruction sets, which are available in POWER6® processors, or higher. VSX vector
instruction set are available in POWER7 processors, or higher. XL C for AIX, V11.1,
XL C/C++ for AIX, V11.1, XL C/C++ for Linux, V11.1, XL Fortran for AIX, V13.1,
XL Fortran for Linux, V13.1, and later versions support VSX vector instruction sets.

For information about supported POWER8 and POWER9 features, see the
following Whitepapers:
v IBM XL C/C++ compilers overview at www.ibm.com/support/

docview.wss?uid=swg27007322
v IBM XL Fortran compilers overview at www.ibm.com/support/

docview.wss?uid=swg27007323

-qarch option
Using the correct -qarch suboption is the most important step in influencing
chip-level optimization. The compiler uses the -qarch option to make both high
and low-level optimization decisions and trade-offs. The -qarch option allows the
compiler to access the full range of processor hardware instructions and
capabilities when making code generation decisions. Even at low optimization
levels, specifying the correct target architecture can have a positive impact on
performance.

-qarch instructs the compiler to structure your application to execute on a
particular set of machines that support the specified instruction set. You can use
the suboptions of -qarch to target individual processors or a family of processors
with common instruction sets or subsets. The choice of processor gives you the
flexibility of compiling your application to execute optimally on a particular
machine or on a variety of machines, but still have as much architecture-specific
optimization applied as possible.

For example, to compile applications with the XL compilers that will only run on
POWER9 architecture, use -qarch=pwr9, which is supported starting from IBM XL
Fortran for Linux, V15.1.5 for little endian distributions, IBM XL C/C++ for Linux,
V13.1.5 for little endian distributions, IBM XL C/C++ for AIX, V16.1, and IBM XL
Fortran for AIX, V16.1. When you use XL compilers for AIX to compile
applications that will only run on 64-bit mode capable hardware, specify
-qarch=pwr4 to select the entire 64-bit PowerPC® and Power family of processors.

The default for -qarch is platform dependent. The default setting of -qarch at -O0,
-O2, and -O3 selects the smallest subset of capabilities that all the processors have
in common for the target operating system and compilation mode. At levels -O4 or
-O5 or if -qarch=auto is specified, the compiler will detect the type of machine on
which you are compiling and assume that your application will execute on the
same type of machine architecture.

© Copyright IBM Corp. 2018 13

http://www.ibm.com/support/docview.wss?uid=swg27007322
http://www.ibm.com/support/docview.wss?uid=swg27007322
http://www.ibm.com/support/docview.wss?uid=swg27007323
http://www.ibm.com/support/docview.wss?uid=swg27007323

-qtune option
The -qtune suboptions direct the optimizer to bias optimization decisions for
executing the application on a particular architecture, but they do not prevent the
application from running on other architectures.

The -qtune suboptions allow the optimizer to perform transformations, such as
instruction scheduling, so that resulting code executes most efficiently on your
chosen -qtune architecture. Because the -qtune suboption tunes code to run on one
particular processor architecture, it does not support suboptions representing
families of processors.

The default -qtune setting depends on the setting of the -qarch option. If the
-qarch suboption selects a particular machine architecture, the range of -qtune
suboptions that are supported is limited by the chosen architecture, and the default
tune setting will be compatible with the selected target processor. If instead the
-qarch suboption selects a family of processors, the range of values accepted for
-qtune suboption is expanded across that family, and the default is chosen from a
commonly used machine in that family.

The -qtune simultaneous multithreading (SMT) suboptions allow specification of a
target SMT mode to direct optimization for best performance in that mode. A
particular SMT suboption is valid if the effective -qarch option supports the
specified SMT mode.

-qtune=balanced:balanced is the default when no valid -qarch setting is in effect.
-qtune=balanced:balanced instructs the compiler to tune generated code for
optimal performance across a range of recent processor architectures, including
POWER8, and for optimal performance across various SMT modes for a selected
range of recent hardware.

Use -qtune to specify the most common or important processor where your
application executes. For example, if your application usually executes on a
POWER8-based system configured for SMT4 mode, but sometimes executes on
POWER7-based systems, specify -qtune=pwr8:smt4. The code generated executes
more efficiently on POWER8-based systems but can run correctly on
POWER7-based systems.

With the -qtune=auto suboption, which is the default for optimization levels -O4
and -O5, the compiler detects the machine characteristics on which you are
compiling, and tunes for that type of machine.

-qcache option
-qcache describes to the optimizer the memory cache layout for the machine where
your application will execute. There are several suboptions you can specify to
describe cache characteristics such as types of cache available, their sizes, and
cache-miss penalties. If you do not specify -qcache, the compiler will make cache
assumptions based on your -qarch and -qtune option settings. If you know some
cache characteristics of the target machine, you can still specify them. With the
-qcache=auto suboption, the default at -O4 and -O5, the compiler detects the cache
characteristics of the machine on which you are compiling and assumes you want
to tune cache optimizations for that cache layout. If you are unsure of your cache
layout, allow the compiler to choose appropriate defaults.

14 Code optimization with the IBM XL compilers on Power architectures

Source-level optimizations
The XL compiler family exposes hardware-level capabilities directly to you through
source-level intrinsic functions, procedures, directives, and pragmas. XL compilers
offer simple interfaces that you can use to access Power instructions that control
the following low-level instruction functionality:
v Hardware cache prefetching, clearing, and synchronizing
v Access to FPSCR register (read and write)
v Arithmetic (e.g. FMA, converts, rotates, reciprocal SQRT)
v Compare-and-trap
v VMX and VSX vector data types and instructions

The compiler inserts the requested instructions or instruction sequences for you,
but it is also able to perform optimizations using and modeling the behavior of the
instructions.

The vector instruction programming interface
Under the -qaltivec option, XL C and C++ compilers for AIX and Linux
additionally support the AltiVec programming interfaces originally defined by the
Mac OS X GCC compiler. This allows source-level recognition of the vector data
type and the more than 100 intrinsic functions defined to manipulate vector data.
These interfaces allow you to program source-level operations that manipulate
vector data using the VMX or VSX facilities of PowerPC VMX processors such as
POWER8. Vector capabilities allow your program to calculate arithmetic results on
up to sixteen data items simultaneously.

XL Fortran compilers for AIX and Linux also support VMX and VSX instructions
and a VECTOR data type to access vector programming interfaces.

The -qsimd=auto option enables automatic generation of vector instructions for
processors that support them. It replaces the -qenablevmx option, which has been
deprecated.

Chapter 5. Processor optimization capabilities 15

16 Code optimization with the IBM XL compilers on Power architectures

Chapter 6. High-order transformation (HOT) loop optimization

The HOT optimizer is a specialized loop transformation optimizer. Loops typically
account for the majority of the execution time of most applications and the HOT
optimizer performs in-depth analysis of loops to minimize their execution time.
Loop optimization techniques include: interchange, fusion, unrolling of loop nests,
and reducing the use of temporary arrays. There are three goals in these
optimizations:
v Reducing the costs of memory access through the effective use of caches and

translation look-aside buffers (TLBs). Increasing memory locality reduces
cache/TLB misses.

v Overlapping computation and memory access through effective utilization of the
data prefetching capabilities provided by the hardware.

v Improving the utilization of processor resources through reordering and
balancing the usage of instructions with complementary resource requirements.
Loop computation balance typically involves load/store operations balanced
against floating-point computations.

The default set of HOT optimizations is enabled at -O4 and -O5. Starting from
V15.1.4, in IBM XL Fortran for Linux for little endian distributions, the default set
of HOT optimizations is enabled at -O3. For other XL compilers, HOT
optimizations at a reduced intensity are enabled at -O3. You can specify full HOT
optimization by using the -qhot option.

HOT is especially adept at handling Fortran 90-style array language constructs and
performs optimizations such as elimination of intermediate temporary variables
and fusion of statements. HOT also recognizes opportunities in code compiled
with XL C and C++ compilers.

In all three languages, you can use pragmas and directives to assist the HOT
optimizer in loop analysis. In Fortran, assertive directives such as INDEPENDENT
or CNCALL allow you to describe important loop characteristics or behaviors that
the HOT optimizer can exploit. Prescriptive directives such as UNROLL or
PREFETCH allow you to direct the HOT optimizer's behavior on a loop-by-loop
basis. You can additionally use the -qreport compiler option to generate
information about loop transformations. The report can assist you in deciding
where pragmas or directives can be applied to improve performance.

HOT short vectorization using VMX or VSX
IBM XL compilers for AIX and Linux support Vector Multimedia eXtension (VMX)
and Vector Scalar eXtension (VSX) instructions. When you target VMX and VSX
Power processors such as POWER7, specifying -qsimd=auto allows the optimizer
to transform code into VMX or VSX instructions. VMX and VSX machine
instructions can execute up to sixteen operations in parallel. The most common
opportunity for this transformation is with loops that iterate over contiguous array
data performing calculations on each element. You can use the NOSIMD directive
in Fortran or the equivalent pragma #pragma nosimd in C/C++ to prevent the
transformation of a particular loop.

Note: IBM XL C/C++ for AIX, V16.1 invoked by the xlclang or xlclang++
invocation command does not support #pragma nosimd.

© Copyright IBM Corp. 2018 17

HOT long vectorization
If you specify -qhot with no suboptions or an option that implies -qhot, such as
-O4, the -qhot=vector suboption is enabled by default. The vector suboption can
optimize loops in source code for operations on array data by ensuring that
operations run in parallel where applicable. The compiler uses standard machine
registers for these transformations and does not restrict vector data size,
supporting both single- and double-precision floating-point vectorization. HOT
vectorization often involves transformations of loop calculations into calls to
specialized mathematical routines supplied with the compiler through the MASS
libraries. These mathematical routines use algorithms that calculate the results
more efficiently than executing the original loop code. Because HOT long
vectorization does not use VMX or VSX Power instructions, it can be used on all
types of systems.

HOT array size adjustment
An array dimension that is a power of two can lead to a decrease in cache
efficiency. The -qhot=arraypad suboption allows the compiler to increase the
dimensions of arrays where doing so can improve the efficiency of
array-processing loops. Using this suboption can reduce cache misses and page
faults that slow your array processing programs. Padding will not necessarily
occur for all arrays, and the compiler can pad different arrays by different
amounts. You can specify a padding factor for all arrays, which would typically be
a multiple of the largest array element size. Array padding should be done with
discretion. The HOT optimizer does not check for situations where array data is
overlaid, as with Fortran EQUIVALENCE or C union constructs, or with Fortran
array reshaping operations.

HOT fast scalar math routines
The XLOPT library contains faster versions of certain math functions that are
normally provided by the operating system or in the default runtime. With
-qhot=fastmath, the compiler replaces calls to the math functions with their faster
counterparts in XLOPT library. This option requires -qstrict=nolibrary to be in
effect.

18 Code optimization with the IBM XL compilers on Power architectures

Chapter 7. Interprocedural analysis (IPA) optimization

The IPA optimizer's primary focus is whole-program analysis and optimization.
IPA analyzes the entire program at one time rather than on a file-by-file basis. This
analysis occurs during the link step of an application build when the entire
program, including linked-in libraries, is visible to the IPA optimizer. IPA can
perform transformations that are not possible when only one file or compilation
unit is visible at compile time.

IPA link-time transformations restructure your application, performing
optimizations such as inlining between compilation units. Complex data flow
analysis occur across subprogram calls to eliminate parameters or propagate
constants directly into called subprograms. IPA can recognize system library calls
because it acts as a pseudo-linker resolving external subprogram calls to system
libraries. This allows IPA to improve parameter usage analysis or even eliminate
the call completely and replace it with more efficient inline code.

In order to maximize IPA link-time optimization, the IPA optimizer must be used
on both the compile and the link step. IPA can only perform a limited program
analysis at link time on objects that were not compiled with IPA, and must work
with greatly reduced information. When IPA is active on the compile step, program
information is stored in the resulting object file, which IPA reads on the link step
when the object file is analyzed. The program information is invisible to the system
linker, and the object file can be used as a normal object and be linked without
invoking IPA. IPA uses the hidden information to reconstruct the original
compilation and is then able to completely reanalyze the subprograms in the object
in the context of their actual usage in the application.

The IPA optimizer performs many transformations even if IPA is not used on the
link step. Using IPA on the compile step initiates optimizations that can improve
performance for each individual object file even if the object files are not linked
using the IPA optimizer. Although IPA's primary focus is link-step optimization,
using the IPA optimizer only on the compile-step can still be very beneficial to
your application.

Since the XL compiler family shares optimization technology, object files created
using IPA on the compile step with the XL C, C++, and Fortran compilers can all
be analyzed by IPA at link time. Where program analysis shows objects were built
with compatible options, such as -qnostrict, IPA can perform transformations such
as inlining C functions into Fortran code, or propagating C++ constant data into C
function calls.

IPA's link-time analysis facilitates a restructuring of the application and a
partitioning of it into distinct units of compatible code. After IPA optimizations are
completed, each unit is further optimized by the optimizer normally invoked with
the -O2 or -O3 option. Each unit is compiled into one or more object files, which
are linked with the required libraries by the system linker, producing an executable
program.

It is important that you specify a set of compilation options as consistent as
possible when compiling and linking your application. This applies to all compiler
options, not just -qipa suboptions. The ideal situation is to specify identical options
on all compilations and then to repeat the same options on the IPA link step.

© Copyright IBM Corp. 2018 19

Incompatible or conflicting options used to create object files or link-time options
in conflict with compile-time options can reduce the effectiveness of IPA
optimizations. For example, it can be unsafe to inline a subprogram into another
subprogram if they were compiled with conflicting options.

IPA suboptions
The IPA optimizer has many behaviors, which you can control using the -qipa
option and suboptions. The most important part of the IPA optimization process is
the level at which IPA optimization occurs. By default, the IPA optimizer is not
invoked. If you specify -qipa without a level, or -O4, IPA is run at level one. If you
specify -O5, IPA is run at level two. Level zero can reduce compilation time, but
performs a more limited analysis. The following topics describe some of the
important IPA transformations at each level.

-qipa=level=0
v Automatic recognition of standard library functions such as ANSI C and Fortran

runtime routines
v Localization of statically bound variables and procedures
v Partitioning and layout of code according to call affinity, which expands the

scope of the -O2 and -O3 low-level compilation unit optimizer

This level costs less compilation time than higher levels, but its benefits to
application performance might be smaller.

-qipa=level=1
v Level 0 optimizations
v Inlining for all functions
v Limited alias analysis
v Limited call-site tailoring
v Partitioning and layout of static data according to reference affinity

-qipa=level=2
v Level 0 and level 1 optimizations
v Whole interprocedural data flow and alias analysis
v Disambiguation of pointer references and calls
v Refinement of call side effect information
v Aggressive intraprocedural optimizations
v Value numbering, code propagation and simplification, code motion (into

conditions, out of loops), and redundancy elimination
v Interprocedural constant propagation, dead code elimination, and pointer

analysis
v Procedure specialization (cloning)

More -qipa suboptions
In addition to selecting a level, the -qipa option has many other suboptions
available for fine-tuning the optimizations applied to your program. There are
several suboptions to control inlining including:
v How much to do
v Threshold levels

20 Code optimization with the IBM XL compilers on Power architectures

v Functions to always or never inline
v Other related actions

Other suboptions of -qipa allow you to describe the characteristics of given
subprograms to IPA, such as pure, safe, exits, isolated, low execution frequency,
and others. The -qipa=list suboption can show you brief or detailed information
concerning IPA analysis such as program partitioning and object reference maps.

An important suboption that can speed compilation time is -qipa=noobject. You
can reduce compilation time if you intend to use IPA on the link step and do not
need to link the object files that are compiled without IPA involved. Specify the
-qipa=noobject option on the compile step to create object files that only the IPA
link-time optimizer can use. This creates object files more quickly because the
low-level compilation unit optimizer is not invoked on the compile step.

You can also reduce IPA optimization time using the -qipa=threads suboption. The
threads suboption allows the IPA optimizer to run portions of the optimization
process in parallel threads, which can speed up the compilation process on
multiprocessor systems.

Note: The -qipa=threads option is not supported by XL C/C++ for AIX, V16.1 that
is invoked by xlclang/xlclang++ and XL C/C++ Linux for little endian
distributions.

Chapter 7. Interprocedural analysis (IPA) optimization 21

22 Code optimization with the IBM XL compilers on Power architectures

Chapter 8. Profile-directed feedback (PDF) optimization

PDF is an optimization that the compiler applies to your application in two stages.
The first stage collects information about your program with typical input data
during run time. The second stage applies transformations to your application
based on the information that is collected from the first stage. XL compilers use
PDF to get information such as the locations of heavily used or infrequently used
blocks of code. Capturing the relative execution frequency of code provides the
compiler with opportunities to bias execution paths in favor of heavily used code.
PDF can restructure code to ensure that frequently and infrequently executed
blocks are separated; this helps reduce the path length and the risk of instruction
cache misses in frequently executed code.

You should provide PDF with input data that are typical to your program. Using
atypical data or insufficient data can lead to a faulty analysis of the program and
suboptimal program transformation. If you do not have sufficient data, PDF
optimization is not recommended.

The first step in PDF optimization is to compile your application with the -qpdf1
option. Doing so instruments your code with calls to a PDF runtime library that
will link with your program. You then execute your application with typical input
data. You can execute the application multiple times, preferably with different sets
of input data. Each run records information in data files. The cleanpdf utility can
be used to remove PDF data files. The mergepdf utility can be useful when
combining the results of different PDF runs and assigning relative weights to their
importance in optimization analysis. The showpdf utility can be used to view
profiling information that is gathered from your application.

After you collect sufficient PDF data, recompile or simply relink your application
with the -qpdf2 option. The compiler reads the PDF data files and makes the
information available to all levels of optimization that are active. PDF optimization
requires at least the -O2 optimization level, but it can also be combined with other
optimization options such as the -qhot or -qipa option.

In addition, PDF optimization can make your application generate cache-miss
profiling, block-counter profiling, call-counter profiling, and value profiling
depending on the PDF level you specify. You can use the default
-qpdf[1|2]=exename to name the generated PDF file as .<output_name>_pdf, where
<output_name> is the name of the output file that is generated when you compile
your program with -qpdf1. You can use -qpdf[1|2]=defname to name the
generated PDF file as ._pdf. You can use -qpdf[1|2]=pdfname=file_path to specify
the directories and names for the PDF files and any existing PDF map files. You
can also use the -qpdf1=unique option to avoid locking a single PDF file when
multiple processes are writing to the same PDF file in the PDF training step.

In addition to getting PDF profiling information that is written to one or more PDF
files upon normal termination, you can dump PDF profiling information to one or
more PDF snapshot files during execution with the following compilers:
v IBM XL C/C++ for Linux, V13.1.4 for little endian distributions, and later

releases
v IBM XL Fortran for Linux, V15.1.4 for little endian distributions, and later

releases

© Copyright IBM Corp. 2018 23

v IBM XL C/C++ for AIX, V16.1
v IBM XL Fortran for AIX, V16.1

This is especially useful when the application is to be terminated abnormally.

PDF optimization is most effective when you apply it to applications that contain
blocks of code that are infrequently and conditionally executed. Typical examples
of this coding style include blocks of error-handling code and code that has been
instrumented to conditionally collect debugging or statistical information.

24 Code optimization with the IBM XL compilers on Power architectures

Chapter 9. Symmetric multiprocessing (SMP) optimizations

OpenMP support

Starting from the following product releases, the XL compilers fully support the
OpenMP API Version 3.1 specification:
v IBM XL C for AIX, V12.1
v IBM XL C/C++ for AIX, V12.1
v IBM XL C/C++ for Linux, V12.1 for big endian distributions
v IBM XL C/C++ for Linux, V13.1.2 for little endian distributions
v IBM XL Fortran for AIX, V14.1
v IBM XL Fortran for Linux, V14.1 for big endian distributions
v IBM XL Fortran for Linux, V15.1.2 for little endian distributions

Starting from the following product releases, the XL compilers partially support the
OpenMP API Version 4.0 specification:
v IBM XL C for AIX, V13.1
v IBM XL C/C++ for AIX, V13.1
v IBM XL C/C++ for Linux, V13.1 for big endian distributions
v IBM XL C/C++ for Linux, V13.1.2 for little endian distributions
v IBM XL Fortran for AIX, V15.1
v IBM XL Fortran for Linux, V15.1 for big endian distributions
v IBM XL Fortran for Linux, V15.1.2 for little endian distributions

Starting from the following product releases, the XL compilers partially support the
OpenMP API Version 4.5 specification:
v IBM XL C/C++ for Linux, V13.1.3 for little endian distributions
v IBM XL Fortran for Linux, V15.1.3 for little endian distributions

The following compiler releases fully support the OpenMP API Version 4.0 and
OpenMP API Version 4.5 specifications:
v IBM XL C/C++ for Linux, V16.1.1
v IBM XL Fortran for Linux, V16.1.1

IBM XL C/C++ for AIX, V16.1 that is invoked by xlclang or xlclang++ does not
support OpenMP or SMP.

Using OpenMP allows you to write portable code compliant to the OpenMP
parallel-programming standard and enables your application to run in parallel
threads on SMP systems. OpenMP consists of a set of source-level pragmas,
directives, and runtime function interfaces you can use to parallelize your
application. The compilers include threadsafe libraries for OpenMP support, or for
use with other SMP programming models.

Additional shared-memory parallelism

The optimizer in XL compilers includes threadsafe optimizations specific to SMP
programming and particular performance enhancements to the OpenMP standard.
The -qsmp compiler option has many suboptions that you can use to guide the

© Copyright IBM Corp. 2018 25

optimizer when analyzing SMP code. You can set additional SMP specific
environment variables to tune the runtime behavior of your application in a way
that maximizes the SMP capabilities of your hardware. For basic SMP functionality,
the -qsmp=noopt suboption allows you to transform your application into an SMP
application, but performs only the minimal transformations required to preserve
maximum source-level debug information.

The -qsmp=auto suboption enables automatic transformation of normal
sequentially-executing code into parallel-executing code. This suboption allows the
optimizer to automatically exploit the SMP and shared memory parallelism
available in IBM processors. By default, the compiler will attempt to parallelize
explicitly coded loops as well as those that are generated by the compiler for
Fortran array language. If you do not specify -qsmp=auto, or you specify
-qsmp=noopt, automatic parallelization is turned off, and parallelization only
occurs for constructs that you mark with prescriptive directives or pragmas.

The -qsmp compiler option also supports suboptions that allow you to guide the
compiler's SMP transformations. These include suboptions that control
transformations of nested parallel regions, use of recursive locks, and what task
scheduling models to apply.

Using correct invocation commands

For XL C/C++ compilers for AIX and Linux for big endian distributions and XL
Fortran compilers, when using -qsmp or any other parallel-based programming
model, you must invoke the compiler with one of the threadsafe _r variations of
the compiler invocation commands. For example, rather than use xlc, you must use
xlc_r. Threadsafe invocation commands instruct the compiler to use an alternate set
of definitions like -D_THREAD_SAFE and threadsafe libraries. You can use the
threadsafe invocation commands even when you are not generating code that
executes in parallel. However, especially for XL Fortran, code and libraries will be
used in place of the sequential forms that are not always as efficient in a
single-threaded execution mode. Note that starting from IBM XL C/C++ for Linux,
V13.1.1 for little endian distributions, all the invocation commands can be used to
link programs that use multithreading and the _r versions of invocation commands
are for backward compatibility only.

For XL C/C++ compilers for Linux for little endian distributions, all the invocation
commands allow for threadsafe compilations. You can use them to link the
programs that use multithreading.

26 Code optimization with the IBM XL compilers on Power architectures

Chapter 10. Offloading computations to the NVIDIA GPUs

Starting from the following compilers, you can offload compute-intensive parts of
an application and associated data to the NVIDIA GPUs by using the supported
OpenMP device constructs.
v XL C/C++ for Linux, V13.1.5 for little endian distributions
v XL Fortran for Linux, V15.1.5 for little endian distributions

The combination of the IBM POWER processors and the NVIDIA GPUs provides a
platform for heterogeneous high-performance computing that can run several
technical computing workloads efficiently. The computational capability is built on
top of massively parallel and multithreaded cores within the NVIDIA GPUs and
the IBM POWER processors. Using the supported hardware, supported operating
systems, and required NVIDIA CUDA Toolkit, you can offload parallel operations
within applications, such as data analysis or high-performance computing
workloads, to GPUs.

You must specify the -qoffload and -qsmp options to enable the support for
offloading OpenMP target regions to NVIDIA GPUs.

Starting from XL C/C++ for Linux, V13.1.6 for little endian distributions and XL
Fortran for Linux, V15.1.6 for little endian distributions, you can use the -qtgtarch
option to specify the real or virtual GPU architectures where the code can run,
overriding the default GPU architecture. This allows the compiler to take
maximum advantage of the capabilities and machine instructions which are
specific to a GPU architecture, or common to a virtual architecture.

In addition, starting from V13.1.5, you can use XL C/C++ for Linux for little
endian distributions with the NVIDIA CUDA C++ compiler (NVCC) from the
NVIDIA CUDA Toolkit. NVCC partitions C/C++ source code into host and device
portions. XL C/C++ for Linux for little endian distributions can be used as the
host compiler for the POWER processor with NVCC.

Starting from V15.1.4, XL Fortran for Linux for little endian distributions supports
the CUDA Fortran programming model to exploit the NVIDIA GPUs. You must
specify the -qcuda option to use the commonly used subset of CUDA Fortran that
is provided by the compiler.

© Copyright IBM Corp. 2018 27

28 Code optimization with the IBM XL compilers on Power architectures

Chapter 11. IBM Mathematical Acceleration Subsystem
(MASS) libraries

XL compiler products ship the IBM MASS libraries of mathematical intrinsic
functions that are specifically tuned for optimum performance on Power
architectures.

The MASS libraries include scalar, vector and SIMD functions. They are threadsafe
and offer improved performance; they support the following operating systems:
v 32-bit and 64-bit AIX and Linux for big endian distributions
v 64-bit Linux for little endian distributions
v MASS libraries support 64-bit Linux for little endian distributions and AIX;

however, the library names for these platforms do not contain the _64 suffix.

The MASS scalar library, libmass.a, contains a set of frequently used math intrinsic
functions that provide improved performance over the corresponding standard
system library functions.

The MASS vector libraries contain intrinsic functions that can be used with C,
C/C++, or Fortran applications. libmassv.a contains vector functions that will run
on all models in the IBM Power Systems family, while libmassvpn.a contains
functions tuned for a specific Power architecture. For example, libmassvp5.a
contains functions tuned for POWER5, and libmassvp9.a (AIX and Linux for little
endian distributions) contains functions tuned for POWER9.

The MASS SIMD libraries libmass_simdp7.a, libmass_simdp7_64.a (Linux for big
endian distributions only), libmass_simdp8.a, libmass_simdp8_64.a (Linux for big
endian distributions only), and libmass_simdp9.a (AIX and Linux for little endian
distributions) contain a set of frequently used math intrinsic functions that provide
improved performance over the corresponding standard system library functions.

© Copyright IBM Corp. 2018 29

30 Code optimization with the IBM XL compilers on Power architectures

Chapter 12. Basic Linear Algebra Subprograms (BLAS)

BLAS is a set of high-performance algebraic functions. Four BLAS functions are
shipped with each XL compiler in the libxlopt library:
v sgemv (single-precision) and dgemv (double-precision), which compute the

matrix-vector product and sum for a general matrix or its transpose
v sgemm (single-precision) and dgemm (double-precision), which perform combined

matrix multiplication and addition for general matrices or their transposes

© Copyright IBM Corp. 2018 31

32 Code optimization with the IBM XL compilers on Power architectures

Chapter 13. Aliasing

The apparent effects of direct or indirect memory access can often constrain the
precision of compiler analyses. Memory can be referenced directly through a
variable, or indirectly through a pointer, function call or reference parameter. Many
apparent references to memory are false, and constitute barriers to compiler
analysis. The compiler analyzes possible aliases at all optimization levels above
level 0, but when you use the -qipa option, the aliasing analysis is more thorough.
Options such as -qalias, Fortran directives such as CNCALL and INDEPENDENT,
and C/C++ type attributes such as may_alias can fundamentally improve the
precision of compiler analysis.

IBM XL compiler rules are well defined for what can and cannot be done with
arguments passed to subprograms. Failure to follow language rules that affect
aliasing will often mislead the optimizer into performing unexpected
transformations. The higher the optimization level and the more optional
optimizations you apply, the more likely the optimizer will be misled.

XL compilers supply options that you can use to optimize programs with
nonstandard aliasing constructs. Specifying these options can result in poor-quality
aliasing information, and less than optimal code performance. It is recommended
that you alter your source code where possible to conform to language rules.

You can specify the -qalias option for all three XL compiler languages to assert
whether your application follows aliasing rules. For Fortran and C++,
standards-conformant program aliasing is the default assumption. For the C
compiler, the invocations that begin with "xlc" assume conformance, and the
invocations that begin with "cc" do not. The -qalias option has suboptions that
vary by language. Suboptions exist for both the purpose of specifying that your
program has nonstandard aliasing, and for asserting to the compiler that your
program exceeds the aliasing requirements of the language standard. The latter set
of suboptions can remove barriers to optimization that the compiler must assume
due to language rules. For example, in the XL C/C++ compiler (XL C for AIX, XL
C/C++ for AIX invoked by xlc/xlC or equivalent invocation commands, and XL
C/C++ for Linux for big endian distributions), specifying -qalias=typeptr allows
the optimizer to assume that pointers to different types never point to the same or
overlapping storage. For the XL C compiler, the c89 and c99 invocations assume
ANSI aliasing conformance creating additional optimization opportunities as the
optimizer performs more precise aliasing analysis in code with pointers.

For XL C and XL C/C++ compilers, you can specify the may_alias type attribute
for a type so that lvalues of the type can alias objects of any type, similar to a char
type. Types with the may_alias attribute are not subject to type-based aliasing
rules.

© Copyright IBM Corp. 2018 33

34 Code optimization with the IBM XL compilers on Power architectures

Chapter 14. Additional performance options

In addition to the options already introduced, the XL compilers have many other
options that you can use to direct the optimizer. Some of these are specific to
individual XL compilers rather than the entire XL compiler family. Those options
that apply to all languages have their name followed by the suffix (all).

Optimizer guidance options
-qcompact (all)

Default is -qnocompact. Prefers final code size reduction over execution
time performance when a choice is necessary. Can be useful as a way to
constrain the -O2 and higher optimization levels.

-ma (XL C for AIX, XL C/C++ for AIX that is invoked by xlclang, and XL C/C++
for Linux for big endian distributions)

The compiler will generate inline code for calls to the alloca library
function.

-qinline (all)
Attempts to inline procedures instead of generating calls to those
procedures, for improved performance. It has the following suboptions:

auto | noauto
Enables or disables automatic inlining.

level=number
Indicates the relative degree of inlining. The values for number
must be integers in the range 0 - 10 inclusive. The default value for
number is 5. The greater the value of number, the more aggressive
inlining the compiler conducts.

function_name (C, C++), procedure_name (Fortran)

v If or procedure_name is specified after the -qinline+ option, the
named function_name or procedure_name must be inlined.

v If function_name or procedure_name is specified after the
-qinline- option, the named function_name or procedure_name
must not be inlined.

-qpic=large (all compilers except XL C/C++ for AIX, V16.1 that is invoked by
xlclang/xlclang++ and XL C/C++ for Linux for little endian distributions)

Instructs the compiler to assume that the size of the TOC is larger than 64
Kb.

-qprefetch (all)
Instructs the compiler to insert prefetch instructions automatically where
there are opportunities to improve code performance.

-qro, -qroconst (C, C++)
Directs the compiler to place string literals (-qro), or constant values
(-qroconst) in read-only storage.

-qsmallstack (all)
Default is -qnosmallstack. Instructs the compiler to minimize the use of
stack (automatic) storage where possible; doing so can increase heap
(dynamically allocated) usage.

© Copyright IBM Corp. 2018 35

This option is valid only when used with IPA via the -qipa, -O4, and -O5
options.

-qunroll (all)
Default is -qunroll=auto. Independently controls loop unrolling. It is
turned on implicitly with any optimization level higher than -O0. You can
specify suboptions that determine the aggressiveness of automatic loop
unrolling.

Program behavior options
-qaggrcopy=overlap|nooverlap (C, C++)

Specifies whether aggregate assignments may have overlapping source and
target locations. Default is overlap with cc compiler invocations, nooverlap
with xlc and xlC compiler invocations.

-qassert (all compilers except XL C/C++ for AIX, V16.1 that is invoked by
xlclang/xlclang++ and XL C/C++ for Linux for little endian distributions)

Provides information about the characteristics of your code that can help
the compiler fine-tune optimizations. For example, for the XL Fortran
compiler, the deps suboption indicates that at least one loop has a memory
dependence or conflict from iteration to iteration. For improved
performance, try -qassert=nodeps when no loops in the compilation unit
carry a dependence around loop iterations. The itercnt suboption modifies
the default assumptions about the expected iteration count of loops;
normally the optimizer will assume ten iterations for a typical loop.

-qnoeh (C++)
Default is -qeh. Asserts that no throw is reachable from the code compiled
in this compilation unit. Using this option can improve execution speed
and reduce code footprint where the code has no C++ exception handling.

-qignerrno (C, C++)
Default is -qnoignerrno. For -O3 and up, default is -qignerrno. Indicates
that the value of errno is not needed by the program. Can help
optimization of math functions that may set errno, such as sqrt.

-qlibansi (all)
Default is -qnolibansi. Specifies that calls to ANSI standard function
names will be bound with conforming implementations. Allows the
compiler to replace the calls with more efficient inline code or at least do
better call-site analysis.

-qproto (XL C for AIX and Linux for big endian distributions)
Asserts that procedure call points agree with their declarations even if the
procedure has not been prototyped. Useful for well-behaved K&R C code.

-qnounwind (all)
Default is -qunwind. Asserts that the stack will not be unwound in such a
way that register values must be accurately restored at call points. Most
Fortran applications can use -qnounwind, which allows the compiler to be
more aggressive in eliminating register saves and restores at call points.

Floating-point computation options
The -qfloat option provides precise control over the handling of floating-point
calculations. XL compiler default options result in code that is almost IEEE 754
compliant. Where the compiler generates non-compliant code, it can exploit certain
optimizations such as floating-point constant folding, or to use efficient Power

36 Code optimization with the IBM XL compilers on Power architectures

instructions that combine operations. You can use -qfloat to prohibit these
optimizations. Some of the most frequently applicable -qfloat suboptions:

[no]fenv
Specifies whether the code depends on the hardware environment and
whether to suppress optimizations that could cause unexpected results due
to this dependency. When -qnofenv is in effect, the compiler assumes that
the program does not depend on the hardware environment, and that
aggressive compiler optimizations are allowed.

[no]fold
Enables compile time evaluation of floating-point calculations. You may
need to disable folding if your application must handle certain
floating-point exceptions such as overflow or inexact.

[no]maf
Enables generation of combined multiple-add instructions. In some cases
you must disable maf instructions to produce results identical to those on
systems with strict IEEE 754 compliance. Disabling maf instructions can
result in significantly slower code.

[no]rrm
Specifies that the rounding mode is not always round-to-nearest. The
default is norrm. The rounding mode can also change across calls.

[no]rsqrt
Speeds up some calculations by replacing division by the result of a square
root with multiplication by the reciprocal of the square root.

[no]single
Allows single-precision arithmetic instructions to be generated for
single-precision floating-point values. If you wish to preserve the behavior
of applications compiled for earlier architectures, where floating-point
arithmetic was performed in double-precision and then truncated to
single-precision, use -qfloat=nosingle:norndsngl.

[no]rngchk
Specifies whether range checking is performed for input arguments for
software divide and inlined square root operations. norngchk instructs the
compiler to skip range checking, allowing for increased performance where
division and square root operations are performed repeatedly within a
loop.

[no]hscmplx
Speeds up operations involving complex division and complex absolute
value. nohscmplx is the default.

Diagnostic options
You can use the following options to analyze the results of compiler optimization.
You can examine generated information to see if expected transformations have
occurred.

-qlist (all)
Generates an object listing that includes hex and pseudo-assembly
representations of the generated code and text constants.

-qlistfmt (all compilers except XL C/C++ for AIX, V16.1 that is invoked by
xlclang/xlclang++)

Generates reports in HTML and XML formats. Compiler reports contain
information about optimizations performed by the compiler and missed

Chapter 14. Additional performance options 37

optimization opportunities. These reports contain information about some
optimizations performed by the compiler and some missed optimization
opportunities for inlining, loop transformations, data reorganization and
profile-directed feedback. This information can be used to understand the
application code and to tune the code for better performance.

-qreport (all)
-qreport=[hotlist | smplist] in XL Fortran, or -qreport in XL C/C++.
Instructs the HOT or IPA optimizer to emit a report including pseudocode
with annotations describing what transformations, such as loop unrolling
or automatic parallelization, were performed. The report might include
data dependence and other information such as program constructs that
inhibit optimization.

38 Code optimization with the IBM XL compilers on Power architectures

Chapter 15. User-directed source-level optimizations

XL compilers support many source-level directives and pragmas that you can
specify to influence the optimizer. Several have been mentioned in previous
sections. The following two sections contain an important subset that XL compilers
support, including a brief description of each Fortran directive and C/C++
pragma.

XL Fortran directives
ASSERT (ITERCNT(n) | [NO]DEPS)

Identical behavior to the -qassert option but applicable to a single loop.
Allows the characteristics of each loop to be analyzed by the optimizer
independently of the other loops in the program.

CACHE_ZERO
Zeros the data cache block for a variable or list of variables using the dcbz
hardware instruction. This avoids having to store the zero values back to
main memory preventing level 2 store cache misses.

CNCALL
Asserts that the calls in the following loop do not cause loop-carried
dependences.

INDEPENDENT
Asserts that the following loop has no loop-carried dependences. Enables
locality and parallel transformations.

NOSIMD
Prohibits the HOT optimizer from automatically generating Vector
Multimedia eXtension (VMX) or Vector Scalar eXtension (VSX) instructions
in the loop immediately following the directive or in the FORALL
construct.

PERMUTATION (names)
Asserts that elements of the named arrays take on distinct values on each
iteration of the following loop. This is useful with sparse data.

PREFETCH_BY_LOAD (variable_list)
Issues dummy loads that cause the given variables to be prefetched into
cache. This is useful to activate hardware prefetch.

PREFETCH_FOR_LOAD (variable_list)
Issues a dcbt instruction for each of the given variables.

PREFETCH_FOR_STORE (variable_list)
Issue a dcbtst instruction for each of the given variables.

SIMD_PEEL (array_name | n)
Instructs the compiler to peel a SIMDizable loop. When you specify
array_name for SIMD_PEEL, the compiler peels a loop with respect to the
first reference to the array inside the loop. When you specify n for
SIMD_PEEL, the compiler peels a loop once for n iterations.

UNROLL
Specified as [NO]UNROLL [(n)] to turn loop unrolling on or off. You can
specify a specific unroll factor.

© Copyright IBM Corp. 2018 39

XL C/C++ pragmas
#pragma disjoint (variable_list) (all)

Asserts that none of the named variables or pointer dereferences share
overlapping areas of storage.

#pragma execution_frequency (very_low | very_high) (all)
Asserts that the control path containing the pragma will be infrequently
executed.

#pragma isolated_call (function_list) (all C/C++ compilers except XL C/C++
for AIX, V16.1 invoked by xlclang/xlclang++ and XL C/C++ for Linux for little
endian distributions)

Asserts that calls to the named functions do not have side effects.

#pragma leaves (function_list) (all C/C++ compilers except XL C/C++ for AIX,
V16.1 invoked by xlclang/xlclang++ and XL C/C++ for Linux for little endian
distributions)

Asserts that calls to the named functions will not return.

#pragma nosimd (all C/C++ compilers except XL C/C++ for AIX, V16.1 invoked by
xlclang/xlclang++)

Disables automatic generation of vector instructions by the HOT optimizer.

#pragma unroll (all C/C++ compilers except XL C/C++ for AIX, V16.1 invoked by
xlclang/xlclang++)

Specified as [no]unroll [(n)] to turn loop unrolling on or off. You can
specify a specific unroll factor.

40 Code optimization with the IBM XL compilers on Power architectures

Chapter 16. Summary

The IBM XL compiler family offers premier optimization capabilities on AIX and
Linux platforms. You can control the type and depth of optimization analysis
through compiler options, which allow you choose the levels and kinds of
optimization best suited to your application. IBM's long history of compiler
development gives you control of mature industry-leading optimization technology
such as interprocedural analysis (IPA), high-order transformations (HOT),
profile-directed feedback (PDF), symmetric multiprocessing (SMP) optimizations,
as well as a unique set of Power optimizations that fully exploit the hardware
architecture's capabilities. This optimization strength combines with robustness,
capability, and standards conformance to produce a product set unmatched in the
industry.

© Copyright IBM Corp. 2018 41

42 Code optimization with the IBM XL compilers on Power architectures

Chapter 17. Trial versions, Community Editions, and
purchasing

In addition to the full versions, IBM provides the following product editions:
v Community Editions for IBM XL C/C++ for Linux, V16.1.1 and XL Fortran for

Linux, V16.1.1, which are no-charge and fully functional editions for unlimited
production use.

v Trial versions for IBM XL C/C++ for AIX, V16.1 and XL Fortran for AIX, V16.1,
which are no-charge and fully functional versions for an evaluation period of 60
days.

The following link contains the XL C/C++ compiler product web pages where you
can find download information about full versions, the Community Editions, and
the trial versions if available:

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family

Information on how to buy IBM XL C/C++ is also available at this website.

The following link contains the XL Fortran compiler product web pages where you
can find download information about full versions, the Community Editions, and
the trial versions if available:

https://www.ibm.com/us-en/marketplace/ibm-fortran-compiler-family

Information on how to buy IBM XL Fortran is also available at this website.

For a complete list of available IBM products, see:

https://www.ibm.com/marketplace

© Copyright IBM Corp. 2018 43

https://www.ibm.com/us-en/marketplace/ibm-c-and-c-plus-plus-compiler-family
https://www.ibm.com/us-en/marketplace/ibm-fortran-compiler-family
https://www.ibm.com/marketplace

44 Code optimization with the IBM XL compilers on Power architectures

Chapter 18. Contacting IBM

IBM welcomes your comments. You can send them to compinfo@cn.ibm.com.

© Copyright IBM Corp. 2018 45

46 Code optimization with the IBM XL compilers on Power architectures

IBM®

Printed in USA

	Chapter 1. Introduction
	Chapter 2. The XL compiler family
	A brief history

	Chapter 3. Optimization technology overview
	Chapter 4. Optimization levels
	Optimization progression
	Optimization level 0 (-O0)
	Optimization level 2 (-O2)
	Optimization level 3 (-O3)
	Optimization level 4 (-O4)
	Optimization level 5 (-O5)

	Chapter 5. Processor optimization capabilities
	-qarch option
	-qtune option
	-qcache option
	Source-level optimizations
	The vector instruction programming interface

	Chapter 6. High-order transformation (HOT) loop optimization
	HOT short vectorization using VMX or VSX
	HOT long vectorization
	HOT array size adjustment
	HOT fast scalar math routines

	Chapter 7. Interprocedural analysis (IPA) optimization
	IPA suboptions
	-qipa=level=0
	-qipa=level=1
	-qipa=level=2
	More -qipa suboptions

	Chapter 8. Profile-directed feedback (PDF) optimization
	Chapter 9. Symmetric multiprocessing (SMP) optimizations
	Chapter 10. Offloading computations to the NVIDIA GPUs
	Chapter 11. IBM Mathematical Acceleration Subsystem (MASS) libraries
	Chapter 12. Basic Linear Algebra Subprograms (BLAS)
	Chapter 13. Aliasing
	Chapter 14. Additional performance options
	Optimizer guidance options
	Program behavior options
	Floating-point computation options
	Diagnostic options

	Chapter 15. User-directed source-level optimizations
	XL Fortran directives
	XL C/C++ pragmas

	Chapter 16. Summary
	Chapter 17. Trial versions, Community Editions, and purchasing
	Chapter 18. Contacting IBM

