

User Guide for DFSORT PTF UK90013

July, 2008

Frank L. Yaeger

DFSORT Team
IBM Systems Software Development

San Jose, California
Internet: yaeger@us.ibm.com

DFSORT Web Site

For papers, online books, news, tips, examples and more, visit the DFSORT home page at URL:

http://www.ibm.com/storage/dfsort

ii DFSORT UK90013

 Abstract

This paper is the documentation for z/OS DFSORT V1R5 PTF UK90013, which was first made available in July,
2008.

This PTF provides important enhancements to DFSORT and DFSORT's ICETOOL for find and replace
(FINDREP), group operations (WHEN=GROUP); sorting data between headers and trailers (DATASORT); keeping
or removing the first n records, last n records and/or specific relative records (SUBSET); selecting the first n dupli-
cate records (SELECT with FIRST(n) and FIRSTDUP(n)); splicing with non-blank fields (SPLICE with
WITHANY); displaying and writing counts (DISPLAY with COUNT, EDCOUNT, BCOUNT and EDBCOUNT,
and COUNT with ADD, SUB, WRITE, TEXT, DIGITS, EDCOUNT and WIDTH); reports with multiple and multi-
part titles (DISPLAY and OCCUR with TITLE, TLEFT and TFIRST); reports without carriage control characters
(DISPLAY and OCCUR with NOCC); additional defaults (BLKSIZE for DUMMY, SKIP=0L for SECTIONS, and
SORTOUT=ddname for FNAMES); easier migration from other sort products, and more.

This paper highlights, describes, and shows examples of the new features provided by this PTF for DFSORT and
for DFSORT's powerful, multi-purpose ICETOOL utility. It also details new and changed messages associated with
this PTF.

 Abstract iii

iv DFSORT UK90013

 Contents

User Guide for DFSORT PTF UK90013 1
Introduction 1
Summary of Changes 1
Operational Changes that may Require User Action 4
Find and replace 5

Introduction 5
Syntax 5
Detailed Description 5
Example 1 10
Example 2 11
Example 3 11
Example 4 11

Group operations 12
Introduction 12
Syntax 13
Detailed Description 14
Example 1 17
Example 2 18
Example 3 20
Example 4 21

DATASORT 23
Introduction 23
Syntax 24
Detailed Description 24
Example 1 26
Example 2 27

SUBSET 28
Introduction 28
Syntax 29
Detailed Description 29
Example 1 34
Example 2 34
Example 3 35

SELECT with first n duplicates 36
Introduction 36
Syntax 37
Detailed Description 37
Example 1 37
Example 2 39

SPLICE with non-blank fields 40
Introduction 40
Syntax 40
Detailed Description 40
Example 1 41

DISPLAY with count 42
Introduction 42
Syntax 43
Detailed Description 44
Example 1 45

DISPLAY/OCCUR with multiple and multipart titles 47

 Contents v

Introduction 47
Syntax 47
Detailed Description 48
Example 1 49

DISPLAY/OCCUR without carriage control 50
Introduction 50
Syntax 51
Detailed Description 52
Example 1 52
Example 2 52

COUNT in output record 53
Introduction 53
Syntax 54
Detailed Description 54
Example 1 55
Example 2 55

COUNT with add/subtract 56
Introduction 56
Syntax 57
Detailed Description 57
Example 1 57

BLKSIZE default for input DUMMY 58
SKIP=0L default for SECTIONS 58
SORTOUT=ddname default for FNAMES 59
Changed Messages 59

ICE018A 59
ICE107A 59
ICE113A 61
ICE114A 61
ICE151A 61
ICE189A 61
ICE214A 61
ICE221A 63
ICE222A 63
ICE241A 64
ICE613A 64
ICE614A 66
ICE623A 66
ICE624A 67
ICE628I 67
ICE637A 68
ICE639A 69
ICE640A 69
ICE643I 69
ICE645A 70
ICE652A 70

New Messages 70
ICE259A 70
ICE260A 71
ICE261A 71
ICE653A 72
ICE654A 72
ICE655I 72
ICE656A 73

vi DFSORT UK90013

User Guide for DFSORT PTF UK90013

 Introduction

DFSORT is IBM's high performance sort, merge, copy, analysis and reporting product. DFSORT is an optional
feature of z/OS.

DFSORT, together with DFSMS and RACF, form the strategic product base for the evolving system-managed
storage environment. DFSMS provides vital storage and data management functions. RACF adds security func-
tions. DFSORT adds the ability to do faster and easier sorting, merging, copying, reporting and analysis of your
business information, as well as versatile data handling at the record, field and bit level.

DFSORT includes the versatile ICETOOL utility and the high-performance ICEGENER facility.

z/OS DFSORT V1R5 PTF UK90013, which was first made available in July, 2008, provides important enhance-
ments to DFSORT and DFSORT's ICETOOL for find and replace (FINDREP), group operations
(WHEN=GROUP); sorting data between headers and trailers (DATASORT); keeping or removing the first n
records, last n records and/or specific relative records (SUBSET); selecting the first n duplicate records (SELECT
with FIRST(n) and FIRSTDUP(n)); splicing with non-blank fields (SPLICE with WITHANY); displaying and
writing counts (DISPLAY with COUNT, EDCOUNT, BCOUNT and EDBCOUNT, and COUNT with ADD, SUB,
WRITE, TEXT, DIGITS, EDCOUNT and WIDTH); reports with multiple and multipart titles (DISPLAY and
OCCUR with TITLE, TLEFT and TFIRST); reports without carriage control characters (DISPLAY and OCCUR
with NOCC); additional defaults (BLKSIZE for DUMMY, SKIP=0L for SECTIONS, and SORTOUT=ddname for
FNAMES); easier migration from other sort products, and more.

This paper highlights, describes, and shows examples of the new features provided by this PTF for DFSORT and
for DFSORT's powerful, multi-purpose ICETOOL utility. It also details new and changed messages associated with
this PTF.

You can access all of the DFSORT books online by clicking the Publications link on the DFSORT home page at
URL:

http://www.ibm.com/storage/dfsort

This paper provides the documentation you need to start using the features and messages associated with z/OS
DFSORT V1R5 PTF UK90013. The information in this paper will be included in the z/OS DFSORT books at a
later date.

You should refer to z/OS DFSORT Application Programming Guide for general information on DFSORT and
ICETOOL features, and in particular for the framework of existing DFSORT features upon which these new fea-
tures are built. You should refer to z/OS DFSORT Messages, Codes and Diagnosis Guide for general information
on DFSORT messages.

Summary of Changes

Find and replace

FINDREP is a new option that allows you to do various types of find and replace operations on your records.
FINDREP makes it easy to replace character or hexadecimal input constants anywhere in your records with char-
acter, hexadecimal or null output constants. For input and output constants of different lengths, bytes after the

 User Guide for DFSORT PTF UK90013 1

replaced constants will be shifted left or right, as appropriate. For fixed-length records, blanks will be filled in on
the right as needed. For variable-length records, the record length will be changed as needed.

FINDREP can be used in an INREC, OUTREC or OUTFIL statement, or in an IFTHEN clause, in the same way
BUILD and OVERLAY can be used.

Various options of FINDREP allow you to define one or more input constants and a corresponding output constant
(IN, OUT), define one or more pairs of input and output constants (INOUT), start and end the find scan at specified
positions (STARTPOS, ENDPOS), stop after a specified number of constants are replaced (DO), increase or
decrease the length of the output record (MAXLEN), define the action to be taken if nonblank characters overrun
the end of the record (OVERRUN), and specify whether output constants are to replace or overlay input constants
(SHIFT).

DFSORT symbols can be used for constants specified with FINDREP.

Group operations

WHEN=GROUP is a new type of IFTHEN clause that allows you to do various types of operations involving
groups of records. WHEN=GROUP makes it easy to propagate fields from the first record of a group to the other
records of the group, add an identifier to each record of the group, or add a sequence number to each record of the
group. These functions are useful by themselves, and can also facilitate other types of group operations such as
sorting groups, including or omitting groups, and so on.

WHEN=GROUP can be used in IFTHEN clauses in an INREC, OUTREC or OUTFIL statement in the same way
WHEN=INIT can be used.

Various options of WHEN=GROUP allow you to use logical expressions to define the beginning and end of a
group (BEGIN, END), define the number of records in a group (RECORDS), and define the fields, identifiers and
sequence numbers to be added to the records of each group (PUSH).

DFSORT symbols can be used for columns, fields and constants specified with WHEN=GROUP clauses.

DATASORT

DATASORT is a new operator of ICETOOL that allows you to sort data records between header (first) records and
trailer (last) records. DATASORT makes it easy to sort the data records while keeping one or more header records
and/or one or more trailer records in place. DATASORT does not require an "identifier" in the header or trailer
records; it can treat the first n records as header records and the last n records as trailer records.

Various options of DATASORT allow you to define the number of header records and/or trailer records (HEADER
or FIRST, TRAILER or LAST), the ddname for the input data set (FROM), the ddname for the output data set
(TO), and the SORT and other DFSORT control statements to be used for the DATASORT operation (USING).

DFSORT symbols can be used for the number of header and trailer records specified with DATASORT.

SUBSET

SUBSET is a new operator of ICETOOL that allows you to create a subset of the input or output records by
specifying that you want to keep or remove header (first) records, trailer (last) records, or records with specific
relative record numbers. SUBSET makes it easy to keep or remove records based on these criteria. SUBSET does
not require an "identifier" or "sequence number" in the records to be kept or removed.

Various options of SUBSET allow you to define the criteria (HEADER or FIRST, TRAILER or LAST, RRN), the
ddname for the input data set (FROM), the ddname for the output data set to contain the records that meet the

2 DFSORT UK90013

criteria and/or don't meet the criteria (TO, DISCARD), whether the records that meet the criteria are to be kept or
removed (KEEP, REMOVE), whether the criteria are to be applied to the input or output records (INPUT,
OUTPUT), and DFSORT control statements to be used for the SUBSET operation (USING).

DFSORT symbols can be used for the number of header and trailer records and for the relative record numbers
specified with SUBSET.

SELECT first n duplicates

ICETOOL's SELECT operator now allows you to select the first n records with each key or the first n duplicate
records with each key. New FIRST(n) and FIRSTDUP(n) options make it easy to select records representing "top"
and "bottom" categories (for example, the top 5 students in each class).

DFSORT symbols can be used for n with FIRST(n) or FIRSTDUP(n).

SPLICE with non-blank fields

ICETOOL's SPLICE operator now allows you to create a single record for each key by splicing the base record
with every specified nonblank field from each overlay record. A new WITHANY option makes it easy to collect
information from multiple records with the same key. You can now do a splice involving duplicate records with
nonconsecutive or missing WITH fields, something that could not be accomplished previously with the existing
WITHEACH option.

DISPLAY with count

ICETOOL's DISPLAY operator now allows you to display counts in reports. New COUNT('string'),
EDCOUNT(formatting), BCOUNT('string') and EDBCOUNT(formatting) options make it easy to print overall
record count and break record count statistics in various forms in a report, similar to the existing statistics for a
report (overall total, maximum, minimum and average and break total, maximum, minimum and average).

DFSORT symbols can be used for 'string' with COUNT('string') and BCOUNT('string').

DISPLAY/OCCUR with multiple and multipart titles

ICETOOL's DISPLAY and OCCUR operators now allow you to display up to three title lines, each composed of up
to three strings. The enhanced TITLE('string1','string2','string3') option makes it easy to use multiple strings for
each title, including a combination of inline constants, and constants from DFSORT symbols including system
information. The use of up to three TITLE options makes it easy to display multiline titles.

A new TLEFT option allows you to left justify the title lines instead of centering them. A new TFIRST option
allows you to only display the title lines on the first page of the report instead of on every page of the report.

DFSORT symbols can be used for 'string1', 'string2' and 'string3' with TITLE('string1','string2','string3').

DISPLAY/OCCUR without carriage control

ICETOOL's DISPLAY and OCCUR operators now allow you to create reports without carriage control characters
and with RECFM=FB instead of RECFM=FBA. A new NOCC option makes it easy to suppress the carriage
control character. With NOCC, a blank line is used instead of a page eject control character to separate elements of
the report.

COUNT in output record

 User Guide for DFSORT PTF UK90013 3

ICETOOL's COUNT operator now allows you to create a count data set with an output record containing the record
count. New WRITE(countdd), TEXT('string'), DIGITS(n) and EDCOUNT(formatting) options make it easy to
create an output data set with a record containing text and the record count in various forms.

DFSORT symbols can be used for 'string' with TEXT('string').

COUNT with add/subtract

ICETOOL's COUNT operator now allows you to add a value to, or subtract a value from, the record count. New
ADD(n) and SUB(n) options make it easy to increase or decrease, respectively, the actual record count to get a
resulting modified record count. This is especially useful for dealing with data sets that contain header and/or
trailer records.

The resulting modified record count is displayed in the count message in TOOLMSG and in the count data set, and
used to determine if the criteria specified by the existing EMPTY, NOTEMPTY, HIGHER(x), LOWER(y),
EQUAL(v) or NOTEQUAL(w) option is satisfied.

DFSORT symbols can be used for n with ADD(n) and SUB(n).

BLKSIZE default for input DUMMY

DFSORT will no longer terminate for a SORTIN DD DUMMY or SORTINnn DD DUMMY statement with
RECFM and LRECL, but no BLKSIZE. Instead, DFSORT will use an an appropriate BLKSIZE to process the
DUMMY data set successfully.

Note: If DFSORT's Blockset technique is not selected, DFSORT may still terminate for a SORTIN DD
DUMMY or SORTINnn DD DUMMY statement with RECFM and LRECL, but no BLKSIZE.

SKIP=0L default for SECTIONS

DFSORT will no longer terminate when an OUTFIL SECTIONS field is not followed by a keyword (SKIP,
HEADER3, TRAILER3). Instead, DFSORT will use a default keyword of SKIP=0L to process the sections suc-
cessfully with no blank lines between sections on the same page.

DFSORT symbols can be used for section fields.

SORTOUT=ddname default for FNAMES

DFSORT will now use the ddname specified by a SORTOUT=ddname option in DFSPARM, the ddname specified
by a SORTOUT=ddname option in a parameter list, or the ddname specified in a TO(ddname) option of an
ICETOOL operator, as the default ddname for an OUTFIL statement without a FNAMES or FILES option.

Operational Changes that may Require User Action

The following are operational changes that may require user action for existing DFSORT/ICETOOL applications
that use certain functions as specified:

� Prior to this PTF, an ICETOOL job with an operator (for example, SELECT) that uses TO(ddname) and
USING(xxxx) with //ddname and //xxxxOUT DD statements and an OUTFIL statement without FNAMES or
FILES, would treat the ddname data set as a SORTOUT data set and the xxxxOUT data set as the OUTFIL
data set.

4 DFSORT UK90013

With this PTF, the same job will treat the ddname data set as the OUTFIL data set and ignore the xxxxOUT
data set. If you want to treat the xxxxOUT data set as the OUTFIL data set, change your ICETOOL operator
to use TO(xxxxOUT).

� Prior to this PTF, an OUTFIL statement with FTOV and IFOUTLEN=n would set the LRECL of the OUTFIL
data set and the length of each OUTFIL record to n.

With this PTF, the same situation will result in setting the LRECL of the OUTFIL data set and the length of
each record to n+4. If you want to set the LRECL of the OUTFIL data set and the length of each OUTFIL
record to n, change IFOUTLEN to specify n-4.

Find and replace

 Introduction

FINDREP and IFTHEN FINDREP are new INREC, OUTREC and OUTFIL operands that allow you to do various
types of find and replace operations on your records. FINDREP gives you new capabilities for finding character or
hexadecimal input constants anywhere in your records and replacing them with character, hexadecimal or null
output constants. As appropriate, bytes can be shifted left or right, blank padding can be added for fixed-length
records, and the length can be changed for variable-length records.

Various options of FINDREP allow you to define one or more input constants and a corresponding output constant,
define one or more pairs of input and output constants, start and end the find scan at specified positions, stop after a
specified number of constants are replaced, increase or decrease the length of the output record, define the action to
be taken if nonblank characters overrun the end of the record, and specify whether output constants are to replace
or overlay input constants.

As a simple example, you could use the following INREC statement to replace all instances of 'Goodbye' in your
input records with 'Bye', shift the bytes after the replaced constants to the left, and pad on the right with blanks.

 INREC FINDREP=(IN=C'Goodbye',OUT=C'Bye')

If you had 60 byte input records like this:

�"Goodbye John"�"Goodbye William"�"Goodbye Goodboy"�
"Goodbye Michael""Good Dog""Goodbye Goodbye"

you would get 60-byte output records like this:

�"Bye John"�"Bye William"�"Bye Goodboy"�
"Bye Michael""Good Dog""Bye Bye"

 Syntax

The syntax for the FINDREP operand is as follows:

FINDREP=(input/output_constants,STARTPOS=p,ENDPOS=q,DO=n,MAXLEN=n,
 OVERRUN=ERROR/TRUNC,SHIFT=YES/NO)

 Detailed Description

You can use FINDREP to find constants anywhere in a record and replace them with other constants of the same or
different lengths.

You can use FINDREP and IFTHEN FINDREP in the INREC, OUTREC and OUTFIL statements.

 User Guide for DFSORT PTF UK90013 5

input/output constants

Input and output constants for find and replace processing are defined as follows:

� input constant: An input constant can be specified as a single character string, a repeated character string, a
single hexadecimal string, or a repeated hexadecimal string. The syntax is: C'string', nC'string', X'string' or
nX'string'. n can be 1 to 256. The string can be 1 to 256 characters, or 1 to 256 pairs of hexadecimal digits.
The total length of the constant must not exceed 256 bytes. Use two apostrophes for a single apostrophe.

DFSORT symbols can be used for C'string' and X'string' (but not for nC'string' or nX'string').

output constant: An output constant can be specified as a null string, a single character string, a repeated
character string, a single hexadecimal string, or a repeated hexadecimal string. The syntax is: C'' (null),
C'string', nC'string', X'string' or nX'string'. n can be 1 to 256. The string can be a null, or 1 to 256 characters,
or 1 to 256 pairs of hexadecimal digits. The total length of the constant must not exceed 256 bytes. Use two
apostrophes for a single apostrophe. A null string can be used to remove input constants.

DFSORT symbols can be used for C'string' and X'string' (but not for nC'string', nX'string' or C'').

You must specify the input and output constants to be used for find and replace processing in one of the following
ways. The default processing for each method described below can be changed with various options described
later.

 � IN=incon,OUT=outcon

Specifies one input constant and one output constant. Position 1 (for fixed-length records) or 5 (for variable-
length records) will be set as the current position. The current position of the input record will be checked for
the input constant. If a match is not found at the current position, the current position will be incremented by
1, and the process will be repeated. If a match is found at the current position, the output constant will replace
the input constant, the current position will be incremented past the input constant, and the process will be
repeated. Bytes after the replaced constants up to the end of the record will be shifted left or right as needed.
Processing will stop when the current position is beyond the end of the input record.

Example:

 INREC IFTHEN=(WHEN=(11,1,CH,EQ,C'3'),
 FINDREP=(IN=C'YES',OUT=C'NO'))

Replaces every C'YES' input constant in records with a C'3' in position 11 with a C'NO' output constant, and
shifts the bytes after each replaced constant to the left.

 � IN=(incon1,incon2,...,inconx),OUT=outcon

Specifies multiple input constants and one output constant. Position 1 (for fixed-length records) or 5 (for
variable-length records) will be set as the current position. The current position of the input record will be
checked for each input constant in turn until a match is found or all of the input constants have been checked.
If a match is not found at the current position for any input constant, the current position will be incremented
by 1, and the process will be repeated. If a match is found at the current position, the output constant will
replace the input constant, the current position will be incremented past the input constant, and the process will
be repeated. Bytes after the replaced constants up to the end of the record will be shifted left or right as
needed. Processing will stop when the current position is beyond the end of the input record.

Example:

 OUTREC FINDREP=(IN=(X'FF',3X'��'),OUT=C'')

Removes every X'FF' and X'000000' input constant, and shifts the bytes after each removed constant to the left.

 � INOUT=(incon1,outcon1,incon2,outcon2,...,inconx,outconx)

Specifies one or more pairs of input and output constants. Position 1 (for fixed-length records) or 5 (for
variable-length records) will be set as the current position. The current position of the input record will be

6 DFSORT UK90013

checked for each input constant in turn until a match is found or all of the input constants have been checked.
If a match is not found at the current position for any input constant, the current position will be incremented
by 1, and the process will be repeated. If a match is found at the current position for an input constant, the
corresponding output constant will replace the input constant, the current position will be incremented past the
input constant, and the process will be repeated. Bytes after the replaced constants up to the end of the record
will be shifted left or right as needed. Processing will stop when the current position is beyond the end of the
input record.

Example:

 OUTFIL FINDREP=(INOUT=(C'SAT',C'SATURDAY',C'SUN',C'SUNDAY'))

Replaces every C'SAT' input constant with a C'SATURDAY' output constant, and every C'SUN' input constant
with a C'SUNDAY' output constant, and shifts the bytes after each replaced constant to the right.

Optional operands:

You can specify any or all of the following options to change the default processing described earlier:

 � STARTPOS=p

Specifies the starting position in the input record for the find scan, overriding the default of position 1 for a
fixed-length record or position 5 for a variable-length record. Use STARTPOS=p if you want to start your find
scan at a particular position. p can be 1 to 32752. If p is less than 5 for a variable-length record, 5 will be
used for p. If p is beyond the end of the input record, find and replace processing will not be performed for
the record.

Example:

 INREC FINDREP=(IN=C'Yes',OUT=C'YES',STARTPOS=11)

Replaces every C'Yes' input constant found starting at or after position 11 with a C'YES' output constant.

 � ENDPOS=q

Specifies the ending position in the input record for the find scan, overriding the default of the end of the
record. Use ENDPOS=q if you want to end your find scan at a particular position. ENDPOS=q only applies
to the end of the find scan; bytes will still be shifted up to the end of the record as needed. q can be 1 to
32752. If q is less than 5 for a variable-length record, 5 will be used for q. If q is beyond the end of the input
record, the end of the record will be used for q. If STARTPOS=p and ENDPOS=q are both specified, and p is
greater than q, find and replace processing will not be performed for the record.

Example:

 OUTREC FINDREP=(IN=(C'D27',C'A52',C'X31'),OUT=C'INVALID',
 ENDPOS=2�15)

Replaces every C'D27', C'A52' and C'X31' input constant found before or at position 2015 with a C'INVALID'
output constant, and shifts the bytes after each replaced constant to the right (past 2015 up to the end of the
record).

 � DO=n

Specifies the maximum number of times find and replace is to be performed for a record, overriding the default
of every time. Scanning for the input constant stops when n input constants have been found and replaced.
Use DO=n if you want to stop after a particular number of constants have been replaced. n can be 1 to 1000.

Example:

 OUTFIL FNAMES=OUT1,FINDREP=(IN=X'�15C',OUT=X'�15D',DO=3)

Replaces the first three X'015C' input constants found with X'015D' output constants.

 User Guide for DFSORT PTF UK90013 7

 � MAXLEN=n

Specifies the maximum length to be used for the output record created by find and replace processing, over-
riding the default of using the maximum length of the input record. Use MAXLEN=n if you want to increase
or decrease the output record length. (For IFTHEN FINDREP, MAXLEN=n can only be used to increase the
output record length, not decrease it. See "Notes" below for more information.)

If an output constant is larger than a corresponding input constant, MAXLEN=n can be used to increase the
size of the output record to allow for shifting characters to the right. n can be 1 to 32752. MAXLEN=n will
be used to set the LRECL of the output data set, when appropriate.

Example:

 INREC FINDREP=(INOUT=(C'�1',C'January',C'�2',C'February',
 C'�3',C'March'),MAXLEN=15�)

Replaces every C'01' input constant with a C'January' output constant, every C'02' input constant with a
C'February' output constant, and every C'03' input constant with a C'March' output constant, and shifts the bytes
after each replaced constant to the right, allowing the record to expand to 150 bytes.

� OVERRUN=ERROR or OVERRUN=TRUNC

Specifies the action DFSORT is to take if an overrun occurs, that is:

– if nonblank bytes are shifted to the right past the end of the output record as specified by MAXLEN=n, or
as defaulted to the input record length, or

– if MAXLEN=n is used to make the output record smaller than the input record, and nonblank bytes are
found in the input record past the end of the output record.

OVERRUN=ERROR is the default; it tells DFSORT to issue an error message and terminate if an overrun
occurs.

Use OVERRUN=TRUNC if you want DFSORT to truncate the output record to the MAXLEN=n or input
record length if an overrun occurs, rather than terminating. Bytes beyond the end of the output record are lost.

Example:

 OUTREC FINDREP=(IN=X'FFFF',OUT=C'INVALID',MAXLEN=5�,OVERRUN=TRUNC)

Replaces every X'FFFF' input constant with a C'INVALID' output constant, and shifts the bytes after the
replaced constants to the right. 50 byte output records are created. Bytes shifted past position 50 are lost.
Without OVERRUN=TRUNC, if nonblank characters were shifted past position 50, an overrun error message
would be issued and the job would terminate.

� SHIFT=YES or SHIFT=NO

Specifies the action DFSORT is to take if an input constant is to be replaced by an output constant of a
different length.

SHIFT=YES is the default; it tells DFSORT to shift the bytes after each replaced input constant to the left or
right as needed.

Use SHIFT=NO if you want DFSORT to overlay the input constant with the output constant instead of shifting
bytes. If a matching input constant is found and the output constant is smaller than the input constant, the
current position will be incremented past the output constant rather than past the input constant before proc-
essing continues.

Example:

 OUTREC FINDREP=(IN=(C'KW1=YES,',C'KW1=NO,'),OUT=C'KW2',SHIFT=NO)

Replaces every C'KW1=YES,' input constant with a C'KW2=YES,' output constant. Replaces every
C'KW1=NO,' input constant with a C'KW2=NO,' output constant. SHIFT=NO ensures that C'KW1' is replaced

8 DFSORT UK90013

with C'KW2' and the '=YES,' and '=NO,' bytes are kept. Without SHIFT=NO, the '=YES,' and '=NO,' bytes
would be removed.

Notes:

� FINDREP cannot be specified with BUILD or OVERLAY in an IFTHEN clause.

� FINDREP cannot be specified with BUILD, OVERLAY, IFTHEN or IFOUTLEN in an INREC or OUTREC
statement.

� FINDREP cannot be specified with BUILD, OVERLAY, IFTHEN, IFOUTLEN, VTOF, CONVERT or
VLFILL in an OUTFIL statement.

� For a single FINDREP operand, when a constant is replaced at the current position, no further checks are
performed at that position. So a single FINDREP cannot be used to change a constant and then change it
again. For example, if you had an input record with:

ABC

and used this INREC statement:

 INREC FINDREP=(INOUT=(C'AB',C'XY',C'XYC',C'RST'))

the output record would be:

XYC

After C'AB' is changed to C'XY', the current pointer is advanced to C'C' so C'XYZ' is not found. However,
since each IFTHEN clause starts at the beginning of the record, multiple IFTHEN clauses with FINDREP can
be used to change a constant and then change it again. If you used:

 INREC IFTHEN=(WHEN=INIT,FINDREP=(INOUT=(C'AB',C'XY'))),
 IFTHEN=(WHEN=INIT,FINDREP=(INOUT=(C'XYC',C'RST')))

for the ABC record, the output would be:

RST

The first IFTHEN clause would change C'AB' to C'XY'. The second IFTHEN clause would start over from the
first position and change C'XYC' to C'RST'.

� Duplicates and supersets of the same input constant after the first are effectively ignored, whereas subsets of
the same input constant after the first are processed. For example, if you had this input record:

ABCD ABQ

and you used this INREC statement:

 INREC FINDREP=(INOUT=(C'AB',C'XY',C'ABCD',C'RSTU'))

the output record would be:

XYCD XYQ

Since C'AB' is changed to C'XY', C'ABCD' is not found. If you wanted to change C'ABCD' to C'RSTU' and
other instances of C'AB' to C'XY', you would need to specify C'ABCD' first. If you used this INREC state-
ment:

 INREC FINDREP=(INOUT=(C'ABCD',C'RSTU',C'AB',C'XY'))

the output record would be:

RSTU XYQ

If C'ABCD' is found, it is changed to C'RSTU'. Otherwise, if C'AB' is found, it is changed to C'XY'.

 User Guide for DFSORT PTF UK90013 9

� For fixed-length records, FINDREP in an IFTHEN clause operates against the maximum record padded with
blanks on the right as needed. If a blank constant is being replaced, the blanks on the right will be replaced.
For example, if we have an 80 byte FB input record and use:

 INREC IFTHEN=(WHEN=INIT,BUILD=(1,2�)),
 IFTHEN=(WHEN=(2,1,CH,EQ,C'R'),
 FINDREP=(IN=C' ',OUT=C'ABC'))

Although in this case BUILD=(1,20) will result in a 20-byte output record, IFTHEN FINDREP will operate
against the maximum 80-byte record padded with 60 blanks on the right. For a record with 'R' in position 2,
each of those 60 blanks on the right will be replaced with C'ABC'. This will cause an overrun of the 80 byte
record, thus resulting in termination (OVERRUN=ERROR) or truncation (OVERRUN=TRUNC). ENDPOS=20
could be used to stop FINDREP from replacing the 60 blanks on the right.

Note that if we have an 80-byte input record with 'ABC' in positions 1-3 and we use:

 INREC IFTHEN=(WHEN=INIT,BUILD=(1,3)),
 IFTHEN=(WHEN=INIT,FINDREP=(IN=C'ABC',OUT=C'12345'))

an overrun will not occur because IFTHEN FINDREP will operate against an 80-byte record padded with 77
blanks on the right, rather than against a 3-byte record even though the output record will be 3 bytes.

� For FINDREP in an IFTHEN clause, MAXLEN=n can be used to increase the maximum output length, but
cannot be used to decrease the maximum output length. For example, with:

 OUTREC IFTHEN=(WHEN=INIT,BUILD=(1,1��)),
 IFTHEN=(WHEN=INIT,
 FINDREP=(IN=C'A',OUT=C'B',MAXLEN=15�))

the output length will be set to 150, whereas with:

 OUTREC IFTHEN=(WHEN=INIT,BUILD=(1,1��)),
 IFTHEN=(WHEN=INIT,
 FINDREP=(IN=C'A',OUT=C'B',MAXLEN=7�))

the output length will be set to 100.

 Example 1
 SORT FIELDS=(1,2,CH,A)
OUTREC FINDREP=(IN=C'�',OUT=C' ')

This example illustrates how you can replace a character with another character anywhere in FB or VB records.

The FB input records might look like this:

�5 ����� JUNE ���������������
�2 � APRIL �
�1� � � � DAISY � � � �
�3BETTY �����������

We want to replace every asterisk with a blank. We use IN=C'*' to indicate we want to find each asterisk, and
OUT=C' ' to indicate we want to replace it with a blank.

The sorted output records look like this:

�1 DAISY
�2 APRIL
�3BETTY
�5 JUNE

10 DFSORT UK90013

 Example 2
 OPTION COPY
 INREC FINDREP=(IN=(X'��',X'FF'),OUT=C'')

This example illustrates how you can remove characters from FB or VB records.

The VB input records might look like this in hexadecimal:

RDW----|Data
���F����D1E4D5C5��C1D7D9C9D3FF
��1�����C2C5E3E3E8��C4C1C9E2E8FF

We want to remove each X'00' and X'FF' character. We use IN=(X'00',X'FF') to indicate we want to find each
X'00' and X'FF' character, and OUT=C'' (null) to indicate we want to remove it.

The output records look like this:

RDW----|Data
���D����D1E4D5C5C1D7D9C9D3
���E����C2C5E3E3E8C4C1C9E2E8

Note that the X'00' and X'FF' characters have been removed and the RDW length decreased accordingly. For VB
input records, FINDREP processing automatically starts at position 5 after the RDW so the X'00' characters in the
RDW are not affected.

 Example 3
 OPTION COPY
 OUTFIL FINDREP=(INOUT=(C'AM',C'IN THE MORNING',

C'PM',C'IN THE EVENING'),MAXLEN=7�)

This example illustrates how you can replace values in FB or VB records with larger values and shift the rest of the
bytes to the right.

The 40 byte FB input records might look like this:

COFFEE AT 12:28 AM, TOAST AT �6:15 PM
MILK AT �3:17 PM, BAGELS AT �5:�3 PM
PUDDING AT �9:32 AM

We want to replace each instance of 'AM' with 'IN THE MORNING' and each instance of 'PM' with 'IN THE
EVENING' and shift the bytes after 'AM' or 'PM' to the right. We use INOUT to indicate find and replace pairs.
Since replacing the smaller values with the larger values can cause the remaining bytes to be shifted beyond the end
of the 40 byte record, we use MAXLEN to set the output record to 70 bytes to allow for the expansion, overriding
the default of using the input length for the output record.

The 70 byte FB output records look like this:

COFFEE AT 12:28 IN THE MORNING, TOAST AT �6:15 IN THE EVENING
MILK AT �3:17 IN THE EVENING, BAGELS AT �5:�3 IN THE EVENING
PUDDING AT �9:32 IN THE MORNING

 Example 4
 OPTION COPY
 INREC FINDREP=(IN=C'BALANCE',
 OUT=C'BALANCE 1���',SHIFT=NO,DO=1)

 User Guide for DFSORT PTF UK90013 11

This example illustrates how you can find a value in FB or VB records and overlay it with a larger value without
shifting other bytes in the records.

The FB input records might look like this:

CUSTOMER1 1�1��
MNTHLY STMT BALANCE 2���
CUSTOMER2 111��
MNTHLY STMT REQUIRES NO MODIFICATION ACCT BALANCE 5���
CUSTOMER3 11111
YOUR INFO ENCLOSED
MNTHLY STMT REQUIRES MODIFICATION ACCT BALANCE 7���

We want to replace every instance of 'BALANCE dddd' with 'BALANCE 1000' where dddd can be any value. We
use IN=C'BALANCE' to indicate we want find each instance of 'BALANCE'. We use OUT='BALANCE 1000' to
indicate we want to replace it with 'BALANCE 1000'. We use SHIFT=NO to do an overlay, overriding the default
of shifting bytes. Since we only have at most one instance of 'BALANCE dddd' in a record, we can use DO=1 to
stop processing a record after one replacement of 'BALANCE dddd' with 'BALANCE 1000'. In this case, DO=1 is
more efficient than the default of continuing to look for more instances of 'BALANCE dddd' after the first instance.
We would get the same result without DO=1, just less efficiently.

The output records look like this:

CUSTOMER1 1�1��
MNTHLY STMT BALANCE 1���
CUSTOMER2 111��
MNTHLY STMT REQUIRES NO MODIFICATION ACCT BALANCE 1���
CUSTOMER3 11111
YOUR INFO ENCLOSED
MNTHLY STMT REQUIRES MODIFICATION ACCT BALANCE 1���

 Group operations

 Introduction

WHEN=GROUP is a new type of IFTHEN clause that allows you to do various types of operations involving
groups of records. WHEN=GROUP gives you new capabilities for propagating fields, identifiers and sequence
numbers within groups, and further facilitates other types of group operations such as sorting by groups, including
or omitting records by groups, and so on. WHEN=GROUP clauses can be used in INREC, OUTREC and OUTFIL
statements by themselves or in conjunction with the other existing types of IFTHEN clauses.

Various options of the WHEN=GROUP clause allow you to define the beginning and/or end of a group using a
simple or complex logical expression, define the number of records in a group, and define fields, identifiers and
sequence numbers to be added to the records in each group.

As a simple example, you could use the following statement to define groups of 3 records and add an identifier and
sequence number to each record of each group.

 INREC IFTHEN=(WHEN=GROUP,RECORDS=3,PUSH=(15:ID=3,19:SEQ=5))

Each group consists of 3 records. Positions 15-17 of each record are overlaid by a 3-byte identifier that increments
by 1 for each group. Positions 19-23 of each record are overlaid by a 5-byte sequence number that increments by 1
for each record and restarts at 1 for each group. If the input records were as follows:

12 DFSORT UK90013

Vicky
Sri Hari
Frank
David
Dave
Regina
Sam
Viet

The output records would be:

Vicky ��1 ����1
Sri Hari ��1 ����2
Frank ��1 ����3
David ��2 ����1
Dave ��2 ����2
Regina ��2 ����3
Sam ��3 ����1
Viet ��3 ����2

As another example, you could use the following statements to define groups of 20 byte records and sort the groups
by a date in the first record of each group.

 INREC IFTHEN=(WHEN=GROUP,BEGIN=(1,5,CH,EQ,C'DATE:'),
 PUSH=(21:7,8))
 OPTION EQUALS
 SORT FIELDS=(21,8,CH,A)
 OUTREC BUILD=(1,2�)

Each group begins with a record containing C'DATE:' in positions 1-5. The date in positions 7-14 of that record is
propagated to positions 21-28 of each record in its group. We then sort the records in each group by the propa-
gated date. Finally, we remove the propagated date. If the input records were as follows:

DATE: 2��8�612
DRILL 52�
SAW 25�
WRENCH ��5
DATE: 2��8�6�1
HAMMER ��8
SAW 123
DATE: 2��8�527
WRENCH 3�2

The output records would be:

DATE: 2��8�527
WRENCH 3�2
DATE: 2��8�6�1
HAMMER ��8
SAW 123
DATE: 2��8�612
DRILL 52�
SAW 25�
WRENCH ��5

 Syntax

The syntax for the IFTHEN WHEN=GROUP clause is as follows:

 User Guide for DFSORT PTF UK90013 13

 IFTHEN=(WHEN=GROUP,BEGIN=(logexp),END=(logexp),RECORDS=n,
 PUSH=(c:item,...))

 Detailed Description

You can use IFTHEN WHEN=GROUP clauses to identify groups of records in various ways and propagate fields,
identifiers and sequence numbers to the records of each group. Fields, identifiers and sequence numbers are not
propagated to records before, between or after the identified groups.

You can use IFTHEN WHEN=GROUP clauses in the INREC, OUTREC and OUTFIL statements along with the
other IFTHEN clauses. WHEN=GROUP and WHEN=INIT clauses can be intermixed, but must be specified before
WHEN=(logexp), WHEN=ANY or WHEN=NONE clauses. All IFTHEN clauses will be processed in the order
specified. WHEN=GROUP clauses, like WHEN=INIT clauses, are processed for every record.

WHEN=GROUP must be specified to indicate this is a WHEN=GROUP clause.

You can specify the BEGIN, END and RECORDS operands in any combination to define the groups, but you must
specify at least one of these operands.

 � BEGIN=(logexp)

Specifies the criteria to be tested to determine if a record starts a group. See the discussion of the INCLUDE
statement in z/OS DFSORT Application Programming Guide for details of the logical expressons you can use.
You can specify all of the logical expressions for BEGIN in the same way that you can specify them for the
INCLUDE statement except that:

– You cannot specify FORMAT=f

– You cannot specify D2 format

– Locale processing is not used

– VLSCMP and VLSHRT are not used. Instead, missing bytes in specified input fields are replaced with
blanks so the padded fields can be processed.

DFSORT symbols can be used for fields and constants in the logical expression in the same way they can be
used for the INCLUDE statement.

A new group starts with a record that satisfies the BEGIN condition, that is, when the specified logical
expression is true for that record. If BEGIN is specified without END or RECORDS, all of the records from
the begin record up to but not including the next begin record belong to a group. Here's an example of groups
with BEGIN=(1,1,CH,EQ,C'A'):

H
R
A group 1
B group 1
C group 1
A group 2
A group 3
B group 3

Example:

 OUTREC IFTHEN=(WHEN=GROUP,
 BEGIN=(1,4�,SS,EQ,C'J82',OR,1,4�,SS,EQ,C'M72'),
 PUSH=(41:ID=5))

14 DFSORT UK90013

Starts a new group each time C'J82' or 'M72' is found anywhere in positions 1-40 of a record. Overlays
positions 41-45 of each record of a group with a 5-byte ZD identifier. The records before the first group are
not changed.

 � END=(logexp)

Specifies the criteria to be tested to determine if a record ends a group. See the discussion of BEGIN=(logexp)
above for details of the logical expressions you can use for END=(logexp).

DFSORT symbols can be used for fields and constants in the logical expression in the same way they can be
used for the INCLUDE statement.

A group ends whenever a record satisfies the END condition, that is, whenever the specified logical expression
is true for that record. If END is specified without BEGIN, all of the records up to the end record (or the last
record of the data set) belong to a group. Here's an example of groups with

END=(1,1,CH,EQ,C'T')

A group 1
B group 1
T group 1
T group 2
A group 3
T group 3
M group 4

If END is specified with BEGIN, all of the records from the begin record up to the end record (or the last
record of the data set) belong to a group. Here's an example of groups with

BEGIN=(1,1,CH,EQ,C'H'),END=(1,1,CH,EQ,C'T')

H group 1
B group 1
T group 1
T
H group 2
T group 2
M
N
H group 3
A group 3

Example:

 OUTREC IFTHEN=(WHEN=GROUP,
 BEGIN=(1,2,CH,EQ,C'�2',AND,8,3,CH,EQ,C'YES'),
 END=(11,5,CH,EQ,C'PAGE:'),PUSH=(61:SEQ=3))

Starts a new group each time C'02' is found in positions 1-2 and C'YES' is found in positions 8-10 of a record.
Ends the group when C'PAGE:' is found in positions 11-15 of a record. Overlays positions 61-63 of each
record of a group with a 3-byte ZD sequence number. The records between the groups are not changed.

 � RECORDS=n

Specifies the maximum number of records in a group. n can be 1 to 2000000000.

If RECORDS is specified without BEGIN or END, a new group starts after n records. Here's an example of
groups with

 User Guide for DFSORT PTF UK90013 15

RECORDS=3

H group 1
B group 1
T group 1
H group 2
B group 2
T group 2
M group 3
N group 3

If RECORDS is specified with BEGIN, up to n records starting with the begin record belong to a group.
Here's an example of groups with

BEGIN=(1,1,CH,EQ,C'H'),RECORDS=3

H group 1
B group 1
T group 1
A
H group 2
B group 2
H group 3
M group 3
N group 3
P

The records between and after the groups are not changed.

If RECORDS is specified with END, the group ends after up to n records or with the end record (or the last
record of the data set), whichever comes first. Here's an example of groups with

BEGIN=(1,1,CH,EQ,C'H'),END=(1,1,CH,EQ,C'T'),RECORDS=4

H group 1
B group 1
T group 1
A
H group 2
B group 2
C group 2
D group 2
E
H group 3
M group 3

The records between the groups are not changed.

You must specify the PUSH operand to define at least one field, identifier or sequence number to be added to the
records of each group. You can specify any combination or number of fields, identifiers and sequence numbers.

PUSH=(c:item,...)

Specifies the position where each field, identifier or sequence number is to be overlaid in the records of each group.

For fixed-length records, the first input and output data byte starts at position 1. For variable-length records, the
first input and output data byte starts at position 5, after the RDW in positions 1-4.

You can use the following in PUSH:

16 DFSORT UK90013

 � c:

Specifies the output position (column) to be overlaid. If you do not specify c: for the first item, it defaults to 1:.
If you do not specify c: for any other item, it starts after the previous item. You can specify items in any order
and overlap output columns. c can be 1 to 32752.

If you specify an item that extends the output record beyond the end of the input record, the record length is
automatically increased to that length, and blanks are filled in on the left as needed. For variable-length
records, the RDW length is increased to correspond to the larger record length after all of the items are proc-
essed. Missing bytes in specified input fields are replaced with blanks so the padded fields can be processed.

DFSORT symbols can be used for c:.

 � p,m

Specifies a field in the first input record of each group to be propagated to every record of the group. p
specifies the starting position of the field in the input record and m specifies its length. A field must not
extend beyond position 32752.

DFSORT symbols can be used for p,m.

 � ID=n

Specifies a ZD identifier of length n is to be added to every record of each group. The identifier starts at 1 for
the first group and is incremented by 1 for each subsequent group. n can be 1 to 15.

 � SEQ=n

Specifies a ZD sequence number of length n is to be added to every record of each group. The sequence
number starts at 1 for the first record of each group and is incremented by 1 for each subsequent record of the
group. n can be 1 to 15.

 Example 1
 OPTION COPY
 INREC IFTHEN=(WHEN=GROUP,BEGIN=(1,3,CH,EQ,C'HDR'),
 END=(1,3,CH,EQ,C'TRL'),PUSH=(31:ID=1))
OUTFIL INCLUDE=(31,1,CH,NE,C' '),BUILD=(1,3�)

This example illustrates how you can INCLUDE groups of FB records between a header and a trailer. We add an
ID after the end of each record to indicate whether it's part of a group or not, INCLUDE on the ID, and then
remove it.

The 30-byte FB input records might look like this:

C33 Not in a group
HDR Start Group 1
A�1 Group 1 record
B�2 Group 1 record
C�3 Group 1 record
TRL End Group 1
R24 Not in a group
T�2 Not in a group
HDR Start Group 2
D�4 Group 2 record
E�5 Group 2 record
TRL End Group 2
F97 Not in a group

In the output data set we only want to include groups of records that start with 'HDR' and end with 'TRL'.

 User Guide for DFSORT PTF UK90013 17

We use an IFTHEN WHEN=GROUP clause to put a non-blank character in each record that is part of a group.
BEGIN indicates a group starts with a record that has 'HDR' in positions 1-3. END indicates a group ends with a
record that has 'TRL' in positions 1-3. PUSH overlays a 1-byte ID character at position 31 in each record of a
group (after the end of the record). After the IFTHEN GROUP clause is executed, the intermediate records look
like this:

C33 Not in a group
HDR Start Group 1 1
A�1 Group 1 record 1
B�2 Group 1 record 1
C�3 Group 1 record 1
TRL End Group 1 1
R24 Not in a group
T�2 Not in a group
HDR Start Group 2 2
D�4 Group 2 record 2
E�5 Group 2 record 2
TRL End Group 2 2
F97 Not in a group

Note that the records within a group have a non-blank character in position 31 whereas the records outside groups
have a blank character in position 31. The ID starts at 1 for the first group and is incremented by 1 for each
subsequent group. Since we are only allowing one character for the ID, when the ID counter gets to 10, a '0' will
appear in position 31. That's fine since we are just looking for a non-blank to indicate a record within a group, or a
blank to indicate a record outside of a group.

We use an OUTFIL statement to only INCLUDE records with a non-blank in position 31, and to remove the ID
character so the included output records will be identical to the input records. After the OUTFIL statement is
executed, the final output records look like this:

HDR Start Group 1
A�1 Group 1 record
B�2 Group 1 record
C�3 Group 1 record
TRL End Group 1
HDR Start Group 2
D�4 Group 2 record
E�5 Group 2 record
TRL End Group 2

 Example 2
 OPTION COPY
 INREC IFTHEN=(WHEN=INIT,BUILD=(1,4,6:5)),
 IFTHEN=(WHEN=GROUP,BEGIN=(6,3,CH,EQ,C'HDR'),
 END=(6,3,CH,EQ,C'TRL'),PUSH=(5:ID=1))
OUTFIL INCLUDE=(5,1,CH,NE,C' '),BUILD=(1,4,5:6)

This example illustrates how you can INCLUDE groups of VB records between a header and a trailer. It's similar to
Example 1, but here the records are variable-length. For the FB records, we could add the ID after the end of each
record and then remove it without changing the records. But we can't add the ID at the end of each VB record
because that would pad all of the records to a fixed length. So, instead we insert the ID between the RDW and the
first data byte of each record, and later remove it.

The VB input records might look like this:

18 DFSORT UK90013

Len|Data
 23|C33 Not in a group
 23|HDR Start Group 1
 25|A�1 Group 1 record
 25|B�2 Group 1 record
 25|C�3 Group 1 record
 21|TRL End Group 1
 23|R24 Not in a group
 23|T�2 Not in a group
 23|HDR Start Group 2
 25|D�4 Group 2 record
 25|E�5 Group 2 record
 21|TRL End Group 2
 25|F97 Not in a group

In the output data set we only want to include groups of records that start with 'HDR' and end with 'TRL'.

We use an IFTHEN WHEN=INIT clause to reformat each record so it has room for the ID byte between the RDW
and the first data byte. After the WHEN=INIT clause is executed, the intermediate records look like this:

Len|Data
 24| C33 Not in a group
 24| HDR Start Group 1
 26| A�1 Group 1 record
 26| B�2 Group 1 record
 26| C�3 Group 1 record
 22| TRL End Group 1
 24| R24 Not in a group
 24| T�2 Not in a group
 24| HDR Start Group 2
 26| D�4 Group 2 record
 26| E�5 Group 2 record
 22| TRL End Group 2
 26| F97 Not in a group

Note that position 5 is blank and the 'HDR' and 'TRL' characters have been shifted over to positions 6-8.

We use an IFTHEN WHEN=GROUP clause to put a non-blank character in each record that is part of a group.
BEGIN indicates a group starts with a record that has 'HDR' in positions 6-8. END indicates a group ends with a
record that has 'TRL' in positions 6-8. PUSH overlays a 1-byte ID character at position 5 in each record of a
group. After the IFTHEN GROUP clause is executed, the intermediate records look like this:

Len|Data
 24| C33 Not in a group
 24|1HDR Start Group 1
 26|1A�1 Group 1 record
 26|1B�2 Group 1 record
 26|1C�3 Group 1 record
 22|1TRL End Group 1
 24| R24 Not in a group
 24| T�2 Not in a group
 24|2HDR Start Group 2
 26|2D�4 Group 2 record
 26|2E�5 Group 2 record
 22|2TRL End Group 2
 26| F97 Not in a group

Note that the records within a group have a non-blank character in position 5 whereas the records outside groups
have a blank character in position 5. The ID starts at 1 for the first group and is incremented by 1 for each

 User Guide for DFSORT PTF UK90013 19

subsequent group. Since we are only allowing one character for the ID, when the ID counter gets to 10, a '0' will
appear in position 5. That's fine since we are just looking for a non-blank to indicate a record within a group, or a
blank to indicate a record outside of a group.

We use an OUTFIL statement to only INCLUDE records with a non-blank in position 5, and to remove the ID
character so the included output records will be identical to the input records. After the OUTFIL statement is
executed, the final output records look like this:

 23|HDR Start Group 1
 25|A�1 Group 1 record
 25|B�2 Group 1 record
 25|C�3 Group 1 record
 21|TRL End Group 1
 23|HDR Start Group 2
 25|D�4 Group 2 record
 25|E�5 Group 2 record
 21|TRL End Group 2

 Example 3
 INREC IFTHEN=(WHEN=GROUP,BEGIN=(2,4,CH,EQ,C'RPT.'),
 PUSH=(31:6,8))
 OPTION EQUALS
 SORT FIELDS=(31,8,CH,A)
 OUTFIL INCLUDE=(31,8,CH,EQ,C'FRANK',OR,
 31,8,CH,EQ,C'SRIHARI'),BUILD=(1,3�)

This example illustrates how you can SORT and INCLUDE groups of FB records depending on a value in the first
record of each group. We propagate the value in the first record of the group to every record of the group, SORT
and INCLUDE on the value, and then remove it.

The 30-byte FBA input records might look like this:

1RPT.SRIHARI
 LINE 1 FOR REPORT 1
 LINE 2 FOR REPORT 1
 ...
1RPT.VICKY
 LINE 1 FOR REPORT 2
 LINE 2 FOR REPORT 2
 ...
1RPT.FRANK
 LINE 1 FOR REPORT 3
 LINE 2 FOR REPORT 3
 ...
1RPT.DAVID
 LINE 1 FOR REPORT 4
 LINE 2 FOR REPORT 4
 ...

Each report starts with 'RPT.reptname' in positions 2-13. In the output data set we only want to include records for
reports with specific reptname values, and the reptname values we want can change from run to run. We also want
to sort by the reptname values in ascending order. For this example, let's say we just want the SRIHARI and
FRANK reports.

We use an IFTHEN WHEN=GROUP clause to propagate the reptname value to each record of the group. BEGIN
indicates a group starts with 'RPT.' in positions 2-5. PUSH overlays the reptname value from the first record of the

20 DFSORT UK90013

group (the 'RPT.reptname' record) at positions 31-38 (after the end of the record) in each record of the group
including the first. After the IFTHEN GROUP clause is executed, the intermediate records look like this:

1RPT.SRIHARI SRIHARI
 LINE 1 FOR REPORT 1 SRIHARI
 LINE 2 FOR REPORT 1 SRIHARI
 ... SRIHARI
1RPT.VICKY VICKY
 LINE 1 FOR REPORT 2 VICKY
 LINE 2 FOR REPORT 2 VICKY
 ... VICKY
1RPT.FRANK FRANK
 LINE 1 FOR REPORT 3 FRANK
 LINE 2 FOR REPORT 3 FRANK
 ... FRANK
1RPT.DAVID DAVID
 LINE 1 FOR REPORT 4 DAVID
 LINE 2 FOR REPORT 4 DAVID
 ... DAVID

Note that the records of each group have the reptname value from the first record of that group in positions 31-38.

We use a SORT statement to sort ascending on the reptname in positions 31-38. We use the EQUALS option to
ensure that records in the same group (that is, with the same reptname value) are kept in their original order. After
the SORT statement is executed, the intermediate records look like this:

1RPT.DAVID DAVID
 LINE 1 FOR REPORT 4 DAVID
 LINE 2 FOR REPORT 4 DAVID
 ... DAVID
1RPT.FRANK FRANK
 LINE 1 FOR REPORT 3 FRANK
 LINE 2 FOR REPORT 3 FRANK
 ... FRANK
1RPT.SRIHARI SRIHARI
 LINE 1 FOR REPORT 1 SRIHARI
 LINE 2 FOR REPORT 1 SRIHARI
 ... SRIHARI
1RPT.VICKY VICKY
 LINE 1 FOR REPORT 2 VICKY
 LINE 2 FOR REPORT 2 VICKY
 ... VICKY

We use an OUTFIL statement to only INCLUDE the records with a a reptname of FRANK or SRIHARI in posi-
tions 31-38, and to remove the reptname from positions 31-38 so the included output records will be identical to the
input records. After the OUTFIL statement is executed, the final output records look like this:

1RPT.FRANK
 LINE 1 FOR REPORT 3
 LINE 2 FOR REPORT 3
 ...
1RPT.SRIHARI
 LINE 1 FOR REPORT 1
 LINE 2 FOR REPORT 1
 ...

 Example 4

 User Guide for DFSORT PTF UK90013 21

 OPTION COPY
 OUTREC IFTHEN=(WHEN=INIT,BUILD=(1,4,8:5)),
 IFTHEN=(WHEN=GROUP,BEGIN=(8,5,CH,EQ,C'PAGE:'),
 PUSH=(5:SEQ=3))
 OUTFIL INCLUDE=(5,3,ZD,EQ,2,OR,5,3,ZD,EQ,3),
 BUILD=(1,4,5:8)

This example illustrates how you can INCLUDE specific relative records from groups of VB records. We insert a
sequence number between the RDW and the first data byte of each record. The sequence number restarts at 1 for
the first record in each group. We INCLUDE on the sequence number and then remove it.

The VB input records might look like this:

Len|Data
 12|PAGE: 1
 22|LINE 1 OF REPORT A
 22|LINE 2 OF REPORT A
 22|LINE 3 OF REPORT A
 22|LINE 4 OF REPORT A
 |...
 12|PAGE: 2
 23|LINE 66 OF REPORT A
 23|LINE 67 OF REPORT A
 23|LINE 68 OF REPORT A
 23|LINE 69 OF REPORT A
 |...
 12|PAGE: 3
 24|LINE 131 OF REPORT A
 24|LINE 132 OF REPORT A
 24|LINE 133 OF REPORT A
 24|LINE 134 OF REPORT A
 |...

We use an IFTHEN WHEN=INIT clause to reformat each record so it has room for the 3-byte sequence number
between the RDW and the first data byte. After the WHEN=INIT clause is executed, the intermediate records look
like this:

Len|Data
 15| PAGE: 1
 25| LINE 1 OF REPORT A
 25| LINE 2 OF REPORT A
 25| LINE 3 OF REPORT A
 25| LINE 4 OF REPORT A
 | ...
 15| PAGE: 2
 26| LINE 66 OF REPORT A
 26| LINE 67 OF REPORT A
 26| LINE 68 OF REPORT A
 26| LINE 69 OF REPORT A
 | ...
 15| PAGE: 3
 27| LINE 131 OF REPORT A
 27| LINE 132 OF REPORT A
 27| LINE 133 OF REPORT A
 27| LINE 134 OF REPORT A

Note that positions 5-7 are blank and the 'PAGE:' characters have been shifted over to positions 8-12.

22 DFSORT UK90013

We use an IFTHEN WHEN=GROUP clause to put a 3-byte sequence number in each record. BEGIN indicates a
group starts with a record that has 'PAGE:' in positions 8-12. PUSH overlays a 3-byte sequence number at posi-
tions 5-7 of each record. The sequence number starts at 1 for the first record of a group and is incremented by 1
for each subsequent record of the group. After the IFTHEN GROUP clause is executed, the intermediate records
look like this:

Len|Data
 15|��1PAGE: 1
 25|��2LINE 1 OF REPORT A
 25|��3LINE 2 OF REPORT A
 25|��4LINE 3 OF REPORT A
 25|��5LINE 4 OF REPORT A
 |��6...
 15|��1PAGE: 2
 26|��2LINE 66 OF REPORT A
 26|��3LINE 67 OF REPORT A
 26|��4LINE 68 OF REPORT A
 26|��5LINE 69 OF REPORT A
 |��6...
 15|��1PAGE: 3
 27|��2LINE 131 OF REPORT A
 27|��3LINE 132 OF REPORT A
 27|��4LINE 133 OF REPORT A
 27|��5LINE 134 OF REPORT A
 |��6...

Note that the records in each group are numbered starting with 001 for the first record of each group. The records
we want have sequence numbers 002 and 003.

We use an OUTFIL statement to only INCLUDE the records with sequence number 002 or 003, and to remove the
sequence numbers so the included output records will be identical to the input records. After the OUTFIL statement
is executed, the final output records look like this:

Len|Data
 22|LINE 1 OF REPORT A
 22|LINE 2 OF REPORT A
 23|LINE 66 OF REPORT A
 23|LINE 67 OF REPORT A
 24|LINE 131 OF REPORT A
 24|LINE 132 OF REPORT A

 DATASORT

 Introduction

DATASORT is a new ICETOOL operator that allows you to sort the data records in a data set without sorting the
header or trailer records. DATASORT gives you new capabilities for sorting the data records between header
records (first n records of the data set) and trailer records (last n records of the data set) while keeping the header
and trailer records in place. DATASORT does not require an "identifier" in the header or trailer records; it can
treat the first n records as header records and the last n records as trailer records.

Various options of DATASORT allow you to define the ddname for the input data set, the ddname for the output
data set, the number of header records and/or trailer records, and the SORT and other DFSORT control statements
to be used for the DATASORT operation.

 User Guide for DFSORT PTF UK90013 23

As an example, you could use the following DATASORT operator to sort the data records by positions 1-16 while
keeping the header record as the first record and the two trailer records are the last two records, respectively.

...
//TOOLIN DD �
DATASORT FROM(IN) TO(OUT) HEADER TRAILER(2) USING(CTL1)
//CTL1CNTL DD �
 SORT FIELDS=(1,16,CH,A)

If the IN data set contained these records:

2��8/�4/23
Geometry
Algebra
Trigonometry
Calculus
���4
End of data set

the OUT data set would contain these records:

2��8/�4/23
Algebra
Calculus
Geometry
Trigonometry
���4
End of data set

 Syntax

The syntax for the DATASORT operator is as follows:

DATASORT FROM(indd) TO(outdd) HEADER|FIRST|HEADER(x)|FIRST(x)
 TRAILER|LAST|TRAILER(x)|LAST(x) USING(xxxx) VSAMTYPE(x)

 Detailed Description

DATASORT copies one or more header records and one or more trailer records to the output data set in their
original input record order, while sorting the data records between the header and trailer records. By definition,
header records are the first n records in the input data set, the trailer records are the last n records in the input data
set, and the data records (also called detail records) are the records between the header and trailer records.

DFSORT is called to copy the header and trailer records and to sort the data records. DFSORT uses its E15 and
E35 exits to process the records as needed. You must supply a DFSORT SORT statement in the xxxxCNTL data
set to indicate the control fields to be used for sorting the data records. ICETOOL passes the EQUALS option to
DFSORT to ensure that duplicates are kept in their original input order.

When ICETOOL is called using the parameter list interface, the 1-byte operation status indicator in the Return Area
will be set to 0 or 4 for a DATASORT operator in the same way as for the existing operators. No operation
specific values are returned for DATASORT.

You must specify the FROM(indd), TO(outdd) and USING(xxxx) operands.

You must specify a header operand (HEADER, FIRST, HEADER(x), FIRST(x)) or a trailer operand (TRAILER,
LAST, TRAILER(x), LAST(x)). If you specify a header operand without a trailer operand, only the header records
will be kept in place. If you specify a trailer operand without a header operand, only the trailer records will be kept

24 DFSORT UK90013

in place. If you specify a header operand and a trailer operand, both the header records and trailer records will be
kept in place.

You can only specify one header operand. You can only specifiy one trailer operand.

The VSAMTYPE(x) operand is optional.

The operands described below can be specified in any order:

 � FROM(indd)

Specifies the ddname of the input data set to be read by DFSORT for this operation. An indd DD statement
must be present.

 � TO(outdd)

Specifies the ddname of the output data set to be written by DFSORT for this operation. An outdd DD state-
ment must be present. The ddname specified in the TO operand must not be the same as the ddname specified
in the FROM operand.

� HEADER or FIRST

Specifies one header record (the first record in the indd data set) is to be kept in place.

HEADER and FIRST are equivalent to HEADER(1) and FIRST(1).

� HEADER(x) or FIRST(x)

Specifies x header records (the first x records in the indd data set) are to be kept in place. x must be specified
as n or +n where n can be 1 to 1000000.

DFSORT symbols can be used for n and +n in HEADER(x) and FIRST(x).

� TRAILER or LAST

Specifies one trailer record (the last record in the indd data set) is to be kept in place.

TRAILER and LAST are equivalent to TRAILER(1) and LAST(1).

� TRAILER(x) or LAST(x)

Specifies x trailer records (the last x records in the indd data set) are to be kept in place. x must be specified
as n or +n where n can be 1 to 1000000.

DFSORT symbols can be used for n and +n in TRAILER(x) and LAST(x).

 � USING(xxxx)

Specifies the first 4 characters of the ddname for the control statement data set to be used by DFSORT for this
operation. xxxx must be four characters that are valid in a ddname of the form xxxxCNTL. xxxx must not be
SYSx. An xxxxCNTL DD statement must be present, and the control statements in it must conform to the
rules for DFSORT's SORTCNTL data set.

If you want to override dynamic allocation of work data sets for this operation, you can use xxxxWKdd DD
statements for that purpose.

You must observe these rules for the control statements in the xxxxCNTL data set:

– A SORT statement must be present

– MODS and OUTREC statements should not be present.

– A STOPAFT operand should not be present.

– Comment statements can be present.

 User Guide for DFSORT PTF UK90013 25

– Header and trailer records will only be affected by the SKIPREC option and OUTFIL statements.
SKIPREC=n will remove the first n indd records, so the first header record will be the n+1 indd record.
OUTFIL statements will process the header and trailer records in the normal way.

– Data records will be processed by INCLUDE, OMIT, INREC, SUM, OPTION and OUTFIL statements in
the normal way.

– If you use INREC to change the length of the data records, DFSORT will preserve the header and trailer
records by setting the TO data set LRECL to the maximum of the input or reformatted record length. For
fixed-length records, DFSORT will pad the header and trailer records, or data records, on the right with
blanks as appropriate.

– You can further process the outdd records after DATASORT processing using an OUTFIL statement like
this:

 OUTFIL FNAMES=outdd,...

or multiple OUTFIL statements like this:

 OUTFIL FNAMES=outdd,...
 OUTFIL FNAMES=outdd1,...

For example, with TO(OUT1) you could further modify the OUT1 records after DATASORT processing,
with a statement like this:

 OUTFIL FNAMES=OUT1,REMOVECC,
TRAILER1=('Record count ',COUNT=(M11,LENGTH=5))

 � VSAMTYPE(x)

Specifies the record type for a VSAM input data set. x must be either F for fixed-length record processing or V
for variable-length record processing.

If VSAMTYPE(x) is specified, ICETOOL will pass a RECORD TYPE=x control statement to DFSORT. (If
you specify a RECORD TYPE=x statement in the xxxxCNTL data set, it will override the one passed by
ICETOOL.)

 Example 1
DATASORT FROM(INPUT) TO(OUTPUT) -
HEADER TRAILER USING(CTL1)

//CTL1CNTL DD �
 SORT FIELDS=(16,13,CH,A)

This example illustrates how you can sort the data records between a header record (first record) and a trailer record
(last record) in an FB or VB data set.

The FB input records might look like this:

MM99999��51�1��823DDDDD FFFFF ��42��8�6128
AAR FIRST C 1134341444441 XXXXXXXXX
ATX SECOND 777777777�111 XXXXXXXXX
ATX THIRD L 62971322�1111 XXXXXXXXX
ATX FOURTH 283��129�6356 XXXXXXXXX
MM99999��51�1��823DDDDD FFFFF ��4

We want to keep the MM records in place and sort the other records by the CH field in positions 16-28. We use
HEADER and TRAILER to indicate the first and last records should not be sorted. We use the SORT statement to
SORT ascending on positions 16-28.

The output records look like this:

26 DFSORT UK90013

MM99999��51�1��823DDDDD FFFFF ��42��8�6128
AAR FIRST C 1134341444441 XXXXXXXXX
ATX FOURTH 283��129�6356 XXXXXXXXX
ATX THIRD L 62971322�1111 XXXXXXXXX
ATX SECOND 777777777�111 XXXXXXXXX
MM99999��51�1��823DDDDD FFFFF ��4

 Example 2
DATASORT FROM(IN) TO(OUT) -
HEADER(2) TRAILER(3) USING(CTL1)

//CTL1CNTL DD �
 INREC IFTHEN=(WHEN=(24,2,CH,EQ,C'23'),
 OVERLAY=(3�:C'Old'))
 SORT FIELDS=(1,14,CH,A)
 OUTFIL FNAMES=OUT,
 IFTHEN=(WHEN=(24,2,CH,EQ,C'23'),
 OVERLAY=(35:C'First'))

This example illustrates how you can sort the data records between header records (first records) and trailer records
(last records) in an FB or VB data set, and modify just the data records or the header, data and trailer records.

The FB input records might look like this:

Header 1 2��8/�4/23
Header 2 2��8/�4/23
Geometry 2��8/�4/24
Algebra 2��8/�4/23
Trigonometry 2��8/�4/24
Calculus 2��8/�4/25
Geography 2��8/�4/25
History 2��8/�4/23
Trailer 1 2��8/�4/23
Trailer 2 2��8/�4/23
Trailer 3 2��8/�4/23

We want to keep the two Header records and the three Trailer records in place and sort the other records by the CH
field in positions 1-14. We want to put 'Old' in positions 30-32 of each data record (but not the Header or Trailer
records) that has '23' in positions 24-25. We want to put 'First' in positions 35-39 of each record (Header, data and
Trailer) that has '23' in positions 24-25.

We use HEADER(2) and TRAILER(3) to indicate the first two records and last 3 records should not be sorted. We
use the INREC statement to add 'Old' to data records that have '23' in positions 24-25. INREC applies to the data
records, but not to the Header and Trailer records. We use the SORT statement to sort ascending on positions 1-14.
We use the OUTFIL statement to add 'First' to Header, data and Trailer records that have '23' in positions 24-25.
OUTFIL applies to all of the records.

The output records look like this:

 User Guide for DFSORT PTF UK90013 27

Header 1 2��8/�4/23 First
Header 2 2��8/�4/23 First
Algebra 2��8/�4/23 Old First
Calculus 2��8/�4/25
Geography 2��8/�4/25
Geometry 2��8/�4/24
History 2��8/�4/23 Old First
Trigonometry 2��8/�4/24
Trailer 1 2��8/�4/23 First
Trailer 2 2��8/�4/23 First
Trailer 3 2��8/�4/23 First

 SUBSET

 Introduction

SUBSET is a new ICETOOL operator that allows you to create a subset of the input or output records with specific
header, trailer, and relative records, or without specific header, trailer, and relative records. SUBSET gives you
new capabilities for keeping or removing the first n records of your data set, the last n records of your data set,
and/or specific relative records in your data set. SUBSET does not require an "identifier" in the records to be kept
or removed; it keeps track of the first n records, relative record numbers, and the last n records automatically.

Various options of SUBSET allow you to define the criteria for keeping or removing records, the ddname for the
input data set, the ddname for the output data set to contain the records that meet the criteria, the ddname for the
output data set to contain the records that don't meet the criteria, whether the records that meet the criteria are to be
kept or removed, whether the criteria are to be applied to the input or output records, and DFSORT control state-
ments to be used for the SUBSET operation.

As an example, you could use the following SUBSET operator to keep the first two input records, the fifth, sixth
and seventh input records, and the last input record.

SUBSET FROM(IN) TO(OUT) KEEP INPUT FIRST(2) RRN(5,7) LAST

If the IN data set contained these records:

MASTER�3.IN
2��8/�4/23
Vicky
Frank
Regina
Viet
David
Dave
Carrie
Sam
Sri Hari
Martin
UPDATE�3.OUT

the OUT data set would contain these records:

28 DFSORT UK90013

MASTER�3.IN
2��8/�4/23
Regina
Viet
David
UPDATE�3.OUT

 Syntax

The syntax for the SUBSET operator is as follows:

SUBSET FROM(indd) TO(outdd) DISCARD(savedd) KEEP|REMOVE INPUT|OUTPUT
 HEADER|FIRST|HEADER(x)|FIRST(x)
 RRN(x)|RRN(x,y)|RRN(x,�) ...
 TRAILER|LAST|TRAILER(x)|LAST(x)
 USING(xxxx) VSAMTYPE(x)

 Detailed Description

SUBSET keeps or removes input or output records based on meeting criteria for the first n records, specific relative
record numbers, and the last n records. DFSORT writes the records that are kept or not removed to the outdd data
set. DISCARD(savedd) can be used to write the records that are removed or not kept to the savedd data set.

DFSORT is called to copy or sort the indd data set, as appropriate. ICETOOL uses its E15 or E35 exit to deter-
mine which records to include in the outdd or savedd data set. ICETOOL passes the EQUALS option to DFSORT
to ensure that duplicates are kept in their original input order if records are sorted.

If the criteria includes the last n records, ICETOOL may call DFSORT twice. For the first pass, ICETOOL counts
the indd records without opening the output data sets. For the second pass, ICETOOL opens the output data sets
and does SUBSET processing against the indd data set using the count obtained in the first pass.

When ICETOOL is called using the parameter list interface, the 1-byte operation status indicator in the Return Area
will be set to 0 or 4 for a SUBSET operator in the same way as for the existing operators. No operation specific
values are returned for SUBSET.

You must specify the FROM(indd), TO(outdd) or DISCARD(savedd), KEEP or REMOVE, and INPUT or
OUTPUT operands.

If you do not specify a header operand (HEADER, FIRST, HEADER(x), FIRST(x)), a relative record number
operand (RRN(x), RRN(x,y), RRN(x,*)), or a trailer operand (TRAILER, LAST, TRAILER(x), LAST(x)), all of the
records will be kept or removed. You can specify a header operand, relative record number operands, and a trailer
operand in any combination. Records will be kept or removed according to the criteria you specify.

You can only specify one header operand. You can specify from 1 to 300 relative record number operands in any
combination. You can only specify one trailer operand.

The USING(xxxx) and VSAMTYPE(x) operands are optional.

The operands described below can be specified in any order:

 � FROM(indd)

Specifies the ddname of the input data set to be read by DFSORT for this operation. An indd DD statement
must be present.

 User Guide for DFSORT PTF UK90013 29

 � TO(outdd)

Specifies the ddname of the output data set to which DFSORT will write the records it selects for the operation
(that is, the records that are kept or not removed according to the specified criteria). If TO(outdd) is specified,
an outdd DD statement must be present.

TO and DISCARD can both be specified. If DISCARD is not specified, TO must be specified. If TO is not
specified, DISCARD must be specified.

The ddname specified in the TO operand must not be the same as the ddname specified in the FROM or
DISCARD operand.

 � DISCARD(savedd)

Specifies the ddname of the output data set to which DFSORT will write the records it does not select for the
operation. If DISCARD(savedd) is specified, a savedd DD statement must be present.

TO and DISCARD can both be specified. If DISCARD is not specified, TO must be specified. If TO is not
specified, DISCARD must be specified.

The ddname specified in the DISCARD operand must not be the same as the ddname specified in the FROM
or TO operand.

 � KEEP

Specifies that the records that meet the criteria are to be kept.

 � REMOVE

Specifies that the records that meet the criteria are to be removed.

 � INPUT

Specifies that the criteria are to be applied using the first n input records, relative input record numbers, and the
last n input records. Use INPUT if you want to apply the criteria directly to the records from the indd data set.

The criteria will be applied to keep or remove records before they are reformatted by INREC, sorted by SORT
and summed by SUM. The kept records will subsequently be reformatted, sorted and summed. OUTFIL will
be applied to the resulting records.

As an example, if the input data set contains these records:

AAAA R�1
AAAA R�2
BBBB R�3
CCCC R�4
CCCC R�5
CCCC R�6
DDDD R�7
DDDD R�8
EEEE R�9
EEEE R1�
EEEE R11

and the following SUBSET operator and DFSORT control statements were specified:

...
//TOOLIN DD �
SUBSET FROM(IN) TO(OUT) KEEP INPUT RRN(3,1�) USING(CTL1)
//CTL1CNTL DD �
 SORT FIELDS=(1,5,CH,D)
 SUM FIELDS=NONE
/�

30 DFSORT UK90013

First, input records 3-10 would be kept, so the intermediate result would be:

BBBB R�3
CCCC R�4
CCCC R�5
CCCC R�6
DDDD R�7
DDDD R�8
EEEE R�9
EEEE R1�

Then the SORT statement would be applied, so the intermediate result would be:

EEEE R�9
EEEE R1�
DDDD R�7
DDDD R�8
CCCC R�4
CCCC R�5
CCCC R�6
BBBB R�3

Finally the SUM statement would be applied, so the final output in the OUT data set would be:

EEEE R�9
DDDD R�7
CCCC R�4
BBBB R�3

 � OUTPUT

Specifies that the criteria are to be applied using the first n output records, relative output record numbers, and
the last n output records. Use OUTPUT if you want to apply the criteria to the indd records after they are
processed by INREC, SORT and SUM as specified.

The criteria will be applied to keep or remove records after they are reformatted by INREC, sorted by SORT
and summed by SUM. OUTFIL will be applied to the resulting records.

As an example, if the input data set contains these records:

AAAA R�1
AAAA R�2
BBBB R�3
CCCC R�4
CCCC R�5
CCCC R�6
DDDD R�7
DDDD R�8
EEEE R�9
EEEE R1�
EEEE R11

and the following SUBSET operator and DFSORT control statements were specified:

...
//TOOLIN DD �
SUBSET FROM(IN) TO(OUT) KEEP OUTPUT RRN(2,3) USING(CTL1)
//CTL1CNTL DD �
 SORT FIELDS=(1,5,CH,D)
 SUM FIELDS=NONE
/�

First, the SORT statement would be applied, so the intermediate result would be:

 User Guide for DFSORT PTF UK90013 31

EEEE R�9
EEEE R1�
EEEE R11
DDDD R�7
DDDD R�8
CCCC R�4
CCCC R�5
CCCC R�6
BBBB R�3
AAAA R�1
AAAA R�2

Then the SUM statement would be applied, so the intermediate result would be:

EEEE R�9
DDDD R�7
CCCC R�4
BBBB R�3
AAAA R�1

Finally, output records 2-3 would be kept, so the final output in the OUT data set would be:

DDDD R�7
CCCC R�4

� HEADER or FIRST

Specifies one header record (the first record) is to be kept or removed.

HEADER and FIRST are equivalent to HEADER(1) and FIRST(1).

� HEADER(x) or FIRST(x)

Specifies x header records (the first x records) are to be kept or removed. For example, HEADER(3) or
FIRST(3) keeps or removes the first three records. x must be specified as n or +n where n can be 1 to
999999999999999.

DFSORT symbols can be used for n and +n in HEADER(x) and FIRST(x).

 � RRN(x)

Specifies relative record number x is to be kept or removed. For example, RRN(8) keeps or removes the
eighth record. x must be specified as n or +n where n can be 1 to 999999999999999.

DFSORT symbols can be used for n and +n in RRN(x).

 � RRN(x,y)

Specifies relative record numbers x through y are to be kept or removed. x can be less than, equal to, or
greater than y. For example, RRN(5,10) and RRN(10,5) both keep or remove the fifth through tenth records. x
and y must be specified as n or +n where n can be 1 to 99999999999999.

DFSORT symbols can be used for n and +n in RRN(x,y).

 � RRN(x,*)

Specifies relative record numbers x through the last record are to be kept or removed. For example, RRN(7,*)
keeps or removes the seventh through last records. x must be specified as n or +n where n can be 1 to
99999999999999.

DFSORT symbols can be used for n and +n in RRN(x,*).

� TRAILER or LAST

Specifies one trailer record (the last record) is to be kept or removed.

32 DFSORT UK90013

TRAILER and LAST are equivalent to TRAILER(1) and LAST(1).

� TRAILER(x) or LAST(x)

Specifies x trailer records (the last x records) are to be kept or removed. For example, TRAILER(4) or
LAST(4) keeps or removes the last 4 records. x must be specified as n or +n where n can be 1 to
999999999999999.

DFSORT symbols can be used for n and +n in TRAILER(x) and LAST(x).

 � USING(xxxx)

Specifies the first 4 characters of the ddname for the control statement data set to be used by DFSORT for this
operation. xxxx must be four characters that are valid in a ddname of the form xxxxCNTL. xxxx must not be
SYSx. If USING(xxxx) is specified, an xxxxCNTL DD statement must be present, and the control statements
in it must conform to the rules for DFSORT's SORTCNTL data set.

If you specify a SORT statement in xxxxCNTL and you want to override dynamic allocation of work data sets
for this operation, you can use xxxxWKdd DD statements for that purpose.

You must observe these rules for the control statements in the xxxxCNTL data set:

– MODS and OUTREC statements should not be present.

– SKIPREC and STOPAFT operands, and INCLUDE and OMIT statements, should not be present.

– A SORT statement can be present unless INPUT and DISCARD(savedd) are specified.

– INREC and SUM statements can be present.

– If INPUT is specified, the records selected will not be affected by INREC, SORT or SUM. If OUTPUT is
specified, the records selected will be affected by INREC, SORT and SUM.

– Comment statements can be present.

– If you specify TO(outdd) without DISCARD(savedd), you can further process the outdd records after
SUBSET processing using an OUTFIL statement like this:

 OUTFIL FNAMES=outdd,...

or multiple OUTFIL statements like this:

 OUTFIL FNAMES=outdd,...
 OUTFIL FNAMES=outdd1,...

– If you specify DISCARD(savedd) without TO(outdd), you can further process the savedd records after
SUBSET processing using one (and only one) OUTFIL statement like this:

 OUTFIL FNAMES=savedd,...

– If you specify TO(outdd) and DISCARD(savedd), you can further process the outdd and savedd records
after SUBSET processing using two (and only two) OUTFIL statements like this:

 OUTFIL FNAMES=outdd,...

or multiple OUTFIL statements like this:

 OUTFIL FNAMES=outdd,...
 OUTFIL FNAMES=savedd,...

Both statements must be specified in the order shown with at least the FNAMES parameter. For example,
to further modify only the DISCARD data set, you could use statements like this:

 OUTFIL FNAMES=OUT
 OUTFIL FNAMES=SAVE,OMIT=(21,3,ZD,GT,+25)

 � VSAMTYPE(x)

 User Guide for DFSORT PTF UK90013 33

Specifies the record type for a VSAM input data set. x must be either F for fixed-length record processing or V
for variable-length record processing.

If VSAMTYPE(x) is specified, ICETOOL will pass a RECORD TYPE=x control statement to DFSORT. (If
you specify a RECORD TYPE=x statement in the xxxxCNTL data set, it will override the one passed by
ICETOOL.)

 Example 1
SUBSET FROM(IN1) TO(OUT1) REMOVE INPUT HEADER TRAILER

This example illustrates how you can remove the header record (first record) and trailer record (last record).

The VB input records might look like this:

Len|Data
 33|�1A RODENTS FFFFF
 23|�1A VOLE BINKY
 26|�2B HAMSTER GARFIELD
 22|�3A RAT JUNE
24|�4B MOUSE MICKEY
21|�1A COUNT ��4

We just want to keep the data records. We use REMOVE, INPUT, HEADER and TRAILER to indicate we want
to remove the header and trailer input records.

The output records look like this:

 23|�1A VOLE BINKY
 26|�2B HAMSTER GARFIELD
 22|�3A RAT JUNE
24|�4B MOUSE MICKEY

 Example 2
SUBSET FROM(IN2) TO(OUT2) DISCARD(OUT3) -
KEEP INPUT RRN(3,4) LAST(3)

This example illustrates how you can create one output file with relative records and the last n records, and another
output file with the remaining records.

The input records might look like this:

Algebra
Astronomy
Biology
Calculus
French
Geography
Geometry
Greek
History
Latin
Psychology
Russian

In the first output file (OUT2), we want the third and fourth input records and the last three input records. In the
second output file (OUT3), we want the records that are not in the first output file. We use TO(OUT2) and

34 DFSORT UK90013

DISCARD(OUT3) for the two output files. We use KEEP, INPUT, RRN(3,4) and LAST(3) to indicate we want to
keep relative input records 3 and 4 and the last 3 input records.

The OUT1 records look like this:

Biology
Calculus
Latin
Psychology
Russian

The OUT2 records look like this:

Algebra
Astronomy
French
Geography
Geometry
Greek
History

 Example 3
SUBSET FROM(IN3) TO(OUT4) KEEP OUTPUT -
 LAST(5) USING(CTL1)
//CTL1CNTL DD �
 SORT FIELDS=(1,15,CH,A)

This example illustrates how you can keep the last 5 sorted records.

The input records might look like this:

Psychology
Biology
Russian
French
History
Geography
Calculus
Geometry
Algebra
Greek
Astronomy
Latin

We want to sort the records by the CH field in positions 1-15 and keep the last 5 sorted records. We use KEEP,
OUTPUT and LAST(5) to keep the last 5 output records. We use the SORT statement to sort the records before
they are output. After the SORT statement is executed, the intermediate records look like this:

 User Guide for DFSORT PTF UK90013 35

Algebra
Astronomy
Biology
Calculus
French
Geography
Geometry
Greek
History
Latin
Psychology
Russian

After the SUBSET operator is executed, the final output records look like this:

Greek
History
Latin
Psychology
Russian

SELECT with first n duplicates

 Introduction

ICETOOL's SELECT operator now allows you to select the first n records with each key or the first n duplicate
records with each key. This gives you new capabilities for selecting records representing "top" and "bottom" cate-
gories.

As an example, the following SELECT operator could be used to list the top 3 students in each class.

...
//TOOLIN DD �
SELECT FROM(IN) TO(OUT) ON(1,1�,CH) FIRST(3) USING(CTL1)
//CTL1CNTL DD �
 SORT FIELDS=(1,1�,CH,A,21,2,ZD,D)

We sort on the class name in ascending order, and on the average in descending order, to get the records in order
by class name and highest to lowest average. We SELECT on the class name and use FIRST(3) to get the first
three records for each class which gives us up to three students with the highest average.

If the IN data set contained these records:

Geometry Fred 85
Geometry Janis 71
Geometry Leonard 78
Geometry Michael 91
Geometry Susan 83
Geometry William 92
Algebra Fred 83
Algebra Janis 9�
Algebra Leonard 85
Algebra Michael 94
Algebra Susan 92
Algebra William 87

the OUT data set would contain these records:

36 DFSORT UK90013

Algebra Michael 94
Algebra Susan 92
Algebra Janis 9�
Geometry William 92
Geometry Michael 91
Geometry Fred 85

 Syntax

The syntax for the new operands of SELECT is as follows:

SELECT ... FIRST(x)|FIRSTDUP(x)

 Detailed Description

The new FIRST(x) operand of SELECT keeps the first x records with each unique key. The new FIRSTDUP(x)
operand of SELECT keeps the first x records for each set of duplicate values.

FIRST(x) or FIRSTDUP(x) can be used to specify the criteria for selecting records in the same way the existing
operands ALLDUPS, NODUPS, HIGHER(x), LOWER(x), EQUAL(x), FIRST, LAST, FIRSTDUP or LASTDUP
can be used. One (and only one) of these operands must be specified.

The new operands of SELECT described below, and the existing operands of SELECT, can be specified in any
order:

 � FIRST(x)

Limits the records selected to those with ON values that occur only once (value count = 1) and the first x
records of those with ON values that occur more than once (value count > 1). You can use this operand to
keep just the first x records for each unique field value. For example, FIRST(3) keeps the first 3 records for
each key.

x must be specified as n or +n where n can be 1 to 999999999999999.

DFSORT symbols can be used for n and +n in FIRST(x).

FIRST(1) is equivalent to FIRST.

 � FIRSTDUP(x)

Limits the records selected to the first x records of those with ON values that occur more than once (value
count > 1). You can use this operand to keep just the first x records of those records with duplicate field
values. For example, FIRSTDUP(5) keeps the first 5 records for each duplicate key.

x must be specified as n or +n where n can be 1 to 999999999999999.

DFSORT symbols can be used for n and +n in FIRSTDUP(x).

FIRSTDUP(1) is equivalent to FIRSTDUP.

 Example 1
SELECT FROM(INPUT) TO(HIGH) ON(8,3,CH) FIRST(2) USING(CTL1)
SELECT FROM(INPUT) TO(LOW) ON(8,3,CH) FIRST(2) USING(CTL2)
//CTL1CNTL DD �
 SORT FIELDS=(8,3,CH,A,17,1�,UFF,D)
//CTL2CNTL DD �
 SORT FIELDS=(8,3,CH,A,17,1�,UFF,A)

 User Guide for DFSORT PTF UK90013 37

This example illustrates how you can create one output file with records having the highest two values for each
occurrence of a field, and another output file with records having the lowest two values for each occurrence of a
field.

The input records might look like this:

BRANCH ��1 JAN 5,231.87
BRANCH ��1 FEB 1,983.21
BRANCH ��1 MAR 2,1�3.52
BRANCH ��1 APR 586.12
BRANCH ��1 MAY 12,862.�5
BRANCH ��1 JUN 7,213.96
BRANCH ��2 JAN 1�5.12
BRANCH ��2 FEB 9,�32.�5
BRANCH ��2 MAR 8,721.35
BRANCH ��2 APR 14,635.32
BRANCH ��2 MAY 936.28
BRANCH ��2 JUN 6,�12.38

In the first output file (HIGH), we want the records for each BRANCH for the two months with the highest
amounts. In the second output file (LOW), we want the records for each BRANCH for the two months with the
lowest amounts.

For the first SELECT operator to get the highest amounts, we use ON(8,3,CH) for the BRANCH code (001 or 002),
FIRST(2) to get the first two records for each branch and a SORT statement that sorts on the branch ascending and
the amount descending. After the SORT statement is executed, the intermediate records look like this:

BRANCH ��1 MAY 12,862.�5
BRANCH ��1 JUN 7,213.96
BRANCH ��1 JAN 5,231.87
BRANCH ��1 MAR 2,1�3.52
BRANCH ��1 FEB 1,983.21
BRANCH ��1 APR 586.12
BRANCH ��2 APR 14,635.32
BRANCH ��2 FEB 9,�32.�5
BRANCH ��2 MAR 8,721.35
BRANCH ��2 JUN 6,�12.38
BRANCH ��2 MAY 936.28
BRANCH ��2 JAN 1�5.12

After SELECT with FIRST(2) is executed, the final HIGH output looks like this:

BRANCH ��1 MAY 12,862.�5
BRANCH ��1 JUN 7,213.96
BRANCH ��2 APR 14,635.32
BRANCH ��2 FEB 9,�32.�5

For the second SELECT operator to get the lowest amounts, we use ON(8,3,CH) for the BRANCH code (001 or
002), FIRST(2) to get the first two records for each branch and a SORT statement that sorts on the branch
ascending and the amount ascending. After the SORT statement is executed, the intermediate records look like
this:

38 DFSORT UK90013

BRANCH ��1 APR 586.12
BRANCH ��1 FEB 1,983.21
BRANCH ��1 MAR 2,1�3.52
BRANCH ��1 JAN 5,231.87
BRANCH ��1 JUN 7,213.96
BRANCH ��1 MAY 12,862.�5
BRANCH ��2 JAN 1�5.12
BRANCH ��2 MAY 936.28
BRANCH ��2 JUN 6,�12.38
BRANCH ��2 MAR 8,721.35
BRANCH ��2 FEB 9,�32.�5
BRANCH ��2 APR 14,635.32

After SELECT with FIRST(2) is executed, the final LOW output looks like this:

BRANCH ��1 APR 586.12
BRANCH ��1 FEB 1,983.21
BRANCH ��2 JAN 1�5.12
BRANCH ��2 MAY 936.28

 Example 2
SELECT FROM(INPUT) TO(OUTPUT) ON(3�,7,CH) FIRSTDUP(3)

This example illustrates how you can take a sample of up to 3 records with each duplicate value (that is, each value
that occurs more than once).

The input records might look like this:

�8�15 �62753 CODE ��4 USERID 872�398
�8��5 1��3�5 CODE ��5 USERID 6�3�2�1
�8��7 11�2�8 CODE ��6 USERID 6�3�2�1
�8�12 11�2�8 CODE ��4 USERID 6�3�2�1
�8�18 �5�927 CODE ��4 USERID 6�3�2�1
�8��4 �6�2�1 CODE ��3 USERID 7137883
�8��4 �6�2�3 CODE ��3 USERID 7137883
�8�17 �3��13 CODE ��6 USERID 5831225
�8�15 13�5�9 CODE ��5 USERID 3�72173
�8�18 �2���5 CODE ��3 USERID 3�72173
�8�21 18�317 CODE ��5 USERID 3�72173
�8�25 �9�357 CODE ��4 USERID 3�72173
�8�29 111242 CODE ��3 USERID 3�72173

We want to select 3 records for each userid that has more than one record. We use ON(30,7,CH) for the userid and
FIRSTDUP(3) to get the first 3 userid records for duplicates.

The output records look like this:

�8�15 13�5�9 CODE ��5 USERID 3�72173
�8�18 �2���5 CODE ��3 USERID 3�72173
�8�21 18�317 CODE ��5 USERID 3�72173
�8��5 1��3�5 CODE ��5 USERID 6�3�2�1
�8��7 11�2�8 CODE ��6 USERID 6�3�2�1
�8�12 11�2�8 CODE ��4 USERID 6�3�2�1
�8��4 �6�2�1 CODE ��3 USERID 7137883
�8��4 �6�2�3 CODE ��3 USERID 7137883

Note that we selected up to 3 records for the duplicate userids (3072173, 6030201 and 7137883) and did not select
any records for the non-duplicate userids (8720398 and 5831225).

 User Guide for DFSORT PTF UK90013 39

SPLICE with non-blank fields

 Introduction

ICETOOL's SPLICE operator now allows you to create a single record for each key by splicing the base record
with every specified nonblank field from each overlay record. This gives you new capabilities for collecting infor-
mation from multiple records with the same key. You can now do a splice involving duplicate records with non-
consecutive or missing fields, something that could not be accomplished previously.

As an example, you could use the following SPLICE operator to create one record for each name containing all of
the colors for that name from a "matrix".

SPLICE FROM(IN) TO(OUT) ON(1,1�,CH) KEEPNODUPS -
WITHANY WITH(11,1�) WITH(21,1�) WITH(31,1�) WITH(41,1�)

If the IN data set contained these records:

VICKY RED
VICKY GREEN
FRANK GREEN
FRANK RED
FRANK PURPLE
FRANK BLUE
LEONARD GREEN
DAVE YELLOW
DAVE BLUE
DAVE PURPLE

the OUT data set would contain these records:

DAVE BLUE YELLOW PURPLE
FRANK GREEN BLUE PURPLE RED
LEONARD GREEN
VICKY RED GREEN

 Syntax

The syntax for the new operand of SPLICE is as follows:

SPLICE ... WITHANY

 Detailed Description

The new WITHANY operand of SPLICE can be used to create one spliced record for each set of duplicates. The
first duplicate is spliced with the nonblank values of each subsequent duplicate for specified fields.

WITHANY can be used to specify how the records are to be spliced in the same way that WITHEACH or
WITHALL can be used. These operands are optional and mutually exclusive.

The new operand of SPLICE described below, and the existing operands of SPLICE, can be specified in any order:

 � WITHANY

Specifies that the first duplicate, as defined by the ON fields, is spliced with each nonblank specified WITH
field from each subsequent duplicate.

40 DFSORT UK90013

WITHANY overrides the default of splicing the first duplicate with all of the specified fields from the last
duplicate.

The first duplicate is treated as a base record. Each subsequent duplicate is treated as an overlay record. Each
specified field with a nonblank value in each overlay record is overlaid on to the base record. Thus, the output
record consists of fields from the base record intermixed with specified nonblank fields from each overlay
record. The value from the last overlay record with each nonblank value will appear in the output record.
Note that a specified "field" from an overlay record can actually consist of multiple fields from the record that
have previously been reformatted into one contiguous field.

The records to be spliced can originate from multiple input data sets.

To illustrate the splicing process when WITHANY is specified, if we had the following four fixed-length
records with the base fields, ON field and WITH fields as shown:

BASE1 ON1 BASE2
 ON1 WITHA
 ON1 WITHB
 ON1 WITHC

The resulting spliced output record would be:

BASE1 ON1 BASE2 WITHC WITHA WITHB

For variable-length records, by default (without VLENMAX), the spliced record has the same length as the
base record. For example, with WITHANY, if we had the following four records with the lengths (in the
RDW), ON field and WITH fields as shown:

3� | BASE1 ON1 BASE2
5� | ON1 WITHB
25 | ON1 WITHA
4� | ON1 WITHC

the resulting spliced output records would be:

3� | BASE1 ON1 WITHA BASE2

The WITHB and WITHC fields are beyond the end of the base record, so they are not spliced. However, if
you specify VLENMAX, the spliced record is given the largest of the base record length or overlay record
lengths. If the largest overlay record length is larger than the base record length, bytes in the extended spliced
record that are not overlaid are filled in with blanks. The resulting spliced output record with WITHANY and
VLENMAX would be:

5� | BASE1 ON1 WITHA BASE2 WITHC WITHB

VLENOVLY cannot be specified with WITHANY.

 Example 1
SPLICE FROM(IN) TO(OUT) ON(1,3,CH) WITHANY KEEPNODUPS -
WITH(5,3) WITH(9,3) WITH(13,3) USING(CTL1)

//CTL1CNTL DD �
 INREC IFTHEN=(WHEN=(5,1,CH,EQ,C'1'),
 BUILD=(1,3,5:8,3)),
 IFTHEN=(WHEN=(5,1,CH,EQ,C'2'),
 BUILD=(1,3,9:8,3)),
 IFTHEN=(WHEN=(5,1,CH,EQ,C'3'),
 BUILD=(1,3,13:8,3))

This example illustrates how you can combine multiple rows for different types of data with a common key into a
single row of data for that key, even if some rows are missing.

 User Guide for DFSORT PTF UK90013 41

The input records might look like this:

��1 2 15�
��1 3 12�
��1 1 1��
��2 3 14�
��2 1 25�
��3 1 �5�
��3 2 92�
��4 3 ��5

We have an id number (for example, '001') in positions 1-3, a record type (1, 2 or 3) in position 5 and a numeric
value in positions 8-10. We want to set up a single row for each id number with the values for the three records
types and blanks for missing record types.

We use an INREC statement to move the value for each record to its position in the single row based on its record
type. After the INREC statement is executed, the intermediate records look like this:

��1 15�
��1 12�
��1 1��
��2 14�
��2 25�
��3 �5�
��3 92�
��4 ��5

We use SPLICE with WITHANY and appropriate WITH fields to create one combined record for each id number
with the values for the record types. We use KEEPNODUPS to keep records for id numbers with only one value
(for example, '004').

The output records look like this:

��1 1�� 15� 12�
��2 25� 14�
��3 �5� 92�
��4 ��5

DISPLAY with count

 Introduction

ICETOOL's DISPLAY operator now allows you to display counts in reports. This gives you new capablities for
printing break record count statistics and overall record count statistics in various forms in your reports.

As an example, you could use the following DISPLAY operator to list the number of pet rats, hamsters and gerbils,
and the total number of adorable rodents.

DISPLAY FROM(IN) LIST(RPT) BLANK -
BTITLE('Type of adorable pet: ') BREAK(1,1�,CH) -
BCOUNT('Adorable pets of this type: ') EDBCOUNT(U�2) -
HEADER('Pet''s name') ON(11,12,CH) -
COUNT('Total number of adorable pets: ') EDCOUNT(U�3)

If the IN data set contained these records:

42 DFSORT UK90013

Rat Betty
Rat Daisy
Rat April
Rat June
Rat Buffy
Rat Willow
Hamster Spunky
Hamster Baby
Gerbil Willy
Gerbil Binky
Gerbil Marmaduke

the RPT data set would contain this report:

1Type of adorable pet: Rat

 Pet's name

 Betty
 Daisy
 April
 June
 Buffy
 Willow

 Adorable pets of this type: 6
1Type of adorable pet: Hamster

 Pet's name

 Spunky
 Baby

 Adorable pets of this type: 2
1Type of adorable pet: Gerbil

 Pet's name

 Willy
 Binky
 Marmaduke

 Adorable pets of this type: 3
1

 Total number of adorable pets: 11

 Syntax

The syntax for the new operands of DISPLAY is as follows:

DISPLAY ... COUNT('string') EDCOUNT(formatting)
 BCOUNT('sting') EDBCOUNT(formatting)

 User Guide for DFSORT PTF UK90013 43

 Detailed Description

The new COUNT('string') and EDCOUNT(formatting) operands of DISPLAY specify printing of an overall count
line in the list data set and indicate the text and formatting for the count line. The new BCOUNT('string') and
EDBCOUNT(formatting) operands of DISPLAY specify printing of break count lines in the list data set and indi-
cate the text and formatting for the count lines.

COUNT('string') can be used to print an overall count line in the same way the existing operands TOTAL('string'),
MAXIMUM('string'), MINIMUM('string') and AVERAGE('string') can be used to print other overall statistics.
EDCOUNT(formatting) can be used to edit the overall count. EDCOUNT(formatting) can only be specified if
COUNT('string') is specified.

BCOUNT('string') can be used to print break count lines in the same way the existing operands BTOTAL('string'),
BMAXIMUM('string'), BMINIMUM('string') and BAVERAGE('string') can be used to print other break statistics.
BCOUNT('string') can only be specified if BREAK(p,m,f) or BREAK(p,m,f,formatting) is specified.
EDBCOUNT(formatting) can only be specified if BCOUNT('string') is specified.

The new operands of DISPLAY described below, and the existing operands of DISPLAY, can be specified in any
order:

 � COUNT('string')

Specifies an overall COUNT line is to be printed after the rows of data for the report. The specified string is
printed starting at the indent column of the overall COUNT line, followed by the overall count of data records.
If STATLEFT is specified, the string is printed to the left of the first column of data. If STATLEFT is not
specified, the string is printed in the first column of data. The count is printed on the same line as the string.
A blank line is printed before the overall COUNT line.

The string (1 to 50 characters) must be enclosed in single apostrophes. To include a single apostrophe (') in the
string, specify two single apostrophes (''). To suppress printing of a string, specify COUNT('') using two single
apostrophes.

The count is printed in the format (PLUS, BLANK, or standard) you specify. EDCOUNT(formatting) can be
used to apply formatting items to the count. The default number of digits (d) for the count is 15.

The TOTAL, MAXIMUM, MINIMUM, AVERAGE and COUNT lines are printed in the order in which you
specify them.

DFSORT symbols can be used for 'string' in COUNT('string').

 � EDCOUNT(formatting)

Specifies how the overall count is to be formatted for printing. The BLANK operand is automatically in effect.

The mask, L'string', F'string', T'string' and LZ formatting items can be used in the same way they are used for
ON(p,m,f,formatting) as discussed in "z/OS DFSORT Application Programming Guide".

E'pattern' and Udd can be used as follows:

E'pattern' specifies an edit pattern to be applied to the count. The pattern (1 to 24 characters) must be
enclosed in single apostrophes. Each 9 in the pattern (up to 15) is replaced by a corresponding digit from the
count. Characters other than 9 in the pattern appear as specified. To include a single apostrophe (') in the
pattern, specify two single apostrophes (''). F'string' or a mask cannot be specified with E'pattern'.

When E'pattern' is specified for the count:

– If the number of significant digits in the count is less than the number of 9's in the pattern, 0's are filled in
on the left. For example, 1234 is shown as 001234 with EDCOUNT(E'999999').

44 DFSORT UK90013

– If the number of significant digits in the count is greater than the number of 9's in the pattern, digits are
truncated from the left. For example, 1234567 is shown as *4567* with EDCOUNT(E'*9999*').

Udd specifies the number of digits to be used for the count. dd specifies the number of digits and must be a
two-digit number between 01 and 15. The default number of digits (d) for the count is 15.

If you know that your count requires less than 15 digits, you can use a lower number of digits (dd) instead by
specifying Udd. For example, if EDCOUNT(U09) is specified, 9 digits (from U09) is used instead of 15
(default for the count).

If you use Udd and the count overflows the number of digits used, ICETOOL terminates the operation. You
can prevent the overflow by specifying an appropriately higher dd value for Udd. For example, if
EDCOUNT(U05) results in overflow, you can use EDCOUNT(U06) instead.

If E'pattern' is specified, Udd is ignored, because d is determined from the pattern.

 � BCOUNT('string')

Specifies a break COUNT line is to be printed after the rows of data for each section. The specified string is
printed starting at the indent column of the break COUNT line, followed by the break count of data records in
the section. If STATLEFT is specified, the string is printed to the left of the first column of data. If
STATLEFT is not specified, the string is printed in the first column of data. The count is printed on the same
line as the string. A blank line is printed before the break COUNT line.

The string (1 to 50 characters) must be enclosed in single apostrophes. To include a single apostrophe (') in the
string, specify two single apostrophes (''). To suppress printing of a string, specify BCOUNT('') using two
single apostrophes.

The count is printed in the format (PLUS, BLANK, or standard) you specify. EDBCOUNT(formatting) can be
used to apply formatting items to the count. The default number of digits (d) for the count is 15.

The BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE and BCOUNT lines are printed in the order in
which you specify them.

DFSORT symbols can be used for 'string' in BCOUNT('string').

 � EDBCOUNT(formatting)

Specifies how the break count is to be formatted for printing. The BLANK operand is automatically in effect.

See EDCOUNT(formatting) above for details on the formatting items you can use with
EDBCOUNT(formatting).

 Example 1
DISPLAY FROM(IN) LIST(RPT) -
BTITLE('Division:') BREAK(1,1�,CH) -
HEADER('Branch Office') ON(11,15,CH) -
HEADER('Profit/Loss (K)') ON(31,4,SFF,E1) -
BMINIMUM('Lowest P/L in Division:') -
BCOUNT('Offices in this Division: ') -

 EDBCOUNT(U�2) -
MINIMUM('Lowest P/L in Divisions:') -
COUNT('Offices in all Divisions: ') -

 EDCOUNT(U�2)

This example illustrates how you can produce a report with sections, containing a count for each section and a
count for all of the sections.

The input records might look like this:

 User Guide for DFSORT PTF UK90013 45

Chips Gilroy 3293
Chips Los Angeles -141
Chips Morgan Hill 213
Chips Oakland 1�67
Chips San Francisco -31
Chips San Jose 92
Chips San Martin 1535
Ice Cream Marin 673
Ice Cream Napa 95
Ice Cream San Francisco -321
Ice Cream San Jose 2318
Ice Cream San Martin 21

We use BCOUNT('string') to indicate we want a break count and the string we want to the left of the break count.
We use EDBCOUNT(U02) to format the break count with 2 digits, overriding the default of 15 digits. We use
COUNT('string') to indicate we want an overall count and the string we want to the left of the overall count. We
use EDCOUNT(U02) to format the overall count with 2 digits, overriding the default of 15 digits.

The output report looks like this:

1Division: Chips

 Branch Office Profit/Loss (K)
 --------------- ---------------
 Gilroy 3,293
 Los Angeles (141)
 Morgan Hill 213
 Oakland 1,�67
 San Francisco (31)
 San Jose 92
 San Martin 1,535

 Lowest P/L in Division: (141)

 Offices in this Division: 7
1Division: Ice Cream

 Branch Office Profit/Loss (K)
 --------------- ---------------
 Marin 673
 Napa 95
 San Francisco (321)
 San Jose 2,318
 San Martin 21

 Lowest P/L in Division: (321)

 Offices in this Division: 5
1
 Branch Office Profit/Loss (K)
 --------------- ---------------

 Lowest P/L in Divisions: (321)

 Offices in all Divisions: 12

46 DFSORT UK90013

DISPLAY/OCCUR with multiple and multipart titles

 Introduction

ICETOOL's DISPLAY and OCCUR operators now allow you to display up to three title lines, each composed of up
to three strings. This gives you new capabilities for printing multiline titles, and for using multiple strings for each
title, including a combination of inline constants, and constants from DFSORT symbols including system informa-
tion.

Other new options of DISPLAY and OCCUR also allow you to left justify the title lines instead of centering them,
and to only display the title lines on the first page of the report instead of on every page of the report.

As an example, you could use the following OCCUR operator to print a report of possible system intruders with
two lines for the title including system and location information:

...
//SYMNAMES DD �
System,S'&SYSNAME'
Sysplex,S'&SYSPLEX'
Location,'San Jose'
//TOOLIN DD �
OCCUR FROM(FAILURES) LIST(CHECKIT) BLANK HIGHER(4) -
DATE TITLE('Possible System Intruders on ',System) -

TITLE(Sysplex,' in ',Location) PAGE -
 TBETWEEN(2) -

HEADER(,'Userid') ON(23,8,CH) -
HEADER('Logon failures','(More than 4)') ON(VALCNT)

The report in CHECKIT might look like this:

�4/29/�8 Possible System Intruders on EDS3 - 1 -

MAS3 in San Jose

 Logon failures
 Userid (More than 4)
 -------- ---------------
 B723451� 5
 D9853267 11
 ...

 Syntax

The syntax for the changed operands of DISPLAY and OCCUR is as follows:

DISPLAY ... TITLE('string') ...
OCCUR TITLE('string1','string2') ...
 TITLE('string1','string2','string3') ...
 TLEFT TFIRST

 User Guide for DFSORT PTF UK90013 47

 Detailed Description

The number of TITLE operands for DISPLAY and OCCUR has been expanded from one operand to up to three
operands. Each operand can be used to create a title string on a separate line.

The TITLE operand of DISPLAY and OCCUR has been expanded from one string to up to three strings. It can
now be specified as TITLE('string'), TITLE('string1','string2') or TITLE('string1','string2','string3'). The individual
strings for a TITLE operand are combined to create one title string.

The new TLEFT operand of DISPLAY and OCCUR can be used to left justify the title lines, overriding the default
of centering the title lines.

The new TFIRST operand of DISPLAY and OCCUR can be used to only print the title lines on the first page of
the report, overriding the default of printing the title lines on every page of the report.

A single TITLE operand with a single string can be used to create one title string on one line. A single TITLE
operand with two or three strings can be used to create one combined title string on one line. Up to two additional
TITLE operands with one to three strings can be used to create title strings on multiple lines.

By default, the title lines are printed at the top of each page of the list data set. You can print title lines at the top
of the first page only with TFIRST.

The first title line contains the first title string and the other title elements you specify (page number, date and time)
in the order in which you specify them. The second title line contains the second title string. The third title line
contains the third title string. A blank line is printed after each title line.

By default, the specified title strings are centered with respect to each other. You can left justify the title strings
with TLEFT.

By default, eight blanks appear between title elements. You can change the space between title elements with
TBETWEEN(n).

The new operands of DISPLAY and OCCUR described below, and the existing operands of DISPLAY and
OCCUR, can be specified in any order:

 � TITLE('string')

Specifies a title string of the form:

string

The string can be up to 50 characters. It must be enclosed in single apostrophes. To include a single apos-
trophe (') in the string, specify two single apostrophes ('').

DFSORT symbols can be used for 'string' in TITLE('string').

 � TITLE('string1','string2')

Specifies a multipart title string of the form:

string1string2

The total combined length of string1 and string2 can be up to 50 characters. Each string must be enclosed in
single apostrophes. To include a single apostrophe (') in a string, specify two single apostrophes ('').

DFSORT symbols can be used for 'string1' and 'string2' in TITLE('string1','string2').

 � TITLE('string1','string2','string3')

48 DFSORT UK90013

Specifies a multipart title string of the form:

string1string2string3

The total combined length of string1, string2 and string3 can be up to 50 characters. Each string must be
enclosed in single apostrophes. To include a single apostrophe (') in a string, specify two single apostrophes
('').

DFSORT symbols can be used for 'string1', 'string2' and 'string3' in TITLE('string1','string2','string3').

 � TLEFT

Specifies that the title strings are to be left justified, overriding the default of centering the title strings with
respect to each other.

 � TFIRST

Specifies that the title lines are only to appear on the first page of the report, overriding the default of having
the title lines appear on every page of the report.

 Example 1
DISPLAY FROM(VARDS) LIST(RDWLIST) -
 DATE(DMY.) -
TFIRST TBETWEEN(3) -
TITLE('Fancy RDW Report with') -
TITLE('length in decimal and hex') -
TITLE('and max and min length') -

 TIME(12:) -
HEADER('Relative Record') ON(NUM) -
HEADER(' RDW (length)') ON(VLEN) -
HEADER('RDW (Hex)') ON(1,4,HEX) -

 BLANK -
MINIMUM('Smallest Record:') -

 MAXIMUM('Largest Record:')

This example illustrates how you can produce a report with multiline titles.

The input data set is a VB file.

We use three TITLE operands to create a title with three lines. We use TFIRST to print the title lines at the top of
the first page but not at the top of the other pages, overriding the default of printing the titles lines at the top of
every page. By default, the title lines are centered (TLEFT would left align them).

The output report looks like this:

 User Guide for DFSORT PTF UK90013 49

13�.�6.�8 Fancy RDW Report with �5:37:43 pm

length in decimal and hex

and max and min length

 Relative Record RDW (length) RDW (Hex)
--------------- ---------------- ---------
 1 84 ��54����
 2 47 ��2F����
 3 31 ��1F����
 4 31 ��1F����
 5 31 ��1F����
 ...
1Relative Record RDW (length) RDW (Hex)
--------------- ---------------- ---------
 51 31 ��1F����
 52 31 ��1F����
 53 31 ��1F����
 54 31 ��1F����
 55 31 ��1F����
 56 31 ��1F����

 Smallest Record: 31

 Largest Record: 84

DISPLAY/OCCUR without carriage control

 Introduction

ICETOOL's DISPLAY and OCCUR operators now allow you to create reports without carriage control characters
and with RECFM=FB instead of RECFM=FBA. This gives you new capabilities for suppressing the carriage
control character. A blank line is used instead of a page eject control character to separate elements of the report.

As an example, you could use the following DISPLAY operator to list the number of pet rats, hamsters and gerbils,
and the total number of adorable rodents, without carriage control characters (see "DISPLAY with count" to see
what the report looks like with carriage control characters).

DISPLAY FROM(IN) LIST(RPT) BLANK NOCC -
BTITLE('Type of adorable pet: ') BREAK(1,1�,CH) -
BCOUNT('Adorable pets of this type: ') EDBCOUNT(U�2) -
HEADER('Pet''s name') ON(11,12,CH) -
COUNT('Total number of adorable pets: ') EDCOUNT(U�3)

If the IN data set contained these records:

50 DFSORT UK90013

Rat Betty
Rat Daisy
Rat April
Rat June
Rat Buffy
Rat Willow
Hamster Spunky
Hamster Baby
Gerbil Willy
Gerbil Binky
Gerbil Marmaduke

the RPT data set would contain this report:

Type of adorable pet: Rat

Pet's name

Betty
Daisy
April
June
Buffy
Willow

Adorable pets of this type: 6

Type of adorable pet: Hamster

Pet's name

Spunky
Baby

Adorable pets of this type: 2

Type of adorable pet: Gerbil

Pet's name

Willy
Binky
Marmaduke

Adorable pets of this type: 3

Total number of adorable pets: 11

 Syntax

The syntax for the new operand of DISPLAY and OCCUR is as follows:

DISPLAY ... NOCC
OCCUR

 User Guide for DFSORT PTF UK90013 51

 Detailed Description

The new NOCC operand of DISPLAY and OCCUR specifies that carriage control characters are not to be used for
the report.

The new operand of DISPLAY and OCCUR described below, and the existing operands of DISPLAY and OCCUR,
can be specified in any order:

 � NOCC

Specifies that carriage control characters are not to be included in the lines of the list data set, overriding the
default of using a carriage control character as the first byte of each line. A blank line is used instead of a
page eject control character to separate elements of the report.

The RECFM of the list data set is set to FB.

The LRECL of the list data set will not include a byte for the carriage control character. If the line length is
less than or equal to 120 bytes, the LRECL will be set to 120. If the line length is greater than 120 bytes, the
LRECL will be set to the line length. The maximum line length is 2047 bytes.

If the WIDTH(n) operand is specified, n can be 121 to 2047.

 Example 1
OCCUR FROM(IN) LIST(VOLSERS) -
 NOCC -
 NOHEADER -
 ON(1,6,CH)

This example illustrates how you can produce a report listing unique volume serials with no carriage control charac-
ters and with RECFM=FB instead of the default of RECFM=FBA.

We use NOCC to indicate we don't want carriage control characters.

 Example 2
DISPLAY FROM(IN) LIST(RPT) -
 NOCC -
BTITLE('Division:') BREAK(1,1�,CH) -
HEADER('Branch Office') ON(11,15,CH) -
HEADER('Profit/Loss (K)') ON(31,4,SFF,E1) -
BMINIMUM('Lowest P/L in Division:') -
BCOUNT('Offices in this Division: ') -

 EDBCOUNT(U�2) -
MINIMUM('Lowest P/L in Divisions:') -
COUNT('Offices in all Divisions: ') -

 EDCOUNT(U�2)

This example illustrates how you can produce a report with sections, but without carriage control characters. See
Example 1 of the "Display with count" topic above for more details of this report. The only difference between
that example and this one is that we've specified NOCC here to indicate we don't want carriage control characters.
The output has RECFM=FB instead of RECFM=FBA and looks like this:

52 DFSORT UK90013

Division: Chips

Branch Office Profit/Loss (K)
--------------- ---------------
Gilroy 3,293
Los Angeles (141)
Morgan Hill 213
Oakland 1,�67
San Francisco (31)
San Jose 92
San Martin 1,535

Lowest P/L in Division: (141)

Offices in this Division: 7

Division: Ice Cream

Branch Office Profit/Loss (K)
--------------- ---------------
Marin 673
Napa 95
San Francisco (321)
San Jose 2,318
San Martin 21

Lowest P/L in Division: (321)

Offices in this Division: 5

Branch Office Profit/Loss (K)
--------------- ---------------

Lowest P/L in Divisions: (321)

Offices in all Divisions: 12

COUNT in output record

 Introduction

ICETOOL's COUNT operator now allows you to create a count data set with an output record containing the record
count. This gives you new capabilities for creating an output data set with a record containing text and the record
count in various forms.

New options allow you to specify the ddname of the countdd data set, a text string to precede the count, and how
the count should be formatted.

As an example, you could use the following COUNT operator to create one record with a 10-digit count:

COUNT FROM(IN) WRITE(CT) DIGITS(1�)

If the IN data set contained 123,456 records, the CT data set would contain this 10-byte record:

����123456

 User Guide for DFSORT PTF UK90013 53

As another example, you could use the following COUNT operator to create one record with a text string and an
edited count:

COUNT FROM(EMPIN) WRITE(EMPCT) -
TEXT('Number of employees is ') -

 EDCOUNT(A1,U�8) WIDTH(8�)

If the EMPIN data set contained 1,234,567 records, the EMPCT data set would contain this 80-byte record:

Number of employees is 1,234,567

 Syntax

The syntax for the new operands of COUNT is as follows:

COUNT ... WRITE(countdd) TEXT('string')
 DIGITS(d)|EDCOUNT(formatting) WIDTH(n)

 Detailed Description

The new WRITE(countdd) operand of COUNT specifies the ddname of a count data set in which a count record
will be written. By default, the count starts in the first byte of the count record and consists of 15 decimal digits
with leading zeros. The new TEXT('string') operand can be used to specify a text string to precede the count. The
new DIGITS(d) operand can be used to specify the number of digits for the count. The new
EDCOUNT(formatting) operand can be used to format the count in various ways. The new WIDTH(n) operand can
be used to set the LRECL of the count data set.

TEXT('string'), DIGITS(d), EDCOUNT(formatting) and WIDTH(n) can only be specified if WRITE(countdd) is
specified. DIGITS(d) and EDCOUNT(formatting) are mutually exclusive.

The new operands of COUNT described below, and the existing operands of COUNT, can be specified in any
order:

 � WRITE(countdd)

Specifies the ddname of the count data set to be produced by ICETOOL for this operation. A countdd DD
statement must be present. ICETOOL sets the attributes of the count data set as follows:

– RECFM is set to FB.

– LRECL is set to one of the following:

— If WIDTH(n) is specified, LRECL is set to n. Use WIDTH(n) if your count record length and LRECL
must be set to a particular value (for example, 80), or if you want to ensure that the count record
length does not exceed a specific maximum (for example, 20 bytes).

— If WIDTH(n) is not specified, LRECL is set to the calculated required record length. If your LRECL
does not need to be set to a particular value, you can let ICETOOL determine and set the appropriate
LRECL value by not specifying WIDTH(n).

– BLKSIZE is set to one of the following:

— The BLKSIZE from the DD statement, DSCB, or label, if it is a multiple of the LRECL used.

— The LRECL if the BLKSIZE from the DD statement, DSCB, or label is not a multiple of the LRECL
used.

— The system determined blocksize if the BLKSIZE is not available from the DD statement, DSCB, or
label.

 � TEXT('string')

54 DFSORT UK90013

Specifies a string to be printed starting in the first byte of the count record. The count follows the string.

The string (1 to 50 characters) must be enclosed in single apostrophes. To include a single apostrophe (') in the
string, specify two single apostrophes (''). To suppress printing of a string, do not specify TEXT('string') or
specify TEXT('') using two single apostrophes.

DFSORT symbols can be used for 'string' in TEXT('string').

 � DIGITS(d)

Specifies d digits for the count, overriding the default of 15 digits. d can be 1 to 15.

If you know that your count requires less than 15 digits, you can use a lower number of digits (d) instead by
specifying DIGITS(d). For example, if DIGITS(10) is specified, 10 digits are used instead of 15.

If you use DIGITS(d) and the count overflows the number of digits used, ICETOOL terminates the operation.
You can prevent the overflow by specifying an appropriately higher d value for DIGITS(d). For example, if
DIGITS(5) results in overflow, you can use DIGITS(6) instead.

 � EDCOUNT(formatting)

Specifies how the count is to be formatted for printing. The mask, L'string', F'string', T'string', LZ, E'pattern'
and Udd formatting items can be used for the count as discussed for EDCOUNT(formatting) in "DISPLAY
with count".

 � WIDTH(n)

Specifies the record length and LRECL you want ICETOOL to use for the count data set. n can be from 1 to
32760. ICETOOL always calculates the record length required to write the count record and uses it as follows:

– If WIDTH(n) is specified and the calculated record length is less than or equal to n, ICETOOL sets the
record length and LRECL to n. ICETOOL pads the count record on the right with blanks to the record
length.

– If WIDTH(n) is specified and the calculated record length is greater than n, ICETOOL issues an error
message and terminates the operation.

– If WIDTH(n) is not specified, ICETOOL sets the record length and LRECL to the calculated record length.

Use WIDTH(n) if your count record length and LRECL must be set to a particular value (for example, 80), or
if you want to ensure that the count record length does not exceed a specific maximum (for example, 20 bytes).
Otherwise, you can let ICETOOL calculate and set the appropriate record length and LRECL by not specifying
WIDTH(n).

 Example 1
COUNT FROM(IN1) WRITE(CT1) DIGITS(6)

This example illustrates how you can write a count of the input records into an output record.

We use WRITE(CT1) to indicate the ddname of the output data set. We use DIGITS(6) to write the count as 6
digits, overriding the default of 15 digits.

If the input data set contains 8125 records, the 6-byte CT1 record would look like this:

��8125

 Example 2
COUNT FROM(IN2) WRITE(CT2) TEXT('Count is ') -
 EDCOUNT(A1,U1�) WIDTH(8�)

 User Guide for DFSORT PTF UK90013 55

This example illustrates how you can write text and a formatted count of the input records into an output record of
a specified length.

We use WRITE(CT2) to indicate the ddname of the output data set. We use TEXT('string') to write the string in
the record before the count. We use EDCOUNT(A1,U10) to write the count as 10 digits with comma separators,
overriding the default of 15 digits with no separators. We use WIDTH(80) to set the output record length to 80,
overriding the default of the length of the string and count.

If the input data set contains 3286721 records, the 80-byte output record would look like this:

Count is 3,286,721

COUNT with add/subtract

 Introduction

ICETOOL's COUNT operator now allows you to add a value to, or subtract a value from, the record count. This
gives you new capabilities for increasing or decreasing the actual record count to get a resulting modified record
count. This is especially useful for dealing with data sets that contain header and/or trailer records.

The resulting modified record count is displayed in the count message in TOOLMSG and in the count data set, and
used to determine if the criteria specified for the count is satisfied (e.g. empty data set).

As an example, you could use this COUNT operator to write a record with the count of the data records between
the header record and trailer record, and set a return code of 4 if the input data set only has a header record and a
trailer record, but no data records.

COUNT FROM(IN) EMPTY RC4 SUB(2) WRITE(OUT) -
 TEXT('Number of data records is ')

If the IN data set contained these records:

2��8�425
Hammer 15
2��8�426

The OUT data set would contain:

Number of data records is ��������������1

ICETOOL would set RC=0 for the COUNT operator since the EMPTY condition is not satisfied.

If the IN data set contained these records:

2��8�425
2��8�426

The OUT data set would contain:

Number of data records is ���������������

ICETOOL would set RC=4 for the COUNT operator since the EMPTY condition is satisfied.

Note that without SUB(2), ICETOOL would set RC=0 in both cases.

56 DFSORT UK90013

 Syntax

The syntax for the new operands of COUNT is as follows:

COUNT ... ADD(x)|SUB(x)

 Detailed Description

The new ADD(x) option of COUNT increases the record count by x. The new SUB(x) option of COUNT
decreases the record count by x.

ADD(x) and SUB(x) are mutually exclusive.

The new operands of COUNT described below, and the existing operands of COUNT, can be specified in any
order:

 � ADD(x)

Adds x to the record count. The resulting modified record count is displayed in the count message in
TOOLMSG. If WRITE(countdd) is specified, the modified record count is used in the count record. If
EMPTY, NOTEMPTY, HIGHER(x), LOWER(y), EQUAL(v) or NOTEQUAL(w) is specified, the modified
record count is used to determine if the criteria is satisfied. If ICETOOL was called using the parameter list
interface, the "count of records processed" value in the Return Area for the COUNT operator is set to the
modified record count.

x must be specified as n or +n where n can be 1 to 999.

DFSORT symbols can be used for n and +n in ADD(x).

 � SUB(x)

Subtracts x from the record count, but does not reduce the count below 0. The resulting modified record count
is displayed in the count message in TOOLMSG. If WRITE(countdd) is specified, the modified record count is
used in the count record. If EMPTY, NOTEMPTY, HIGHER(x), LOWER(y), EQUAL(v) or NOTEQUAL(w)
is specified, the modified record count is used to determine if the criteria is satisfied. If ICETOOL was called
using the parameter list interface, the "count of records processed" value in the Return Area for the COUNT
operator is set to the modified record count.

x must be specified as n or +n where n can be 1 to 999.

DFSORT symbols can be used for n and +n in SUB(x).

 Example 1
COUNT FROM(IN3) WRITE(CT3) DIGITS(6) SUB(2)

This example illustrates how you can subtract 2 from the count of the input records and write the adjusted count
into an output record.

We use WRITE(CT3) to indicate the ddname of the output data set. We use DIGITS(6) to write the count as 6
digits, overriding the default of 15 digits. We use SUB(2) to subtract 2 from the count of input records.

If the input data set contains 8125 records, the 6-byte CT3 record would look like this:

��8123

SUB will not reduce the count below zero. For example, if the input data set contains 1 record, the 6-byte CT3
record would look like this:

 User Guide for DFSORT PTF UK90013 57

������

BLKSIZE default for input DUMMY

DFSORT will no longer terminate for a SORTIN DD DUMMY or SORTINnn DD DUMMY statement with
RECFM and LRECL, but no BLKSIZE. Instead, DFSORT will use an appropriate BLKSIZE to process the
DUMMY data set successfully.

Note: If DFSORT's Blockset technique is not selected, DFSORT may still terminate for a SORTIN DD
DUMMY or SORTINnn DD DUMMY statement with RECFM and LRECL, but no BLKSIZE.

If the first SORTIN DD statement has DUMMY or DSN=NULLFILE with RECFM and LRECL attributes speci-
fied, but no BLKSIZE specified, DFSORT will process the data set using an appropriate BLKSIZE, for example,
BLKSIZE=LRECL for RECFM=FB or BLKSIZE=LRECL+4 for RECFM=VB.

If any SORTINnn DD statement has DUMMY or DSN=NULLFILE with RECFM and LRECL attributes specified,
but no BLKSIZE specified, DFSORT will process the data set using an appropriate BLKSIZE.

As an example, if this DD statement was specified for a DFSORT copy or sort operation:

//SORTIN DD DUMMY,RECFM=VB,LRECL=1��

DFSORT would use BLKSIZE=104 to process the data set successfully.

As another example, if this DD statement was specified for a DFSORT merge operation:

//SORTIN�2 DD DSN=NULLFILE,RECFM=FB,LRECL=2���

DFSORT would use BLKSIZE=2000 to process the data set successfully.

SKIP=0L default for SECTIONS

DFSORT will no longer terminate when an OUTFIL SECTIONS field is not followed by a SKIP, HEADER3 or
TRAILER3 keyword. Instead, DFSORT will use a default keyword of SKIP=0L to process the sections success-
fully with no blank lines between sections for that field on the same page.

As an example, if this OUTFIL statement was specified:

 OUTFIL SECTIONS=(11,4,21,8,HEADER3=('�������'))

DFSORT would process the OUTFIL statement above in the same way it would process this OUTFIL statement:

 OUTFIL SECTIONS=(11,4,SKIP=�L,21,8,HEADER3=('�������'))

Thus, no blank lines will appear after each section associated with the 11,4 break field.

DFSORT symbols can be used for section fields as before.

58 DFSORT UK90013

SORTOUT=ddname default for FNAMES

DFSORT will now use the ddname specified by a SORTOUT=ddname operand in DFSPARM, the ddname speci-
fied by a SORTOUT=ddname operand in a parameter list, or the ddname specified in a TO(ddname) operand of an
ICETOOL operator, as the default ddname for an OUTFIL statement without a FNAMES or FILES operand.

As an example, if the following was specified for ICETOOL:

...
//TOOLIN DD �
SELECT FROM(IN) TO(OUT1) ON(5,4,ZD) FIRSTDUP USING(CTL1)
/�
//CTL1CNTL DD �
 OUTFIL OMIT=(25,3,ZD,EQ,+15�)
 OUTFIL FNAMES=OUT2,SAVE
/�

OUT1 would be used as the ddname associated with the first OUTFIL statement, and OUT2 would be used as the
ddname associated with the second OUTFIL statement. That is, DFSORT would process the OUTFIL statements
above in the same way it would process these OUTFIL statements:

 OUTFIL FNAMES=OUT1,OMIT=(25,3,ZD,EQ,+15�)
 OUTFIL FNAMES=OUT2,SAVE

 Changed Messages

This section shows existing messages that have been changed significantly for PTF UK90013. Refer to z/OS
DFSORT Messages, Codes and Diagnosis Guide for general information on DFSORT messages.

 ICE018A

ICE018A INVALID OR MISSING FORMAT

This message will be issued for the BEGIN and END operands of IFTHEN for the same reasons it is issued for the
WHEN operand of IFTHEN.

 ICE107A

ICE107A DUPLICATE, CONFLICTING, OR MISSING INREC OR OUTREC STATEMENT OPERAND

Explanation: Critical. One of the following errors was found in an INREC or OUTREC statement:

� An operand, other than IFTHEN, was specified twice. Example:

 INREC BUILD=(5,4,C'���',4�:X),BUILD=(1,6�)

� PARSE, FIELDS, BUILD, OVERLAY or FINDREP was specified with IFTHEN or IFOUTLEN. Example:

 OUTREC FINDREP=(IN=C'ONE',OUT=C'TWO'),
 IFTHEN=(WHEN=INIT,OVERLAY=(25:C'YES'))

� FIELDS and BUILD, FIELDS and OVERLAY, FIELDS and FINDREP, BUILD and OVERLAY, BUILD and
FINDREP, or OVERLAY and FINDREP were specified. Example:

 OUTREC BUILD=(1,2�),OVERLAY=(1�:C'A')

 User Guide for DFSORT PTF UK90013 59

� For an IFTHEN clause, WHEN was not specified. Example:

 OUTREC IFTHEN=(OVERLAY=(1�:C'A'))

� For an IFTHEN clause, WHEN=INIT, WHEN=(logexp), or WHEN=NONE was specified without PARSE,
BUILD, OVERLAY or FINDREP. Example:

 INREC IFTHEN=(WHEN=(5,1,CH,EQ,C'1'),HIT=NEXT)

� For an IFTHEN clause, WHEN=GROUP was specified without BEGIN, END or RECORDS, or without
PUSH. Example:

 INREC IFTHEN=(WHEN=GROUP,BEGIN=(9,2,CH,EQ,C'NO'))

� For an IFTHEN clause, WHEN=(logexp), WHEN=ANY, or WHEN=NONE was specified with PARSE, but
without BUILD, OVERLAY or FINDREP. Example:

 INREC IFTHEN=(WHEN=NONE,
 PARSE=(%�1=(FIXLEN=5,ENDBEFR=BLANKS)))

� For an IFTHEN clause, WHEN=INIT, WHEN=(logexp), WHEN=ANY, or WHEN=NONE was specified with
BEGIN, END, RECORDS or PUSH. Example:

 OUTREC IFTHEN=(WHEN=INIT,PUSH=(9:5,8))

� For an IFTHEN clause, WHEN=GROUP was specified with PARSE, BUILD, OVERLAY or FINDREP.
Example:

 OUTREC IFTHEN=(WHEN=GROUP,BUILD=(9:5,8))

� An IFTHEN clause with WHEN=INIT was preceded by an IFTHEN clause with WHEN=(logexp),
WHEN=ANY or WHEN=NONE. Example:

 OUTREC IFTHEN=(WHEN=(5,2,CH,EQ,C'AA'),
 OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=INIT,BUILD=(1,8�))

� An IFTHEN clause with WHEN=GROUP was preceded by an IFTHEN clause with WHEN=(logexp),
WHEN=ANY or WHEN=NONE. Example:

 OUTREC IFTHEN=(WHEN=(5,2,CH,EQ,C'AA'),
 OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=GROUP,RECORDS=3,PUSH=(8:SEQ=2)))

� An IFTHEN clause with WHEN=NONE was followed by an IFTHEN clause with WHEN=INIT,
WHEN=(logexp), or WHEN=ANY. Example:

 INREC IFTHEN=(WHEN=NONE,OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

� The first IFTHEN clause with WHEN=ANY was not preceded by an IFTHEN clause with WHEN=(logexp).
Example:

 OUTREC IFTHEN=(WHEN=INIT,OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

� An IFTHEN clause with WHEN=ANY and without HIT=NEXT was followed by an IFTHEN clause with
WHEN=ANY. Example:

 OUTREC IFTHEN=(WHEN=(5,1,CH,EQ,C'1'),
 OVERLAY=(1�:C'A'),HIT=NEXT),
 IFTHEN=(WHEN=(5,1,CH,EQ,C'2'),
 OVERLAY=(1�:C'B'),HIT=NEXT),
 IFTHEN=(WHEN=ANY,
 OVERLAY=(28:C'ABC')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

60 DFSORT UK90013

System Action: The program terminates.

Programmer Response: Check the INREC or OUTREC control statement for the errors indicated in the explana-
tion and correct the errors.

 ICE113A

ICE113A COMPARISON FIELD ERROR

This message will be issued for the BEGIN and END operands of IFTHEN for the same reasons it is issued for the
WHEN operand of IFTHEN.

 ICE114A

ICE114A INVALID COMPARISON

This message will be issued for the BEGIN and END operands of IFTHEN for the same reasons it is issued for the
WHEN operand of IFTHEN.

 ICE151A

ICE151A TOO MANY {*INCLUDE|*OMIT|*INREC|*OUTREC|ddname} IFTHEN n CONDITIONS

This message will be issued for the BEGIN and END operands of IFTHEN for the same reasons it is issued for the
WHEN operand of IFTHEN.

 ICE189A

ICE189A BLOCKSET REQUIRED BUT COULD NOT BE USED - REASON CODE IS nn

This message will be issued for the following additional situations if Blockset could not be used:

 � FINDREP processing

� ICETOOL called DFSORT for DATASORT or SUBSET processing

 ICE214A

ICE214A DUPLICATE, CONFLICTING, OR MISSING OUTFIL STATEMENT OPERANDS

Explanation: Critical. One of the following errors was found in an OUTFIL statement:

� An operand, other than IFTHEN, was specified twice. Example:

 OUTFIL STARTREC=5,STARTREC=1�

� INCLUDE and OMIT, INCLUDE and SAVE, or OMIT and SAVE were specified. Example:

 OUTFIL INCLUDE=ALL,SAVE

� VTOF and CONVERT were specified. Example:

 OUTFIL VTOF,CONVERT

� FTOV and VTOF, FTOV and CONVERT, or FTOV and VLFILL were specified. Example:

 OUTFIL FTOV,VLFILL=C'�'

 User Guide for DFSORT PTF UK90013 61

� PARSE, OUTREC, BUILD, OVERLAY or FINDREP was specified with IFTHEN or IFOUTLEN. Example:

 OUTFIL FINDREP=(IN=C'ONE',OUT=C'TWO'),
 IFTHEN=(WHEN=INIT,OVERLAY=(25:C'YES'))

� OUTREC and BUILD, OUTREC and OVERLAY, OUTREC and FINDREP, BUILD and OVERLAY, BUILD
and FINDREP, or OVERLAY and FINDREP were specified. Example:

 OUTFIL BUILD=(1,2�),OVERLAY=(1�:C'A')

� For an IFTHEN clause, WHEN was not specified. Example:

 OUTFIL IFTHEN=(OVERLAY=(1�:C'A'))

� For an IFTHEN clause, WHEN=INIT, WHEN=(logexp), or WHEN=NONE was specified without PARSE,
BUILD, OVERLAY or FINDREP. Example:

 OUTFIL IFTHEN=(WHEN=(5,1,CH,EQ,C'1'),HIT=NEXT)

� For an IFTHEN clause, WHEN=GROUP was specified without BEGIN, END or RECORDS, or without
PUSH. Example:

 OUTFIL IFTHEN=(WHEN=GROUP,BEGIN=(9,2,CH,EQ,C'NO'))

� For an IFTHEN clause, WHEN=(logexp), WHEN=ANY, or WHEN=NONE was specified with PARSE, but
without BUILD, OVERLAY or FINDREP. Example:

 OUTFIL IFTHEN=(WHEN=NONE,
 PARSE=(%�1=(FIXLEN=5,ENDBEFR=BLANKS)))

� For an IFTHEN clause, WHEN=INIT, WHEN=(logexp), WHEN=ANY, or WHEN=NONE was specified with
BEGIN, END, RECORDS or PUSH. Example:

 OUTFIL IFTHEN=(WHEN=INIT,PUSH=(9:5,8))

� For an IFTHEN clause, WHEN=GROUP was specified with PARSE, BUILD, OVERLAY or FINDREP.
Example:

 OUTFIL IFTHEN=(WHEN=GROUP,BUILD=(9:5,8))

� For an IFTHEN clause, WHEN=INIT and BUILD with / were specified Example:

 OUTFIL IFTHEN=(WHEN=INIT,BUILD=(1,25,/,26,25))

� For an IFTHEN clause, BUILD with / and HIT=NEXT were specified. Example:

 OUTFIL IFTHEN=(WHEN=(21,1,CH,EQ,C'A'),
 BUILD=(1,25,/,26,25),HIT=NEXT)

� An IFTHEN clause with WHEN=INIT was preceded by an IFTHEN clause with WHEN=(logexp),
WHEN=ANY or WHEN=NONE. Example:

 OUTFIL IFTHEN=(WHEN=(5,2,CH,EQ,C'AA'),
 OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=INIT,BUILD=(1,8�))

� An IFTHEN clause with WHEN=GROUP was preceded by an IFTHEN clause with WHEN=(logexp),
WHEN=ANY or WHEN=NONE. Example:

 OUTFIL IFTHEN=(WHEN=(5,2,CH,EQ,C'AA'),
 OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=GROUP,RECORDS=3,PUSH=(8:SEQ=2)))

� An IFTHEN clause with WHEN=NONE was followed by an IFTHEN clause with WHEN=INIT,
WHEN=(logexp), or WHEN=ANY. Example:

 OUTFIL IFTHEN=(WHEN=NONE,OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

62 DFSORT UK90013

� The first IFTHEN clause with WHEN=ANY was not preceded by an IFTHEN clause with WHEN=(logexp).
Example:

 OUTFIL IFTHEN=(WHEN=INIT,OVERLAY=(1�:C'A')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

� An IFTHEN clause with WHEN=ANY and without HIT=NEXT was followed by an IFTHEN clause with
WHEN=ANY. Example:

 OUTFIL IFTHEN=(WHEN=(5,1,CH,EQ,C'1'),
 OVERLAY=(1�:C'A'),HIT=NEXT),
 IFTHEN=(WHEN=(5,1,CH,EQ,C'2'),
 OVERLAY=(1�:C'B'),HIT=NEXT),
 IFTHEN=(WHEN=ANY,
 OVERLAY=(28:C'ABC')),
 IFTHEN=(WHEN=ANY,BUILD=(1,8�))

System Action: The program terminates.

Programmer Response: Check the OUTFIL control statement for the errors indicated in the explanation and
correct the errors.

 ICE221A

ICE221A INVALID FIELD OR CONSTANT IN {*INCLUDE|*OMIT|*INREC|*OUTREC|ddname} IFTHEN
n CONDITION m

This message will be issued for the BEGIN and END operands of IFTHEN for the same reasons it is issued for the
WHEN operand of IFTHEN.

 ICE222A

ICE222A n BYTE FIXED RECORD LENGTH IS NOT EQUAL TO m BYTE LRECL FOR ddname

Explanation: Critical. The LRECL specified or retrieved for the fixed-length OUTFIL data set was not equal to
the computed length of the output records for that data set. You cannot use the LRECL value to pad the OUTFIL
records or to truncate the records produced by BUILD, OUTREC, OVERLAY, FINDREP, IFTHEN BUILD,
IFTHEN OVERLAY, IFTHEN FINDREP or IFTHEN PUSH operand processing. The values shown in the
message are as follows:

� n is the computed length of the output records for the OUTFIL group

� m is the specified or retrieved LRECL of the OUTFIL data set

� ddname indicates the OUTFIL data set for which padding or truncation was required

System Action: The program terminates.

Programmer Response: Take one of these actions as appropriate:

� Do not set the LRECL explicitly. Instead, let DFSORT set the LRECL to the computed record length.

� If you are using IFTHEN operands, specify IFOUTLEN=m. (Remember to allow an extra byte for OUTFIL
report data sets for the ANSI carriage control character unless you specify the REMOVECC operand.)

� If you are not using IFTHEN operands, ensure that the computed length for the BUILD, OVERLAY or
FINDREP operand, or the specified MAXLEN length for the FINDREP operand, is equal to m. (Remember to

 User Guide for DFSORT PTF UK90013 63

allow an extra byte for OUTFIL report data sets for the ANSI carriage control character unless you specify the
REMOVECC operand.)

 ICE241A

ICE241A {*INREC|*OUTREC|ddname} IFTHEN n COLUMN OVERLAPS RECORD DESCRIPTOR
WORD

Explanation: Critical. For variable-length record processing, the OVERLAY, IFTHEN OVERLAY or IFTHEN
PUSH operand of an INREC, OUTREC or OUTFIL statement specified an item that overlapped the record
descriptor word (RDW). Only data bytes, which start at position 5 for variable-length records, can be overlaid.
The specific cause of the error is identified as follows:

� *INREC and n=0 indicates that the OVERLAY operand of the INREC statement caused the error.

� *OUTREC and n=0 indicates that the OVERLAY operand of the OUTREC statement caused the error.

� ddname and n=0 indicates that the OVERLAY operand of an OUTFIL statement caused the error. ddname
identifies the first data set in the associated OUTFIL group

� *INREC and n>0 indicates that an IFTHEN OVERLAY or IFTHEN PUSH operand of the INREC statement
caused the error. n identifies the number of the associated IFTHEN clause (starting at 1 for the first IFTHEN
clause in the INREC statement).

� *OUTREC and n>0 indicates that an IFTHEN OVERLAY or IFTHEN PUSH operand of the OUTREC state-
ment caused the error. n identifies the number of the associated IFTHEN clause (starting at 1 for the first
IFTHEN clause in the OUTREC statement).

� ddname and n>0 indicates that an IFTHEN OVERLAY or IFTHEN PUSH operand of an OUTFIL statement
caused the error. ddname identifies the first data set in the associated OUTFIL group. n identifies the number
of the associated IFTHEN clause (starting at 1 for the first IFTHEN clause in the OUTFIL statement).

The error is one of the following:

� c: was not specified for the first OVERLAY, IFTHEN OVERLAY or IFTHEN PUSH item so the default of 1:
was used for that item. Example:

 OVERLAY=(C'ABC')

� c: was specified for an OVERLAY, IFTHEN OVERLAY or IFTHEN PUSH item with a value for c which
was less than 5. Example:

 PUSH=(3:SEQ=5)

System Action: The program terminates.

Programmer Response: Specify c: with a value of 5 or more for the first OVERLAY, IFTHEN OVERLAY or
IFTHEN PUSH item. Ensure that c is 5 or more for any other c: values you specify. Example:

 OVERLAY=(8:C'ABC',1,2,HEX,25:5C'�')

 ICE613A

ICE613A REQUIRED KEYWORD MISSING: keyword

Explanation: Critical. The indicated keyword was required for this operator, but was not specified. The required
keywords and their operands for each operator are:

 � COPY

64 DFSORT UK90013

 – FROM

– TO or USING

 � COUNT

 – FROM

– EMPTY, NOTEMPTY, HIGHER, LOWER, EQUAL, or NOTEQUAL if RC4 is specified

– WRITE if TEXT, DIGITS, EDCOUNT, or WIDTH is specified

 � DATASORT

– FROM, TO, and USING

– HEADER or TRAILER

 � DEFAULTS

 – LIST

 � DISPLAY

– FROM, ON, and LIST

– BREAK if BTITLE, BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE, or BCOUNT is specified

– COUNT if EDCOUNT is specified

– BCOUNT if EDBCOUNT is specified

 � MODE

– STOP, CONTINUE, or SCAN

 � OCCUR

– FROM and LIST

– ON(p,m,f), ON(p,m,HEX), or ON(VLEN)

 � RANGE

– FROM and ON

– HIGHER, LOWER, EQUAL, or NOTEQUAL

 � SELECT

– FROM and ON

– TO or DISCARD

– ALLDUPS, NODUPS, HIGHER, LOWER, EQUAL, FIRST, LAST, FIRSTDUP or LASTDUP

 � SORT

– FROM and USING

 � SPLICE

– FROM, TO, ON, and WITH

 � STATS

– FROM and ON

 � SUBSET

 – FROM

 User Guide for DFSORT PTF UK90013 65

– TO or DISCARD

– KEEP or REMOVE

– INPUT or OUTPUT

 � UNIQUE

– FROM and ON

 � VERIFY

– FROM and ON

System Action: This operation is terminated.

Programmer Response: Supply the indicated keyword or operand.

 ICE614A

ICE614A INVALID OPERATOR

Explanation: Critical. The first keyword in the statement was not a valid operator. The valid operators are:
COPY, COUNT, DATASORT, DEFAULTS, DISPLAY, MODE, OCCUR (or OCCURS), RANGE, SELECT,
SORT, SPLICE, STATS, SUBSET, UNIQUE, and VERIFY.

A common cause of this error is a missing hyphen (-) on the previous line to indicate continuation.

System Action: This operation is terminated.

Programmer Response:

A $ marks the point at which the error was detected. If an invalid operator was used, replace it with a valid
operator. If this is a continuation line, use a hyphen after the last operand on the previous line.

 ICE623A

ICE623A MAXIMUM NUMBER OF keyword KEYWORDS EXCEEDED

Explanation: Critical. Too many keywords of the indicated type were specified for this operator.

The maximum number of HEADER fields is 20 for a DISPLAY operator or 10 for an OCCUR operator.

The maximum number of WITH operands is 50 for a SPLICE operator.

The maximum number of TITLE operands is 3 for a DISPLAY or OCCUR operator.

The maximum number of RRN operands is 300 for a SUBSET operator.

The maximum number of ON fields for each operator is:

� DISPLAY - 20

� OCCUR - 10

� RANGE - 1

� SELECT - 10

66 DFSORT UK90013

� SPLICE - 10

� STATS - 10

� UNIQUE - 1

� VERIFY - 10

System Action: This operation is terminated.

Programmer Response: A $ marks the point at which the error was detected. Reduce the number of indicated
keywords for this operator to the maximum allowed. If necessary, use additional operators to handle all the
required fields.

 ICE624A

ICE624A MAXIMUM NUMBER OF TO DDNAMES EXCEEDED

Explanation: Critical. Too many TO ddnames were specified for this operator. The maximum number of TO
ddnames for each operator is:

� COPY - 10

� DATASORT - 1

� SELECT - 1

� SORT - 10

� SPLICE - 1

� SUBSET - 1

System Action: This operation is terminated.

Programmer Response: A $ marks the point at which the error was detected. Reduce the number of TO ddnames
for this operator to the maximum allowed. Use additional operators to handle all the data sets required.

 ICE628I

ICE628I RECORD COUNT: nnnnnnnnnnnnnnn

Explanation: Indicates the number of records processed by ICETOOL (prints as 15 decimal digits padded with
zeros on the left as needed).

If ICETOOL completed the operation successfully, this count reflects the number of records in the input data set or
in the subset of the input data set selected by DFSORT statements (for example, INCLUDE). If an ADD operand
was specified for a COUNT operator, the count will reflect addition of the specified value. If a SUB operand was
specified for a COUNT operator, the count will reflect subtraction of the specified value, but will not be reduced
below 0.

If ICETOOL did not complete the operation successfully, this count reflects the number of records processed before
an error was detected that caused ICETOOL to terminate processing of this operation.

System Action: None.

Programmer Response: None.

 User Guide for DFSORT PTF UK90013 67

 ICE637A

ICE637A ddname RECORD LENGTH of n BYTES EXCEEDS MAXIMUM WIDTH OF m BYTES

Explanation: Critical.

� For a DISPLAY or OCCUR operator without NOCC:

The calculated record length for the indicated list data set was greater than 2048 or the maximum width speci-
fied. n is the total bytes required in the list data set record for the carriage control character, the title lines
(resulting from specified title elements), column widths (resulting from specified ON, HEADER, PLUS,
BLANK, TOTAL, BREAK, BTITLE, and BTOTAL operands), and blanks before and between title elements
and columns (resulting from specified INDENT, TBETWEEN, BETWEEN, and STATLEFT operands). m is
the value specified for the WIDTH operand, or 2048 if WIDTH was not specified.

� For a DISPLAY or OCCUR operator with NOCC:

The calculated record length for the indicated list data set was greater than 2047 or the maximum width speci-
fied. n is the total bytes required in the list data set record for the title lines (resulting from specified title
elements), column widths (resulting from specified ON, HEADER, PLUS, BLANK, TOTAL, BREAK,
BTITLE, and BTOTAL operands), and blanks before and between title elements and columns (resulting from
specified INDENT, TBETWEEN, BETWEEN, and STATLEFT operands). m is the value specified for the
WIDTH operand, or 2047 if WIDTH was not specified.

� For a COUNT operator with WRITE:

The calculated record length for the indicated output data set was greater than the maximum width specified. n
is the total bytes required in the output data set record for the count line (resulting from specified TEXT,
DIGITS and EDCOUNT operands). m is the value specified for the WIDTH operand.

System Action: The operation is terminated.

Programmer Response:

� For a DISPLAY or OCCUR operator:

If m is less than 2048 without NOCC or less than 2047 with NOCC, either remove the WIDTH operand and let
ICETOOL set the width, or if you need to set the WIDTH explicitly, increase its value to n or greater.

If m is 2048 without NOCC or 2047 with NOCC, take one or more of the following actions:

– Use formatting items or the PLUS or BLANK operand. For example, use ON(21,18,ZD,U19) instead of
ON(21,18,ZD) with TOTAL to change the column width from 32 bytes to 20 bytes.

– Reduce the length of one or more HEADER strings.

– Reduce the length of one or more ON fields. For example, if an ON(1,8,PD) field always has zeros in
bytes 1 through 3, use instead (1,8,PD,U09), or ON(4,5,PD) with BLANK, to reduce the column width
from 16 bytes to 10 bytes.

– Reduce the number of ON fields, especially if the BTOTAL or TOTAL operand is used.

 – Reduce BETWEEN(n).

 – Reduce INDENT(n).

 – Remove STATLEFT.

 – Reduce TBETWEEN(n).

� For a COUNT operator, remove the WIDTH operand and let ICETOOL set the width, or if you need to set the
WIDTH explicitly, increase its value to n or greater.

68 DFSORT UK90013

 ICE639A

ICE639A INSUFFICIENT MAIN STORAGE - ADD AT LEAST nK BYTES TO REGION

n has been increased from four digits to seven digits.

 ICE640A

ICE640A INVALID FORMATTING ITEM

Explanation: Critical. An ON(p,m,f,formatting), ON(VLEN,formatting), ON(NUM,formatting),
EDCOUNT(formatting) or EDBCOUNT(formatting) operand for this DISPLAY operator, or an
ON(p,m,f,formatting), ON(VLEN,formatting) or ON(VALCNT,formatting) operand for this OCCUR operator, or an
EDCOUNT operand for this COUNT operator, contained an invalid formatting item as follows:

� The formatting item was not /x (/x can be /D, /C, /K, /DK, /CK, /M, /G, /KB, /MB, or /GB), L'string', F'string',
T'string', E'pattern', NOST, LZ, Ndd, Udd, or a valid mask (mask can be A0-A5, B1-B6, C1-C6, D1-D6,
E1-E4, F1-F5, or G1-G6).

� /x, F'string', E'pattern', LZ, NOST, Ndd, Udd, or a mask was specified for a character field.

� /x or NOST was specified for ON(NUM,formatting) or for OCCUR.

� /x, NOST or Ndd was specified for BREAK(p,m,f,formatting), EDCOUNT(formatting) or
EDBCOUNT(formatting).

� More than one /x was specified, more than one mask was specified, Ndd and Udd were both specified, or
L'string', F'string', T'string', E'pattern', Udd, or Ndd was specified more than once.

� L'', F'', T'' or E'' was specified.

� F'string' or a mask was specified with E'pattern'.

� dd for Ndd or Udd was not two digits from 01 to 31.

� dd for Ndd or Udd was greater than 15 for ON(NUM,formatting) or ON(VALCNT,formatting).

� dd for Udd was greater than 15 for EDCOUNT(formatting) or EDBCOUNT(formatting).

System Action: The operation is terminated.

Programmer Response: A $ marks the point at which the error was detected. Correct the error.

 ICE643I

ICE643I WIDTH OF REPORT IS n BYTES

Explanation: n indicates the line length and the LRECL for this DISPLAY or OCCUR list data set, determined as
follows:

� n if WIDTH(n) was specified

� 121 if NOCC and WIDTH(n) were not specified and the calculated line length was less than or equal to 121

� the calculated line length if NOCC and WIDTH(n) were not specified and the calculated line length was greater
than 121

� 120 if NOCC was specified, WIDTH(n) was not specified and the calculated line length was less than or equal
to 120

 User Guide for DFSORT PTF UK90013 69

� the calculated line length if NOCC was specified, WIDTH(n) was not specified and the calculated line length
was greater than 120.

System Action: None.

Programmer Response: None.

 ICE645A

ICE645A {(NUM)|(VALCNT)|COUNT} OVERFLOWED n DECIMAL DIGITS

Explanation: Critical. The number of digits (n) allowed from the Ndd, Udd or DIGITS(n) item you specified was
too small, as follows:

� (NUM) indicates a record number for this DISPLAY operator exceeded the number of digits you allowed for it.

� (VALCNT) indicates a value count for this OCCUR operator exceeded the number of digits you allowed for it.

� COUNT indicates a count for this COUNT operator, or an overall count or break count for this DISPLAY
operator, exceeded the number of digits you allowed for it.

System Action: This operation is terminated.

Programmer Response: Specify an Ndd or Udd formatting item, or a DIGITS(n) operand, large enough to prevent
overflow of the record number, value count, overall count or break count (that is, use an appropriate Ndd, Udd or
DIGITS value between n+1 and 15).

 ICE652A

ICE652A OUTREC STATEMENT FOUND BUT NOT ALLOWED - USE OUTFIL STATEMENT
INSTEAD

Explanation: Critical. A DFSORT OUTREC statement was specified for this DATASORT, SELECT, SPLICE or
SUBSET operator, but you cannot use an OUTREC statement with DATASORT, SELECT, SPLICE or SUBSET.

System Action: The operation is terminated.

Programmer Response: If you want to reformat the output records produced by this DATASORT, SELECT,
SPLICE or SUBSET operator, use one or more OUTFIL statements instead of an OUTREC statement.

 New Messages

This section shows messages that have been added for PTF UK90013. Refer to z/OS DFSORT Messages, Codes
and Diagnosis Guide for general information on DFSORT messages.

 ICE259A

ICE259A PUSH FIELD ERROR

Explanation: Critical. The PUSH operand of an INREC, OUTREC or OUTFIL statement contained an invalid
column, position or length, as follows:

� A 0 value was used.

70 DFSORT UK90013

� A column was greater than 32752, or was followed by another column.

� An input position plus length was greater than 32753.

� The length for a SEQ or ID field was greater than 15.

� An output field was beyond position 32767.

System Action: The program terminates.

Programmer Response: Correct the invalid column, position or length.

 ICE260A

ICE260A FIND/REPLACE FIELD ERROR

Explanation: Critical. One of the following errors was found in the FINDREP operand of an INREC, OUTREC
or OUTFIL statement:

� A 0 value was used.

� A null value was used where it was not permitted.

� IN or INOUT was not specified.

� INOUT, IN, OUT, STARTPOS, ENDPOS, DO, MAXLEN, OVERRUN or SHIFT was specified more than
once.

� INOUT was specified with IN or OUT.

� IN was specified without OUT, or OUT was specified without IN.

� An input constant was specified without a matching output constant in INOUT.

� A repetition factor was 0 or greater than 256 for a character string or hexadecimal string.

� The total length of a single or repeated character or hexadecimal constant was greater than 256 bytes.

� An invalid digit or an odd number of digits was specified for a hexadecimal string.

� The value for STARTPOS, ENDPOS or MAXLEN was greater than 32752.

� The value for DO was greater than 1000.

System Action: The program terminates.

Programmer Response: Check the FINDREP operand for the errors indicated in the explanation and correct the
errors.

 ICE261A

ICE261A FIND AND REPLACE CAUSED OVERRUN OF n BYTE <*INREC/*OUTREC/ddname>
OUTPUT RECORD END

Explanation: Critical. OVERRUN=ERROR was specified or defaulted for the FINDREP operand of an INREC,
OUTREC or OUTFIL statement, and processing of the find/replace constants caused nonblank characters to overrun
the end of the maximum of n bytes allowed for the output record. This can occur when an output constant is
longer than an input constant (for example, INOUT=(C'A',C'XYZ')), or when the length of the record to be created
by FINDREP is less than the length of the original record (for example, when the input record is 80 bytes and
MAXLEN=50 is used to decrease the length of the record).

 User Guide for DFSORT PTF UK90013 71

The specific source of the error is identified as follows:

� *INREC indicates that a FINDREP operand in the INREC statement caused the error.

� *OUTREC indicates that a FINDREP operand in the OUTREC statement caused the error.

� ddname indicates that a FINDREP operand in an OUTFIL statement caused the error; ddname identifies the
first data set in the associated OUTFIL group.

System Action: The program terminates.

Programmer Response: If you want to truncate nonblank characters that overrun the end of the record, specify
OVERRUN=TRUNC. If you do not want to truncate nonblank characters that overrun the end of the record,
increase the length of the record using MAXLEN=m with a value for m equal to or greater than the maximum
length record to be created by FINDREP.

 ICE653A

ICE653A STOPAFT, SKIPREC OR COND (SUBSET) OR STOPAFT (DATASORT) NOT ALLOWED

Explanation: Critical. Either:

� a SUBSET operator was used and a DFSORT SKIPREC, STOPAFT or COND operand was specified, or

� a DATASORT operator was used and a DFSORT STOPAFT operand was specified.

You cannot use STOPAFT with SUBSET or DATASORT. You cannot use SKIPREC or COND with SUBSET.

System Action: This operation is terminated.

Programmer Response: If appropriate, use an OUTFIL statement with INCLUDE, OMIT, STARTREC, ENDREC
or other operands to remove unwanted records after they are processed by SUBSET or DATASORT.

 ICE654A

ICE654A SORT FUNCTION IS REQUIRED FOR DATASORT OPERATION

Explanation: Critical. A DFSORT SORT statement was not found for this DATASORT operator, but you must
supply a SORT statement with DATASORT.

System Action: This operation is terminated.

Programmer Response: Specify a SORT statement in the xxxxCNTL data set corresponding to the USING(xxxx)
operand for this DATASORT operator. Ensure that the SORT statement is not overridden by an OPTION COPY
statement.

 ICE655I

ICE655I COUNT RECORD WRITTEN IN ddname DATA SET - LENGTH IS n BYTES

Explanation: The record containing the count was written in the output data set with the indicated ddname. n
indicates the record length and the LRECL for the output data set, determined as follows:

� n if WIDTH(n) was specified

� the calculated length of the count record if WIDTH(n) was not specified

72 DFSORT UK90013

System Action: None.

Programmer Response: None.

 ICE656A

ICE656A DISCARD AND INPUT CANNOT BE USED WITH SORT FUNCTION FOR SUBSET OPERA-
TION

Explanation: Critical. A DFSORT SORT statement was found for a SUBSET operator with DISCARD(savedd)
and INPUT operands, but you cannot use a SORT statement with these SUBSET operands.

System Action: This operation is terminated.

Programmer Response: Remove the SORT statement or DISCARD(savedd) operand, or change the INPUT
operand to an OUTPUT operand, as appropriate. Alternatively, use two SUBSET operators, one with REMOVE
and INPUT operands, a SORT statement, and no DISCARD(savedd) operand, and the other with KEEP and INPUT
operands, a SORT statement, and no DISCARD(savedd) operand.

 User Guide for DFSORT PTF UK90013 73

	User Guide for DFSORT PTF UK90013
	Introduction
	Summary of Changes
	Operational Changes that may Require User Action
	Find and replace
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2
	Example 3
	Example 4

	Group operations
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2
	Example 3
	Example 4

	DATASORT
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2

	SUBSET
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2
	Example 3

	SELECT with first n duplicates
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2

	SPLICE with non-blank fields
	Introduction
	Syntax
	Detailed Description
	Example 1

	DISPLAY with count
	Introduction
	Syntax
	Detailed Description
	Example 1

	DISPLAY/OCCUR with multiple and multipart titles
	Introduction
	Syntax
	Detailed Description
	Example 1

	DISPLAY/OCCUR without carriage control
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2

	COUNT in output record
	Introduction
	Syntax
	Detailed Description
	Example 1
	Example 2

	COUNT with add/subtract
	Introduction
	Syntax
	Detailed Description
	Example 1

	BLKSIZE default for input DUMMY
	SKIP=0L default for SECTIONS
	SORTOUT=ddname default for FNAMES
	Changed Messages
	ICE018A
	ICE107A
	ICE113A
	ICE114A
	ICE151A
	ICE189A
	ICE214A
	ICE221A
	ICE222A
	ICE241A
	ICE613A
	ICE614A
	ICE623A
	ICE624A
	ICE628I
	ICE637A
	ICE639A
	ICE640A
	ICE643I
	ICE645A
	ICE652A

	New Messages
	ICE259A
	ICE260A
	ICE261A
	ICE653A
	ICE654A
	ICE655I
	ICE656A

