
IBM Tape Device Drivers

Programming Reference

GA32-0566-09

IBM

IBM Tape Device Drivers

Programming Reference

GA32-0566-09

IBM

ii IBM Tape Device Drivers: Programming Reference

Contents

Note! v

Preface vii

Chapter 1. Common extended features . 1
Tape drive functions and device driver ioctls . . . 1
Media partitioning 1
Data safe (append-only) mode 3
Read Position long/extended form and Locate(16)
commands 3
Logical Block Protection 4
Programmable Early Warning (PEW) 4
Log Sense page and subpage 5
Mode Sense page and subpage 5
Verify Tape 5
RAO - Recommended Access Order 5

Chapter 2. AIX tape and medium
changer device driver 7
Software interface for tape devices 7
Software interface for medium changer devices . . . 7
Special files 8

Special files for tape devices 8
Special files for medium changer devices 9
Opening the special file for I/O 10
The extended open operation 10
Writing to the special file 12
Reading from the special file 12
Reading with the TAPE_SHORT_READ extended
parameter 12
Reading with the TAPE_READ_REVERSE
extended parameter 13
Closing the special file. 13

Device and volume information logging 14
Log file 14

Persistent reservation support and IOCTL
operations 15

ODM attributes and configuring persistent
reserve support 15
Default device driver host reservation key . . . 16
Preempting and clearing another host reservation 16
Openx() extended parameters 16
AIX tape persistent reserve IOCTLs 17
Atape persistent reserve IOCTLs 20

General IOCTL operations 24
Overview 24

Tape IOCTL operations 41
Overview 41

Medium changer IOCTL operations 81
Overview 81

Return codes 92
Codes for all operations 92
Open error codes 93
Write error codes 94
Read error codes 94

Close error codes 94
IOCTL error codes 95

Chapter 3. HP-UX tape and medium
changer device driver 97
HP-UX programming interface 97
IOCTL operations 100

General SCSI IOCTL operations 100
SCSI medium changer IOCTL operations . . . 108
SCSI tape drive IOCTL operations 118
Base operating system tape drive IOCTL
operations 149
Service aid IOCTL operations 151

Chapter 4. Linux tape and medium
changer device driver 159
Software interface 159

Entry points 159
Medium changer devices 161

General IOCTL operations 161
Overview. 162

Tape drive IOCTL operations 173
Overview. 173

Tape drive compatibility IOCTL operations . . . 208
MTIOCTOP 208
MTIOCGET 208
MTIOCPOS 208

Medium changer IOCTL operations 209
SCSI IOCTL commands 209

Return codes 217
General error codes 217
Open error codes 217
Close error codes 218
Read error codes 218
Write error codes 218
IOCTL error codes. 219

Chapter 5. Solaris tape and medium
changer device driver 221
IOCTL operations 221

General SCSI IOCTL operations 221
SCSI medium changer IOCTL operations . . . 232
SCSI tape drive IOCTL operations 242
Base operating system tape drive IOCTL
operations 278
Downward compatibility tape drive IOCTL
operations 281
Service aid IOCTL operations 287

Return codes 292
General error codes 293
Open error codes 293
Close error codes 294
Read error codes 294
Write error codes 294

© Copyright IBM Corp. 1999, 2016 iii

IOCTL error codes. 295
Opening a special file 295
Writing to a special file 296
Reading from a special file 297
Closing a special file 298
Issuing IOCTL operations to a special file . . . 299

Chapter 6. Windows tape device
drivers 301
Windows programming interface 301

User-callable entry points 301
Tape Media Changer driver entry points . . . 302
Medium Changer IOCTLs 310
Preempt reservation 311
Vendor-specific (IBM) device IOCTLs for
DeviceIoControl 313
Variable and fixed block read/write processing 331

Event log 332

Chapter 7. 3494 Enterprise tape library
driver 339
AIX 3494 Enterprise tape library driver 339

Opening the Special File for I/O 339
Header definitions and structure 339
Parameters 339
Reading and writing the Special File 339
Closing the Special File 339

HP-UX 3494 Enterprise tape library driver. . . . 340
Opening the library device 340
Closing the library device 340
Issuing the library commands 340
Building and linking applications with the
library subroutines 341

Linux 3494 Enterprise tape library driver 341
Opening the library device 342
Closing the library device 342
Issuing the library commands 342
Building and linking applications with the
library subroutines 343

SGI IRIX 3494 Enterprise tape library 343
Solaris 3494 Enterprise tape library driver 344

Opening the library device 344
Closing the library device 344
Issuing the library commands 344
Building and linking applications with the
library subroutines 345

Windows 3494 Enterprise tape library service . . 345
Opening the library device 345
Closing the library device 346
Issuing the library commands 346
Building and linking applications with the
library subroutines 346

3494 Enterprise tape library system calls 348
Library device number 349
MTIOCLM (Library Mount) 349
MTIOCLDM (Library Demount) 351
MTIOCLQ (Library Query) 353
MTIOCLSVC (Library Set Volume Category) 358
MTIOCLQMID (Library Query Message ID) . . 360
MTIOCLA (Library Audit) 361
MTIOCLC (Library Cancel). 362
MTIOCLSDC (Library Set Device Category) . . 363
MTIOCLRC (Library Release Category). . . . 365
MTIOCLRSC (Library Reserve Category) . . . 366
MTIOCLSCA (Library Set Category Attribute) 368
MTIOCLDEVINFO (Device List) 369
MTIOCLDEVLIST (Expanded Device List). . . 369
MTIOCLADDR (Library Address Information) 371
MTIOCLEW (Library Event Wait) 373
Error description for the library I/O control
requests 376

Notices 379

Index 381

iv IBM Tape Device Drivers: Programming Reference

||

Note!

Before using this information and the product that it supports, be sure to read the
general information under “Notices” on page 379.

Ninth Edition (March 2016)

This edition replaces and makes obsolete GC35-0483-06, GC35-0346-10,
GA32-0566-00, GA32-0566-01, GA32-0566-02, GA32-0566-03, GA32-0566-04,
GA32-0566-05, GA32-0566-06, GA32-0566-07, and GA32-0566-08. Changes or
additions are indicated by a vertical line in the left margin.

© Copyright IBM Corp. 1999, 2016 v

vi IBM Tape Device Drivers: Programming Reference

Preface

These publications and URLs provide user information and installation assistance
for IBM® tape drive, medium changer, and library device drivers.

Special printing instructions

This Device Driver manual contains different sections for each type of operating
platform, for example, AIX, HP-UX, Linux, Oracle Solaris, and Windows. The
manual also contains a separate section on these operating systems for the 3494
Enterprise tape library.

Note: When the page range is selected for the section you want to print, the print
page range is based on the page controls for Adobe Acrobat, not the page that is
printed on the actual document. Enter the Adobe page numbers to print.

If you want to print one or more separate sections of the manual, follow these
steps.
1. Go to the beginning of the section and note the page number.
2. Go to the last page in the section and note that page number.
3. Select File > Print, then choose Pages and enter the page range for the section.

Only the page range that is entered prints.
4. Repeat these steps to print extra sections.

Attention: Only one Table of Contents and one Index is available for this entire
book. If you want to print those items, you must repeat the process, by entering
the page range of the Table of Contents and the Index page range.

Important printer note

This area indicates the
pages that will actually
print in your specified
range of pages.

Ignore the page number
appearing on the page itself
when entering page ranges
for your printer.

Figure 1. How to print Adobe pdf files

© Copyright IBM Corp. 1999, 2016 vii

Related information

Reference material, including the Adobe pdf version of this publication, is available
at http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003032.

A companion publication that covers installation and user aspects for the device
drivers is IBM Tape Device Drivers: Installation and Users Guide, GC27-2130-00, at
http://www-01.ibm.com/support/docview.wss?uid=ssg1S7002972.

AIX

The following URL points to information about IBM System p (also known as
pSeries) servers: http://www-1.ibm.com/servers/eserver/pseries.

HP-UX

The following URL relates to HP HP-UX systems: http://www.hp.com.

Linux

The following URLs relate to Linux distributions: http://www.redhat.com and
http://www.suse.com.

Solaris

The following URL relates to Oracle Solaris systems: http://www.oracle.com/us/
sun/index.html .

Microsoft Windows

The following URL relates to Microsoft Windows systems: http://
www.microsoft.com .

Additional information

The following publication contains information that is related to the IBM tape
drive, medium changer, and library device drivers: American National Standards
Institute Small Computer System Interface X3T9.2/86-109 X3.180, X3B5/91-173C,
X3B5/91-305, X3.131-199X Revision 10H, and X3T9.9/91-11 Revision 1.

viii IBM Tape Device Drivers: Programming Reference

http://www-01.ibm.com/support/docview.wss?uid=ssg1S7003032
http://www-01.ibm.com/support/docview.wss?uid=ssg1S7002972
http://www-1.ibm.com/servers/eserver/pseries
http://www.hp.com
http://www.redhat.com
http://www.suse.com
http://www.oracle.com/us/sun/index.html
http://www.oracle.com/us/sun/index.html
http://www.microsoft.com
http://www.microsoft.com

Chapter 1. Common extended features

Tape drive functions and device driver ioctls

Beginning with the TS1140 (JAG 4), TS2250, and TS2350 (LTO 5) generation of tape
drives, functions are supported that previous generations of LTO and JAG tape
drives do not support. The device drivers provide ioctls that applications can use
for these functions. Refer to the appropriate platform section for the specific ioctls
and data structures that are not included in this section.
v Media Partitioning

Supported tape drives: LTO 5 and JAG 4 and later models
v Data Safe (Append-Only) Mode

Supported tape drives: LTO 5 and JAG 4 and later models
v Read Position SCSI Command for Long and Extended forms

Supported tape drives: LTO 5 and JAG 4 and later models
v Locate(16) SCSI Command

Supported tape drives: LTO 5 and JAG 4 and later models
v Logical Block Protection

Supported tape drives: LTO 5 and JAG 2/3/4 and later models
v Programmable Early Warning (PEW)

Supported tape drives: LTO 5 and JAG 2 and later models
v Log Sense Page and Subpage

Supported tape drives: LTO 5 and JAG 3 and later models
v Mode Sense Page and Subpage

Supported tape drives: LTO-4 and JAG 2 and later models
v Verify Tape

Supported tape drives: LTO5 and JAG 2 and later models

Media partitioning

There are two types of partitioning: Wrap-wise partitioning and Longitudinal
partitioning (maximum 2 partitions).

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 2. Wrap-wise partitioning

© Copyright IBM Corp. 1999, 2016 1

In Wrap-wise partitioning, media can be partitioned into 1 or 2 partitions for LTO
5 and 1 - 4 partitions for TS1140. For later generations, see drive documentation for
the number of partitions supported. The data partition (the default) for a single
partition always exists as partition 0. WORM media cannot be partitioned.

The ioctls the device drivers provide for tape partitioning are
v Query Partition

The Query Partition ioctl returns the partition information for the current media in
the tape drive. It also returns the current active partition the tape drive is using for
the media.

Note: If the Create Partition ioctl fails, then the Query Partition ioctl does not
return the correct partition information. To get the correct information, the
application must unload and reload the tape again.
v Create Partition

The Create Partition ioctl is used to format the current media in the tape driver to
either 1 or 2 partitions. When two partitions are created, the FDP, SDP, or IDP
partition type is specified by the application. The tape must be positioned at the
beginning of tape (partition 0 logical block id 0) before this ioctl is used or the ioctl
fails.

If the number_of_partitions field to create in the ioctl structure is one partition, all
other fields are ignored and not used. The tape drive formats the media by using
its default partitioning type and size for a single partition.

When the type field in the ioctl structure is set to either FDP or SDP, the size_unit
and size fields in the ioctl structure are not used. When the type field in the ioctl
structure is set to IDP, the size_unit and size fields are used to specify the size for
each partition. One of the two partition sizes for either partition 0 or 1 must be
specified as 0xFFFF to use the remaining capacity. The other partition is created by
using the size_unit and size field for the partition.
v Set Active Partition

The Set Active Partition ioctl is used to position the tape drive to a specific
partition. It becomes the current active partition for subsequent commands and a
specific logical bock id in the partition. To position to the beginning of the
partition, the logical_block_id field in the ioctl structure must be set to 0.

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 3. Longitudinal partitioning

2 IBM Tape Device Drivers: Programming Reference

|
|
|

Data safe (append-only) mode

Data safe (append-only) mode sets the drive into a logical WORM mode so any
non-WORM tape when loaded is handled similarly to a WORM tape. After data or
filemarks are written to the tape, it cannot normally be overwritten. New data or
filemarks can be appended only at the end of previously written data. Data safe
mode applies only to drive operation. When a non-WORM tape is unloaded, it
does not change and is still a non-WORM tape.

Conditions exist when the drive is in data safe mode an application might want to
explicitly overwrite previously written data by issuing a write, write filemark, or
erase command. These commands are referred to as write type commands. An
application might also want to explicitly partition the tape with the Create
Partition ioctl that issues a format command. The drive supports a new Allow Data
Overwrite SCSI command for this purpose.

The ioctls that the device drivers provide for data safe mode are
v Querying and setting data safe mode

All platform device drivers except Windows added a data safe mode parameter to
existing ioctls that are used to query or set tape drive parameters. The Windows
device driver added two new ioctls to query or set data safe mode.

A query ioctl returns the current drive mode, either data safe mode off (normal
mode) or data safe mode on. A set ioctl sets the drive to either data safe mode off
(normal mode) or data safe mode on. Data safe mode can be set whether a tape is
loaded in the drive or not. Data safe mode can be set back to normal mode only
when a tape is not currently loaded in the drive.
v Allow Data Overwrite

The Allow Data Overwrite ioctl is used to allow previously written data on the
tape to be overwritten when data safe mode is enabled on the drive, for a
subsequent write type command, or to allow a format command with the Create
Partition ioctl.

To allow a subsequent write type command, the tape position must be set to the
correct partition and logical block address within the partition before the ioctl is
used. The partition_number and logical_block_id fields in the ioctl structure must
be set to that partition and logical block ID. The allow_format_overwrite field in
the ioctl structure must be set to 0.

To allow a subsequent Create Partition ioctl to format the tape, the
allow_format_overwrite field in the ioctl structure must be set to 1. The
partition_number and logical_block_id fields are not used. But, the tape must be
at the beginning of tape (partition 0 logical block id 0) before the Create Partition
ioctl is issued.

Read Position long/extended form and Locate(16) commands

Because of the increased tape media capacity and depending on the block sizes
and number of files an application can write on tape, the 4-byte fields such as the
logical block id the current Read Position command (referred to as the short form)
that returns 20 bytes might overflow. The same applies to the Locate(10)
command for the logical block id.

Chapter 1. Common extended features 3

|
|
|

LTO 5 and later supports new forms of the existing Read Position command in
addition to the current short form. The short form continues to return 4-byte fields
in 20 bytes of return data. The long form returns 8-byte fields in 32 bytes of return
data with the current position information for the logical block id and logical
filemark. The extended form returns 8-byte fields in 32 bytes of return data with
the current position information for the logical block id and buffer status. The
format of return data in the Read Position command is specified by using a
service action field in the Read Position SCSI CDB.

LTO 5 and later also supports the Locate(16) command that uses 8-byte fields.
This command can either position the tape to a logical block id or a logical
filemark by setting the dest_type field in the Locate(16) SCSI CDB. After the locate
command completes, the tape is positioned at the BOP side of the tape.

The ioctls the device drivers provide are
v Read Tape Position

The Read Tape Position ioctl returns the Read Position command data in either
the short, long, or extended form. The form to be returned is specified by setting
the data_format field in the ioctl structure.
v Set Tape Position

The Set Tape Position ioctl issues a Locate(16) command to position the tape in
the current active partition to either a logical block id or logical filemark. The
logical_id_type field in the ioctl structure specifies either a logical block or logical
filemark.

Logical Block Protection

The ioctls the device drivers provide are
v Query Logical Block Protection

This ioctl queries whether the drive can support this feature, what lbp method is
used, and where the protection information is included.
The lbp_capable field indicates that the drive has the logical block protection
(LBP) capability or not. The lbp_method field is shown if LBP is enabled and
what the protection method is. The LBP information length is shown in the
lbp_info_length field. The fields of lbp_w, lbp_r, and rbdp present that the
protection information is included in write, read, or recover buffer data. The
rbdp field is not supported for the LTO drive.

v Set Logical Block Protection

This ioctl enables or disables Logical Block Protection, sets up what method is
used, and where the protection information is included.
The lbp_capable field is ignored in this ioctl by the tape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

Programmable Early Warning (PEW)

With the tape parameter, the application is allowed to request the tape drive to
create a zone that is called the programmable early warning zone (PEWZ) in front
of Early Warning (EW).

4 IBM Tape Device Drivers: Programming Reference

This parameter establishes the programmable early warning zone size. It is a
2-byte numerical value that specifies how many MB before the standard
end-of-medium early warning zone to place the programmable early warning
indicator. If the value is set to a positive integer, a user application is warned that
the tape is running out of space when the tape head reaches the PEW location. If
pew is set to 0, then there is no early warning zone and the user is notified only at
the standard early warning location.

Log Sense page and subpage

This ioctl of the SIOC_LOG_SENSE10_PAGE issues a Log Sense(10) command
and returns log sense data for a specific page and subpage. This ioctl command is
enhanced to add a subpage variable from the log sense page. It returns a log sense
page or subpage from the device. The wanted page is selected by specifying the
page_code or subpage_code in the structure. Optionally, a specific parm pointer,
also known as a parm code, and the number of parameter bytes can be specified
with the command.

Mode Sense page and subpage

This ioctl of the SIOC_MODE_SENSE issues a Mode Sense(10) or (6) command
and returns the whole mode sense data. The data includes the header, block
descriptor, and page code for a specific page or subpage from the device.

Verify Tape

The ioctl of VERIFY_DATA_TAPE issues the VERIFY command to cause data to be
read from the tape and passed through the drive’s error detection and correction
hardware. This action determines whether data can be recovered from the tape.
Also, whether the protection information is present and validates correctly on
logical block on the medium. The driver returns a failure or success signal if the
VERIFY SCSI command is completed in a Good SCSI status. The Verify command
is supported on all LTO libraries. Verify to EOD (ETD) or verify by filemark (VBF)
is supported on drives that support Logical Block Protection (LBP).

RAO - Recommended Access Order

The 3592 E07 implements a function that is called Recommended Access Order.
This function provides the capability to improve multiple block recall and retrieval
times. It provides an application with the optimized order in which a list of blocks
must be recalled to minimize the required total time period.

An application uses the GRAO command to request that the drive generate a
recommended access order for the User Data Segments that are sent in this
command. After a GRAO command completes, use the RRAO command to receive the
results.

BOP EW EOP
PEWZ

a
2
5
0
0
2
9
1

Figure 4. Programmable Early Warning Zone (PEWZ)

Chapter 1. Common extended features 5

QUERY_RAO_INFO IOCTL

The IOCTL queries the maximum number and size of User Data Segments (UDS)
that are supported from tape drive and driver for the wanted uds_type: with or
without geometry, the geometry can be used to build a representation of the
physical layout of the UDS on tape.. The application calls this IOCTL before the
GENERATE_RAO and RECEIVE_RAO IOCTLs are issued. The return in this IOCTL is to
be used by the application to limit the number of UDS requested in calls to the
GENERATE_RAO IOCTL.

GENERATE_RAO

The IOCTL is called to send a GRAO list (UDS's descriptors list) to request the
drive to generate a Recommending Access Order list. The process method to create
a RAO list is either 1 or 2. 1 does not reorder the UDS's list, but does calculate the
estimated locate time for each UDS in the list, and 2 reorders the UDS's list and
calculates the estimated locate time for each UDS in its resultant position. The type
of UDS is either with or without the geometry. The uds_number must be not
larger than max_host_uds_number returned in the QUERY_RAO_INFO IOCTL. A UDS
descriptor has a name, partition number and beginning and ending logical object
identifiers.

RECEIVE_RAO

After a GENERATE_RAO IOCTL is completed, the application calls the RECEIVE_RAO
IOCTL to receive a recommended access order of UDS from the drive. The
application must allocate to the buffer an accurate size to receive the list.

The grao list, for the generate_rao and receive_rao structures, is in the following
format when lists are sent or received. The structures for the headers and UDS
segments are not provided by the device driver but is the responsibility of the
calling application. It is defined in the IBM Enterprise Tape System 3592 SCSI
Reference.

-- List Header
-- UDS Segment Descriptor (first)

......
-- UDS Segment Descriptor (last)

6 IBM Tape Device Drivers: Programming Reference

|
|
|

|
|
|
|
|

|

|

|
|

|
|

Chapter 2. AIX tape and medium changer device driver

This chapter provides an introduction to the IBM AIX® Enhanced Tape and
Medium Changer Device Driver (Atape) programming interface to IBM
TotalStorage (formally Magstar®) and System Storage® tape and medium changer
devices.

Software interface for tape devices

The AIX tape and medium changer device driver provides the following entry
points for tape devices.

Open This entry point is driven by open, openx, and creat subroutines.

Write This entry point is driven by write, writev, writex, and writevx
subroutines.

Read This entry point is driven by read, readv, readx, and readvx subroutines.

Close This entry point is driven explicitly by the close subroutine and implicitly
by the operating system at program termination.

ioctl This entry point provides a set of tape and SCSI-specific functions. It
allows AIX applications to access and control the features and attributes of
the tape device programmatically. For the medium changer devices, it also
provides a set of medium changer functions that is accessed through the
tape device special files or independently through an extra special file for
the medium changer only.

Dump This entry point allows the use of the AIX dump facility with the driver.

The standard set of AIX device management commands is available. The chdev,
rmdev, mkdev, and lsdev commands are used to bring the device online or change
the attributes that determine the status of the tape device.

Software interface for medium changer devices

The AIX tape and medium changer device driver provides the following AIX entry
points for the medium changer devices.

Open This entry point is driven by open and openx subroutines.

Close This entry point is driven explicitly by the close subroutine and implicitly
by the operating system at program termination.

IOCTL
This entry point provides a set of medium changer and SCSI-specific
functions. It allows AIX applications to access and control the features and
attributes of the tape system robotic device programmatically.

The standard set of AIX device management commands is available. The chdev,
rmdev, mkdev, and lsdev commands are used to bring the device online or change
the attributes that determine the status of the tape system robotic device.

© Copyright IBM Corp. 1999, 2016 7

Special files

After the driver is installed and a tape device is configured and made available for
use, access is provided through the special files. These special files, which consist
of the standard AIX special files for tape devices (with other files unique to the
Atape driver), are in the /dev directory.

Special files for tape devices

Each tape device has a set of special files that provides access to the same physical
drive but to different types of functions. In addition to the tape special files, a
special file is provided to tape devices that allow access to the medium changer as
a separate device. See Table 1. The asterisk (*) represents a number that is assigned
to a particular device (such as rmt0).

Table 1. Special files for tape devices

Special File
Name

Rewind on
Close1

Retension on
Open2 Bytes per Inch3 Trailer Label Unload on Close

/dev/rmt* Yes No N/A No No

/dev/rmt*.1 No No N/A No No

/dev/rmt*.2 Yes Yes N/A No No

/dev/rmt*.3 No Yes N/A No No

/dev/rmt*.4 Yes No N/A No No

/dev/rmt*.5 No No N/A No No

/dev/rmt*.6 Yes Yes N/A No No

/dev/rmt*.7 No Yes N/A No No

/dev/rmt*.104 No No N/A No No

/dev/rmt*.20 Yes No N/A No Yes

/dev/rmt*.40 Yes No N/A Yes No

/dev/rmt*.41 No No N/A Yes No

/dev/rmt*.60 Yes No N/A Yes Yes

/dev/rmt*.null5 Yes No N/A No No

/dev/rmt*.smc6 N/A N/A N/A N/A N/A

Note:

1. The Rewind on Close special files for the Ultrium tape drives write filemarks
under certain conditions before rewinding. See “Opening the special file for
I/O” on page 10.

2. The Retension on Open special files rewind the tape on open only.
Retensioning is not completed because these tape products run the retension
operation automatically when needed.

3. The Bytes per Inch options are ignored for the tape devices that this driver
supports. The density selection is automatic.

4. The rmt*.10 file bypasses normal close processing, and the tape is left at the
current position.

5. The rmt*.null file is a pseudo device similar to the /dev/null AIX special file.
The IOCTL calls can be issued to this file without a real device that is attached
to it, and the device driver returns a successful completion. Read and write

8 IBM Tape Device Drivers: Programming Reference

system calls return the requested number of bytes. This file can be used for
application development or debugging problems.

6. The rmt*.smc file can be opened independently of the other tape special files.

For tape drives with attached SCSI medium changer devices, the rmt*.smc special
file provides a separate path for issuing commands to the medium changer. When
this special file is opened, the application can view the medium changer as a
separate SCSI device.

This special file and the rmt* special file can be opened at the same time. The file
descriptor that results from opening the rmt*.smc special file does not support the
following operations.
v Read
v Write
v Open in diagnostic mode
v Commands that are designed for a tape device

If a tape drive has an attached SCSI medium changer device, all operations
(including the medium changer operations) are supported through the interface to
the rmt* special file.

Special files for medium changer devices

After the driver is installed and a medium changer device is configured and made
available for use, access to the robotic device is provided through the smc* special
file in the /dev directory.

Table 2 shows the attributes of the special file. The asterisk (*) represents a number
that is assigned to a particular device (such as smc0). The term smc is used for a
SCSI medium changer device. The smc* special file provides a path for issuing
commands to control the medium changer robotic device.

Table 2. Special files

Special file name Description

/dev/smc* Access to the medium changer robotic device

/dev/smc*.null Pseudo medium changer device

Note: The smc*.null file is a pseudo device similar to the /dev/null AIX special
file. The commands can be issued to this file without a real device that is attached
to it, and the device driver returns a successful completion. This file can be used
for application development or debugging problems.

The file descriptor that results from opening the smc special file does not support
the following operations.
v Read
v Write
v Commands that are designed for a tape device

Chapter 2. AIX tape and medium changer device driver 9

Opening the special file for I/O

Several options are available when a file is opened for access. These options, which
are known as O_FLAGS, affect the characteristics of the opened tape device or the
result of the open operation. The Open command is
tapefd=open("/dev/rmt0",O_FLAGS);
smcfd=open("/dev/smc0",O_FLAGS);

The O_FLAGS parameter has the following flags.
v O_RDONLY

This flag allows only operations that do not change the content of the tape. The
flag is ignored if it is used to open the smc special files.

v O_RDWR

This flag allows complete access to the tape. The flag is ignored if it is used to
open the smc special files.

v O_WRONLY

This flag does not allow the tape to be read. All other operations are allowed.
The flag is ignored if it is used to open the smc special files.

v O_NDELAY or O_NONBLOCK
These two flags complete the same function. The driver does not wait until the
device is ready before it opens and allows commands to be sent. If the device is
not ready, subsequent commands (which require that the device is ready or a
physical tape is loaded) fail with ENOTREADY. Other commands, such as
gathering the inquiry data, complete successfully.

v O_APPEND

When the tape drive is opened with this flag, the driver rewinds the tape. Then,
it seeks to the first two consecutive filemarks, and places the initial tape position
between them. This status is the same if the tape was previously opened with a
No Rewind on Close special file. This process can take several minutes for a full
tape. The flag is ignored if it is used to open the smc special files.
This flag must be used with the O_WRONLY flag to append data to the end of the
current data on the tape. The O_RDONLY or O_RDWR flag is illegal in combination
with the O_APPEND flag.

Note: This flag cannot be used with the Retension on Open special files, such
as rmx.2.

If the open system call fails, the errno value contains the error code. See “Return
codes” on page 92 for a description of the errno values.

The extended open operation

An extended open operation is also supported on the device. This operation allows
special types of processing during the opening and subsequent closing of the tape
device. The Extended Open command is
tapefd=openx("/dev/rmt0",O_FLAGS,NULL,E_FLAGS);
smcfd=openx("/dev/smc0",O_FLAGS,NULL,E_FLAGS);

The O_FLAGS parameter provides the same options that are described in “Opening
the special file for I/O.” The third parameter is always NULL. The E_FLAGS
parameter provides the extended options. The E_FLAGS values can be combined
during an open operation or they can be used with an OR operation.

10 IBM Tape Device Drivers: Programming Reference

The E_FLAGS parameter has the following flags.
v SC_RETAIN_RESERVATION

This flag prevents the SCSI Release command from being sent during a close
operation.

v SC_FORCED_OPEN

The flag forces the release of any current reservation on the device by an
initiator. The reservation can either be a SCSI Reserve or SCSI Persistent
Reserve.

v SC_KILL_OPEN

This flag kills all currently open processes and then exits the open with errno
EINPROGRESS returned.

v SC_PR_SHARED_REGISTER

This flag overrides the configuration reservation type attribute whether it was
set to reserve_6 or persistent. It sets the device driver to use Persistent Reserve
while the device is open until closed. The configuration reservation type
attribute is not changed and the next open without using this flag uses the
configuration reservation type. The device driver also registers the host
reservation key on the device. This flag can be used with the other extended
flags.

v SC_DIAGNOSTIC

The device is opened in diagnostic mode, and no SCSI commands are sent to the
device during an open operation or a close operation. All operations (such as
reserve and mode select) must be processed by the application.

v SC_NO_RESERVE

This flag prevents the SCSI Reserve command from being sent during an open
operation.

v SC_PASSTHRU

No SCSI commands are sent to the device during an open operation or a close
operation. All operations (such as reserve the device, release the device, and set
the tape parameters) must be processed explicitly by the application. This flag is
the same as the SC_DIAGNOSTIC flag. The exception is that a SCSI Test Unit
Unit Ready command is issued to the device during an open operation to clear
any unit attentions.

v SC_FEL

This flag turns on the forced error logging in the tape device for read and write
operations.

v SC_NO_ERRORLOG

This flag turns off the AIX error logging for all read, write, or IOCTL operations.
v SC_TMCP

This flag allows up to eight processes to concurrently open a device when the
device is already open by another process. There is no restriction for medium
changer IOCTL commands that can be issued when this flag is used. However,
for tape devices only a limited set of IOCTL commands can be issued. If an
IOCTL command cannot be used with this flag, then errno EINVAL is returned.
If another process already has the device open with this flag, the open fails, and
the errno is set to EAGAIN.

If the open system call fails, the errno value contains the error code. See “Return
codes” on page 92 for a description of the errno values.

Chapter 2. AIX tape and medium changer device driver 11

Writing to the special file

Several subroutines allow writing data to a tape. The basic write command is
count=write(tapefd, buffer, numbytes);

The write operation returns the number of bytes written during the operation. It
can be less than the value in numbytes. If the block size is fixed (block_size≠0), the
numbytes value must be a multiple of the block size. If the block size is variable,
the value that is specified in numbytes is written. If the count is less than zero, the
errno value contains the error code that is returned from the driver.

See “Return codes” on page 92 for a description of the errno values.

The writev, writex, and writevx subroutines are also supported. Any values that
are passed in the ext field with the extended write operation are ignored.

Reading from the special file

Several subroutines allow reading data from a tape. The basic read command is
count=read(tapefd, buffer, numbytes);

The read operation returns the number of bytes read during the operation. It can
be less than the value in numbytes. If the block size is fixed (block_size≠0), the
numbytes value must be a multiple of the block size. If the count is less than zero,
the errno value contains the error code that is returned from the driver.

See “Return codes” on page 92 for a description of the errno values.

If the block size is variable, then the value that is specified in numbytes is read. If
the blocks read are smaller than requested, the block is returned up to the
maximum size of one block. If the blocks read are greater than requested, an error
occurs with the error set to ENOMEM.

Reading a filemark returns a value of zero and positions the tape after the
filemark. Continuous reading (after EOM is reached) results in a value of zero and
no further change in the tape position.

The readv subroutine is also supported.

Reading with the TAPE_SHORT_READ extended parameter

For normal read operations, if the block size is set to variable (0) and the amount
of data in a block on the tape is more than the number of bytes requested in the
call, an ENOMEM error is returned. An application can read fewer bytes without
an error by using the readx or readvx subroutine and specifying the
TAPE_SHORT_READ extended parameter.
count=readx(tapefd, buffer, numbytes, TAPE_SHORT_READ);

The TAPE_SHORT_READ parameter is defined in the /usr/include/sys/tape.h header
file.

12 IBM Tape Device Drivers: Programming Reference

Reading with the TAPE_READ_REVERSE extended parameter

The TAPE_READ_REVERSE extended read parameter reads data from the tape in the
reverse direction. The order of the data that is returned in the buffer for each block
that is read from the tape is the same as if it were read in the forward direction.
However, the last block that is written is the first block in the buffer. This
parameter can be used with both fixed and variable block sizes. The
TAPE_SHORT_READ extended parameter can be used with this parameter, if the block
size is set to variable (0).

Use this parameter with the readx or readvx subroutine that specifies the
TAPE_READ_REVERSE extended parameter.
count=readx(tapefd, buffer, numbytes, TAPE_READ_REVERSE);

The TAPE_READ_REVERSE parameter is defined in the /usr/include/sys/Atape.h
header file.

Closing the special file

Closing a special file is a simple process. The file descriptor that is returned by the
Open command is used to close the command.
rc=close(tapefd);
rc=close(smcfd);

The return code from the close operation must be checked by the application. If
the return code is not zero, the errno value is set during a close operation to
indicate that a problem occurred while the special file was closing. The close
subroutine tries to run as many operations as possible even if there are failures
during portions of the close operation. If the device driver cannot terminate the
file correctly with filemarks, it tries to close the connection. If the close operation
fails, consider the device closed and try another open operation to continue
processing the tape. After a close failure, assume that either the data or the tape is
inconsistent.

For tape drives, the result of a close operation depends on the special file that was
used during the open operation and the tape operation that was run while it was
opened. The SCSI commands are issued according to the following logic.
If the last tape operation was a WRITE command

Write 2 filemarks on tape
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Backward space 1 filemark (tape is positioned to append next file)

If the last tape operation was a WRITE FILEMARK command
Write 1 filemark on tape
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Backward space 1 filemark (tape is positioned to append next file)

If the last tape operation was a READ command
If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
Forward space to next filemark (tape is positioned to read or append next file)

If the last tape operation was NOT a READ, WRITE, or WRITE FILEMARK command

Chapter 2. AIX tape and medium changer device driver 13

If special file is Rewind on Close (Example: /dev/rmt0)
Rewind tape
If special file is a No-Rewind on Close (Example: /dev/rmt0.1)
No commands are issued, tape remains at the current position

Device and volume information logging

The device driver provides a logging facility that saves information about the
device and the media. The information is extensive for some devices and limited
for other devices. If this feature is set to On, either by configuration or the
STIOCSETP IOCTL, the device driver logging facility gathers all available
information through the SCSI Log Sense command.

This process is separate from error logging. Error logging is routed to the system
error log. Device information logging is sent to a separate file.

The following parameters control this utility.
v Logging
v Maximum size of the log file
v Volume ID for logging

See the IBM TotalStorage and System Storage Tape Device Drivers: Installation and
User’s Guide for a description of these parameters.

Each time an Unload command or the STIOC_LOG_SENSE IOCTL command is issued,
the log sense data is collected, and an entry is added to the log. Each time a new
cartridge is loaded, the log sense data in the tape device is reset so that the log
data is gathered on a per-volume basis.

Log file

The data is logged in the /usr/adm/ras directory. The file name is dependent on
each device so each device has a separate log. An example of the rmt1 device file
is
/usr/adm/ras/Atape.rmt1.log

The files are in binary format. Each entry has a header followed by the raw Log
Sense pages as defined for a particular device.

The first log page is always page 0x00. This page, as defined in the SCSI-2 ANSI
specification, contains all the pages that are supported by the device. Page 0x00 is
followed by all the pages that are specified in page 0x00. The format of each
following page is defined in the SCSI specification and the device manual.

The format of the file is defined by the data structure. The logfile_header is
followed by max_log_size (or a fewer number of entries for each file). The
log_record_header is followed by a log entry.

The data structure for log recording is
struct logfile_header

{
char owner[16]; /* module that created the file */
time_t when; /* time when file created */
unsigned long count; /* number of entries in file */
unsigned long first; /* first entry number in wrap queue */

14 IBM Tape Device Drivers: Programming Reference

unsigned long max; /* maximum entries allowed before wrap */
unsigned long size; /* size of entry (bytes), entry size is fixed */
};

struct log_record_header
{
time_t when; /* time when log entry made */
ushort type; /* log entry type */

#define LOGDEMOUNT 1 /* demount log entry */
#define LOGSENSE 2 /* log sense ioctl entry */
#define LOGOVERFLOW 3 /* log overflow entry */

char device_type[8]; /* device type that made entry */
char volid[16]; /* volume ID of entry */
char serial[12]; /* serial number of device */
reserved[12];
};

The format of the log file is

logfile_header

log_record_header

log_record_entry

v

v

v

v

log_record_header

log_record_entry

Each log_record_entry contains multiple log sense pages. The log pages are placed
in order one after another. Each log page contains a header followed by the page
contents.

The data structure for the header of the log page is
struct log_page_header

{
char code; /* page code */
char res; /* reserved */
unsigned short len; /* length of data in page after header */
};

Persistent reservation support and IOCTL operations

ODM attributes and configuring persistent reserve support

Two new ODM attributes are added for PR (Persistent Reservation) support:
v reserve_type
v reserve_key

The reserve type attribute determines the type of reservation that the device driver
uses for the device. The values can be reserve_6, which is the default for the
device driver or persistent. This attribute can be set by either using the AIX SMIT
menu to Change/Show Characteristics of a Tape Drive or from a command line
with the AIX command
chdev –l rmtx –a reserve_type=persistent or –a reserve_type=reserve_6

Chapter 2. AIX tape and medium changer device driver 15

The reserve_key attribute is used to optionally set a user-defined host reservation
key for the device when the reserve_type is set to persistent. The default for this
attribute is blank (NULL). The default uses a device driver unique host reservation
key that is generated for the device. This attribute can be set by either using the
AIX SMIT menu to Change/Show Characteristics of a Tape Drive or from a
command line with the AIX command
chdev –l rmtx –a reserve_key=key

The key value can be specified as a 1-8 character ASCII alphanumeric key or a 1-16
hexadecimal key that has the format 0xkey. If fewer than 8 characters are used for
an ASCII key such as hostA, the remaining characters are set to 0x00 (NULL).

Note: If the Data Path Failover (DPF) feature is enabled for a logical device by
setting the alternate_pathing attribute to yes, the configuration reserve_type
attribute is not used and the device driver uses persistent reservation. Either the
user-defined reserve_key value or if not defined the default device driver host
reservation key is used.

Default device driver host reservation key

If a user-defined host reservation key is not specified, then the device driver uses a
unique static host reservation key for the device. This key is generated when the
first device is configured and the device driver is initially loaded into kernel
memory. The key is 16 hexadecimal digits in the format 0xApppppppssssssss,
where ppppppp is the configuration process id that loaded the device driver. Also,
ssssssss is the 32-bit value of the TOD clock when the device driver was loaded.
When any device is configured and the reserve_key value is NULL, then the
device driver sets the reserve_key value to this default internally for the device.

Preempting and clearing another host reservation

When another host initiator is no longer using the device but has left either an
SCSI-2 Reserve 6 or a Persistent Reserve active preventing by using the device,
either type of reservation can be cleared by using the openx() extended parameter
SC_FORCED_OPEN.

Note: This parameter must be used only when the application or user is sure that
the reservation must be cleared.

Openx() extended parameters

The following openx() extended parameters are provided for managing device
driver reserve during open processing and release during close processing. These
parameters apply to either SCSI-2 Reserve 6 or Persistent Reserve. The
SC_PASSTHRU parameter applies only to the Atape device driver and is defined in
/usr/include/sys/Atape.h. All other parameters are AIX system parameters that are
defined in /usr/include/sys/scsi.h. AIX base tape device drivers might not support
all of these parameters.
v SC_PASSTHRU

v SC_DIAGNOSTIC

v SC_NO_RESERVE

v SC_RETAIN_RESERVATION

v SC_PR_SHARED_REGISTER

16 IBM Tape Device Drivers: Programming Reference

v SC_FORCED_OPEN

The SC_PASSTHRU parameter bypasses all commands that are normally issued on
open and close by the device driver. In addition to bypassing the device driver that
reserves on open and releases the device on close, all other open commands except
test unit ready such as mode selects and rewind on close (if applicable) are also
bypassed. A test unit ready is still issued on open to clear any pending unit
attentions from the device. This is the only difference in using the SC_DIAGNOSTIC
parameter.

The SC_DIAGNOSTIC parameter bypasses all commands that are normally issued on
open and close by the device driver. In addition to bypassing the device driver that
reserves on open and releases the device on close, all other open commands such
test unit ready, mode selects, and rewind on close (if applicable) are also bypassed.

The SC_NO_RESERVE parameter bypasses the device driver that issues a reserve on
open only. All other normal open device driver commands are still issued such as
test unit ready and mode selects.

The SC_RETAIN_RESERVATION parameter bypasses the device driver that issues a
release on close only. All other normal close device driver commands are still
issued such as rewind (if applicable).

The SC_PR_SHARED_REGISTER parameter sets the device driver reserve_type to
persistent and overrides the configuration reserve_type attribute whether it was set
to reserve_6 or persistent. A subsequent reserve on the current open by the device
driver (if applicable) uses Persistent Reserve. The reserve_type is only changed for
the current open. The next open without using this parameter uses the
configuration reserve_type. In addition to setting the reserve_type to persistent,
the device driver registers the host reservation key on the device. This parameter
can also be used with the extended parameters.

The SC_FORCED_OPEN parameter first clears either a SCSI-2 Reserve 6 or a Persistent
Reservation if one currently exists on the device from another host. The device
driver open processing then continues according to the type of open. This
parameter can also be used with the extended parameters.

AIX tape persistent reserve IOCTLs

The Atape device driver supports the AIX common tape Persistent Reserve
IOCTLs for application programs to manage their own Persistent Reserve support.
The IOCTLs are defined in the header file /usr/include/sys/tape.h.

The following two IOCTLs return Persistent Reserve information by using the
SCSI Persistent Reserve In command.
v STPRES_READKEYS

v STPRES_READRES

The following four IOCTLs complete Persistent Reserve functions by using the
SCSI Persistent Reserve Out command.
v STPRES_CLEAR

v STPRES_PREEMPT

v STPRES_PREEMPT_ABORT

v STPRES_REGISTER

Chapter 2. AIX tape and medium changer device driver 17

Except for the STPRES_REGISTER IOCTL, the other three IOCTLs require that the
host reservation key is registered on the device first. This action can be done by
either issuing the STPRES_REGISTER IOCTL before the IOCTLs are issued or by
opening the device with the SC_PR_SHARED_REGISTER parameter.

The STPRES_READKEYS IOCTL issues the persistent reserve in command with the
read keys service action. The following structure is the argument for this IOCTL.

struct st_pres_in {
ushort version;
ushort allocation_length;
uint generation;
ushort returned_length;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;
uchar *reservation_info;

}

The allocation_length is the maximum number of bytes of key values that are
returned in the reservation_info buffer. The returned_length value indicates how
many bytes of key values that device reported in the parameter data. Also, it
shows the list of key values that are returned by the device up to
allocation_length bytes. If the returned_length is greater than the
allocation_length, then the application did not provide an allocation_length
large enough for all of the keys the device registered. The device driver does not
consider it an error.

The SYPRES_READRES IOCTL issues the persistent reserve in command with the
read reservations service action. The STPRES_READRES IOCTL uses the same
following IOCTL structure as the STPRES_READKEYS IOCTL.

struct st_pres_in {
ushort version;
ushort allocation_length;
uint generation;
ushort returned_length;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;
uchar *reservation_info;

}

The allocation length is the maximum number of bytes of reservation descriptors
that are returned in the reservation info buffer. The returned_length value
indicates how many bytes of reservation descriptor values that device reported in
the parameter data. Also, it shows the list of reservation descriptor values that are
returned by the device up to allocation_length bytes. If the returned_length is
greater than the allocation_length, then the application did not provide an
allocation_length large enough for all of the reservation descriptors the device
registered. The device driver does not consider it an error.

The STPRES_CLEAR IOCTL issues the persistent reserve out command with the
clear service action. The following structure is the argument for this IOCTL.

struct st_pres_clear {
ushort version;
uchar scsi_status;

18 IBM Tape Device Drivers: Programming Reference

uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_CLEAR IOCTL clears a persistent reservation and all persistent
reservation registrations on the device.

The STPRES_PREEMPT IOCTL issues the persistent reserve out command with the
preempt service action. The following structure is the argument for this IOCTL.

struct st_pres_preempt {
ushort version;
unsigned long long preempt_key;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_PREEMPT IOCTL preempts a persistent reservation or registration. The
preempt_key contains the value of the registration key of the initiator that is to be
preempted. The determination of whether it is the persistent reservation or
registration that is preempted is made by the device. If the initiator corresponding
to the preempt_key is associated with the reservation that is preempted, then the
reservation is preempted and any matching registrations are removed. If the
initiator corresponding to the preempt_key is not associated with the reservation
that is preempted, then any matching registrations are removed. The SPC2
standard states that if a valid request for a preempt service action fails, it can be
because of the condition in which another initiator has left the device. The
suggested recourse in this case is for the preempting initiator to issue a logical unit
reset and retry the preempting service action.

The STPRES_PREEMPT_ABORT IOCTL issues the persistent reserve out command
with the preempt and abort service action. The STPRES_PREEMPT_ABORT IOCTL uses
the same argument structure as the STPRES_PREEMPT IOCTL.

struct st_pres_preempt {
ushort version;
unsigned long long preempt_key;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_PREEMPT_ABORT IOCTL preempts a persistent reservation or registration
and abort all outstanding commands from the initiators corresponding to the
preempt_key registration key value. The preempt_key contains the value of the
registration key of the initiator for which the preempt and abort is to apply. The
determination of whether it is the persistent reservation or registration that is to be
preempted is made by the device. If the initiator corresponding to the preempt_key
is associated with the reservation that is preempted, then the reservation is
preempted and any matching registrations are removed. If the initiator
corresponding to the preempt_key is not associated with the reservation that is
preempted, then any matching registrations are removed. Regardless of whether
the preempted initiator holds the reservation, all outstanding commands from all
initiators corresponding to the preempt_key are aborted.

The STPRES_REGISTER IOCTL issues the persistent reserve out command with the
register service action. The following structure is the argument for this IOCTL.

Chapter 2. AIX tape and medium changer device driver 19

struct st_pres_register {
ushort version;
uchar scsi_status;
uchar sense_key;
uchar scsi_asc;
uchar scsi_ascq;

}

The STPRES_REGISTER IOCTL registers the current host persistent reserve
registration key value with the device. The STPRES_REGISTER IOCTL is only
supported if the device is opened with a reserve_type set to persistent, otherwise
an error of EACCESS is returned. The intended use of this IOCTL is to allow a
preempted host to regain access to a shared device without requiring that the
device is closed and reopened.

If a persistent reserve IOCTL fails, the return code is set to -1 and the errno value
is set to one of the following.
v ENOMEM Device driver cannot obtain memory to run the command.
v EFAULT An error occurred while the caller's data buffer was manipulated
v EACCES The device is opened with a reserve_type set to reserve_6

v EINVAL The requested IOCTL is not supported by this version of the device
driver or invalid parameter that is provided in the argument structure

v ENXIO The device indicated that the persistent reserve command is not
supported

v EBUSY The device returned a SCSI status byte of RESERVATION CONFLICT
or BUSY. Or, the reservation for the device was preempted by another host and
the device driver does not issue further commands.

v EIO Unknown I/O failure occurred on the command

Atape persistent reserve IOCTLs

The Atape device driver provides Persistent Reserve IOCTLs for application
programs to manage their own Persistent Reserve support. These IOCTLs are
defined in the header file /usr/include/sys/Atape_pr.h.

The following IOCTLs return Persistent Reserve information by using the SCSI
Persistent Reserve In command.
v STIOC_READ_RESERVEKEYS

v STIOC_READ_RESERVATIONS

v STIOC_READ_RESERVE_FULL_STATUS

The following IOCTLs complete Persistent Reserve functions by using the SCSI
Persistent Reserve Out command.
v STIOC_REGISTER_KEY

v STIOC_REMOVE_REGISTRATION

v STIOC_CLEAR_ALL_REGISTRATIONS

v STIOC_PREEMPT_RESERVATION

v STIOC_PREEMPT_ABORT

v STIOC_CREATE_PERSISTENT_RESERVE

The following IOCTLs are modified to handle both SCSI-2 Reserve 6 and
Persistent Reserve based on the current reserve_type setting.

20 IBM Tape Device Drivers: Programming Reference

v SIOC_RESERVE

v SIOC_RELEASE

The STIOC_READ_RESERVEKEYS IOCTL returns the reservation keys from the device.
The argument for this IOCTL is the address of a read_keys structure. If the
reserve_key_list pointer is NULL, then only the generation and length fields are
returned. This action allows an application to first obtain the length of the
reserve_key_list and malloc a return buffer before the IOCTL is issued with a
reserve_key_list pointer to that buffer. If the return length is 0, then no reservation
keys are registered with the device.

The following structure is used for this IOCTL.
struct read_keys
{

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes in the Reservation Key list */
ullong *reserve_key_list; /* list of reservation keys */

};

The STIOC_READ_RESERVATIONS IOCTL returns the current reservations from the
device if any exist. The argument for this IOCTL is the address of a read_reserves
structure. If the reserve_list pointer is NULL, then only the generation and length
fields are returned. This action allows an application to first obtain the length of
the reserve_list and malloc a return buffer before the IOCTL is issued with a
reserve_list pointer to that buffer. If the return length is 0, then no reservations
currently exist on the device.

The following structures are used for this IOCTL.
struct reserve_descriptor
{

ullong key; /* reservation key */
uint scope_spec_addr; /* scope-specific address */
uchar reserved;
uint scope:4, /* persistent reservation scope */

type:4; /* reservation type */
ushort ext_length; /* extent length */

};

struct read_reserves
{

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes in the Reservation list */
struct reserve_descriptor* reserve_list; /* list of reservation key descriptors */

};

The STIOC_READ_RESERVE_FULL_STATUS IOCTL returns extended information for all
reservation keys and reservations from the device if any exist. The argument for
this IOCTL is the address of a read_full_status structure. If the status_list pointer
is NULL, then only the generation and length fields are returned. This action
allows an application to first obtain the length of the status_list and malloc a
return buffer before the IOCTL is issued with a status_list pointer to that buffer. If
the return length is 0, then no reservation keys or reservations currently exist on
the device.

The following structures are used for this IOCTL.
struct transport_id
{

uint format_code:2,
rsvd:2,

Chapter 2. AIX tape and medium changer device driver 21

protocol_id:4;
};

struct fcp_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[7];
ullong n_port_name;
char reserved2[8];

};

struct scsi_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[1];
ushort scsi_address;
ushort obsolete;
ushort target_port_id;
char reserved2[16];

};

struct sas_transport_id
{

uint format_code:2,
rsvd:2,
protocol_id:4;

char reserved1[3];
ullong sas_address;
char reserved2[12];

};

struct status_descriptor
{

ullong key; /* reservation key */
char reserved1[4];
uint rsvd:5,

spc2_r:1, /* future use for SCSI-2 reserve */
all_tg_pt:1, /* all target ports */
r_holder:1; /* reservation holder */

uint scope:4, /* persistent reservation scope */
type:4; /* reservation type */

char reserved2[4];
ushort target_port_id; /* relative target port id */
uint descriptor_length; /* additional descriptor length */
union {

struct transport_id transport_id; /* transport ID */
struct fcp_transport_id fcp_id; /* FCP transport ID */
struct sas_transport_id sas_id; /* SAS transport ID */
struct scsi_transport_id scsi_id; /* SCSI transport ID */
};

};

struct read_full_status
{

uint generation; /* counter for PERSISTENT RESERVE OUT requests */
uint length; /* number of bytes for total status descriptors */
struct status_descriptor *status_list; /* list of reserve status descriptors */

};

The STIOC_REGISTER_KEY IOCTL registers a host reservation key on the device. The
argument for this IOCTL is the address of an unsigned long key that can be 1 - 16

22 IBM Tape Device Drivers: Programming Reference

hexadecimal digits. If the key value is 0, then the device driver registers the
configuration reserve key on the device. This key is either a user-specified host key
or the device driver default host key.

If the host has a current persistent reservation on the device and the key is
different from the current reservation key, the reservation is retained and the host
reservation key is changed to the new key.

The STIOC_REMOVE_REGISTRATION IOCTL removes the host reservation key and
reservation if one exists from the device. There is no argument for this IOCTL. The
SIOC_RELEASE IOCTL can also be used to complete the same function.

The STIOC_CLEAR_ALL_REGISTRATIONS IOCTL clears all reservation keys and
reservations on the device (if any exist) for the same host and any other host.
There is no argument for this IOCTL.

The STIOC_PREEMPT_RESERVATION IOCTL registers a host reservation key on the
device and then preempts the reservation that is held by another host if one exists.
Or, it creates a new persistent reservation by using the host reservation key. The
argument for this IOCTL is the address of an unsigned long key that can be 1 - 16
hexadecimal digits. If the key value is 0, then the device driver registers the
configuration reserve key on the device. This key is either a user-specified host key
or the device driver default host key.

The STIOC_PREEMPT_ABORT IOCTL registers a host reservation key on the device,
preempts the reservation that is held by another host, and clears the task that is set
for the preempted initiator if one exists. Or, it creates a new persistent reservation
by using the host reservation key. The argument for this IOCTL is the address of
an unsigned long key that can be 1 - 16 hexadecimal digits. If the key value is 0,
then the device driver registers the configuration reserve key on the device. This
key is either a user-specified host key or the device driver default host key.

The STIOC_CREATE_PERSISTENT_RESERVE IOCTL creates a persistent reservation on
the device by using the host reservation key that was registered with the
STIOC_REGISTER_KEY IOCTL. There is no argument for this IOCTL. The
SIOC_RESERVE IOCTL can also be used to complete the same function.

The SIOC_RESERVE IOCTL reserves the device. If the reserve_type is set to
reserve_6, the device driver issues a SCSI Reserve 6 command. If the reserve_type
is set to persistent, the device driver first registers the current host reservation key
and then creates a persistent reservation. The current host reservation key can be
either the configuration key for the device or a key that was registered previously
with the STIOC_REGISTER_KEY IOCTL.

The SIOC_RELEASE IOCTL releases the device. If the reserve_type is set to
reserve_6, the device driver issues a SCSI Release 6 command. If the reserve_type
is set to persistent, the device driver removes the host reservation key and
reservation if one exists from the device.

If a persistent reserve IOCTL fails, the return code is set to -1 and the errno value
is set to one of the following.
v ENOMEM Device driver cannot obtain memory to complete the command.
v EFAULT An error occurred while the caller's data buffer was manipulated
v EACCES The current open is using a reserve_type set to reserve_6

Chapter 2. AIX tape and medium changer device driver 23

v EINVAL Device does not support either the SCSI Persistent Reserve In/Out
command, the service action for the command, or the sequence of the command
such as issuing the STIOC_REMOVE_REGISTRATION IOCTL when no reservation key
was registered for the host.

v EBUSY Device failed the command with reservation conflict. Either a SCSI-2
Reserve 6 reservation is active, the sequence of the command such as issuing the
STIOC_CREATE_PERSISTENT_RESERVE IOCTL when no reservation key was
registered for the host, or the reservation for the device was preempted by
another host and the device driver does not issue further commands.

v EIO Unknown I/O failure occurred on the command.

General IOCTL operations

This chapter describes the IOCTL commands that provide control and access to the
tape and medium changer devices. These commands are available for all tape and
medium changer devices. They can be issued to any rmt*, rmt*.smc, or smc*
special file.

Overview

The following IOCTL commands are supported.

IOCINFO
Return device information.

STIOCMD
Issue the AIX Pass-through command.

STPASSTHRU
Issue the AIX Pass-through command.

SIOC_PASSTHRU_COMMAND
Issue the Atape Pass-through command.

SIOC_INQUIRY
Return inquiry data.

SIOC_REQSENSE
Return sense data.

SIOC_RESERVE
Reserve the device.

SIOC_RELEASE
Release the device.

SIOC_TEST_UNIT_READY
Issue a SCSI Test Unit Ready command.

SIOC_LOG_SENSE_PAGE
Return log sense data for a specific page.

SIOC_LOG_SENSE10_PAGE
Return log sense data for a specific page and Subpage.

SIOC_MODE_SENSE_PAGE
Return mode sense data for a specific page.

SIOC_MODE_SENSE_SUBPAGE
Return mode sense data for a specific page and subpage.

24 IBM Tape Device Drivers: Programming Reference

SIOC_MODE_SENSE
Return whole mode sense data include header, block descriptor, and page
for a specific page.

SIOC_MODE_SELECT_PAGE
Set mode sense data for a specific page.

SIOC_MODE_SELECT_SUBPAGE
Set mode sense data for a specific page and subpage.

SIOC_INQUIRY_PAGE
Return inquiry data for a specific page.

SIOC_DISABLE_PATH
Manually disable (fence) a SCSI path for a device.

SIOC_ENABLE_PATH
Enable a manually disabled (fenced) SCSI path for a device.

SIOC_SET_PATH
Explicitly set the current path that is used by the device driver.

SIOC_QUERY_PATH
Query device and path information for the primary and first alternate SCSI
path for a device. This IOCTL is obsolete but still supported. The
SIOC_DEVICE_PATHS IOCTL can be used instead of this IOCTL.

SIOC_DEVICE_PATHS
Query device and path information for the primary and all alternate SCSI
paths for the device.

SIOC_RESET_PATH
Issue an Inquiry command on each SCSI path that is not manually
disabled (fenced) and enable the path if the Inquiry command succeeds.

SIOC_CHECK_PATH
Completes the same function as the SIOC_RESET_PATH IOCTL.

SIOC_QUERY_OPEN
Returns the process ID that currently has the device opened.

SIOC_RESET_DEVICE
Issues a SCSI target reset or SCSI lun reset (for FCP or SAS attached) to the
device.

SIOC_DRIVER_INFO
Query the device driver information.

These IOCTL commands and their associated structures are defined by including
the /usr/include/sys/Atape.h header file in the C program by using the functions.

IOCINFO

This IOCTL command provides access to information about the tape or medium
changer device. It is a standard AIX IOCTL function.

An example of the IOCINFO command is
#include <sys/devinfo.h>
#include <sys/Atape.h>
struct devinfo info;

if (!ioctl (fd, IOCINFO, &info))
{

printf ("The IOCINFO ioctl succeeded\n");

Chapter 2. AIX tape and medium changer device driver 25

}
else
{

perror ("The IOCINFO ioctl failed");
}

An example of the output data structure for a tape drive rmt* special file is
info.devtype=DD_SCTAPE
info.devsubtype=ATAPE_3590
info.un.scmt.type=DT_STREAM
info.un.scmt.blksize=tape block size (0=variable)

An example of the output data structure for an integrated medium changer
rmt*.smc special file is
info.devtype=DD_MEDIUM_CHANGER;
info.devsubtype=ATAPE_3590;

An example of the output data structure for an independent medium changer smc*
special file is
info.devtype=DD_MEDIUM_CHANGER;
info.devsubtype=ATAPE_7337;

See the Atape.h header file for the defined devsubstype values.

STIOCMD

This IOCTL command issues the SCSI Pass-through command. It is used by the
diagnostic and service aid routines. The structure for this command is in the
/usr/include/sys/scsi.h file.

This IOCTL is supported on both SCSI adapter attached devices and FCP adapter
attached devices. For FCP adapter devices, the returned adapter_status field is
converted from the FCP codes that are defined in /usr/include/sys/scsi_buf.h to the
SCSI codes defined in /usr/include/sys/scsi.h, if possible. This action is to provide
downward compatibility with existing applications that use the STIOCMD IOCTL for
SCSI attached devices.

Note: There is no interaction by the device driver with this command. The error
handling and logging functions are disabled. If the command results in a check
condition, the application must issue a Request Sense command to clear any
contingent allegiance with the device.

An example of the STIOCMD command is
struct sc_iocmd sciocmd;
struct inquiry_data inqdata;

bzero(&sciocmd, sizeof(struct sc_iocmd));
bzero(&inqdata, sizeof(struct inquiry_data));

/* issue inquiry */
sciocmd.scsi_cdb[0]=0x12;
sciocmd.timeout_value=200; /* SECONDS */
sciocmd.command_length=6;
sciocmd.buffer=(char *)&inqdata;
sciocmd.data_length=sizeof(struct inquiry_data);
sciocmd.scsi_cdb[4]=sizeof(struct inquiry_data);
sciocmd.flags=B_READ;

if (!ioctl (sffd, STIOCMD, &sciocmd))
{

26 IBM Tape Device Drivers: Programming Reference

printf ("The STIOCMD ioctl for Inquiry Data succeeded\n");
printf ("\nThe inquiry data is:\n");
dump_bytes (&inqdata, sizeof(struct inquiry_data),"Inquiry Data");

}
else
{

perror ("The STIOCMD ioctl for Inquiry Data failed");
}

STPASSTHRU

This IOCTL command issues the AIX Pass-through command that is supported by
base AIX tape device drivers. The IOCTL command and structure are defined in
the header files /usr/include/sys/scsi.h and /usr/include/sys/tape.h. Refer to AIX
documentation for information about using the command.

SIOC_PASSTHRU_COMMAND

This IOCTL command issues the Atape device driver Pass-through command. The
data structure that is used on this IOCTL is
struct scsi_passthru_cmd {

uchar command_length; /* Length of SCSI command 6, 10, 12 or 16 */
uchar scsi_cdb[16]; /* SCSI command descriptor block */
uint timeout_value; /* Timeout in seconds or 0 for command default */
uint buffer_length; /* Length of data buffer or 0 */
char *buffer; /* Pointer to data buffer or NULL */
uint number_bytes; /* Number of bytes transfered to/from buffer */
uchar sense_length; /* Number of valid sense bytes */
uchar sense[MAXSENSE]; /* Sense data when sense length > 0 */
uint trace_length; /* Number bytes in buffer to trace, 0 for none */
char read_data_command; /* Input flag, set it to 1 for read type cmds */
char reserved[27];

};

The arg parameter for the IOCTL is the address of a scsi_passthru_cmd structure.

The device driver issues the SCSI command by using the command_length and
scsi_cdb fields. If the command receives data from the device (such as SCSI
Inquiry), then the application must also set the buffer_length and buffer pointer
for the return data along with the read_data_command set to 1. For commands
that send data to the device (such as SCSI Mode Select), the buffer_length and
pointer is set for the send data and the read_data_command set to 0. If the
command has no data transfer, the buffer length is set to 0 and buffer pointer that
is set to NULL.

The specified timeout_value field is used if not 0. If 0, then the device driver
assigns its internal timeout value that is based on the SCSI command.

The trace_length field is normally used only for debug. It specifies the number of
bytes on a data transfer type command that is traced when the AIX Atape device
driver trace is running.

If the SCSI command fails, then the IOCTL returns -1 and errno value is set for the
failing command. If the device returned sense data for the failure, then the
sense_length is set to the number of sense bytes returned in the sense field. If
there was no sense data for the failure, the sense_length is 0.

If the SCSI command transfers data either to or from the device, then the
number_bytes fields indicate how many bytes were transferred.

Chapter 2. AIX tape and medium changer device driver 27

SIOC_INQUIRY

This IOCTL command collects the inquiry data from the device.

The data structure is
struct inquiry_data

{
uint qual:3, /* peripheral qualifier */

type:5; /* device type */
uint rm:1, /* removable medium */

mod:7; /* device type modifier */
uint iso:2, /* ISO version */

ecma:3, /* ECMA version */
ansi:3; /* ANSI version */

uint aenc:1, /* asynchronous event notification */
trmiop:1, /* terminate I/O process message */
:2, /* reserved */
rdf:4; /* response data format */

uchar len; /* additional length */
uchar resvd1; /* reserved */
uint :4, /* reserved */

mchngr:1, /* Medium Changer mode (SCSI-3 only) */
:3; /* reserved */

uint reladr:1, /* relative addressing */
wbus32:1, /* 32-bit wide data transfers */
wbus16:1, /* 16-bit wide data transfers */
sync:1, /* synchronous data transfers */
linked:1, /* linked commands */
:1, /* reserved */
cmdque:1, /* command queueing */
sftre:1; /* soft reset */

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar revision[4]; /* product revision level */
uchar vendor1[20]; /* vendor specific */
uchar resvd2[40]; /* reserved */
uchar vendor2[31]; /* vendor specific (padded to 127) */

};

An example of the SIOC_INQUIRY command is
#include <sys/Atape.h>

struct inquiry_data inquiry_data;

if (!ioctl (fd, SIOC_INQUIRY, &inquiry_data))
{

printf ("The SIOC_INQUIRY ioctl succeeded\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((uchar *)&inquiry_data, sizeof (struct inquiry_data));

}
else
{

perror ("The SIOC_INQUIRY ioctl failed");
sioc_request_sense();

}

SIOC_REQSENSE

This IOCTL command returns the device sense data. If the last command resulted
in an input/output error (EIO), the sense data is returned for the error. Otherwise,
a new sense command is issued to the device.

The data structure is

28 IBM Tape Device Drivers: Programming Reference

struct request_sense
{

uint valid:1, /* sense data is valid */
err_code:7; /* error code */

uchar segnum; /* segment number */
uint fm:1, /* filemark detected */

eom:1, /* end of medium */
ili:1, /* incorrect length indicator */
resvd1:1, /* reserved */
key:4; /* sense key */

signed int info; /* information bytes */
uchar addlen; /* additional sense length */
uint cmdinfo; /* command specific information */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field replaceable unit code */
uint sksv:1, /* sense key specific valid */

cd:1, /* control/data */
resvd2:2, /* reserved */
bpv:1, /* bit pointer valid */
sim:3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[109]; /* vendor specific (padded to 127) */

};

An example of the SIOC_REQSENSE command is
#include <sys/Atape.h>

struct request_sense sense_data;

if (!ioctl (smcfd, SIOC_REQSENSE, &sense_data))
{

printf ("The SIOC_REQSENSE ioctl succeeded\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((uchar *)&sense_data, sizeof (struct request_sense));

}
else
{

perror ("The SIOC_REQSENSE ioctl failed");
}

SIOC_RESERVE

This IOCTL command reserves the device to the device driver. The specific SCSI
command that is issued to the device depends on the current reservation type that
is used by the device driver, either a SCSI Reserve or Persistent Reserve.

There are no arguments for this IOCTL command.

An example of the SIOC_RESERVE command is
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_RESERVE, NULL))
{

printf ("The SIOC_RESERVE ioctl succeeded\n");
}
else
{

perror ("The SIOC_RESERVE ioctl failed");
sioc_request_sense();

}

Chapter 2. AIX tape and medium changer device driver 29

SIOC_RELEASE

This IOCTL command releases the current device driver reservation on the device.
The specific SCSI command that is issued to the device depends on the current
reservation type that is used by the device driver, either a SCSI Reserve or
Persistent Reserve.

There are no arguments for this IOCTL command.

An example of the SIOC_RELEASE command is
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_RELEASE, NULL))
{

printf ("The SIOC_RELEASE ioctl succeeded\n");
}
else
{

perror ("The SIOC_RELEASE ioctl failed");
sioc_request_sense();

}

SIOC_TEST_UNIT_READY

This IOCTL command issues the SCSI Test Unit Ready command to the device.

There are no arguments for this IOCTL command.

An example of the SIOC_TEST_UNIT_READY command is
#include <sys/Atape.h>

if (!ioctl (fd, SIOC_TEST_UNIT_READY, NULL))
{

printf ("The SIOC_TEST_UNIT_READY ioctl succeeded\n");
}
else
{

perror ("The SIOC_TEST_UNIT_READY ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE_PAGE

This IOCTL command returns a log sense page from the device. The page is
selected by specifying the page_code in the log_sense_page structure. Optionally, a
specific parm pointer, also known as a parm code, and the number of parameter
bytes can be specified with the command.

To obtain the entire log page, the len and parm_pointer fields are set to zero. To
obtain the entire log page that starts at a specific parameter code, set the
parm_pointer field to the wanted code and the len field to zero. To obtain a
specific number of parameter bytes, set the parm_pointer field to the wanted code.
Then, set the len field to the number of parameter bytes plus the size of the log
page header (4 bytes). The first 4 bytes of returned data are always the log page
header.

See the appropriate device manual to determine the supported log pages and
content.

30 IBM Tape Device Drivers: Programming Reference

The data structure is
struct log_sense_page

{
char page_code;
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

An example of the SIOC_LOG_SENSE_PAGE command is
#include <sys/Atape.h>

struct log_sense_page log_page;
int temp;

/* get log page 0, list of log pages */
log_page.page_code = 0x00;
log_page.len = 0;
log_page.parm_pointer = 0;

if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page))
{

printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
dump_bytes(log_page.data, LOGSENSEPAGE);

}
else
{

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

/* get 3590 fraction of volume traversed */
log_page.page_code = 0x38;
log_page.len = 0;
log_page.parm_pointer = 0x000F;

if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page))
{

temp = log_page.data[(sizeof(log_page_header) + 4)];
printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
printf ("Fractional Part of Volume Traversed %x\n",temp);

}
else
{

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE10_PAGE

This IOCTL command is enhanced to add a subpage variable from
SIOC_LOG_SENSE_PAGE. It returns a log sense page or subpage from the device. The
page is selected by specifying the page_code or subpage_code in the
log_sense10_page structure. Optionally, a specific parm pointer, also known as a
parm code, and the number of parameter bytes can be specified with the
command.

To obtain the entire log page, the len and parm_pointer fields are set to zero. To
obtain the entire log page that starts at a specific parameter code, set the
parm_pointer field to the wanted code and the len field to zero. To obtain a
specific number of parameter bytes, set the parm_pointer field to the wanted code.
Then, set the len field to the number of parameter bytes plus the size of the log

Chapter 2. AIX tape and medium changer device driver 31

page header (4 bytes). The first 4 bytes of returned data are always the log page
header. See the appropriate device manual to determine the supported log pages
and content.

The data structure is
/* log sense page and subpage structure */
struct log_sense10_page
{

uchar page_code; /* [IN] log sense page code */
uchar subpage_code; /* [IN] log sense Subpage code */
uchar reserved[2];
unsigned short len; /* [IN] specific allocation length for the data */

/* [OUT] number of valid bytes in
data(log_page_header_size+page_length) */

unsigned short parm_pointer;
/* [IN] specific parameter number at which

the data begins */
char data[LOGSENSEPAGE]; /* [OUT] log sense page and Subpage data */

};

An example of the SIOC_LOG_SENSE10_PAGE command is
#include <sys/Atape.h>

struct log_sense10_page logdata10;
struct log_page_header *page_header;
char text[80];

logdata10.page_code = page;
logdata10.subpage_code = subpage;
logdata10.len = len;
logdata10.parm_pointer = parm;
page_header = (struct log_page_header *)logdata10.data;

printf("Issuing log sense for page 0x%02X and subpage 0x%02X...\n",page,subpage);

if (!ioctl (fd, SIOC_LOG_SENSE10_PAGE, &logdata10))
{
sprintf(text,"Log Sense Page 0x%02X, Subpage 0x%02X, Page Length %d
Data",page,subpage,logdata10.len);
dump_bytes(logdata10.data,logdata10.len,text);
}
else
{
perror ("The SIOC_LOG_SENSE10_PAGE ioctl failed");
sioc_request_sense();
}

SIOC_MODE_SENSE_PAGE

This IOCTL command returns a mode sense page from the device. The page is
selected by specifying the page_code in the mode_sense_page structure.

See the appropriate device manual to determine the supported mode pages and
content.

The data structure is
struct mode_sense_page

{
char page_code;
char data[MODESENSEPAGE];

};

An example of the SIOC_MODE_SENSE_PAGE command is

32 IBM Tape Device Drivers: Programming Reference

#include <sys/Atape.h>

struct mode_sense_page mode_page;

/* get Medium Changer mode */
mode_page.page_code = 0x20;
if (!ioctl (fd, SIOC_MODE_SENSE_PAGE, &mode_page))
{

printf ("The SIOC_MODE_SENSE_PAGE ioctl succeeded\n");
if (mode_page.data[2] == 0x02)

printf ("The library is in Random mode.\n");
else

if (mode_page.data[2] == 0x05)
printf ("The library is in Automatic (Sequential) mode.\n");

}
else
{

perror ("The SIOC_MODE_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_MODE_SENSE_SUBPAGE

This IOCTL command returns the whole mode sense data, including header, block
descriptor, and page code for a specific page or subpage from the device. The
wanted page or subpage is inputted by specifying the page_code and
subpage_code in the mode_sense structure.

The data structure is
struct mode_sense
{
uchar page_code; /* [IN] mode sense page code */
uchar subpage_code; /* [IN] mode sense subpage code */
uchar reserved[6];
uchar cmd_code; /* [OUT] SCSI Command Code: this field is set with */

/* SCSI command code which the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

char data[MODESENSEPAGE]; /* [OUT] whole mode sense data include header,
block descriptor and page */
};

An example of the SIOC_MODE_SENSE command is
#include <sys/Atape.h>

struct mode_sense modedata;
char text[80];
bzero(&modedata, sizeof(struct mode_sense));
modedata.page_code = page;
modedata.subpage_code = subpage;

printf("Issuing mode sense subpage for page 0x%02X subpage 0x%02X...\n",
page,subpage);

if (!ioctl (fd, SIOC_MODE_SENSE, &modedata))
{
sprintf(text,"Mode Sense 0x%02X Subpage 0x%02X cmd_code 0x%02X",

modedata.page_code,modedata.subpage_code,modedata.cmd_code);
dump_bytes((char *)&modedata, sizeof(struct mode_sense), text);
}
else

Chapter 2. AIX tape and medium changer device driver 33

{
perror ("The SIOC_MODE_SENSE ioctl failed");
sioc_request_sense();
}

SIOC_MODE_SELECT_PAGE

This IOCTL command sets device parameters in a specific mode page. The wanted
page is selected by specifying the page_code in the mode_sense_page structure.
See the appropriate device manual to determine the supported mode pages and
parameters that can be modified. The arg parameter for the IOCTL is the address
of a mode_sense_page structure.

The data structure is
struct mode_sense_page

{
uchar page_code; /* mode sense page code */
char data[MODESENSEPAGE];
};

This data structure is also used for the SIOC_MODE_SENSE_PAGE IOCTL. The
application must issue the SIOC_MODE_SENSE_PAGE IOCTL, and modify the wanted
bytes in the returned mode_sense_page structure data field. Then, it issues this
IOCTL with the modified fields in the structure.

SIOC_MODE_SELECT_SUBPAGE

This IOCTL command sets device parameters in a specific mode page and
subpage. The wanted page and subpage are selected by specifying the page_code
and subpage_page in the mode_sense_subpage structure. See the appropriate
device manual to determine the supported mode pages, subpages, and parameters
that can be modified. The arg parameter for the IOCTL is the address of a
mode_sense_subpage structure.

The data structure is
struct mode_sense_subpage
{
uchar page_code; /* mode sense page code */
uchar subpage_code; /* mode sense subpage code */
uint reserved:7,

sp_bit:1; /* mode select save page bit */
char data[MODESENSEPAGE];
};

This data structure is also used for the SIOC_MODE_SENSE_SUBPAGE IOCTL. The
application must issue the SIOC_MODE_SENSE_SUBPAGE IOCTL, and modify the
wanted bytes in the returned mode_sense_subpage structure data field. Then, it
issues this IOCTL with the modified fields in the structure. If the device supports
setting the sp bit for the mode page to 1, then the sp_bit field can be set to 0 or 1.
If the device does not support the sp bit, then the sp_bit field must be set to 0.

SIOC_QUERY_OPEN

This IOCTL command returns the ID of the process that currently has a device
open. There is no associated data structure. The arg parameter specifies the
address of an int for the return process ID.

If the application opened the device by using the extended open parameter
SC_TMCP, the process ID is returned for any other process that has the device

34 IBM Tape Device Drivers: Programming Reference

open currently. Or, zero is returned if the device is not currently open. If the
application opened the device without the extended open parameter SC_TMCP,
the process ID of the current application is returned.

An example of the SIOC_QUERY_OPEN command is
#include <sys/Atape.h>

int sioc_query_open (void)
{
int pid = 0;

if (ioctl(fd, SIOC_QUERY_OPEN, &pid) == 0)
{
if (pid)
printf("Device is currently open by process id %d\n",pid)

else
printf("Device is not open\n");
}

else
printf("Error querying device open...\n");

return errno;
}

SIOC_INQUIRY_PAGE

This IOCTL command returns an inquiry page from the device. The page is
selected by specifying the page_code in the inquiry_page structure.

See the appropriate device manual to determine the supported inquiry pages and
content.

The data structure is
struct inquiry_page

{
char page_code;
char data[INQUIRYPAGE];
};

An example of the SIOC_INQUIRY_PAGE command is
#include <sys/Atape.h>

struct inquiry_page inq_page;

/* get inquiry page x83 */
inq_page.page_code = 0x83;
if (!ioctl (fd, SIOC_INQUIRY_PAGE, &inq_page))

{
printf ("The SIOC_INQUIRY_PAGE ioctl succeeded\n");
}
else
{
perror ("The SIOC_INQUIRY_PAGE ioctl failed");
sioc_request_sense();
}

SIOC_DISABLE_PATH

This IOCTL command manually disables (fences) the device driver from using
either the primary or an alternate SCSI path to a device until the SIOC_ENABLE_PATH
command is issued for the same path that is manually disabled. The arg parameter
on the IOCTL command specifies the path to be disabled. The primary path is path

Chapter 2. AIX tape and medium changer device driver 35

1, the first alternate path 2, the second alternate path 3, and so on. This command
can be used concurrently when the device is already open by another process by
using the openx() extended parameter SC_TMCP.

This IOCTL command is valid only if the device has one or more alternate paths
configured. Otherwise, the IOCTL command fails with errno set to EINVAL. The
SIOC_DEVICE_PATHS IOCTL command can be used to determine the paths that are
enabled or manually disabled.

An example of the SIOC_DISABLE_PATH command is
#include <sys/Atape.h>

/* Disable primary SCSI path */
ioctl(fd, SIOC_DISABLE_PATH, PRIMARY_SCSI_PATH);

/* Disable alternate SCSI path */
ioctl(fd, SIOC_DISABLE_PATH, ALTERNATE_SCSI_PATH);

SIOC_ENABLE_PATH

This IOCTL command enables a manually disabled (fenced) path to a device that is
disabled by SIOC_DISABLE_PATH IOCTL. The arg parameter on the IOCTL command
specifies the path to be enabled. The primary path is path 1, the first alternate path
2, the second alternate path 3, and so on. This command can be used concurrently
when the device is already open by another process by using the openx() extended
parameter SC_TMCP.

The SIOC_DEVICE_PATHS IOCTL command can be used to determine the paths that
are enabled or manually disabled.

SIOC_SET_PATH

This IOCTL command explicitly sets the current path to a device that the device
driver uses. The arg parameter on the IOCTL command specifies the path to be set
to the current path. The primary path is path 1, the first alternate path 2, the
second alternate path 3, and so on. This command can be used concurrently when
the device is already open by another process by using the openx() extended
parameter SC_TMCP.

The SIOC_DEVICE_PATHS IOCTL command can be used to determine the current
path the device driver is using for the device.

SIOC_DEVICE_PATHS

This IOCTL command returns a device_paths structure. The number of paths are
configured to a device and a device_path_t path structure for each configured
path. The device, HBA, and path information for the primary path are configured
along with all alternate SCSI paths. This IOCTL command must be used instead of
the SIOC_QUERY_PATH IOCTL that is obsolete. This command can be used
concurrently when the device is already open by another process by using the
openx() extended parameter SC_TMCP.

The data structures are
struct device_path_t {

char name[15]; /* logical device name */
char parent[15]; /* logical parent name */
uchar id_valid; /* obsolete and not set */
uchar id; /* SCSI target address of device */

36 IBM Tape Device Drivers: Programming Reference

uchar lun; /* SCSI logical unit of device */
uchar bus; /* SCSI bus for device */
uchar fcp_id_valid; /* FCP scsi/lun id fields vaild */
unsigned long long fcp_scsi_id; /* FCP SCSI id of device */
unsigned long long fcp_lun_id; /* FCP logical unit of device */
unsigned long long fcp_ww_name; /* FCP world wide name */
uchar enabled; /* path enabled */
uchar drive_port_valid; /* drive port field valid */
uchar drive_port; /* drive port number */
uchar fenced; /* path fenced by disable ioctl */
uchar current_path; /* Current path assignment */
uchar dynamic_tracking; /* FCP Dynamic tracking enabled */
unsigned long long fcp_node_name; /* FCP node name */
char type[16]; /* Device type and model */
char serial[16]; /* Device serial number */
uchar sas_id_valid; /* FCP scsi/lun id fields vaild */
char cpname[15]; /* logical name of control path drive */
uchar last_path; /* Last failure path */
char reserved[4];
};

struct device_paths {
int number_paths; /* number of paths configured */
struct device_path_t path[MAX_SCSI_PATH];
};

The arg parameter for the IOCTL is the address of a device_paths structure.

The current_path in the return structures is set to the current path the device uses
for the device. If this IOCTL is issued to a medium changer smc logical driver, the
cpname has the logical rmt name that is the control path drive for each smc logical
path.

SIOC_QUERY_PATH

This IOCTL command returns information about the device and SCSI paths, such
as logical parent, SCSI IDs, and status of the SCSI paths.

Note: This IOCTL is obsolete but still supported. The SIOC_DEVICE_PATHS IOCTL
must be used instead.

The data structure is
struct scsi_path {

char primary_name[15]; /* Primary logical device name */
char primary_parent[15]; /* Primary SCSI parent name */
uchar primary_id; /* Primary target address of

device */
uchar primary_lun; /* Primary logical unit of device */
uchar primary_bus; /* Primary SCSI bus for device */
unsigned long long primary_fcp_scsi_id; /* Primary FCP SCSI id of device */
unsigned long long primary_fcp_lun_id; /* Primary FCP logical unit of

device */
unsigned long long primary_fcp_ww_name; /* Primary FCP world wide name */
uchar primary_enabled; /* Primary path enabled */
uchar primary_id_valid; /* Primary id/lun/bus fields valid */
uchar primary_fcp_id_valid; /* Primary FCP scsi/lun id fields

valid */
uchar alternate_configured; /* Alternate path configured */
char alternate_name[15]; /* Alternate logical device name */
char alternate_parent[15]; /* Alternate SCSI parent name */
uchar alternate_id; /* Alternate target address of

device */
uchar alternate_lun; /* Alternate logical unit of device*/
uchar alternate_bus; /* Alternate SCSI bus for device */

Chapter 2. AIX tape and medium changer device driver 37

unsigned long long alternate_fcp_scsi_id; /* Alternate FCP SCSI id of device */
unsigned long long alternate_fcp_lun_id; /* Alternate FCP logical unit of

device */
unsigned long long alternate_fcp_ww_name; /* Alternate FCP world wide name */
uchar alternate_enabled; /* Alternate path enabled */
uchar alternate_id_valid; /* Alternate id/lun/bus fields

valid */
uchar alternate_fcp_id_valid; /* Alternate FCP scsi/lun id fields

valid */
uchar primary_drive_port_valid; /* Primary drive port field valid */
uchar primary_drive_port; /* Primary drive port number */
uchar alternate_drive_port_valid; /* Alternate drive port field valid */
uchar alternate_drive_port; /* Alternate drive port number */
uchar primary_fenced; /* Primary fenced by disable ioctl */
uchar alternate_fenced; /* Alternate fenced by disable ioctl */
uchar current_path; /* Current path assignment */
uchar primary_sas_id_valid; /* Primary FCP scsi/lun id fields

valid */
uchar alternate_sas_id_valid; /* Alternate FCP scsi/lun id fields

valid */
char reserved[55]; };

An example of the SIOC_QUERY_PATH command is
#include <sys/Atape.h>

int sioc_query_path(void)
{
struct scsi_path path;

printf("Querying SCSI paths...\n");

if (ioctl(fd, SIOC_QUERY_PATH, &path) == 0)
show_path(&path);

return errno;
}

void show_path(struct scsi_path *path)
{

printf("\n");
if (path->alternate_configured)
printf("Primary Path Information:\n");

printf(" Logical Device................. %s\n",path->primary_name);
printf(" SCSI Parent.................... %s\n",path->primary_parent);
if (path->primary_fcp_id_valid)
{
if (path->primary_id_valid)

{
printf(" Target ID...................... %d\n",path->primary_id);
printf(" Logical Unit................... %d\n",path->primary_lun);
printf(" SCSI Bus....................... %d\n",path->primary_bus);
}

printf(" FCP SCSI ID.................... 0x%llx\n",path->primary_fcp_scsi_id);
printf(" FCP Logical Unit............... 0x%llx\n",path->primary_fcp_lun_id);
printf(" FCP World Wide Name............ 0x%llx\n",path->primary_fcp_ww_name);
}

else
{
printf(" Target ID...................... %d\n",path->primary_id);
printf(" Logical Unit................... %d\n",path->primary_lun);
}

if (path->primary_drive_port_valid)
printf(" Drive Port Number.............. %d\n",path->primary_drive_port);

if (path->primary_enabled)
printf(" Path Enabled................... Yes\n");

38 IBM Tape Device Drivers: Programming Reference

else
printf(" Path Enabled................... No \n");

if (path->primary_fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

if (!path->alternate_configured)
printf(" Alternate Path Configured...... No\n");

else
{
printf(" Alternate Path Configured...... Yes\n");
printf("\nAlternate Path Information:\n");
printf(" Logical Device................. %s\n",path->alternate_name);
printf(" SCSI Parent.................... %s\n",path->alternate_parent);
if (path->alternate_fcp_id_valid)

{
if (path->alternate_id_valid)
{
printf(" Target ID...................... %d\n",path->alternate_id);
printf(" Logical Unit................... %d\n",path->alternate_lun);
printf(" SCSI Bus....................... %d\n",path->alternate_bus);
}

printf(" FCP SCSI ID.................... 0x%llx\n",path->alternate_fcp_scsi_id);
printf(" FCP Logical Unit............... 0x%llx\n",path->alternate_fcp_lun_id);
printf(" FCP World Wide Name............ 0x%llx\n",path->alternate_fcp_ww_name);
}

else
{
printf(" Target ID...................... %d\n",path->alternate_id);
printf(" Logical Unit................... %d\n",path->alternate_lun);
}

if (path->alternate_drive_port_valid)
printf(" Drive Port Number.............. %d\n",path->alternate_drive_port);

if (path->alternate_enabled)
printf(" Path Enabled................... Yes\n");

else
printf(" Path Enabled................... No \n");

if (path->alternate_fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

}
}

SIOC_RESET_PATH and SIOC_CHECK_PATH

Both of these IOCTL commands check all SCSI paths to a device that are not
manually disabled by the SIOC_DISABLE_PATH IOCTL. It is done by issuing a SCSI
Inquiry command on each path to verify communication. If the command
succeeds, then the path is enabled. If it fails, the path is disabled and is not used
by the device driver. This command can be used concurrently when the device is
already open by another process by using the openx() extended parameter
SC_TMCP.

This IOCTL command returns the same data structure as the SIOC_QUERY_PATH
IOCTL command with the updated path information for the primary and first
alternate path. See the SIOC_QUERY_PATH IOCTL command for a description of the
data structure and output information. If more than one alternate path is
configured for the device, then the SIOC_DEVICE_PATHS IOCTL must be used to
determine the paths that are enabled.

An example of the SIOC_RESET_PATH command is

Chapter 2. AIX tape and medium changer device driver 39

#include <sys/Atape.h>

int sioc_reset_path(void)
{
struct scsi_path path;

printf("Resetting SCSI paths...\n");

if (ioctl(fd, SIOC_RESET_PATH, &path) == 0)
show_path(&path);

return errno;
}

SIOC_RESET_DEVICE

This IOCTL command issues a SCSI target reset to the device if parallel SCSI is
attached or a SCSI lun reset if FCP/SAS is attached to the device. This IOCTL
command can be used to clear a SCSI Reservation that is active on the device. This
command can be used concurrently when the device is already open by another
process by using the openx() extended parameter SC_TMCP.

There is no argument for this IOCTL and the arg parameter is ignored.

SIOC_DRIVER_INFO

This command returns the information about the currently installed Atape driver.

The following data structure is filled out and returned by the driver.
struct driver_info {

uchar dd_name[16]; /* Atape driver name (Atape) */
uchar dd_version[16]; /* Atape driver version e.g. 12.0.8.0 */
uchar os[16]; /* Operating System (AIX) */
uchar os_version[32]; /* Running OS Version e.g. 6.1 */
uchar sys_arch[16]; /* Sys Architecture (POWER or others) */
uchar reserved[32]; /* Reserved for IBM Development Use */
};

An example of the SIOC_DRIVER_INFO command is
#include <sys/Atape.h>

int sioc_driver_info()
{
struct driver_info dd_info;

printf("Issuing driver info...\n");

if (!ioctl (fd, SIOC_DRIVER_INFO, &dd_info))
{
printf("Driver Name: %s\n",dd_info.dd_name);
printf("Driver Version: %s\n",dd_info.dd_version);
printf("Operating System: %s\n",dd_info.os);
printf("OS Version: %s\n",dd_info.os_version);
printf("System Arch: %s\n",dd_info.sys_arch);
}
return errno;
}

40 IBM Tape Device Drivers: Programming Reference

Tape IOCTL operations

The device driver supports the tape IOCTL commands available with the base AIX
operating system. In addition, it supports a set of expanded tape IOCTL
commands that give applications access to extra features and functions of the tape
drives.

Overview

The following IOCTL commands are supported.

STIOCHGP
Set the block size.

STIOCTOP
Complete the IOCTL tape operation.

STIOCQRYP
Query the tape device, device driver, and media parameters.

STIOCSETP
Change the tape device, device driver, and media parameters.

STIOCSYNC
Synchronize the tape buffers with the tape.

STIOCDM
Display the message on the display panel.

STIOCQRYPOS
Query the tape position and the buffered data.

STIOCSETPOS
Set the tape position.

STIOCQRYSENSE
Query the sense data from the tape device.

STIOCQRYINQUIRY
Return the inquiry data.

STIOC_LOG_SENSE
Return the log sense data.

STIOC_RECOVER_BUFFER
Recover the buffered data from the tape device.

STIOC_LOCATE
Locate to the tape position.

STIOC_READ_POSITION
Read the current tape position.

STIOC_SET_VOLID
Set the volume name for the current mounted tape. The name is used for
tape volume logging only.

STIOC_DUMP
Force and read a dump from the device.

STIOC_FORCE_DUMP
Force a dump on the device.

Chapter 2. AIX tape and medium changer device driver 41

STIOC_READ_DUMP
Read a dump from the device.

STIOC_LOAD_UCODE
Download the microcode to the device.

STIOC_RESET_DRIVE
Issue a SCSI Send Diagnostic command to reset the tape drive.

STIOC_FMR_TAPE
Create an FMR tape.

MTDEVICE
Obtain the device number of a drive in an IBM Enterprise Tape Library
3494.

STIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by an operator.

STIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by an operator.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

STIOC_GET_DENSITY
Get the current write density settings from the tape device.

STIOC_SET_DENSITY
Set the write density settings on the tape device.

STIOC_CANCEL_ERASE
Cancel an erase immediate command that is in progress.

GET_ENCRYPTION_STATE
This IOCTL can be used for application, system, and library-managed
encryption. It allows a query only of the encryption status.

SET_ENCRYPTION_STATE
This IOCTL can be used only for application-managed encryption. It sets
encryption state for application-managed encryption.

SET_DATA_KEY
This IOCTL can be used only for application-managed encryption. It sets
the data key for application-managed encryption.

READ_TAPE_POSITION
Read current tape position in either short, long, or extended form.

SET_TAPE_POSITION
Set the current tape position to either a logical object or logical file
position.

CREATE_PARTITION
Create one or more tape partitions and format the media.

QUERY_PARTITION
Query tape partitioning information and current active partition.

SET_ACTIVE_PARTITION
Set the current active tape partition.

42 IBM Tape Device Drivers: Programming Reference

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite type command at the
current position or allow a CREATE_PARTITION IOCTL when data safe
(append-only) mode is enabled.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and its setup.

SET_LOGICAL_BLOCK_PROTECTION
Enable or disable Logical Block Protection (LBP), set the protection method,
and how the protection information is transferred.

STIOC_READ_ATTRIBUTE
Read attribute values from medium auxiliary memory.

STIOC_WRITE_ATTRIBUTE
Write attribute values to medium auxiliary memory.

VERIFY_TAPE_DATA
Read the data from tape and verify its correction.

QUERY_RAO_INFO
Query the maximum number and size of User Data Segments (UDS).

GENERATE_RAO
Send a GRAO list to request the drive to generate a Recommended Access
Order list.

RECEIVE_RAO
Receive a Recommended Access Order list of UDS from the drive.

These IOCTL commands and their associated structures are defined in the
/usr/include/sys/Atape.h header file, which is included in the corresponding C
program that uses the functions.

STIOCHGP

This IOCTL command sets the current block size. A block size of zero is a variable
block. Any other value is a fixed block.

An example of the STIOCHGP command is
#include <sys/Atape.h>

struct stchgp stchgp;

stchgp.st_blksize = 512;

if (ioctl(tapefd,STIOCHGP,&stchgp)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCTOP

This IOCTL command runs basic tape operations. The st_count variable is used for
many of its operations. Normal error recovery applies to these operations. The
device driver can issue several tries to complete them.

For all space operations, the tape position finishes on the end-of-tape side of the
record or filemark for forward movement and on the beginning-of-tape side of the

Chapter 2. AIX tape and medium changer device driver 43

record or filemark for backward movement. The only exception occurs for forward
and backward space record operations over a filemark if the device is configured
for the AIX record space mode.

The input data structure is
struct stop

{
short st_op; /* operations defined below */
daddr_t st_count; /* how many of them to do (if applicable) */
};

The st_op variable is set to one of the following operations.

STOFFL
Unload the tape. The st_count parameter does not apply.

STREW
Rewind the tape. The st_count parameter does not apply.

STERASE
Erase the entire tape. The st_count parameter does not apply.

STERASE_IMM
Erase the entire tape with the immediate bit set. The st_count parameter
does not apply.

This action issues the erase command to the device with the immediate bit
set in the SCSI CDB. When this command is used, another process can
cancel the erase operation by issuing the STIOC_CANCEL_ERASE IOCTL. The
application that issued the STERASE_IMM still waits for the erase
command to complete like the STERASE st_op if the STIOC_CANCEL_ERASE
IOCTL is not issued. Refer to for a description of the STIOC_CANCEL_ERASE
IOCTL.

STERASEGAP
Erase the gap that was written to the tape. The st_count parameter does
not apply.

STRETEN
Start the rewind operation. The tape devices run the retension operation
automatically when needed.

STWEOF
Write the st_count number of filemarks.

STWEOF_IMM
Write the st_count number of filemarks with the immediate bit set.

This action issues a write filemark command to the device with the
immediate bit set in the SCSI CDB. The device returns immediate status
and the IOCTL also returns immediately. Unlike the STWEOF st_op, any
buffered write data are not flushed to tape before the filemarks are written.
This action can improve the time that it takes for a write filemark
command to complete.

STFSF Space forward the st_count number of filemarks.

STRSF
Space backward the st_count number of filemarks.

STFSR
Space forward the st_count number of records.

44 IBM Tape Device Drivers: Programming Reference

STRSR
Space backward the st_count number of records.

STTUR
Issue the Test Unit Ready command. The st_count parameter does not
apply.

STLOAD
Issue the SCSI Load command. The st_count parameter does not apply.
The operation of the SCSI Load command varies depending on the type of
device. See the appropriate hardware reference manual.

STSEOD
Space forward to the end of the data. The st_count parameter does not
apply. This operation is supported except on the IBM 3490E tape devices.

STFSSF
Space forward to the first st_count number of contiguous filemarks.

STRSSF
Space backward to the first st_count number of contiguous filemarks.

STEJECT
Unload the tape. The st_count parameter does not apply.

STINSRT
Issue the SCSI Load command. The st_count parameter does not apply.

Note: If zero is used for operations that require the count parameter, the command
is not issued to the device, and the device driver returns a successful completion.

An example of the STIOCTOP command is
#include <sys/Atape.h>

struct stop stop;

stop.st_op=STWEOF;

stop.st_count=3;

if (ioctl(tapefd,STIOCTOP,&stop)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYP or STIOCSETP

The STIOCQRYP IOCTL command allows the program to query the tape device,
device driver, and media parameters. The STIOCSETP IOCTL command allows the
program to change the tape device, device driver, and media parameters. Before
the STIOCSETP IOCTL command is issued, use the STIOCQRYP IOCTL command to
query and fill the fields of the data structure that you do not want to change.
Then, issue the STIOCSETP command to change the selected fields.

Changing certain fields (such as buffered_mode) impacts performance. If the
buffered_mode field is false, then each record that is written to the tape is
transferred to the tape immediately. This operation guarantees that each record is
on the tape, but it impacts performance.

Chapter 2. AIX tape and medium changer device driver 45

STIOCQRYP parameters that cannot be changed with the STIOCSETP IOCTL
command

The following parameters that are returned by the STIOCQRYP IOCTL command
cannot be changed by the STIOCSETP IOCTL command.
v trace

This parameter is the current setting of the AIX system tracing for channel 0. All
Atape device driver events are traced in channel 0 with other kernel events. If
set to On, device driver tracing is active.

v hkwrd

This parameter is the trace hookword used for Atape events.
v write_protect

If the currently mounted tape is write-protected, this field is set to TRUE.
Otherwise, it is set to FALSE.

v min_blksize

This parameter is the minimum block size for the device. The driver sets this
field by issuing the SCSI Read Block Limits command.

v max_blksize

This parameter is the maximum block size for the device. The driver sets this
field by issuing the SCSI Read Block Limits command.

v max_scsi_xfer

This parameter is the maximum transfer size of the parent SCSI adapter for the
device.

v acf_mode

If the tape device has the ACF installed, this parameter returns the current mode
of the ACF. Otherwise, the value of ACF_NONE is returned. The ACF mode can
be set from the operator panel on the tape device.

v alt_pathing

This parameter is the configuration setting for path failover support. If the path
failover support is enabled, this parameter is set to TRUE.

v medium_type

This parameter is the media type of the current loaded tape. Some tape devices
support multiple media types and report different values in this field. See the
documentation for the specific tape device to determine the possible values.

v density_code

This parameter is the density setting for the current loaded tape. Some tape
devices support multiple densities and report the current setting in this field. See
the documentation for the specific tape device to determine the possible values.

v reserve_type

This parameter is the configuration setting for the reservation type that the
device driver uses when the device is reserved, either a SCSI Reserve 6
command or a SCSI Persistent Reserve command.

v reserve_key

This parameter is the reservation key the device driver uses with SCSI Persistent
Reserve. If a configuration reservation key was specified, then this key can be
either a 1-8 ASCII character key or a 1-16 hexadecimal key. If a configuration key
was not specified, then the reservation key is a 16 hexadecimal key that the
device driver generates.

46 IBM Tape Device Drivers: Programming Reference

Parameters that can be changed with STIOCSETP IOCTL command

The following parameters can be changed with the STIOCSETP IOCTL command.
v blksize

This parameter specifies the effective block size for the tape device.
v autoload

This parameter turns the autoload feature On and Off in the device driver. If set
to On, the cartridge loader is treated as a large virtual tape.

v buffered_mode

This parameter turns the buffered mode write On and Off.
v compression

This parameter turns the hardware compression On and Off.
v trailer_labels

If this parameter is set to On, writing a record past the early warning mark on
the tape is allowed. The first write operation to detect EOM returns the
ENOSPC error code. This write operation does not complete successfully. All
subsequent write operations are allowed to continue despite the check
conditions that result from EOM. When the end of the physical volume is
reached, EIO is returned. This parameter can be used before EOM or after EOM
is reached.

v rewind_immediate

This parameter turns the immediate bit On and Off in rewind commands. If set
to On, the STREW tape operation runs faster. However, the next command takes
a long time to finish unless the rewind operation is physically complete.

v logging

This parameter turns the volume logging On and Off. If set to On, the volume
log data is collected and saved in the tape log file when the Rewind and Unload
command is issued to the tape drive.

v volid

This parameter is the volume ID of the current loaded tape. If it is not set, the
device driver initializes the volid to UNKNOWN. If logging is active, the
parameter is used to identify the volume in the tape log file entry. It is reset to
UNKNOWN when the tape is unloaded.

v emulate_autoloader

This parameter turns the emulate autoloader feature On and Off.
v record_space_mode

This parameter specifies how the device driver operates when a forward or
backward space record operation encounters a filemark. The two modes of
operation are SCSI and AIX.

v logical_write_protect

This parameter sets or resets the logical write protect of the current tape.

Note: The tape position must be at the beginning of the tape to change this
parameter from its current value.

v capacity_scaling and capacity_scaling_value

The capacity_scaling parameter queries the capacity or logical length of the
current tape or on a set operation changes the current tape capacity. On a query
operation, this parameter returns the current capacity for the tape. It is one of
the defined values such as SCALE_100, SCALE_75, SCALE_VALUE If the query

Chapter 2. AIX tape and medium changer device driver 47

returns SCALE_VALUE, then the capacity_scaling_value parameter is the
current capacity. Otherwise, the capacity_scaling parameter is the current
capacity.
On a set operation, if the capacity_scaling parameter is set to SCALE_VALUE
then the capacity_scaling_value parameter is used to set the tape capacity.
Otherwise, one of the other defined values for the capacity_scaling parameter
is used.

Note:

1. The tape position must be at the beginning of the tape to change this
parameter from its current value.

2. Changing this parameter destroys any existing data on the tape.
v retain_reservation

When this parameter if set to 1, the device driver does not release the device
reservation when the device is closed for the current open and any subsequent
opens and closes until the STIOCSETP IOCTL is issued with retain_reservation
parameter set to 0. The device driver still reserves the device on open to make
sure that the previous reservation is still valid.

v data_safe_mode

This parameter queries the current drive setting for data safe (append-only)
mode. Also, on a set operation it changes the current data safe mode setting on
the drive. On a set operation, a parameter value of zero sets the drive to normal
(non-data safe) mode and a value of 1 sets the drive to data safe mode.

v disable_sim_logging

This parameter turns the automatic logging of tape SIM/MIM data On and Off.
By default, the device driver reads Log Sense Page X'31' automatically when
device sense data indicates that data is available. The data is saved in the AIX
error log. Reading Log Sense Page X'31' clears the current SIM/MIM data.
Setting this bit disables the device driver from reading the Log Sense Page so an
application can read and manage its own SIM/MIM data. The SIM/MIM data is
saved in the AIX error log if an application reads the data with the
SIOC_LOG_SENSE_PAGE or STIOC_LOG_SENSE IOCTLs.

v read_sili_bit

This parameter turns the Suppress Incorrect Length Indication (SILI) bit On
and Off for variable length read commands. The device driver sets this bit when
the device is configured, if it detects that the adapter can support this setting.
When this bit is Off, variable length read commands results in a SCSI check
condition if less data is read than the read system call requested. This action can
have a significant impact on read performance.
The input or output data structure is
struct stchgp_s

{
int blksize; /* new block size */
boolean trace; /* TRUE=trace on */
uint hkwrd; /* trace hook word */
int sync_count; /* obsolete - not used */
boolean autoload; /* on/off autoload feature */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression */
boolean trailer_labels; /* on/off allow writing after EOM */
boolean rewind_immediate; /* on/off immediate rewinds */
boolean bus_domination; /* obsolete - not used */
boolean logging; /* volume logging */
boolean write_protect; /* write_protected media */
uint min_blksize; /* minimum block size */

48 IBM Tape Device Drivers: Programming Reference

uint max_blksize; /* maximum block size */
uint max_scsi_xfer; /* maximum scsi tranfer len */
char volid[16]; /* volume id */
uchar acf_mode; /* automatic cartridge facility mode */

#define ACF_NONE 0
#define ACF_MANUAL 1
#define ACF_SYSTEM 2
#define ACF_AUTOMATIC 3
#define ACF_ACCUMULATE 4
#define ACF_RANDOM 5

uchar record_space_mode; /* fsr/bsr space mode */
#define SCSI_SPACE_MODE 1
#define AIX_SPACE_MODE 2

uchar logical_write_protect; /* logical write protect */
#define NO_PROTECT 0
#define ASSOCIATED_PROTECT 1
#define PERSISTENT_PROTECT 2
#define WORM_PROTECT 3

uchar capacity_scaling; /* capacity scaling */
#define SCALE_100 0
#define SCALE_75 1
#define SCALE_50 2
#define SCALE_25 3
#define SCALE_VALUE 4 /* use capacity_scaling_value below */

uchar retain_reservation; /* retain reservation */
uchar alt_pathing; /* alternate pathing active */
boolean emulate_autoloader; /* emulate autoloader in random mode */
uchar medium_type; /* tape medium type */
uchar density_code; /* tape density code */
boolean disable_sim_logging; /* disable sim/mim error logging */
boolean read_sili_bit; /* SILI bit setting for read commands*/
uchar capacity_scaling_value; /* capacity scaling provided value */
uchar reserve_type; /* reservation type */

#define RESERVE6_RESERVE 0 /* SCSI Reserve 6 type */
#define PERSISTENT_RESERVE 1 /* persistent reservation type */

uchar reserve_key[8]; /* persistent reservation key */
uchar data_safe_mode; /* data safe mode */
ushort pew_size; /* programmable early warning size */
uchar reserved[9];
};

v pew_size

With the tape parameter, the application is allowed to request the tape drive to
create a zone that is called the programmable early warning zone (PEWZ) in the
front of Early Warning (EW).

When a WRITE or WRITE FILE MARK (WFM) command writes data or
filemark upon first reaching the PEWZ, Atape driver sets ENOSPC for Write and
WFM to indicate that the current position reaches the PEWZ. After PEWZ is
reached and before Early Warning is reached, all further writes and WFMs are
allowed. The TRAILER parameter and the current design for LEOM (Logical End
of Medium/Partition, or Early Warning Zone) and PEOM (Physical End of
Medium/Partition) have no effect on the driver behavior in PEWZ.
For the application developers:

BOP EW EOP
PEWZ

a
2
5
0
0
2
9
1

Figure 5. Programmable Early Warning Zone (PEWZ)

Chapter 2. AIX tape and medium changer device driver 49

1. Two methods are used to determine PEWZ when the errno is set to ENOSPC
for Write or Write FileMark command, since ENOSPC is returned for either
EW or PEW.
– Method 1: Issue a Request Sense IOCTL, check the sense key and

ASC-ASCQ, and if it is 0x0/0x0007 (PROGRAMMABLE EARLY
WARNING DETECTED), the tape is in PEW. If the sense key ASC-ASCQ
is 0x0/0x0000 or 0x0/0x0002, the tape is in EW.

– Method 2: Call Read Position IOCTL in long or extended form and check
bpew and eop bits. If bpew = 1 and eop = 0, the tape is in PEW. If bpew =
1 and eop = 1, the tape is in EW.

Atape driver requests the tape drive to save the mode page indefinitely. The
PEW size is modified in the drive until a new setup is requested from the
driver or application. The application must be programmed to issue the Set
IOCTL to zero when PEW support is no longer needed, as Atape drivers do
not complete this function. PEW is a setting of the drive and not tape.
Therefore, it is the same on each partition, should partitions exist.

2. Encountering the PEWZ does not cause the device server to run a
synchronize operation or terminate the command. It means that the data or
filemark is written in the cartridge when a check condition with
PROGRAMMABLE EARLY WARNING DETECTED is returned. But, the
Atape driver still returns the counter to less than zero (-1) for a write
command or a failure for Write FileMark IOCTL call with ENOSPC error. In
this way, it forces the application to use one of the methods to check PEW or
EW. When the application determines ENOSPC comes from PEW, it reads the
requested write data or filemark that are written into the cartridge and reach
or pass the PEW point. The application can issue a Read position IOCTL to
validate the tape position.

An example of the STIOCQRYP and STIOCSETP commands is
#include <sys/Atape.h>

struct stchgp_s stchgp;

/* get current parameters */
if (ioctl(tapefd,STIOCQRYP,&stchgp)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* set new parameters */
stchgp.rewind_immediate=1;
stchgp.trailer_labels=1;
if (ioctl(tapefd,STIOCSETP,&stchgp)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCSYNC

This input/output control (IOCTL) command flushes the tape buffers to the tape
immediately.

There are no arguments for this IOCTL command.

An example of the STIOCSYNC command is

50 IBM Tape Device Drivers: Programming Reference

if (ioctl(tapefd,STIOCSYNC,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCDM

This IOCTL command displays and manipulates one or two messages on the
message display. The message that is sent with this call does not always remain on
the display. It depends on the current state of the tape device.

The input data structure is
#define MAXMSGLEN 8
struct stdm_s

{
char dm_func; /* function code */

/* function selection */
#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount/verify message */
#define DMMIMMED 0x40 /* mount with immediate action indicator*/
#define DMDEMIMMED 0xE0 /* demount/mount with immediate action */

/* message control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */
#define DMALTERNATE 0x10 /* alternate message 0 and message 1 */
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */
};

An example of the STIOCDM command is
#include <sys/Atape.h>
struct stdm_s stdm;
stdm.dm_func=DMSTATUSMSG|DMMSG0;
bcopy("SSD",stdm.dm_msg0,8);
if (ioctl(tapefd,STIOCDM,&stdm)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYPOS or STIOCSETPOS

The STIOCQRYPOS IOCTL command queries the position on the tape. The
STIOCSETPOS IOCTL command sets the position on the tape. Only the block_type
and curpos fields are used during a set operation. The tape position is defined as
where the next read or write operation occurs. The query function can be used
independently or with the set function. Also, the set function can be used
independently or with the query function.

The block_type field is set to QP_LOGICAL when a SCSI logical blockid format is
wanted. During a query operation, the curpos field is set to a simple unsigned int.

On IBM 3490 tape drives only, the block_type field can be set to QP_PHYSICAL.
Setting this block_type on any other device is ignored and defaults to
QP_LOGICAL. After a set operation, the position is at the logical block that is
indicated by the curpos field. If the block_type field is set to QP_PHYSICAL, the
curpos field that is returned is a vendor-specific blockid format from the tape
device. When QP_PHYSICAL is used for a query operation, the curpos field is

Chapter 2. AIX tape and medium changer device driver 51

used only in a subsequent set operation with QP_PHYSICAL. This function
completes a high speed locate operation. Whenever possible, use QP_PHYSICAL
because it is faster. This advantage is obtained only when the set operation uses
the curpos field from the QP_PHYSICAL query.

After a query operation, the lbot field indicates the last block of the data that was
transferred physically to the tape. If the application writes 12 (0 - 11) blocks and
lbot equals 8, then three blocks are in the tape buffer. This field is valid only if the
last command was a write command. This field does not reflect the number of
application write operations. A write operation can translate into multiple blocks.
It reflects tape blocks as indicated by the block size. If an attempt is made to obtain
this information and the last command is not a write command, the value of
LBOT_UNKNOWN is returned.

The driver sets the bot field to TRUE if the tape position is at the beginning of the
tape. Otherwise, it is set to FALSE. The driver sets the eot field to TRUE if the tape
is positioned between the early warning and the physical end of the tape.
Otherwise, it is set to FALSE.

The number of blocks and number of bytes currently in the tape device buffers is
returned in the num_blocks and num_bytes fields. The bcu and bycu settings
indicate whether these fields contain valid data. The block ID of the next block of
data that transferred to or from the physical tape is returned in the tapepos field.

The partition number field that is returned is the current partition of the loaded
tape.

The input or output data structure is
typedef unsigned int blockid_t;
struct stpos_s

{
char block_type; /* format of block ID information */
#define QP_LOGICAL 0 /* SCSI logical block ID format */
#define QP_PHYSICAL 1 /* 3490 only, vendor-specific block ID format */

/* ignored for all other devices */
boolean eot; /* position is after early warning, */

/* before physical end of tape */
blockid_t curpos; /* for query, current position, */

/* for set, position to go to */
blockid_t lbot; /* last block written to tape */
#define LBOT_NONE 0xFFFFFFFF /* no blocks were written to tape */
#define LBOT_UNKNOWN 0xFFFFFFFE /* unable to determine information */
uint num_blocks; /* number of blocks in buffer */
uint num_bytes; /* number of bytes in buffer */
boolean bot; /* position is at beginning of tape */
uchar partition_number; /* current partition number on tape */
boolean bcu; /* number of blocks in buffer is unknown */
boolean bycu; /* number of bytes in buffer is unknown */
blockid_t tapepos; /* next block transferred */
uchar reserved2[48];
};

An example of the STIOCQRYPOS and STIOCSETPOS commands is
#include <sys/Atape.h>
struct stpos_s stpos;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);

52 IBM Tape Device Drivers: Programming Reference

}
oldposition=stpos.curpos;

.

.

.
stpos.curpos=oldposition;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCSETPOS,&stpos)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOCQRYSENSE

This IOCTL command returns the last sense data that is collected from the tape
device, or it issues a new Request Sense command and returns the collected data.
If LASTERROR is requested, the sense data is valid only if the last tape operation
has an error that issued a sense command to the device. If the sense data is valid,
the IOCTL command completes successfully and the len field is set to a value
greater than zero.

The residual_count field contains the residual count from the last operation.

The input or output data structure is
#define MAXSENSE 255
struct stsense_s

{
/* input */
char sense_type; /* fresh (new sense) or sense from last error */
#define FRESH 1 /* initiate a new sense command */
#define LASTERROR 2 /* return sense gathered from

the last SCSI sense command */
/* output */
uchar sense[MAXSENSE]; /* actual sense data */
int len; /* length of valid sense data returned */
int residual_count; /* residual count from last operation */
uchar reserved[60];
};

An example of the STIOCQRYSENSE command is
#include <sys/Atape.h>
struct stsense_s stsense;
stsense.sense_type=LASTERROR;
#define MEDIUM_ERROR 0x03
if (ioctl(tapefd,STIOCQRYSENSE,&stsense)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

if ((stsense.sense[2]&0x0F)==MEDIUM_ERROR)
{
printf("We’re in trouble now!");
exit(SENSE_KEY(&stsense.sense));
}

STIOCQRYINQUIRY

This IOCTL command returns the inquiry data from the device. The data is
divided into standard and vendor-specific portions.

The output data structure is

Chapter 2. AIX tape and medium changer device driver 53

/* inquiry data info */
struct inq_data_s

{
BYTE b0;
/* macros for accessing fields of byte 1 */
#define PERIPHERAL_QUALIFIER(x) ((x->b0 & 0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03

#define PERIPHERAL_DEVICE__TYPE(x) (x->b0 & 0x1F)
#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1;
/* macros for accessing fields of byte 2 */
#define RMB(x) ((x->b1 & 0x80)>>7) /* removable media bit */
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 & 0x7F) /* vendor specific */

BYTE b2;
/* macros for accessing fields of byte 3 */
#define ISO_Version(x) ((x->b2 & 0xC0)>>6)
#define ECMA_Version(x) ((x->b2 & 0x38)>>3)
#define ANSI_Version(x) ((x->b2 & 0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2

BYTE b3;
/* macros for accessing fields of byte 4 */
#define AENC(x) ((x->b3 & 0x80)>>7) /* asynchronous event notification */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define TrmIOP(x) ((x->b3 & 0x40)>>6) /* support terminate I/O process message? */
#define Response_Data_Format(x) (x->b3 & 0x0F)
#define SCSI1INQ 0 /* SCSI-1 standard inquiry data format */
#define CCSINQ 1 /* CCS standard inquiry data format */
#define SCSI2INQ 2 /* SCSI-2 standard inquiry data format */

BYTE additional_length; /* number of bytes following this field minus 4 */
BYTE res56[2];

BYTE b7;
/* macros for accessing fields of byte 7 */
#define RelAdr(x) ((x->b7 & 0x80)>>7) /* the following fields are true or false */
#define WBus32(x) ((x->b7 & 0x40)>>6)
#define WBus16(x) ((x->b7 & 0x20)>>5)
#define Sync(x) ((x->b7 & 0x10)>>4)
#define Linked(x) ((x->b7 & 0x08)>>3)
#define CmdQue(x) ((x->b7 & 0x02)>>1)
#define SftRe(x) ((x->b7 & 0x01)

char vendor_identification[8];
char product_identification[16];
char product_revision_level[4];

54 IBM Tape Device Drivers: Programming Reference

};
struct st_inquiry

{
struct inq_data_s standard;
BYTE vendor_specific[255-sizeof(struct inq_data_s)];
};

An example of the STIOCQRYINQUIRY command is
struct st_inquiry inqd;
if (ioctl(tapefd,STIOCQRYINQUIRY,&inqd)<0)

{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

if (ANSI_Version(((struct inq_data_s *)&(inqd.standard)))==SCSI2)
printf("Hey! We have a SCSI-2 device\n");

STIOC_LOG_SENSE

This IOCTL command returns the log sense data from the device. If volume
logging is set to On, the log sense data is saved in the tape log file.

The output data structure is
struct log_sense

{
struct log_record_header header;
char data[MAXLOGSENSE];
}

An example of the STIOC_LOG_SENSE command is
struct log_sense logdata;

if (ioctl(tapefd,STIOC_LOG_SENSE,&logdata)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_RECOVER_BUFFER

This IOCTL command recovers the buffer data from the tape device. It is typically
used after an error occurs during a write operation that prevents the data in the
tape device buffers from being written to tape. The STIOCQRYPOS command can be
used before this IOCTL command to determine the number of blocks and the bytes
of data that is in the device buffers.

Each STIOC_RECOVER_BUFFER IOCTL call returns one block of data from the device.
This ioctl command can be issued multiple times to completely recover all the
buffered data from the device.

After the IOCTL command is completed, the ret_len field contains the number of
bytes returned in the application buffer for the block. If no blocks are in the tape
device buffer, then the ret_len value is set to zero.

The output data structure is

Chapter 2. AIX tape and medium changer device driver 55

struct buffer_data
{
char *buffer;
int bufsize;
int ret_len;

};

An example of the STIOC_RECOVER_BUFFER command is
struct buffer_data bufdata;

bufdata.bufsize = 256 * 1024;
bufdata.buffer = malloc(256 * 1024);

if (ioctl(tapefd,STIOC_RECOVER_BUFFER,&bufdata)<0)
{
printf("IOCTL failure. errno=%d",errno);
}

else
{
printf("Returned bytes=%d",bufdata.ret_len);
}

STIOC_LOCATE

This IOCTL command causes the tape to be positioned at the specified block ID.
The block ID used for the command must be obtained with the
STIOC_READ_POSITION command.

An example of the STIOC_LOCATE command is
#include <sys/Atape.h>

unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)<0)
{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)<0)
{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

STIOC_READ_POSITION

This IOCTL command returns the block ID of the current position of the tape. The
block ID returned from this command can be used with the STIOC_LOCATE
command to set the position of the tape.

An example of the STIOC_READ_POSITION command is
#include <sys/Atape.h>

unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)<0)
{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);

56 IBM Tape Device Drivers: Programming Reference

}

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)<0)
{
printf("IOCTL failure. errno=%d"n,errno);
exit(1);
}

STIOC_SET_VOLID

This IOCTL command sets the volume name for the currently mounted tape. The
volume name is used by the device driver for tape volume logging only and is not
written or stored on the tape. The volume name is reset to unknown whenever an
unload command is issued to unload the current tape. The volume name can be
queried and set by using the STIOCQRYP and STIOCSETP IOCTLs.

The argument that is used for this command is a character pointer to a buffer that
contains the name of the volume to be set.

An example of the STIOC_SET_VOLID command is
/* set the volume id for the current tape to VOL001 */

char *volid = "VOL001";
if (ioctl(tapefd,STIOC_SET_VOLID,volid)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_DUMP

This IOCTL command forces a dump on the tape device, then stores the dump to
either a host-specified file or in the /var/adm/ras system directory. The device
driver stores up to three dumps in this directory. The first dump that is created is
named Atape.rmtx.dump1, where x is the device number, for example, rmt0. The
second and third dumps are dump2 and dump3. After a third dump file is created,
the next dump starts at dump1 again and overlays the previous dump1 file.

The argument that is used for this command is NULL to dump to the system
directory. Or, it is a character pointer to a buffer that contains the path and file
name for the dump file. The dump can also be stored on a diskette by specifying
/dev/rfd0 for the name.

An example of the STIOC_DUMP command is
/* generate drive dump and store in the system directory */

if (ioctl(tapefd,STIOC_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* generate drive dump and store in file 3590.dump */
char *dump_name = "3590.dump";
if (ioctl(tapefd,STIOC_DUMP,dump_name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

Chapter 2. AIX tape and medium changer device driver 57

STIOC_FORCE_DUMP

This IOCTL command forces a dump on the tape device. The dump can be
retrieved from the device by using the STIOC_READ_DUMP IOCTL.

There are no arguments for this IOCTL command.

An example of the STIOC_FORCE_DUMP command is
/* generate a drive dump */

if (ioctl(tapefd,STIOC_FORCE_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_READ_DUMP

This IOCTL command reads a dump from the tape device. Then, it stores the
dump to either a host specified file or in the /var/adm/ras system directory. The
device driver stores up to three dumps in this directory. The first dump that is
created is named Atape.rmtx.dump1, where x is the device number, for example
rmt0. The second and third dumps are dump2 and dump3. After a third dump file
is created, the next dump starts at dump1 again and overlays the previous dump1
file.

Dumps are either generated internally by the tape drive or can be forced by using
the STIOC_FORCE_DUMP IOCTL.

The argument that is used for this command is NULL to dump to the system
directory. Or, it is a character pointer to a buffer that contains the path and file
name for the dump file. The dump can also be stored on a diskette by specifying
/dev/rfd0 for the name.

An example of the STIOC_READ_DUMP command is
/* read drive dump and store in the system directory */

if (ioctl(tapefd,STIOC_READ_DUMP,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* read drive dump and store in file 3590.dump */
char *dump_name = "3590.dump";
if (ioctl(tapefd,STIOC_READ_DUMP,dump_name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_LOAD_UCODE

This IOCTL command downloads microcode to the device. The argument that is
used for this command is a character pointer to a buffer that contains the path and
file name of the microcode. Microcode can also be loaded from a diskette by
specifying /dev/rfd0 for the name.

An example of the STIOC_LOAD_UCODE command is

58 IBM Tape Device Drivers: Programming Reference

/* download microcode from file */
char *name = "/etc/microcode/D0I4_BB5.fmrz";
if (ioctl(tapefd,STIOC_LOAD_UCODE,name)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

/* download microcode from diskette */
if (ioctl(tapefd,STIOC_LOAD_UCODE,"/dev/rfd0")<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

STIOC_RESET_DRIVE

This IOCTL command issues a SCSI Send Diagnostic command to reset the tape
drive. There are no arguments for this IOCTL command.

An example of the STIOC_RESET_DRIVE command is
/* reset the tape drive */

if (ioctl(tapefd,STIOC_RESET_DRIVE,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);

exit(errno);
}

STIOC_FMR_TAPE

This IOCTL command creates an FMR tape. The tape is created with the current
microcode loaded in the tape device.

There are no arguments for this IOCTL command.

An example of the STIOC_FMR_TAPE command is
/* create fmr tape */

if (ioctl(tapefd,STIOC_FMR_TAPE,NULL)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

MTDEVICE (Obtain device number)

This IOCTL command obtains the device number that is used for communicating
with the IBM TotalStorage Enterprise library 3494.

The structure of the IOCTL request is
int device;
if (ioctl(tapefd,MTDEVICE,&device)<0)
{
printf("IOCTL failure. errno=%d",errno);
exit(errno);
}

Chapter 2. AIX tape and medium changer device driver 59

STIOC_PREVENT_MEDIUM_REMOVAL

This IOCTL command prevents an operator from removing medium from the
device until the STIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device is
reset.

There is no associated data structure.

An example of the STIOC_PREVENT_MEDIUM_REMOVAL command is
#include <sys/Atape.h>

if (!ioctl (tapefd, STIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else
{
perror ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();
}

STIOC_ALLOW_MEDIUM_REMOVAL

This IOCTL command allows an operator to remove medium from the device. This
command is used normally after an STIOC_PREVENT_MEDIUM_REMOVAL command to
restore the device to the default state.

There is no associated data structure.

An example of the STIOC_ALLOW_MEDIUM_REMOVAL command is
#include <sys/Atape.h>

if (!ioctl (tapefd, STIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else
{
perror ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();
}

STIOC_REPORT_DENSITY_SUPPORT

This IOCTL command issues the SCSI Report Density Support command to the
tape device and returns either all supported densities or supported densities for
the currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures that are used with this IOCTL are
typedef struct density_report

{
uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary density code */
uint wrtok :1, /* write ok, device can write this format */

dup :1, /* zero if density only reported once */
deflt :1, /* current density is default format */
res_1 :5; /* reserved */

uchar reserved[2]; /* reserved */
uchar bits_per_mm[3]; /*bits per mm */
uint bits_per_mm:24; /* bits per mm */
ushort media_width; /* media width in millimeters */
ushort tracks; /* tracks */
uint capacity; /* capacity in megabytes */

60 IBM Tape Device Drivers: Programming Reference

char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

};

struct report_density_support
{

uchar media; /* report all or current media as defined above */
ushort number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

};

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are
#include <sys/Atape.h>

int stioc_report_density_support(void)
{
int i;
struct report_density_support density;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;

if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)
return errno;

printf("Total number of densities reported: %d\n",density.number_reports);
for (i = 0; i < density.number_reports; i++)
{
printf("\n");
printf(" Density Name............%0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization..%0.8s\n",

density.reports[i].assigning_org);
printf(" Description.............%0.20s\n",

density.reports[i].description);
printf(" Primary Density Code....%02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code..%02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..............Yes\n");

else
printf(" Write OK..............No\n");

if (density.reports[i].dup)
printf(" Duplicate.............Yes\n");

else
printf(" Duplicate.............No\n");

if (density.reports[i].deflt)
printf(" Default...............Yes\n");

else
printf(" Default............... No\n");

printf(" Bits per MM............. %d\n",
density.reports[i].bits_per_mm);

printf(" Media Width (millimeters)%d\n",
density.reports[i].media_width);

printf(" Tracks.................. %d\n",
density.reports[i].tracks);

printf(" Capacity (megabytes).....%d\n",
density.reports[i].capacity);

if (opcode)
{

Chapter 2. AIX tape and medium changer device driver 61

printf ("\nHit <enter> to continue...");
getchar();
}
}

printf("\nIssuing Report Density Support for CURRENT media...\n");

density.media = CURRENT_MEDIA_DENSITY;

if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)
return errno;

for (i = 0; i < density.number_reports; i++)
{
printf("\n");
printf(" Density Name............%0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization..%0.8s\n",

density.reports[i].assigning_org);
printf(" Description.............%0.20s\n",

density.reports[i].description);
printf(" Primary Density Code....%02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code..%02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..............Yes\n");

else
printf(" Write OK..............No\n");

if (density.reports[i].dup)
printf(" Duplicate.............Yes\n");

else
printf(" Duplicate.............No\n");

if (density.reports[i].deflt)
printf(" Default...............Yes\n");

else
printf(" Default...............No\n");

printf(" Bits per MM.............%d\n",density.reports[i].bits_per_mm);
printf(" Media Width (millimeters)%d\n",density.reports[i].media_width);
printf(" Tracks..................%d\n",density.reports[i].tracks);
printf(" Capacity (megabytes)...%d\n",density.reports[i].capacity);
}

return errno;
}

STIOC_GET_DENSITY and STIOC_SET DENSITY

The STIOC_GET_DENSITY IOCTL is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density, and pending density
are returned.

The STIOC_SET_DENSITY IOCTL is used to set a new write density format on the
tape drive by using the default and pending density fields. The density code field
is not used and ignored on this IOCTL. The application can specify a new write
density for the current loaded tape only or as a default for all tapes. Refer to the
examples.

62 IBM Tape Device Drivers: Programming Reference

The application must get the current density settings first before the current
settings are modified. If the application specifies a new density for the current
loaded tape only, then the application must issue another Set Density IOCTL after
the current tape is unloaded and the next tape is loaded to either the default
maximum density or a new density. This action ensures the tape drive uses the
correct density. If the application specifies a new default density for all tapes, the
setting remains in effect until changed by another set density IOCTL or the tape
drive is closed by the application.

Following is the structure for the STIOC_GET_DENSITY and STIOC_SET_DENSITY
IOCTLs.
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Note:

1. The IOCTLs are only supported on tape drives that can write multiple density
formats. Refer to the Hardware Reference for the specific tape drive to
determine whether multiple write densities are supported. If the tape drive
does not support the IOCTLs, errno EINVAL is returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY IOCTL
values from the last open are not used.

3. If the tape drive detects an invalid density code or cannot complete the
operation on the STIOC_SET_DENSITY IOCTL, the errno is returned. Then, the
current drive density settings before the IOCTL are restored.

4. The struct density_data_t defined in the header file is used for both IOCTLs.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
IOCTL.

Examples
struct density_data_t data;

/* open the tape drive */
/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, %data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* close the tape drive */

Chapter 2. AIX tape and medium changer device driver 63

/* open the tape drive */
/* set 3592 J1A density format for current loaded tape and all subsequent tapes */
data.default_density = 0x51;
data.pending_density = 0x51;

rc = ioctl(fd, STIOC_SET_DENSITY, %data);

STIOC_CANCEL_ERASE

The STIOC_CANCEL_ERASE IOCTL is used to cancel an erase operation currently in
progress. This action happens when an application issued the STIOCTOP IOCTL
with the st_op field that specifies STERASE_IMM. The application that issued the
erase and is waiting for it to complete then returns immediately with errno
ECANCELLED. This IOCTL always returns 0 whether an erase immediate
operation is in progress or not.

This IOCTL can be issued only when the openx() extended parameter SC_TMCP is
used to open the device. It happens when the application that issued the erase still
has the device currently open. There is no argument for this IOCTL and the arg
parameter is ignored.

GET_ENCRYPTION_STATE

This IOCTL command queries the drive's encryption method and state. The data
structure that is used for this IOCTL is for all of the supported operating systems.
struct encryption_status {

uchar encryption_capable; /* (1)Set this field as a boolean based on the
capability of the drive */

uchar encryption_method; /* (2)Set this field to one of the
#defines METHOD_* below */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* (3) Set this field to one of the
#defines STATE_* below */

#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/

uchar[13] reserved;
};

An example of the GET_ENCRYPTION_STATE command is
int qry_encrytion_state (void)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc == 0)
{

if(encryption_status_t.encryption_capable)
printf("encryption capable......Yes\n");

else
printf("encryption capable......No\n");

switch(encryption_status_t.encryption_method)
{

64 IBM Tape Device Drivers: Programming Reference

case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;
case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;
case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;
case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;
case METHOD_CUSTOM:
printf("encyrpiton method.......METHOD_CUSTOM\n");
break;
case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");
}

switch(encryption_status_t.encryption_state)
{
case STATE_OFF:
printf("encryption state........OFF\n");
break;
case STATE_ON:
printf("encryption state........ON\n");
break;
case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");
}

}

return rc;
}

SET_ENCRYPTION_STATE

This IOCTL command allows set encryption state only for application-managed
encryption. On unload, some of the drive settings can be reset to default. To set the
encryption state, the application must issue this IOCTL after a tape is loaded and
at BOP.

The data structure used for this IOCTL is the same as the one for
GET_ENCRYPTION_STATE. An example of the SET_ENCRYPTION_STATE command is
int set_encryption_state(int option)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc < 0) return rc;

if(option == 0)
encryption_status_t.encryption_state = STATE_OFF;

else if(option == 1)

Chapter 2. AIX tape and medium changer device driver 65

encryption_status_t.encryption_state = STATE_ON;
else
{

printf("Invalid parameter.\n");
return -EINVAL;

}

printf("Issuing set encryption state......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY

This IOCTL command allows set the data key only for application-managed
encryption. The data structure that is used for this IOCTL is for all of the
supported operating systems.
struct data_key
{

uchar[12 data_key_index;
uchar data_key_index_length;
uchar[15] reserved1;
uchar[32] data_key;
uchar[48] reserved2;

};

An example of the SET_DATA_KEY command is
int set_datakey(void)
{

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_data_key_t, 0, sizeof(struct data_key));
/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_data_key_t);
return rc;

}

READ_TAPE_POSITION

The READ_TAPE_POSITION IOCTL is used to return Read Position command data in
either the short, long, or extended form. The type of data to return is specified by
setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM.

The data structures that are used with this IOCTL are
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uint bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is

unknown */
bycu:1, /* 1 means the num_buffer_bytes field is

unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical

obj position fields are unknown */
perr: 1, /* 1 means the position fields have

66 IBM Tape Device Drivers: Programming Reference

overflowed and can not be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position; /* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred

to tape */
uint num_buffer_logical_obj; /* number of logical objects in buffer */
uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {
uint bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field

in unknown */
lonu:1, /* 1 means either the partition number

or logical obj number field
are unknown */

rsvd2:1,
bpew :1; /* beyond programmable early

warning */
char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object

position */
ullong logical_file_id; /* number of filemarks from bop

and current logical position */
ullong obsolete;
};

struct extended_data_format {
uint bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field

is unknown */
bycu:1, /* 1 means the num_buffer_bytes field

is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj

position fields are unknown */
perr: 1, /* 1 means the position fields have

overflowed and can not be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */
ullong first_logical_obj_position; /* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred

to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;
};

struct read_tape_position{
uchar data_format; /* Specifies the return data format either short,
long or extended as defined above */
union
{
struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;
char reserved[64];
} rp_data;

};

Chapter 2. AIX tape and medium changer device driver 67

Example of the READ_TAPE_POSITION IOCTL
#include <sys/Atape.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else
printf(" Beginning of Partition No\n");
if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");
if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");
if (rpos.rp_data.rp_long.lonu)
{
printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

if (rpos.rp_data.rp_long.mpu)
printf(" Logical File ID UNKNOWN \n");

else
printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

SET_TAPE_POSITION

The SET_TAPE_POSITION IOCTL is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the IOCTL structure specifies either a logical block or logical filemark.

The data structure that is used with this IOCTL is
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION IOCTL
#include <sys/Atape.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE

68 IBM Tape Device Drivers: Programming Reference

setpos.logical_id = 10;
ioctl(fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(fd, SET_TAPE_POSITION, &setpos);

SET_ACTIVE_PARTITION

The SET_ACTIVE_PARTITION IOCTL is used to position the tape to a specific
partition. Then, it becomes the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition, the logical_block_id field is set to 0.

The data structure that is used with this IOCTL is
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

Examples of the SET_ACTIVE_PARTITION IOCTL
#include <sys/Atape.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(fd, SET_ACTIVE_PARTITION, &partition);

QUERY_PARTITION

The QUERY_PARTITION IOCTL is used to return partition information for the tape
drive and the current media in the tape drive. It includes the current active
partition the tape drive is using for the media. The number_of partitions field is
the current number of partitions on the media and the max_partitions is the
maximum partitions that the tape drive supports. The size_unit field can be either
one of the defined values or another value such as 8. It is used with the size array
field value for each partition to specify the actual size partition sizes. The
partition_method field is either Wrap-wise Partitioning or Longitudinal
Partitioning. Refer to “CREATE_PARTITION” on page 70 for details.

The data structure that is used with this IOCTL is
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning without RABF */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */

The define for "size_unit":
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

Chapter 2. AIX tape and medium changer device driver 69

struct query_partition {
uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type */
char reserved [31];
};

Examples of the QUERY_PARTITION IOCTL
#include <sys/Atape.h>

struct query_partition partition;
int i;

if (ioctl(fd, QUERY_PARTITION, &partition) < 0)
return errno;

printf(" Max supported partitions ... %d\n",partition.max_partitions);
printf(" Number of partitions %d\n",partition.number_of_partitions);
printf(" Active partition %d\n",partition.active_partition);
printf(" Partition Method %d\n",partition.partition_method);
if (partition.size_unit == SIZE_UNIT_BYTES)
printf(" Partition size unit Bytes\n");

else if (partition.size_unit == SIZE_UNIT_KBYTES)
printf(" Partition size unit Kilobytes\n");

else if (partition.size_unit == SIZE_UNIT_MBYTES)
printf(" Partition size unit Megabytes\n");

else if (partition.size_unit == SIZE_UNIT_GBYTES
printf(" Partition size unit Gigabytes\n");

else if (partition.size_unit == SIZE_UNIT_TBYTES)
printf(" Partition size unit Terabytes\n");

else
printf(" Partition size unit %d\n",partition.size_unit);

for (i=0; i < partition.number_of_partitions; i++)
printf(" Partition %d size %d\n",i,partition.size[i]);

CREATE_PARTITION

The CREATE_PARTITION IOCTL is used to format the current media in the tape drive
into 1 or more partitions. The number of partitions to create is specified in the
number_of_partitions field. When more than one partition is created, the type
field specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before this
IOCTL is used.

If the number_of_partitions field to create in the IOCTL structure is one partition,
all other fields are ignored and not used. The tape drive formats the media by
using its default partitioning type and size for a single partition.

When the type field in the IOCTL structure is set to either FDP or SDP, the
size_unit and size fields in the IOCTL structure are not used. When the type field
in the IOCTL structure is set to IDP, the size_unit with the size fields are used to
specify the size for each partition.

There are two partition types: Wrap-wise Partitioning (Figure 6 on page 71)
optimized for streaming performance, and Longitudinal Partitioning (Figure 7 on
page 71) optimized for random access performance. Media is always partitioned

70 IBM Tape Device Drivers: Programming Reference

into 1 by default. Or, more than one partition where the data partition always
exists as partition 0 and other extra index partition 1 to n can exist.

A WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media is accepted. However, only if you
use the correct FORMAT field setting, as part of scaling the volume is set to a
single data partition cartridge.

The following chart lists the maximum number of partitions that the tape drive
supports.

Table 3. Number of supported partitions

Drive type Maximum number of supported partitions

LTO 5 (TS2250 and TS2350) and later 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure that is used with this IOCTL is
The define for "partition_method":
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning without RABF */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */

The define for "type":
#define IDP_PARTITION 1 /* Initiator Defined Partition type */
#define SDP_PARTITION 2 /* Select Data Partition type */

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 6. Wrap-wise partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 7. Longitudinal partitioning

Chapter 2. AIX tape and medium changer device driver 71

#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for "size_unit":
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

struct tape_partition {
uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition,0 to (number - 1) */
uchar partition_method; /* partitioning type */
char reserved [31];
};

Examples of the CREATE_PARTITION IOCTL
#include <sys/Atape.h>

struct tape_partition partition;

/* create 2 SDP partitions on LTO-5 */
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
ioctl(fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and partition 0
for the remaining capacity on LTO-5 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning
with partition 0 and 2 for 94.11 gigabytes (minimum size)and partition 1 and 3
to use the remaining capacity equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;

ALLOW_DATA_OVERWRITE

The ALLOW_DATA_OVERWRITE IOCTL is used to set the drive to allow a subsequent
data write type command at the current position. Or, it allows a CREATE_PARTITION
IOCTL when data safe (append-only) mode is enabled.

For a subsequent write type command, the allow_format_overwrite field must be
set to 0. The partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite occurs.

72 IBM Tape Device Drivers: Programming Reference

For a subsequent CREATE_PARTITION IOCTL, the allow_format_overwrite field must
be set to 1. The partiton_number and logical_block_id fields are not used.
However, the tape must be at the beginning of tape (partition 0 logical block id 0)
before the CREATE_PARTITION IOCTL is issued.

The data structure that is used with this IOCTL is
struct allow_data_overwrite{

uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE IOCTL
#include <sys/Atape.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* get current tape position for a subsequent write type command and */
/* set the allow_data_overwrite fields with the current position for the next

write type command */
rpos.data_format = RP_LONG_FORM;
if (ioctl (fd, READ_TAPE_POSITION, &rpos) <0)

retun errno;

data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (fd, ALLOW_DATA_OVERWRITE, &data_overrite;);

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(fd, SET_ACTIVE_PARTITION, &partition;) &10)
return errno;

data_overwrite.allow_format_overwrite = 1;
ioctl (fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

QUERY_LOGICAL_BLOCK_PROTECTION

The IOCTL queries whether the drive can support this feature, what Logical Block
Protection (LBP) method is used, and where the protection information is included.

The lbp_capable field indicates whether the drive has logical block protection
capability. The lbp_method field displays if LBP is enabled and what the
protection method is. The LBP information length is shown in the lbp_info_length
field. The fields of lbp_w, lbp_r, and rbdp present that the protection information
is included in write, read, or recover buffer data.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT]and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

Chapter 2. AIX tape and medium changer device driver 73

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION IOCTL
#include <sys/Atape.h>

struct logical_block_protection lbp_protect;

printf("Querying Logical Block Protection....\n");

if (ioctl(fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect) < 0)
return errno;

printf(" Logical Block Protection capable........ %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method.......... %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length... %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write........ %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read....... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP...... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION

The IOCTL enables or disables Logical Block Protection, sets up what method is
used, and where the protection information is included.

The lbp_capable field is ignored in this IOCTL by the Atape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the SET_LOGICAL_BLOCK_PROTECTION IOCTL
#include <sys/Atape.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");

74 IBM Tape Device Drivers: Programming Reference

gets (buf);
lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");
gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Note:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive
fails the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit must be determined
by application. Call the STIOCQRYP IOCTL and get the system maximum block
size limit. Call the Read Block Limits command to get the drive maximum
block size limit. Then, use the minimum of the two limits.

2. When a unit attention with a power-on and device reset (Sense key/Asc-Ascq
x6/x2900) occurs, the LBP enable bits (lbp_w, lbp_r, and rbdp) are reset to OFF
by default. Atape tape driver returns EIO for an IOCTL call in this situation.
Once the application determines it is a reset unit attention in the sense data, it
responses to query LBP setup and reissues this IOCTL to set up LBP properly.

3. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it must also disable LBP when it closes the drive, as
this action is not done by the device driver.

STIOC_READ_ATTRIBUTE

The IOCTL is issued to read attribute values that belongs to a specific partition
from medium auxiliary memory.

The input or output data structure is
#define MAX_ATTR_LEN 1024
struct read_attribute
{

uchar service_action; /* [IN] service action */
uchar partition_number; /* [IN] the partition which the attributes belong to */
ushort first_attr_id; /* [IN] first attribute id to be returned */
uint attr_data_len; /* [OUT] length of attribute data returned */
uchar reserved[8];
char data[MAX_ATTR_LEN]; /* [OUT] read attributes data */

} ;

An example of the STIOC_READ_ATTRIBUTE command is
#include <sys/Atape.h>
int rc,attr_len;
struct read_attribute rd_attr;

memset(&rd_attr,0,sizeof(struct read_attribute));
rd_attr.service_action=0x00;
rd_attr.partition_number=1;

Chapter 2. AIX tape and medium changer device driver 75

rd_attr.first_attr_id=0x800;

printf("Read attribute command\n");
rc=ioctl(fd, STIOC_READ_ATTRIBUTE, &rd_attr);

if (rc)
printf ("Read Attribute failed (rc %d)",rc);

else
{
printf ("Read Attribute Succeeds!");
dump_bytes (rd_attr.data, min(MAX_ATTR_LEN, rd_attr.attr_data_len),

"Attribute Data");
}

STIOC_WRITE_ATTRIBUTE

The IOCTL sets the attributes in medium auxiliary memory at a specific partition.

Following is the structure for STIOC_WRITE_ATTRIBURE IOCTL
struct write_attribute
{

uchar write_cache; /* [IN] WTC - Write-through cache */
uchar partition_number; /* [IN] the partition which the attribute is belonged to */
uint parm_list_len; /* [IN] parameter list length */
uchar reserved[10];
char data[MAX_ATTR_LEN]; /* [IN] write attributes data */

} ;

An example of the STIOC_WRITE_ATTRIBUTE command is
#include <sys/Atape.h>

int rc;
struct write_attribute wr_attr;

memset(&wr_attr,0,sizeof(struct write_attribute));

wr_attr.write_cache=0;
wr_attr.parm_list_len=0x11;
wr_attr.data[3]=0x0D;
wr_attr.data[4]=0x08;
wr_attr.data[6]=0x01;
wr_attr.data[8]=0x08;
wr_attr.data[9]=’I’;
wr_attr.data[10]=’B’;
wr_attr.data[11]=’M’;
wr_attr.data[12]=’ ’;
wr_attr.data[13]=’T’;
wr_attr.data[14]=’E’;
wr_attr.data[15]=’S’;
wr_attr.data[16]=’T’;

printf("Issuing a sample Write Attribute command\n\n");
rc=ioctl(fd, STIOC_WRITE_ATTRIBUTE, &wr_attr);

if (rc)
printf ("Write Attribute failed (rc %d)",rc);
else
printf ("Write Attribute Succeeds");

VERIFY_TAPE_DATA

The IOCTL issues a VERIFY command. This command causes data to be read from
the tape and passed through the drive’s error detection and correction hardware.

76 IBM Tape Device Drivers: Programming Reference

This action determines whether it can be recovered from the tape, whether the
protection information is present, and validates correctly on logical block on the
medium. The driver returns the IOCTL a failure or a success if the VERIFY SCSI
command is completed in a Good SCSI status.

Note:

1. When an application sets the VBF method, it considers the driver’s close
operation in which the driver can write filemarks in its close, which the
application did not explicitly request. For example, some drivers write two
consecutive filemarks that mark the end of data on the tape in its close, if the
last tape operation was a WRITE command.

2. Per the user's or application's request, Atape driver sets the block size in the
field of Block Length in mode block descriptor for Read and Write commands.
Then, it maintains this block size setting in a whole open. For instance, the tape
driver sets a zero in the Block Length field for the variable block size. This act
causes the missing of an overlength condition on a SILI Read. Block Length
must be set to a non-zero value.
Before Fixed bit is set to ON with VTE or VBF ON in Verify IOCTL, the
application is requested to set the block size in mode block descriptor. Then,
the drive uses it to verify the length of each logical block. For example, a 256
KB length is set in Block Length field to verify the data. The setup overrides
the early setting from IBM tape driver.
When the application completes the Verify IOCTL call, the original block size
setting must be restored for Read and Write commands, the application either
issues set block size IOCTL. Or, it closes the drive immediately and reopens
the drive for the next tape operation. It is recommended to reopen the drive for
the next tape operation. Otherwise, it causes next Read and Write command
misbehavior.

3. To support DPF for Verify command with FIXED bit on, it is requested to issue
an IBM tape driver to set blksize in STIOCSETP IOCTL. IBM tape driver sets the
block length in mode block descriptor same as the block size and save the
block size in kernel memory. The driver restores the block length before it tries
the Verify SCSI command again. Otherwise, it causes the Verify command to
fail.

4. The IOCTL can be returned longer than the timeout when DPF occurs.

The structure is defined for this IOCTL as
struct verify_data
{

uint : 2, /* reserved */
vte: 1, /* [IN] verify to end-of-data */

vlbpm: 1, /* [IN] verify logical block protection info */
vbf: 1, /* [IN] verify by filemarks */

immed: 1, /* [IN] return SCSI status immediately */
bytcmp: 1, /* No use currently */
fixed: 1; /* [IN] set Fixed bit to verify the length of each logical block */

uchar reseved[15];
uint verify_length; /* [IN] amount of data to be verified */
} ;

An example of the VERIFY_TAPE_DATA command is to verify all of logical block from
the current position to end of data. It includes a verification that each logical block
uses the logical block protection method that is specified in the Control Data
Protection mode page, when vte is set to 1 with vlbpm on.

Chapter 2. AIX tape and medium changer device driver 77

#include <sys/Atape.h>

int rc;
struct verify_data vrf_data;

memset(&vrf_data,0,sizeof(struct verify_data));
vrf_data.vte=1;
vrf_data.vlbpm=1;
vrf_data.vbf=0;
vrf_data.immed=0;
vrf_data.fixed=0;
vrf_data.verify_length=0;

printf("Verify Tape Data command\n");
rc=ioctl(fd,VERIFY_TAPE_DATA, &vrf_data);

if (rc)
printf ("Verify Tape Data failed (rc %d)",rc);
else printf
("Verify Tape Data Succeeded!");

QUERY_RAO_INFO

The IOCTL is used to query the maximum number and size of User Data Segments
(UDS) that are supported from tape drive and driver for the wanted uds_type. The
application calls this IOCTL before the GENERATE_RAO and RECEIVE_RAO IOCTLs are
issued. The application uses the return data to limit the number of UDS requested
in the GENERATE_RAO IOCTL.

The structure that is defined for this IOCTL as
struct query_rao_info {

char uds_type; /* [IN] 0: UDS_WITHOUT_GEOMETRY */
/* 1: UDS_WITH_GEOMETRY */

char reserved[7];
ushort max_uds_number; /* [OUT] Max UDS number supported from drive */
ushort max_uds_size; /* [OUT] Max single UDS size supported from drive in byte */

ushort max_host_uds_number; /* [OUT] Max UDS number supported from driver */
}

An example of the QUERY_RAO_INFO command is
#include <sys/Atape.h>

int rc;
struct query_rao_info qrao;

bzero(&qrao,sizeof(struct query_rao_info));

qrao.uds_type=uds_type;

rc=ioctl(fd,QUERY_RAO_INFO,&qrao);

if (rc)
printf("QUERY_RAO_INFO fails with rc %d\n",rc);

else
{
max_host_uds_num=qrao.max_host_uds_number;
max_uds_size=qrao.max_uds_size;
}

return rc;

78 IBM Tape Device Drivers: Programming Reference

GENERATE_RAO

The IOCTL is called to send a GRAO list to request the drive to generate a
Recommending Access Order list.

The process method is either 1 or 2 to create a RAO list, and the type of UDS is
either with or without the geometry. The uds_number must be not larger than
max_host_uds_number in the QUERY_RAO_INFO IOCTL. The application allocates a
memory with grao_list_leng (uds_number * sizeof(struct grao_uds_desc) +8) for
the pointer of grao_list. 8 bytes is the size that is needed for the header portion on
of the return data.

The structures for the GENERATE_RAO IOCTL are
struct generate_rao {

char process; /* [IN] Requested process to generate RAO list */
/* 0: no reorder UDS and no calculate locate time */
/* (not currently supported by the drive) */
/* 1: no reorder UDS but calculate locate time */
/* 2: reorder UDS and calculate locate time */

char uds_type; /* [IN] 0: UDS_WITHOUT_GEOMETRY */
/* 1: UDS_WITH_GEOMETRY */

char reserved1[2];
uint grao_list_leng; /* [IN] The data length is allocated for GRAO list. */

char *grao_list; /* [IN] the pointer is allocated to the size of grao_list_leng */
/* (uds_number * sizeof(struct grao_uds_desc)
/* +sizeof(struct grao_list_header)) */
/* and contains the data of GRAO parameter list. */
/* The uds number isn’t larger than max_host_uds_number */
/* in QUERY_RAO ioctl. */

char reserved2[8];
}

The grao list is in the format and the parameter data can be generated by using the
structures that are defined here.
-- List Header
-- UDS Segment Descriptor (first)

......
-- UDS Segment Descriptor (last)

struct grao_list_header {
uchar reserved[4];
uint addl_data; /* additional data */

}

struct grao_uds_desc {
ushort desc_leng; /* descriptor length */
char reserved[3];
char uds_name[10]; /* uds name given by application */
char partition; /* Partition number 0-n to overwrite */
ullong beginning_loi; /* Beginning logical object ID */
ullong ending_loi; /* Ending logical object ID */

}

An example of the GENERATE_RAO command is
#include<sys/Atape.h>

int rc;
struct generate_rao grao;

bzero(&grao,sizeof(struct generate_rao));

grao.process=2;

Chapter 2. AIX tape and medium changer device driver 79

grao.uds_type=uds_type;
grao.grao_list_leng=max_host_uds_num * sizeof(struct grao_uds_desc)
+ sizeof(struct grao_list_header);

if (!(grao.grao_list=malloc(grao.grao_list_leng)))
{
perror("Failure allocating memory");
return (errno);
}

memset(grao.grao_list, 0, grao.grao_list_leng);
grao.grao_list[3]=36;

rc=ioctl(fd,GENERATE_RAO,&grao);
if (rc)

printf("GENERATE_RAO fails with rc %d\n",rc);
else

printf("GENERATE_RAO succeeds\n");

free(grao.grao_list);

return rc;

RECEIVE_RAO

After a GENERATE_RAO IOCTL is completed, the application calls the RECEIVE_RAO
IOCTL to receive a recommended access order of UDS from the drive. To avoid a
system crash, it is important that the application allocates a large enough block of
memory for the *rrao_list pointer and notifies the driver of the allocated size. It is
done by indicating the size of the buffer in bytes to the rrao_list_leng variable as an
input to the receive_rao_list structure.

The structure for the RECEIVE_RAO IOCTL is
struct receive_rao_list {

uint rrao_list_offset; /* [IN] The offset of receive RAO list to */
/* begin returning data */

uint rrao_list_leng; /* [IN/OUT] number byte of data length */
/* [IN] The data length is allocated for RRAO */
/* list by application the length is */
/* (max_uds_size * uds_number + */
/* sizeof(struct rrao_list_header) */
/* max_uds_size is reported in */
/* sizeof(struct rrao_list_header) */
/* uds_number is the total UDS number */
/* requested from application in */
/* GENERATE_RAO ioctl */
/* [OUT] the data length is actual returned */
/* in RRAO list from the driver */

char *rrao_list; /* [IN/OUT] the data pointer of RRAO list */
char reserved[8];

};

The rrao list is in this format.
List Header

UDS descriptor (first)
-- Basic UDS descriptor
-- Additional UDS info descriptor (first)

......
-- Additional UDS info descriptor (last)

......

UDS descriptor (last)
-- Basic UDS descriptor

80 IBM Tape Device Drivers: Programming Reference

-- Additional UDS info descriptor (first)
......

-- Additional UDS info descriptor (last)

The sample code is
int rc;

struct receive_rao_list rrao;

bzero(&rrao,sizeof(struct receive_rao_list));

rrao.rrao_list_offset=0;
rrao.rrao_list_leng=max_host_uds_num * max_uds_size + 8;
/* 8 is the header of rrao list */

if (!(rrao.rrao_list=malloc(rrao.rrao_list_leng)))
{
perror("Failure allocating memory");
return (errno);
}

memset(rrao.rrao_list, 0, rrao.rrao_list_leng);

rc=ioctl(fd,RECEIVE_RAO,&rrao);
if (rc)
pintf("RECEIVE_RAO fails with rc %d\n",rc);

else
printf("rrao_list_leng %d\n",rrao.rrao_list_leng);

free(rrao.rrao_list);

return rc;

Medium changer IOCTL operations

This chapter describes the set of IOCTL commands that provides control and
access to the SCSI medium changer functions. These IOCTL operations can be
issued to the tape special file (such as rmt0), through a separate special file (such
as rmt0.smc) that was created during the configuration process, or a separate
special file (such as smc0), to access the medium changer.

When an application opens a /dev/rmt special file that is assigned to a drive that
has access to a medium changer, these IOCTL operations are also available. The
interface to the /dev/rmt*.smc special file provides the application access to a
separate medium changer device. When this special file is open, the medium
changer is treated as a separate device. While /dev/rmt*.smc is open, access to the
IOCTL operations is restricted to /dev/rmt*.smc and any attempt to access them
through /dev/rmt* fails.

Overview

The following IOCTL commands are supported.

SMCIOC_ELEMENT_INFO
Obtain the device element information.

SMCIOC_MOVE_MEDIUM
Move a cartridge from one element to another element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

Chapter 2. AIX tape and medium changer device driver 81

SMCIOC_POS_TO_ELEM
Move the robot to an element.

SMCIOC_INIT_ELEM_STAT
Issue the SCSI Initialize Element Status command.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range command.

SMCIOC_INVENTORY
Return the information about the four element types.

SMCIOC_LOAD_MEDIUM
Load a cartridge from a slot into the drive.

SMCIOC_UNLOAD_MEDIUM
Unload a cartridge from the drive and return it to a slot.

SMCIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by the operator.

SMCIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by the operator.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive elements.

SMCIOC_READ_CARTIDGE_LOCATION
Returns the cartridge location information for storage elements in the
library.

These IOCTL commands and their associated structures are defined by including
the /usr/include/sys/Atape.h header file in the C program by using the functions.

SMCIOC_ELEMENT_INFO

This IOCTL command obtains the device element information.

The data structure is
struct element_info
{

ushort robot_addr; /* first robot address */
ushort robots; /* number of medium transport elements */
ushort slot_addr; /* first medium storage element address */
ushort slots; /* number of medium storage elements */
ushort ie_addr; /* first import/export element address */
ushort ie_stations; /* number of import/export elements */
ushort drive_addr; /* first data-transfer element address */
ushort drives; /* number of data-transfer elements */

};

An example of the SMCIOC_ELEMENT_INFO command is
#include <sys/Atape.h>

struct element_info element_info;

if (!ioctl (smcfd, SMCIOC_ELEMENT_INFO, &element_info))
{

printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded\n");
printf ("\nThe element information data is:\n");
dump_bytes ((uchar *)&element_info, sizeof (struct element_info));

}
else

82 IBM Tape Device Drivers: Programming Reference

{
perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
smcioc_request_sense();

}

SMCIOC_MOVE_MEDIUM

This IOCTL command moves a cartridge from one element to another element.

The data structure is
struct move_medium
{

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_MOVE_MEDIUM command is
#include <sys/Atape.h>

struct move_medium move_medium;

move_medium.robot = 0;
move_medium.invert = 0;
move_medium.source = source;
move_medium.destination = dest;

if (!ioctl (smcfd, SMCIOC_MOVE_MEDIUM, &move_medium))
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded\n");

else
{
perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_EXCHANGE_MEDIUM

This IOCTL command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first moves
the cartridge from the source element to the destination1 element. The second
moves the cartridge that was previously in the destination1 element to the
destination2 element. The destination2 element can be the same as the source
element.

The input data structure is
struct exchange_medium
{

ushort robot; /* robot address */
ushort source; /* source address for exchange */
ushort destination1; /* first destination address for exchange */
ushort destination2; /* second destination address for exchange */
char invert1; /* invert before placement into destination1 */
char invert2; /* invert before placement into destination2 */

};

An example of the SMCIOC_EXCHANGE_MEDIUM command is
#include <sys/Atape.h>

struct exchange_medium exchange_medium;

exchange_medium.robot = 0;

Chapter 2. AIX tape and medium changer device driver 83

exchange_medium.invert1 = 0;
exchange_medium.invert2 = 0;
exchange_medium.source = 32; /* slot 32 */
exchange_medium.destination1 = 16; /* drive address 16 */
exchange_medium.destination2 = 35; /* slot 35 */

/* exchange cartridge in drive address 16 with cartridge from slot 32 and */
/* return the cartridge currently in the drive to slot 35 */
if (!ioctl (smcfd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))

printf ("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded\n");
else
{
perror ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_POS_TO_ELEM

This IOCTL command moves the robot to an element.

The input data structure is
struct pos_to_elem
{

ushort robot; /* robot address */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_POS_TO_ELEM command is
#include <sys/Atape.h>

char buf[10];
struct pos_to_elem pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = 0;
pos_to_elem.destination = dest;

if (!ioctl (smcfd, SMCIOC_POS_TO_ELEM, &pos_to_elem))
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded\n");

else
{

perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT

This IOCTL command instructs the medium changer robotic device to issue the
SCSI Initialize Element Status command.

There is no associated data structure.

An example of the SMCIOC_INIT_ELEM_STAT command is
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT, NULL))
printf ("The SMCIOC_INIT_ELEM_STAT ioctl succeeded\n");

else
{

perror ("The SMCIOC_INIT_ELEM_STAT ioctl failed");
smcioc_request_sense();

}

84 IBM Tape Device Drivers: Programming Reference

SMCIOC_INIT_ELEM_STAT_RANGE

This IOCTL command issues the SCSI Initialize Element Status with Range
command. It is used to audit specific elements in a library by specifying the
starting element address and number of elements. Use the SMCIOC_INIT_ELEM_STAT
IOCTL to audit all elements.

The data structure is
struct element_range

{
ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

}

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is
#include <sys/Atape.h>

struct element_range elements;

/* audit slots 32 to 36 */
elements.element_address = 32;
elements.number_elements = 5;

if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT_RANGE, &elements))
printf ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded\n");

else
{
perror ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
smcioc_request_sense();
}

SMCIOC_INVENTORY

This IOCTL command returns information about the four element types. The
software application processes the input data (the number of elements about which
it requires information). Then, it allocates a buffer large enough to hold the output
for each element type.

The input data structure is
struct element_status
{

ushort address; /* element address */
uint :2, /* reserved */

inenab:1, /* media into changer’s scope */
exenab:1, /* media out of changer’s scope */
access:1, /* robot access allowed */
except:1, /* abnormal element state */
impexp:1, /* import/export placed by operator or robot */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uint notbus:1, /* element not on same bus as robot */

:1, /* reserved */
idvalid:1, /* element address valid */
luvalid:1, /* logical unit valid */
:1, /* reserved */
lun:3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar resvd2; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

Chapter 2. AIX tape and medium changer device driver 85

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar resvd3[4]; /* reserved */

};

struct inventory
{

struct element_status *robot_status; /* medium transport element pages */
struct element_status *slot_status; /* medium storage element pages */
struct element_status *ie_status; /* import/export element pages */
struct element_status *drive_status; /* data-transfer element pages */

};

An example of the SMCIOC_INVENTORY command is
#include <sys/Atape.h>

ushort i;
struct element_status robot_status[1];
struct element_status slot_status[20];
struct element_status ie_status[1];
struct element_status drive_status[1];
struct inventory inventory;

bzero((caddr_t)robot_status,sizeof(struct element_status));

for (i=0;i<20;i++)
bzero((caddr_t)(&slot_status[i]),sizeof(struct element_status));

bzero((caddr_t)ie_status,sizeof(struct element_status));
bzero((caddr_t)drive_status,sizeof(struct element_status));

smcioc_element_info();

inventory.robot_status = robot_status;
inventory.slot_status = slot_status;
inventory.ie_status = ie_status;
inventory.drive_status = drive_status;

if (!ioctl (smcfd, SMCIOC_INVENTORY, &inventory))
{

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded\n");
printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robots; i++)
{

dump_bytes ((uchar *)(inventory.robot_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}

printf ("\nThe slot status pages are:\n");

for (i = 0; i < element_info.slots; i++)
{

dump_bytes ((uchar *)(inventory.slot_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}

printf ("\nThe ie status pages are:\n");

for (i = 0; i < element_info.ie_stations; i++)
{

dump_bytes ((uchar *)(inventory.ie_status+i),

86 IBM Tape Device Drivers: Programming Reference

sizeof (struct element_status));
printf ("\n--- more ---");
getchar();

}

printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drives; i++)
{

dump_bytes ((uchar *)(inventory.drive_status+i),
sizeof (struct element_status));

printf ("\n--- more ---");
getchar();

}
}
else
{

perror ("The SMCIOC_INVENTORY ioctl failed");
smcioc_request_sense();

}

SMCIOC_LOAD_MEDIUM

This IOCTL command loads a tape from a specific slot into the drive. Or, it loads
from the first full slot into the drive if the slot address is specified as zero.

An example of the SMCIOC_LOAD_MEDIUM command is
#include <sys/Atape.h>

/* load cartridge from slot 3 */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,3)<0)
{

printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

/* load first cartridge from magazine */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,0)<0)
{

printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

SMCIOC_UNLOAD_MEDIUM

This IOCTL command moves a tape from the drive and returns it to a specific slot.
Or, it moves a tape to the first empty slot in the magazine if the slot address is
specified as zero. If the IOCTL is issued to the /dev/rmt special file, the tape is
automatically rewound and unloaded from the drive first.

An example of the SMCIOC_UNLOAD_MEDIUM command is
#include <sys/Atape.h>

/* unload cartridge to slot 3 */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,3)<0)
{

printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

/* unload cartridge to first empty slot in magazine */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,0)<0)

Chapter 2. AIX tape and medium changer device driver 87

{
printf ("IOCTL failure. errno=%d\n",errno)
exit(1):

}

SMCIOC_PREVENT_MEDIUM_REMOVAL

This IOCTL command prevents an operator from removing medium from the
device until the SMCIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device is
reset.

There is no associated data structure.

An example of the SMCIOC_PREVENT_MEDIUM_REMOVAL command is
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");

else
{

perror ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_ALLOW_MEDIUM_REMOVAL

This IOCTL command allows an operator to remove medium from the device. This
command is used normally after an SMCIOC_PREVENT_MEDIUM_REMOVAL command to
restore the device to the default state.

There is no associated data structure.

An example of the SMCIOC_ALLOW_MEDIUM_REMOVAL command is
#include <sys/Atape.h>

if (!ioctl (smcfd, SMCIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");

else
{

perror ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_READ_ELEMENT_DEVIDS

This IOCTL command issues the SCSI Read Element Status command with the
device ID (DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to
return. The application must allocate a return buffer large enough for the
number_elements specified in the input structure.

The input data structure is
struct read_element_devids
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct element_devid *drive_devid; /* data transfer element pages */

};

88 IBM Tape Device Drivers: Programming Reference

The output data structure is
struct element_devid
{

ushort address; /* element address */
uint :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */
:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uint notbus:1, /* element not on same bus as robot */

:1, /* reserved */
idvalid:1, /* element address valid */
luvalid:1, /* logical unit valid */
:1, /* reserved */
lun:3; /* logical unit number */

uchar scsi; /* scsi bus address */
uchar resvd2; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uint :4, /* reserved */

code_set:4; /* code set X’2’ is all ASCII identifier */
uint :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[36]; /* device identification */

};

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is
#include <sys/Atape.h>

int smcioc_read_element_devids()
{
int i;
struct element_devid *elem_devid, *elemp;
struct read_element_devids devids;
struct element_info element_info;

if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info))
return errno;

if (element_info.drives)
{
elem_devid = malloc(element_info.drives * sizeof(struct element_devid));
if (elem_devid == NULL)

{
errno = ENOMEM;
return errno;
}
bzero((caddr_t)elem_devid,element_info.drives * sizeof(struct element_devid));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_addr;
devids.number_elements = element_info.drives;

printf("Reading element device ids...\n");

if (ioctl (fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))
{
free(elem_devid);
return errno;
}

Chapter 2. AIX tape and medium changer device driver 89

elemp = elem_devid;
for (i = 0; i < element_info.drives; i++, elemp++)
{
printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)
printf(" Drive State Abnormal\n");

else
printf(" Drive State Normal\n");

if (elemp->asc == 0x81 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Present)\n",

elemp->asc,elemp->ascq);
else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else
printf(" ASC/ASCQ %02X%02X\n",

elemp->asc,elemp->ascq);
if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",elemp->source);
else
printf(" Source Element Address Valid ... No\n");

if (elemp->invert)
printf(" Media Inverted Yes\n");

else
printf(" Media Inverted No\n");

if (elemp->notbus)
printf(" Same Bus as Medium Changer No\n");

else
printf(" Same Bus as Medium Changer Yes\n");

if (elemp->idvalid)
printf(" SCSI Bus Address %d\n",elemp->scsi);

else
printf(" SCSI Bus Address Valid No\n");

if (elemp->luvalid)
printf(" Logical Unit Number %d\n",elemp->lun);

else
printf(" Logical Unit Number Valid No\n");

printf(" Device ID %0.36s\n", elemp->identifier);
}
}

else
{
printf("\nNo drives found in element information\n");
}

free(elem_devid);
return errno;
}

SMCIOC_READ_CARTIDGE_LOCATION

The SMCIOC_READ_CARTIDGE_LOCATION IOCTL is used to return the cartridge location
information for storage elements in the library. The element_address field specifies
the starting element address to return. The number_elements field specifies how
many storage elements are returned. The data field is a pointer to the buffer for
return data. The buffer must be large enough for the number of elements that are

90 IBM Tape Device Drivers: Programming Reference

returned. If the storage element contains a cartridge, then the ASCII identifier
field in return data specifies the location of the cartridge.

Note: This IOCTL is supported only on the TS3500 (3584) library.

The data structures that are used with this IOCTL are
struct cartridge_location_data
{

ushort address; /* element address */
uint :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */

:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar resvd2[3]; /* reserved */
uint svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uint :4, /* reserved */

code_set:4; /* code set X’2’ is all ASCII identifier */
uint :4, /* reserved */

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

};

struct read_cartridge_location
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct cartridge_location_data *data; /* storage element pages */
char reserved[8]; /* reserved */

};

Example of the SMCIOC_READ_CARTRIDGE_LOCATION IOCTL
#include <sys/Atape.h>

int i;
struct cartridge_location_data *data, *elemp;
struct read_cartridge_location cart_location;
struct element_info element_info;

/* get the number of slots and starting element address */
if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info) < 0)

return errno;

if (element_info.slots == 0)
return 0;

data = malloc(element_info.slots * sizeof(struct cartridge_location_data));
if (data == NULL)
return ENOMEM;

/* Read cartridge location for all slots */
bzero(data,element_info.slots * sizeof(struct cartridge_location_data));
cart_location.data = data;
cart_location.element_address = element_info.slot_addr;
cart_location.number_elements = element_info.slots;

Chapter 2. AIX tape and medium changer device driver 91

if (ioctl (fd, SMCIOC_READ_CARTRIDGE_LOCATION, &cart_location) < 0)
{
free(data);
return errno;
}

elemp = data;
for (i = 0; i < element_info.slots; i++, elemp++)

{
if (elemp->address == 0

) continue;

printf("Slot Address %d\n",elemp->address);
if (elemp->except)

printf(" Slot State Abnormal\n");
else

printf(" Slot State Normal\n");
printf(" ASC/ASCQ %02X%02X\n",

elemp->asc,elemp->ascq);
if (elemp->full)

printf(" Media Present Yes\n");
else

printf(" Media Present No\n");
if (elemp->access)

printf(" Robot Access Allowed Yes\n");
else

printf(" Robot Access Allowed No\n");
if (elemp->svalid)

printf(" Source Element Address %d\n",elemp->source);
else

printf(" Source Element Address Valid ... No\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
printf(" Volume Tag %0.36s\n", elemp->volume);
printf(" Cartridge Location %0.24s\n", elemp->identifier);

} free(data);
return 0;

Return codes

This chapter describes the return codes that the device driver generates when an
error occurs during an operation. The standard errno values are in the AIX
/usr/include/sys/errno.h header file.

If the return code is input/output error (EIO), the application can issue the
STIOCQRYSENSE IOCTL command with the LASTERROR option. Or, it can issue the
SIOC_REQSENSE IOCTL command to analyze the sense data and determine why the
error occurred.

Codes for all operations

The following codes and their descriptions apply to all operations.

[EACCES]
Data encryption access denied.

[EBADF]
A bad file descriptor was passed to the device.

92 IBM Tape Device Drivers: Programming Reference

[EBUSY]
An excessive busy state was encountered in the device.

[EFAULT]
A memory failure occurred due to an invalid pointer or address.

[EMEDIA]
An unrecoverable media error was detected in the device.

[ENOMEM]
Insufficient memory was available for an internal memory operation.

[ENOTREADY]
The device was not ready for operation, or a tape was not in the drive.

[ENXIO]
The device was not configured and is not receiving requests.

[EPERM]
The process does not have permission to complete the wanted function.

[ETIMEDOUT]
A command that is timed out in the device.

[ENOCONNECT]
The device did not respond to selection.

[ECONNREFUSED]
The device driver detected that the device vital product data (VPD)
changed. The device must be unconfigured in AIX and reconfigured to
correct the condition.

Open error codes

The following codes and their descriptions apply to open operations.

[EAGAIN]
The device was opened before the open operation.

[EBADF]
A write operation was attempted on a device that was opened with the
O_RDONLY flag.

[EBUSY]
The device was reserved by another initiator, or an excessive busy state
was encountered.

[EINVAL]
The operation that is requested has invalid parameters or an invalid
combination of parameters, or the device is rejecting open commands.

[ENOTREADY]
If the device was not opened with the O_NONBLOCK or O_NDELAY flag, then
the drive is not ready for operation, or a tape is not in the drive. If a
nonblocking flag was used, then the drive is not ready for operation.

[EWRPROTECT]
An open operation with the O_RDWR or O_WRONLY flag was attempted on a
write-protected tape.

[EIO] An I/O error occurred that indicates a failure to operate the device.
Perform the failure analysis.

Chapter 2. AIX tape and medium changer device driver 93

[EINPROGRESS]
This errno is returned when the extended open flag SC_KILL_OPEN is used to
kill all processes that currently have the device opened.

Write error codes

The following codes and their descriptions apply to write operations.

[EINVAL]
The operation that is requested has invalid parameters or an invalid
combination of parameters.

The number of bytes requested in the write operation was not a multiple
of the block size for a fixed block transfer.

The number of bytes requested in the write operation was greater than the
maximum block size allowed by the device for variable block transfers.

[ENOSPC]
A write operation failed because it reached the early warning mark or the
programmable early warning zone (PEWZ) while it was in label-processing
mode. This return code is returned only once when the early warning or
the programmable early warning zone (PEWZ) is reached.

[ENXIO]
A write operation was attempted after the device reached the logical end
of the medium.

[EWRPROTECT]
A write operation was attempted on a write-protected tape.

[EIO] The physical end of the medium was detected, or a general error occurred
that indicates a failure to write to the device. Perform the failure analysis.

Read error codes

The following codes and their descriptions apply to read operations.

[EBADF]
A read operation was attempted on a device opened with the O_WRONLY
flag.

[EINVAL]
The operation that is requested has invalid parameters or an invalid
combination of parameters.

The number of bytes requested in the read operation was not a multiple of
the block size for a fixed block transfer.

The number of bytes requested in the read operation was greater than the
maximum size allowed by the device for variable block transfers.

[ENOMEM]
The number of bytes requested in the read operation of a variable block
record was less than the size of the block. This error is known as an
overlength condition.

Close error codes

The following codes and their descriptions apply to close operations.

94 IBM Tape Device Drivers: Programming Reference

[EIO] An I/O error occurred during the operation. Perform the failure analysis.

[ENOTREADY]
A command that is issued during close, such as a rewind command, failed
because the device was not ready.

IOCTL error codes

The following codes and their descriptions apply to IOCTL operations.

[EINVAL]
The operation that is requested has invalid parameters or an invalid
combination of parameters.

This error code also results if the IOCTL is not supported for the device.

[EWRPROTECT]
An operation that modifies the media was attempted on a write-protected
tape or a device opened with the O_RDONLY flag.

[EIO] An I/O error occurred during the operation. Perform the failure analysis.

[ECANCELLED]
The STIOCTOP IOCTL with the st_op field that specifies STERASE_IMM
was canceled by another process that issued the STIOC_CANCEL_ERASE
IOCTL.

Chapter 2. AIX tape and medium changer device driver 95

96 IBM Tape Device Drivers: Programming Reference

Chapter 3. HP-UX tape and medium changer device driver

HP-UX programming interface

The HP-UX programming interface to the Advanced Tape Device Driver (ATDD)
software conforms to the standard HP-UX tape device driver interface. The
following user callable entry points are supported.
v “open”
v “close” on page 98
v “read” on page 99
v “write” on page 99
v “ioctl” on page 100

open

The open entry point is called to make the driver and device ready for
input/output (I/O). Only one open at a time is allowed for each tape device. More
opens of the same device (whether from the same or a different client system) fail
with an EBUSY error. ATDD supports multiple opens to the medium changer if the
configuration parameter RESERVE is set to 0. To set the configuration parameter,
see the IBM Tape Device Drivers Installation and User's Guide for guidance.

The following code fragment illustrates a call to the open routine.
/*integer file handle */
int tape;
/*Open for reading/writing */
tape =open ("/dev/rmt/0mn",O_RDWR);
/*Print msg if open failed */
if (tape ==-1)
{
printf("open failed \n");
printf("errno =%d \n",errno);
exit (-1);
}

If the open system call fails, it returns -1, and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file.

The oflags parameters are defined in the /usr/include/sys/fcntl.h system header
file. Use bitwise inclusive OR operations to aggregate individual values together.
ATDD recognizes and supports the following oflags values.

O_RDONLY
This flag allows only operations that do not alter the content of the tape.
All special files support this flag.

O_RDWR
This flag allows data on the tape to be read and written. An open call to
any tape drive special file where the tape device has a write protected
cartridge that is mounted fails.

O_WRONLY
This flag does not allow the tape to be read. All other tape operations are

© Copyright IBM Corp. 1999, 2016 97

allowed. An open call to any tape drive special file where the tape device
has a write protected cartridge that is mounted fails.

O_NDELAY
This option indicates to the driver not to wait until the tape drive is ready
before device is opened and commands are sent. If the flag is not set, an
open call requires a physical tape to be loaded and ready. The open
without the flag fails and an EIO is returned if the tape drive is not ready.

close

The close entry point is called to terminate I/O to the driver and device.

The following code fragment illustrates a call to the close routine.
int rc;
rc =close (tape);
if (rc ==-1)
{

printf("close failed \n");
printf("errno =%d \n",errno);
exit (-1);

}

where tape is the open file handle that is returned by the open call. The close
routine normally would not return an error. The exception is related to the fact that
any data buffered on the drive is flushed out to tape before completion of the
close. If any error occurs in flushing the data, an error code is returned by the
close routine.

An application must explicitly issue the close() call when the I/O resource is no
longer necessary or in preparation for termination. The operating system implicitly
issues the close() call for an application that terminates without closing the
resource itself. If an application terminates unexpectedly but leaves behind child
processes that inherited the file descriptor for the open resource, the operating
system does not implicitly close the file descriptor because it believes that it is still
in use.

The close operation behavior depends on which special file was used during the
open operation and which tape operation was last run while it was opened. The
commands are issued to the tape drive during the close operation according to the
following logic and rules.
if last operation was WRITE FILEMARK

WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was WRITE
WRITE FILEMARK
WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was READ
if special file is NOT BSD

if EOF was encountered
FORWARD SPACE1 FILEMARK

if special file is REWIND ON CLOSE
REWIND

Rules:

98 IBM Tape Device Drivers: Programming Reference

1. Return EIO and release the drive when a unit attention happens before the
close().

2. Fail the command, return EIO, and release the drive if a unit attention occurs
during the close().

3. If a SCSI command fails during close processing, only the SCSI RELEASE is
attempted thereafter.

4. The return code from the SCSI RELEASE command is ignored.

read

The read entry point is called to read data from tape. The caller provides a buffer
address and length, and the driver returns data from the tape to the buffer. The
amount of data that is returned never exceeds the length parameter.

The following code fragment illustrates a read call to the driver.
actual = read(tape, buf_addr, bufsize);

if (actual > 0)
printf("Read %d bytes\n", actual);

else if (actual == 0)
printf("Read found file mark\n");

else
{

printf("Error on read\n");
printf("errno = %d\n",errno);
exit (-1);

}

where tape is the open file handle, buf_addr is the address of a buffer in which to
place the data, and bufsize is the number of bytes to be read.

The returned value, actual, is the actual number of bytes read (and zero indicates
a file mark).

variable block size

When in variable block size mode, the bufsize parameter can be any value valid
to the drive. The amount of data that is returned equals the size of the next record
on the tape or the size requested (bufsize), whichever is less. If bufsize is less
than the actual record size on the tape, the remainder of the record is lost because
the next read starts from the start of the next record.

fixed block size

If the tape drive is configured for fixed block size operation, the bufsize parameter
must be a multiple of the device block size, or an error code (EINVAL) is returned.
If the bufsize parameter is valid, the read command always returns the amount of
data that is requested unless a file mark is encountered. In that case, it returns all
data that occurred before the filemark and actual equals the number of bytes
returned.

write

The write entry point is called to write data to the tape. The caller provides the
address and length of the buffer to be written. Physical limitations of the drive can
cause write to fail (for example, attempting to write past the physical end of tape).

Chapter 3. HP-UX tape and medium changer device driver 99

The following code fragment shows a call to the write routine.
actual = write(tape, buf_addr, bufsize);

if (actual < 0)
{

printf("Error on write\n");
printf("errno = %d\n",errno);
exit (-1);

}

where tape is the open file handle, buf_addr is the buffer address, and bufsize is
the size of the buffer in bytes.

The bufsize parameter must be a multiple of the block size or an error is returned
(EINVAL). If the write size exceeds the device maximum block size or the
configured buffer size of the tape drive, an error is returned (EINVAL).

ioctl

The ATDD software supports all input/output control (IOCTL) commands that are
supported by the HP-UX native drivers, tape2, and stape. See the following
HP-UX man pages for information.
v mt(7)

v scsi(7)

IOCTL operations

The following sections describe IOCTL operations that are supported by the ATDD.
Usage, syntax, and examples are given.

The IOCTL operations that are supported by the driver are described in
v “General SCSI IOCTL operations”
v “SCSI medium changer IOCTL operations” on page 108
v “SCSI tape drive IOCTL operations” on page 118
v “Base operating system tape drive IOCTL operations” on page 149
v “Service aid IOCTL operations” on page 151

The following files must be included by user programs that issue the IOCTL
commands described in this section to access the tape device driver.
v #include <sys/st.h>

v #include <sys/svc.h>

v #include <sys/smc.h>

v #include <sys/mtio.h>

General SCSI IOCTL operations

A set of general SCSI IOCTL commands gives applications access to standard SCSI
operations, such as device identification, access control, and problem determination
for both tape drive and medium changer devices.

The following commands are supported.

IOC_TEST_UNIT_READY
Determine whether the device is ready for operation.

100 IBM Tape Device Drivers: Programming Reference

IOC_INQUIRY
Collect the inquiry data from the device.

IOC_INQUIRY_PAGE
Return the inquiry data for a special page from the device.

IOC_REQUEST_SENSE
Return the device sense data.

IOC_LOG_SENSE_PAGE
Return a log sense page from the device.

IOC_LOG_SENSE10_PAGE
Return the log sense data by using a 10-byte CDB with optional subpage.

IOC_MODE_SENSE
Return the mode sense data from the device.

IOC_RESERVE
Reserve the device for exclusive use by the initiator.

IOC_RELEASE
Release the device from exclusive use by the initiator.

IOC_PREVENT_ MEDIUM_REMOVAL
Prevent medium removal by an operator.

IOC_ALLOW_ MEDIUM_REMOVAL
Allow medium removal by an operator.

IOC_GET_DRIVER_INFO
Return the driver information.

These commands and associated data structures are defined in the st.h and smc.h
header files in the /usr/include/sys directory. It is installed with the HP-UX
Advanced Tape Device Driver (ATDD) package. Any application program that
issues these commands must include one or both header files.

IOC_TEST_UNIT_READY

This command determines whether the device is ready for operation.

No data structure is required for this command.

An example of the IOC_TEST_UNIT_READY command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_TEST_UNIT_READY, 0))) {
printf ("The IOC_TEST_UNIT_READY ioctl succeeded.\n");

}

else {
perror ("The IOC_TEST_UNIT_READY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY

This command collects the inquiry data from the device.

The following data structure is filled out and returned by the driver.

Chapter 3. HP-UX tape and medium changer device driver 101

typedef struct {
uchar qual : 3, /* peripheral qualifier */

type : 5; /* device type */
uchar rm : 1, /* removable medium */

mod : 7; /* device type modifier */
uchar iso : 2, /* ISO version */

ecma : 3, /* ECMA version */
ansi : 3; /* ANSI version */

uchar aen : 1, /* asynchronous even notification */
trmiop : 1, /* terminate I/O process message */

: 2, /* reserved */
rdf : 4; /* response data format */

uchar len; /* additional length */
uchar : 8; /* reserved */
uchar : 1, /* reserved */

encsrv : 1, /* enclosure service */
barcod : 1, /* bar code scanner attached */
multip : 1, /* multi-port */
mchngr : 1, /* medium changer mode */

: 3; /* reserved */
uchar reladr : 1, /* relative addressing */

wbus32 : 1, /* 32-bit wide data transfers */
wbus16 : 1, /* 16-bit wide data transfers */
sync : 1, /* synchronous data transfers */
linked : 1, /* linked commands */

: 1, /* reserved */
cmdque : 1, /* command queueing */
sftre : 1; /* soft reset */

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar rev[4]; /* product revision level */
uchar vendor[92]; /* vendor specific (padded to 128) */

} inquiry_data_t;

An example of the IOC_INQUIRY command is
#include <sys/st.h>

inquiry_data_t inquiry_data;

if (!(ioctl (dev_fd, IOC_INQUIRY, &inquiry_data))) {
printf ("The IOC_INQUIRY ioctl succeeded.\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((char *)&inquiry_data, sizeof (inquiry_data_t));

}

else {
perror ("The IOC_INQUIRY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY_PAGE

This command returns the inquiry data when a nonzero page code is requested.
For inquiry pages 0x80, data that is mapped by structures inq_pg_80_t is returned
in the data array. Otherwise, an array of data is returned in the data array.

The following data structure for inquiry page x80 is filled out and returned by the
driver.
typedef struct {

uchar page_code; /* page code */
uchar data[253]; /* inquiry parameter List */

} inquiry_page_t;

typedef struct {

102 IBM Tape Device Drivers: Programming Reference

uchar periph_qual : 3, /* peripheral qualifier */
periph_type : 5; /* peripheral device type */

uchar page_code; /* page code */
uchar reserved_1; /* reserved */
uchar page_len; /* page length */
uchar serial[12]; /* serial number */

} inq_pg_80_t;

An example of the IOC_INQUIRY_PAGE command is
#include <sys/st.h>

inquiry_page_t inquiry_page;
inquiry_page.page_code = (uchar) page;

if (!(ioctl (dev_fd, IOC_INQUIRY_PAGE, &inquiry_page))){
printf ("Inquiry Data (Page 0x%02x):\n", page);
dump_bytes ((char *)&inquiry_page.data, inquiry_page.data[3]+4);

}
else {

perror ("The IOC_INQUIRY_PAGE ioctl for page 0x%X failed.\n", page);
scsi_request_sense ();

}

IOC_REQUEST_SENSE

This command returns the device sense data. If the last command resulted in an
error, the sense data is returned for that error. Otherwise, a new (unsolicited)
Request Sense command is issued to the device.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar valid : 1, /* sense data is valid */
code : 7, /* error code */

uchar segnum; /* segment number */
uchar fm : 1, /* filemark detected */

eom : 1, /* end of media */
ili : 1, /* incorrect length indicator */

: 1, /* reserved */
key : 4; /* sense key */

uchar info[4]; /* information bytes */
uchar addlen; /* additional sense length */
uchar cmdinfo[4]; /* command-specific information */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field-replaceable unit code */
uchar sksv : 1, /* sense key specific valid */

cd : 1, /* control/data */
: 2, /* reserved */

bpv : 1, /* bit pointer valid */
sim : 3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[110]; /* vendor specific (padded to 128) */

} sense_data_t;

An example of the IOC_REQUEST_SENSE command is
#include <sys/st.h>

sense_data_t sense_data;

if (!(ioctl (dev_fd, IOC_REQUEST_SENSE, &sense_data))) {
printf ("The IOC_REQUEST_SENSE ioctl succeeded.\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((char *)&sense_data, sizeof (sense_data_t));

}

Chapter 3. HP-UX tape and medium changer device driver 103

else {
perror ("The IOC_REQUEST_SENSE ioctl failed");

}

IOC_LOG_SENSE_PAGE

This IOCTL command returns a log sense page from the device. The wanted page
is selected by specifying the page_code in the log_sense_page structure.

The structure of a log page consists of the following log page header and log
parameters.
v Log Page

– Log Page Header
- Page Code
- Page Length

– Log Parameter(s) (One or more might exist)
- Parameter Code
- Control Byte
- Parameter Length
- Parameter Value

The following data structure is filled out and returned by the driver.
typedef struct {

uchar page_code; /* page code */
uchar data[MAX_LGPGDATA]; /* log data structure */

}log_sns_pg_t;

An example of the IOC_LOG_SENSE_PAGE command is
#include <sys/st.h>

static int scsi_log_sense_page (int page, int type, int parmcode)
{

int i, j=0;
int rc;
int true;
int len, parm_len;
int parm_code;
log_sns_pg_t log_sns_page;
log_page_hdr_t page_header;

memset ((char *)&log_sns_page, (char)0, sizeof(log_sns_pg_t));
log_sns_page.page_code = (uchar) page;

if (!(rc = ioctl (dev_fd, IOC_LOG_SENSE_PAGE, &log_sns_page))) {
len =(int) ((log_sns_page.data[2] << 8) + log_sns_page.data[3]) + 4;
if (type != 1) {

printf ("Log Sense Data (Page 0x%02x):\n", page);
dump_bytes ((char *)&log_sns_page.data, len);

}
else {

for(i=4; i<=len; i=(parm_len+4)){
j += i;
parm_code = (int) ((log_sns_page.data[j] << 8) +

log_sns_page.data[j+1]);
parm_len = (int) (log_sns_page.data[j+3]);
if (true = (parm_code == parmcode)) {

printf ("Log Sense Data (Page 0x%02x, Parameter Code 0x%04x):\n",
page, parmcode);

dump_bytes ((char *)&log_sns_page.data[j], (parm_len+4));

104 IBM Tape Device Drivers: Programming Reference

break;
}

}
if (!true)

printf ("IOC_LOG_SENSE_PAGE for Page 0x%02x,
Parameter Code 0x%04x failed.\n",

page, parmcode);
}

}
else {

printf ("IOC_LOG_SENSE_PAGE for page 0x%X failed.\n", page);
printf ("\n");
scsi_request_sense ();

}
return (rc);
}

IOC_LOG_SENSE10_PAGE

This IOCTL command is enhanced to add a Subpage variable from
IOC_LOG_SENSE_PAGE. It returns a log sense page and Subpage from the device. The
wanted page is selected by specifying the page_code and subpage_code in the
log_sense10_page structure. Optionally, a specific parm pointer, also known as a
parm code, and the number of parameter bytes can be specified with the
command.

To obtain the entire log page, the len and parm_pointer fields must be set to zero.
To obtain the entire log page that starts at a specific parameter code, set the
parm_pointer field to the wanted code and the len field to zero. To obtain a
specific number of parameter bytes, set the parm_pointer field to the wanted code.
Then, set the len field to the number of parameter bytes plus the size of the log
page header (4 bytes). The first 4 bytes of returned data are always the log page
header. See the appropriate device manual to determine the supported log pages
and content. The data structure is
/* log sense page and subpage structure */

typedef struct {
uchar page_code; /* [IN] Log sense page */
uchar subpage_code; /* [IN] Log sense subpage */
uchar reserved[2]; /* unused */
unsigned short len; /* [OUT] number of valid bytes in data

(log_page_header_size + page_length) */
unsigned short parm_pointer; /* [IN] specific parameter number at which

the data begins */
char data[LOGSENSEPAGE]; /* [OUT] log data */

} log_sense10_page_t;

IOC_MODE_SENSE

This command returns a mode sense page from the device. The wanted page is
selected by specifying the page_code in the mode_sns_t structure.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar page_code; /* page code */
uchar cmd_code; /* SCSI command code */
uchar data[253]; /* mode parameter list

}mode_sns_t;

An example of the IOC_MODE_SENSE command is

Chapter 3. HP-UX tape and medium changer device driver 105

#include <sys/st.h>

int offset;
mode_sns_t mode_data;
mode_data.page_code = (uchar) page;

memset ((char *)&mode_data, (char)0, sizeof(mode_sns_t));

if (!(rc = ioctl (dev_fd, IOC_MODE_SENSE, &mode_data))) {
if (mode_data.cmd_code == 0x1A)

offset = (int) (mode_data.data[3]) + sizeof(mode_hdr6_t);
if (mode_data.cmd_code == 0x5A)

offset = (int) ((mode_data.data[6] << 8) + mode_data.data[7]) +
sizeof(mode_hdr10_t);

printf("Mode Data (Page 0x%02x):\n", mode_data.page_code);
dump_bytes ((char *)&mode_data.data[offset], (mode_data.data[offset+1] + 2));

}
else {
printf("IOC_MODE_SENSE for page 0x%X failed.\n", mode_data.page_code);
scsi_request_sense ();

}

IOC_RESERVE

This command persistently reserves the device for exclusive use by the initiator.
The ATDD normally reserves the device in the open operation and releases the
device in the close operation. Issuing this command prevents the driver from
releasing the device during the close operation and the reservation is maintained
after the device is closed. This command is negated by issuing the IOC_RELEASE
IOCTL command.

No data structure is required for this command.

An example of the IOC_RESERVE command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RESERVE, 0))) {
printf ("The IOC_RESERVE ioctl succeeded.\n");

}

else {
perror ("The IOC_RESERVE ioctl failed");
scsi_request_sense ();

}

IOC_RELEASE

This command releases the persistent reservation of the device for exclusive use by
the initiator. It negates the result of the IOC_RESERVE IOCTL command that is
issued either from the current or a previous open session.

No data structure is required for this command.

An example of the IOC_RELEASE command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RELEASE, 0))) {
printf ("The IOC_RELEASE ioctl succeeded.\n");

}

106 IBM Tape Device Drivers: Programming Reference

else {
perror ("The IOC_RELEASE ioctl failed");
scsi_request_sense ();

}

IOC_PREVENT_MEDIUM_REMOVAL

This command prevents an operator from removing media from the tape drive or
the medium changer.

No data structure is required for this command.

An example of the IOC_PREVENT_MEDIUM_REMOVAL command is
#include <sys/st.h>

if (!(ioctl (dev_fd,IOC_PREVENT_MEDIUM_REMOVAL,NULL)))
printf ("The IOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded \n");

else {
perror ("The IOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
scsi_request_sense();

}

IOC_ALLOW_MEDIUM_REMOVAL

This command allows an operator to remove media from the tape drive and the
medium changer. This command is normally used after an
IOC_PREVENT_MEDIUM_REMOVAL command to restore the device to the default state.

No data structure is required for this command.

An example of the IOC_ALLOW_MEDIUM_REMOVAL command is
#include <sys/st.h>

if (!(ioctl (dev_fd,IOC_ALLOW_MEDIUM_REMOVAL,NULL)))
printf ("The IOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded \n");

else {
perror ("The IOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
scsi_request_sense();

}

IOC_GET_DRIVER_INFO

This command returns the information of the current installed ATDD.

The following data structure is filled out and returned by the driver.
typedef struct {

char driver_id[64]; /* the name of the tape driver (ATDD) */
char version[25]; /* the version of the tape driver */

} Get_driver_info_t;

An example of the IOC_GET_DRIVER_INFO command is
#include <sys/st.h>

get_driver_info_t get_driver_info;

if (!(rc = ioctl (dev_fd, IOC_GET_DRIVER_INFO, &get_driver_info))) {
strncpy (driver_level, get_driver_info.version, 7);
PRINTF ("The version of %s(Advanced Tape Device Driver): %s\n",

get_driver_info.driver_id, driver_level);
}
else {

Chapter 3. HP-UX tape and medium changer device driver 107

PERROR ("Failure obtaining the version of ATDD");
PRINTF ("\n");
scsi_request_sense ();

}

SCSI medium changer IOCTL operations

A set of medium changer IOCTL commands gives applications access to IBM
medium changer devices.

The following commands are supported.

SMCIOC_MOVE_MEDIUM
Transport a cartridge from one element to another element.

SMCIOC_POS_TO_ELEM
Move the robot to an element.

SMCIOC_ELEMENT_INFO
Return the information about the device elements.

SMCIOC_INVENTORY
Return the information about the medium changer elements.

SMCIOC_AUDIT
Complete an audit of the element status.

SMCIOC_LOCK_DOOR
Lock and unlock the library access door.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive elements.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range command.

SMCIOC_READ_CARTRIDGE_LOCATION
Returns the cartridge location information for all storage elements in the
library.

These commands and associated data structures are defined in the smc.h header
file in the /usr/include/sys directory that is installed with the ATDD package. Any
application program that issues these commands must include this header file.

SMCIOC_MOVE_MEDIUM

This command transports a cartridge from one element to another element.

The following data structure is filled out and supplied by the caller.
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} move_medium_t;

An example of the SMCIOC_MOVE_MEDIUM command is

108 IBM Tape Device Drivers: Programming Reference

#include <sys/smc.h>

move_medium_t move_medium;

move_medium.robot = 0;
move_medium.invert = NO_FLIP;
move_medium.source = src;
move_medium.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_MOVE_MEDIUM, &move_medium))) {
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
scsi_request_sense ();

}

SMCIOC_POS_TO_ELEM

This command moves the robot to an element.

The following data structure is filled out and supplied by the caller.
typedef struct {

ushort robot; /* robot address */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} pos_to_elem_t;

An example of the SMCIOC_POS_TO_ELEM command is
#include <sys/smc.h>

pos_to_elem_t pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = NO_FLIP;
pos_to_elem.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_POS_TO_ELEM, &pos_to_elem))) {
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
scsi_request_sense ();

}

SMCIOC_ELEMENT_INFO

This command requests the information about the device elements.

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data transfer devices. The quantity of each
element type and its starting address is returned by the driver.

The following data structure is filled out and returned by the driver.
typedef struct {

ushort robot_address; /* medium transport element address */
ushort robot_count; /* number medium transport elements */

Chapter 3. HP-UX tape and medium changer device driver 109

ushort cell_address; /* medium storage element address */
ushort cell_count; /* number medium storage elements */
ushort port_address; /* import/export element address */
ushort port_count; /* number import/export elements */
ushort drive_address; /* data-transfer element address */
ushort drive_count; /* number data-transfer elements */

} element_info_t;

An example of the SMCIOC_ELEMENT_INFO command is
#include <sys/smc.h>

element_info_t element_info;

if (!(ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info))) {
printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded.\n");
printf ("\nThe element information data is:\n");
dump_bytes ((char *)&element_info, sizeof (element_info_t));

}

else {
perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
scsi_request_sense ();

}

SMCIOC_INVENTORY

This command returns information about the medium changer elements (SCSI Read
Element Status command).

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data transfer devices.

Note: The application must allocate buffers large enough to hold the returned
element status data for each element type. The SMCIOC_ELEMENT_INFO IOCTL is
called first to establish the criteria.

The following data structure is filled out and supplied by the caller.
typedef struct {

element_status_t *robot_status; /* medium transport element pages */
element_status_t *cell_status; /* medium storage element pages */
element_status_t *port_status; /* import/export element pages */
element_status_t *drive_status; /* data-transfer element pages */

} inventory_t;

One or more of the following data structures are filled out and returned to the user
buffer by the driver.
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */
impexp : 1, /* medium imported or exported */
full : 1; /* element contains medium */

uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

110 IBM Tape Device Drivers: Programming Reference

: 1, /* reserved */
idvalid : 1, /* element address valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar vendor[80]; /* vendor specific (padded to 128) */

} element_status_t;

An example of the SMCIOC_INVENTORY command is
#include <sys/smc.h>

ushort i;
element_info_t element_info;
inventory_t inventory;

smc_element_info (); /* get element information first */

inventory.robot_status = (element_status_t *)malloc
(sizeof (element_status_t) * element_info.robot_count);

inventory.cell_status = (element_status_t *)malloc
(sizeof (element_status_t) * element_info.cell_count);

inventory.port_status = (element_status_t *)malloc
(sizeof (element_status_t) * element_info.port_count);

inventory.drive_status = (element_status_t *)malloc
(sizeof (element_status_t) * element_info.drive_count);

if (!inventory.robot_status || !inventory.cell_status ||
!inventory.port_status || !inventory.drive_status) {

perror ("The SMCIOC_INVENTORY ioctl failed");
return;

}

if (!(ioctl (dev_fd, SMCIOC_INVENTORY, &inventory))) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded.\n");

printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robot_count; i++) {
dump_bytes ((char *)(&inventory.robot_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe cell status pages are:\n");

for (i = 0; i < element_info.cell_count; i++) {
dump_bytes ((char *)(&inventory.cell_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe port status pages are:\n");

for (i = 0; i < element_info.port_count; i++) {
dump_bytes ((char *)(&inventory.port_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");

Chapter 3. HP-UX tape and medium changer device driver 111

getchar ();
}

printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drive_count; i++) {
dump_bytes ((char *)(&inventory.drive_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

}

else {
perror ("The SMCIOC_INVENTORY ioctl failed");
scsi_request_sense ();

}

SMCIOC_AUDIT

This command causes the medium changer device to run an audit of the element
status (SCSI Initialize Element Status command).

No data structure is required for this command.

An example of the SMCIOC_AUDIT command is
#include <sys/smc.h>

if (!(ioctl (dev_fd, SMCIOC_AUDIT, 0))) {
printf ("The SMCIOC_AUDIT ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_AUDIT ioctl failed");
scsi_request_sense ();

}

SMCIOC_LOCK_DOOR

This command locks and unlocks the library access door. Not all IBM medium
changer devices support this operation.

The following data structure is filled out and supplied by the caller.
typedef uchar lock_door_t;

An example of the SMCIOC_LOCK_DOOR command is
#include <sys/smc.h>

lock_door_t lock_door;

lock_door = LOCK;

if (!(ioctl (dev_fd, SMCIOC_LOCK_DOOR, &lock_door))) {
printf ("The SMCIOC_LOCK_DOOR ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_LOCK_DOOR ioctl failed");
scsi_request_sense ();

}

112 IBM Tape Device Drivers: Programming Reference

SMCIOC_READ_ELEMENT_DEVIDS

This IOCTL command issues the SCSI Read Element Status command with the
device ID (DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to
return. The application must allocate a return buffer large enough for the
number_elements specified in the input structure.

The input data structure is
typedef struct {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
element_devid_t *drive_devid; /* data transfer element pages */

} read_element_devids_t;

The output data structure is
typedef struct {

ushort address; /* element address */
uchar :4, /* reserved */

access :1, /* robot access allowed */
except :1, /* abnormal element state */

:1, /* reserved */
full :1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus :1, /* element not on same bus as robot */

:1, /* reserved */
idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

uchar scsi; /* scsi bus address */
uchar resvd2; /* reserved */
uchar svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uchar :4, /* reserved */

code_set :4; /* code set X’2’ is all ASCII identifier */
uchar :4, /* reserved */

id_type :4; /* identifier type */
uchar resvd3; /* reserved */
uchar id_len; /* identifier length */
uchar dev_id[36]; /* device identification with serial number */

} element_devid_t;

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is
#include <sys/smc.h>

static int smc_read_element_devids ()
{

int rc;
int i;

element_devid_t *elem_devid, *elemp;
read_element_devids_t devids;
element_info_t element_info;
if (rc = ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info)) {
perror ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed:

Get the element info failure.\n");
printf ("\n");

Chapter 3. HP-UX tape and medium changer device driver 113

scsi_request_sense ();
return (rc);

}

if (element_info.drive_count) {
elem_devid = malloc(element_info.drive_count * sizeof(element_devid_t));
if (elem_devid == NULL) {

printf ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed:
Memory allocation failure.\n");

return (ENOMEM);
}
bzero(elem_devid, element_info.drive_count * sizeof(element_devid_t));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_address;
devids.number_elements = element_info.drive_count;

printf("Reading element device ids...\n");

if (!(rc = ioctl (dev_fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))) {
elemp = elem_devid;
printf ("\nThe SMCIOC_READ_ELEMENT_DEVIDS ioctl succeeded.\n");
printf ("\nThe drives status datas are:\n");
for (i = 0; i < element_info.drive_count; i++, elemp++) {

printf("\n Drive Address %d\n",elemp->address);
if (elemp->except)
printf(" Drive State Abnormal\n");

else
printf(" Drive State Normal\n");

if (elemp->asc == 0x81 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Present)\n",

elemp->asc,elemp->ascq);
else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else
printf(" ASC/ASCQ %02X%02X\n",

elemp->asc,elemp->ascq);
if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",elemp->source);

else
printf(" Source Element Address Valid ... No\n");

if (elemp->invert)
printf(" Media Inverted Yes\n");

else
printf(" Media Inverted No\n");

if (elemp->notbus)
printf(" Same Bus as Medium Changer No\n");

else
printf(" Same Bus as Medium Changer Yes\n");

if (elemp->idvalid)
printf(" SCSI Bus Address %d\n",elemp->scsi);

else
printf(" SCSI Bus Address Vaild No\n");

if (elemp->luvalid)
printf(" Logical Unit Number %d\n",elemp->lun);

else
printf(" Logical Unit Number Valid No\n");

if (elemp->dev_id[0] == ’\0’)
printf(" Device ID No\n");

114 IBM Tape Device Drivers: Programming Reference

else
printf(" Device ID %0.36s\n", elemp->dev_id);

printf ("\n--- more ---");
getchar();
}

}
else {

perror ("The SMCIOC_READ_ELEMENT_DEVIDS ioctl failed");
printf ("\n");
scsi_request_sense ();

}
}
else {

printf("\nNo drives found in element information\n");
}

free (elem_devid);
return (rc);

}

SMCIOC_EXCHANGE_MEDIUM

This IOCTL command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first moves
the cartridge from the source element to the destination1 element. The second
moves the cartridge that was previously in the destination1 element to the
destination2 element. The destination2 element can be the same as the source
element.

The input data structure is
typedef struct {
ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination1; /* move to location */
ushort destination2; /* move to location */
uchar invert1; /* invert before placement into destination 1 */
uchar invert2; /* invert before placement into destination 2 */
}exchange_medium_t;

An example of the SMCIOC_EXCHANGE_MEDIUM command is
#include <sys/smc.h>
int rc;
exchange_medium_t exchange_medium;
exchange_medium.robot = 0;
exchange_medium.invert1 = NO_FLIP;
exchange_medium.invert2 = NO_FLIP;
exchange_medium.source = (short)src;
exchange_medium.destination1 = (short)dst;
exchange_medium.destination2 = (short)dst2;
if (!(rc = ioctl (dev_fd, SMCIOC_EXCHANGE_MEDIUM,
&exchange_medium))) {
PRINTF ("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded.\n");
}
else {
PERROR ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
PRINTF ("\n");
scsi_request_sense ();
}

return (rc);

Chapter 3. HP-UX tape and medium changer device driver 115

SMCIOC_INIT_ELEM_STAT_RANGE

This IOCTL command issues the SCSI Initialize Element Status with Range
command and is used to audit specific elements in a library by specifying the
starting element address and number of elements. Use the SMCIOC_INIT_ELEM_STAT
IOCTL to audit all elements.

The data structure is
typedef struct {
ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
} element_range_t;

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is
#include <sys/smc.h>
int rc;
element_range_t elem_range;
elem_range.element_address = (short)src;
elem_range.number_elements = (short)number;
if (!(rc = ioctl (dev_fd, SMCIOC_INIT_ELEM_STAT_RANGE, &elem_range))) {
PRINTF ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded.\n"); }
else {
PERROR ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
PRINTF ("\n");
scsi_request_sense ();
}

return (rc);

SMCIOC_READ_CARTRIDGE_LOCATION

The SMCIOC_READ_CARTIDGE_LOCATION IOCTL is used to return the cartridge location
information for storage elements in the library. The element_address field specifies
the starting element address to return and the number_elements field specifies
how many storage elements are returned. The data field is a pointer to the buffer
for return data. The buffer must be large enough for the number of elements that
are returned. If the storage element contains a cartridge, then the ASCII identifier
field in return data specifies the location of the cartridge.

Note: This IOCTL is supported only on the TS3500 (3584) library.

The data structure is
typedef struct
{

ushort address; /* element address */
uchar :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */
:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code */

/* qualifier */
uchar resvd2[3]; /* reserved */
uchar svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage elem addr */
uchar volume[36]; /* primary volume tag */
uchar :4, /* reserved */

code_set:4; /* code set */
uchar :4, /* reserved */

116 IBM Tape Device Drivers: Programming Reference

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

} cartridge_location_data_t;

typedef struct
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
cartridge_location_data_t *data; /* storage element pages */
char reserved[8]; /* reserved */

} read_cartridge_location_t;

An example of the SMCIOC_READ_CARTRIDGE_LOCATION command is
#include <sys/smc.h>

int rc;
int available_slots=0;
cartridge_location_data_t *slot_devid;
read_cartridge_location_t slot_devids;

slot_devids.element_address = (ushort)element_address;
slot_devids.number_elements = (ushort)number_elements;

if (rc = ioctl(dev_fd,SMCIOC_ELEMENT_INFO,&element_info))
{
PERROR("SMCIOC_ELEMENT_INFO failed");
PRINTF("\n");
scsi_request_sense();
return (rc);
}

if (element_info.cell_count == 0)
{
printf("No slots found in element information...\n");
errno = EIO;
return errno;
}

if ((slot_devids.element_address==0) && (slot_devids.number_elements==0))
{
slot_devids.element_address=element_info.cell_address;
slot_devids.number_elements=element_info.cell_count;
printf("Reading all locations...\n");
}

if ((element_info.cell_address > slot_devids.element_address)
(slot_devids.element_address >
(element_info.cell_address+element_info.cell_count-1)))

{
printf("Invalid slot address %d\n",element_address);
errno = EINVAL;
return errno;
}

available_slots = (element_info.cell_address+element_info.cell_count)
-slot_devids.element_address;

if (available_slots>slot_devids.number_elements)
available_slots=slot_devids.number_elements;
slot_devid = malloc(element_info.cell_count *
sizeof(cartridge_location_data_t));
if (slot_devid == NULL)
{
errno = ENOMEM;
return errno;
}

Chapter 3. HP-UX tape and medium changer device driver 117

bzero((caddr_t)slot_devid,element_info.cell_count * sizeof(cartridge_location_data_t));
slot_devids.data = slot_devid;

rc = ioctl (dev_fd, SMCIOC_READ_CARTRIDGE_LOCATION, &slot_devids);

free(slot_devid);
return rc;

SCSI tape drive IOCTL operations

A set of enhanced IOCTL commands gives applications access to extra features of
IBM tape drives.

The following commands are supported.

STIOC_TAPE_OP
Runs standard tape drive operations.

STIOC_GET_DEVICE_STATUS
Return the status information about the tape drive.

STIOC_GET_DEVICE_INFO
Return the configuration information about the tape drive.

STIOC_GET_MEDIA_INFO
Return the information about the currently mounted tape.

STIOC_GET_POSITION
Return the information about the tape position.

STIOC_SET_POSITION
Set the physical position of the tape.

STIOC_GET_PARM
Return the current value of the working parameter for the tape drive.

STIOC_SET_PARM
Set the current value of the working parameter for the tape drive.

STIOC_DISPLAY_MSG
Display the messages on the tape drive console.

STIOC_SYNC_BUFFER
Flush the drive buffers to the tape.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

STIOC_GET_DENSITY
Query the current write density format settings on the tape drive. The
current density code from the drive Mode Sense header, the Read/Write
Control Mode page default density, and pending density are returned.

STIOC_SET_DENSITY
Set a new write density format on the tape drive by using the default and
pending density fields. The application can specify a new write density for
the current loaded tape only or as a default for all tapes.

GET_ENCRYPTION_STATE
This IOCTL can be used for application, system, and library-managed
encryption. It allows a query only of the encryption status.

118 IBM Tape Device Drivers: Programming Reference

SET_ENCRYPTION_STATE
This IOCTL can be used only for application-managed encryption. It sets
the encryption state for application-managed encryption.

SET_DATA_KEY
This IOCTL can be used only for application-managed encryption. It sets
the data key for application-managed encryption.

CREATE_PARTITION
Create one or more tape partitions and format the media.

QUERY_PARTITION
Query tape partitioning information and current active partition.

SET_ACTIVE_PARTITION
Set the current active tape partition.

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite type command at the
current position or allow a CREATE_PARTITION IOCTL when data safe
(append-only) mode is enabled.

READ_TAPE_POSITION
Read current tape position in either short, long, or extended form.

SET_TAPE_POSITION
Set the current tape position to either a logical object or logical file
position.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and its setup.

SET_LOGICAL_BLOCK_PROTECTION
Enable/disable Logical Block Protection (LBP), set the protection method,
and how the protection information is transferred.

VERIFY_TAPE_DATA
Allows the drive to verify data from the tape to determine whether it can
be recovered. Or, whether the protection information is present and
validates correctly on logical block on the medium.

These commands and associated data structures are defined in the st.h header file
in the /usr/include/sys directory that is installed with the ATDD package. Any
application program that issues these commands must include this header file.

STIOC_TAPE_OP

This command runs standard tape drive operations. It is similar to the MTIOCTOP
IOCTL command defined in the/usr/include/sys/mtio.h system header file.
However, the STIOC_TAPE_OP command uses the ST_OP opcodes and the data
structure that is defined in the /usr/include/sys/st.h system header file. Most
STIOC_TAPE_OP IOCTL commands map to the MTIOCTOP IOCTL command. See
“MTIOCTOP” on page 149.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement and at the beginning-of-tape side of the
record or filemark for backward movement.

The following data structure is filled out and supplied by the caller.

Chapter 3. HP-UX tape and medium changer device driver 119

/*from st.h */
Typedef struct {

short st_op; /* st operations defined below */
daddr_t st_count; /*how many of them */

} tape_op_t;

The st_op field is set to one of the following.

ST_OP_WEOF
Write st_count filemarks.

ST_OP_FSF
Space forward st_count filemarks.

ST_OP_BSF
Space backward st_count filemarks. Upon completion, the tape is
positioned at the beginning-of-tape side of the requested filemark.

ST_OP_FSR
Space forward the st_count number of records.

ST_OP_BSR
Space backward the st_count number of records.

ST_OP_REW
Rewind the tape. The st_count parameter does not apply.

ST_OP_OFFL
Rewind and unload the tape. The st_count parameter does not apply.

ST_OP_NOP
No tape operation is run. The status is determined by issuing the Test
Unit Ready command. The st_count parameter does not apply.

ST_OP_RETEN
Retension the tape. The st_count parameter does not apply.

ST_OP_ERASE
Erase the entire tape from the current position. The st_count parameter
does not apply.

ST_OP_EOD
Space forward to the end of the data. The st_count parameter does not
apply.

ST_OP_NBSF
Space backward st_count filemarks, then space backward before all data
records in that tape file. For a specific ST_OP_NBSF operation with
st_count=n, the equivalent position can be achieved with ST_OP_BSF and
ST_OP_FSF, as follows.
ST_OP_BSF with mst_count = n + 1
ST_OP_FSF with st_count = 1

ST_OP_GRSZ
Return the current record (block) size. The st_count parameter contains the
value.

ST_OP_SRSZ
Set the working record (block) size to st_count.

ST_OP_RES
Reserve the tape drive. The st_count parameter does not apply.

ST_OP_REL
Release the tape drive. The st_count parameter does not apply.

120 IBM Tape Device Drivers: Programming Reference

ST_OP_LOAD
Load the tape in the drive. The st_count parameter does not apply.

ST_OP_UNLOAD
Unload the tape from the drive. The st_count parameter does not apply.

An example of the STIOC_TAPE_OP command is
#include <sys/st.h>

tape_op_t tape_op;

tape_op.st_op =st_op;
tape_op.st_count =st_count;

if (!(ioctl (dev_fd,STIOC_TAPE_OP,&tape_op))){
printf ("The STIOC_TAPE_OP ioctl succeeded.\n");

}
else {

perror ("The STIOC_TAPE_OP ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_STATUS

This command returns status information about the tape drive. It is similar to the
MTIOCGET IOCTL command defined in the /usr/include/sys/mtio.h system header
file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both use the data
structure mtget defined in the /usr/include/sys/mtio.h system header file. The
STIOC_GET_DEVICE_STATUS IOCTL command maps to the MTIOCGET IOCTL
command. The two IOCTL commands are interchangeable. See “MTIOCGET” on
page 150.

The following data structure is returned by the driver.
/* from st.h */
typedef struct mtget device_status_t;

The mt_flags field, which returns the type of automatic cartridge stacker or loader
that are installed on the tape drive, is set to one of the following values.

STF_ACL
Automatic Cartridge Loader.

STF_RACL
Random Access Cartridge Facility.

An example of the STIOC_GET_DEVICE_STATUS command is
#include <sys/mtio.h>
#include <sys/st.h>

device_status_t device_status;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_STATUS, &device_status))) {
printf ("The STIOC_GET_DEVICE_STATUS ioctl succeeded.\n");
printf ("\nThe device status data is:\n");
dump_bytes ((char *)&device_status, sizeof (device_status_t));

}

else {
perror ("The STIOC_GET_DEVICE_STATUS ioctl failed");
scsi_request_sense ();

}

Chapter 3. HP-UX tape and medium changer device driver 121

STIOC_GET_DEVICE_INFO

This command returns configuration information about the tape drive. The
STIOC_GET_DEVICE_INFO command uses the following data structure that is defined
in the /usr/include/sys/st.h system header file.

The following data structure is returned by the driver.
/* from st.h */
struct mtdrivetype {

char name[64]; /* name */
char vid[25]; /* vendor ID, product ID */
char type; /* drive type */
int bsize; /* block size */
int options; /* drive options */
int max_rretries; /* maximum read retries */
int max_wretries; /* maximum write retries */

uchar default_density; /* default density chosen */
};

typedef struct mtdrivetype device_info_t;

An example of the STIOC_GET_DEVICE_INFO command is
#include <sys/st.h>

device_info_t device_info;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_INFO, &device_info))) {
printf ("The STIOC_GET_DEVICE_INFO ioctl succeeded.\n");
printf ("\nThe device information is:\n");
dump_bytes ((char *)&device_info, sizeof (device_info_t));

}

else {
perror ("The STIOC_GET_DEVICE_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_MEDIA_INFO

This command returns information about the currently mounted tape.

The following data structure is filled out and returned by the driver.
typedef struct {

uint media_type; /* type of media loaded */
uint media_format; /* format of media loaded */
uchar write_protect; /* write protect (physical/logical) */

} media_info_t;

The media_type field, which returns the current type of media, is set to one of the
values in st.h.

The media_format field, which returns the current recording format, is set to one
of the values in st.h.

The write_protect field is set to 1 if the currently mounted tape is physically or
logically write protected.

An example of the STIOC_GET_MEDIA_INFO command is
#include <sys/st.h>

media_info_t media_info;

122 IBM Tape Device Drivers: Programming Reference

if (!(ioctl (dev_fd, STIOC_GET_MEDIA_INFO, &media_info))) {
printf ("The STIOC_GET_MEDIA_INFO ioctl succeeded.\n");
printf ("\nThe media information is:\n");
dump_bytes ((char *)&media_info, sizeof (media_info_t));

}

else {
perror ("The STIOC_GET_MEDIA_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_POSITION

This command returns information about the tape position.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with one another.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */

} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions. They are used for
high-speed locate operations that are implemented by the tape drive. Only the IBM
3490E Magnetic Tape Subsystem and the IBM TotalStorage Enterprise Virtual Tape
Servers (VTS) support the PHYSICAL_BLK type. All devices support the
LOGICAL_BLK type.

The block_type is the only field that must be filled out by the caller. The other
fields are ignored. Tape positions can be obtained with the STIOC_GET_POSITION
command, saved, and used later with the STIOC_SET_POSITION command to quickly
return to the same location on the tape.

The position field returns the current position of the tape (physical or logical).

The last_block field returns the last block of data that was transferred physically to
the tape.

The block_count field returns the number of blocks of data that remains in the
buffer.

The byte_count field returns the number of bytes of data that remains in the
buffer.

The bot and eot fields indicate whether the tape is positioned at the beginning of
tape or the end of tape, respectively.

Chapter 3. HP-UX tape and medium changer device driver 123

An example of the STIOC_GET_POSITION command is
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;

if (!(ioctl (dev_fd, STIOC_GET_POSITION, &position_data))) {
printf ("The STIOC_GET_POSITION ioctl succeeded.\n");
printf ("\nThe tape position data is:\n");
dump_bytes ((char *)&position_data, sizeof (position_data_t));

}

else {
perror ("The STIOC_GET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_SET_POSITION

This command sets the physical position of the tape.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with one another.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */
} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions. Or, it is set to PHYSICAL_BLK for composite tape positions that are
used for high-speed locate operations that are implemented by the tape drive.
Only the IBM 3490E Magnetic Tape Subsystem or a virtual drive in a VTS support
the PHYSICAL_BLK type. All devices support the LOGICAL_BLK type.

The block_type and position fields must be filled out by the caller. The other
fields are ignored. The type of position that is specified in the position field must
correspond with the type specified in the block_type field. Tape positions can be
obtained with the STIOC_GET_POSITION command, saved, and used later with the
STIOC_SET_POSITION command to quickly return to the same location on the tape.
The IBM 3490E Magnetic Tape Subsystem drives in VTSs do not support
set_position to eot.

An example of the STIOC_SET_POSITION command is
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;
position_data.position = value;

if (!(ioctl (dev_fd, STIOC_SET_POSITION, &position_data))) {
printf ("The STIOC_SET_POSITION ioctl succeeded.\n");

}

124 IBM Tape Device Drivers: Programming Reference

else {
perror ("The STIOC_SET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_GET_PARM

This command returns the current value of the working parameter for the specified
tape drive. This command is used with the STIOC_SET_PARM command.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field returns the current value of the specified parameter, within the
ranges that are indicated for the specific type.

The type field, which is filled out by the caller, must be set to one of the following
values.

BLOCKSIZE
Block Size (0–2097152 [2 MB]).

A value of zero indicates variable block size. Only the IBM 3590 Tape
System supports 2 MB maximum block size. All other devices support 256
KB maximum block size.

COMPRESSION
Compression Mode (0 or 1).

If this mode is enabled, data is compressed by the tape device before it is
stored on tape.

BUFFERING
Buffering Mode (0 or 1).

If this mode is enabled, data is stored in hardware buffers in the tape
device and not immediately committed to tape, thus increasing data
throughput performance.

IMMEDIATE
Immediate Mode (0 or 1).

If this mode is enabled, then a rewind command returns with the status
before the completion of the physical rewind operation by the tape drive.

TRAILER
Trailer Label Mode (0 or 1).

If this mode is enabled, then writing records past the early warning mark
on the tape is allowed. The first write operation to detect EOM returns 0.
This write operation does not complete successfully. All subsequent write
operations are allowed to continue despite the check conditions that result
from EOM. When the end of the physical volume is reached, EIO is
returned.

An application that uses the trailer label processing options must stop
normal data writing when LEOM (Logic End of Medium) is reached. Then,
it runs end of volume processing. Such processing typically consists of

Chapter 3. HP-UX tape and medium changer device driver 125

writing a final data record, a filemark, and a "trailing" type label. Finally,
two more filemarks indicate the end of data (EOD).

WRITEPROTECT
Write Protect Mode.

This configuration parameter returns the current write protection status of
the mounted cartridge. The writeprotect is not applied to the VTS with
logical volumes only. The following values are recognized.
v NO_PROTECT

The tape is not physically or logically write-protected. Operations that
alter the contents of the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED logical write protection
modes. It does not reset the WORM logical or the PHYSICAL write
protection modes.

v PHYS_PROTECT
The tape is physically write protected. The write-protect switch on the
tape cartridge is in the protect position. This mode can be queried only
and cannot be altered through device driver functions.

Note: Only IBM 3590 and MP 3570 Tape Subsystems recognize the
following values:

v WORM_PROTECT
The tape is logically write protected in WORM mode. When the tape is
protected in this mode, it is permanently write protected. The only
method of returning the tape to a writable state is to format the
cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in PERSISTENT mode. A tape that
is protected in this mode is write protected for all uses (across mounts).
This logical write protection mode can be reset by using the
NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in ASSOCIATED mode. A tape that
is protected in this mode is write protected only while it is associated
with a tape drive (mounted). When the tape is unloaded from the drive,
the associated write protection is reset. This logical write protection
mode can also be reset by using the NO_PROTECT value.

ACFMODE
Automatic Cartridge Facility Mode.

Note: NOTE: This mode is not supported for Ultrium devices.

This configuration parameter is read only. ACF modes can be established
only through the tape drive operator panel. The device driver can query
only the ACF mode; it cannot change it. The ACFMODE parameter applies
only to the IBM 3590 Tape System and the IBM Magstar MP Tape
Subsystem. The following values are recognized.
v NO_ACF

There is no ACF attached to the tape drive.
v SYSTEM_MODE

The ACF is in the System mode. This mode allows explicit load and
unloads to be issued through the device driver. An unload or offline

126 IBM Tape Device Drivers: Programming Reference

command causes the tape drive to unload the cartridge and the ACF to
replace the cartridge in its original magazine slot. A subsequent load
command causes the ACF to load the cartridge from the next sequential
magazine slot into the drive.

v RANDOM_MODE
The ACF is in the Random mode. This mode provides random access to
all of the cartridges in the magazine. The ACF operates as a standard
SCSI medium changer device.

v MANUAL_MODE
The ACF is in the Manual mode. This mode does not allow ACF control
through the device driver. Cartridge load and unload operations can be
run only through the tape drive operator panel. Cartridges are imported
and exported through the priority slot.

v ACCUM_MODE
The ACF is in the Accumulate mode. This mode is similar to Manual
mode. However, rather than cartridges that are exported through the
priority slot, they are put away in the next available magazine slot.

v AUTO_MODE
The ACF is in the Automatic mode. This mode causes cartridges to be
accessed sequentially under ACF control. When a tape finished
processing, it is put back in its magazine slot. Then, the next tape is
loaded without an explicit unload and load command from the host.

v LIB_MODE
The ACF is in the Library mode. This mode is available only if the tape
drive is installed in an automated tape library that supports the ACF
(3495).

SCALING
Capacity Scaling.

Note: This configuration is not supported for Ultrium devices.

This configuration parameter sets the capacity or logical length of the
currently mounted tape. The SCALING parameter is not supported on the
IBM 3490E Magnetic Tape Subsystem nor in VTS drives. The following
values are recognized.
v SCALE_100

The current tape capacity is 100%.
v SCALE_75

The current tape capacity is 75%.
v SCALE_50

The current tape capacity is 50%.
v SCALE_25

The current tape capacity is 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

SILI Suppress Illegal Length Indication.

If this mode is enabled, and a larger block of data is requested than is read
from the tape block, the tape device suppresses raising a check condition.
This action eliminates error processing that is normally run by the device
driver and results in improved read performance for some situations.

Chapter 3. HP-UX tape and medium changer device driver 127

DATASAFE
Data safe mode.

This parameter queries the current drive setting for data safe
(append-only) mode. On a set operation, it changes the current data safe
mode setting on the drive. On a set operation a parameter value of zero
sets the drive to normal (non-data safe) mode. A value of 1 sets the drive
to data safe mode.

PEWSIZE
Programmable early Warning.

The PEW is a setting of the drive and not a specific tape. Therefore, it is
the same on each partition if partitions exist. Once this setting is made in
the drive, it remains on until the application sets the PEW size to zero. At
which point, it does not have a PEW zone until it is again set up by the
application. The size of the PEW is set in the parm_data_t structure with
the “value” parameter. The parameter establishes the programmable early
warning zone size. The value specifies how many MBs before the standard
end-of-medium early warning zone to place the programmable early
warning indicator. The user application is warned that the tape is running
out of space when the tape head reaches the PEW location. ENOSPC is
returned on the first write operation to detect PEW.

Supported on 11iv3, however 11iv2 allows for auto blocking that can return
inaccurate results.

An example of the STIOC_GET_PARM command is
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;

if (!(ioctl (dev_fd, STIOC_GET_PARM, &parm_data))) {
printf ("The STIOC_GET_PARM ioctl succeeded.\n");
printf ("\nThe parameter data is:\n");
dump_bytes ((char *)&parm_data.value, sizeof (int));

}

else {
perror ("The STIOC_GET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_SET_PARM

This command sets the current value of the working parameter for the specified
tape drive. This command is used with the STIOC_GET_PARM command.

The ATDD ships with default settings for all configuration parameters. Changing
the working parameters dynamically through this STIOC_SET_PARM command affects
the tape drive only during the current open session. The working parameters
revert to the defaults when the tape drive is closed and reopened.

To change the default configuration settings, see the IBM TotalStorage and System
Storage Tape Device Drivers: Installation and User’s Guide.

The following data structure is filled out and supplied by the caller.

128 IBM Tape Device Drivers: Programming Reference

typedef struct {
uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field specifies the new value of the specified parameter, within the
ranges that are indicated for the specific type.

The type field, which is filled out by the caller, can be set to one of the following
values.

BLOCKSIZE
Block Size (0–2097152 [2 MB]).

A value of zero indicates variable block size. Only the IBM 3590 Tape
System supports 2 MB maximum block size. All other devices support 256
KB maximum block size.

COMPRESSION
Compression Mode (0 or 1).

If this mode is enabled, data is compressed by the tape device before it is
stored on tape.

BUFFERING
Buffering Mode (0 or 1).

If this mode is enabled, data is stored in hardware buffers in the tape
device and not immediately committed to tape, thus increasing data
throughput performance.

IMMEDIATE
Immediate Mode (0 or 1).

If this mode is enabled, then a rewind command returns with the status
before the completion of the physical rewind operation by the tape drive.

TRAILER
Trailer Label Mode (0 or 1).

If this mode is enabled, then writing records past the early warning mark
on the tape is allowed. The first write operation to detect EOM returns
ENOSPC. This write operation does not complete successfully. All
subsequent write operations are allowed to continue despite the check
conditions that result from EOM. When the end of the physical volume is
reached, EIO is returned.

WRITEPROTECT
Write-protect Mode.

This configuration parameter establishes the current write protection status
of the mounted cartridge. The IBM Virtual Tape Server does not support
the write_protect mode to a logical cartridge. The parameter applies only
to the IBM 3590 and MP 3570 Tape Subsystems. The following values are
recognized.
v NO_PROTECT

The tape is not physically or logically write-protected. Operations that
alter the contents of the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED logical write protection
modes. It does not reset the WORM logical or the PHYSICAL write
protection modes.

v WORM_PROTECT

Chapter 3. HP-UX tape and medium changer device driver 129

The tape is logically write-protected in WORM mode. When the tape is
protected in this mode, it is permanently write protected. The only
method of returning the tape to a writable state is to format the
cartridge, erasing all data.

v PERS_PROTECT
The tape is logically write protected in PERSISTENT mode. A tape that
is protected in this mode is write protected for all uses (across mounts).
This logical write protection mode can be reset by using the
NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in ASSOCIATED mode. A tape that
is protected in this mode is write protected only while it is associated
with a tape drive (mounted). When the tape is unloaded from the drive,
the associated write protection is reset. This logical write protection
mode can also be reset by using the NO_PROTECT value.

v PHYS_PROTECT
The tape is physically write protected. The write-protect switch on the
tape cartridge is in the protect position. This mode is not alterable
through device driver functions.

ACFMODE
Automatic Cartridge Facility Mode.

Note: This mode is not supported for Ultrium devices.

This configuration parameter is read only. ACF modes can be established
only through the tape drive operator panel. This type value is not
supported by the STIOC_SET_PARM IOCTL.

SCALING
Capacity Scaling.

Note: This configuration is not supported for Ultrium devices.

This configuration parameter sets the capacity or logical length of the
currently mounted tape. The tape must be at BOT to change this value.
Changing the scaling value destroys all existing data on the tape. The
SCALING parameter is not supported on the IBM 3490E Magnetic Tape
Subsystem or VTS drives. The following values are recognized.
v SCALE_100

Sets the tape capacity to 100%.
v SCALE_75

Sets the tape capacity to 75%.
v SCALE_50

Sets the tape capacity to 50%.
v SCALE_25

Sets the tape capacity to 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

SILI Suppress Illegal Length Indication.

If this mode is enabled and a larger block of data is requested than is read
from the tape block, the tape device suppresses raising a check condition.

130 IBM Tape Device Drivers: Programming Reference

This action eliminates error processing that is normally run by the device
driver and results in improved read performance for some situations.

DATASAFE
Data safe mode.

This parameter queries the current drive setting for data safe
(append-only) mode or on a set operation changes the current data safe
mode setting on the drive. On a set operation, a parameter value of zero
sets the drive to normal (non-data safe) mode and a value of 1 sets the
drive to data safe mode.

An example of the STIOC_SET_PARM command is
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;
parm_data.value = value;

if (!(ioctl (dev_fd, STIOC_SET_PARM, &parm_data))) {
printf ("The STIOC_SET_PARM ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_DISPLAY_MSG

This command displays and manipulates one or two messages on the tape drive
operator panel.

Note: This command is not supported for Ultrium devices.

The message that is sent with this call does not always remain on the display. It
depends on the current drive activity.

Note: All messages must be padded to MSGLEN bytes (8). Otherwise, garbage
characters (meaningless data) are displayed in the message.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar function; /* message function code */
char msg_0[MSGLEN]; /* message 0 */
char msg_1[MSGLEN]; /* message 1 */

} msg_data_t;

The function field, which is filled out by the caller, is set by combining (by using
logical OR), a Message Type flag and a Message Control flag.

Message Type Flags:

GENSTATUS (General Status Message)
Message 0, Message 1, or both are displayed according to the Message
Control flag until the drive next initiates tape motion or the message is
updated with a new message.

DMNTVERIFY (Demount/Verify Message)
Message 0, Message 1, or both are displayed according to the Message

Chapter 3. HP-UX tape and medium changer device driver 131

Control flag until the current volume is unloaded. If the volume is
unloaded, the message display is not changed and the command runs no
operation.

MNTIMMED (Mount with Immediate Action Indicator)
Message 0, Message 1, or both are displayed according to the Message
Control flag until the volume is loaded. An attention indicator is activated.
If the volume is loaded, the message display is not changed and the
command runs no operation.

DMNTIMMED (Demount/Mount with Immediate Action Indicator)
When the Message Control flag is set to a value of ALTERNATE, Message
0 and Message 1 are displayed alternately until the currently mounted
volume, if any, is unloaded. When the Message Control flag is set to any
other value, Message 0 is displayed until the currently mounted volume, if
any, is unloaded. Message 1 is displayed from the time the volume is
unloaded (or immediately, if the volume is already unloaded) until another
volume is loaded. An attention indicator is activated.

Message Control Flag:

DISPMSG0
Display message 0.

DISPMSG1
Display message 1.

FLASHMSG0
Flash message 0.

FLASHMSG1
Flash message 1.

ALTERNATE
Alternate flashing message 0 and message 1.

An example of the STIOC_DISPLAY_MSG command is
#include <sys/st.h>

msg_data_t msg_data;
msg_data.function = GENSTATUS | ALTERNATE;
memcpy (msg_data.msg_0, "Hello ", 8);
memcpy (msg_data.msg_1, "World!!!", 8);

if (!(ioctl (dev_fd, STIOC_DISPLAY_MSG, &msg_data))) {
printf ("The STIOC_DISPLAY_MSG ioctl succeeded.\n");

}

else {
perror ("The STIOC_DISPLAY_MSG ioctl failed");
scsi_request_sense ();

}

STIOC_SYNC_BUFFER

This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOC_SYNC_BUFFER command is

132 IBM Tape Device Drivers: Programming Reference

#include <sys/st.h>

if (!(ioctl (dev_fd, STIOC_SYNC_BUFFER, 0))) {
printf ("The STIOC_SYNC_BUFFER ioctl succeeded.\n");

}

else {
perror ("The STIOC_SYNC_BUFFER ioctl failed");
scsi_request_sense ();

}

STIOC_ REPORT_ DENSITY_ SUPPORT

This command issues the SCSI Report Density Support command to the tape
device and returns either all supported densities or supported densities for the
currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures that are used with this IOCTL are
typedef struct density_report
{

uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary densuty code */
uchar wrtok : 1, /* write ok, device can write this format */

dup : 1, /* zero if density only reported once */
deflt : 1, /* current density is default format */
res_1 : 5; /* reserved */

uchar reserved1[2]; /* reserved */
uchar bits_per_mm[3]; /* bits per mm */
uchar media_width[2]; /* media width in millimeters */
uchar tracks[2]; /* tracks */
uchar capacity[4]; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

} density_report_t;

typedef struct report_density_support
{

uchar media; /* report all or current media as defined above */
uchar number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

} rpt_dens_sup_t;

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are
static int st_report_density_support ()
{

int rc;
int i;
rpt_dens_sup_t density;

int bits_per_mm = 0;
int media_width = 0;
int tracks = 0;
int capacity = 0;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
PRINTF ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");

Chapter 3. HP-UX tape and medium changer device driver 133

printf("Total number of densities reported: %d\n",density.number_reports);
}
else {

PERROR ("STIOC_REPORT_DENSITY_SUPPORT failed");
PRINTF ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = (int)density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= (int)density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= (int)density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else

printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <enter> to continue...");
getchar ();

}

} /* end for all media density*/

printf("\nIssuing Report Density Support for CURRENT media...\n");

134 IBM Tape Device Drivers: Programming Reference

density.media = CURRENT_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total number of densities reported: %d\n",density.number_reports);

}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <enter> to continue...");
getchar ();

}

Chapter 3. HP-UX tape and medium changer device driver 135

}

return (rc);
}

STIOC_GET_DENSITY and STIOC_SET_DENSITY

The STIOC_GET_DENSITY IOCTL is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density, and pending density
are returned.

The STIOC_SET_DENSITY IOCTL is used to set a new write density format on the
tape drive by using the default and pending density fields. The density code field
is not used and ignored on this IOCTL. The application can specify a new write
density for the current loaded tape only or as a default for all tapes. Refer to the
examples.

The application must get the current density settings first before the current
settings are modified. If the application specifies a new density for the current
loaded tape only, then the application must issue another set density IOCTL. This
action happens after the current tape is unloaded and the next tape is loaded to
either the default maximum density or a new density to ensure the tape drive uses
the correct density. If the application specifies a new default density for all tapes,
the setting remains in effect until changed by another set density IOCTL or the
tape drive is closed by the application.

Following is the structure for the STIOC_GET_DENSITY and STIOC_SET_DENSITY
IOCTLs.
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Note:

1. These IOCTLs are supported only on tape drives that can write multiple
density formats. Refer to the Hardware Reference for the specific tape drive to
determine whether multiple write densities are supported. If the tape drive
does not support the IOCTLs, errno EINVAL is returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY IOCTL
values from the last open are not used.

3. If the tape drive detects an invalid density code or cannot run the operation on
the STIOC_SET_DENSITY IOCTL, the errno is returned and the current drive
density settings before the IOCTL is restored.

4. The struct density_data_t defined in the header file is used for both IOCTLs.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
IOCTL.

Examples
struct density_data_t data;

/* open the tape drive */

136 IBM Tape Device Drivers: Programming Reference

/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, &data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

/* close the tape drive */
/* open the tape drive */
/* set 3592 J1A density format for current loaded and all subsequent tapes*/
data.default_density = 0x51;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, &data);

GET_ENCRYPTION_STATE

This IOCTL command queries the drive's encryption method and state.

The data structure that is used for this IOCTL is as follows on all of the supported
operating systems.
typedef struct encryption_status {

uchar encryption_capable; /* Set this field as a boolean based on the
capability of the drive */

/* encryption_method used for GET ioctl only */
uchar encryption_method; /* Set this field to one of the defines below */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* Set this field to one of the defines below */
#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Used in GET_ENCRYPTION_STATE */

uchar reserved[13];
} encryption_status_t;

An example of the GET_ENCRYPTION_STATE command is
int qry_encryption_state (void) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl (fd, GET_ENCRYPTION_STATE, &encryption_status_t);

if(rc == 0) {
if(encryption_status_t.encryption_capable)

printf("encryption capable......Yes\n");

Chapter 3. HP-UX tape and medium changer device driver 137

else
printf("encryption capable......No\n");

switch(encryption_status_t.encryption_method) {
case METHOD_NONE:

printf("encryption method.......METHOD_NONE\n");
break;

case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;

case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;

case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;

case METHOD_CUSTOM:
printf("encryption method.......METHOD_CUSTOM\n");
break;

case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");

}

switch(encryption_status_t.encryption_state) {
case STATE_OFF:

printf("encryption state........OFF\n");
break;

case STATE_ON:
printf("encryption state........ON\n");
break;

case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");

}
}

return rc;
}

SET_ENCRYPTION_STATE

This IOCTL command allows setting the encryption state only for
application-managed encryption. On unload, some of the drive settings can be
reset to default. To set the encryption state, the application must issue this IOCTL
after a tape is loaded and at BOP.

The data structure that is used for this IOCTL is the same as the one for
GET_ENCRYPTION_STATE.

An example of the SET_ENCRYPTION_STATE command is
int set_encryption_status(int option) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc < 0) return rc;
if(option == 0)

encryption_status_t.encryption_state = STATE_OFF;
else if(option == 1)

138 IBM Tape Device Drivers: Programming Reference

encryption_status_t.encryption_state = STATE_ON;
else {

printf("Invalid parameter.\n");
return (EINVAL);

}

printf("Issuing set encryption status......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY

This IOCTL command allows setting the data key only for application-managed
encryption.

The data structure that is used for this IOCTL is as follows on all of the supported
operating systems.
struct data_key {

uchar data_key_index[12]; /* The DKi */
uchar data_key_index_length; /* The DKi length */
uchar reserved1[15];
uchar data_key[32]; /* The DK */
uchar reserved2[48];

};

An example of the SET_DATA_KEY command is
int set_datakey(void) {

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_status_t, 0, sizeof(struct data_key));

/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_status_t);
return rc;

}

QUERY_PARTITION

The QUERY_PARTITION IOCTL is used to return partition information for the tape
drive and the current media in the tape drive. The data includes the current active
partition the tape drive is using for the media. The number_of partitions field is
the current number of partitions on the media. The max_partitions is the
maximum partitions that the tape drive supports. The size_unit field can be either
one of the defined values. Or, it can be another value (such as 8) and is used with
the size array field value for each partition to specify the actual size partition sizes.
The partition_method field can be Wrap-wise Partitioning or Longitudinal
Partitioning. Refer to “CREATE_PARTITION” on page 140 for details.

The data structure that is used with this IOCTL is
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */

Chapter 3. HP-UX tape and medium changer device driver 139

#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

typedef struct query_partition
{

uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partition type */

char reserved [31];
} query_partition_t;

Example of the QUERY_PARTITION IOCTL
#include<sys/st.h>

int rc,i;
struct query_partition q_partition;

memset((char *)&q_partition, 0, sizeof(struct query_partition));

rc = ioctl(dev_fd, QUERY_PARTITION, &q_partition);
if(!rc)
{

printf("QUERY PARTITION ioctl succeed\n");
printf(" Partition Method = %d\n",q_partition.partition_method);
printf("Max partitions = %d\n",q_partition.max_partitions);
printf("Number of partitions = %d\n",q_partition.number_of_partitions);
{

printf("Size of Partition # %d = %d ",i,q_partition.size[i]);
switch(q_partition.size_unit)
{

case SIZE_UNIT_BYTES:
printf(" Bytes\n");

break;
case SIZE_UNIT_KBYTES:

printf(" KBytes\n");
break;
case SIZE_UNIT_MBYTES:

printf(" MBytes\n");
break;
case SIZE_UNIT_GBYTES:

printf(" GBytes\n");
break;
case SIZE_UNIT_TBYTES:

printf(" TBytes\n");
break;
default:

printf("Size unit 0x%d\n",q_partition.size_unit);
}

}
printf("Current active partition = %d\n",q_partition.active_partition);

} else {
printf("QUERY PARTITION ioctl failed\n");

}

return rc;

CREATE_PARTITION

The CREATE_PARTITION IOCTL is used to format the current media in the tape drive
into 1 or more partitions. The number of partitions to create is specified in the

140 IBM Tape Device Drivers: Programming Reference

number_of_partitions field. When more than one partition is created, the type
field specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before this
IOCTL is used.

If the number_of_partitions field to create in the IOCTL structure is one partition,
all other fields are ignored and not used. The tape drive formats the media with its
default partitioning type and size for a single partition

When the type field in the IOCTL structure is set to either FDP or SDP, the
size_unit and size fields in the IOCTL structure are not used. When the type field
in the IOCTL structure is set to IDP, the size_unit with the size fields are used to
specify the size for each partition.

There are two partition types in 3592 E07: Wrap-wise Partitioning (Figure 8) same
as LTO 5 optimized for streaming performance and Longitudinal Partitioning
(Figure 9) optimized for random access performance. Media is always partitioned
into 1 by default or more than one partition. The data partition always exists as
partition 0 and other extra index partition 1 to n can exist.

WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media is accepted. However, only if you
use the correct FORMAT field setting, as part of scaling the volume is set to a
single data partition cartridge.

The following chart lists the maximum number of partitions that the tape drive
supports.

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 8. Wrap-wise partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 9. Longitudinal partitioning

Chapter 3. HP-UX tape and medium changer device driver 141

Table 4. Number of supported partitions

Drive type Maximum number of supported partitions

LTO 5 (TS2250 and TS2350) and later 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure that is used with this IOCTL is
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */

The define for “type”:
#define IDP_PARTITION 1 /* Initiator Defined Partition type */
#define SDP_PARTITION 2 /* Select Data Partition type */
#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

typedef struct tape_partition
{

uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type */

char reserved [31];
} tape_partition_t;

Examples of the CREATE_PARTITION IOCTL.
#include<sys/st.h>

struct tape_partition partition;

/* create 2 SDP partitions for LTO-5*/
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and partition 0
for the remaining capacity on LTO-5*/
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning

142 IBM Tape Device Drivers: Programming Reference

with partition 0 and 2 for 94.11 gigabytes (minimum size) and partition 1 and 3
to use the remaining capacity
equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;
ioctl(dev_fd, CREATE_PARTITION, &partition);

SET_ACTIVE_PARTITION

The SET_ACTIVE_PARTITION IOCTL is used to position the tape to a specific
partition. Then, it becomes the current active partition for subsequent commands
and a specific logical bock id in the partition. To position to the beginning of the
partition, the logical_block_id field must be set to 0.

The data structure that is used with this IOCTL is
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

Examples of the SET_ACTIVE_PARTITION IOCTL.
#include<sys/st.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

ALLOW_DATA_OVERWRITE

The ALLOW_DATA_OVERWRITE IOCTL is used to set the drive to allow a subsequent
data write type command at the current position. Or, it allows a CREATE_PARTITION
IOCTL when data safe (append-only) mode is enabled.

For a subsequent write type command, the allow_format_overwrite field must be
set to 0. The partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite occurs.

For a subsequent CREATE_PARTITION IOCTL, the allow_format_overwrite field must
be set to 1. The partition number and logical_block_id fields are not used.
However, the tape must be at the beginning of tape (partition 0 logical block id 0)
before the CREATE_PARTITION IOCTL is issued.

The data structure that is used with this IOCTL is

Chapter 3. HP-UX tape and medium changer device driver 143

struct allow_data_overwrite{
uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE IOCTL.
#include <sys/st.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* set the allow_data_overwrite fields with the current position
for the next write type command */
data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition) <0)

return errno;

data_overwrite.allow_format_overwrite = 1;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

READ_TAPE_POSITION

The READ_TAPE_POSITION IOCTL is used to return Read Position command data in
either the short, long, or extended form. The type of data to return is specified by
setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM.

The data structures that are used with this IOCTL are
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
svd :1,
lolu:1, /* 1 means the first and last logical obj position fields

are unknown */
err: 1, /* 1 means the position fields have overflowed and can not

be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position; /* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred to tape */
uint num_buffer_logical_obj; /* number of logical objects in buffer */
uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {

144 IBM Tape Device Drivers: Programming Reference

uchar bop:1, /* beginning of partition */
eop:1, /* end of partition */

rsvd1:2,
mpu:1, /* 1 means the logical file id field in unknown */
lonu:1, /* 1 means either the partition number or logical obj number

field are unknown */
rsvd2:1,
bpew :1; /* beyond programmable early warning */

char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object position */
ullong logical_file_id; /* number of filemarks from bop and current
logical position */
ullong obsolete;
};

struct extended_data_format {
uchar bop : 1, /* beginning of partition */

eop : 1, /* end of partition */
locu : 1, /* 1 means num_buffer_logical_obj field */

/* is unknown */
bycu : 1, /* 1 means the num_buffer_bytes field is */

/* unknown */
rsvd : 1,
lolu : 1, /* 1 means the first and last logical */

/* obj position fields are unknown */
perr : 1, /* 1 means the position fields have */

/* overflowed and can not be reported */
bpew : 1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */
ullong first_logical_obj_position;/* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred */

/* to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;

} extended_data_format_t;

typedef struct read_tape_position
{
uchar data_format; /* IN: Specifies the return data format */

/* either short, long or extended */
union /* OUT: position data */
{
short_data_format_t rp_short;
long_data_format_t rp_long;
extended_data_format_t rp_extended;
char reserved[64];
} rp_data;
} read_tape_position_t ;

Example of the READ_TAPE_POSITION IOCTL.
#include <sys/st.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else

Chapter 3. HP-UX tape and medium changer device driver 145

printf(" Beginning of Partition No\n");

if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");
if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");
if (rpos.rp_data.rp_long.lonu)
{
printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

if (rpos.rp_data.rp_long.mpu)
printf(" Logical File ID UNKNOWN \n");

else
printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

SET_TAPE_POSITION

The SET_TAPE_POSITION IOCTL is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the IOCTL structure specifies either a logical block or logical filemark.

The data structure that is used with this IOCTL is
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION IOCTL.
#include <sys/st.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE
setpos.logical_id = 10;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

QUERY_LOGICAL_BLOCK_PROTECTION

The IOCTL queries whether the drive can support this feature, what logical block
protection (LBP) method is used, and where the protection information is included.

146 IBM Tape Device Drivers: Programming Reference

The lbp_capable field indicates whether the drive has LBP capability. The
lbp_method field displays if LBP is enabled and what the protection method is.
The LBP information length is shown in the lbp_info_length field. The fields of
lbp_w, lbp_r, and rbdp show that the protection information is included in write,
read, or recover buffer data.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION IOCTL.
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Querying Logical Block Protection....\n");

if (rc=ioctl(dev_fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect))
return rc;

printf(" Logical Block Protection capable...... %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method........ %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length.. %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write...... %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read...... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP..... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION

The IOCTL enables or disables Logical Block Protection, sets up what method is
used, and where the protection information is included.

The lbp_capable field is ignored in this IOCTL by the IBMtape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

Chapter 3. HP-UX tape and medium changer device driver 147

uchar rbdp; /* protection info included in recover buffer data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

uchar reserved[26];
};

Examples of the SET_LOGICAL_BLOCK_PROTECTION IOCTL.
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");
gets (buf);
lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");
gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(dev_fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Note:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive
fails the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit must be determined
by application.

2. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it must also disable LBP when it closes the drive, as
this action is not done by the device driver.

VERIFY_TAPE_DATA

All parameters are INPUT parameters (specified by the programmer).
vte: verify to end of data
vlbpm: verify logical block protection information
vbf: verify by filemark
immed: return immediately, do not wait for command to complete
bytcmp: unused
fixed: verify the length of each logical block

Upon receiving this IOCTL, the tape drive runs the type of verification that is
specified by the parameters. It returns SUCCESS if data is correct or appropriate
sense data if the data is not correct.
typedef struct verify_data
{

uchar : 2, /* reserved */

148 IBM Tape Device Drivers: Programming Reference

vte : 1, /* [IN] verify to end-of-data */
vlbpm : 1, /* [IN] verify logical block

protection information */
vbf : 1, /* [IN] verify by filemarks */
immed : 1, /* [IN] return SCSI status immediately */
bytcmp : 1, /* No use currently */
fixed : 1; /* [IN] set Fixed bit to verify the

length of each logical block */
uchar reseved[15];
uint verify_length; /* [IN] amount of data to be verified */

} verify_data_t;

#include <sys/st.h>
int rc;
verify_data_t vrf_data;
memset(&vrf_data,0,sizeof(verify_data_t));

vrf_data.vte=1;
vrf_data.vlbpm=1;
vrf_data.vbf=0;
vrf_data.immed=0;
vrf_data.fixed=0;
vrf_data.verify_length=0;

printf("Verify Tape Data command\n");
rc=ioctl(fd,VERIFY_TAPE_DATA, &vrf_data);
if (rc)

printf ("Verify Tape Data failed (rc %d)",rc);
else

printf ("Verify Tape Data Succeeded!");

Base operating system tape drive IOCTL operations

The set of native magnetic tape IOCTL commands that are available through the
HP-UX base operating system is provided for compatibility with existing
applications.

The following commands are supported.

MTIOCTOP
Run the magnetic tape drive operations.

MTIOCGET
Return the status information about the tape drive.

These commands and associated data structures are defined in the mtio.h system
header file in the /usr/include/sys directory. Any application program that issues
these commands must include this header file.

MTIOCTOP

This command runs the magnetic tape drive operations. It is defined in
the/usr/include/sys/mtio.h header file. The MTIOCTOP commands use the MT
opcodes and the data structure that is defined in the mtio.h system header file.

Note: To compile the application code with the mtio.h and st.h on HP-UX 10.20,
the patch PHKL_22286 or later is requested.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement. It is at the beginning-of-tape side of the
record or filemark for backward movement.

Chapter 3. HP-UX tape and medium changer device driver 149

The following data structure is filled out and supplied by the caller.
/*from mtio.h */
struct mtop {
short mt_op; /*operations (defined below)*/
daddr_t mt_count; /*how many to perform */
};

The mt_op field is set to one of the following.

MTWEOF
Write mt_count filemarks.

MTFSF
Space forward mt_count filemarks.

MTBSF
Space backward mt_count filemarks. Upon completion, the tape is
positioned at the beginning-of-tape side of the requested filemark.

MTFSR
Space forward the mt_count number of records.

MTBSR
Space backward the mt_count number of records.

MTREW
Rewind the tape. The mt_count parameter does not apply.

MTOFFL
Rewind and unload the tape. The mt_count parameter does not apply.

MTNOP
No tape operation is run. The status is determined by issuing the Test
Unit Ready command. The mt_count parameter does not apply.

MTEOD
Space forward to the end of the data. The mt_count parameter does not
apply.

MTRES
Reserve the tape drive. The mt_count parameter does not apply.

MTREL
Release the tape drive. The mt_count parameter does not apply.

MTERASE
Erase the tape media. The mt_count parameter does not apply.

MTIOCGET

This command returns status information about the tape drive. It is identical to the
STIOC_GET_DEVICE_STATUS IOCTL command defined in the /usr/include/sys/st.h
header file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both use the
data structure that is defined in the /usr/include/sys/mtio.h system header file. The
two IOCTL commands are interchangeable. See “STIOC_GET_DEVICE_STATUS”
on page 121.

An example of the MTIOCGET command is
#include <sys/mtio.h>
mtget mtget;

if (!(ioctl (dev_fd, MTIOCGET, &mtget))) {
printf ("The MTIOCGET ioctl succeeded.\n");

150 IBM Tape Device Drivers: Programming Reference

printf ("\nThe device status data is:\n");
dump_bytes ((char *)&mtget, sizeof (mtget));

} else {
perror ("The MTIOCGET ioctl failed");
scsi_request_sense ();

}

Service aid IOCTL operations

A set of service aid IOCTL commands gives applications access to serviceability
operations for IBM tape subsystems.

The following commands are supported.

STIOC_DEVICE_SN
Query the serial number of the device.

STIOC_FORCE_DUMP
Force the device to complete a diagnostic dump.

STIOC_STORE_DUMP
Force the device to write the diagnostic dump to the currently mounted
tape cartridge.

STIOC_READ_BUFFER
Read data from the specified device buffer.

STIOC_WRITE_BUFFER
Write data to the specified device buffer.

STIOC_QUERY_PATH
Return the primary path and information for the first alternate path.

STIOC_DEVICE_PATH
Return the primary path and all the alternate paths information.

STIOC_ENABLE_PATH
Enable a path from the disabled state.

STIOC_DISABLE_ PATH
Disable a path from the enabled state.

These commands and associated data structures are defined in the svc.h header file
in the /usr/include/sys directory that is installed with the ATDD. Any application
program that issues these commands must include this header file.

STIOC_DEVICE_SN

This command queries the serial number of the device that is used by the IBM
3494 tape library and the IBM TotalStorage Enterprise Virtual Tape Server.

The following data structure is filled out and returned by the driver.
typedef uint device_sn_t;

An example of the STIOC_DEVICE_SN command is
#include <sys/svc.h>

device_sn_t device_sn;

if (!(ioctl (dev_fd, STIOC_DEVICE_SN, &device_sn))) {
printf ("Tape device %s serial number: %x\n", dev_name, device_sn);

}

Chapter 3. HP-UX tape and medium changer device driver 151

else {
perror ("Failure obtaining tape device serial number");
scsi_request_sense ();

}

STIOC_FORCE_DUMP

This command forces the device to run a diagnostic dump. The IBM 3490E
Magnetic Tape Subsystem and the IBM TotalStorage Enterprise VTS do not support
this command.

No data structure is required for this command.

An example of the STIOC_FORCE_DUMP command is
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_FORCE_DUMP, 0))) {
printf ("Dump completed successfully.\n");

}

else {
perror ("Failure performing device dump");
scsi_request_sense ();

}

STIOC_STORE_DUMP

This command forces the device to write the diagnostic dump to the currently
mounted tape cartridge. The IBM 3490E Magnetic Tape Subsystem and the IBM
TotalStorage Enterprise VTS do not support this command.

No data structure is required for this command.

An example of the STIOC_STORE_DUMP command is
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_STORE_DUMP, 0))) {
printf ("Dump store on tape successfully.\n");

}

else {
perror ("Failure storing dump on tape");
scsi_request_sense ();

}

STIOC_READ_BUFFER

This command reads data from the specified device buffer.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field must be set to one of the following values.

152 IBM Tape Device Drivers: Programming Reference

VEND_MODE
Vendor-specific mode.

DSCR_MODE
Descriptor mode.

DNLD_MODE
Download mode.

The id field must be set to one of the following values.

ERROR_ID
Diagnostic dump buffer.

UCODE_ID
Microcode buffer.

An example of the STIOC_READ_BUFFER command is
#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_READ_BUFFER, &buffer_io))) {
printf ("Buffer read successfully.\n");

}

else {
perror ("Failure reading buffer");
scsi_request_sense ();

}

STIOC_WRITE_BUFFER

This command writes data to the specified device buffer.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field must be set to one of the following values.

VEND_MODE
Vendor-specific mode.

DSCR_MODE
Descriptor mode.

DNLD_MODE
Download mode.

The id field must be set to one of the following values.

ERROR_ID
Diagnostic dump buffer.

UCODE_ID
Microcode buffer.

Chapter 3. HP-UX tape and medium changer device driver 153

An example of the STIOC_WRITE_BUFFER command is
#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_WRITE_BUFFER, &buffer_io))) {
printf ("Buffer written successfully.\n");

}

else {
perror ("Failure writing buffer");
scsi_request_sense ();

}

STIOC_QUERY_PATH

This IOCTL returns the primary path and information for the first alternate path.

The data structure is
typedef struct scsi_path_type
{

char primary_name[15]; /* primary logical device name */
char primary_parent[15]; /* primary SCSI parent name, "Host" name */
uchar primary_id; /* primary target address of device, "Id" value*/
uchar primary_lun; /* primary logical unit of device, "lun" value */
uchar primary_bus; /* primary SCSI bus for device, "Channel" value*/
unsigned long long primary_fcp_scsi_id; /* primary FCP SCSI id of device */
unsigned long long primary_fcp_lun_id; /* primary FCP logical unit of device */
unsigned long long primary_fcp_ww_name; /* primary FCP world wide name */
uchar primary_enabled; /* primary path enabled */
uchar primary_id_valid; /* primary id/lun/bus fields valid */
uchar primary_fcp_id_valid; /* primary FCP scsi/lun/id fields */
uchar alternate_configured; /* alternate path configured */
char alternate_name[15]; /* alternate logical device name */
char alternate_parent[15]; /* alternate SCSI parent name */
uchar alternate_id; /* alternate target address of device */
uchar alternate_lun; /* alternate logical unit of device */
uchar alternate_bus; /* alternate SCSI bus for device */
unsigned long long alternate_fcp_scsi_id; /* alternate FCP SCSI id of device */
unsigned long long alternate_fcp_lun_id; /* alternate FCP logical unit of device */
unsigned long long alternate_fcp_ww_name; /* alternate FCP world wide name */
uchar alternate_enabled; /* alternate path enabled */
uchar alternate_id_valid; /* alternate id/lun/bus fields valid */
uchar alternate_fcp_id_valid; /* alternate FCP scsi/lun/id fields */
uchar primary_drive_port_valid; /* primary drive port field valid */
uchar primary_drive_port; /* primary drive port number */
uchar alternate_drive_port_valid; /* alternate drive port field valid */
uchar alternate_drive_port; /* alternate drive port */
char persistent_dsf[30]; /* persistent logical device name on 11i v3 */
char reserved[30];

} scsi_path_t;

An example of the STIOC_QUERY_PATH command is
#include <sys/svc.h>

scsi_path_t path;
memset(&path, 0, sizeof(scsi_path_t));
printf("Querying SCSI paths...\n");
rc = ioctl(dev_fd, STIOC_QUERY_PATH, &path);
if(rc == 0)

show_path(&path);

154 IBM Tape Device Drivers: Programming Reference

STIOC_DEVICE_PATH

This IOCTL returns the primary path and all of the alternate paths information for
a physical device. This IOCTL is supported only for a medium changer device.

The data structure is
struct device_path_type
{
char name[30]; /* logical device name */
char parent[30]; /* logical parent name */
uchar id_valid; /* SCSI id/lun/bus fields valid */
uchar id; /* SCSI target address of device */
uchar lun; /* SCSI logical unit of device */
uchar bus; /* SCSI bus for device */
uchar fcp_id_valid; /* FCP scsi/lun/id fields valid */
unsigned long long fcp_scsi_id; /* FCP SCSi id of device */
unsigned long long fcp_lun_id; /* FCP logical unit of device */
unsigned long long fcp_ww_name; /* FCP world wide name */
uchar enabled; /* path enabled */
uchar drive_port_valid; /* drive port field valid */
uchar drive_port; /* drive port number */
uchar fenced; /* path fenced by disable path ioctl */
uchar host; /* host bus adapter id */
char reserved[62];
};

#define MAX_SCSI_FAILOVER_PATH_DISPLAY 16

typedef struct device_paths
{
int number_paths; /* number of paths configured */

int cur_path; /* current active path */
device_path_t device_path[MAX_SCSI_FAILOVER_PATH_DISPLAY];

};

An example of the STIOC_DEVICE_PATH command is
#include “svc.h"
int rc = 0;

struct device_paths paths;
int i;

PRINTF("Querying device paths...\n”);

if(!(rc = ioctl(dev_fd, STIOC_DEVICE_PATH, &paths)))
{

PRINTF(“\n”);
for (i=0; i < paths.number_paths; i++)

{
if (i == 0)

{
PRINTF("Primary Path Number 1\n");

}
else

{
PRINTF("Alternate Path Number %d\n", i+1);
PRINTF(" Logical Device....... %s\n",paths.device_path[i].name);
PRINTF(" Host Bus Adapter..... %s\n",paths.device_path[i].parent);

}
if (paths.device_path[i].id_valid)

{
PRINTF(" SCSI Channel......... %d\n",paths.device_path[i].bus);
PRINTF(" Target ID............ %d\n",paths.device_path[i].id);
PRINTF(" Logical Unit......... %d\n",paths.device_path[i].lun);

}

Chapter 3. HP-UX tape and medium changer device driver 155

if (paths.device_path[i].enabled)
{

PRINTF(" Path Enabled................... Yes\n");
}

else
{

PRINTF(" Path Enabled................... No \n");
}

if (paths.device_path[i].fenced)
{

PRINTF(" Path Manually Disabled......... Yes\n");
}

else
{

PRINTF(" Path Manually Disabled......... No \n");
}

PRINTF("\n");
}

PRINTF("Total paths configured.. %d\n",paths.number_paths);
}

return rc;

STIOC_ENABLE_PATH

This IOCTL enables the path that is specified by the path special file. This IOCTL
is supported only for a medium changer device.

An example of the STIOC_ENABLE_PATH command is
#include "svc.h"
if (stat(path_name, &statbuf)!=0)
{
printf("Unable to stat path.\n");
return -1;

}

if ((statbuf.st_rdev)&0xF00)
{
dev_t tempdev=(statbuf.st_rdev)&0xE00;
tempdev>>=1; // this is the same as shift left 1 and 0xF00
(statbuf.st_rdev)&=0xFFFFF0FF;
(statbuf.st_rdev)|=tempdev;

}

devt=statbuf.st_rdev;

if(!(rc = ioctl(dev_fd, STIOC_ENABLE_PATH, &devt)))
{
PRINTF("SCSI path enabled. \n");

}
else

{
PRINTF("Unabled to enable SCSI path, make sure this path is to the

same library as the opened path. \n Run Display Paths to see what paths
are connected to the opened path.\n");
}

STIOC_DISABLE_PATH

This IOCTL disables the path that is specified by the path special file. This IOCTL
is supported only for a medium changer device.

An example of the STIOC_DISABLE_PATH command is

156 IBM Tape Device Drivers: Programming Reference

#include "svc.h"

if (stat(path_name, &statbuf)!=0)
{
printf("Unable to stat path.\n");
return -1;

}
if ((statbuf.st_rdev)&0xF00)

{
dev_t tempdev=(statbuf.st_rdev)&0xE00;
tempdev>>=1; // this is the same as shift left 1 and 0xF00
(statbuf.st_rdev)&=0xFFFFF0FF;
(statbuf.st_rdev)|=tempdev;

}
devt=statbuf.st_rdev;

if(!(rc = ioctl(dev_fd, STIOC_DISABLE_PATH, &devt)))
{
PRINTF("SCSI path disabled. \n");

}
else

{
PRINTF("Unabled to enable SCSI path, make sure this path is to the

same library as the opened path. \n Run Display Paths to see what paths
are connected to the opened path.\n");
}

Chapter 3. HP-UX tape and medium changer device driver 157

158 IBM Tape Device Drivers: Programming Reference

Chapter 4. Linux tape and medium changer device driver

IBM supplies a tape drive and medium changer device driver for the Linux
platform called IBMtape. IBM also supplies an open source device driver for Linux
called lin_tape. Both IBMtape and lin_tape have the same programming reference
as documented in this manual.

Software interface

Entry points

IBMtape supports the following Linux-defined entry points.
v “open”
v “close”
v “read” on page 160
v “write” on page 160
v “ioctl” on page 161

open

This entry point is driven by the open system call.

The programmer can access IBMtape devices with one of 3 access modes: write
only, read only, or read and write.

IBMtape also support the append open flag. When the open function is called with
the append flag set to TRUE, IBMtape attempts to rewind and seek two
consecutive filemarks and place the initial tape position between them. Open
append fails [errno: EIO] if no tape is loaded or two consecutive filemarks are not
on the loaded tape. Open append does not automatically imply write access.
Therefore, an access mode must accompany the append flag during the open
operation.

The open function issues a SCSI reserve command to the target device. If the
reserve command fails, open fails and errno EBUSY is returned.

close

This entry point is driven explicitly by the close system call and implicitly by the
operating system at application program termination.

For non-rewinding special files, such as /dev/IBMtape0n, if the last command
before the close function was a successful write, IBMtape writes two consecutive
filemarks that marks the end of data. It then sets the tape position between the two
consecutive filemarks. If the last command before the close function successfully
wrote one filemark, then one extra filemark is written that marks the end of data.
Then, the tape position is set between the two consecutive filemarks.

For non-rewinding special files, if the last tape command before the close function
is write, but the write fails with sense key 6 (Unit Attention) and ASC/ASCQ
29/00 (Power On, Reset, or Bus Device Reset Occurred) or sense key 6 and

© Copyright IBM Corp. 1999, 2016 159

ASC/ASCQ 28/00 (Not Ready to Ready Transition, Medium May Have Changed),
IBMtape does not write two consecutive tape file marks that mark the end of data
during close processing. If the last tape command before the close function is write
one file mark and that command fails with one of the above two errors, IBMtape
does not write one extra file mark that marks the end of data during close
processing.

For rewind devices, such as /dev/IBMtape0, if the last command before the close
function was a successful write, IBMtape writes two consecutive filemarks that
mark the end of data and issues a rewind command. If the last command before
the close function successfully wrote one filemark, one extra filemark is written
marking the end of data, and the rewind command is issued. If the write filemark
command fails, no rewind command is issued.

The application writers must be aware that a Unit Attention sense data that is
presented means that the tape medium might be in an indeterminate condition,
and no assumptions can be made about current tape positioning or whether the
medium that was previously in the drive is still in the drive. IBM suggests that
after a Unit Attention is presented, the tape special file be closed and reopened,
label processing/verification be run (to determine that the correct medium is
mounted), and explicit commands be run to locate to the wanted location. Extra
processing might also be needed for particular applications.

If an SIOC_RESERVE ioctl was issued from an application before close, the close
function does not release the device; otherwise, it issues the SCSI release
command. In both situations, the close function attempts to deallocate all resources
that are allocated for the device. If, for some reason, IBMtape is not able to close,
an error code is returned.

Note: The return code for close must always be checked. If close is unsuccessful,
retry is recommended.

read

This entry point is driven by the read system call. The read operation can be
completed when a tape is loaded in the device.

IBMtape supports two modes of read operation. If the read_past_filemark flag is
set to TRUE (with the STIOCSETP input/output control [IOCTL]), then when a
read operation encounters a filemark, it returns the number of bytes read before it
encounters the filemark and sets the tape position after the filemark. If the
read_past_filemark flag is set to FALSE (by default or with STIOCSETP IOCTL),
then when a read operation encounters a filemark, if data was read, the read
function returns the number of bytes read, and positions the tape before the
filemark. If no data was read, then read returns 0 bytes read and positions the tape
after the filemark.

If the read function reaches end of the data on the tape, input/output error (EIO)
is returned and ASC, ASCQ keys (obtained by request sense IOCTLs) indicate the
end of data. IBMtape also conforms to all SCSI standard read operation rules, such
as fixed block versus variable block.

write

This entry point is driven by the write system call. The write operation can be
completed when a tape is loaded in the device.

160 IBM Tape Device Drivers: Programming Reference

IBMtape supports early warning processing. When the trailer_labels flag is set to
TRUE (by default or with STIOCSETP IOCTL call), IBMtape fails with errno
ENOSPACE only when a write operation first encounters the early warning zone
for end of tape. After the ENOSPACE error code is returned, IBMtape suppresses
all warning messages from the device that is generated by subsequent write
commands, effectively allowing write and write filemark commands in the early
warning zone. When physical end of tape is reached, error code EIO is returned,
and the ASC and ASCQ keys (obtained by the request sense IOCTL) confirm the
end of physical medium condition. When the trailer_labels flag is set to FALSE
(with STIOCSETP IOCTL call), IBMtape returns the ENOSPACE errno when any
write command is attempted in the early warning zone.

ioctl

This entry point provides a set of drive SCSI-specific functions. It allows Linux
applications to access and control the features and attributes of the drive device
programmatically.

Medium changer devices

IBMtape supports the following Linux entry points for the medium changer
devices.
v “open”
v “close”
v “ioctl”

open

This entry point is driven by the open system call. The open function attempts a
SCSI reserve command to the target device. If the reserve command fails, open
fails with errno EBUSY.

close

This entry point is driven explicitly by the close system call and implicitly by the
operating system at program termination. If an SIOC_RESERVE IOCTL was
issued from an application before close, the close function does not release the
device. Otherwise, it issues the SCSI release command. In both situations, the
close function attempts to deallocate all resources that are allocated for the device.
If, for some reason, IBMtape is not able to close, an error code is returned.

ioctl

This entry point provides a set of medium changer and SCSI-specific functions. It
allows Linux applications to access and control the features and attributes of the
robotic device programmatically.

General IOCTL operations

This chapter describes the IOCTL commands that provide access and control to the
tape and medium changer devices.

These commands are available for all tape and medium changer devices. They can
be issued to any one of the IBMtape special files.

Chapter 4. Linux tape and medium changer device driver 161

|
|
|

Overview

The following IOCTL commands are supported.

SIOC_INQUIRY
Return the inquiry data.

SIOC_REQSENSE
Return the sense data.

SIOC_RESERVE
Reserve the device.

SIOC_RELEASE
Release the device.

SIOC_TEST_UNIT_READY
Issue the SCSI Test Unit Ready command.

SIOC_LOG_SENSE_PAGE
Return the log sense data.

SIOC_LOG_SENSE10_PAGE
Return the log sense data by using a 10-byte CDB with optional subpage.

SIOC_ENH_LOG_SENSE
Return the page data with a requested length from the application if no
kernel memory restriction exists.

SIOC_MODE_SENSE_PAGE
Return the mode sense data.

SIOC_MODE_SENSE
Return the mode sense data with optional subpage.

SIOC_INQUIRY_PAGE
Return the inquiry data for a specific page.

SIOC_PASS_THROUGH
Pass through custom built SCSI commands.

SIOC_QUERY_PATH
Return the primary path and information for the first alternate path.

SIOC_DEVICE_PATHS
Return the primary path and information for all the alternate paths.

SIOC_ENABLE_PATH
Enable a path from the disabled state.

SIOC_DISABLE_PATH
Disable a path.

These IOCTL commands and their associated structures are defined in the
IBM_tape.h header file, which can be found in /usr/include/sys after IBMtape is
installed. The IBM_tape.h header file must be included in the corresponding C
programs that call functions that are provided by IBMtape.

All IOCTL commands require a file descriptor of an open file. Use the open
command to open a device and obtain a valid file descriptor.

162 IBM Tape Device Drivers: Programming Reference

SIOC_INQUIRY

This IOCTL command collects the inquiry data from the device.

The data structure is
struct inquiry_data {

uint qual :3, /* peripheral qualifier */
type :5; /* device type */

uint rm :1, /* removable medium */
mod :7; /* device type modifier */

uint iso :2, /* ISO version */
ecma :3, /* EMCA version */
ansi :3; /* ANSI version */

uint aenc :1, /* asynchronous event notification */
trmiop :1, /* terminate I/O process message */

:2, /* reserved */
rdf :4; /* response data format */

unchar len; /* additional length */
unchar resvd1; /* reserved */

uint :4, /* reserved */
mchngr :1, /* medium changer mode (SCSI-3 only) */

:3; /* reserved */
uint reladr :1, /* relative addressing */

wbus32 :1, /* 32-bit wide data transfers */
wbus16 :1, /* 16-bit wide data transfers */
sync :1, /* synchronous data transfers */
linked :1, /* linked commands */

:1, /* reserved */
cmdque :1, /* command queueing */
sftre :1; /* soft reset */
unchar vid[8]; /* vendor ID */
unchar pid[16]; /* product ID */
unchar revision[4]; /* product revision level */
unchar vendor1[20]; /* vendor specific */
unchar resvd2[40]; /* reserve */
unchar vendor2[31]; /* vendor specific (padded to 127) */

};

An example of the SIOC_INQUIRY command is
#include <sys/IBM_tape.h>
char vid[9];
char pid[17];
char revision[5];
struct inquiry_data inqdata;
printf("Issuing inquiry...\n");
memset(&inqdata, 0, sizeof(struct inquiry_data));
if (!ioctl (fd, SIOC_INQUIRY, &inqdata)) {

printf ("The SIOC_INQUIRY ioctl succeeded\n");
printf ("\nThe inquiry data is:\n");
/*-
* Just a dump byte won’t work because of the compiler
* bit field mapping
-*/
/* print out structure data field */
printf("\nInquiry Data:\n");
printf("Peripheral Qualifer-----------------0x%02x\n", inqdata.qual);
printf("Peripheral Device Type--------------0x%02x\n", inqdata.type);
printf("Removal Medium Bit------------------%d\n", inqdata.rm);
printf("Device Type Modifier----------------0x%02x\n", inqdata.mod);
printf("ISO version-------------------------0x%02x\n", inqdata.iso);
printf("ECMA version------------------------0x%02x\n", inqdata.ecma);
printf("ANSI version------------------------0x%02x\n", inqdata.ansi);
printf("Asynchronous Event Notification Bit-%d\n", inqdata.aenc);
printf("Terminate I/O Process Message Bit---%d\n", inqdata.trmiop);
printf("Response Data Format----------------0x%02x\n", inqdata.rdf);

Chapter 4. Linux tape and medium changer device driver 163

printf("Additional Length-------------------0x%02x\n", inqdata.len);
printf("Medium Changer Mode-----------------0x%02x\n", inqdata.mchngr);
printf("Relative Addressing Bit-------------%d\n", inqdata.reladr);
printf("32 Bit Wide Data Transfers Bit------%d\n", inqdata.wbus32);
printf("16 Bit Wide Data Transfers Bit------%d\n", inqdata.wbus16);
printf("Synchronous Data Transfers Bit------%d\n", inqdata.sync);
printf("Linked Commands Bit-----------------%d\n", inqdata.linked);
printf("Command Queueing Bit----------------%d\n", inqdata.cmdque);
printf("Soft Reset Bit----------------------%d\n", inqdata.sftre);

strncpy(vid, inqdata.vid, 8);
vid[8] = ’\0’;

strncpy(pid, inqdata.pid, 16);
pid[16] = ’\0’;

strncpy(revision, inqdata.revision, 4);
revision[4] = ’\0’;

printf("Vendor ID-----------------------------%s\n", vid);
printf("Product ID----------------------------%s\n", pid);
printf("Product Revision Level----------------%s\n", revision);

dump_bytes(inqdata.vendor1, 20, "vendor1");
dump_bytes(inqdata.vendor2, 31, "vendor2");

}
else {

perror ("The SIOC_INQUIRY ioctl failed");
sioc_request_sense();

}

SIOC_REQSENSE

This IOCTL command returns the device sense data. If the last command resulted
in an error, then the sense data is returned for the error. Otherwise, a new sense
command is issued to the device.

The data structure is
struct request_sense {

uint valid :1, /* sense data is valid */
err_code :7; /* error code */

unchar segnum; /* segment number */
uint fm :1, /* filemark detected */

eom :1, /* end of medium */
ili :1, /* incorrect length indicator */
resvd1 :1, /* reserved */
key :4; /* sense key */

int info; /* information bytes */
unchar addlen; /* additional sense length */
uint cmdinfo; /* command specific information */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
unchar fru; /* field replaceable unit code */
uint sksv :1, /* sense key specific valid */

cd :1, /* control/data */
resvd2 :2, /* reserved */
bpv :1, /* bit pointer valid */
sim :3; /* system information message */

unchar field[2]; /* field pointer */
unchar vendor[109]; /* vendor specific (padded to 127) */

};

An example of the SIOC_REQSENSE command is
#include <sys/IBM_tape.h>

struct request_sense sense_data;
int rc;

164 IBM Tape Device Drivers: Programming Reference

printf("Issuing request sense...\n");
memset(&sense_data, 0, sizeof(struct request_sense));
rc = ioctl(fd, SIOC_REQSENSE, &sense_data);
if (rc == 0)
{

if(!sense_data.err_code)
printf("No valid sense data returned.\n");

else
{
/* print out data fields */
printf("Information Field Valid Bit-----%d\n", sense_data.valid);
printf("Error Code----------------------0x%02x\n", sense_data.err_code);
printf("Segment Number------------------0x%02x\n", sense_data.segnum);
printf("filemark Detected Bit----------%d\n", sense_data.fm);
printf("End Of Medium Bit---------------%d\n", sense_data.eom);
printf("Illegal Length Indicator Bit----%d\n", sense_data.ili);
printf("Sense Key-----------------------0x%02x\n", sense_data.key);
if(sense_data.valid)

printf("Information Bytes-------------0x%02x 0x%02x 0x%02x 0x%02x\n",
sense_data.info >> 24, sense_data.info >> 16,
sense_data.info >> 8, sense_data.info & 0xFF);

printf("Additional Sense Length---------0x%02x\n", sense_data.addlen);
printf("Command Specific Information----0x%02x 0x%02x 0x%02x 0x%02x\n",

sense_data.cmdinfo >> 24, sense_data.cmdinfo >> 16,
sense_data.cmdinfo >> 8, sense_data.cmdinfo & 0xFF);

printf("Additional Sense Code-----------0x%02x\n", sense_data.asc);
printf("Additional Sense Code Qualifier-0x%02x\n", sense_data.ascq);
printf("Field Replaceable Unit Code-----0x%02x\n", sense_data.fru);
printf("Sense Key Specific Valid Bit----%d\n", sense_data.sksv);
if(sense_data.sksv)

{
printf("Command Data Block Bit--%d\n", sense_data.cd);
printf("Bit Pointer Valid Bit---%d\n", sense_data.bpv);
if(sense_data.bpv)

printf("System Information Message-0x%02x\n", sense_data.sim);
printf("Field Pointer----------------0x%02x%02x\n",

sense_data.field[0], sense_data.field[1]);
}

dump_bytes(sense_data.vendor, 109, "Vendor");
}

}
return rc;

SIOC_RESERVE

This IOCTL command explicitly reserves the device and prevents it from being
released after a close operation.

The device is not released until an SIOC_RELEASE IOCTL command is issued.

The IOCTL command can be used for applications that require multiple open and
close processing in a host-sharing environment.

There are no arguments for this IOCTL command.

An example of the SIOC_RESERVE command is
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_RESERVE, NULL)) {

printf ("The SIOC_RESERVE ioctl succeeded\n");
}
else {

perror ("The SIOC_RESERVE ioctl failed");
sioc_request_sense();

}

Chapter 4. Linux tape and medium changer device driver 165

SIOC_RELEASE

This IOCTL command explicitly releases the device and allows other hosts to
access it. The IOCTL command is used with the SIOC_RESERVE IOCTL command for
applications that require multiple open and close processing in a host-sharing
environment.

There are no arguments for this IOCTL command.

An example of the SIOC_RELEASE command is
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_RELEASE, NULL)) {

printf ("The SIOC_RELEASE ioctl succeeded\n");
}
else {

perror ("The SIOC_RELEASE ioctl failed");
sioc_request_sense();

}

SIOC_TEST_UNIT_READY

This IOCTL command issues the SCSI Test Unit Ready command to the device.

There are no arguments for this IOCTL command.

An example of the SIOC_TEST_UNIT_READY command is
#include <sys/IBM_tape.h>
if (!ioctl (fd, SIOC_TEST_UNIT_READY, NULL)) {

printf ("The SIOC_TEST_UNIT_READY ioctl succeeded\n");
}
else {

perror ("The SIOC_TEST_UNIT_READY ioctl failed");
sioc_request_sense();

}

SIOC_LOG_SENSE_PAGE, SIOC_LOG_SENSE10_PAGE, and
SIOC_ENH_LOG_SENSE

These IOCTL commands return log sense data from the device. The differences
between the three is
v SIOC_LOG_SENSE_PAGE allows the user to retrieve a particular log page up to

length LOGSENSEPAGE.
v SIOC_LOG_SENSE10_PAGE allows for a subpage to be returned up to length

LOGSENSEPAGE.
v SIOC_ENH_LOG_SENSE returns the page data with a requested length from

application if no kernel memory restriction exists.

For both SIOC_LOG_SENSE_PAGE and SIOC_LOG_SENSE10_PAGE, to obtain the entire log
page, the len and parm_pointer fields must be set to zero. To obtain the entire log
page that starts at a specific parameter code, set the parm_pointer field to the
wanted code and the len field to zero. To obtain a specific number of parameter
bytes, set the parm_pointer field to the wanted code. Then, set the len field to the
number of parameter bytes plus the size of the log page header (4 bytes). The first
4 bytes of returned data are always the log page header. In the Enhanced log sense
page (SIOC_ENH_LOG_SENSE), the length cannot be set to zero as it indicates the
allocated memory size that char *logdatap is pointing to. The minimum number
for this value is 4, as it returns the first 4 bytes that is the log page header. See the
appropriate device manual to determine the supported log pages and content.

166 IBM Tape Device Drivers: Programming Reference

The data structures are
struct log_sense_page {

unchar page_code;
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

struct log_sense10_page {
unchar page_code;
unchar subpage_code;
unchar reserved[2];
unsigned short len;
unsigned short parm_pointer;
char data[LOGSENSEPAGE];

};

struct enh_log_sense {
uchar page_code; /* [IN] Log sense page */
uchar subpage_code; /* [IN] Log sense sub-page */
uchar page_control; /* [IN] Page control */
uchar reserved[5];
unsigned short len; /* [IN] specific allocation length for logdatap */

/* by application */
/* [OUT] the length of return data at */
/* logdatap from driver */

unsigned short parm_pointer; /* [IN] specific parameter number at */
/* which the data begins */

char *logdatap; /* [IN] the pointer for log sense data allocated*/
/* by application */
/* [OUT] log sense data returned from driver */

};

The first two IOCTLs are identical, except if a specific subpage is wanted,
log_sense10_page must be used and subpage_code must be assigned by the user
application.

An example of the SIOC_LOG_SENSE_PAGE command is
#include <sys/IBM_tape.h>
struct log_sense_page log_page;
int temp;
/* get log page 0, list of log pages */
log_page.page_code = 0x00;
log_page.len = 0;
log_page.parm_pointer = 0;
if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page)) {

printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
dump_bytes(log_page.data, LOGSENSEPAGE);

}
else {

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}
/* get fraction of volume traversed */
log_page.page_code = 0x38;
log_page.len = 0;
log_page.parm_pointer = 0x000F;
if (!ioctl (fd, SIOC_LOG_SENSE_PAGE, &log_page)) {

temp = log_page.data[sizeof(log_page_header) + 4)];
printf ("The SIOC_LOG_SENSE_PAGE ioctl succeeded\n");
printf ("Fractional Part of Volume Traversed %x\n",temp);

}
else {

perror ("The SIOC_LOG_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

Chapter 4. Linux tape and medium changer device driver 167

An example of the SIOC_ENH_LOG_SENSE command is
include <sys/IBM_tape.h>

#define LOG_PAGE_HEADER 4

struct enh_log_sense enh_log_page;
unsigned short length;

memset((char*)&enh_log_page, 0, sizeof(struct enh_log_sense));
enh_log_page.page_code = 0x17;
enh_log_page.subpage_code = 0x02;
enh_log_page.len = LOG_PAGE_HEADER;
enh_log_page.logdatap = malloc(LOG_PAGE_HEADER);

if(enh_log_page.logdatap == NULL){
printf ("Unable to malloc LOG_PAGE_HEADER. Closing\n");
exit(-1);

}

if (!ioctl (fd, SIOC_ENH_LOG_SENSE, &enh_log_page)) {
printf ("The SIOC_ENH_LOG_SENSE ioctl succeeded\n");
sprintf(text,"Log enhanced page header 0x%02X subpage 0x%02X",

enh_log_page.page_code, enh_log_page.subpage_code);
dump_bytes(enh_log_page.logdatap, enh_log_page.len, text);

}
else {

perror ("The SIOC_ENH_LOG_SENSE ioctl failed");

}

length = (enh_log_page.logdatap[2] << 8) +enh_log_page.logdatap[3];
free(enh_log_page.logdatap);
enh_log_page.logdatap = NULL;

enh_log_page.len = length;
enh_log_page.logdatap = malloc(length);

if(enh_log_page.logdatap==NULL) {
printf("Unable to malloc enh_log_page big size %d\n", length);
if(length > 1024) {
enh_log_page.logdatap = malloc(1024);
enh_log_page.len = 1024;
if(enh_log_page.logdatap == NULL) {
printf("Unable to malloc enh_log_page 1024 size\n");
exit(-1);

}
}
}

if (!ioctl (fd, SIOC_ENH_LOG_SENSE, &enh_log_page)) {
printf ("The SIOC_ENH_LOG_SENSE ioctl succeeded\n");
sprintf(text,"Enhanced Log Sense: page 0x%02X subpage 0x%02X length %d",
enh_log_page.page_code, enh_log_page.subpage_code);

dump_bytes(enh_log_page.logdatap, enh_log_page.len, text);
}
else {

perror ("The SIOC_ENH_LOG_SENSE ioctl failed");
}
free(enh_log_page.logdatap);

168 IBM Tape Device Drivers: Programming Reference

SIOC_MODE_SENSE_PAGE and SIOC_MODE_SENSE

This IOCTL command returns a mode sense page from the device. The desired
page is selected by specifying the page_code in the mode_sense_page structure.
See the appropriate device manual to determine the supported mode pages and
content.

The data structures are
struct mode_sense_page {

unchar page_code;
char data[MAX_MDSNS_LEN];

};

struct mode_sense {
unchar page_code;
unchar subpage_code;
unchar reserved[6];
unchar cmd_code;
char data[MAX_MDSNS_LEN];

};

The IOCTLs are identical, except that if a specific subpage is desired, mode_sense
must be used and subpage_code must be assigned by the user application. Under
the current implementation, cmd_code is not assigned by the user and must be left
with a value 0.

An example of the SIOC_MODE_SENSE_PAGE command is
#include <sys/IBM_tape.h>
struct mode_sense_page mode_page;
/* get medium changer mode */
mode_page.page_code = 0x20;
if (!ioctl (fd, SIOC_MODE_SENSE_PAGE, &mode_page)) {

printf ("The SIOC_MODE_SENSE_PAGE ioctl succeeded\n");
if (mode_page.data[2] == 0x02)

printf ("The library is in Random mode.\n");
else if (mode_page.data[2] == 0x05)

printf ("The library is in Automatic (Sequential) mode.\n");
}
else {

perror ("The SIOC_MODE_SENSE_PAGE ioctl failed");
sioc_request_sense();

}

SIOC_INQUIRY_PAGE

This IOCTL command returns an inquiry page from the device. The desired page
is selected by specifying the page_code in the inquiry_page structure. See the
appropriate device manual to determine the supported inquiry pages and content.

The data structure is
struct inquiry_page {

char page_code;
char data[INQUIRYPAGE];

};

An example of the SIOC_INQUIRY_PAGE command is
#include <sys/IBM_tape.h>
struct inquiry_page inq_page;
/* get inquiry page x83 */
inq_page.page_code = 0x83;
if (!ioctl (fd, SIOC_INQUIRY_PAGE, &inq_page)) {

Chapter 4. Linux tape and medium changer device driver 169

printf ("The SIOC_INQUIRY_PAGE ioctl succeeded\n");
dump_bytes(inq_page.data, INQUIRYPAGE);

}
else {

perror ("The SIOC_INQUIRY_PAGE ioctl failed");
sioc_request_sense();

}

SCSI_PASS_THROUGH

This IOCTL command passes the built command data block structure with I/O
buffer pointers to the lower SCSI layer. Status is returned from the lower SCSI
layer to the caller with the ASC and ASCQ values and SenseKey fields. The ASC
and ASCQ and sense key fields are valid only when the SenseDataValid field is
true.

The data structure is
#define SCSI_PASS_THROUGH _IOWR(’P’,0x01,SCSIPassThrough) /* Pass Through */

typedef struct _SCSIPassThrough
{
unchar CDB[12]; /* Command Data Block */
unchar CommandLength; /* Command Length */
unchar * Buffer ; /* Command Buffer */
ulong BufferLength; /* Buffer Length */
unchar DataDirection; /* Data Transfer Direction */
ushort TimeOut; /* Time Out Value */
unchar TargetStatus; /* Target Status */
unchar MessageStatus; /* Message from host adapter */
unchar HostStatus; /* Host status */
unchar DriverStatus; /* Driver status */
unchar SenseDataValid; /* Sense Data Valid */
unchar ASC; /* ASC key if the SenseDataValid is True */
unchar ASCQ; /* ASCQ key if the SenseDataValid is True */
unchar SenseKey; /* Sense key if the SenseDataValid is True */

} SCSIPassThrough, *PSCSIPassThrough;
#define SCSI_DATA_OUT 1
#define SCSI_DATA_IN 2
#define SCSI_DATA_NONE 3

SCSI_DATA_OUT indicates sending data out of the initiator (host bus adapter), also
known as write mode. SCSI_DATA_IN indicates receiving data into the initiator (host
bus adapter), also known as read mode. SCSI_DATA_NONE indicates that no data is
transferred.

An example of the SCSI_PASS_THROUGH command is
#include <sys/IBM_tape.h>
SCSIPassThrough PassThrough;
memset(&PassThrough, 0, sizeof(SCSIPassThrough);
/* Issue test unit ready command */
PassThrough.CDB[0] = 0x00;
PassThrough.CommandLength = 6;
PassThrough.DataDirection = SCSI_DATA_NONE;
if (!ioctl (fd, SCSI_PASS_THROUGH, &PassThrough)) {

printf ("The SCSI_PASS_THROUGH ioctl succeeded\n");
if((PassThrough.TargetStatus == STATUS_SUCCESS) &&

(PassThrough.MessageStatus == STATUS_SUCCESS) &&
(PassThrough.HostStatus == STATUS_SUCCESS) &&
(PassThrough.DriverStatus == STATUS_SUCCESS))
printf(" Test Unit Ready returns success\n");

else {
printf(" Test Unit Ready failed\n");
if(PassThrough.SenseDataValid)

170 IBM Tape Device Drivers: Programming Reference

printf("Sense Key %02x, ASC %02x, ASCQ %02x\n",
PassThrough.SenseKey, PassThrough.ASC,
PassThrough.ASCQ);

}
}
else {

perror ("The SIOC SCSI_PASS_THROUGH ioctl failed");
sioc_request_sense();

}

SIOC_QUERY_PATH

This IOCTL command returns the primary path and the first alternate path
information for a physical device.

The data structure is
struct scsi_path
{
char primary_name[30]; /* primary logical device name */
char primary_parent[30]; /* primary SCSI parent name, "Host" name */
unchar primary_id; /* primary target address of device, "Id" value*/
unchar primary_lun; /* primary logical unit of device, "lun" value */
unchar primary_bus; /* primary SCSI bus for device, "Channel" value*/
unsigned long long primary_fcp_scsi_id; /* not supported */
unsigned long long primary_fcp_lun_id; /* not supported */
unsigned long long primary_fcp_ww_name; /* not supported */
unchar primary_enabled; /* primary path enabled */
unchar primary_id_valid; /* primary id/lun/bus fields valid */
unchar primary_fcp_id_valid; /* not supported */
unchar alternate_configured; /* alternate path configured */
char alternate_name[30]; /* alternate logical device name */
char alternate_parent[30]; /* alternate SCSI parent name */
unchar alternate_id; /* alternate target address of device */
unchar alternate_lun; /* alternate logical unit of device */
unchar alternate_bus; /* alternate SCSI bus for device */
unsigned long long alternate_fcp_scsi_id; /* not supported */
unsigned long long alternate_fcp_lun_id; /* not supported */
unsigned long long alternate_fcp_ww_name; /* not supported */
unchar alternate_enabled; /* alternate path enabled */
unchar alternate_id_valid; /* alternate id/lun/bus fields valid */
unchar alternate_fcp_id_valid; /* not supported */
unchar primary_drive_port_valid; /* not supported */
unchar primary_drive_port; /* not supported */
unchar alternate_drive_port_valid; /* not supported */
unchar alternate_drive_port; /* not supported */
unchar primary_fenced; /* primary fenced by disable path ioctl */
unchar alternate_fenced; /* alternate fenced by disable path ioctl */
unchar primary_host; /* primary host bus adapter id */
unchar alternate_host; /* alternate host bus adapter id */
char reserved[56];

};

An example of the SIOC_QUERY_PATH command is
#include <sys/IBM_tape.h>
struct scsi_path path;
memset(&path, 0, sizeof(struct scsi_path));
printf("Querying SCSI paths...\n");
rc = ioctl(fd, SIOC_QUERY_PATH, &path);
if(rc == 0)

show_path(&path);

Chapter 4. Linux tape and medium changer device driver 171

SIOC_DEVICE_PATHS

This IOCTL command returns the primary path and all of the alternate paths
information for a physical device. This IOCTL supports only the 3592 tape drives.
The data structure for this IOCTL command is
struct device_path_t
{
char name[30]; /* logical device name */
char parent[30]; /* logical parent name */
unchar id_valid; /* SCSI id/lun/bus fields valid */
unchar id; /* SCSI target address of device */
unchar lun; /* SCSI logical unit of device */
unchar bus; /* SCSI bus for device */
unchar fcp_id_valid; /* not supported */
unsigned long long fcp_scsi_id; /* not supported */
unsigned long long fcp_lun_id; /* not supported */
unsigned long long fcp_ww_name; /* not supported */
unchar enabled; /* path enabled */
unchar drive_port_valid; /* not supported */
unchar drive_port; /* not supported */
unchar fenced; /* path fenced by diable path ioctl */
unchar host; /* host bus adapter id */
char reserved[62];

};

struct device_paths
{
int number_paths; /* number of paths configured */
struct device_path_t path[MAX_SCSI_PATH];

};

An example of this IOCTL command is
#include <sys/IBM_tape.h>
struct device_paths device_path;
memset(%device_path, 0, sizeof(struct device_paths));
printf("Querying device paths...\n");
rc = ioctl(fd, SIOC_DEVICE_PATHS, &device_path);
if(rc == 0)

{
printf("\n");
for (i=0; i < device_path.number_paths; i++)
{

if (i == 0)
printf("Primary Path Number 1\n");

else
printf("Alternate Path Number %d\n", i+1);

printf(" Logical Device............ %s\n",device_path.path[i].name);
printf(" Host Bus Adapter.......... %s\n",device_path.path[i].parent);

if (device_path.path[i].id_valid)
{
printf(" SCSI Host ID.............. %d\n",device_path.path[i].host);
printf(" SCSI Channel.............. %d\n",device_path.path[i].bus);
printf(" Target ID................. %d\n",device_path.path[i].id);
printf(" Logical Unit.............. %d\n",device_path.path[i].lun);

}

if (device_path.path[i].enabled)
printf(" Path Enabled................... Yes\n");

else
printf(" Path Enabled................... No \n");

if (device_path.path[i].fenced)
printf(" Path Manually Disabled......... Yes\n");

else
printf(" Path Manually Disabled......... No \n");

172 IBM Tape Device Drivers: Programming Reference

printf("\n");
}

printf("Total paths configured...... %d\n",device_path.number_paths);
}

SIOC_ENABLE_PATH

This IOCTL enables the path that is specified by the path number. This command
supports only the 3592 tape drives.

An example of this IOCTL command is
#include <sys/IBM_tape.h>
if (path == PRIMARY_SCSI_PATH)

printf("Enabling primary SCSI path 1...\n");
else
printf("Enabling alternate SCSI path %d...\n",path);

rc = ioctl(fd, SIOC_ENABLE_PATH, path);

SIOC_DISABLE_PATH

This IOCTL disables the path that is specified by the path number. This command
supports only the 3592 tape drives.

An example of this IOCTL command is
#include <sys/IBM_tape.h>
if (path == PRIMARY_SCSI_PATH)

printf("Disabling primary SCSI path 1...\n");
else

printf("Disabling alternate SCSI path %d...\n",path);
rc = ioctl(fd, SIOC_DISABLE_PATH, path);

Tape drive IOCTL operations

The device driver supports the set of tape IOCTL commands that is available with
the base Linux operating system. In addition, a set of expanded tape IOCTL
commands gives applications access to extra features and functions of the tape
drives.

Overview

The following IOCTL commands are supported.

STIOCTOP
Run the basic tape operations.

STIOCQRYP
Query the tape device, device driver, and media parameters.

STIOCSETP
Change the tape device, device driver, and media parameters.

STIOCSYNC
Synchronize the tape buffers with the tape.

STIOCDM
Displays and manipulates one or two messages.

Chapter 4. Linux tape and medium changer device driver 173

STIOCQRYPOS
Query the tape position and the buffered data.

STIOCSETPOS
Set the tape position.

STIOCQRYSENSE
Query the sense data from the tape device.

STIOCQRYINQUIRY
Return the inquiry data.

STIOC_LOCATE
Locate to a certain tape position.

STIOC_READ_POSITION
Read the current tape position.

STIOC_RESET_DRIVE
Issue a SCSI Send Diagnostic command to reset the tape drive.

STIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by an operator.

STIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by an operator.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

MTDEVICE
Returns the device number that is used for communicating with an
Enterprise Tape Library 3494.

STIOC_GET_DENSITY
Query the current write density format settings on the tape drive. The
current density code from the drive Mode Sense header, the Read/Write
Control Mode page default density, and the pending density are returned.

STIOC_SET_DENSITY
Set a new write density format on the tape drive by using the default and
pending density fields. The application can specify a new write density for
the currently loaded tape only. Or, it can specify a new write density as a
default for all tapes.

GET_ENCRYPTION_STATE
This IOCTL can be used for application, system, and library-managed
encryption. It allows only a query of the encryption status.

SET_ENCRYPTION_STATE
This IOCTL can be used only for application-managed encryption. It sets
the encryption state for application-managed encryption.

SET_DATA_KEY
This IOCTL can be used only for application-managed encryption. It sets
the data key for application-managed encryption.

STIOC_QUERY_PARTITION
This IOCTL queries for partition information on applicable tapes. It
displays maximum number of possible partitions, number of partitions
currently on tape, the active partition, the size unit (bytes, kilobytes, and so
on), and the sizes of each partition.

174 IBM Tape Device Drivers: Programming Reference

STIOC_CREATE_PARTITION
This IOCTL creates partitions on applicable tapes. The user is allowed to
specify the number and type of partitions and the size of each partition.

STIOC_SET_ACTIVE_PARTITION
This IOCTL allows the user to set the partition on which to complete tape
operations.

STIOC_ALLOW_DATA_OVERWRITE
This IOCTL allows tape data to be overwritten when in data safe mode.

STIOC_READ_POSITION_EX
This IOCTL reads the tape position and includes support for the long and
extended formats.

STIOC_LOCATE_16
This IOCTL sets the tape position by using a long tape format.

STIOC_QUERY_BLK_PROTECTION
This IOCTL queries the current capability and status of Logical Block
Protection in the drive.

STIOC_SET_BLK_PROTECTION
This IOCTL sets the status of Logical Block Protection in the drive.

STIOC_VERIFY_TAPE_DATA
This IOCTL instructs the tape drive to scan the data on its current tape to
check for errors.

STIOC_QUERY_RAO
The IOCTL is used to query the maximum number and size of User Data
Segments (UDS) that are supported from tape drive and driver for the
wanted uds_type.

STIOC_GENERATE_RAO
The IOCTL is called to send a GRAO list to request that the drive generate
a Recommended Access Order list.

STIOC_RECEIVE_RAO
After a STIOC_GENERATE_RAO IOCTL is completed, the application calls the
STIOC_RECEIVE_RAO IOCTL to receive a recommended access order of UDS
from the drive.

STIOC_SET_SPDEV
This IOCTL is for usage through IBMSpecial open handle only. It sets the
drive that processes the command requests, and to do so it needs the serial
number of the drive as input.

These IOCTL commands and their associated structures are defined in the
IBM_tape.h header file that can be found in the lin_tape source rpm package. This
header must be included in the corresponding C program by using the IOCTL
commands.

STIOCTOP

This IOCTL command runs basic tape operations. The st_count variable is used for
many of its operations. Normal error recovery applies to these operations. The
device driver can issue several tries to complete them. For all forward movement
space operations, the tape position finishes on the end-of-tape side of the record or
filemark, and on the beginning-of-tape side of the record or filemark for backward
movement.

Chapter 4. Linux tape and medium changer device driver 175

|
|
|
|

The input data structure is
struct stop {

short st_op; /* operations defined below */
daddr_t st_count; /* how many of them to do (if applicable) */

};

The st_op variable is set to one of the following operations.

STOFFL
Unload the tape. The st_count parameter does not apply.

STREW
Rewind the tape. The st_count parameter does not apply.

STERASE
Erase the entire tape. The st_count parameter does not apply.

STRETEN
Run the rewind operation. The tape devices run the retension operation
automatically when needed.

STWEOF
Write st_count number of filemarks.

STFSF Space forward the st_count number of filemarks.

STRSF
Space backward the st_count number of filemarks.

STFSR
Space forward the st_count number of records.

STRSR
Space backward the st_count number of records.

STTUR
Issue the Test Unit Ready command. The st_count parameter does not
apply.

STLOAD
Issue the SCSI Load command. The st_count parameter does not apply.
The operation of the SCSI Load command varies depending on the type of
device. See the appropriate hardware reference manual.

STSEOD
Space forward to the end of the data. The st_count parameter does not
apply.

STEJECT
Unload the tape. The st_count parameter does not apply.

STINSRT
Issue the SCSI Load command. The st_count parameter does not apply.
The operation of the SCSI Load command varies depending on the type of
device. See the appropriate hardware reference manual.

Note: If zero is used for operations that require the st_count parameter, then the
command is not issued to the device. The device driver returns a successful
completion.

An example of the STIOCTOP command is

176 IBM Tape Device Drivers: Programming Reference

#include <sys/IBM_tape.h>

struct stop stop;
stop.st_op=STWEOF;
stop.st_count=3;
if (ioctl(tapefd,STIOCTOP,&stop)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCQRYP or STIOCSETP

The STIOCQRYP command allows the program to query the tape device, device
driver, and the media parameters. The STIOCSETP command allows the program to
change the tape device, the device driver, and the media parameters.

Before the STIOCSETP command is issued, use the STIOCQRYP command to query
and fill the fields of the data structure you do not want to change. Then, issue the
STIOCSETP command to change the selected fields. Changing certain fields, such as
buffered_mode, impacts performance. If the buffered_mode field is FALSE, each
record that is written to the tape is immediately transferred to the tape. This
operation guarantees that each record is on the tape, but it impacts performance.

Unchangeable parameters

The following parameters that are returned by the STIOCQRYP command cannot be
changed by the STIOCSETP command.

hkwrd
This parameter is accepted but ignored.

logical_write_protect
This parameter sets the type of logical write protection for the tape that is
loaded in the drive.

write_protect
If the currently mounted tape is write protected, this field is set to TRUE.
Otherwise, it is set to FALSE.

min_blksize
This parameter is the minimum block size for the device. The driver gets
this field by issuing the SCSI Read Block Limits command to the device.

max_blksize
This parameter is the maximum block size for the device. The driver gets
this field by issuing the SCSI Read Block Limits command to the device.

retain_reservation
This parameter is accepted but ignored.

medium_type
This parameter is the media type of the currently loaded tape. Some tape
devices support multiple media types and report different values in this
field. See the hardware reference guide for the specific tape device to
determine the possible values.

capacity_scaling
This parameter sets the capacity or logical length of the current tape. By
reducing the capacity of the tape, the tape drive can access data faster.
Capacity Scaling is not currently supported in IBMtape.

Chapter 4. Linux tape and medium changer device driver 177

density_code
This parameter is the density setting for the currently loaded tape. Some
tape devices support multiple densities and report the current setting in
this field. See the hardware reference guide for the specific tape device to
determine the possible values.

volid This field is always set to zero.

emulate_autoloader
This parameter is accepted but ignored.

record_space_mode
Only SCSI_SPACE_MODE is supported.

read_sili_bit
This parameter is accepted but ignored. SILI bit is not supported due to
Linux system environment limitations.

Changeable parameters

The following parameters can be changed by using the STIOCSETP IOCTL
command.

trace This parameter turns the trace for the tape device On or Off.

blksize
This parameter specifies the new effective block size for the tape device.
Use 0 for variable block mode.

compression
This parameter turns the hardware compression On or Off.

max_scsi_xfer
This parameter is the maximum transfer size that is allowed per SCSI
command. In the IBMtape driver 3.0.3 or lower level, this value is 256 KB
(262144 bytes) by default and changeable through the STIOCSETP IOCTL. In
the IBMtape driver 3.0.5 or above and the open source driver lin_tape, this
parameter is not changeable any more. It is determined by the maximum
transfer size of the Host Bus Adapter that the tape drive is attached to.

trailer_labels
If this parameter is set to On, then writing a record past the early warning
mark on the tape is allowed. Only the first write operation that detects the
early warning mark returns the ENOSPC error code. All subsequent write
operations are allowed to continue despite the check conditions that result
from writing in the early warning zone (which are suppressed). When the
end of the physical volume is reached, EIO is returned.

If this parameter is set to Off, the first write in the early warning zone
fails, the ENOSPC error code is returned, and subsequent write operations
fail.

rewind_immediate
This parameter turns the immediate bit On or Off for subsequent rewind
commands. If it is set to On, then the STREW tape operation runs faster.
However, the next tape command can take longer to finish because the
actual physical rewind operation must complete before the next tape
command can start.

logging
This parameter turns the volume logging for the tape device On or Off.

178 IBM Tape Device Drivers: Programming Reference

disable_sim_logging
If this parameter is Off, the SIM/MIM data is automatically retrieved by
the IBMtape device driver whenever it is available in the tape device.

disable_auto_drive_dump
If this parameter is Off, the drive dump is automatically retrieved by the
IBMtape device driver whenever a drive dump is in the tape device. It can
also be set for all devices at modprobe configuration by adding
disable_auto_drive_dump=1.

logical_write_protect
This parameter sets the type of logical write protection for the tape that is
loaded in the drive. See the hardware reference guide for the specific
device for different types of logical write protect.

capacity_scaling
This field can be changed only when the tape is positioned at the
beginning of the tape. When a change is accepted, IBMtape rescales the
tape capacity by formatting the loaded tape. See the IBM Enterprise Tape
System 3592 SCSI Reference for the specific device for different types of
capacity scaling.

IBM 3592 tape cartridges have two formats available, the 300 GB format
and the 60 GB Fast Access format. The format of a cartridge can be queried
under program control by issuing the STIOCQRYP IOCTL and checking the
returned value of capacity_scaling_value (in hex).

If the capacity_scaling_value is 0x00, your 3592 tape cartridge is in 300 GB
format. If the capacity_scaling_value is 0x35, your tape cartridge is in 60
GB Fast Access format. If the capacity_scaling_value is some other value,
your tape cartridge format is undefined. (IBM can later define other
supported cartridge formats. If so, they are documented in later versions of
the IBM TotalStorage Enterprise Tape System 3592 SCSI Reference).

If you want to change your cartridge format, you can use the STIOCSETP
IOCTL to change the capacity scaling value of your cartridge.

Note: All data on the cartridge is lost when the format is changed.
If you want to set it to the 300 GB format, set capacity_scaling_value to
0x00 and capacity_scaling to SCALE_VALUE. If you want to set it to the 60
GB Fast Access format, set capacity_scaling_value to 0x35 and
capacity_scaling to SCALE_VALUE. Setting capacity_scaling to
SCALE_VALUE is required.

Note: All data on the tape is deleted and is not recoverable.

read_past_file_mark
This parameter changes the behavior of the read function when a filemark
is encountered. If the read_past_filemark flag is TRUE when a read
operation encounters a file mark, IBMtape returns the number of bytes
read before the filemark is encountered and sets the tape position at the
EOT side of the file mark.

If the read_past_filemark flag is FALSE (by default) when a read operation
encounters a filemark, if data was read, the read function returns the
number of bytes read, and positions the tape at the BOT side of the
filemark. If no data was read, the read returns 0 bytes and positions the
tape at the EOT side of the filemark.

Chapter 4. Linux tape and medium changer device driver 179

|
|
|

limit_read_recov
If this flag is TRUE, automatic recovery from read errors is limited to 5
seconds. If it is FALSE, the default is restored and the tape drive takes an
arbitrary amount of time for read error recovery.

limit_write_recov
If this flag is TRUE, automatic recovery from write errors is limited to 5
seconds. If it is FALSE, the default is restored and the tape drive takes an
arbitrary amount of time for write error recovery.

data_safe_mode
If this flag is TRUE, data_safe_mode is set in the drive. This action prevents
data on the tape from being overwritten to avoid accidental data loss. If
the value is FALSE, data_safe_mode is turned off.

pews This parameter establishes the programmable early warning zone size. It is
a 2-byte numerical value that specifies how many MB before the standard
end-of-medium early warning zone to place the programmable early
warning indicator. If this value is set to a positive integer, a user
application is warned that the tape is running out of space when the tape
head reaches the PEW location. If pews is set to 0, then there no early
warning zone occurs and the user is notified only at the standard early
warning location.

The input or output data structure is
struct stchgp_s {

int blksize; /* new block size */
boolean trace; /* TRUE = message trace on */
uint hkwrd; /* trace hook word */
int sync_count; /* obsolete - not used */
boolean autoload; /* on/off autoload feature */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression */
boolean trailer_labels; /* on/off allow writing after EOM */
boolean rewind_immediate; /* on/off immediate rewinds */
boolean bus_domination; /* obsolete - not used */
boolean logging; /* enable or disable volume logging */
boolean write_protect; /* write_protected media */
uint min_blksize; /* minimum block size */
uint max_blksize; /* maximum block size */
uint max_scsi_xfer; /* maximum scsi tranfer len */
char volid[16]; /* volume id */
unchar acf_mode; /* automatic cartridge facility mode*/

#define ACF_NONE 0
#define ACF_MANUAL 1
#define ACF_SYSTEM 2
#define ACF_AUTOMATIC 3
#define ACF_ACCUMULATE 4
#define ACF_RANDOM 5

unchar record_space_mode; /* fsr/bsr space mode */
#define SCSI_SPACE_MODE 1
#define AIX_SPACE_MODE 2

unchar logical_write_protect; /* logical write protect */
#define NO_PROTECT 0
#define ASSOCIATED_PROTECT 1
#define PERSISTENT_PROTECT 2
#define WORM_PROTECT 3

unchar capacity_scaling; /* capacity scaling */
#define SCALE_100 0
#define SCALE_75 1
#define SCALE_50 2
#define SCALE_25 3
#define SCALE_VALUE 4

unchar retain_reservation; /* retain reservation */

180 IBM Tape Device Drivers: Programming Reference

unchar alt_pathing; /* alternate pathing active */
boolean emulate_autoloader; /* emulate autoloader in random mode*/
unchar medium_type; /* tape medium type */
unchar density_code; /* tape density code */
boolean disable_sim_logging; /* disable sim/mim error logging */
boolean read_sili_bit; /* SILI bit setting for read commands*/
unchar read_past_filemark; /* fixed block read pass the filemark*/
boolean disable_auto_drive_dump; /* disable auto drive dump logging*/
unchar capacity_scaling_value; /* hex value of capacity scaling */
boolean wfm_immediate; /* buffer write file mark */
boolean limit_read_recov; /* limit read recovery to 5 seconds */
boolean limit_write_recov; /* limit write recovery to 5 seconds*/
boolean data_safe_mode; /* turn data safe mode on/off */
unchar pews[2]; /* programmable early warn zone size*/
unchar reserve_type; /* if set persistent reserve will be used */
unchar reserved[12];

};

An example of the STIOCQRYP and STIOCSETP commands is
#include <sys/IBM_tape.h>
struct stchgp_s stchgp;
/* get current parameters */
if (ioctl(tapefd,STIOCQRYP,&stchgp)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
/* set new parameters */
stchgp.rewind_immediate=1;
stchgp.trailer_labels=1;
if (ioctl(tapefd,STIOCSETP,&stchgp)) {

printf("IOCTL failure. errno=%d",errno);
exit(errno);

}

STIOCSYNC

This IOCTL command immediately flushes the tape buffers to the tape. There are
no arguments for this IOCTL command.

An example of the STIOCSYNC command is
#include <sys/IBM_tape.h>
if (ioctl(tapefd,STIOCSYNC,NULL)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCDM

This IOCTL command shows and manipulates one or two messages on the
message display. The message that is sent with this call does not always remain on
the display. It depends on the current state of the tape device. Refer to the IBM
3590 manuals for a description of the message display functions.

The input data structure is
#define MAXMSGLEN 8
struct stdm_s
{

char dm_function; /* function code */
/* function selection */
#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount verify message */
#deinfe DMMIMMED 0x40 /* mount with immediate action indicator */
#define DMDEMIMMED 0xE0 /* demount/mount with immediate action */

Chapter 4. Linux tape and medium changer device driver 181

|
|

/* message control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */
#define DMALTERNATE 0x10 /* alternate message 0 and message 1 */
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */

};

An example of the STIOCDM command is
#include <sys/IBM_tape.h>
struct stdm_s stdm;
memset(&stdm, 0, sizeof(struct stdm_s));
stdm.dm_func = DMSTATUSMSG|DMMSG0;
bcopy("SSG", stdm.dm_msg0, 8);
if(ioctl(tapefd, STIOCDM, &stdm)<0)
{

printf("IOCTL failure, errno = %d", errno);
exit(errno);

}

STIOCQRYPOS

This command queries the tape position. Tape position is defined as the location
where the next read or write operation occurs. The query function can be used
independently of, or with, the STIOCSETPOS IOCTL command.

A write filemark of count 0 is always issued to the drive, which flushes all data
from the buffers to the tape media. After the write filemark finishes, the query is
issued.

After a query operation, the curpos field is set to an unsigned integer that
represents the current position.

The eot field is set to TRUE if the tape is positioned between the early warning
and the physical end of the tape. Otherwise, it is set to FALSE.

The lbot field is valid only if the last command was a write command. If a query
is issued and the last command was not a write, lbot contains the value
LBOT_UNKNOWN.

Note: lbot indicates the last block of data that is transferred to the tape.

The number of blocks and number of bytes currently in the tape device buffers is
returned in the num_blocks and num_bytes fields.

The bot field is set to TRUE if the tape position is at the beginning of the tape.
Otherwise, it is set to FALSE.

The returned partition_number field is the current partition of the loaded tape.

The block ID of the next block of data to be transferred to or from the physical
tape is returned in the tapepos field.

The position data structure is
typedef unsigned int blockid_t;
struct stpos_s {

char block_type; /* Format of block ID information */

182 IBM Tape Device Drivers: Programming Reference

#define QP_LOGICAL 0 /* SCSI logical block ID format */
#define QP_PHYSICAL 1 /* Vendor-specific block ID format */

boolean eot; /* Position is after early warning,*/
/* before physical end of tape. */

blockid_t curpos; /* For query pos, current position.*/
/* For set pos, position to go to. */

blockid_t lbot; /* Last block written to tape. */
#define LBOT_NONE 0xFFFFFFFF /* No blocks written to tape.*/
#define LBOT_UNKNOWN 0xFFFFFFFE /* Unable to determine info. */

uint num_blocks; /* Number of blocks in buffer. */
uint num_bytes; /* Number of bytes in buffer. */
boolean bot; /* Position is at beginning of tape*/
unchar partition_number; /* Current partition number on tape*/
unchar reserved1[2];
blockid_t tapepos; /* Next block to be transferred. */
unchar reserved2[48];

};

An example of the STIOCQRYPOS command is
#include <sys/IBM_tape.h>
struct stpos_s stpos;
stpos.block_type=QP_PHYSICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
oldposition=stpos.curpos;

STIOCSETPOS

This IOCTL command issues a high speed locate operation to the position
specified on the tape. It uses the same position data structure that is described for
STIOCQRYPOS, however, only the block_type and curpos fields are used during a set
operation. STIOCSETPOS can be used independently of or with STIOCQRYPOS.

The block_type must be set to either QP_PHYSICAL or QP_LOGICAL. However,
there is no difference in how IBMtape processes the request.

An example of the STIOCQRYPOS and STIOCSETPOS commands is
#include <sys/IBM_tape.h>
struct stpos_s stpos;
stpos.block_type=QP_LOGICAL;
if (ioctl(tapefd,STIOCQRYPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
oldposition=stpos.curpos;

stpos.curpos=oldposition;
stpos.block_type=QP_LOGICAL;
if (ioctl(tapefd,STIOCSETPOS,&stpos)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}

STIOCQRYSENSE

This IOCTL command returns the last sense data that is collected from the tape
device. Or, it issues a new Request Sense command and returns the collected data.
If sense_type equals LASTERROR, then the sense data is valid only if the last tape
operation had an error that caused a sense command to be issued to the device. If

Chapter 4. Linux tape and medium changer device driver 183

the sense data is valid, then the IOCTL command finishes successfully, and the len
field is set to a value greater than zero. The residual_count field contains the
residual count from the last operation.

The input or output data structure is
#define MAXSENSE 255
struct stsense_s {

/* input */
char sense_type; /* fresh (new sense) or sense from last error */

#define FRESH 1 /* Initiate a new sense command */
#define LASTERROR 2 /* Return sense gathered from */

/* the last SCSI sense command. */
/* output */
unchar sense[MAXSENSE]; /* actual sense data */
int len; /* length of valid sense data returned */
int residual_count; /* residual count from last operation */
unchar reserved[60];

};

An example of the STIOCQRYSENSE command is
#include <sys/IBM_tape.h>
struct stsense_s stsense;
stsense.sense_type=LASTERROR;
#define MEDIUM_ERROR 0x03
if (ioctl(tapefd,STIOCQRYSENSE,&stsense)) {

printf("ioctl failure. errno=%d",errno);
exit(errno);

}
if ((stsense.sense[2]&0x0F)==MEDIUM_ERROR) {

printf("We’re in trouble now!");
exit(SENSE_KEY(&stsense.sense));

}

STIOCQRYINQUIRY

This IOCTL command returns the inquiry data from the device. The data is
divided into standard and vendor-specific portions.

The output data structure is
/*inquiry data info */
struct inq_data_s {

BYTE b0;
/*macros for accessing fields of byte 1 */

#define PERIPHERAL_QUALIFIER(x) ((x->b0 &0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03
#define PERIPHERAL_DEVICE_TYPE(x) (x->b0 &0x1F)
#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1;
/*macros for accessing fields of byte 2 */

#define RMB(x) ((x->b1 &0x80)>>7) /*removable media bit */
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 &0x7F) /*vendor specific */

BYTE b2;
/*macros for accessing fields of byte 3 */

184 IBM Tape Device Drivers: Programming Reference

#define ISO_Version(x) ((x->b2 &0xC0)>>6)
#define ECMA_Version(x) ((x->b2 &0x38)>>3)
#define ANSI_Version(x) (x->b2 &0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2
#define SCSI3 3

BYTE b3;
/*macros for accessing fields of byte 4 */

/* asynchronous event notification */
#define AENC(x) ((x->b3 &0x80)>>7)
/* support terminate I/O process message? */
#define TrmIOP(x) ((x->b3 &0x40)>>6)
#define Response_Data_Format(x) (x->b3 &0x0F)
#define SCSI1INQ 0 /* SCSI-1 standard inquiry data format */
#define CCSINQ 1 /* CCS standard inquiry data format */
#define SCSI2INQ 2 /* SCSI-2 standard inquiry data format */

BYTE additional_length; /* bytes following this field minus 4 */
BYTE res5;

BYTE b6;
#define MChngr(x) ((x->b6 & 0x08)>>3)
BYTE b7;
/*macros for accessing fields of byte 7 */

#define RelAdr(x) ((x->b7 &0x80)>>7)
/* the following fields are true or false */
#define WBus32(x) ((x->b7 &0x40)>>6)
#define WBus16(x) ((x->b7 &0x20)>>5)
#define Sync(x) ((x->b7 &0x10)>>4)
#define Linked(x) ((x->b7 &0x08)>>3)
#define CmdQue(x) ((x->b7 &0x02)>>1)
#define SftRe(x) (x->b7 &0x01)

char vendor_identification [8];
char product_identification [16];
char product_revision_level [4];

};
struct st_inquiry
{

struct inq_data_s standard;
BYTE vendor_specific [255-sizeof(struct inq_data_s)];

};

An example of the STIOCQRYINQUIRY command is
struct st_inquiry inqd;
if (ioctl(tapefd,STIOCQRYINQUIRY,&inqd)) {

printf("ioctl failure. errno=%d\n",errno);
exit(errno);

}
if (ANSI_Version(((struct inq_data_s *)&(inqd.standard)))==SCSI2)
printf("Hey! We have a SCSI-2 device\n");

STIOC_LOCATE

This IOCTL command causes the tape to be positioned at the specified block ID.
The block ID used for the command must be obtained by using the
STIOC_READ_POSITION command.

An example of the STIOC_LOCATE command is
#include <sys/IBM_tape.h>
unsigned int current_blockid;

/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}

Chapter 4. Linux tape and medium changer device driver 185

/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}

STIOC_READ_POSITION

This IOCTL command returns the block ID of the current position of the tape. The
block ID returned from this command can be used with the STIOC_LOCATE
command to set the position of the tape.

An example of the STIOC_READ_POSITION command is
#include <sys/IBM_tape.h>
unsigned int current_blockid;
/* read current tape position */
if (ioctl(tapefd,STIOC_READ_POSITION,¤t_blockid)) {

printf("ioctl failure. errno=%d\n",errno);
exit(1);

}
/* restore current tape position */
if (ioctl(tapefd,STIOC_LOCATE,current_blockid)) {

printf("ioctl failure.errno=%d\n",errno);
exit(1);

}

STIOC_RESET_DRIVE

This IOCTL command issues a SCSI Send Diagnostic command to reset the tape
drive. There are no arguments for this IOCTL command.

An example of the STIOC_RESET_DRIVE command is
/* reset the tape drive */
if (ioctl(tapefd,STIOC_RESET_DRIVE,NULL)) {

printf("ioctl failure. errno=%d\n",errno);
exit(errno);

}

STIOC_PREVENT_MEDIUM_REMOVAL

This IOCTL command prevents an operator from removing media from the device
until the STIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device is reset.

There is no associated data structure.

An example of the STIOC_PREVENT_MEDIUM_REMOVAL command is
#include <sys/IBM_tape.h>
if (!ioctl (tapefd, STIOC_PREVENT_MEDIUM_REMOVAL, NULL))

printf ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The STIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

STIOC_ALLOW_MEDIUM_REMOVAL

This IOCTL command allows an operator to remove media from the device. This
command is normally used after the STIOC_PREVENT_MEDIUM_REMOVAL command to
restore the device to the default state.

186 IBM Tape Device Drivers: Programming Reference

There is no associated data structure.

An example of the STIOC_ALLOW_MEDIUM_REMOVAL command is
#include <sys/IBM_tape.h>
if (!ioctl (tapefd, STIOC_ALLOW_MEDIUM_REMOVAL, NULL))

printf ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The STIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

STIOC_REPORT_DENSITY_SUPPORT

This IOCTL command issues the SCSI Report Density Support command to the
tape device. It returns either ALL supported densities or only supported densities
for the currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures that are used with this IOCTL is
struct density_report {

unchar primary_density_code; /* primary density code */
unchar secondary_density_code; /* secondary density code */
uint wrtok :1, /* write ok, device can write this format */

dup :1, /* zero if density only reported once */
deflt :1, /* current density is default format */

:5; /* reserved */
char reserved[2]; /* reserved */
uint bits_per_mm :24; /* bits per mm */
ushort media_width; /* media width in millimeters */
ushort tracks; /* tracks */
uint capacity; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

};

struct report_density_support {
unchar media; /* report all or current media as defined above */
ushort number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

};

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are
#include <sys/IBM_tape.h>
int stioc_report_density_support(void)
{

int i;
struct report_density_support density;
printf("Issuing Report Density Support for ALL supported media...\n");
density.media = ALL_MEDIA_DENSITY;
if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)

return errno;
printf("Total number of densities reported:

%d\n",density.number_reports);
for (i = 0; i<density.number_reports; i++) {

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);

Chapter 4. Linux tape and medium changer device driver 187

printf(" Description.................. %0.20s\n",
density.reports[i].description);

printf(" Primary Density Code......... %02X\n",
density.reports[i].primary_density_code);

printf(" Secondary Density Code....... %02X\n",
density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");

else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");

else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");

else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",
density.reports[i].bits_per_mm);

printf(" Media Width (millimeters).... %d\n",
density.reports[i].media_width);

printf(" Tracks....................... %d\n",
density.reports[i].tracks);

printf(" Capacity (megabytes)......... %d\n",
density.reports[i].capacity);

if (opcode) {
printf ("\nHit enter> to continue?");
getchar();

}
}
printf("\nIssuing Report Density Support for CURRENT media...\n");
density.media = CURRENT_MEDIA_DENSITY;
if (ioctl(fd, STIOC_REPORT_DENSITY_SUPPORT, &density) != 0)

return errno;
for (i = 0; i<density.number_reports; i++) {

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);
if (density.reports[i].wrtok)

printf(" Write OK..................... Yes\n");
else

printf(" Write OK..................... No\n");
if (density.reports[i].dup)

printf(" Duplicate.................... Yes\n");
else

printf(" Duplicate.................... No\n");
if (density.reports[i].deflt)

printf(" Default...................... Yes\n");
else

printf(" Default...................... No\n");
printf(" Bits per MM.................. %d\n",

density.reports[i].bits_per_mm);
printf(" Media Width (millimeters).... %d\n",

density.reports[i].media_width);
printf(" Tracks....................... %d\n",

density.reports[i].tracks);
printf(" Capacity (megabytes)......... %d\n",

188 IBM Tape Device Drivers: Programming Reference

density.reports[i].capacity);
}
return errno;

}

MTDEVICE (Obtain Device Number)

This IOCTL command obtains the device number that is used for communicating
with a 3494 library.

An example of the MTDEVICE command is
int device;
if(ioctl(tapefd, MTDEVICE, &device)<0)
{

printf("IOCTL failure, errno = %d\n", errno);
exit(errno);

}
printf("Device number is %X\n", device);

STIOC_GET DENSITY and STIOC_SET_DENSITY

The STIOC_GET_DENSITY IOCTL is used to query the current write density format
settings on the tape drive. The current density code from the drive Mode Sense
header, the Read/Write Control Mode page default density and pending density
are returned.

The STIOC_SET_DENSITY IOCTL is used to set a new write density format on the
tape drive by using the default and pending density fields. The density code field
is not used and ignored on this IOCTL. The application can specify a new write
density for the current loaded tape only or as a default for all tapes. Refer to the
examples below.

The application must get the current density settings first before the current
settings are modified. If the application specifies a new density for the current
loaded tape only, then the application must issue another set density IOCTL after
the current tape is unloaded and the next tape is loaded to either the default
maximum density or a new density to ensure the tape drive uses the correct
density. If the application specifies a new default density for all tapes, the setting
remains in effect until changed by another set density IOCTL or the tape drive is
closed by the application.

The structure for the STIOC_GET_DENSITY and STIOC_SET_DENSITY IOCTLs is
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Note:

1. These IOCTLs are supported only on tape drives that can write multiple
density formats. Refer to the Hardware Reference for the specific tape drive to
determine whether multiple write densities are supported. If the tape drive
does not support these IOCTLs, errno EINVAL is returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY IOCTL
values from the last open are not used.

Chapter 4. Linux tape and medium changer device driver 189

3. If the tape drive detects an invalid density code or cannot run the operation on
the STIOC_SET_DENSITY IOCTL, the errno is returned and the current drive
density settings before the IOCTL are restored.

4. The struct density_data_t defined in the header file is used for both IOCTLs.
The density_code field is not used and ignored on the STIOC_SET_DENSITY
IOCTL.

Examples
struct density_data_t data;

/* open the tape drive */
/* get current density settings */
rc = ioctl(fd, STIOC_GET_DENSITY, %data);

/* set 3592 J1A density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x51;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set 3592 E05 density format for current loaded tape only */
data.default_density = 0x7F;
data.pending_density = 0x52;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* unload tape */
/* load next tape */
/* set default maximum density for current loaded tape */
data.default_density = 0;
data.pending_density = 0;
rc = ioctl(fd, STIOC_SET_DENSITY, %data);

/* close the tape drive */
/* open the tape drive */
/* set 3592 J1A density format for current loaded tape and all subsequent tapes */
data.default_density = 0x51;
data.pending_density = 0x51;

rc = ioctl(fd, STIOC_SET_DENSITY, %data);

GET_ENCRYPTION_STATE

This IOCTL command queries the drive's encryption method and state. The data
structure that is used for this IOCTL is as follows on all of the supported operating
systems

struct encryption_status
{
uchar encryption_capable; /* (1)Set this field as a boolean based on the

capability of the drive */
uchar encryption_method; /* (2)Set this field to one of the following */

#define METHOD_NONE 0 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_LIBRARY 1 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_SYSTEM 2 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_APPLICATION 3 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_CUSTOM 4 /* Only used in GET_ENCRYPTION_STATE */
#define METHOD_UNKNOWN 5 /* Only used in GET_ENCRYPTION_STATE */

uchar encryption_state; /* (3) Set this field to one of the following */
#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/
uchar[13] reserved;

};

190 IBM Tape Device Drivers: Programming Reference

An example of the GET_ENCRYPTION_STATE command is
int qry_encrytion_state (void)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc == 0)
{

if(encryption_status_t.encryption_capable)
printf("encryption capable......Yes\n");

else
printf("encryption capable......No\n");

switch(encryption_status_t.encryption_method)
{
case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;
case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;
case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;
case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;
case METHOD_CUSTOM:
printf("encyrpiton method.......METHOD_CUSTOM\n");
break;
case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encrption method.......Error\n");
}

switch(encryption_status_t.encryption_state)
{
case STATE_OFF:
printf("encryption state........OFF\n");
break;
case STATE_ON:
printf("encryption state........ON\n");
break;
case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");
}

}

return rc;
}

SET_ENCRYPTION_STATE

This IOCTL command allows setting the encryption state only for
application-managed encryption. On unload, some drive settings might be reset to
default. To set the encryption state, the application must issue this IOCTL after a
tape is loaded and at BOP.

Chapter 4. Linux tape and medium changer device driver 191

The data structure that is used for this IOCTL is the same as the one for
GET_ENCRYPTION_STATE. An example of the SET_ENCRYPTION_STATE command is
int set_encryption_state(int option)
{

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(,&encryption_status_t 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE,);&encryption_status_t
if(rc < 0) return rc;

if(option == 0)
encryption_status_t.encryption_state = STATE_OFF;

else if(option == 1)
encryption_status_t.encryption_state = STATE_ON;

else
{

printf("Invalid parameter.\n");
return -EINVAL;

}

printf("Issuing set encryption state......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY

This IOCTL command allows the data key to be set only for application-managed
encryption. The data structure that is used for this IOCTL is as follows on all of
the supported operating systems.
struct data_key
{

uchar[12] data_key_index;
uchar data_key_index_length;
uchar[15] reserved1;
uchar[32] data_key;
uchar[48] reserved2;

};

An example of the SET_DATA_KEY command is
int set_datakey(void)
{

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(,&encryption_data_key_t 0, sizeof(struct data_key));
/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_data_key_t);
return rc;

}

STIOC_QUERY_PARTITION

This IOCTL queries and displays information for tapes that support partitioning.
The data structure that is used for this IOCTL is
#define MAX_PARTITIONS 255
struct query_partition {
unchar max_partitions;
unchar active_partition;

192 IBM Tape Device Drivers: Programming Reference

unchar number_of_partitions;
unchar size_unit;
ushort size[MAX_PARTITIONS];
char reserved[32];
};

v max_partitions is the maximum number of partitions that the tape allows.
v active_partition is the current partition to which tape operations apply.
v number_of_partitions is the number of partitions currently on the tape.
v size_unit describes the units for the size of the tape, which is given as a

logarithm to the base 10.

For example, 0 refers to 10^0 = 1, the most basic unit, which is bytes. All sizes that
are reported are in bytes. 3 refers to 10^3, or kilobytes. Size is an array of the size
of the partitions on tape, one array element per partition, in size_units.

An example of the STIOC_QUERY_PARTITION IOCTL is
int stioc_query_partition()
{
struct query_partition qry;
int rc = 0, i = 0;

memset(&qry, ’\0’, sizeof(struct query_partition));
printf("Issuing IOCTL...\n");

rc = ioctl(fd, STIOC_QUERY_PARTITION, &qry);

if(rc) {
printf("Query partition failed: %d\n", rc);

goto EXIT_LABEL;
} /* if */

printf("\nmax possible partitions: %d\n", qry.max_partitions);
printf("number currently on tape: %d\n", qry.number_of_partitions);
printf("active: %d\n", qry.active_partition);
printf("unit: %d\n", qry.size_unit);

for(i = 0; i < qry.number_of_partitions; i++)
printf("size[%d]: %d\n", i, qry.size[i]);

EXIT_LABEL:

return rc;
} /* stioc_query_partition() */

STIOC_CREATE_PARTITION

This IOCTL creates partitions on tapes that support partitioning. The data structure
that is used for this IOCTL is
#define IDP_PARTITION (1)
#define SDP_PARTITION (2)
#define FDP_PARTITION (3)
struct tape_partition {
unchar type;
unchar number_of_partitions;
unchar size_unit;
ushort size[MAX_PARTITIONS];
char reserved[32];
};

Type is the type of partition, whether IDP_PARTITION (initiator defined
partition), SDP_PARTITION (select data partition), or FDP_PARTITION (fixed
data partition). The behavior of these options is described in the SCSI reference for
your tape drive.

Chapter 4. Linux tape and medium changer device driver 193

|

|

|

|
|

|
|
|

|
|
|
|

v number_of_partitions is the number of partitions the user wants to create.
v size_unit is as defined in the STIOC_QUERY_PARTITION section.
v size is an array of requested sizes, in size_units, one array element per partition.

An example of the STIOC_CREATE_PARTITION IOCTL is
int stioc_create_partition()
{
int rc = 0, i = 0, char_cap = 0, short_cap = 0;
struct tape_partition crt;
char* input = NULL;

char_cap = pow(2, sizeof(char) * BITS_PER_BYTE) - 1;
short_cap = pow(2, sizeof(short) * BITS_PER_BYTE) - 1;

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {
rc = ENOMEM;
goto EXIT_LABEL;
} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

memset(&crt, ’\0’, sizeof(struct tape_partition));

while(atoi(input) < IDP_PARTITION || atoi(input) > FDP_PARTITION + 1) {
printf("%d) IDP_PARTITION\n", IDP_PARTITION);
printf("%d) SDP_PARTITION\n", SDP_PARTITION);
printf("%d) FDP_PARTITION\n", FDP_PARTITION);
printf("%d) Cancel\n", FDP_PARTITION + 1);
printf("\nPlease select: ");

fgets(input, DEF_BUF_SIZE / 16, stdin);
if(atoi(input) == FDP_PARTITION + 1) {
rc = 0;
goto EXIT_LABEL;
} /* if */
} /* while */

crt.type = atoi(input);

memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] < ’1’ || input[0] > ’9’) {
printf("Enter desired number of partitions (0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > MAX_PARTITIONS) {
printf("Please select number <= %d\n", MAX_PARTITIONS);
input[0] = ’\0’;
} /* if */
} /* while */

crt.number_of_partitions = atoi(input);

if(crt.type == IDP_PARTITION && crt.number_of_partitions > 1) {
memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] < ’0’ || input[0] > ’9’) {
printf("Enter size unit (0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;

} /* if */

194 IBM Tape Device Drivers: Programming Reference

|

|

|

if(atoi(input) > char_cap) {
printf("Please select number <= %d\n", char_cap);
input[0] = ’\0’;

} /* if */
} /* while */
crt.size_unit = atoi(input);

for(i = 0; i < crt.number_of_partitions; i++) {
memset(input, ’\0’, DEF_BUF_SIZE / 16);
while(input[0] != ’-’ &&
(input[0] < ’0’ || input[0] > ’9’)) {
printf("Enter size[%d] (0 to cancel, < 0 for "\
"remaining space on cartridge): ", i);
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(input[0] == ’0’) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > short_cap) {
printf("Please select number <= %d\n",
short_cap);
input[0] = ’\0’;
} /* if */

} /* while */
if(input[0] == ’-’ && atoi(&input[1]) > 0)
crt.size[i] = 0xFFFF;
else crt.size[i] = atoi(input);
} /* for */
} /* if */

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_CREATE_PARTITION, &crt);

if(rc) {
printf("Create partition failed: %d\n", rc);
goto EXIT_LABEL;
} /* if */

EXIT_LABEL:

if(input) free(input);
return rc;
} /* stioc_create_partition() */

STIOC_SET_ACTIVE_PARTITION

This IOCTL allows the user to specify the partition on which to run subsequent
tape operations. The data structure that is used for this IOCTL is
struct set_active_partition {
unchar partition_number;
unsigned long long logical_block_id;
char reserved[32];
};

v partition_number is the number of the requested active partition.
v logical_block_id is the requested block position within the new active partition.

An example of the STIOC_SET_ACTIVE_PARTITION IOCTL is
int stioc_set_partition()
{
int rc = 0;
struct set_active_partition set;
char* input = NULL;

Chapter 4. Linux tape and medium changer device driver 195

|

|

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {
rc = ENOMEM;
goto EXIT_LABEL;
} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

memset(&set, ’\0’, sizeof(struct set_active_partition));
while(input[0] < ’0’ || input[0] > ’9’) {
printf("Select partition (< 0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;
} /* if */

if(atoi(input) > MAX_PARTITIONS) {
printf("Please select number < %d\n", MAX_PARTITIONS);
input[0] = ’\0’;
} /* if */
} /* while */
set.partition_number = atoi(input);

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_SET_ACTIVE_PARTITION, &set);
if(rc) {
printf("Set partition failed: %d\n", rc);
goto EXIT_LABEL;
} /* if */

EXIT_LABEL:

if(input) free(input);
return rc;
} /* stioc_set_partition() */

STIOC_ALLOW_DATA_OVERWRITE

This IOCTL allows data on the tape to be overwritten when in data safe mode. The
data structure that is used for this IOCTL is
struct allow_data_overwrite {

unchar partition_number;
unsigned long long logical_block_id;
unchar allow_format_overwrite;
char reserved[32];

};

v partition_number is the number of the drive partition on which to allow the
overwrite.

v logical_block_id is the block that you want to overwrite.
v allow_format_overwrite, if set to TRUE, instructs the tape drive to allow a

format of the tape and accept the CREATE_PARTITION ioctl.

If allow_format_overwrite is TRUE, partition_number and logical_block_id are
ignored.

An example of the use of the STIOC_ALLOW_DATA_OVERWRITE IOCTL is
int stioc_allow_overwrite()
{

int rc = 0, i = 0, brk = FALSE;
struct allow_data_overwrite ado;
char* input = NULL;

196 IBM Tape Device Drivers: Programming Reference

|
|

|

|
|

|
|

memset(&ado, ’\0’, sizeof(struct allow_data_overwrite));
input = malloc(DEF_BUF_SIZE / 4);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 4);

while(input[0] < ’0’ || input[0] > ’1’) {
printf("0. Write Data 1. Create Partition (< 0 to cancel): ");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

ado.allow_format_overwrite = atoi(&input[0]);
switch(ado.allow_format_overwrite) {
case 0:

memset(input, ’\0’, DEF_BUF_SIZE / 4);
while((input[0] < ’0’ || input[0] > ’9’)

&& (input[0] < ’a’ || input[0] > ’f’)) {
brk = FALSE;
printf("Enter partition in hex (< 0 to cancel): 0x");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */

while(strlen(input) &&
isspace(input[strlen(input) - 1]))
input[strlen(input) - 1] = ’\0’;

if(!strlen(input)) continue;

for(i = 0; i < strlen(input); i++) {
if(input[i] >= ’A’ && input[i] <= ’F’)

input[i] = input[i] - ’A’ + ’a’;
else if(((input[i] < ’0’ || input[i] > ’9’) &&

(input[i] < ’a’ || input[i] > ’f’)) ||
i >= sizeof(unchar) * 2) {
printf("Input must be from 0 to 0xFF\n");
memset(input, ’\0’, DEF_BUF_SIZE / 4);
brk = TRUE;
break;

} /* else if */
} /* for */
if(brk) continue;

} /* while */

ado.partition_number = char_to_hex(input);

memset(input, ’\0’, DEF_BUF_SIZE / 4);
while((input[0] < ’0’ || input[0] > ’9’)

&& (input[0] < ’a’ || input[0] > ’f’)) {
brk = FALSE;
printf("Enter block ID in hex (< 0 to cancel): 0x");
fgets(input, DEF_BUF_SIZE / 4, stdin);

if(input[0] == ’-’ && atoi(&input[1]) > 0) {
rc = 0;
goto EXIT_LABEL;

} /* if */

Chapter 4. Linux tape and medium changer device driver 197

while(strlen(input) &&
isspace(input[strlen(input) - 1]))
input[strlen(input) - 1] = ’\0’;

if(!strlen(input)) continue;

for(i = 0; i < strlen(input); i++) {
if(input[i] >= ’A’ && input[i] <= ’F’)

input[i] = input[i] - ’A’ + ’a’;
else if(((input[i] < ’0’ || input[i] > ’9’) &&

(input[i] <’a’ || input[i] > ’f’)) ||
i >= sizeof(unsigned long long) * 2) {
printf("Input out of range\n");
memset(input, ’\0’, DEF_BUF_SIZE / 4);
brk = TRUE;
break;

} /* else if */
} /* for */
if(brk) continue;

} /* while */

ado.logical_block_id = char_to_hex(input);
break;

case 1:
break;

default:
assert(!"Unreachable.");

} /* switch */

printf("Issuing IOCTL...\n");
rc = ioctl(fd, STIOC_ALLOW_DATA_OVERWRITE, &ado);

if(rc) {
printf("Allow data overwrite failed: %d\n", rc);
goto EXIT_LABEL;

} /* if */

EXIT_LABEL:

if(input) free(input);
return rc;

} /* stioc_allow_overwrite() */

STIOC_READ_POSITION_EX

This IOCTL returns tape position with support for the short, long, and extended
formats. The definitions and data structures that are used for this IOCTL follow.
See the READ_POSITION section of your tape drive’s SCSI documentation for
details on the short_data_format, long_data_format, and extended_data_format
structures.
#define RP_SHORT_FORM (0x00)
#define RP_LONG_FORM (0x06)
#define RP_EXTENDED_FORM (0x08)

struct short_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar perr : 1;
unchar lolu : 1;
unchar rsvd : 1;
unchar bycu : 1;
unchar locu : 1;
unchar eop : 1;
unchar bop : 1;

198 IBM Tape Device Drivers: Programming Reference

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar locu : 1;
unchar bycu : 1;unchar rsvd : 1;
unchar lolu : 1;
unchar perr : 1;
unchar bpew : 1;

#else
error

#endif
unchar active_partition;
char reserved[2];
unchar first_logical_obj_position[4];
unchar last_logical_obj_position[4];
unchar num_buffer_logical_obj[4];
unchar num_buffer_bytes[4];
char reserved1;

};

struct long_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar rsvd2 : 1;
unchar lonu : 1;
unchar mpu : 1;
unchar rsvd1 : 2;
unchar eop : 1;
unchar bop : 1;

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar rsvd1 : 2;
unchar mpu : 1;
unchar lonu : 1;
unchar rsvd2 : 1;
unchar bpew : 1;

#else
error

#endif
char reserved[6];
unchar active_partition;
unchar logical_obj_number[8];
unchar logical_file_id[8];
unchar obsolete[8];

};

struct extended_data_format {
#if defined __LITTLE_ENDIAN

unchar bpew : 1;
unchar perr : 1;
unchar lolu : 1;
unchar rsvd : 1;
unchar bycu : 1;
unchar locu : 1;
unchar eop : 1;
unchar bop : 1;

#elif defined __BIG_ENDIAN
unchar bop : 1;
unchar eop : 1;
unchar locu : 1;
unchar bycu : 1;
unchar rsvd : 1;
unchar lolu : 1;
unchar perr : 1;
unchar bpew : 1;

#else

Chapter 4. Linux tape and medium changer device driver 199

error
#endif

unchar active_partition;
unchar additional_length[2];
unchar num_buffer_logical_obj[4];
unchar first_logical_obj_position[8];
unchar last_logical_obj_position[8];
unchar num_buffer_bytes[8];
unchar reserved;

};

struct read_tape_position {
unchar data_format;
union {

struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;

} rp_data;
};

data_format is the format in which you want to receive your data, as defined here.
It can take the value RP_SHORT_FORM, RP_LONG_FORM, or RP_EXTENDED_FORM. When the
IOCTL finishes, data is returned to the corresponding structure within the rp_data
union.

An example of the use of the STIOC_READ_POSITION_EX IOCTL is
int stioc_read_position_ex(void)
{

int rc = 0;
char* input = NULL;
struct read_tape_position rp = {0};

printf("Note: only supported on LTO 5 and higher drives\n");
input = malloc(DEF_BUF_SIZE / 16);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

while(input[0] == ’\0’ || atoi(input) < 0 || atoi(input) > 3) {
printf("0) Cancel\n");
printf("1) Short Form\n");
printf("2) Long Form\n");
printf("3) Extended Form\n");

printf("\nPlease select: ");

fgets(input, DEF_BUF_SIZE / 16, stdin);
if(!atoi(input)) {

rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

memset(&rp, ’\0’, sizeof(struct read_tape_position));

switch(atoi(input)) {
case 1:

rp.data_format = RP_SHORT_FORM;
break;

case 2:
rp.data_format = RP_LONG_FORM;
break;

case 3:

200 IBM Tape Device Drivers: Programming Reference

rp.data_format = RP_EXTENDED_FORM;
break;

default:
rc = EINVAL;
goto EXIT_LABEL;

} /* switch */

rc = ioctl(fd, STIOC_READ_POSITION_EX, &rp);

if(rc) {
printf("Cannot get position: %d\n", rc = errno);
goto EXIT_LABEL;

} /* if */

print_read_position_ex(&rp);

EXIT_LABEL:
if(input) free(input);
return rc;

} /* stioc_read_position_ex() */

STIOC_LOCATE_16

This IOCTL sets the tape position by using the long tape format. The definitions
and structure that are used for this IOCTL are
#define LOGICAL_ID_BLOCK_TYPE (0x00)
#define LOGICAL_ID_FILE_TYPE (0x01)

struct set_tape_position {
unchar logical_id_type;
unsigned long long logical_id;
char reserved[32];

};

logical_id_type can take the values LOGICAL_ID_BLOCK_TYPE or
LOGICAL_ID_FILE_TYPE. The values specify whether the tape head is located to the
block with the specified logical_id or to the file with the specified logical_id. An
example on how to use the STIOC_LOCATE_16 IOCTL follows. The snippet assumes
the declaration of global variables filetype and blockid.
int stioc_locate_16(void)
{

int rc = 0;
struct set_tape_position pos;

memset(&pos, ’\0’, sizeof(struct set_tape_position));
printf("\nLocating to %s ID %u (0x%08X)...\n",

filetype ? "File" : "Block", blockid, blockid);

pos.logical_id_type = filetype;
pos.logical_id = (long long) blockid;

rc = ioctl(fd, STIOC_LOCATE_16, &pos);
return rc;

} /* stioc_locate_16() */

STIOC_QUERY_BLK_PROTECTION

This IOCTL queries capability and status of the drive's Logical Block Protection.
The structures and defines are
#define LBP_DISABLE (0x00)
#define REED_SOLOMON_CRC (0x01)

struct logical_block_protection {

Chapter 4. Linux tape and medium changer device driver 201

unchar lbp_capable;
unchar lbp_method;
unchar lbp_info_length;
unchar lbp_w;
unchar lbp_r;
unchar rbdp;
unchar reserved[26];

};

The lbp_capable is set to True if the drive supports logical block protection, or
False otherwise.

A lbp_method method of LBP_DISABLE indicates that the logical block protection
feature is turned off. A value of REED_SOLOMON_CRC indicates that logical block
protection is used, with a Reed-Solomon cyclical redundancy check algorithm to
run the block protection.

The lbp_w indicates that logical block protection is run for write commands. The
lbp_r indicates that logical block protection is run for read commands. The rbdp
indicates that logical block protection is run for recover buffer data. To use this
IOCTL, issue the following call.
rc = ioctl(fd, STIOC_QUERY_BLK_PROTECTION, &lbp);

STIOC_SET_BLK_PROTECTION

This IOCTL sets status of the drive's Logical Block Protection. All fields are
configurable except lbp_capable and reserved. The structures and defines are the
same as for STIOC_QUERY_BLK_PROTECTION. To use this IOCTL, issue the following
call.
rc = ioctl(fd, STIOC_SET_BLK_PROTECTION, &lbp);

STIOC_VERIFY_TAPE_DATA

This IOCTL instructs the tape drive to scan the data on its current tape to check for
errors. The structure is defined as follows.
struct verify_data {

#if defined __LITTLE_ENDIAN
unchar fixed : 1;
unchar bytcmp : 1;
unchar immed : 1;
unchar vbf : 1;
unchar vlbpm : 1;
unchar vte : 1;
unchar reserved1 : 2;

#elif defined __BIG_ENDIAN
unchar reserved1 : 2;
unchar vte : 1;
unchar vlbpm : 1;
unchar vbf : 1;
unchar immed : 1;
unchar bytcmp : 1;
unchar fixed : 1;

#else
error

#endif
unchar verify_length[3];
unchar reserved2[15];

};

vte instructs the drive to verify from the current tape head position to end of data.

202 IBM Tape Device Drivers: Programming Reference

vlbpm instructs the drive to verify that the logical block protection method that is
specified in the Control Data Protection mode page is used for each block.

If vbf is set, then the verify_length field contains the number of filemarks to be
traversed, rather than the number of blocks or bytes.

immed specifies that status is to be returned immediately after the command
descriptor block is validated. Otherwise, the command does not return status until
the entire operation finishes.

bytcmp is set to 0.

fixed indicates a fixed-block length, and that verify_length is interpreted as
blocks rather than bytes.

verify_length specifies the length to verify in files, blocks or bytes, depending on
the values of the vbf and fixed fields. If vte is set to 1, verify_length is ignored.

An example of the use of STIOC_VERIFY_TAPE_DATA is as follows.
int stioc_verify()
{

int rc = 0, i = 0, cont = TRUE, len = 0;
char* input = NULL;
struct verify_data* vfy = NULL;

struct {
char* desc;
int idx;

} table[] = {
{"Verify to EOD", VFY_VTE},
{"Verify Logical Block Protection", VFY_VLBPM},
{"Verify by Filemarks", VFY_VBF},
{"Return immediately", VFY_IMMED},
{"Fixed", VFY_FIXED},
{NULL, 0}

};

input = malloc(DEF_BUF_SIZE / 16);
if(!input) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

vfy = malloc(sizeof(struct verify_data));
if(!vfy) {

rc = ENOMEM;
goto EXIT_LABEL;

} /* if */
memset(vfy, ’\0’, sizeof(struct verify_data));

printf("\n");
for(i = 0; table[i].desc; i++) {

while(tolower(input[0]) != ’y’ && tolower(input[0]) != ’n’) {
printf("%s (y/n/c to cancel)? ", table[i].desc);
fgets(input, DEF_BUF_SIZE / 16, stdin);
if(tolower(input[0]) == ’c’) {

rc = 0;
goto EXIT_LABEL;

} /* if */
} /* while */

if(tolower(input[0]) == ’y’) {

Chapter 4. Linux tape and medium changer device driver 203

switch(table[i].idx) {
case VFY_VTE: vfy->vte = 1; break;
case VFY_VLBPM: vfy->vlbpm = 1; break;
case VFY_VBF: vfy->vbf = 1; break;
case VFY_IMMED: vfy->immed = 1; break;
default: break;

} /* switch */
} /* if */
memset(input, ’\0’, DEF_BUF_SIZE / 16);

} /* for */

if(!vfy->vte) {
while(cont) {

cont = FALSE;

printf("Verify length in decimal (c to cancel): ");
fgets(input, DEF_BUF_SIZE / 16, stdin);

while(strlen(input) && isspace(input[strlen(input)-1]))
input[strlen(input) - 1] = ’\0’;

if(!strlen(input)) {
cont = TRUE;
continue;

} /* if */

if(tolower(input[0]) == ’c’) {
rc = 0;
goto EXIT_LABEL;

} /* if */

for(i = 0; i < strlen(input); i++) {
if(!isdigit(input[i])) {

memset(input, ’\0’, DEF_BUF_SIZE / 16);
cont = TRUE;

} /* if */
} /* for */

} /* while */

len = atoi(input);
vfy->verify_length[0] = (len >> 16) & 0xFF;
vfy->verify_length[1] = (len >> 8) & 0xFF;
vfy->verify_length[2] = len & 0xFF;

} /* if */

rc = ioctl(fd, STIOC_VERIFY_TAPE_DATA, &vfy);
printf("VERIFY_TAPE_DATA returned %d\n", rc);
if(rc) printf("errno: %d\n", errno);

EXIT_LABEL:

if(input) free(input);
if(vfy) free(vfy);
return rc;

} /* stioc_verify() */

STIOC_QUERY_RAO

The IOCTL is used to query the maximum number and size of User Data Segments
(UDS) that are supported from tape drive and driver for the wanted uds_type.

The application calls this IOCTL before the STIOC_GENERATE_RAO and
STIOC_RECEIVE_RAO IOCTLs are issued. The application uses the return data to limit
the number of UDS requested in the GENERATE_RAO IOCTL.

204 IBM Tape Device Drivers: Programming Reference

The structure that is defined for this IOCTL is
struct query_rao_info{

char uds_type; /* [IN] 0: UDS_WITHOUT_GEOMETRY */
/* 1: UDS_WITH_GEOMETRY */

char reserved[7];
ushort max_uds_number; /* [OUT] Max UDS number supported from drive */
ushort max_uds_size; /* [OUT] Max single UDS size supported from */

/* drive in byte */
ushort max_host_uds_number;/* [OUT] Max UDS number supported from driver */

};

An example of the QUERY_RAO_INFO command is
#include <sys/IBMtape.h>

int rc;
struct query_rao_info stQueryRao;

bzero((void *) &stQueryRao, sizeof(struct query_rao_info));

stQueryRao.uds_type = uds_type;

rc = ioctl(fd, STIOC_QUERY_RAO, &stQueryRao);

if(rc)
printf(“STIOC_QUERY_RAO fails with rc: %d\n”, rc);

else{
max_host_uds_num = stQueryRao.max_host_uds_number;
max_uds_size = stQueryRao.max_uds_size;

}
return rc;

STIOC_GENERATE_RAO

The IOCTL is called to send a GRAO list to request that the drive generate a
Recommended Access Order list. The process method is either 1 or 2 to create a
RAO list, and the type of UDS is either with or without the geometry. The
uds_number must be not larger than max_host_uds_number in the
STIOC_QUERY_RAO IOCTL. The application allocates a block of memory with
grao_list_leng (uds_number*sizeof(struct grao_uds_desc)+8) for the pointer of
grao_list.

The structure for the STIOC_GENERATE_RAO IOCTL is
struct generate_rao {

char process; /* [IN] Requested process to generate RAO list */
/* 0: no reorder UDS and no calculate */
/* locate time(not currently supported */
/* by the drive) */
/* 1: no reorder UDS but calculate locate */
/* time */
/* 2: reorder UDS and calculate locate time*/

char uds_type; /* [IN]0: UDS_WITHOUT_GEOMETRY */
/* 1: UDS_WITH_GEOMETRY */

char reserved1[2];
uint grao_list_leng; /* [IN] The data length is allocated for GRAO */ /* list */
char *grao_list; /* [IN] the pointer is allocated to the size */

/* of grao_list_leng (uds_number */
/* * sizeof(struct grao_uds_desc) */
/* + sizeof(struct grao_list_header)) */
/* and contains the data of GRAO */
/* parameter list. The uds number is */
/* less than max_host_uds_number in */
/* QUERY_RAO ioctl. */

char reserved2[8];
};

Chapter 4. Linux tape and medium changer device driver 205

The grao list header and UDS segments make up the parameter data and are to be
put in the following order.

-- List Header
-- UDS Segment Descriptor (first)

......
-- UDS Segment Descriptor (last)

The device driver does not supply the header or UDS segment Descriptor
structures. That structure is to be supplied by the application.

Examples of the data structures are
struct grao_list_header{

unchar reserved[4];
char addl_data[4]; /* additional data */

} ;

struct grao_uds_desc{
unchar desc_leng[2]; /* descriptor length */
char reserved[3];
char uds_name[10]; /* uds name given by application */
unchar partition; /* Partition number 0-n to overwrite */
unchar beginning_loi[8] ; /* Beginning logical object ID */
unchar ending_loi[8]; /* Ending logical object ID */

};

A sample of STIOC_GENERATE_RAO is
#include<sys/IBM_tape.h>

int rc;
struct generate_rao grao;
bzero(&grao,sizeof(struct generate_rao));
grao.process=2;
grao.uds_type=uds_type;
grao.grao_list_leng=max_host_uds_num * sizeof(struct grao_uds_desc)

+ sizeof(struct grao_list_header);
if(!(grao.grao_list=malloc(grao.grao_list_leng)))
{

perror("Failure allocating memory");
return (errno);

}

memset(grao.grao_list, 0, grao.grao_list_leng);

rc=ioctl(fd,GENERATE_RAO,&grao);

if (rc)
printf("GENERATE_RAO fails with rc%d\n",rc);

else
printf("GENERATE_RAO succeeds\n");

free(grao.grao_list);

return rc;

STIOC_RECEIVE_RAO

After a STIOC_GENERATE_RAO IOCTL is completed, the application calls the
STIOC_RECEIVE_RAO IOCTL to receive a recommended access order of UDS from the
drive. To avoid a system crash, it is important that the application allocates a large
enough block of memory for the *rrao_list pointer and notifies the driver of the

206 IBM Tape Device Drivers: Programming Reference

allocated size. It is done by indicating the size of the buffer in bytes to the
rrao_list_leng variable as an input to the receive_rao_list structure.

The structure for the STIOC_RECEIVE_RAO IOCTL is
struct receive_rao_list {

uint rrao_list_offset; /* [IN] The offset of receive RAO list to */
/* begin returning data */

uint rrao_list_leng; /* [IN/OUT] number byte of data length */
/* [IN] The data length is allocated for RRAO */
/* list by application the length is */
/* (max_uds_size * uds_number + */
/* sizeof(struct rrao_list_header) */
/* max_uds_size is reported in */
/* sizeof(struct rrao_list_header) */
/* uds_number is the total UDS number */
/* requested from application in */
/* GENERATE_RAO ioctl */
/* [OUT] the data length is actual returned */
/* in RRAO list from the driver */

char *rrao_list; /* [IN/OUT] the data pointer of RRAO list */
char reserved[8];

};

The sample code is
#include <sys/IBMtape.h>

int rc;
struct receive_rao_list rrao;

bzero(&rrao,sizeof(struct receive_rao_list));
rrao.rrao_list_offset=0;
rrao.rrao_list_leng= max_host_uds_num * max_uds_size + 8;
/* 8 is the header of rrao list */

if (!(rrao.rrao_list=malloc(rrao.rrao_list_leng)))
{

perror("Failure allocating memory");
return (errno);

}

memset(rrao.rrao_list, 0, rrao.rrao_list_leng);

rc=ioctl(fd,STIOC_RECEIVE_RAO,&rrao);

if (rc)
printf("STIOC_RECEIVE_RAO fails with rc %d\n",rc);

else
printf("rrao_list_leng %d\n",rrao.rrao_list_leng);

free(rrao.rrao_list);

return rc;

STIOC_SET_SPDEV

With the latest lin_tape versions, the IBMSpecial device is created. It allows the use
of ioctls for preemption purposes. Applications must use it cautiously and manage
persistent reservation properly.

This ioctl is for usage through IBMSpecial open handle only. It sets the drive that
processes the command requests, and to do so it needs the serial number of the
drive as input. If /dev/IBMSpecial is not created, it is not supported.

Chapter 4. Linux tape and medium changer device driver 207

|

|
|
|

|
|
|

The data structure is
#define DD_MAX_DEVICE_SERIAL 36
struct sp_dev{

char device_serial[DD_MAX_DEVICE_SERIAL];
};

An example of the STIOC_SET_SPDEV command is
#include <sys/IBM_tape.h>
struct sp_dev spd;

setDriveSN(spd.device_serial);
if (!ioctl (fd, STIOC_SET_SPDEV, &spd)) {
printf ("The STIOC_SET_SPDEV ioctl succeeded\n");
}
else {
perror ("The STIOC_SET_SPDEV ioctl failed the drive to work with was not set");
}

When the STIOC_SET_SPDEV ioctl succeeds, it is possible to send any of these ioctls
to the drive previously set and identified by serial number:
STIOC_READ_RESERVEKEYS, STIOC_READ_RESERVATIONS, STIOC_REGISTER_KEY,
STIOC_REMOVE_REGISTRATION, STIOC_CLEAR_ALL_REGSITRATION.

Tape drive compatibility IOCTL operations

The following IOCTL commands help provide compatibility for previously
compiled programs. Where practical, such programs must be recompiled to use the
preferred IOCTL commands in the IBMtape device driver.

MTIOCTOP

This IOCTL command is similar in function to the st MTIOCTOP command. It is
provided as a convenience for precompiled programs that call that IOCTL
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for
information on the MTIOCTOP command.

MTIOCGET

This IOCTL command is similar in function to the st MTIOCGET command. It is
provided as a convenience for precompiled programs that call that IOCTL
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for
information on the MTIOCGET command.

MTIOCPOS

This IOCTL command is similar in function to the st MTIOCPOS command. It is
provided as a convenience for precompiled programs that call that IOCTL
command. Refer to /usr/include/sys/mtio.h or /usr/include/linux/mtio.h for
information on the MTIOCPOS command.

208 IBM Tape Device Drivers: Programming Reference

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

Medium changer IOCTL operations

This chapter describes the IOCTL commands that provide access and control of the
SCSI medium changer functions. These IOCTL operations can be issued to the
medium changer special file, such as IBMchanger0.

The following IOCTL commands are supported.

SMCIOC_ELEMENT_INFO
Obtain the device element information.

SMCIOC_MOVE_MEDIUM
Move a cartridge from one element to another element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

SMCIOC_POS_TO_ELEM
Move the robot to an element.

SMCIOC_INIT_ELEM_STAT
Issue the SCSI Initialize Element Status command.

SMCIOC_INIT_ELEM_STAT_RANGE
Issue the SCSI Initialize Element Status with Range command.

SMCIOC_INVENTORY
Return the information about the four element types.

SMCIOC_LOAD_MEDIUM
Load a cartridge from a slot into the drive.

SMCIOC_UNLOAD_MEDIUM
Unload a cartridge from the drive and return it to a slot.

SMCIOC_PREVENT_MEDIUM_REMOVAL
Prevent medium removal by the operator.

SMCIOC_ALLOW_MEDIUM_REMOVAL
Allow medium removal by the operator.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device id element descriptors for drive elements.

SCSI IOCTL commands

These IOCTL commands and their associated structures are defined in the
IBM_tape.h header file, which can be found in /usr/include/sys after IBMtape is
installed. The IBM_tape.h header file is included in the corresponding C program
by using the functions.

SMCIOC_ELEMENT_INFO

This IOCTL command obtains the device element information.

The data structure is
struct element_info {

ushort robot_addr; /* first robot address */
ushort robots; /* number of medium transport elements */
ushort slot_addr; /* first medium storage element address */
ushort slots; /* number of medium storage elements */
ushort ie_addr; /* first import/export element address */

Chapter 4. Linux tape and medium changer device driver 209

ushort ie_stations; /* number of import/export elements */
ushort drive_addr; /* first data-transfer element address */
ushort drives; /* number of data-transfer elements */

};

An example of the SMCIOC_ELEMENT_INFO command is
#include <sys/IBM_tape.h>
struct element_info element_info;
if (!ioctl (smcfd, SMCIOC_ELEMENT_INFO, &element_info)) {

printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded\n");
printf ("\nThe element information data is:\n");
dump_bytes ((unchar *) &element_info, sizeof (struct element_info));

}
else {

perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
smcioc_request_sense();

}

SMCIOC_MOVE_MEDIUM

This IOCTL command moves a cartridge from one element to another element.

The data structure is
struct move_medium {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_MOVE_MEDIUM command is
#include <sys/IBM_tape.h>
struct move_medium move_medium;
move_medium.robot = 0;
move_medium.invert = 0;
move_medium.source = source;
move_medium.destination = dest;
if (!ioctl (smcfd, SMCIOC_MOVE_MEDIUM, &move_medium))

printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded\n");
else {

perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_EXCHANGE_MEDIUM

This IOCTL command exchanges a cartridge in an element with another cartridge.
This command is equivalent to two SCSI Move Medium commands. The first moves
the cartridge from the source element to the destination1 element. The second
moves the cartridge that was previously in the destination1 element to the
destination 2 element. This function is available only in the IBM 3584 UltraScalable
tape library. The destination2 element can be the same as the source element.

The input data structure is
struct exchange_medium {

ushort robot; /* robot address */
ushort source; /* source address for exchange */
ushort destination1; /* first destination address for exchange */
ushort destination2; /* second destination address for exchange */
char invert1; /* invert before placement into destination1 */
char invert2; /* invert before placement into destination2 */

};

210 IBM Tape Device Drivers: Programming Reference

An example of the SMCIOC_EXCHANGE_MEDIUM command is
#include <sys/IBM_tape.h>
struct exchange_medium exchange_medium;
exchange_medium.robot = 0;
exchange_medium.invert1 = 0;
exchange_medium.invert2 = 0;
exchange_medium.source = 32; /* slot 32 */
exchange_medium.destination1 = 16; /* drive address 16 */
exchange_medium.destination2 = 35; /* slot 35 */

/* exchange cartridge in drive address 16 with cartridge from */
/* slot 32 and return the cartridge currently in the drive to */
/* slot 35 */
if (!ioctl (smcfd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))

printf("The SMCIOC_EXCHANGE_MEDIUM ioctl succeeded\n");
else {
perror ("The SMCIOC_EXCHANGE_MEDIUM ioctl failed");
smcioc_request_sense();

}

SMCIOC_POS_TO_ELEM

This IOCTL command moves the robot to an element.

The input data structure is
struct pos_to_elem {

ushort robot; /* robot address */
ushort destination; /* move to location */
char invert; /* invert before placement bit */

};

An example of the SMCIOC_POS_TO_ELEM command is
#include <sys/IBM_tape.h>
struct pos_to_elem pos_to_elem;
pos_to_elem.robot = 0;
pos_to_elem.invert = 0;
pos_to_elem.destination = dest;
if (!ioctl (smcfd, SMCIOC_POS_TO_ELEM, &pos_to_elem))

printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded\n");
else {

perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
smcioc_request_sense();

}

SMCIOC_INIT_ELEM_STAT

This IOCTL command instructs the medium changer robotic device to issue the
SCSI Initialize Element Status command.

There is no associated data structure.

An example of the SMCIOC_INIT_ELEM_STAT command is
#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT, NULL))

printf ("The SMCIOC_INIT_ELEM_STAT ioctl succeeded\n");
else {

perror ("The SMCIOC_INIT_ELEM_STAT ioctl failed");
smcioc_request_sense();

}

Chapter 4. Linux tape and medium changer device driver 211

SMCIOC_INIT_ELEM_STAT_RANGE

This IOCTL command issues the SCSI Initialize Element Status with Range
command and audits specific elements in a library by specifying the starting
element address and number of elements. Use the SMCIOC_INIT_ELEM_STAT IOCTL
to audit all elements.

The data structure is
struct element_range {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

}

An example of the SMCIOC_INIT_ELEM_STAT_RANGE command is
#include <sys/IBM_tape.h>
struct element_range elements;
/* audit slots 32 to 36 */
elements.element_address = 32;
elements.number_elements = 5;
if (!ioctl (smcfd, SMCIOC_INIT_ELEM_STAT_RANGE, &elements))
printf ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl succeeded\n");
else {

perror ("The SMCIOC_INIT_ELEM_STAT_RANGE ioctl failed");
smcioc_request_sense();

}

Note: Use the SMCIOG_INVENTORY IOCTL command to obtain the current version
after this IOCTL command is issued.

SMCIOC_INVENTORY

This IOCTL command returns the information about the four element types. The
software application processes the input data (the number of elements about which
it requires information). Then, it allocates a buffer large enough to hold the output
for each element type.

The input data structure is
struct element_status {

ushort address; /* element address */
uint :2, /* reserved */

inenab :1, /* media into changer’s scope */
exenab :1, /* media out of changer’s scope */
access :1, /* robot access allowed */
except :1, /* abnormal element state */
impexp :1, /* import/export placed by operator or robot */
full :1; /* element contains medium */

unchar resvd1; /* reserved */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
uint notbus :1, /* element not on same bus as robot */

:1, /* reserved */
idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

unchar scsi; /* SCSI bus address */
unchar resvd2; /* reserved */
uint svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
unchar volume[36]; /* primary volume tag */

212 IBM Tape Device Drivers: Programming Reference

unchar resvd3[4]; /* reserved */
};
struct inventory {

struct element_status *robot_status; /* medium transport elem pgs */
struct element_status *slot_status; /* medium storage elem pgs */
struct element_status *ie_status; /* import/export elem pgs */
struct element_status *drive_status; /* data-transfer elem pgs */

};

An example of the SMCIOC_INVENTORY command is
#include <sys/IBM_tape.h>
ushort i;
struct element_info element_info;
struct element_status robot_status[1];
struct element_status slot_status[20];
struct element_status ie_status[1];
struct element_status drive_status[1];
struct inventory inventory;
bzero((caddr_t)robot_status,sizeof(struct element_status));
for (i=0;i<20;i++)

bzero((caddr_t)(&slot_status[i]),sizeof(struct element_status));
bzero((caddr_t)ie_status,sizeof(struct element_status));
bzero((caddr_t)drive_status,sizeof(struct element_status));
smcioc_element_info(&element_info);
inventory.robot_status = robot_status;
inventory.slot_status = slot_status;
inventory.ie_status = ie_status;
inventory.drive_status = drive_status;
if (!ioctl (smcfd, SMCIOC_INVENTORY, &inventory)) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded\n");
printf ("\nThe robot status pages are:\n");
for (i = 0; i<element_info.robots; i++) {

dump_bytes ((unchar *)(robot_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe slot status pages are:\n");
for (i = 0; i<element_info.slots; i++) {

dump_bytes ((unchar *)(slot_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe ie status pages are:\n");
for (i = 0; i<element_info.ie_stations; i++) {

dump_bytes ((unchar *)(ie_status[i]), sizeof (struct
element_status));
printf ("\n--- more ---");
getchar();

}
printf ("\nThe drive status pages are:\n");
for (i = 0; i<element_info.drives; i++) {

dump_bytes ((unchar *)(drive_status[i]), sizeof (struct element_status));
printf ("\n--- more ---");
getchar();

}
}
else {

perror ("The SMCIOC_INVENTORY ioctl failed");
smcioc_request_sense();

}

Chapter 4. Linux tape and medium changer device driver 213

SMCIOC_LOAD_MEDIUM

This IOCTL command loads a tape from a specific slot into the drive. Or, it loads
from the first full slot into the drive if the slot address is specified as zero.

An example of the SMCIOC_LOAD_MEDIUM command is
#include <sys/IBM_tape.h>
/* load cartridge from slot 3 */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,3)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}
/* load first cartridge from magazine */
if (ioctl (tapefd, SMCIOC_LOAD_MEDIUM,0)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}

SMCIOC_UNLOAD_MEDIUM

This IOCTL command moves a tape from the drive and returns it to a specific slot.
Or, it moves a tape to the first empty slot in the magazine if the slot address is
specified as zero. An unload/offline command must be sent to the tape first,
otherwise, this IOCTL command fails with errno EIO.

An example of the SMCIOC_UNLOAD_MEDIUM command is
#include <sys/IBM_tape.h>
/* unload cartridge to slot 3 */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,3)) {

printf ("IOCTL failure. errno=%d\n",errno);
exit(1);

}
/* unload cartridge to first empty slot in magazine */
if (ioctl (tapefd, SMCIOC_UNLOAD_MEDIUM,0)) {

printf ("IOCTL failure.errno=%d\n",errno);
exit(1);

}

SMCIOC_PREVENT_MEDIUM_REMOVAL

This IOCTL command prevents an operator from removing medium from the
device until the SMCIOC_ALLOW_MEDIUM_REMOVAL command is issued or the device is
reset. There is no associated data structure.

An example of the SMCIOC_PREVENT_MEDIUM_REMOVAL command is
#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_PREVENT_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The SMCIOC_PREVENT_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_ALLOW_MEDIUM_REMOVAL

This IOCTL command allows an operator to remove medium from the device. This
command is normally used after an SMCIOC_PREVENT_MEDIUM_REMOVAL command to
restore the device to the default state. There is no associated data structure.

An example of the SMCIOC_ALLOW_MEDIUM_REMOVAL command is

214 IBM Tape Device Drivers: Programming Reference

#include <sys/IBM_tape.h>
if (!ioctl (smcfd, SMCIOC_ALLOW_MEDIUM_REMOVAL, NULL))
printf ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl succeeded\n");
else {

perror ("The SMCIOC_ALLOW_MEDIUM_REMOVAL ioctl failed");
smcioc_request_sense();

}

SMCIOC_READ_ELEMENT_DEVIDS

This IOCTL command issues the SCSI Read Element Status command with the
device ID(DVCID) bit set and returns the element descriptors for the data transfer
elements. The element_address field specifies the starting address of the first data
transfer element. The number_elements field specifies the number of elements to
return. The application must allocate a return buffer large enough for the number
of elements that are specified in the input structure.

The input data structure is
struct read_element_devids {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
struct element_devid *drive_devid; /* data transfer element pages */

};

The output data structure is
struct element_devid {

ushort address; /* element address */
uint :4, /* reserved */

access :1, /* robot access allowed */
except :1, /* abnormal element state */

:1, /* reserved */
full :1; /* element contains medium */

unchar resvd1; /* reserved */
unchar asc; /* additional sense code */
unchar ascq; /* additional sense code qualifier */
uint notbus :1, /* element not on same bus as robot */

:1, /* reserved */
idvalid :1, /* element address valid */
luvalid :1, /* logical unit valid */

:1, /* reserved */
lun :3; /* logical unit number */

unchar scsi; /* scsi bus address */
unchar resvd2; /* reserved */
uint svalid :1, /* element address valid */

invert :1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage element address */
uint :4, /* reserved */

code_set :4; /* code set X’2’ is all ASCII identifier*/
uint :4, /* reserved */

ident_type :4; /* identifier type */
unchar resvd3; /* reserved */
unchar ident_len; /* identifier length */
unchar identifier[36]; /* device identification */

};

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is
#include <sys/IBM_tape.h>
int smcioc_read_element_devids() {
int i;
struct element_devid *elem_devid, *elemp;
struct read_element_devids devids;
struct element_info element_info;

Chapter 4. Linux tape and medium changer device driver 215

if (ioctl(fd, SMCIOC_ELEMENT_INFO, &element_info)) return errno;
if (element_info.drives) {

elem_devid = malloc(element_info.drives
* sizeof(struct element_devid));

if (elem_devid == NULL) {
errno = ENOMEM;
return errno;

}
bzero((caddr_t)elem_devid,element_info.drives

* sizeof(struct element_devid));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_addr;
devids.number_elements = element_info.drives;
printf("Reading element device ids?\n");
if (ioctl (fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids)) {

free(elem_devid);
return errno;

}
elemp = elem_devid;
for (i = 0; i<element_info.drives; i++, elemp++) {

printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else

printf(" ASC/ASCQ %02X%02X\n",
elemp->asc,elemp->ascq);

if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",

elemp->source);
else

printf(" Source Element Address ValidNo\n");
if (elemp->invert)

printf(" Media Inverted Yes\n");
else

printf(" Media Inverted No\n");
if (elemp->notbus)

printf(" Same Bus as Medium Changer No\n");
else

printf(" Same Bus as Medium Changer Yes\n");
if (elemp->idvalid)

printf(" SCSI Bus Address %d\n",elemp->scsi);
else

printf(" SCSI Bus Address Valid No\n");
if (elemp->luvalid)

printf(" Logical Unit Number %d\n",elemp->lun);
else

printf(" Logical Unit Number Valid No\n");
printf(" Device ID %0.36s\n",

elemp->identifier);
}
else {

216 IBM Tape Device Drivers: Programming Reference

printf("\nNo drives found in element information\n");
}
free(elem_devid);
return errno;

}

Return codes

This chapter describes error codes that are generated by IBMtape when an error
occurs during an operation. On error, the operation returns negative one (-1), and
the external variable errno is set to one of the listed error codes. Errno values are
defined in /usr/include/errno.h (and other files that it includes). Application
programs must include errno.h to interpret the return codes.

Note: For error code EIO, an application can retrieve more information from the
device itself. Issue the STIOCQRYSENSE IOCTL command when the sense_type
equals LASTERROR, or the SIOC_REQSENSE IOCTL command, to retrieve sense
data. Then, analyze the sense data by using the appropriate hardware or SCSI
reference for that device.

General error codes

The following codes apply to all operations.

[EBUSY] An excessively busy state was encountered in the device.

[EFAULT] A memory failure occurred due to an invalid pointer or address.

[EIO] An error due to one of the following conditions:

v An unrecoverable media error was detected by the device.

v The device was not ready for operation or a tape was not in the
drive.

v The device did not respond to SCSI selection.

v A bad file descriptor was passed to the device.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENXIO] The device was not configured and is not receiving requests.

[EPERM] The process does not have permission to run the desired function.

[ETIMEDOUT] A command timed out in the device.

Open error codes

The following codes apply to open operations.

[EACCES] The open requires write access when the cartridge loaded in the
drive is physically write-protected.

[EAGAIN] The device was already open when an open was attempted.

[EBUSY] The device was reserved by another initiator or an excessively
busy state was encountered.

[EINVAL] The operation that is requested has invalid parameters or an
invalid combination of parameters, or the device is rejecting open
commands.

Chapter 4. Linux tape and medium changer device driver 217

[EIO] An I/O error occurred that indicates a failure to operate the
device. Run failure analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[EPERM] One of the following situations occurred:

v An open operation with the O_RDWR or O_WRONLY flag was
attempted on a write-protected tape.

v A write operation was attempted on a device that was opened
with the O_RDONLY flag.

Close error codes

The following codes apply to close operations.

[EBUSY] The SCSI subsystem was busy.

[EFAULT] Memory reallocation failed.

[EIO] A command that is issued during close, such as a rewind
command, failed because the device was not ready. An I/O error
occurred during the operation. Run failure analysis.

Read error codes

The following codes apply to read operations.

[EFAULT] Failure copying from user to kernel space or vice versa.

[EINVAL] One of the following situations occurred:

v The operation that is requested has invalid parameters or an
invalid combination of parameters.

v The number of bytes requested in the read operation was not a
multiple of the block size for a fixed block transfer.

v The number of bytes requested in the read operation was
greater than the maximum size allowed by the device for
variable block transfers.

v A read for multiple fixed odd-byte-count blocks was issued.

[ENOMEM] One of the following situations occurred:

v The number of bytes requested in the read operation of a
variable block record was less than the size of the block. This
error is known as an overlength condition.

v Insufficient memory was available for an internal memory
operation.

[EPERM] A read operation was attempted on a device that was opened
with the O_WRONLY flag.

Write error codes

The following codes apply to write operations.

[EFAULT] Failure copying from user to kernel space or vice versa.

218 IBM Tape Device Drivers: Programming Reference

[EINVAL] One of the following conditions occurred:

v The operation that is requested has invalid parameters or an
invalid combination of parameters.

v The number of bytes requested in the write operation was not a
multiple of the block size for a fixed block transfer.

v The number of bytes requested in the write operation was
greater than the maximum block size allowed by the device for
variable block transfers.

[EIO] The physical end of the medium was detected, or it is a general
error that indicates a failure to write to the device. Perform failure
analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENOSPC] A write operation failed because it reached the early warning
mark. This error code is returned only one time when the early
warning is reached and trailer_labels is set to true. A write
operation was attempted after the device reached the logical end
of the medium and trailer_labels were set to false.

[EPERM] A write operation was attempted on a write protected tape.

IOCTL error codes

The following codes apply to IOCTL operations.

[EBUSY] SCSI subsystem was busy.

[EFAULT] Failure copying from user to kernel space or vice versa.

[EINVAL] The operation that is requested has invalid parameters or an
invalid combination of parameters. This error code also results if
the IOCTL command is not supported by the device. For example,
if you are attempting to issue tape drive IOCTL commands to a
SCSI medium changer. An invalid or nonexistent IOCTL command
was specified.

[EIO] An I/O error occurred during the operation. Run failure analysis.

[ENOMEM] Insufficient memory was available for an internal memory
operation.

[ENOSYS] The underlying function for this IOCTL command does not exist
on this device. (Other devices might support the function.)

[EPERM] An operation that modifies the media was attempted on a
write-protected tape or a device that was opened with the
O_RDONLY flag.

Chapter 4. Linux tape and medium changer device driver 219

220 IBM Tape Device Drivers: Programming Reference

Chapter 5. Solaris tape and medium changer device driver

IOCTL operations

The following sections describe the IOCTL operations supported by the IBMtape
device driver for Solaris. Usage, syntax, and examples are given.

The IOCTL operations supported by the Solaris tape and medium changer device
driver support are described in
v “General SCSI IOCTL operations”
v “SCSI medium changer IOCTL operations” on page 232
v “SCSI tape drive IOCTL operations” on page 242
v “Base operating system tape drive IOCTL operations” on page 278
v “Downward compatibility tape drive IOCTL operations” on page 281
v “Service aid IOCTL operations” on page 287

General SCSI IOCTL operations

A set of general SCSI IOCTL commands gives applications access to standard SCSI
operations such as device identification, access control, and problem determination
for both tape drive and medium changer devices.

The following commands are supported.

IOC_TEST_UNIT_READY
Determine whether the device is ready for operation.

IOC_INQUIRY
Collect the inquiry data from the device.

IOC_INQUIRY_PAGE
Return the inquiry page data for a special page from the device.

IOC_REQUEST_SENSE
Return the device sense data.

IOC_LOG_SENSE_PAGE
Collect the log sense page data from the device.

IOC_LOG_SENSE10_PAGE
Enhanced to add a Subpage variable from IOC_LOG_SENSE_PAGE. It returns a
log sense page or Subpage from the device.

IOC_ENH_LOG_SENSE
Enhanced to define the len variable as input by using program allocated
memory with a pointer that is limited only by available kernel memory.

IOC_MODE_SENSE
Return the mode sense data for a specific page.

IOC_MODE_SENSE_SUBPAGE
Return the mode sense data for a specific page and Subpage.

SIOC_MODE_SENSE
Return whole mode sense data and support for Mode Sense Subpage.

© Copyright IBM Corp. 1999, 2016 221

IOC_DRIVER_INFO
Return the driver information.

IOC_RESERVE
Reserve the device for exclusive use by the initiator.

IOC_RELEASE
Release the device from exclusive use by the initiator.

These commands and associated data structures are defined in the st.h and smc.h
header files in the /usr/include/sys directory that is installed with the IBMtape
package. Any application program that issues these commands must include this
header file.

IOC_TEST_UNIT_READY

This command determines whether the device is ready for operation.

No data structure is required for this command.

An example of the IOC_TEST_UNIT_READY command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_TEST_UNIT_READY, 0))) {
printf ("The IOC_TEST_UNIT_READY ioctl succeeded.\n");

}

else {
perror ("The IOC_TEST_UNIT_READY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY

This command collects the inquiry data from the device.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar qual : 3, /* peripheral qualifier */
type : 5; /* device type */

uchar rm : 1, /* removable medium */
mod : 7; /* device type modifier */

uchar iso : 2, /* ISO version */
ecma : 3, /* ECMA version */
ansi : 3; /* ANSI version */

uchar aen : 1, /* asynchronous even notification */
trmiop : 1, /* terminate I/O process message */

: 2, /* reserved */
rdf : 4; /* response data format */

uchar len; /* additional length */
uchar : 8; /* reserved */
uchar : 4, /* reserved */

mchngr : 1, /* medium changer mode */
: 3; /* reserved */

uchar reladr : 1, /* relative addressing */
wbus32 : 1, /* 32-bit wide data transfers */
wbus16 : 1, /* 16-bit wide data transfers */
sync : 1, /* synchronous data transfers */
linked : 1, /* linked commands */

: 1, /* reserved */
cmdque : 1, /* command queueing */
sftre : 1; /* soft reset */

222 IBM Tape Device Drivers: Programming Reference

uchar vid[8]; /* vendor ID */
uchar pid[16]; /* product ID */
uchar rev[4]; /* product revision level */
uchar vendor[92]; /* vendor specific (padded to 128) */

} inquiry_data_t;

An example of the IOC_INQUIRY command is
#include <sys/st.h>

inquiry_data_t inquiry_data;

if (!(ioctl (dev_fd, IOC_INQUIRY, &inquiry_data))) {
printf ("The IOC_INQUIRY ioctl succeeded.\n");
printf ("\nThe inquiry data is:\n");
dump_bytes ((char *)&inquiry_data, sizeof (inquiry_data_t));

}

else {
perror ("The IOC_INQUIRY ioctl failed");
scsi_request_sense ();

}

IOC_INQUIRY_PAGE

This command returns the inquiry data for a special page from the device.

The following data structures for inquiry page x80 are filled out and returned by
the driver.
typedef struct {

uchar page_code; /*page code */
uchar data [253]; /*inquiry parameter List */

}inquiry_page_t;

typedef struct {
uchar page_code; /*page code */
uchar data [253]; /*inquiry parameter List */

}inquiry_page_t;

typedef struct {
uchar periph_qual :3, /*peripheral qualifier */

periph_type :5; /*peripheral device type */
uchar page_code; /*page code */
uchar reserved_1; /*reserved */
uchar page_len; /*page length */
uchar serial [12]; /*serial number */

}inq_pg_80_t;

An example of the IOC_INQUIRY_PAGE command is
#include <sys/st.h>

inquiry_page_t inquiry_page;
inquiry_page.page_code =(uchar)page;

if (!(ioctl (dev_fd, IOC_INQUIRY_PAGE, &inquiry_page))){
printf ("Inquiry Data (Page 0x%02x):\n", page);
dump_bytes ((char *) &inquiry_page.data, inquiry_page.data [3]+4);

}
else {

perror ("The IOC_INQUIRY_PAGE ioctl for page 0x%X failed.\n", page);
scsi_request_sense ();

}

Chapter 5. Solaris tape and medium changer device driver 223

IOC_REQUEST_SENSE

This command returns the device sense data. If the last command resulted in an
error, the sense data is returned for that error. Otherwise, a new (unsolicited)
Request Sense command is issued to the device.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar valid : 1, /* sense data is valid */
code : 7, /* error code */

uchar segnum; /* segment number */
uchar fm : 1, /* filemark detected */

eom : 1, /* end of media */
ili : 1, /* incorrect length indicator */

: 1, /* reserved */
key : 4; /* sense key */

uchar info[4]; /* information bytes */
uchar addlen; /* additional sense length */
uchar cmdinfo[4]; /* command-specific information */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar fru; /* field-replaceable unit code */
uchar sksv : 1, /* sense key specific valid */

cd : 1, /* control/data */
: 2, /* reserved */

bpv : 1, /* bit pointer valid */
sim : 3; /* system information message */

uchar field[2]; /* field pointer */
uchar vendor[110]; /* vendor specific (padded to 128) */

} sense_data_t;

An example of the IOC_REQUEST_SENSE command is
#include <sys/st.h>

sense_data_t sense_data;

if (!(ioctl (dev_fd, IOC_REQUEST_SENSE, &sense_data))) {
printf ("The IOC_REQUEST_SENSE ioctl succeeded.\n");
printf ("\nThe request sense data is:\n");
dump_bytes ((char *)&sense_data, sizeof (sense_data_t));

}
else {
perror ("The IOC_REQUEST_SENSE ioctl failed");

}

IOC_LOG_SENSE_PAGE

This IOCTL command returns a log sense page from the device. The page is
selected by specifying the page_code in the log_sense_page structure.

The structure of a log page consists of the following log page header and log
parameters.
Log Page
- Log Page Header
-Page Code
-Page Length
- Log Parameter(s) (One or more may exist)
- Parameter Code
- Control Byte
- Parameter Length
- Parameter Value

The following data structure is filled out and returned by the driver.

224 IBM Tape Device Drivers: Programming Reference

#define IOC_LOG_SENSE_PAGE (_IOWR(’S’,6, log_sns_pg_t)
#define LOGSENSEPAGE 1024 /* The maximum data length which this */

/* ioctl can return, including the */
/* log page header. This value is not */
/* application modifiable. */

typedef struct log_sns_pg_s {
uchar page_code; /* Log page to be returned. */
uchar subpage_code; /* Log subpage to be returned. */
uchar reserved1[1]; /* Reserved for IBM future use. */
uchar reserved2[2]; /* Reserved for IBM future use. */
uchar data[LOGSENSEPAGE]; /* Log page data will be placed here. */

} log_sns_pg_t;

An example of the IOC_LOG_SENSE_PAGE command is
#include <sys/st.h>

memset((char*)&log_sns_pg,0,sizeof(log_sns_pg_t));
log_sns_pg.page_code = page;

if(!(ioctl(dev_fd, IOC_LOG_SENSE_PAGE,&log_sns_pg))){
log_data_len = (uint)(((log_page_hdr_p->len[2]<<8) |
log_page_hdr_p->len[3])+4);
returned_len = MIN(log_data_len,sizeof log_sns_pg.data);
printf ("\n Log Sense Page ioctl succeeded.\n");
printf(" Log Page 0x%X data, length %d(%d returned):
\n",page,log_data_len,returned_len);
dump_bytes((char*)log_page_p,returned_len);

}
else {

perror("The IOC_INQUIRY ioctl failed");
scsi_request_sense(); }

IOC_LOG_SENSE10_PAGE

This IOCTL command is enhanced to add a Subpage variable from
IOC_LOG_SENSE_PAGE. It returns a log sense page or Subpage from the device.

The data structure that is used with this IOCTL is
#define LOGSENSEPAGE 1024 /* The maximum data length which this */

/* ioctl can return, including the */
/* log page header. This value is not */
/* application modifiable. */

}

typedef struct {
uchar page_code; /* Log sense page */
uchar subpage_code; /* Log sense subpage */
uchar reserved[2]; /* Reserved for IBM future use. */
ushort len; /* number of valid bytes in data

(log_page_header_size+page_length) */
ushort parm_pointer; /* specific parameter number at which

the data begins */
char data[LOGSENSEPAGE]; /* log data */

}log_sense10_page_t;

Examples of the IOC_LOG_SENSE10_PAGE IOCTL.
#include<sys/st.h>
log_sense10_page_t log_sns_pg;
memset((char*)&log_sns_pg,0,sizeof(log_sense10_page_t));
log_sns_pg.page_code = page;
log_sns_pg.page_code =subpage;
log_sns_pg.parm_pointer =parm;

if(!(ioctl(dev_fd, IOC_LOG_SENSE10_PAGE,&log_sns_pg))){

Chapter 5. Solaris tape and medium changer device driver 225

log_data_len = (uint)(((log_page_hdr_p->len[2]<<8) | log_page_hdr_p-
>len[3])+4);
returned_len = MIN(log_data_len,sizeof log_sns_pg.data);
printf ("\n Log Sense Page ioctl succeeded.\n");
printf(" Log Page 0x%X data, length %d(%d returned):
\n",page,log_data_len,returned_len);
dump_bytes((char*)log_page_p,returned_len);
}
else { perror("The IOC_LOG_SENSE10_PAGE ioctl failed");
scsi_request_sense(); }
}

IOC_ENH_LOG_SENSE

This IOCTL command is enhanced to define the len variable as input and limited
for available kernel memory from the IOC_LOG_SENSE10_PAGE.

The data structure that is used with this IOCTL is
typedef struct
{

uchar page_code; /* [IN] Log sense page */
uchar subpage_code; /* [IN] Log sense sub-page */
uchar page_control; /* [IN] Page control */
uchar reserved[5];
unsigned short len ; /* [IN] specific allocation length for logdatap by application */

/* [OUT] the length of return data at logdatap from driver */
unsigned short parm_pointer; /* [IN] specific parameter number at which the data begins */
char *logdatap; /* [IN] the pointer for log sense data allocated by application*/

/* [OUT] log sense data returned from driver */
} enh_log_sense;

Examples of the IOC_ENH_LOG_SENSE IOCTL.
#include<sys/st.h>
enh_log_sense log_sns_pg;
memset((char*)&log_sns_pg,0,sizeof(enh_log_sense));
log_sns_pg.page_code = page; log_sns_pg.page_code =subpage;
log_sns_pg.parm_pointer =parm;

if(!(ioctl(dev_fd, IOC_ENH_LOG_SENSE,&log_sns_pg))){
log_data_len = (uint)(((log_page_hdr_p->len[2]<<8) | log_page_hdr_p-

>len[3])+4);
returned_len = MIN(log_data_len,sizeof log_sns_pg.logdatap);
printf ("Log Sense Page ioctl succeeded.");
printf(" Log Page 0x%X data, length %d(%d

returned):",page,log_data_len,returned_len);
dump_bytes((char*)log_page_p,returned_len);

}
else {

perror("The ENH_LOG_SENSE ioctl failed");
scsi_request_sense();

}

IOC_MODE_SENSE

This command returns a mode sense page from the device. The page is selected by
specifying the page_code in the mode_sns_t structure.

The following data structure is filled out and returned by the driver.
#define MAX_MSDATA 253 /* The maximum data length which this */

/* ioctl can return, including */
/* headers and block descriptors. */

#define MODESNS_10_CMD 0x5A /* SCSI cmd code for 10-byte version */

226 IBM Tape Device Drivers: Programming Reference

/* of the command */
#define MODESNS_6_CMD 0x1A /* SCSI cmd code for 6-byte version */

/* of the command */

typedef struct {
uchar page_code; /* Page Code: Set this field with */

/* the desired mode page number */
/* before issuing the ioctl. */

uchar cmd_code; /* SCSI Command Code: Upon return, */
/* this field is set with the */
/* SCSI command code to which */
/* the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

uchar data[MAX_MSDATA]; /* Mode Parameter List: Upon return, */
/* this field contains the mode */
/* parameters list, up to the max */
/* length supported by the ioctl. */

} mode_sns_t;

An example of the IOC_MODE_SENSE command is
#include <sys/st.h>

mode_sns_t mode_data;
mode_data.page_code =(uchar)page;

memset ((char *)&mode_data, (char)0, sizeof(mode_sns_t));

if (!(rc =ioctl (dev_fd, IOC_MODE_SENSE, &mode_data))){
if (mode_data.cmd_code ==0x1A)

offset =(int)(mode_data.data [3]) + sizeof(mode_hdr6_t);
if (mode_data.cmd_code ==0x5A)

offset =(int)((mode_data.data [6]<<8) + mode_data.data [7])
+ sizeof(mode_hdr10_t);

printf("Mode Data (Page 0x%02x):\n", mode_data.page_code);
dump_bytes ((char *)&mode_data.data [offset], (mode_data.data [offset+1] + 2));

}
else {

printf("IOC_MODE_SENSE for page 0x%X failed.\n",mode_data.page_code);
scsi_request_sense ();

}

IOC_MODE_SENSE_SUBPAGE

This command returns the mode sense data for a specific page and Subpage from
the device. The page and Subpage are selected by specifying the page_code and
subpage_code in the mode_sns_subpage_t structure.

The following data structure is filled out and returned by the driver.
#define MAX_MS_SUBDATA 10240 /* The maximum subpage data length which */

/* this ioctl can return, including */
/* headers and block descriptors. */

typedef struct {
uchar page_code; /* Page Code: Set this field with */

/* the desired mode page number */
/* before issuing the ioctl */

uchar subpage_code; /* Subpage Code: Set this field with */
/* the desired mode page subpage */
/* number before issuing the ioctl */

uchar cmd_code; /* SCSI Command Code: Upon return, */
/* this field is set with the */
/* SCSI command code to which */
/* the device responded. */
/* x’5A’ = Mode Sense (10) */

Chapter 5. Solaris tape and medium changer device driver 227

/* x’1A’ = Mode Sense (6) */
uchar reserved[13];
uchar data[MAX_MS_SUBDATA]; /* Mode Subpage Data: Upon return, */

/* this field contains the mode */
/* Subpage data up to the max */
/* length supported by the ioctl */

} mode_sns_subpage_t;

An example of the IOC_MODE_SENSE_SUBPAGE command is
include<sys/st.h>

int rc;
int header_len;
int blk_dsc_len = 0;
int mode_data_len = 0;
int mode_data_returned_len = 0;
int max_mdsnspg_data_len = 0;
uchar cmd_code;
uchar medium_type;
uchar density_code;
uchar wrt_prot;
char *header_p;
char *blkdsc_p;
void *mode_data_p;
mode_sns_subpage_t mode_subpage;

memset ((char *)&mode_subpage, 0, sizeof(mode_sns_subpage_t));
mode_subpage.page_code = page;
mode_subpage.subpage_code = subpage;

if (!(rc = ioctl (dev_fd, IOC_MODE_SENSE_SUBPAGE, &mode_subpage))) {
printf ("IOC_MODE_SENSE_SUBPAGE succeeded.\n");
header_p = (char *)&mode_subpage.data;
cmd_code = mode_subpage.cmd_code;
if (cmd_code == MODESNS_6_CMD) {

header_len = sizeof(mode_hdr6_t);
mode_data_len = (uint) ((mode_hdr6_t *)header_p)->data_len;
blk_dsc_len = (uint) ((mode_hdr6_t *)header_p)->blk_dsc_len;
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len + 1, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr6_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr6_t *)(header_p))->wrt_prot;

}
else if (cmd_code == MODESNS_10_CMD) {

header_len = sizeof(mode_hdr10_t);
mode_data_len = (uint) ((((mode_hdr10_t *)header_p)->data_len[0] << 8)

| ((mode_hdr10_t *)header_p)->data_len[1]);
blk_dsc_len = (uint) ((((mode_hdr10_t *)header_p)->blk_dsc_len[0] << 8)

| ((mode_hdr10_t *)header_p)->blk_dsc_len[1]);
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len+2, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr10_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr10_t *)(header_p))->wrt_prot;

}
else {

fprintf (stderr, "mode sense: Unknown mode sense command code ’0x%X’.\n",
cmd_code);

return (1);
} blkdsc_p = header_p + header_len;
mode_data_p = blkdsc_p + blk_dsc_len;
density_code = (blk_dsc_len ? (unsigned char)((blkdsc_t

*)(blkdsc_p))->density_code : 0);
printf ("Page Code x’%2.2X’\n", page);
printf ("SubPage Code x’%2.2X’\n", subpage);
printf ("Command Code x’%2.2X’\n", mode_subpage.cmd_code);
printf ("Mode Data Len %4d\n", mode_data_len);

228 IBM Tape Device Drivers: Programming Reference

printf ("Blk Desc Len %4d\n", blk_dsc_len);
printf ("Returned Len %4d\n", mode_data_returned_len);
printf ("Write Protect x’%2.2X’\t\n", wrt_prot);
printf ("Medium Type x’%2.2X’\t\n", medium_type);
if (blk_dsc_len != 0)

printf ("Density Code x’%2.2X’\t\n", density_code);

printf ("\nHeader:\n");
DUMP_BYTES ((char *)(header_p), header_len);
if (blk_dsc_len != 0) {

printf ("\nBlock Descriptor:\n");
DUMP_BYTES ((char *)(blkdsc_p), blk_dsc_len);

}
printf ("\nMode Page:\n");
DUMP_BYTES ((char *)(mode_data_p), (mode_data_returned_len - header_len -

blk_dsc_len));
}
else {

perror ("mode sense subpage");
}
return (rc);

SIOC_MODE_SENSE

This command returns the mode sense data for a specific page and Subpage from
the device. The page and Subpage are selected by specifying the page_code and
subpage_code in the mode_sense_t structure.
#define MAX_MS_SUBDATA 10240 /* The maximum subpage data length which */

/* this ioctl can return, including */
/* headers and block descriptors. */

#define MODESNS_10_CMD 0x5A /* SCSI cmd code for 10-byte version */
/* of the command */

#define MODESNS_6_CMD 0x1A /* SCSI cmd code for 6-byte version */
/* of the command */

#define MODESENSEPAGE 255 /* max data xfer for mode sense/select page ioctl */

typedef struct {
uchar page_code; /* mode sense page code */
uchar subpage_code; /* mode sense subpage code */
uchar reserved[6]; /*Reserved for IBM future use.*/
uchar cmd_code; /* SCSI Command Code: this field is set with */

/* SCSI command code which the device responded. */
/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

char data[MODESENSEPAGE]; /* whole mode sense data include header,
block descriptor and page */

} mode_sense_t;

An example of the SIOC_MODE_SENSE command is
#include <sys/st.h>

int header_len;
int blk_dsc_len = 0;
int mode_data_len = 0;
int mode_data_returned_len = 0;
int max_mdsnspg_data_len = 0;
uchar cmd_code;
uchar medium_type;
uchar density_code;
uchar wrt_prot;
char *header_p;
char *blkdsc_p;
void *mode_data_p;
mode_sense_t mode_sns;

Chapter 5. Solaris tape and medium changer device driver 229

memset ((char *)&mode_sns, 0, sizeof(mode_sense_t));

mode_sns.page_code = page;
mode_sns.subpage_code = subpage;

if (!(rc = ioctl (dev_fd, SIOC_MODE_SENSE, &mode_sns))) {
header_p = (char *)&mode_sns.data;
cmd_code = mode_sns.cmd_code;
if (cmd_code == MODESNS_6_CMD) {

header_len = sizeof(mode_hdr6_t);
mode_data_len = (uint) ((mode_hdr6_t *)header_p)->data_len;
blk_dsc_len = (uint) ((mode_hdr6_t *)header_p)->blk_dsc_len;
max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len + 1, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr6_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr6_t *)(header_p))->wrt_prot;

}
else if (cmd_code == MODESNS_10_CMD) {

header_len = sizeof(mode_hdr10_t);
mode_data_len = (uint) ((((mode_hdr10_t *)header_p)->data_len[0] << 8)

| ((mode_hdr10_t *)header_p)->data_len[1]);

blk_dsc_len = (uint) ((((mode_hdr10_t *)header_p)->blk_dsc_len[0] << 8)
| ((mode_hdr10_t *)header_p)->blk_dsc_len[1]);

max_mdsnspg_data_len = MAX_MS_SUBDATA - header_len - blk_dsc_len;
mode_data_returned_len = MIN(mode_data_len+2, max_mdsnspg_data_len);
medium_type = (uchar)((mode_hdr10_t *)(header_p))->medium_type;
wrt_prot = (uchar)((mode_hdr10_t *)(header_p))->wrt_prot;

}
else {

fprintf (stderr, "mode sense: Unknown mode sense command code
’0x%X’.\n", cmd_code);
return (1);

}
blkdsc_p = header_p + header_len;
mode_data_p = blkdsc_p + blk_dsc_len;
density_code = (blk_dsc_len

? (unsigned char)((blkdsc_t *)(blkdsc_p))->density_code :
0);

PRINTF ("\nHeader:\n");
DUMP_BYTES ((char *)(header_p), header_len);
if (blk_dsc_len != 0) {

PRINTF ("\nBlock Descriptor:\n");
DUMP_BYTES ((char *)(blkdsc_p), blk_dsc_len);

}
PRINTF ("\nMode Page:\n");
DUMP_BYTES ((char *)(mode_data_p),
(mode_data_returned_len - header_len - blk_dsc_len));
}
else {

PERROR ("mode sense page");
PRINTF ("\n");
scsi_request_sense ();

}

IOC_DRIVER_INFO

This command returns the information about the currently installed IBMtape
driver.

The following data structure is filled out and returned by the driver.
typedef struct {

uchar reserved_1[4]; /* Reserved for IBM Development Use */
uchar reserved_2[4]; /* Reserved for IBM Development Use */
uchar reserved_3[4]; /* Reserved for IBM Development Use */

230 IBM Tape Device Drivers: Programming Reference

uchar reserved_4[4]; /* Reserved for IBM Development Use */
uchar name[16]; /* IBMtape device driver name */
uchar version[16]; /* IBMtape device driver version */
uchar sver[16]; /* Short version string (less ’.’ & ’_’ chars) */
uchar seq[16]; /* Sequence number */
uchar os[16]; /* Operating System */
uchar reserved_5[159]; /* Reserved for IBM Development Use */

} IBMtape_info_t;

An example of the IOC_DRIVER_INFO command is
#include <sys/st.h>

IBMtape_info_t IBMtape_info;

if (!(rc = ioctl (dev_fd, IOC_DRIVER_INFO, &IBMtape_info))) {
printf ("IBMtape tape device driver information:\n");
printf("Name: %s\n", IBMtape_info.name);
printf("Version: %s\n", IBMtape_info.version);
printf("Short version string: %s\n", IBMtape_info.sver);
printf("Operating System: %s\n", IBMtape_info.os);

}
else {

perror("Failure obtaining the information of IBMtape");
printf("\n");
scsi_request_sense ();

}

IOC_RESERVE

This command persistently reserves the device for exclusive use by the initiator.
The IBMtape device driver normally reserves the device in the open operation and
releases the device in the close operation. Issuing this command prevents the
driver from releasing the device during the close operation; hence the device
reservation is maintained after the device is closed. This command is negated by
issuing the IOC_RELEASE IOCTL command.

No data structure is required for this command.

An example of the IOC_RESERVE command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RESERVE, 0))) {
printf ("The IOC_RESERVE ioctl succeeded.\n");

}
else {

perror ("The IOC_RESERVE ioctl failed");
scsi_request_sense ();

}

IOC_RELEASE

This command releases the persistent reservation of the device for exclusive use by
the initiator. It negates the result of the IOC_RESERVE IOCTL command that is
issued either from the current or a previous open session.

No data structure is required for this command.

An example of the IOC_RELEASE command is
#include <sys/st.h>

if (!(ioctl (dev_fd, IOC_RELEASE, 0))) {
printf ("The IOC_RELEASE ioctl succeeded.\n");

Chapter 5. Solaris tape and medium changer device driver 231

}
else {

perror ("The IOC_RELEASE ioctl failed");
scsi_request_sense ();

}

SCSI medium changer IOCTL operations

A set of medium changer IOCTL commands gives applications access to IBM
medium changer devices.

The following commands are supported.

SMCIOC_MOVE_MEDIUM
Transport a cartridge from one element to another element.

SMCIOC_EXCHANGE_MEDIUM
Exchange a cartridge in an element with another cartridge.

SMCIOC_POS_TO_ELEM
Move the robot to an element.

SMCIOC_ELEMENT_INFO
Return the information about the device elements.

SMCIOC_INVENTORY
Return the information about the medium changer elements.

SMCIOC_AUDIT
Run an audit of the element status.

SMCIOC_AUDIT_RANGE
Run an audit for a particular range of elements.

SMCIOC_LOCK_DOOR
Lock and unlock the library access door.

SMCIOC_READ_ELEMENT_DEVIDS
Return the device ID element descriptors for drive elements.

SMCIOC_READ_CARTRIDGE_LOCATION
Returns the cartridge location information for all storage elements in the
library.

These commands and associated data structures are defined in the smc.h header
file in the /usr/include/sys directory that is installed with the IBMtape package.
Any application program that issues these commands must include this header file.

SMCIOC_MOVE_MEDIUM

This command transports a cartridge from one element to another element.

The following data structure is filled out and supplied by the caller.
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */
} move_medium_t

An example of the SMCIOC_MOVE_MEDIUM command is

232 IBM Tape Device Drivers: Programming Reference

#include <sys/smc.h>

move_medium_t move_medium;

move_medium.robot = 0;
move_medium.invert = NO_FLIP;
move_medium.source = src;
move_medium.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_MOVE_MEDIUM, &move_medium))) {
printf ("The SMCIOC_MOVE_MEDIUM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_MOVE_MEDIUM ioctl failed");
scsi_request_sense ();

}

SMCIOC_EXCHANGE_MEDIUM

This command exchanges a cartridge from one element to another element. This
command is equivalent to two SCSI Move Medium commands. The first moves the
cartridge from the source element to the destination1 element. The second moves
the cartridge that was previously in the destination1 element to the destination2
element. The destination2 element can be the same as the source element.

The following data structure is filled out and supplied by the caller.
typedef struct {

ushort robot; /* robot address */
ushort source; /* move from location */
ushort destination1; /* move to location */
ushort destination2; /* move to location */
uchar invert1; /* invert medium before insert into destination 1 */
uchar invert2; /* invert medium before insert into destination 2 */

} Exchange_medium_t

An example of the SMCIOC_EXCHANGE_MEDIUM command is
#include<sys/smc.h>

exchange_medium_t exchange_medium;

exchange_medium.robot = 0;
exchange_medium.invert1 = NO_FLIP;
exchange_medium.invert2 = NO_FLIP;
exchange_medium.source = (short)src;
exchange_medium.destination1 = (short)dst1;
exchange_medium.destination2 = (short)dst2;

if (!(rc = ioctl (dev_fd, SMCIOC_EXCHANGE_MEDIUM, &exchange_medium))) {
PRINTF ("SMCIOC_MOVE_MEDIUM succeeded.\n");

}
else {

PERROR ("SMCIOC_EXCHANGE_MEDIUM failed");
PRINTF ("\n");
scsi_request_sense ();

}

SMCIOC_POS_TO_ELEM

This command moves the robot to an element.

The following data structure is filled out and supplied by the caller.

Chapter 5. Solaris tape and medium changer device driver 233

typedef struct {
ushort robot; /* robot address */
ushort destination; /* move to location */
uchar invert; /* invert medium before insertion */

} pos_to_elem_t;

An example of the SMCIOC_POS_TO_ELEM command is
#include <sys/smc.h>

pos_to_elem_t pos_to_elem;

pos_to_elem.robot = 0;
pos_to_elem.invert = NO_FLIP;
pos_to_elem.destination = dst;

if (!(ioctl (dev_fd, SMCIOC_POS_TO_ELEM, &pos_to_elem))) {
printf ("The SMCIOC_POS_TO_ELEM ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_POS_TO_ELEM ioctl failed");
scsi_request_sense ();

}

SMCIOC_ELEMENT_INFO

This command requests the information about the device elements.

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data-transfer devices. The quantity of each
element type and its starting address is returned by the driver.

The following data structure is filled out and returned by the driver.
typedef struct {

ushort robot_address; /* medium transport element address */
ushort robot_count; /* number medium transport elements */
ushort cell_address; /* medium storage element address */
ushort cell_count; /* number medium storage elements */
ushort port_address; /* import/export element address */
ushort port_count; /* number import/export elements */
ushort drive_address; /* data-transfer element address */
ushort drive_count; /* number data-transfer elements */

} element_info_t;

An example of the SMCIOC_ELEMENT_INFO command is
#include <sys/smc.h>

element_info_t element_info;

if (!(ioctl (dev_fd, SMCIOC_ELEMENT_INFO, &element_info))) {
printf ("The SMCIOC_ELEMENT_INFO ioctl succeeded.\n");
printf ("\nThe element information data is:\n");
dump_bytes ((char *)&element_info, sizeof (element_info_t));

}

else {
perror ("The SMCIOC_ELEMENT_INFO ioctl failed");
scsi_request_sense ();

}

234 IBM Tape Device Drivers: Programming Reference

SMCIOC_INVENTORY

This command returns the information about the medium changer elements (SCSI
Read Element Status command).

There are four types of medium changer elements. (Not all medium changers
support all four types.) The robot elements are associated with the cartridge
transport devices. The cell elements are associated with the cartridge storage slots.
The port elements are associated with the import/export mechanisms. The drive
elements are associated with the data-transfer devices.

Note: The application must allocate buffers large enough to hold the returned
element status data for each element type. The SMCIOC_ELEMENT_INFO IOCTL is
called first to establish the criteria.

The following data structure is filled out and supplied by the caller.
typedef struct {

element_status_t *robot_status; /* medium transport element pages */
element_status_t *cell_status; /* medium storage element pages */
element_status_t *port_status; /* import/export element pages */
element_status_t *drive_status; /* data-transfer element pages */

} inventory_t;

One or more of the following data structures are filled out and returned to the user
buffer by the driver.
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */

: 1, /* reserved */
full : 1; /* element contains medium */

uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

: 1, /* reserved */
idvalid : 1, /* element address valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit number */

uchar scsi; /* SCSI bus address */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar volume[36]; /* primary volume tag */
uchar vendor[80]; /* vendor specific (padded to 128) */

} element_status_t;

An example of the SMCIOC_INVENTORY command is
#include <sys/smc.h>

ushort i;
element_info_t element_info;
inventory_t inventory;

smc_element_info (); /* get element information first */
inventory.robot_status = (element_status_t *)malloc

Chapter 5. Solaris tape and medium changer device driver 235

(sizeof (element_status_t) * element_info.robot_count);
inventory.cell_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.cell_count);
inventory.port_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.port_count);
inventory.drive_status = (element_status_t *)malloc

(sizeof (element_status_t) * element_info.drive_count);

if (!inventory.robot_status || !inventory.cell_status ||
!inventory.port_status || !inventory.drive_status) {
perror ("The SMCIOC_INVENTORY ioctl failed");
return;

}
if (!(ioctl (dev_fd, SMCIOC_INVENTORY, &inventory))) {

printf ("\nThe SMCIOC_INVENTORY ioctl succeeded.\n");

printf ("\nThe robot status pages are:\n");

for (i = 0; i < element_info.robot_count; i++) {
dump_bytes ((char *)(&inventory.robot_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe cell status pages are:\n");

for (i = 0; i < element_info.cell_count; i++) {
dump_bytes ((char *)(&inventory.cell_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

printf ("\nThe port status pages are:\n");

for (i = 0; i < element_info.port_count; i++) {
dump_bytes ((char *)(&inventory.port_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}
printf ("\nThe drive status pages are:\n");

for (i = 0; i < element_info.drive_count; i++) {
dump_bytes ((char *)(&inventory.drive_status[i]),

sizeof (element_status_t));
printf ("\n--- more ---");
getchar ();

}

}

else {
perror ("The SMCIOC_INVENTORY ioctl failed");
scsi_request_sense ();

}

SMCIOC_AUDIT

This command causes the medium changer device to run an audit of the element
status (SCSI Initialize Element Status command).

No data structure is required for this command.

236 IBM Tape Device Drivers: Programming Reference

An example of the SMCIOC_AUDIT command is
#include <sys/smc.h>

if (!(ioctl (dev_fd, SMCIOC_AUDIT, 0))) {
printf ("The SMCIOC_AUDIT ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_AUDIT ioctl failed");
scsi_request_sense ();

}

SMCIOC_AUDIT_RANGE

This IOCTL command issues the SCSI Initialize Element Status with Range
command. It is used to audit specific elements in a library by specifying the
starting element address and the number of elements. Use the SMCIOC_AUDIT IOCTL
to audit all elements.

The data structure is
typedef struct {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */

} element_range_t;

An example of the SMCIOC_AUDIT_RANGE command is
#include <sys/smc.h>

element_range_t elements;
/*audit slots 32 to 36 */
elements.element_address =32;
elements.number_elements =5;
if (!ioctl (dev_fd, SMCIOC_AUDIT_RANGE, &elements))

printf ("The SMCIOC_AUDIT_RANGE ioctl succeeded \n");
else
{

perror ("The SMCIOC_AUDIT_RANGE ioctl failed");
scsi_request_sense();

}

SMCIOC_LOCK_DOOR

This command locks and unlocks the library access door. Not all IBM medium
changer devices support this operation.

The following data structure is filled out and supplied by the caller.
typedef uchar lock_door_t;

An example of the SMCIOC_LOCK_DOOR command is
#include <sys/smc.h>

lock_door_t lock_door;

lock_door = LOCK;

if (!(ioctl (dev_fd, SMCIOC_LOCK_DOOR, &lock_door))) {
printf ("The SMCIOC_LOCK_DOOR ioctl succeeded.\n");

}

else {
perror ("The SMCIOC_LOCK_DOOR ioctl failed");
scsi_request_sense ();

}

Chapter 5. Solaris tape and medium changer device driver 237

SMCIOC_READ_ELEMENT_DEVIDS

This IOCTL command issues the SCSI Read Element Status command with the
DVCID (device ID) bit set and returns the element descriptors for the data transfer
elements. The element_address field is used to specify the starting address of the
first data transfer element and the number_elements field specifies the number of
elements to return. The application must allocate a return buffer large enough for
the number_elements specified in the input structure.

The input data structure is
typedef struct read_element_devids_s {

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
element_devids_t *drive_devid; /* data transfer element pages */

} read_element_devids_t;

The output data structure is
typedef struct {

ushort address; /* element address */
uchar : 2, /* reserved */

inenab : 1, /* medium in robot scope */
exenab : 1, /* medium not in robot scope */
access : 1, /* robot access allowed */
except : 1, /* abnormal element state */
impexp : 1, /* medium imported or exported */
full : 1; /* element contains medium */

uchar : 8; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar notbus : 1, /* element not on same bus as robot */

: 1, /* reserved */
idvalid : 1, /* scsi bus id valid */
luvalid : 1, /* logical unit valid */

: 1, /* reserved */
lun : 3; /* logical unit */

uchar scsi; /* scsi bus id */
uchar : 8; /* reserved */
uchar svalid : 1, /* element address valid */

invert : 1, /* medium inverted */
: 6; /* reserved */

ushort source; /* source storage element address */
uchar : 4, /* reserved */

codeset : 4; /* code set */
uchar : 2, /* reserved */

assoc : 2, /* Association */
idtype : 4; /* Identifier Type */

uchar : 8; /* reserved */
uchar idlength; /* Length of Device Identifier */
uchar vendorid[8]; /* Vendor ID */
uchar devtype[16]; /* Device type and Model Numer */
uchar serialnum[12]; /* Serial Number of device (ASCII) */

} element_devids_t;

An example of the SMCIOC_READ_ELEMENT_DEVIDS command is
#include <sys/smc.h>
/*---*/
/* Name: smc_read_element_devids */
/*-- */
static int smc_read_element_devids(void)

{
int rc;
int i,j;
element_devids_t *elem_devid, *elemp;

238 IBM Tape Device Drivers: Programming Reference

read_element_devids_t devids;
element_info_t element_info;
if (ioctl(dev_fd, SMCIOC_ELEMENT_INFO, &element_info))

return errno;
if (element_info.drive_count)

{
elem_devid = malloc(element_info.drive_count * sizeof(element_devids_t));
if (elem_devid == NULL)
{

errno = ENOMEM;
return errno;

}
bzero((caddr_t)elem_devid,element_info.drive_count * sizeof(element_devids_t));
devids.drive_devid = elem_devid;
devids.element_address = element_info.drive_address;
devids.number_elements = element_info.drive_count;
printf("Reading element device ids...\n");
if (rc = ioctl (dev_fd, SMCIOC_READ_ELEMENT_DEVIDS, &devids))
{

free(elem_devid);
perror ("SMCIOC_READ_ELEMENT_DEVIDS failed");
printf ("\n");
scsi_request_sense ();
return rc;

}
j=0;
elemp = elem_devid;
for (i = 0; i < element_info.drive_count; i++, elemp++)
{
/* don’t overflow screen if menu mode */
if (interactive && j == 2)
{

j=0;
printf ("\nHit to continue...");
getchar();

}
j++;
printf("\nDrive Address %d\n",elemp->address);
if (elemp->except)

printf(" Drive State Abnormal\n");
else

printf(" Drive State Normal\n");
if (elemp->asc == 0x81 && elemp->ascq ==0x00)

printf(" ASC/ASCQ %02X%02X (Drive Present)\n",
elemp->asc,elemp->ascq);

else if (elemp->asc == 0x82 && elemp->ascq ==0x00)
printf(" ASC/ASCQ %02X%02X (Drive Not Present)\n",

elemp->asc,elemp->ascq);
else

printf(" ASC/ASCQ %02X%02X\n",
elemp->asc,elemp->ascq);

if (elemp->full)
printf(" Media Present Yes\n");

else
printf(" Media Present No\n");

if (elemp->access)
printf(" Robot Access Allowed Yes\n");

else
printf(" Robot Access Allowed No\n");

if (elemp->svalid)
printf(" Source Element Address %d\n",elemp->source);

else
printf(" Source Element Address Valid ... No\n");

if (elemp->invert)
printf(" Media Inverted Yes\n");

else
printf(" Media Inverted No\n");

Chapter 5. Solaris tape and medium changer device driver 239

if (elemp->notbus)
printf(" Same Bus as Medium Changer No\n");

else
printf(" Same Bus as Medium Changer Yes\n");

if (elemp->idvalid)
printf(" SCSI Bus Address %d\n",elemp->scsi);

else
printf(" SCSI Bus Address Vaild No\n");

if (elemp->luvalid)
printf(" Logical Unit Number %d\n",elemp->lun);

else
printf(" Logical Unit Number Valid No\n");

printf(" Device ID Info\n");
printf(" Vendor %0.8s\n", elemp->vendorid);
printf(" Model %0.16s\n", elemp->devtype);
printf(" Serial Number %0.12s\n", elemp->serialnum);
}

}
else

{
printf("\nNo drives found in element information\n");
if (interactive)

{
printf ("\nHit to continue...");
getchar();
}

}
free(elem_devid);
return errno;

}

SMCIOC_READ_CARTRIDGE_LOCATION

The SMCIOC_READ_CARTRIDGE_LOCATION IOCTL is used to return the cartridge
location information for storage elements in the library. The element_address field
specifies the starting element address to return and the number_elements field
specifies how many storage elements are returned. The data field is a pointer to
the buffer for return data. The buffer must be large enough for the number of
elements that are returned. If the storage element contains a cartridge, then the
ASCII identifier field in return data specifies the location of the cartridge.

Note: This IOCTL is supported only on the TS3500 (3584) library.

The data structure is
typedef struct
{

ushort address; /* element address */
uchar :4, /* reserved */

access:1, /* robot access allowed */
except:1, /* abnormal element state */

:1, /* reserved */
full:1; /* element contains medium */

uchar resvd1; /* reserved */
uchar asc; /* additional sense code */
uchar ascq; /* additional sense code qualifier */
uchar resvd2[3]; /* reserved */
uchar svalid:1, /* element address valid */

invert:1, /* medium inverted */
:6; /* reserved */

ushort source; /* source storage elem addr */
uchar volume[36]; /* primary volume tag */
uchar :4, /* reserved */

code_set:4; /* code set */
uchar :4, /* reserved */

240 IBM Tape Device Drivers: Programming Reference

ident_type:4; /* identifier type */
uchar resvd3; /* reserved */
uchar ident_len; /* identifier length */
uchar identifier[24]; /* slot identification */

} cartridge_location_data_t;

typedef struct
{

ushort element_address; /* starting element address */
ushort number_elements; /* number of elements */
cartridge_location_data_t *data; /* storage element pages */
char reserved[8]; /* reserved /

} read_cartridge_location_t;

An example of the SMCIOC_READ_CARTRIDGE_LOCATION command is
#include <sys/smc.h>

int rc;
int available_slots=0;
cartridge_location_data_t *slot_devid;
read_cartridge_location_t slot_devids;

slot_devids.element_address = (ushort)element_address;
slot_devids.number_elements = (ushort)number_elements;

if (rc = ioctl(dev_fd,SMCIOC_ELEMENT_INFO,&element_info))
{
PERROR("SMCIOC_ELEMENT_INFO failed");
PRINTF("\n");
scsi_request_sense();
return (rc);

}
if (element_info.cell_count == 0)
{
printf("No slots found in element information...\n");
errno = EIO;
return errno;
}

if ((slot_devids.element_address==0) && (slot_devids.number_elements==0))
{
slot_devids.element_address=element_info.cell_address;
slot_devids.number_elements=element_info.cell_count;
printf("Reading all locations...\n");
}

if ((element_info.cell_address > slot_devids.element_address)
|| (slot_devids.element_address >

(element_info.cell_address+element_info.cell_count-1)))
{
printf("Invalid slot address %d\n",element_address);
errno = EINVAL;
return errno;
}

available_slots = (element_info.cell_address+element_info.cell_count)
-slot_devids.element_address;

if (available_slots>slot_devids.number_elements)
available_slots=slot_devids.number_elements;

slot_devid = malloc(element_info.cell_count
* sizeof(cartridge_location_data_t));

if (slot_devid == NULL
) {

errno = ENOMEM;
return errno;
}

Chapter 5. Solaris tape and medium changer device driver 241

bzero((caddr_t)slot_devid,element_info.cell_count * sizeof
(cartridge_location_data_t));

slot_devids.data = slot_devid;
rc = ioctl (dev_fd, SMCIOC_READ_CARTRIDGE_LOCATION, &slot_devids);

free(slot_devid);
return rc;

SCSI tape drive IOCTL operations

A set of enhanced IOCTL commands gives applications access to extra features of
IBM tape drives.

The following commands are supported.

STIOC_TAPE_OP
Perform a tape drive operation.

STIOC_GET_DEVICE_STATUS
Return the status information about the tape drive.

STIOC_GET_DEVICE_INFO
Return the configuration information about the tape drive.

STIOC_GET_MEDIA_INFO
Return the information about the currently mounted tape.

STIOC_GET_POSITION
Return information about the tape position.

STIOC_SET_POSITION
Set the physical position of the tape.

STIOC_GET_PARM
Return the current value of the working parameter for the tape drive.

STIOC_SET_PARM
Set the current value of the working parameter for the tape drive.

STIOC_DISPLAY_MSG
Display messages on the tape drive console.

STIOC_SYNC_BUFFER
Flush the drive buffers to the tape.

STIOC_REPORT_DENSITY_SUPPORT
Return supported densities from the tape device.

GET_ENCRYPTION_STATE
This IOCTL can be used for application, system, and library-managed
encryption. It allows a query only of the encryption status.

SET_ENCRYPTION_STATE
This IOCTL can be used only for application-managed encryption. It sets
encryption state for application-managed encryption.

SET_DATA_KEY
This IOCTL can be used only for application-managed encryption. It sets
the data key for application-managed encryption.

CREATE_PARTITION
Create one or more tape partitions and format the media.

QUERY_PARTITION
Query tape partitioning information and current active partition.

242 IBM Tape Device Drivers: Programming Reference

SET_ACTIVE_PARTITION
Set the current active tape partition.

ALLOW_DATA_OVERWRITE
Set the drive to allow a subsequent data overwrite type command at the
current position or allow a CREATE_PARTITION IOCTL when data safe
(append-only) mode is enabled.

READ_TAPE_POSITION
Read current tape position in either short, long, or extended form.

SET_TAPE_POSITION
Set the current tape position to either a logical object or logical file
position.

QUERY_LOGICAL_BLOCK_PROTECTION
Query Logical Block Protection (LBP) support and its setup.

SET_LOGICAL_BLOCK_PROTECTION
Enable/disable Logical Block Protection (LBP), set the protection method,
and how the protection information is transferred.

VERIFY_TAPE_DATA
Issues VERIFY command to cause data to be read from the tape and passed
through the drive's error detection and correction hardware. This action
determines whether it can be recovered from the tape. Or, whether the
protection information is present and validates correctly on logical block
on the medium.

QUERY_RAO_INFO
The IOCTL is used to query the maximum number and size of User Data
Segments (UDS) that are supported from tape drive and driver for the
wanted uds_type.

GENERATE_RAO
The IOCTL is called to send a GRAO list to request that the drive create a
Recommended Access Order list.

RECEIVE_RAO
After a GENERATE_RAO IOCTL is completed, the application calls the
RECEIVE_RAO IOCTL to receive a recommended access order of UDS from
the drive.

These commands and associated data structures are defined in the st.h header file
in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

STIOC_TAPE_OP

This command runs the standard tape drive operations. It is identical to the
MTIOCTOP IOCTL command that is defined in the /usr/include/sys/mtio.h system
header file. The STIOC_TAPE_OP and MTIOCTOP commands both use the same data
structure that is defined in the /usr/include/sys/mtio.h system header file. The
STIOC_TAPE_OP IOCTL command maps to the MTIOCTOP IOCTL command. The two
IOCTL commands are interchangeable. See “MTIOCTOP” on page 278.

For all space operations, the resulting tape position is at the end-of-tape side of the
record or filemark for forward movement. It is at the beginning-of-tape side of the
record or filemark for backward movement.

The following data structure is filled out and supplied by the caller.

Chapter 5. Solaris tape and medium changer device driver 243

/* from mtio.h */
struct mtop {

short mt_op; /* operations (defined below) */
daddr_t mt_count; /* how many to perform */

};

/* from st.h */
typedef struct mtop tape_op_t;

The mt_op field is set to one of the following.

MTWEOF
Write mt_count filemarks.

MTFSF
Space forward mt_count filemarks.

MTBSF
Space backward mt_count filemarks. Upon completion, the tape is
positioned at the beginning-of-tape side of the requested filemark.

MTFSR
Space forward the mt_count number of records.

MTBSR
Space backward the mt_count number of records.

MTREW
Rewind the tape. The mt_count parameter does not apply.

MTOFFL
Rewind and unload the tape. The mt_count parameter does not apply.

MTNOP
No tape operation is run. A Test Unit Ready command is issued to the
drive to retrieve status information.

MTRETEN
Retension the tape. The mt_count parameter does not apply.

MTERASE
Erase the entire tape from the current position. The mt_count parameter
does not apply.

MTEOM
Space forward to the end of the data. The mt_count parameter does not
apply.

MTNBSF
Space backward mt_count filemarks, then space backward before all data
records in that tape file. For a specific MTNBFS operation with mt_count
= n, the equivalent position can be achieved with MT_BSF and MT_FSF,
as follows.
MTBSF with mt_count = n + 1
MTFSF with mt_count = 1

MTGRSZ
Return the current record (block) size. The mt_count parameter contains the
value.

MTSRSZ
Set the working record (block) size to mutant.

STLOAD
Load the tape in the drive. The mt_count parameter does not apply.

244 IBM Tape Device Drivers: Programming Reference

STUNLOAD
Unload the tape from the drive. The mt_count parameter does not apply.

An example of the STIOC_TAPE_OP command is
#include <sys/mtio.h>
#include <sys/st.h>

tape_op_t tape_op;

tape_op.mt_op = mt_op;
tape_op.mt_count = mt_count;

if (!(ioctl (dev_fd, STIOC_TAPE_OP, &tape_op))) {
printf ("The STIOC_TAPE_OP ioctl succeeded.\n");

}

else {
perror ("The STIOC_TAPE_OP ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_STATUS

This command returns the status information about the tape drive. It is identical to
the MTIOCGET IOCTL command that is defined in the /usr/include/sys/mtio.h
system header file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both
use the same data structure that is defined in the /usr/include/sys/mtio.h system
header file. The STIOC_GET_DEVICE_STATUS IOCTL command maps to the MTIOCGET
IOCTL command. The two IOCTL commands are interchangeable. See
“MTIOCGET” on page 279.

The following data structure is returned by the driver.
/* from mtio.h */
struct mtget {

short mt_type; /* type of tape device */
short mt_dsreg; /* drive status register */
short mt_erreg; /* error register */
daddr_t mt_resid; /* residual count */
daddr_t mt_fileno; /* current file number */
daddr_t mt_blkno; /* current block number */
u_short mt_flags; /* device flags */
short mt_bf; /* optimum blocking factor */

};

/* from st.h */
typedef struct mtget device_status_t;

The mt_flags field, which returns the type of automatic cartridge stacker or loader
that are installed on the tape drive, is set to one of the following values.

STF_ACL
Automatic Cartridge Loader.

STF_RACL
Random Access Cartridge Facility.

An example of the STIOC_GET_DEVICE_STATUS command is
#include <sys/mtio.h>
#include <sys/st.h>

device_status_t device_status;

Chapter 5. Solaris tape and medium changer device driver 245

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_STATUS, &device_status))) {
printf ("The STIOC_GET_DEVICE_STATUS ioctl succeeded.\n");
printf ("\nThe device status data is:\n");
dump_bytes ((char *)&device_status, sizeof (device_status_t));

}

else {
perror ("The STIOC_GET_DEVICE_STATUS ioctl failed");
scsi_request_sense ();

}

STIOC_GET_DEVICE_INFO

This command returns the configuration information about the tape drive. It is
identical to the MTIOCGETDRIVETYPE IOCTL command that is defined in the
/usr/include/sys/mtio.h system header file. The STIOC_GET_DEVICE_INFO and
MTIOCGETDRIVETYPE commands both use the same data structure that is defined in
the /usr/include/sys/mtio.h system header file. The STIOC_GET_DEVICE_STATUS
IOCTL command maps to the MTIOCGETDRIVETYPE IOCTL command. The two
IOCTL commands are interchangeable. See “MTIOCGETDRIVETYPE” on page 279.

The following data structure is returned by the driver.
/* from mtio.h */
struct mtdrivetype {

char name[64]; /* Name, for debug */
char vid[25]; /* Vendor id and model (product) id */
char type; /* Drive type for driver */
int bsize; /* Block size */
int options; /* Drive options */
int max_rretries; /* Max read retries */
int max_wretries; /* Max write retries */
uchar_t densities[MT_NDENSITIES]; /* density codes, low->hi */
uchar_t default_density; /* Default density chosen */
uchar_t speeds[MT_NSPEEDS]; /* speed codes, low->hi */
ushort_t non_motion_timeout; /* Inquiry type commands */
ushort_t io_timeout; /* io timeout. seconds */
ushort_t rewind_timeout; /* rewind timeout. seconds */
ushort_t space_timeout; /* space cmd timeout. seconds */
ushort_t load_timeout; /* load tape time in seconds */
ushort_t unload_timeout; /* Unload tape time in scounds */
ushort_t erase_timeout; /* erase timeout. seconds */

};

/* from st.h */
typedef struct mtdrivetype device_info_t;

An example of the STIOC_GET_DEVICE_INFO command is
#include <sys/mtio.h>
#include <sys/st.h>

device_info_t device_info;

if (!(ioctl (dev_fd, STIOC_GET_DEVICE_INFO, &device_info))) {
printf ("The STIOC_GET_DEVICE_INFO ioctl succeeded.\n");
printf ("\nThe device information is:\n");
dump_bytes ((char *)&device_info, sizeof (device_info_t));

}

else {
perror ("The STIOC_GET_DEVICE_INFO ioctl failed");
scsi_request_sense ();

}

246 IBM Tape Device Drivers: Programming Reference

STIOC_GET_MEDIA_INFO

This command returns the information about the currently mounted tape.

The following data structure is filled out and returned by the driver.
typedef struct {

uint media_type; /* type of media loaded */
uint media_format; /* format of media loaded */
uchar write_protect; /* write protect (physical/logical) */

} media_info_t;

The media_type field is set to one of the values in st.h.

The media_format field, which returns the current recording format, is set to one
of the values in st.h.

The write_protect field is set to 1 if the currently mounted tape is physically or
logically write protected.

An example of the STIOC_GET_MEDIA_INFO command is
#include <sys/st.h>

media_info_t media_info;

if (!(ioctl (dev_fd, STIOC_GET_MEDIA_INFO, &media_info))) {
printf ("The STIOC_GET_MEDIA_INFO ioctl succeeded.\n");
printf ("\nThe media information is:\n");
dump_bytes ((char *)&media_info, sizeof (media_info_t));

}

else {
perror ("The STIOC_GET_MEDIA_INFO ioctl failed");
scsi_request_sense ();

}

STIOC_GET_POSITION

This command returns the information about the tape position.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with each other.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */
} position_data_t;

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions. They are used for
high-speed locate operations that are implemented by the tape drive. Only the IBM

Chapter 5. Solaris tape and medium changer device driver 247

3490E Magnetic Tape Subsystem or a virtual drive in a VTS supports the
PHYSICAL_BLK type. All devices support the LOGICAL_BLK type.

The block_type is the only field that must be filled out by the caller. The other
fields are ignored. Tape positions can be obtained with the STIOC_GET_POSITION
command, saved, and used later with the STIOC_SET_POSITION command to quickly
return to the same location on the tape.

The position field returns the current position of the tape (physical or logical).

The last_block field returns the last block of data that was transferred physically to
the tape.

The block_count field returns the number of blocks of data that remains in the
buffer.

The byte_count field returns the number of bytes of data that remains in the
buffer.

The bot and eot fields indicate whether the tape is positioned at the beginning of
tape or the end of tape.

An example of the STIOC_GET_POSITION command is
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;

if (!(ioctl (dev_fd, STIOC_GET_POSITION, &position_data))) {
printf ("The STIOC_GET_POSITION ioctl succeeded.\n");
printf ("\nThe tape position data is:\n");
dump_bytes ((char *)&position_data, sizeof (position_data_t));

}

else {
perror ("The STIOC_GET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_SET_POSITION

This command sets the physical position of the tape.

The tape position is defined as where the next read or write operation occurs. The
STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with each other.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar block_type; /* block type (logical or physical) */
uchar bot; /* physical beginning of tape */
uchar eot; /* logical end of tape */
uchar partition; /* partition number */
uint position; /* current or new block ID */
uint last_block; /* last block written to tape */
uint block_count; /* blocks remaining in buffer */
uint byte_count; /* bytes remaining in buffer */

} position_data_t;

248 IBM Tape Device Drivers: Programming Reference

The block_type field is set to LOGICAL_BLK for standard SCSI logical tape
positions or PHYSICAL_BLK for composite tape positions. They are used for
high-speed locate operations that are implemented by the tape drive. Only the IBM
3490E Magnetic Tape Subsystem and the IBM Virtual Tape Servers support the
PHYSICAL_BLK type. All devices support the LOGICAL_BLK type.

The block_type and position fields must be filled out by the caller. The other
fields are ignored. The type of position that is specified in the position field must
correspond with the type specified in the block_type field. Tape positions can be
obtained with the STIOC_GET_POSITION command, saved, and used later with the
STIOC_SET_POSITION command to quickly return to the same location on the tape.
The IBM 3490E Magnetic Tape Subsystem drives in VTSs do not support position
to end of tape.

An example of the STIOC_SET_POSITION command is
#include <sys/st.h>

position_data_t position_data;
position_data.block_type = type;
position_data.position = value;

if (!(ioctl (dev_fd, STIOC_SET_POSITION, &position_data))) {
printf ("The STIOC_SET_POSITION ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_POSITION ioctl failed");
scsi_request_sense ();

}

STIOC_GET_PARM

This command returns the current value of the working parameter for the specified
tape drive. This command is used with the STIOC_SET_PARM command.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field returns the current value of the specified parameter, within the
ranges that are indicated for the specific type.

The type field, which is filled out by the caller, is set to one of the following
values.

BLOCKSIZE
Block Size (0- [2 MB]/Maximum dma size).

A value of zero indicates variable block size. Only the IBM 359x Tape
System supports 2 MB maximum block size or maximum dma transfer size
that is supported by the host adapter if it is larger than 2 MB. All other
devices support 256 KB maximum block size.

COMPRESSION
Compression Mode (0 or 1).

If this mode is enabled, data is compressed by the tape device before it is
stored on tape.

Chapter 5. Solaris tape and medium changer device driver 249

BUFFERING
Buffering Mode (0 or 1).

If this mode is enabled, data is stored in hardware buffers in the tape
device and not immediately committed to tape, thus increasing data
throughput performance.

IMMEDIATE
Immediate Mode.
v NO_IMMEDIATE (0)

If IMMEDIATE is set to zero, SCSI commands that support the
immediate bit in the CDB run to completion before status is returned.

v GEN_IMMEDIATE (1)
If IMMEDIATE is set to GEN_IMMEDIATE, the SCSI commands Write
FM, Locate, Load-Unload, Erase, and Rewind return with status before the
command actually completes on the tape drive.

v REW_IMMEDIATE (2)
If IMMEDIATE is set to REW_IMMEDIATE, the SCSI rewind command
returns with status before the command actually completes on the tape
drive.

TRAILER
Trailer Label Mode (0 or 1).

This mode affects write behavior after logical end of medium (LEOM) is
reached. See “Writing to a special file” on page 296 for information about
write operations that approach LEOM. With trailer label processing
disabled (TRAILER=0), writing past logical end of medium (LEOM) is not
allowed. After LEOM is reached, all further writes fail, returning -1, with
the errno system variable set to ENOSPC (no space that is left on device).

With trailer label processing enabled (TRAILER=1), writing past logical end
of medium (LEOM) is allowed. After LEOM is reached, all subsequent
writes succeed until physical end of medium (PEOM) is reached. Write
requests for multiple fixed blocks can encounter short writes. See “Writing
to a special file” on page 296 for information about short writes. After
PEOM is reached, all further writes fail, returning -1, with the errno system
variable set to ENOSPC (nospace that is left on device).

An application that uses the trailer label processing option must stop
normal data writing when LEOM is reached, and run end of volume
processing. Such processing typically consists of writing a final data record,
a filemark, and a "trailing" tape label. Finally, two more filemarks are
written to indicate end of data (EOD).

WRITEPROTECT
Write-Protect mode.

This configuration parameter returns the current write protection status of
the mounted cartridge. The following values are recognized.
v NO_PROTECT

The tape is not physically or logically write-protected. Operations that
alter the contents of the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED logical write
protection modes. It does not reset the WORM logical or the PHYSICAL
write protection modes.

v PHYS_PROTECT

250 IBM Tape Device Drivers: Programming Reference

The tape is physically write protected. The write protect switch on the
tape cartridge is in the protect position. This mode is queryable only,
and it is not alterable through device driver functions.

Note: Only IBM 359x and Magstar MP 3570 Tape Subsystem recognize
the following values.

v WORM_PROTECT
The tape is logically write protected in WORM mode. When the tape is
protected in this mode, it is permanently write-protected. The only
method to return the tape to a writable state is to format the cartridge,
erasing all data.

v PERS_PROTECT
The tape is logically write protected in PERSISTENT mode. A tape that
is protected in this mode is write-protected for all uses (across mounts).
This logical write protection mode can be reset by using the
NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write protected in ASSOCIATED mode. A tape that
is protected in this mode in write protected only while it is associated
with a tape drive (mounted). When the tape is unloaded from the drive,
the associated write protection is reset. This logical write protection
mode can also be reset by using the NO_PROTECT value.

ACFMODE
Automatic Cartridge Facility mode.

This configuration parameter is read-only. ACF modes can be established
only through the tape drive operator panel. The device driver can query
only the ACF mode; it cannot change it. The ACFMODE parameter applies
only to the IBM 3590 Tape System and the IBM Magstar MP 3570 Tape
Subsystem. The following values are recognized:
v NO_ACF

There is no ACF attached to the tape drive.
v SYSTEM_MODE

The ACF is in the system mode. This mode allows explicit load and
unloads to be issued through the device driver. An unload or offline
command causes the tape drive to unload the cartridge and the ACF to
replace the cartridge in its original magazine slot. A subsequent load
command causes the ACF to load the cartridge from the next sequential
magazine slot into the drive.

v RANDOM_MODE
The ACF is in the random mode. This mode provides random access to
all of the cartridges in the magazine. The ACF operates as a standard
SCSI medium changer device.

v MANUAL_MODE
The ACF is in the manual mode. This mode does not allow ACF control
through the device driver. Cartridge load and unload operations can be
run only through the tape drive operator panel. Cartridges are imported
and exported through the priority slot.

v ACCUM_MODE
The ACF is in the accumulate mode. This mode is similar to the manual
mode. However, rather than cartridges that are exported through the
priority slot, they are put away in the next available magazine slot.

Chapter 5. Solaris tape and medium changer device driver 251

v AUTO_MODE
The ACF is in the automatic mode. This mode causes cartridges to be
accessed sequentially under ACF control. When a tape finishes
processing, it is put back in its magazine slot. Then, the next tape is
loaded without an explicit unload and load command from the host.

v LIB_MODE
The ACF is in the library mode. This mode is available only if the tape
drive is installed in an automated tape library that supports the ACF
(3495).

SCALING
Capacity Scaling.

This configuration parameter returns the capacity or logical length or the
currently mounted tape. The SCALING parameter is not supported on the
IBM 3490E Magnetic Tape Subsystem, nor in VTS drives. The following
values are recognized.
v SCALE_100

The current tape capacity is 100%.
v SCALE_75

The current tape capacity is 75%.
v SCALE_50

The current tape capacity is 50%.
v SCALE_25

The current tape capacity is 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

SILI Suppress Illegal Length Indication.

If this mode is enabled, and a larger block of data is requested than is read
from the tape block, the tape device suppresses raising a check condition.
This action eliminates error processing that is normally run by the device
driver and results in improved read performance for some situations.

DATASAFE
Data safe mode.

This parameter queries the current drive setting for data safe
(append-only) mode. Or, on a set operation changes the current data safe
mode setting on the drive. On a set operation a parameter value of zero
sets the drive to normal (non-data safe) mode. A value of 1 sets the drive
to data safe mode.

PEW_SIZE
Programmable early warning zone.

Using the tape parameter, the application is allowed to request the tape
drive to create a zone that is called the programmable early warning zone
(PEWZ) in the front of Early Warning (EW).

When a WRITE or WRITE FILE MARK (WFM) command writes a data or
filemark upon reaching the PEWZ, a check condition status arises
associated with a sense data with EOM and PROGRAMMABLE EARLY
WARNING DETECTED. The WRITE or WFM commands in PEWZ is
completed with a good status.

252 IBM Tape Device Drivers: Programming Reference

For the application developers, two methods are used to determine PEWZ
when the errno is set to ENOSPC for WRITE or WRITE FILE MARK command,
since ENOSPC is returned for either EW or PEW.
v Method 1: Issue the Request Sense IOCTL, check the sense key and

ASC-ASCQ, and if it is 0x0/0x0007 (PROGRAMMABLE EARLY
WARNING DETECTED), the tape is in PEW. If the sense key ASC-ASCQ
is 0x0/0x0000 or 0x0/0x0002, the tape is in EW.

v Method 2: Call Read Position IOCTL in long or extended form and
check BPEW and EOP bits. If bpew = 1 and eop = 0, the tape is in PEW.
If bpew = 1 and eop = 1, the tape is in EW.

The IBMtape driver requests the tape drive to save the mode page
indefinitely. The PEW size is modified in the drive until a new setup is
requested from the driver or application. The application must be
programmed to issue the Set IOCTL to zero when PEW support is no
longer needed, as the IBMtape drivers does not run this function. PEW is a
setting of the drive and not tape. Therefore, it is the same on each
partition, should partitions exist.

Encountering the PEWZ does not cause the device server to run a
synchronize operation or terminate the command. It means that the data or
filemark is written in the cartridge when a check condition with
PROGRAMMABLE EARLY WARNING DETECTED is returned. But,
IBMtape driver still returns the counter to less than zero (-1) for a write
command or a failure for Write FileMark IOCTL call with ENOSPC error.
In this way, it forces the application to use one of the methods to check
PEW or EW. Once the application determines ENOSPC comes from PEW, it
reads the requested write data or filemark that is written into the cartridge
and reach or pass the PEW point. The application can issue a Read
position IOCTL to validate the tape position.

An example of the STIOC_GET_PARM command is
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;

if (!(ioctl (dev_fd, STIOC_GET_PARM, &parm_data))) {
printf ("The STIOC_GET_PARM ioctl succeeded.\n");
printf ("\nThe parameter data is:\n");
dump_bytes ((char *)&parm_data.value, sizeof (int));

}

else {
perror ("The STIOC_GET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_SET_PARM

This command sets the current value of the working parameter for the specified
tape drive. This command is used with the STIOC_GET_PARM command.

The default values of most of these parameters, in effect when a tape drive is first
opened, are determined by the values in the IBMtape.conf configuration file in the
/usr/kernel/drv directory. Changing the working parameters dynamically through
this STIOC_SET_PARM command affects the tape drive only during the current open
session. The working parameters revert to the defaults when the tape drive is
closed and reopened.

Chapter 5. Solaris tape and medium changer device driver 253

Note: The COMPRESSION, WRITEPROTECT, ACFMODE, and SCALING parameters are not
supported in the IBMtape.conf configuration file. The default value for
compression mode is established through the specific special file that is used to
open the device. The default value of the ACF mode is established by the mode
that the ACF is in at the time the device is opened. The default write protect and
scaling modes are established through the presently mounted cartridge.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar type; /* type of parameter to get or set */
uint value; /* current or new value of parameter */

} parm_data_t;

The value field specifies the new value of the specified parameter, within the
ranges that are indicated for the specific type.

The type field, which is filled out by the caller, can be set to one of the following
values.

BLOCKSIZE
Block Size (0-2097152 [2 MB]/Maximum dma size).

A value of zero indicates variable block size. Only the IBM 359x Tape
System supports 2 MB maximum block size or maximum dma transfer size
that is supported by the host adapter if it is larger than 2 MB. All other
devices support 256 KB maximum block size.

COMPRESSION
Compression Mode (0 or 1).

If this mode is enabled, data is compressed by the tape device before it is
stored on tape.

BUFFERING
Buffering Mode (0 or 1).

If this mode is enabled, data is stored in hardware buffers in the tape
device and not immediately committed to tape, thus increasing data
throughput performance.

IMMEDIATE
Immediate Mode.
v NO_IMMEDIATE (0)

If IMMEDIATE is set to zero, SCSI commands that support the
immediate bit in the CDB run to completion before status is returned.

v GEN_IMMEDIATE (1)
If IMMEDIATE is set to GEN_IMMEDIATE, the SCSI commands Write
FM, Locate, Load-Unload, Erase, and Rewind return with status before the
command completes on the tape drive.

v REW_IMMEDIATE (2)
If IMMEDIATE is set to REW_IMMEDIATE, the SCSI rewind command
returns with status before the command actually completes on the tape
drive.

TRAILER
Trailer Label Mode (0 or 1).

This mode affects write behavior after logical end of medium (LEOM) is
reached. See “Writing to a special file” on page 296 for information about

254 IBM Tape Device Drivers: Programming Reference

write operations that approach LEOM. With trailer label processing
disabled (TRAILER = 0), writing past logical end of medium (LEOM) is not
allowed. After LEOM is reached, all further writes fail, returning -1, with
the errno system variable set to ENOSPC (no space that is left on device).
With trailer label processing enabled (TRAILER = 1), writing past logical
end of medium (LEOM) is allowed. After LEOM is reached, all subsequent
writes succeed until physical end of medium (PEOM) is reached. Write
requests for multiple fixed blocks can encounter short writes. See “Writing
to a special file” on page 296 for information about short writes. After
PEOM is reached, all further writes fail, returning -1, with the errno system
variable set to ENOSPC (no space that is left on device).

An application that uses the trailer label processing option stops normal
data writing when LEOM is reached, and runs end of volume processing.
Such processing typically consists of writing a final data record, a filemark,
and a trailing tape label. Finally, two more filemarks are run to indicate
end of data (EOD).

WRITEPROTECT
Write-Protect Mode.

This configuration parameter establishes the current write protection status
of the mounted cartridge. The WRITEPROTECT parameter applies only to the
IBM 359x Tape System and the IBM Magstar MP 3570 Tape Subsystem. The
following values are recognized.
v NO_PROTECT

The tape is not physically or logically write-protected. Operations that
alter the contents of the media are permitted. Setting the tape to this
value resets the PERSISTENT and ASSOCIATED logical write
protection modes. It does not reset the WORM logical or the PHYSICAL
write protection modes.

v WORM_PROTECT
The tape is logically write-protected in WORM mode. When the tape is
protected in this mode, it is permanently write-protected. The only
method to return the tape to a writable state is to format the cartridge,
erasing all data.

v PERS_PROTECT
The tape is logically write-protected in PERSISTENT mode. A tape that
is protected in this mode is write protected for all uses (across mounts).
This logical write protection mode can be reset by using the
NO_PROTECT value.

v ASSC_PROTECT
The tape is logically write-protected in ASSOCIATED mode. A tape that
is protected in this mode in write-protected only while it is associated
with a tape drive (mounted). When the tape is unloaded from the drive,
the associated write protection is reset. This logical write protection
mode can also be reset by using the NO_PROTECT value.

v PHYS_PROTECT
The tape is physically write-protected. The write-protect switch on the
tape cartridge is in the protect position. This mode is not alterable
through device driver functions.

ACFMODE
Automatic Cartridge Facility Mode.

Chapter 5. Solaris tape and medium changer device driver 255

This configuration parameter is read-only. ACF modes can be established
only through the tape drive operator panel. This type value is not
supported by the STIOC_SET_PARM IOCTL.

SCALING
Capacity Scaling.

This configuration parameter sets the capacity or logical length or the
currently mounted tape. The tape must be at BOT to change this value.
Changing the scaling value destroys all existing data on the tape. The
SCALING parameter is not supported on the IBM 3490E Magnetic Tape
Subsystem or VTS drives. The following values are recognized.
v SCALE_100

Sets the tape capacity to 100%.
v SCALE_75

Sets the tape capacity to 75%.
v SCALE_50

Sets the tape capacity to 50%.
v SCALE_25

Sets the tape capacity to 25%.
v Other values (0x00 - 0xFF)

For 3592 tape drive only.

SILI Suppress Illegal Length Indication.

If this mode is enabled, and a larger block of data is requested than is read
from the tape block, the tape device suppresses raising a check condition.
This action eliminates error processing that is normally run by the device
driver. It results in improved read performance for some situations.

DATASAFE
Data safe mode.

This parameter queries the current drive setting for data safe
(append-only) mode. Or,on a set operation it changes the current data safe
mode setting on the drive. On a set operation, a parameter value of zero
sets the drive to normal (non-data safe) mode. A value of 1 sets the drive
to data safe mode.

PEW_SIZE
Programmable early warning zone.

Using the tape parameter, the application is allowed to request the tape
drive to create a zone that is called the programmable early warning zone
(PEWZ) in the front of Early Warning (EW).

When a WRITE or WRITE FILE MARK (WFM) command writes a data or
filemark upon reaching the PEWZ, a check condition status arises
associated with a sense data with EOM and PROGRAMMABLE EARLY
WARNING DETECTED. The WRITE or WRITE FILE MARK commands in
PEWZ are completed with a good status.

For the application developers.
1. Two methods are used to determine PEWZ when the errno is set to

ENOSPC for WRITE or WRITE FILE MARK command, since ENOSPC is
returned for either EW or PEW.
v Method 1: Issue the Request Sense IOCTL, check the sense key and

ASC-ASCQ, and if it is 0x0/0x0007 (PROGRAMMABLE EARLY

256 IBM Tape Device Drivers: Programming Reference

WARNING DETECTED), the tape is in PEW. If the sense key
ASC-ASCQ is 0x0/0x0000 or 0x0/0x0002, the tape is in EW.

v Method 2: Call Read Position IOCTL in long or extended form and
check bpew and eop bits. If bpew = 1 and eop = 0, the tape is in
PEW. If bpew = 1 and eop = 1, the tape is in EW.

The IBMtape driver requests the tape drive to save the mode page
indefinitely. The PEW size is modified in the drive until a new setup is
requested from the driver or application. The application must be
programmed to issue the Set IOCTL to zero when PEW support is no
longer needed. The IBMtape drivers do not run this function. PEW is a
setting of the drive and not tape. Therefore, it is the same on each
partition, should partitions exist.

2. Encountering the PEWZ does not cause the device server to run a
synchronize operation or terminate the command. It means that the
data or filemark is written in the cartridge when a check condition with
PROGRAMMABLE EARLY WARNING DETECTED is returned. But,
the IBMtape driver still returns the counter to less than zero (-1) for a
write command or a failure for Write FileMark IOCTL call with
ENOSPC error. In this way, it forces the application to use one of the
previous methods to check PEW or EW. Once the application
determines ENOSPC comes from PEW, it reads the requested write
data or filemark that is written into the cartridge and reaches or passes
the PEW point. The application can issue a Read position IOCTL to
validate the tape position.

An example of the STIOC_SET_PARM command is
#include <sys/st.h>

parm_data_t parm_data;
parm_data.type = type;
parm_data.value = value;

if (!(ioctl (dev_fd, STIOC_SET_PARM, &parm_data))) {
printf ("The STIOC_SET_PARM ioctl succeeded.\n");

}

else {
perror ("The STIOC_SET_PARM ioctl failed");
scsi_request_sense ();

}

STIOC_DISPLAY_MSG

This command displays and manipulates one or two messages on the tape drive
operator panel.

The message that is sent by using this call does not always remain on the display.
It depends on the current drive activity.

Note: All messages must be padded to MSGLEN bytes (8). Otherwise, garbage
characters (meaningless data) can be displayed in the message.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar function; /* message function code */
char msg_0[MSGLEN]; /* message 0 */
char msg_1[MSGLEN]; /* message 1 */

} msg_data_t;

Chapter 5. Solaris tape and medium changer device driver 257

The function field, which is filled out by the caller, is set by combining (by using
logical OR) a Message Type flag and a Message Control Flag.

Message Type Flags

GENSTATUS (General Status Message)
Message 0, Message 1, or both are displayed according to the Message
Control flag, until the drive next initiates tape motion or the message is
updated with a new message.

DMNTVERIFY (Demount/Verify Message)
Message 0, Message 1, or both are displayed according to the Message
Control flag, until the current volume is unloaded. If the volume is
unloaded, the message display is not changed and the command completes
no operation.

MNTIMMED (Mount with Immediate Action Indicator)
Message 0, Message 1, or both are displayed according to the Message
Control flag, until the volume is loaded. An attention indicator is
activated. If the volume is loaded, the message display is not changed and
the command completes no operation.

DMNTIMMED (Demount/Mount with Immediate Action Indicator)
When the Message Control flag is set to a value of ALTERNATE, Message
0 and Message 1 are displayed alternately until the currently mounted
volume, if any, is unloaded. When the Message Control flag is set to any
other value, Message 0 is displayed until the currently mounted volume, if
any, is unloaded. Message 1 is displayed from the time the volume is
unloaded (or immediately, if the volume is already unloaded) until another
volume is loaded. An attention indicator is activated.

Message Control Flags

DISPMSG0
Display message 0.

DISPMSG1
Display message 1.

FLASHMSG0
Flash message 0.

FLASHMSG1
Flash message 1.

ALTERNATE
Alternate flashing message 0 and message 1.

An example of the STIOC_DISPLAY_MSG command is
#include <sys/st.h>

msg_data_t msg_data;
msg_data.function = GENSTATUS | ALTERNATE;
memcpy (msg_data.msg_0, "Hello ", 8);
memcpy (msg_data.msg_1, "World!!!", 8);

if (!(ioctl (dev_fd, STIOC_DISPLAY_MSG, &msg_data))) {
printf ("The STIOC_DISPLAY_MSG ioctl succeeded.\n");

}

258 IBM Tape Device Drivers: Programming Reference

else {
perror ("The STIOC_DISPLAY_MSG ioctl failed");
scsi_request_sense ();

}

STIOC_SYNC_BUFFER

This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOC_SYNC_BUFFER command is
#include <sys/st.h>

if (!(ioctl (dev_fd, STIOC_SYNC_BUFFER, 0))) {
printf ("The STIOC_SYNC_BUFFER ioctl succeeded.\n");

}

else {
perror ("The STIOC_SYNC_BUFFER ioctl failed");
scsi_request_sense ();

}

STIOC_REPORT_DENSITY_SUPPORT

This IOCTL command issues the SCSI Report Density Support command to the
tape device and returns either all supported densities or supported densities for
the currently mounted media. The media field specifies which type of report is
requested. The number_reports field is returned by the device driver and indicates
how many density reports in the reports array field were returned.

The data structures that are used with this IOCTL are
typedef struct density_report
{

uchar primary_density_code; /* primary density code */
uchar secondary_density_code; /* secondary density code */
uchar wrtok : 1, /* write ok, device can write this format */

dup : 1, /* zero if density only reported once */
deflt : 1, /* current density is default format */
res_1 : 5; /* reserved */

uchar reserved1[2]; /* reserved */
uchar bits_per_mm[3]; /* bits per mm */
uchar media_width[2]; /* media width in millimeters */
uchar tracks[2]; /* tracks */
uchar capacity[4]; /* capacity in megabytes */
char assigning_org[8]; /* assigning organization in ASCII */
char density_name[8]; /* density name in ASCII */
char description[20]; /* description in ASCII */

} density_report_t;

typedef struct report_density_support
{

uchar media; /* report all or current media as defined above */
uchar number_reports; /* number of density reports returned in array */
struct density_report reports[MAX_DENSITY_REPORTS];

} rpt_dens_sup_t;

Examples of the STIOC_REPORT_DENSITY_SUPPORT command are
/*---*/
/* Name: st_report_density_support */
/* Synopsis: Report the supported densities for the device. */

Chapter 5. Solaris tape and medium changer device driver 259

/* Returns: Error code from /usr/include/sys/errno.h. */
/*---*/
static int st_report_density_support ()
{

int rc;
int i;
rpt_dens_sup_t density;

int bits_per_mm = 0;
int media_width = 0;
int tracks = 0;
int capacity = 0;

printf("Issuing Report Density Support for ALL supported media...\n");

density.media = ALL_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total densities reported: %d\n",density.number_reports);

}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = (int)density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= (int)density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= (int)density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else
printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

260 IBM Tape Device Drivers: Programming Reference

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <ENTER> to continue...");
getchar ();

}

} /* end for all media density*/

printf("\nIssuing Report Density Support for CURRENT media...\n");

density.media = CURRENT_MEDIA_DENSITY;
density.number_reports = 0;

if (!(rc = ioctl (dev_fd, STIOC_REPORT_DENSITY_SUPPORT, &density))) {
printf ("STIOC_REPORT_DENSITY_SUPPORT succeeded.\n");
printf("Total number of densities reported: %d\n",

density.number_reports);
}
else {

perror ("STIOC_REPORT_DENSITY_SUPPORT failed");
printf ("\n");
scsi_request_sense ();

}

for (i = 0; i < density.number_reports; i++)
{

bits_per_mm = density.reports[i].bits_per_mm[0] << 16;
bits_per_mm |= density.reports[i].bits_per_mm[1] << 8;
bits_per_mm |= density.reports[i].bits_per_mm[2];

media_width |= density.reports[i].media_width[0] << 8;
media_width |= density.reports[i].media_width[1];

tracks |= density.reports[i].tracks[0] << 8;
tracks |= density.reports[i].tracks[1];

capacity = density.reports[i].capacity[0] << 24;
capacity |= density.reports[i].capacity[1] << 16;
capacity |= density.reports[i].capacity[2] << 8;
capacity |= density.reports[i].capacity[3];

printf("\n");
printf(" Density Name................. %0.8s\n",

density.reports[i].density_name);
printf(" Assigning Organization....... %0.8s\n",

density.reports[i].assigning_org);
printf(" Description.................. %0.20s\n",

density.reports[i].description);
printf(" Primary Density Code......... %02X\n",

density.reports[i].primary_density_code);
printf(" Secondary Density Code....... %02X\n",

density.reports[i].secondary_density_code);

if (density.reports[i].wrtok)
printf(" Write OK..................... Yes\n");
else

Chapter 5. Solaris tape and medium changer device driver 261

printf(" Write OK..................... No\n");

if (density.reports[i].dup)
printf(" Duplicate.................... Yes\n");
else
printf(" Duplicate.................... No\n");

if (density.reports[i].deflt)
printf(" Default...................... Yes\n");
else
printf(" Default...................... No\n");

printf(" Bits per MM.................. %d\n",bits_per_mm);
printf(" Media Width.................. %d\n",media_width);
printf(" Tracks....................... %d\n",tracks);
printf(" Capacity (megabytes)......... %d\n",capacity);

if (interactive) {
printf ("\nHit <ENTER> to continue...");
getchar ();

}
}

return (rc);
}

STIOC_GET_DENSITY

STIOC_GET_DENSITY is used to query the current write density format settings on
the tape drive for 3592 E05 or later model drive only.

The STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with each other.

Following is the structure for the STIOC_GET_DENSITY and STIOC_SET_DENSITY
IOCTLs.
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

The density_code field returns the current density of the tape that is loaded in the
tape drive from the block descriptor of Mode sense. The default_density field
returns the default write density in Mode sense (Read/Write Control). The
pending_density field returns the pending write density in Mode sense
(Read/Write Control). An example of the STIOC_SET_DENSITY command is
#include <sys/st.h>
density_data_t density_data;

if (!(ioctl (dev_fd, STIOC_GET_DENSITY, &density_data)))
{

printf ("The STIOC_GET_DENSITY ioctl succeeded.\n");
}
else
{

perror ("The STIOC_GET_DENSITY ioctl failed");
scsi_request_sense ();

}

262 IBM Tape Device Drivers: Programming Reference

STIOC_SET_DENSITY

STIOC_SET_DENSITY is used to set a new write density format on the tape drive by
using the default and pending density fields in 3592 E05 or later model drive only.
For example, this command is used if the user wants to write the data to the tape
in 3592 J1A format (0x51) in 3592 E05 drive, not in the default 3592 E05 format
(0x52). The application can specify a new write density for the current loaded tape
only or as a default for all tapes. Refer to the examples.

The STIOC_GET_POSITION and STIOC_SET_POSITION commands can be used
independently or with each other. The application gets the current density settings
first before the current settings are modified. If the application specifies a new
density for the current loaded tape only, then the application must issue another
set density IOCTL after the current tape is unloaded and the next tape is loaded to
either the default maximum density or a new density to ensure the tape drive uses
the correct density. If the application specifies a new default density for all tapes,
the setting remains in effect until changed by another set density IOCTL or the
tape drive is closed by the application.

Following is the structure for the STIOC_GET_DENSITY and STIOC_SET_DENSITY
IOCTLs.
struct density_data_t
{

char density_code; /* mode sense header density code */
char default_density; /* default write density */
char pending_density; /* pending write density */
char reserved[9];

};

Note:

1. These IOCTLs are supported only on tape drives that can write multiple
density formats. Refer to the hardware reference for the specific tape drive to
determine whether multiple write densities are supported. If the tape drive
does not support these IOCTLs, errno EINVAL is returned.

2. The device driver always sets the default maximum write density for the tape
drive on every open system call. Any previous STIOC_SET_DENSITY IOCTL
values from the last open are not used.

3. If the tape drive detects an invalid density code or cannot complete the
operation on the STIOC_SET_DENSITY IOCTL, the errno is returned and the
current drive density settings before the IOCTL is restored.

4. The struct density_data_t defined in the header file of st.h is used for both
IOCTLs. The density_code field is not used and ignored on the
STIOC_SET_DENSITY IOCTL.

5. A new write density is allowed only when positioned at BOP (logical block 0),
and is ignored at any other location in the tape drive. The new density is
applied on the next write-type operation (Write, Write Filemarks (>0), Erase,
Format Medium, and so on). It is not reported in the STIOC_GET_DENSITY IOCTL
density_code field before the format is completed.

Here are study cases on how to set the default write density and pending write
density for a new write density before the IOCTL is issued.
struct density_data_t density_data;

Case 1: Set 3592 J1A density format for current loaded tape only.

Chapter 5. Solaris tape and medium changer device driver 263

density_data.default_density = 0x7F;
density_data.pending_density = 0x51;

Case 2: Set 3592 E05 density format for current loaded tape only.
density_data.default_density = 0x7F;
density_data.pending_density = 0x52;

Case 3: Set default maximum density for current loaded tape.
density_data.default_density = 0;
density_data.pending_density = 0;

Case 4: Set 3592 J1A density format for current loaded tape and all subsequent
tapes.
density_data.default_density = 0x51;
density_data.pending_density = 0x51;

An example of the STIOC_SET_DENSITY command is
#include <sys/st.h>
density_data_t density_data;

/* set 3592 J1A density format (0x51) for current loaded tape only */
density_data.default_density = 0x7F;
density_data.pending_density = 0x51;

if (!(ioctl (dev_fd, STIOC_SET_DENSITY, &density_data)))
{

printf ("The STIOC_SET_DENSITY ioctl succeeded.\n");
}
else
{

perror ("The STIOC_SET_DENSITY ioctl failed");
scsi_request_sense ();

}

GET_ENCRYPTION_STATE

This IOCTL command queries the drive's encryption method and state.

The data structure that is used for this IOCTL is as follows on all of the supported
operating systems.
struct encryption_status {

uchar encryption_capable; /* Set this field as a boolean based on the
capability of the drive */

uchar encryption_method; /* Set this field to one of the
defines below */

#define METHOD_NONE 0 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_LIBRARY 1 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_SYSTEM 2 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_APPLICATION 3 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_CUSTOM 4 /* Only used in
GET_ENCRYPTION_STATE */

#define METHOD_UNKNOWN 5 /* Only used in
GET_ENCRYPTION_STATE */

uchar encryption_state; /* Set this field to one of the
defines below */

#define STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */

264 IBM Tape Device Drivers: Programming Reference

#define STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define STATE_NA 2 /* Used in GET_ENCRYPTION_STATE */

uchar reserved[13];
};

An example of the GET_ENCRYPTION_STATE command is
int qry_encryption_state (void) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl (fd, GET_ENCRYPTION_STATE, &encryption_status_t);

if(rc == 0) {
if(encryption_status_t.encryption_capable)

printf("encryption capable......Yes\n");
else

printf("encryption capable......No\n");
switch(encryption_status_t.encryption_method) {

case METHOD_NONE:
printf("encryption method.......METHOD_NONE\n");
break;

case METHOD_LIBRARY:
printf("encryption method.......METHOD_LIBRARY\n");
break;

case METHOD_SYSTEM:
printf("encryption method.......METHOD_SYSTEM\n");
break;

case METHOD_APPLICATION:
printf("encryption method.......METHOD_APPLICATION\n");
break;

case METHOD_CUSTOM:
printf("encryption method.......METHOD_CUSTOM\n");
break;

case METHOD_UNKNOWN:
printf("encryption method.......METHOD_UNKNOWN\n");
break;

default:
printf("encryption method.......Error\n");

}

switch(encryption_status_t.encryption_state) {
case STATE_OFF:

printf("encryption state........OFF\n");
break;

case STATE_ON:
printf("encryption state........ON\n");
break;

case STATE_NA:
printf("encryption state........NA\n");
break;

default:
printf("encryption state......Error\n");

}
}

return rc;
}

Chapter 5. Solaris tape and medium changer device driver 265

SET_ENCRYPTION_STATE

This IOCTL command allows setting the encryption state only for
application-managed encryption. On unload, some of the drive settings might be
reset to default. To set the encryption state, the application issues this IOCTL after
a tape is loaded and at BOP.

The data structure that is used for this IOCTL is the same as the one for
GET_ENCRYPTION_STATE.

An example of the SET_ENCRYPTION_STATE command is
int set_encryption_status(int option) {

int rc = 0;
struct encryption_status encryption_status_t;

printf("issuing query encryption status...\n");
memset(&encryption_status_t, 0, sizeof(struct encryption_status));
rc = ioctl(fd, GET_ENCRYPTION_STATE, &encryption_status_t);
if(rc < 0) return rc;
if(option == 0)

encryption_status_t.encryption_state = STATE_OFF;
else if(option == 1)

encryption_status_t.encryption_state = STATE_ON;
else {

printf("Invalid parameter.\n");
return (EINVAL);

}

printf("Issuing set encryption status......\n");
rc = ioctl(fd, SET_ENCRYPTION_STATE, &encryption_status_t);

return rc;
}

SET_DATA_KEY

This IOCTL command allows setting the data key only for application-managed
encryption.

The data structure that is used for this IOCTL is as follows on all of the supported
operating systems.
struct data_key {

uchar data_key_index[12]; /* The DKi */
uchar data_key_index_length; /* The DKi length */
uchar reserved1[15];
uchar data_key[32]; /* The DK */
uchar reserved2[48];

};

An example of the SET_DATA_KEY command is
int set_datakey(void) {

int rc = 0;
struct data_key encryption_data_key_t;

printf("Issuing set encryption data key......\n");
memset(&encryption_status_t, 0, sizeof(struct data_key));

/* fill in your data key here, then issue the following ioctl*/
rc = ioctl(fd, SET_DATA_KEY, &encryption_status_t);
return rc;

}

266 IBM Tape Device Drivers: Programming Reference

QUERY_PARTITION

The QUERY_PARTITION IOCTL is used to return partition information for the tape
drive and the current media in the tape drive, including the current active partition
the tape drive is using for the media. The number_of partitions field is the current
number of partitions on the media and the max_partitions is the maximum
partitions that the tape drive supports. The size_unit field can be either one of the
defined values or another value such as 8. It is used with the size array field value
for each partition to specify the actual size partition sizes. The partition_method
field is either Wrap-wise Partitioning or Longitudinal Partitioning. Refer to
“CREATE_PARTITION” on page 268 for details.

The data structure that is used with this IOCTL is
The define for “partition_method”:
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning without RABF */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */ */

The define for “size_unit”:
define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

struct query_partition {
uchar max_partitions; /* Max number of supported partitions */
uchar active_partition; /* current active partition on tape */
uchar number_of_partitions; /* Number of partitions from 1 to max */
uchar size_unit; /* Size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type */

char reserved [31];
};

Example of the QUERY_PARTITION IOCTL
#include<sys/st.h>

int rc,i;
struct query_partition q_partition;

memset((char *)&q_partition, 0, sizeof(struct query_partition));
rc = ioctl(dev_fd, QUERY_PARTITION, &q_partition);
if(!rc)
{

printf("QUERY PARTITION ioctl succeed\n");
printf(" Partition Method = %d\n",q_partition.partition_method);
printf("Max partitions = %d\n",q_partition.max_partitions);
printf("Number of partitions = %d\n",q_partition.number_of_partitions);
for(i=0;i<q partition.number of partitions;i++)
{

printf("Size of Partition # %d = %d ",i,q_partition.size[i]);
switch(q_partition.size_unit)
{

case SIZE_UNIT_BYTES:
printf(" Bytes\n");

break;
case SIZE_UNIT_KBYTES:

printf(" KBytes\n");
break;
case SIZE_UNIT_MBYTES:

Chapter 5. Solaris tape and medium changer device driver 267

printf(" MBytes\n");
break;
case SIZE_UNIT_GBYTES:

printf(" GBytes\n");
break;
case SIZE_UNIT_TBYTES:

printf(" TBytes\n");
break;
default:

printf("Size unit 0x%d\n",q_partition.size_unit);
}

}
printf("Current active partition = %d\n",q_partition.active_partition);

} else {
printf("QUERY PARTITION ioctl failed\n");

}

return rc;

CREATE_PARTITION

The CREATE_PARTITION IOCTL is used to format the current media in the tape drive
into 1 or more partitions. The number of partitions to create is specified in the
number_of_partitions field. When more than one partition is created, the type
field specifies the type of partitioning, either FDP, SDP, or IDP. The tape must be
positioned at the beginning of tape (partition 0 logical block id 0) before this
IOCTL is used.

If the number_of_partitions field to create in the IOCTL structure is one partition,
all other fields are ignored and not used. The tape drive formats the media by
using its default partitioning type and size for a single partition.

When the type field in the IOCTL structure is set to either FDP or SDP, the
size_unit and size fields in the IOCTL structure are not used. When the type field
in the IOCTL structure is set to IDP, the size_unit with the size fields are used to
specify the size for each partition.

There are two partition types: Wrap-wise Partitioning (Figure 10 on page 269)
optimized for streaming performance, and Longitudinal Partitioning (Figure 11 on
page 269) optimized for random access performance. Media is always partitioned
into 1 by default or more than one partition where the data partition always exists
as partition 0 and other extra index partition 1 to n might exist.

A WORM media cannot be partitioned and the Format Medium commands are
rejected. Attempts to scale a partitioned media is accepted. However, only if you
use the correct FORMAT field setting, as part of scaling the volume is set to a
single data partition cartridge.

268 IBM Tape Device Drivers: Programming Reference

The following chart lists the maximum number of partitions that the tape drive
supports.

Table 5. Number of supported partitions

Drive type Maximum number of supported partitions

LTO 5 (TS2250 and TS2350) and later 2 in Wrap-wise Partitioning

3592 E07 (TS 1140) 4 in Wrap-wise Partitioning

2 in Longitudinal Partitioning

The data structure that is used with this IOCTL is
The define for "partition_method":
#define UNKNOWN_TYPE 0 /* vendor-specific or unknown */
#define WRAP_WISE_PARTITION 1 /* Wrap-wise Partitioning without RABF */
#define LONGITUDINAL_PARTITION 2 /* Longitudinal Partitioning */
#define WRAP_WISE_PARTITION_WITH_FASTSYNC 3 /* Wrap-wise Partitioning with RABF */

The define for “type”:
#define IDP_PARTITION 1 /* Initiator Defined Partition type */
#define SDP_PARTITION 2 /* Select Data Partition type */
#define FDP_PARTITION 3 /* Fixed Data Partition type */

The define for “size_unit”:
#define SIZE_UNIT_BYTES 0 /* Bytes */
#define SIZE_UNIT_KBYTES 3 /* Kilobytes */
#define SIZE_UNIT_MBYTES 6 /* Megabytes */
#define SIZE_UNIT_GBYTES 9 /* Gigabytes */
#define SIZE_UNIT_TBYTES 12 /* Terabytes */

Partition 0

Partition 1

Partition 2

Partition 3

Guard wraps

a
2
5
0
0
2
8
3

Figure 10. Wrap-wise partitioning

Partition 1Partition 0

a
2
5
0
0
2
8
4

Guard gap

Figure 11. Longitudinal partitioning

Chapter 5. Solaris tape and medium changer device driver 269

struct tape_partition {
uchar type; /* Type of tape partition to create */
uchar number_of_partitions; /* Number of partitions to create */
uchar size_unit; /* IDP size unit of partition sizes below */
ushort size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
uchar partition_method; /* partitioning type */
char reserved [31];
};

Examples of the CREATE_PARTITION IOCTL.
#include<sys/st.h>

struct tape_partition partition;

/* create 2 SDP partitions for LTO-5 */
partition.type = SDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 2 IDP partitions with partition 1 for 37 gigabytes and
partition 0 for the remaining capacity on LTO-5*/
partition.type = IDP_PARTITION;
partition.number_of_partitions = 2;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = SIZE_UNIT_GBYTES;
partition.size[0] = 0xFFFF;
partition.size[1] = 37;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* format the tape into 1 partition */
partition.number_of_partitions = 1;
ioctl(dev_fd, CREATE_PARTITION, &partition);

/* create 4 IDP partitions on 3592 JC volume in Wrap-wise partitioning with
partition 0 and 2 for 94.11 gigabytes (minimum size) and partition 1 and 3 to use
the remaining capacity equally around 1.5 TB on 3592 E07 */
partition.type = IDP_PARTITION;
partition.number_of_partitions = 4;
partition.partition_method = WRAP_WISE_PARTITION;
partition.size_unit = 8; /* 100 megabytes */
partition.size[0] = 0x03AD;
partition.size[1] = 0xFFFF;
partition.size[2] = 0x03AD;
partition.size[3] = 0x3AD2;
ioctl(dev_fd, CREATE_PARTITION, &partition);

SET_ACTIVE_PARTITION

The SET_ACTIVE_PARTITION IOCTL is used to position the tape to a specific
partition. This partition becomes the current active partition for subsequent
commands and a specific logical block id in the partition. To position to the
beginning of the partition, the logical_block_id field must be set to 0.

The data structure that is used with this IOCTL is
struct set_active_partition {

uchar partition_number; /* Partition number 0-n to change to */
ullong logical_block_id; /* Blockid to locate to within partition */
char reserved[32];
};

Examples of the SET_ACTIVE_PARTITION IOCTL.

270 IBM Tape Device Drivers: Programming Reference

#include<sys/st.h>

struct set_active_partition partition;

/* position the tape to partition 1 and logical block id 12 */
partition.partition_number = 1;
partition.logical_block_id = 12;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

/* position the tape to the beginning of partition 0 */
partition.partition_number = 0;
partition.logical_block_id = 0;
ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition);

ALLOW_DATA_OVERWRITE

The ALLOW_DATA_OVERWRITE IOCTL is used to set the drive to allow a subsequent
data write type command at the current position. Or, allow a CREATE_PARTITION
IOCTL when data safe (append-only) mode is enabled.

For a subsequent write type command, the allow_format_overwrite field must be
set to 0. The partition_number and logical_block_id fields must be set to the
current partition and position within the partition where the overwrite occurs.

For a subsequent CREATE_PARTITION IOCTL, the allow_format_overwrite field must
be set to 1. The partition_number and logical_block_id fields are not used.
However, the tape must be at the beginning of tape (partition 0 logical block id 0)
before the CREATE_PARTITION IOCTL is issued.

The data structure that is used with this IOCTL is
struct allow_data_overwrite{

uchar partition_number; /* Partition number 0-n to overwrite */
ullong logical_block_id; /* Blockid to overwrite to within partition */
uchar allow_format_overwrite; /* allow format if in data safe mode */
char reserved[32];
};

Examples of the ALLOW_DATA_OVERWRITE IOCTL.
#include<sys/st.h>

struct read_tape_position rpos;
struct allow_data_overwrite data_overwrite;
struct set_active_partition partition;

/* get current tape position for a subsequent write type command and */
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

retun errno;

/* set the allow_data_overwrite fields with the current position
for the next write type command */
data_overwrite.partition_number = rpos.rp_data.rp_long.active_partition;
data_overwrite.logical_block_id = rpos.rp_data.rp_long.logical_obj_number;
data_overwrite.allow_format_overwrite = 0;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

/* set the tape position to the beginning of tape and */
/* prepare a format overwrite for the CREATE_PARTITION ioctl */
partition.partition_number = 0;
partition.logical_block_id = 0;
if (ioctl(dev_fd, SET_ACTIVE_PARTITION, &partition;) <0)
return errno;

Chapter 5. Solaris tape and medium changer device driver 271

data_overwrite.allow_format_overwrite = 1;
ioctl (dev_fd, ALLOW_DATA_OVERWRITE, &data_overwrite);

READ_TAPE_POSITION

The READ_TAPE_POSITION IOCTL is used to return Read Position command data in
either the short, long, or extended form. The type of data to return is specified by
setting the data_format field to either RP_SHORT_FORM, RP_LONG_FORM, or
RP_EXTENDED_FORM.

The data structures that are used with this IOCTL are
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

struct short_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field

is unknown */
bycu:1, /* 1 means the num_buffer_bytes field

is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj

position fields are unknown */
perr: 1, /* 1 means the position fields have overflowed

and can not be reported */
bpew :1; /* beyond programmable early warning */

uchar active_partition; /* current active partition */
char reserved[2];
uint first_logical_obj_position;/* current logical object position */
uint last_logical_obj_position; /* next logical object to be transferred

to tape */
uint num_buffer_logical_obj; /* number of logical objects

in buffer */
uint num_buffer_bytes; /* number of bytes in buffer */
char reserved1;
};

struct long_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field

is unknown */
lonu:1, /* 1 means either the partition number

or logical obj number field are
unknown */

rsvd2:1,
bpew :1; /* beyond programmable early

warning */
char reserved[6];
uchar active_partition; /* current active partition */
ullong logical_obj_number; /* current logical object position */
ullong logical_file_id; /* number of filemarks from bop and

current logical position */
ullong obsolete;
};

struct extended_data_format {
uchar bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field

is unknown */

272 IBM Tape Device Drivers: Programming Reference

bycu:1, /* 1 means the num_buffer_bytes field
is unknown */

rsvd :1,
lolu:1, /* 1 means the first and last logical obj

position fields are unknown */
perr: 1, /* 1 means the position fields have overflowed

and can not be reported */
bpew :1; /* beyond programmable early warning*/

uchar active_partition; /* current active partition */
ushort additional_length;
uint num_buffer_logical_obj; /* number of logical objects in buffer */
ullong first_logical_obj_position;/* current logical object position */
ullong last_logical_obj_position; /* next logical object to be transferred

to tape */
ullong num_buffer_bytes; /* number of bytes in buffer */
char reserved;
};

struct read_tape_position{
uchar data_format; /* Specifies the return data format either short,
long or extended as defined above */
union
{
struct short_data_format rp_short;
struct long_data_format rp_long;
struct extended_data_format rp_extended;
char reserved[64];
} rp_data;

};

Example of the READ_TAPE_POSITION IOCTL.
#include<sys/st.h>

struct read_tape_position rpos;

printf("Reading tape position long form....\n");
rpos.data_format = RP_LONG_FORM;
if (ioctl (dev_fd, READ_TAPE_POSITION, &rpos) <0)

return errno;

if (rpos.rp_data.rp_long.bop)
printf(" Beginning of Partition Yes\n");

else
printf(" Beginning of Partition No\n");
if (rpos.rp_data.rp_long.eop)
printf(" End of Partition Yes\n");

else
printf(" End of Partition No\n");

if (rpos.rp_data.rp_long.bpew)
printf(" Beyond Early Warning Yes\n");

else
printf(" Beyond Early Warning No\n");

if (rpos.rp_data.rp_long.lonu
) {

printf(" Active Partition UNKNOWN \n");
printf(" Logical Object Number UNKNOWN \n");
}

else
{
printf(" Active Partition %u \n",

rpos.rp_data.rp_long.active_partition);
printf(" Logical Object Number %llu \n",

rpos.rp_data.rp_long.logical_obj_number);
}

Chapter 5. Solaris tape and medium changer device driver 273

if (rpos.rp_data.rp_long.mpu
) printf(" Logical File ID UNKNOWN \n");

else
printf(" Logical File ID %llu \n",

rpos.rp_data.rp_long.logical_file_id);

SET_TAPE_POSITION

The SET_TAPE_POSITION IOCTL is used to position the tape in the current active
partition to either a logical block id or logical filemark. The logical_id_type field in
the IOCTL structure specifies either a logical block or logical filemark.

The data structure that is used with this IOCTL is
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

struct set_tape_position{
uchar logical_id_type; /* Block or file as defined above */
ullong logical_id; /* logical object or logical file to position to */
char reserved[32];
};

Examples of the SET_TAPE_POSITION IOCTL.
#include<sys/st.h>

struct set_tape_position setpos;

/* position to logical block id 10 */
setpos.logical_id_type = LOGICAL_ID_BLOCK_TYPE
setpos.logical_id = 10;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

/* position to logical filemark 4 */
setpos.logical_id_type = LOGICAL_ID_FILE_TYPE
setpos.logical_id = 4;
ioctl(dev_fd, SET_TAPE_POSITION, &setpos);

QUERY_LOGICAL_BLOCK_PROTECTION

The IOCTL queries whether the drive can support this feature, what LBP method
is used, and where the protection information is included.

The lbp_capable field indicates whether the drive has logical block protection
(LBP) capability. The lbp_method field displays if LBP is enabled and what the
protection method is. The LBP information length is shown in the lbp_info_length
field. The fields of lbp_w, lbp_r, and rbdp present that the protection information
is included in write, read, or recover buffer data.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

274 IBM Tape Device Drivers: Programming Reference

uchar rbdp; /* protection info included in recover buffer data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

uchar reserved[26];
};

Examples of the QUERY_LOGICAL_BLOCK_PROTECTION IOCTL.
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Querying Logical Block Protection....\n");

if (rc=ioctl(dev_fd, QUERY_LOGICAL_BLOCK_PROTECTION, &lbp_protect))
return rc;

printf(" Logical Block Protection capable........ %d\n",lbp_protect.lbp_capable);
printf(" Logical Block Protection method.......... %d\n",lbp_protect.lbp_method);
printf(" Logical Block Protection Info Length... %d\n",lbp_protect.lbp_info_length);
printf(" Logical Block Protection for Write........ %d\n",lbp_protect.lbp_w);
printf(" Logical Block Protection for Read....... %d\n",lbp_protect.lbp_r);
printf(" Logical Block Protection for RBDP...... %d\n",lbp_protect.rbdp);

SET_LOGICAL_BLOCK_PROTECTION

The IOCTL enables or disables Logical Block Protection, sets up what method is
used, and where the protection information is included.

The lbp_capable field is ignored in this IOCTL by the IBMtape driver. If the
lbp_method field is 0 (LBP_DISABLE), all other fields are ignored and not used.
When the lbp_method field is set to a valid non-zero method, all other fields are
used to specify the setup for LBP.

The data structure that is used with this IOCTL is
struct logical_block_protection
{

uchar lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
uchar lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

uchar lbp_info_length;/* lbp info length for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_w; /* protection info included in write data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar lbp_r; /* protection info included in read data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar rbdp; /* protection info included in recover buffer data */

/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */
uchar reserved[26];

};

Examples of the SET_LOGICAL_BLOCK_PROTECTION IOCTL.
#include <sys/st.h>

int rc;
struct logical_block_protection lbp_protect;

printf("Setting Logical Block Protection....\n\n");

printf ("Enter Logical Block Protection method: ");
gets (buf);
lbp_protect.lbp_method= atoi(buf);
printf ("Enter Logical Block Protection Info Length: ");
gets (buf);

Chapter 5. Solaris tape and medium changer device driver 275

lbp_protect.lbp_info_length= atoi(buf);
printf ("Enter Logical Block Protection for Write: ");
gets (buf);
lbp_protect.lbp_w= atoi(buf);
printf ("Enter Logical Block Protection for Read: ");
gets (buf);
lbp_protect.lbp_r= atoi(buf);
printf ("Enter Logical Block Protection for RBDP: ");
gets (buf);
lbp_protect.rbdp= atoi(buf);

rc = ioctl(dev_fd, SET_LOGICAL_BLOCK_PROTECTION, &lbp_protect);

if (rc)
printf ("Set Logical Block Protection Fails (rc %d)",rc);

else
printf ("Set Logical Block Protection Succeeds");

Note:

1. The drive always expects a CRC attached with a data block when LBP is
enabled for lbp_r and lbp_w. Without the CRC bytes attachment, the drive
fails the Read and Write command. To prevent the CRC block transfer between
the drive and application, the maximum block size limit must be determined
by application. Call the STIOC_GET_PARM IOCTL to get the parameter of
MAX_SCSI_XFER (the system maximum block size limit). Call the
STIOC_READ_BLKLIM IOCTL to get the value of max_blk_lim (the drive
maximum block size limit). Then, use the minimum of the two limits.

2. When a unit attention with a power-on and device reset (Sense key/Asc-Ascq
x6/x2900) occurs, the LBP enable bits (lbp_w, lbp_r, and rbdp) are reset to OFF
by default. The IBMtape tape driver returns EIO for an IOCTL call in this
situation. Once the application determines it is a reset unit attention in the
sense data, it responds to query LBP setup again and reissues this IOCTL to set
up LBP properly.

3. The LBP setting is controlled by the application and not the device driver. If an
application enables LBP, it must also disable LBP when it closes the drive, as
this action is not done by the device driver.

VERIFY_TAPE_DATA

The IOCTL issues a VERIFY command to cause data to be read from the tape and
passed through the drive’s error detection and correction hardware. This action
determines whether it can be recovered from the tape. Or, whether the protection
information is present and validates correctly on logical block on the medium. The
driver returns the IOCTL a failure or a success if the VERIFY SCSI command is
completed in a Good SCSI status.

Note:

1. When an application sets the VBF method, it considers the driver’s close
operation in which the driver can write filemarks in its close that the
application did not explicitly request. For example, some drivers write two
consecutive filemarks that mark the end of data on the tape in its close, if the
last tape operation was a WRITE command.

2. Per the user's or application's request, the IBMtape driver sets the block size in
the field of Block Length in mode block descriptor for Read and Write
commands. Then, it maintains this block size setting in a whole open. For
instance, the tape driver set a zero in the Block Length field for the variable

276 IBM Tape Device Drivers: Programming Reference

block size. This act causes the missing of an overlength condition on a SILI
Read (and cause problems for LTFS). Block Length must be set to a non-zero
value.
Before the set Fixed bit ON with VTE or VBF ON in VERIFY IOCTL, the
application is also requested to set the block size in mode block descriptor. The
drive uses it to verify the length of each logical block. For example, a 256 KB
length is set in Block Length field to verify the data. The setup overrides the
early setting from the IBM tape driver.
Once the application completes VERIFY IOCTL call, the original block size
setting needs to be restored for Read and Write commands. The application
either issues Set Block Size IOCTL, or closes the drive immediately and
reopens the drive for the next tape operation. It is recommended to reopen the
drive for the next tape operation. Otherwise, it causes Read and Write
command misbehavior.

3. To support DPF for VERIFY command with FIXED bit on, it is requested to issue
IBM tape driver to set blksize standard IOCTL to set the block size. The IBM
tape driver sets the Block Length in mode block descriptor same as the block
size and save the block size in kernel memory. The driver restores the Block
Length before it retries the Verify SCSI command. Otherwise, the retry VERIFY
command fails.

4. The IOCTL can be returned longer than the timeout when DPF occurs.

The data structure that is used with this IOCTL is
typedef struct
{

uchar : 2, /* reserved */
vte: 1, /* verify to end-of-data */
vlbpm: 1, /* verify logical block protection information */

vbf: 1, /* verify by filemarks */
immed: 1, /* return SCSI status immediately */
bytcmp: 1, /* Reserved for IBM future use. */
fixed: 1; /* set Fixed bit to verify the length of

each logical block */
uchar reserved[15]; /* Reserved for IBM future use. */
uint verify_length; /* amount of data to be verified */

}verify_data_t ;

Examples of the VERIFY_TAPE_DATA IOCTL.
#include<sys/st.h>

char buf[60];
verify_data_t vd;
unsigned int vlength=0;
int i;

bzero((void *) &vd, sizeof(verify_data_T));

printf("Enable field \’Verify to End Of Data\’[y/n]: ");
gets(buf);
vd.vte = (tolower(buf[0]) == ’y’);

printf("Enable field \’verify logical block protection information\’[y/n]: ");
gets(buf);
vd.vlbpm = (tolower(buf[0]) == ’y’);

printf("Enable field \’verify by filemarks\’[y/n]: ");
gets(buf);
vd.vbf = (tolower(buf[0]) == ’y’);

printf("Enable field \’return SCSI status immediately\’[y/n]: ");

Chapter 5. Solaris tape and medium changer device driver 277

gets(buf);
vd.immed = (tolower(buf[0]) == ’y’);

printf("Enable field \’set Fixed bit to verify the length of each
logical block\’[y/n]: ");
gets(buf);
vd.fixed = (tolower(buf[0]) == ’y’);

printf("Get the amount of data to be verified: ");
gets(buf);
vlength = atoi(buf);

vd.verify_length = vlength;

printf("Data dump:\n");

for(i = 0; i < sizeof(struct verify_data); i++)
printf("byte %d: 0x%02x\n", i, *(((char *) vd;) + i));

if (!ioctl (dev_fd, VERIFY_TAPE_DATA, (void *) &vd)){
printf ("The VERIFY_DATA ioctl succeeded\n");

}
else{

perror ("The VERIFY_DATA ioctla failed");
}

Base operating system tape drive IOCTL operations

The set of native magnetic tape IOCTL commands that is available through the
Solaris base operating system is provided for compatibility with existing
applications.

The following commands are supported.

MTIOCTOP
Perform the magnetic tape drive operations.

MTIOCGET
Return the status information about the tape drive.

MTIOCGETDRIVETYPE
Return the configuration information about the tape drive.

USCSICMD
User SCSI Command interface.

These commands and associated data structures are defined in the mtio.h system
header file in the /usr/include/sys directory and in the uscsi.h system header file in
/usr/include/sys/scsi/imple directory. Any application program that issues these
commands must include this header file.

MTIOCTOP

This command runs the magnetic tape drive operations. It is identical to the
STIOC_TAPE_OP IOCTL command that is defined in the /usr/include/sys/st.h header
file. The STIOC_TAPE_OP and MTIOCTOP commands both use the same data structure
that is defined in the /usr/include/sys/mtio.h system header file. The two IOCTL
commands are interchangeable. See “STIOC_TAPE_OP” on page 243.

278 IBM Tape Device Drivers: Programming Reference

MTIOCGET

This command returns the status information about the tape drive. It is identical to
the STIOC_GET_DEVICE_STATUS IOCTL command defined in the /usr/include/sys/st.h
header file. The STIOC_GET_DEVICE_STATUS and MTIOCGET commands both use the
same data structure that is defined in the /usr/include/sys/mtio.h system header
file. The two IOCTL commands are interchangeable. See
“STIOC_GET_DEVICE_STATUS” on page 245.

MTIOCGETDRIVETYPE

This command returns the configuration information about the tape drive. It is
identical to the STIOC_GET_DEVICE_INFO IOCTL command defined in the
/usr/include/sys/st.h header file. The STIOC_GET_DEVICE_INFO and MTIOCTOP
commands both use the same data structure that is defined in the
/usr/include/sys/mtio.h system header file. The two IOCTL commands are
interchangeable. See “STIOC_GET_DEVICE_INFO” on page 246.

USCSICMD

This command provides the user a SCSI command interface.

Attention: The uscsi command is powerful, but dangerous. So its use is
restricted to processes that run as root, regardless of the file permissions on the
device node. The device driver code expects to own the device state, and uscsi
commands can change the state of the device and confuse the device driver. It is
best to use uscsi commands only with no side effects. Avoid commands such as
Mode Select, as they can damage data that is stored on the drive or system panics.
Also, as the commands are not checked in any way by the device driver, any block
can be overwritten. The block numbers are absolute block numbers on the drive
regardless of which slice number is used to send the command.

The following data structure is returned by the driver.
/* from uscsi.h */
struct uscsi_cmd {

int uscsi_flags; /* read, write, etc. see below */
short uscsi_status; /* resulting status */
short uscsi_timeout; /* Command Timeout */
caddr_t uscsi_cdb; /* cdb to send to target */
caddr_t uscsi_bufaddr; /* i/o source/destination */
size_t uscsi_buflen; /* size of i/o to take place */
size_t uscsi_resid; /* resid from i/o operation */
uchar_t uscsi_cdblen; /* # of valid cdb bytes */
uchar_t uscsi_rqlen; /* size of uscsi_rqbuf */
uchar_t uscsi_rqstatus; /* status of request sense cmd */
uchar_t uscsi_rqresid; /* resid of request sense cmd */
caddr_t uscsi_rqbuf; /* request sense buffer */
void *uscsi_reserved_5; /* Reserved for Future Use */

};

An example of the USCSICMD command is
#include <sys/scsi/impl/uscsi.h>

int rc, i, j, cdb_len, option, ubuf_fg, rq_fg;
struct uscsi_cmd uscsi_cmd;
uchar cdb[64] = "";
char cdb_byte[3] = "";
char buf[64] = "";
char rq_buf[255];
char uscsi_buf[255];

Chapter 5. Solaris tape and medium changer device driver 279

memset ((char *)&uscsi_cmd, (char)0, sizeof(uscsi_cmd));
memset ((char *)&rq_buf, (char)0, sizeof(rq_buf));
memset ((char *)&uscsi_buf, (char)0, sizeof(uscsi_buf));

printf("Enter the SCSI cdb in hex (f.g.: INQUIRY 12 00 00 00 80 00) ");
gets (buf);
cdb_len = j = 0;
for (i=0;i<64;i++) {

if (buf[i] != ’ ’) {
cdb_byte[j] = buf[i];
j += 1;

}
else {
if (j != 2) {

printf ("Usage Error: Enter the command byte more or less
than two digitals.\n");

return (0);
}
cdb_byte[2] = ’\0’;
cdb[cdb_len] = strtol(cdb_byte,NULL,16);
cdb_len += 1;
j = 0;

}
if (buf[i] == ’\0’) {

cdb[cdb_len] = strtol(cdb_byte,NULL,16);
break;

}
}
uscsi_cmd.uscsi_cdblen = cdb_len + 1;
uscsi_cmd.uscsi_cdb = (char *)cdb;

printf("Set the uscsi_flagsg: \n");
printf(" 1. no read and no write \n");
printf(" 2. read (USCSI_READ) \n");
printf(" 3. write (USCSI_WRITE) \n");
printf(" 4. read/write (USCSI_READ | USCSI_WRITE) \n");
printf(" \n");
printf("Select operation or <enter> q to quit: ");
gets (buf);
if (buf[0]==’q’) return(0);
option = atoi(buf);
switch(option) {

case 1:
uscsi_cmd.uscsi_flags = 0;
break;

case 2:
uscsi_cmd.uscsi_flags = USCSI_READ;
break;

case 3:
uscsi_cmd.uscsi_flags = USCSI_WRITE;
break;

case 4:
uscsi_cmd.uscsi_flags = USCSI_READ | USCSI_WRITE;
break;

}

printf("Set the USCSI_RQENABLE flag on ? (y/n) ");
gets (buf);
if (buf[0]==’y’) {

uscsi_cmd.uscsi_flags = uscsi_cmd.uscsi_flags | USCSI_RQENABLE;
rq_fg = TRUE;

}

printf("Enter the value of the command timeout: ");
gets (buf);
uscsi_cmd.uscsi_timeout = atoi(buf);

280 IBM Tape Device Drivers: Programming Reference

printf("Any data to be read from or written to the device? (y/n) ");
gets (buf);
if (buf[0]==’y’) {

uscsi_cmd.uscsi_bufaddr = (char *)&uscsi_buf
uscsi_cmd.uscsi_buflen = sizeof(uscsi_buf);
ubuf_fg = TRUE;

}
else {

uscsi_cmd.uscsi_bufaddr = NULL;
uscsi_cmd.uscsi_buflen = 0;
ubuf_fg = FALSE;

}

if (device.ultrium)
uscsi_cmd.uscsi_rqlen = 36;

else if (device.t3590 || device.t3570)
uscsi_cmd.uscsi_rqlen = 96;

else if (device.t3490)
uscsi_cmd.uscsi_rqlen = 54;

uscsi_cmd.uscsi_rqbuf = (char *)&rq_buf

PRINTF ("\nData in struct uscsi_cmd before to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));

if (!(rc = ioctl (dev_fd, USCSICMD, &uscsi_cmd))) {
PRINTF ("\nUSCSICMD command succeeded.\n");
if (ubuf_fg)

DUMP_BYTES ((char *)&uscsi_buf,
(uscsi_cmd.uscsi_buflen - uscsi_cmd.uscsi_resid));

PRINTF ("\nData in struct uscsi_cmd after to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));

}
else {
PRINTF ("\n");
PERROR ("USCSICMD command failed");
PRINTF ("SCSI statuss returned by the device is %d\n", uscsi_cmd.uscsi_status);
PRINTF ("Untransferred data length of the uscsi_cmd data is %d\n",
uscsi_cmd.uscsi_resid);
PRINTF ("Data in struct uscsi_cmd after to issue the cmd:");
DUMP_BYTES ((char *)&uscsi_cmd, sizeof(uscsi_cmd));
if (rq_fg) {

PRINTF ("\nUntransferred length of the sense data is %d\n",
uscsi_cmd.uscsi_rqresid);

PRINTF ("Sense data from the struct uscsi_cmd:\n");
DUMP_BYTES ((char *)&rq_buf, uscsi_cmd.uscsi_rqlen);
}

}

return (rc);

Downward compatibility tape drive IOCTL operations

This set of IOCTL commands is provided for compatibility only with previous
versions of the IBM SCSI Tape Device Driver (IBMDDAst) that supported the IBM
3490E Magnetic Tape Subsystem on the SunOS 4.1.3 operating system. The
applications that are written for IBMDDAst are compatible with the device driver
(IBMtape) on a source level only. Binary compatibility is not guaranteed.

Recompile the application by using the /usr/include/sys/oldtape.h header file (in
place of the previously used /usr/include/sys/Atape.h).

Chapter 5. Solaris tape and medium changer device driver 281

Note: This interface is obsolete. It was superseded by the interface that is defined
in the /usr/include/sys/st.h header file. New development efforts must use the st.h
interface to ensure its compatibility with future releases of the Solaris Tape and
Medium Changer Device Driver.

The following commands are supported.

STIOCQRYP
Query the working parameters of the tape drive.

STIOCSETP
Set the working parameters of the tape drive.

STIOCSYNC
Flush the drive buffers to the tape.

STIOCDM
Display messages on the tape drive console.

STIOCQRYPOS
Query the physical position on the tape.

STIOCSETPOS
Set the physical position on the tape.

STIOCQRYSENSE
Return the sense data that is collected from the tape drive.

STIOCQRYINQUIRY
Return the inquiry data that is collected from the tape drive.

These commands and associated data structures are defined in the oldtape.h
header file in the /usr/include/sys directory that is installed with the IBMtape
package. Any application program that issues these commands must include this
header file.

Note: The oldtape.h header file replaces the Atape.h header file.

STIOCQRYP or STIOCSETP

These commands allow a program to query and set the working parameters of the
tape drive.

Issue the query command to fill the fields of the data structure with the current
data that you do not want to change. Make the changes to the required fields and
issue the set command to process the required changes.

Changing certain fields (such as buffered_mode or compression) can affect the
drive performance. If buffered_mode is disabled, each block that is written to the
tape drive is immediately transferred to the tape. This process guarantees that each
record is on the tape, but it degrades performance. If compression mode is
enabled, the write performance can increase based on the compressibility of the
data written.

The changes that are made through this IOCTL are effective only during the
current open session. The tape drive reverts to the default working parameters
established by the configuration file at the time of the next open operation.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).

282 IBM Tape Device Drivers: Programming Reference

struct stchgp_s {
int blksize; /* block size */
struct sttrc_s {
boolean trace; /* not used */
ulong hkwrd; /* not used */

} sttrc;
int sync_count; /* OBSOLETE AND UNSUPPORTED */
boolean autoload; /* OBSOLETE AND UNSUPPORTED */
boolean buffered_mode; /* on/off buffered mode */
boolean compression; /* on/off compression mode */
boolean trailer_labels; /* on/off write past EOM mode */
boolean rewind_immediate; /* on/off immediate rewind mode */
boolean reserved[64]; /* reserved */

};

The data structure has the following fields.
v blksize

This field defines the effective block size for the tape drive (0=variable).
v sync_count

This field is obsolete. It is set to 0 by the Query command and ignored by the
Change command.

v autoload
This field is obsolete. It is set to 0 by the Query command and ignored by the
Change command.

v buffered_mode
This field enables or disables the buffered write mode.
(0=disable, 1=enable).

v compression
This field enables or disables the hardware compression mode.
(0=disable, 1=enable).

v trailer_labels
This field enables or disables the trailer-label processing mode.
(0=disable, 1=enable).
If this mode is enabled, writing records past the early warning mark on the tape
is allowed. The first write operation to detect EOM returns ENOSPC. This write
operation does not complete successfully. All subsequent write operations are
allowed to continue despite the check conditions that result from EOM. When
the end of the physical volume is reached, EIO is returned.

v rewind_immediate
This field enables or disables the immediate rewind mode.
(0=disable, 1=enable).
If this mode is enabled, a rewind command returns with the status before the
completion of the physical rewind operation by the tape drive.

An example of the STIOCQRYP and STIOCSETP commands is
#include <sys/oldtape.h>

struct stchgp_s stchgp;

/* QUERY OLD PARMS */
if (ioctl (tapefd, STIOCQRYP, &stchgp) < 0) {

printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

Chapter 5. Solaris tape and medium changer device driver 283

/* SET NEW PARMS */
stchgp.rewind_immediate = rewind_immediate;
stchgp.trailer_labels = trailer_labels;

if (ioctl (tapefd, STIOCSETP, &stchgp) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCSYNC

This command immediately flushes the drive buffers to the tape (commits the data
to the media).

No data structure is required for this command.

An example of the STIOCSYNC command is
#include <sys/oldtape.h>

if (ioctl (tapefd, STIOCSYNC, NULL) < 0) {
printf("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCDM

This command displays and manipulates one or two messages on the tape drive
console.

The message that is sent by using this call does not always remain on the display.
It depends on the current drive activity.

Note: All messages must be padded to 8 bytes. Otherwise, garbage characters
(meaningless data) can be displayed in the message.

The following data structure is filled out and supplied by the caller.
struct stdm_s {

char dm_func; /* message function codes */
/* Function Selection */

#define DMSTATUSMSG 0x00 /* general status message */
#define DMDVMSG 0x20 /* demount/verify message */
#define DMMIMMED 0x40 /* mount with immediate action */
#define DMDEMIMMED 0xE0 /* demount with immediate action */

/* Message Control */
#define DMMSG0 0x00 /* display message 0 */
#define DMMSG1 0x04 /* display message 1 */
#define DMFLASHMSG0 0x08 /* flash message 0 */
#define DMFLASHMSG1 0x0C /* flash message 1 */
#define DMALTERNATE 0x10 /* alternate messages 0 and 1 */
#define MAXMSGLEN 8
char dm_msg0[MAXMSGLEN]; /* message 0 */
char dm_msg1[MAXMSGLEN]; /* message 1 */

};

An example of the STIOCDM command is
#include <sys/oldtape.h>

struct stdm_s stdm;

stdm.dm_func = DMSTATUSMSG | DMMSG0;
bcopy ("SSD", stdm.dm_msg0, 8);

284 IBM Tape Device Drivers: Programming Reference

if (ioctl (tapefd, STIOCDM, &stdm) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

STIOCQRYPOS or STIOCSETPOS

These commands allow a program to query and set the physical position on the
tape.

Tape position is defined as where the next read or write operation occurs. The
STIOCQRYPOS command and the STIOCSETPOS command can be used independently
or with each other.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
struct stpos_s

{
char block_type; /* format of block ID information */
#define QP_LOGICAL 0
#define QP_PHYSICAL 1

boolean eot; /* early warning EOT */
#define blockid_t unsigned int
blockid_t curpos; /* current or new tape position */
blockid_t lbot; /* last block written to tape */
#define LBOT_NONE 0xFFFFFFFF
#define LBOT_UNKNOWN 0xFFFFFFFE

char reserved[64]; /* reserved */
};

The block_type field is set to QP_LOGICAL for standard SCSI logical tape
positions. It is set to QP_PHYSICAL for composite tape positions that are used for
high-speed locate operations that are implemented by the tape drive.

For STIOCSETPOS commands, the block_type and curpos fields must be filled out
by the caller. The other fields are ignored. The type of position that is specified in
the curpos field must correspond with the type specified in the block_type field.
Use the QP_PHYSICAL type for better performance. High-speed locate positions
can be obtained with the STIOCQRYPOS command, saved, and used later with the
STIOCSETPOS command to quickly return to the same location on the tape.

Following a STIOCQRYPOS command, the lbot field indicates the last block of data
that was transferred physically to the tape. For example, if the application wrote to
12 blocks and lbot equals 8, four blocks are in the tape buffer. This field is valid
only if the last command was a write operation. Otherwise, LBOT_UNKNOWN is
returned. It does not reflect the number of application write operations because a
single write operation can translate to multiple blocks.

An example of the STIOCQRYPOS and STIOCSETPOS commands is
#include <sys/oldtape.h>

struct stpos_s stpos;
stpos.block_type = QP_PHYSICAL;

if (ioctl (tapefd, STIOCQRYPOS, &stpos) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

oldposition = stpos.curpos;

Chapter 5. Solaris tape and medium changer device driver 285

/* do other stuff... */

stpos.curpos = oldposition;
stpos.block_type = QP_PHYSICAL;

if (ioctl (tapefd, STIOCSETPOS, &stpos) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit(errno);

}

STIOCQRYSENSE

This command returns the sense data that is collected from the tape drive.

The following data structure is filled out and supplied by the caller (and also filled
out and returned by the driver).
struct stsense_s {

/* INPUT */
char sense_type; /* new sense or last error sense */
#define FRESH 1
#define LASTERROR 2

/* OUTPUT */
#define MAXSENSE 128
char sense[MAXSENSE]; /* actual sense data */
int len; /* length of sense data returned */
char reserved[64]; /* reserved */

};

If sense_type is set to LASTERROR, the last sense data that is collected from the
device is returned. If it is set to FRESH, a new Request Sense command is issued
and the sense data is returned.

An example of the STIOCQRYSENSE command is
#include <sys/oldtape.h>

struct stsense_s stsense;
stsense.sense_type = LASTERROR;

#define MEDIUM_ERROR 0x03

if (ioctl (tapefd, STIOCQRYSENSE, &stsense) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

if (SENSE_KEY (&stsense.sense) == MEDIUM_ERROR) {
printf ("We’re in trouble now!");
exit (SENSE_KEY (&stsense.sense));

}

STIOCQRYINQUIRY

This command returns the inquiry data that is collected from the tape drive.

The following data structure is filled out and returned by the driver.
struct inq_data_s {

BYTE b0; /* peripheral device byte */
#define PERIPHERAL_QUALIFIER(x) ((x->b0 & 0xE0)>>5)
#define PERIPHERAL_CONNECTED 0x00
#define PERIPHERAL_NOT_CONNECTED 0x01
#define LUN_NOT_SUPPORTED 0x03
#define PERIPHERAL_DEVICE_TYPE(x) (x->b0 & 0x1F)

286 IBM Tape Device Drivers: Programming Reference

#define DIRECT_ACCESS 0x00
#define SEQUENTIAL_DEVICE 0x01
#define PRINTER_DEVICE 0x02
#define PROCESSOR_DEVICE 0x03
#define CD_ROM_DEVICE 0x05
#define OPTICAL_MEMORY_DEVICE 0x07
#define MEDIUM_CHANGER_DEVICE 0x08
#define UNKNOWN 0x1F

BYTE b1; /* removable media/device type byte */
#define RMB(x) ((x->b1 & 0x80)>>7)
#define FIXED 0
#define REMOVABLE 1
#define device_type_qualifier(x) (x->b1 & 0x7F)

BYTE b2; /* standards version byte */
#define ISO_Version(x) ((x->b2 & 0xC0)>>6)
#define ECMA_Version(x) ((x->b2 & 0x38)>>3)
#define ANSI_Version(x) (x->b2 & 0x07)
#define NONSTANDARD 0
#define SCSI1 1
#define SCSI2 2

BYTE b3; /* asynchronous event notification */
#define AENC(x) ((x->b3 & 0x80)>>7)
#define TrmIOP(x) ((x->b3 & 0x40)>>6)
#define Response_Data_Format(x) (x->b3 & 0x0F)
#define SCSI1INQ 0
#define CCSINQ 1
#define SCSI2INQ 2

BYTE additional_length;
BYTE res56[2]; /* reserved bytes */
BYTE b7; /* protocol byte */
#define RelAdr(x) ((x->b7 & 0x80)>>7)
#define WBus32(x) ((x->b7 & 0x40)>>6)
#define WBus16(x) ((x->b7 & 0x20)>>5)
#define Sync(x) ((x->b7 & 0x10)>>4)
#define Linked(x) ((x->b7 & 0x08)>>3)
#define CmdQue(x) ((x->b7 & 0x02)>>1)
#define SftRe(x) (x->b7 & 0x01)

char vendor_identification[8]; /* vendor identification */
char product_identification[16]; /* product identification */
char product_revision_level[4]; /* product revision level */

};

struct st_inquiry {
struct inq_data_s standard;
BYTE vendor_specific[255-sizeof(struct inq_data_s)];

};

An example of the STIOCQRYINQUIRY command is
#include <sys/oldtape.h>

struct st_inquiry inqd;

if (ioctl (tapefd, STIOCQRYINQUIRY, &inqd) < 0) {
printf ("IOCTL failure, errno = %d", errno);
exit (errno);

}

if (ANSI_Version (((struct inq_data_s *)&(inqd;standard))) == SCSI2) {
printf ("Hey! We have a SCSI-2 device\n");

}

Service aid IOCTL operations

A set of service aid IOCTL commands gives applications access to serviceability
operations for IBM tape subsystems.

Chapter 5. Solaris tape and medium changer device driver 287

The following commands are supported.

STIOC_DEVICE_SN
Query the serial number of the device.

IOC_FORCE_DUMP
Force the device to complete a diagnostic dump.

IOC_STORE_DUMP
Force the device to write the diagnostic dump to the currently mounted
tape cartridge.

IOC_READ_BUFFER
Read data from the specified device buffer.

IOC_WRITE_BUFFER
Write data to the specified device buffer.

IOC_DEVICE_PATH
Query the path information for a particular path or all of the paths for a
particular parent device.

IOC_CHECK_PATH
Display the enable or disable information for each path in the path table.

IOC_ENABLE_PATH
Enable a path in the path table.

IOC_DISABLE_PATH
Disable a path in the path table.

These commands and associated data structures are defined in the svc.h header file
in the /usr/include/sys directory that is installed with the IBMtape package. Any
application program that issues these commands must include this header file.

STIOC_DEVICE_SN

This command returns the device number as used by the IBM Enterprise Tape
Library and the Enterprise Model B18 Virtual Tape Server.

The following data structure is filled out and returned by the driver.
typedef uint device_sn_t;

An example of the STIOC_DEVICE_SN command is
#include <sys/svc.h>

device_sn_t device_sn;

if (!(ioctl (dev_fd, STIOC_DEVICE_SN, &device_sn))) {
printf ("Tape device %s serial number: %x\n", dev_name, device_sn);

}

else {
perror ("Failure obtaining tape device serial number");
scsi_request_sense ();

}

IOC_FORCE_DUMP

This command forces the device to complete a diagnostic dump.

No data structure is required for this command.

288 IBM Tape Device Drivers: Programming Reference

An example of the IOC_FORCE_DUMP command is
#include <sys/svc.h>

if (!(ioctl (dev_fd, IOC_FORCE_DUMP, 0))) {
printf ("Dump completed successfully.\n");

}

else {
perror ("Failure performing device dump");
scsi_request_sense ();

}

IOC_STORE_DUMP

This command forces the device to write the diagnostic dump to the currently
mounted tape cartridge. The IBM 3490E Magnetic Tape Subsystem and the IBM
Enterprise Model B18 Virtual Tape Server do not support this command.

No data structure is required for this command.

An example of the STIOC_STORE_DUMP command is
#include <sys/svc.h>

if (!(ioctl (dev_fd, STIOC_STORE_DUMP, 0))) {
printf ("Dump store on tape successfully.\n");

}

else {
perror ("Failure storing dump on tape");
scsi_request_sense ();

}

IOC_READ_BUFFER

This command reads data from the specified device buffer.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field must be set to one of the following values.

VEND_MODE
Vendor-specific mode.

DSCR_MODE
Descriptor mode.

DNLD_MODE
Download mode.

The id field must be set to one of the following values.

ERROR_ID
Diagnostic dump buffer.

Chapter 5. Solaris tape and medium changer device driver 289

UCODE_ID
Microcode buffer.

An example of the STIOC_READ_BUFFER command is
#include <sys/svc.h>

buffer_io_t buffer_io;

if (!(ioctl (dev_fd, STIOC_READ_BUFFER, &buffer_io))) {
printf ("Buffer read successfully.\n");

}

else {
perror ("Failure reading buffer");
scsi_request_sense ();

}

IOC_WRITE_BUFFER

This command writes data to the specified device buffer.

The following data structure is filled out and supplied by the caller.
typedef struct {

uchar mode; /* transfer mode */
uchar id; /* device buffer id */
uint offset; /* buffer offset */
uint size; /* byte count */
uchar *buffer; /* data buffer */

} buffer_io_t;

The mode field must be set to one of the following values.

VEND_MODE
Vendor-specific mode.

DSCR_MODE
Descriptor mode.

DNLD_MODE
Download mode.

The id field must be set to one of the following values.

ERROR_ID
Diagnostic dump buffer.

UCODE_ID
Microcode buffer.

An example of the STIOC_WRITE_BUFFER command is
#include <sys/svc.h>

buffer_io_t buffer_io; /* buffer_io should be initialized
per the hardware ref*/

if (!(ioctl (dev_fd, STIOC_WRITE_BUFFER, &buffer_io))) {
printf ("Buffer written successfully.\n");

}

else {
perror ("Failure writing buffer");
scsi_request_sense ();

}

290 IBM Tape Device Drivers: Programming Reference

IOC_DEVICE_PATH

This command returns the information about the path information for a particular
path or all of the paths for a particular parent device.

The following data structure is filled out and returned by the driver.
typedef struct {
int instance; /* Instance Number of this path */
int tgt; /* SCSI target for this path */
int lun; /* SCSI LUN for this path */
uint64_t wwnn; /* WWNN for this fc path */
uint64_t wwpn; /* WWPN for this fc path */
int path_type; /* primary 0 or

alt 1, 2, 3, ..., 15 */
/* none 0xFF */

int enable; /* path enable 1, disable 0 */
char devpath[125]; /* devices path of this path */
char dev_ser[33]; /* Device serial number */
char ucode_level[32]; /* Device microcode level */
} device_path_t;

typedef struct {
int number_paths; /* number of paths configured */

An example of the IOC_DEVICE_PATH command is
#include <sys/svc.h>

device_paths_t device_paths;

if (rc = ioctl(dev_fd,IOC_DEVICE_PATHS, %device_paths)){
perror ("IOC_DEVICE_PATHS failed");
printf ("\n");
return (rc);
}

printf ("\nEnter path number or <enter> for all of the paths:");
gets (buf);
if (buf[0] == ’\0’) {

for (i=0; i<device_paths.number_paths)i++) {
show_path (&device_paths.device_path[i]);
printf ("\n---more---")

if (interactive) getchar ();
}

}
else {

i = atoi(buf);
if ((i>=device_paths.number_paths||(i<0) {
printf ("\nInvalid Path Number selection.\n");
return (FALSE);

}
show path (&device_paths_.device_path[i]);

}

IOC_CHECK_PATH

This command is used to display the enable or disable information for each path in
the path table.

The following data structure is filled out and returned by the driver.
typedef struct {

int number_paths; /* number of paths configured */
path_enable_t path_enable[MAX_SCSI_PATH];

} check_path_t;

Chapter 5. Solaris tape and medium changer device driver 291

See the example of the IOC_CHECK_PATH command in “IOC_ENABLE_PATH and
IOC_DISABLE_PATH.”

IOC_ENABLE_PATH and IOC_DISABLE_PATH

This command is used to enable or disable a path in the path table.

The following data structure is filled out and returned by the driver.
typedef struct {

int path; /* Failover path: primary path: 0 */
/* alternate path: 1, 2, 3, ..., 15 */
/* No failover path : 0xFF */

int enable; /* path enable 1, disable 0 */
} path_enable_t;

An example of the commands is
#include <sys/svc.h>

check_path_t check_path;
path_enable_t path_enable;

if (!(rc = ioctl (dev_fd, IOC_CHECK_PATHS, &check_path))) {
printf ("IOC_CHECK_PATHS succeeded.\n");

}

printf ("Enter selection (0=disable, 1=enable): ");
gets (buf);
if (*buf != ’\0’) {

if (path_enable.enable) {
if (rc = ioctl (dev_fd, IOC_ENABLE_PATH, &path_enable)) {

perror ("IOC_ENABLE_PATH failed");
printf ("\n");
return (rc);

}
}
else {

if (rc = ioctl (dev_fd, IOC_DISABLE_PATH, &path_enable)) {
perror ("IOC_DISABLE_PATH failed");
printf ("\n");
return (rc);

}
}

}

Return codes

The calls to the IBMtape device driver return error codes that describe the outcome
of the call. The returned error codes are defined in the errno.h system header file
in the /usr/include/sys directory.

For the open, close, and IOCTL calls, the return code of the function call is either
0 for success, or -1 for failure. Then, the system global variable errno contains the
error value. For the read and write calls, the return code of the function call
contains the actual number of bytes read or written if the operation was successful.
Or, 0 if no data was transferred due to encountering end of file or end of tape. If
the read or write operation completely failed, the return code is set to -1 and the
error value is stored in the system global variable errno.

The error codes that are returned from IBMtape are described in the following
section.

292 IBM Tape Device Drivers: Programming Reference

Note: The EIO return code indicates that a device-related input/output (I/O) error
occurred. Further information about the error can be obtained by using the
IOC_REQUEST_SENSE IOCTL command to retrieve sense data. This sense data can
then be interpreted with the device hardware or SCSI reference.

General error codes

The following codes and their descriptions apply in general to all operations.

[EACCES]
An operation to modify the media was attempted illegally.

[EBADF]
A bad file descriptor was specified for the device.

[EBUSY]
An excessively busy state was encountered for the device.

[ECONNRESET]
A SCSI bus reset was detected by the device.

[EFAULT]
A memory failure occurred due to an invalid pointer or address.

[EINVAL]
The requested operation or specified parameter was invalid.

[EIO] A general I/O failure occurred for the device.

[ENOMEM]
Insufficient memory was available for an internal operation.

[ENOSPC]
The write operation exceeds the remaining available space.

[ENXIO]
The device was not configured or it is not receiving requests.

[EPROTO]
A SCSI command or data transfer protocol error occurred.

[ETIMEDOUT]
A SCSI command timed out waiting for the device.

Open error codes

The following codes and their descriptions apply to the open operation.

[EACCES]
An attempt to open the device for write or append mode failed because
the currently mounted tape is write-protected.

[EBUSY]
The device is reserved by another initiator or already opened by another
process.

[EINVAL]
The requested operation is not supported, or the specified parameter or
flag was invalid.

[EIO] A general failure occurred during the open operation for the device. (If it
was opened with the O_APPEND flag, the tape is full.)

Chapter 5. Solaris tape and medium changer device driver 293

[ENXIO]
The device was not configured, or it is not receiving requests.

Close error codes

The following codes and their descriptions apply to the close operation.

[EBADF]
A bad file descriptor was specified for the device.

[EIO] A general failure occurred during the close operation for the device.

[ENXIO]
The device was not configured or it is not receiving requests.

Read error codes

The following codes and their descriptions apply to the read operation.

[EBADF]
A bad file descriptor was specified for the device.

[EFAULT]
A memory failure occurred due to an invalid pointer or address.

[EINVAL]
The requested operation is not supported, or the specified parameter or
flag was invalid.

The number of bytes requested was not a multiple of the block size for a
fixed block transfer.

The number of bytes requested was greater than the maximum size
allowed by the device for variable block transfers.

[EIO] A SCSI or device failure occurred.

The physical end of the media was detected.

[ENOMEM]
Insufficient memory was available for an internal operation.

The number of bytes requested for a variable block transfer was less than
the size of the block (overlength condition).

[ENXIO]
The device was not configured or it is not receiving requests.

A read operation was attempted after the device reached the logical end of
the media.

Write error codes

The following codes and their descriptions apply to the write operation.

[EACCES]
An operation to modify the media was attempted on a write-protected
tape.

[EBADF]
A bad file descriptor was specified for the device.

294 IBM Tape Device Drivers: Programming Reference

[EFAULT]
A memory failure occurred because of an invalid pointer or address.

[EINVAL]
The requested operation is not supported, or the specified parameter or
flag was invalid.

The number of bytes requested was not a multiple of the block size for a
fixed block transfer.

The number of bytes requested was greater than the maximum size
allowed by the device for variable block transfers.

A write operation was attempted on a device that is opened for
O_RDONLY.

[EIO] A SCSI or device failure occurred.

The physical end of the media was detected.

[ENOMEM]
Insufficient memory was available for an internal operation.

[ENOSPC]
The write operation failed because the logical end of the media was
encountered while trailer label mode was not enabled and early warning (0
return code) was already provided.

[ENXIO]
The device was not configured or it is not receiving requests.

A write operation was attempted after the device reached the logical end
of the media.

IOCTL error codes

The following codes and their descriptions apply to the IOCTL operation.

[EACCES]
An operation to modify the media was attempted on a write-protected
tape.

[EBADF]
A bad file descriptor was specified for the device.

[EFAULT]
A memory failure occurred because of an invalid pointer or address.

[EINVAL]
The requested operation is not supported, or the specified parameter or
combination of parameters was invalid.

[EIO] A general failure occurred for the device.

[ENXIO]
The device was not configured or it is not receiving requests.

Opening a special file

The open system call provides the mechanism for beginning an I/O session with a
tape drive or medium changer. For example:
fd = open ("/dev/rmt/0st", O_FLAGS);

Chapter 5. Solaris tape and medium changer device driver 295

If the open system call fails, it returns -1, and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file.

The O_FLAGS parameters are defined in the /usr/include/sys/fcntl.h system header
file. Use bitwise inclusive OR to combine individual values together. The IBMtape
device driver special files recognize and support the following O_FLAG values.
v O_RDONLY

This flag allows only operations that do not alter the content of the tape. All
special files support this flag.

v O_RDWR

This flag allows the tape to be accessed and altered completely. The smc special
file does not support this flag. An open call to the smc special file, or to any st
special file where the tape device has a write protected cartridge that is mounted
fails.

v O_WRONLY

This flag does not allow the tape to be read. All other tape operations are
allowed. The smc special file does not support this flag. An open call to the smc
special file, or to any st special file where the tape device has a write-protected
cartridge that is mounted fails.

v O_NDELAY or O_NONBLOCK
These two flags complete the same function. This option indicates to the driver
not to wait until the tape drive is ready before the device is opened and
commands are sent. Until the drive is ready, subsequent commands that require
a physical tape to be loaded and ready fail. Other commands that do not require
a tape to be loaded, such as inquiry or move medium commands, succeed. All
special files support these flags.

v O_APPEND

This flag is used with the O_WRONLY flag to append data to the end of the
current data on the tape. This flag is illegal in combination with the O_RDONLY
or O_RDWR flag. The smc special file does not support this flag. An open call
to the smc special file, or to any st special file where the tape device has a
write-protected cartridge that is mounted fails.
During an open for append operation, the tape is rewound and positioned after
the last block or filemark that was written to the tape. This process can take
several minutes to complete for a full tape.

Writing to a special file

The write system call provides the mechanism for writing data to a tape. This call
is not applicable to the smc special file and fails. An example of writing to a tape
drive is
count = write (fd, buffer, numbytes);

where:
count is the return code from the write command.
fd is the file descriptor of a previously opened special file.
buffer is a pointer to the source data buffer.
numbytes is the number of bytes requested to be written.

If the device is configured to use a fixed block size, numbytes must be a whole
number multiple of the block size. If the block size is variable, the value that is
specified in numbytes is the size of the block written.

296 IBM Tape Device Drivers: Programming Reference

After each call to write is issued, the return code tells how many bytes were
written. Normally, the return code is the same as the number of bytes requested in
the write command. There are some exceptions, however. If the device is
configured to use fixed block size, and a write is for multiple blocks, possibly only
some of the requested blocks can be written. This action is called a short write.
The return code from a short write is less than the number of bytes requested, but
always a whole number multiple of the block size. Applications that write multiple
fixed blocks must be prepared to handle short writes, and calculate from the return
code which blocks were not transferred to tape. Short writes are not an error
condition, and IBMtape does not set a value for the errno system variable.
v A return code of zero indicates that the logical end of medium (LEOM) is

reached. None of the requested bytes were written. A return code of zero is not
an error condition, and IBMtape does not set a value for the errno system
variable.

v If the return code is less than zero, the write operation failed. None of the
requested bytes were written. IBMtape sets an error code in the errno system
variable.

The writev system call is also supported.

Reading from a special file

The read system call provides the mechanism for reading data from a tape. This
call is not applicable to the smc special file and fails. An example of reading from a
tape drive is
count = read (fd, buffer, numbytes);

where:
count is the return code from the read command.
fd is the file descriptor of a previously opened special file.
buffer is a pointer to the destination data buffer.
numbytes is the maximum number of bytes requested to be read.

If the device is configured for variable block size, a single block of up to numbytes
bytes is read. However, if the block size on tape is greater than numbytes, the read
fails, with errno set to ENOMEM. This action is called an overlength read
condition.

If the device is configured to use a fixed block size, numbytes must be a whole
number multiple of that block size. If numbytes is not such a multiple, IBMtape
fails the read and sets errno to EINVAL. If the block size on tape does match the
configured block size, whether larger or smaller, the read fails, with errno set to
EIO. This action is called an incorrect length condition.

After the read is issued, if count is less than zero, the read failed, no data is
returned. The system variable errno is set to indicate the type of error. See “Read
error codes” on page 294 for a complete list of errno values and their meanings.

If count equals zero, then the end of medium (EOM) or a filemark was
encountered before any data was read. This issue is not an error condition, and
IBMtape does not set errno. If a second read returns zero, the application infers that
EOM is reached. Otherwise, the application infers that a filemark was encountered.
When a filemark is encountered while reading, the tape is left positioned on the
end of medium (EOM) side of the filemark.

Chapter 5. Solaris tape and medium changer device driver 297

If greater than zero, count reports how many bytes were read from tape. Even
though greater than zero, it can still be less than numbytes. If the device is
configured for variable blocks, count can be any value between 1 and numbytes. If
configured to use a fixed block size, count can always be a whole number multiple
of that block size. In either case, such a condition is called an underlength read or
short read.

Underlength reads are not error conditions, and IBMtape does not set errno.
However, for variable block mode, some overhead processing that is incurred by
underlength reads can be eliminated by setting the SILI parameter to 1. This action
can improve read performance. See “STIOC_GET_PARM” on page 249 for
information on the SILI parameter.

The readv system call is also supported.

Closing a special file

The close system call provides the mechanism for ending an I/O session with a
tape drive or medium changer. Closing a device special file is a simple process.
The file descriptor that is returned from the open system call is supplied to the
close system call as in the following example.
rc = close (fd);

An application explicitly issues the close call when the I/O resource is no longer
necessary, or in preparation for termination. The operating system implicitly issues
the close call for an application that terminates without closing the resource itself.
If an application terminates unexpectedly, but leaves behind child processes that
inherited the file descriptor for the open resource, the operating system does not
implicitly close the file descriptor because it believes that it is still in use.

If the close system call fails, it returns -1 and the system errno value contains the
error code as defined in the /usr/include/sys/errno.h header file. The close
operation attempts to run as many of the necessary tasks as possible even if there
are failures during portions of the close operation. The IBMtape device driver is
guaranteed to leave the device instance in the closed mode, providing that the
close system call is in fact started either explicitly or implicitly. If the close system
call returns with a -1, assume that the device is indeed closed and that another
open is required to continue processing the tape. After a close failure, assume that
the tape position might be inconsistent.

The close operation behavior depends on which special file was used during the
open operation and which tape operation was last run while it was opened. The
commands are issued to the tape drive during the close operation according to the
following logic and rules.
if last operation was WRITE FILEMARK

WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was WRITE
WRITE FILEMARK
WRITE FILEMARK
BACKWARD SPACE 1 FILEMARK

if last operation was READ
if special file is NOT BSD
if EOF was encountered

FORWARD SPACE 1 FILEMARK

298 IBM Tape Device Drivers: Programming Reference

SYNC BUFFER

if special file is REWIND ON CLOSE
REWIND

Rules:
1. Return EIO and release the drive when a unit attention happens before the

close().
2. Fail the command, return EIO and release the drive if a unit attention occurs

during the close().
3. If a SCSI command fails during close processing, only the SCSI RELEASE is

attempted thereafter.
4. If the tape is already unloaded from the driver, no SYNC BUFFER (WFM(0)) or

rewinding (only for rewind-on-close special files) of the tape is done.
5. The return code from the SCSI RELEASE command is ignored.

Issuing IOCTL operations to a special file

The IOCTL system call provides the mechanism for running special I/O control
operations to the tape drive or medium changer device. An example of issuing an
IOCTL to a tape drive or medium changer device is
rc = ioctl (fd, command, buffer);

The fd is the file descriptor that is returned from the open system call. The
command is the value of the IOCTL operation that is defined in the appropriate
header file. Also, buffer is the address of the user memory where data is passed to
the device driver and returned to the application.

The rc indicates the outcome of the operation upon return. An rc of 0 indicates
success, and any other value indicates a failure as defined in the
/usr/include/sys/errno.h header file.

The IOCTL operations that are supported by the Solaris Tape and Medium
Changer Device Driver are defined in the following header files. They are included
with the IBMtape package and installed in the /usr/include/sys subdirectory. These
header files must be included by any application source file that requires access the
IOCTL functions that are supported by the IBMtape device driver. (Existing
applications that use the standard Solaris tape drive IOCTL operations that are
defined in the native mtio.h header file in the /usr/include/sys are fully supported
by the IBMtape device driver.)
v st.h (tape drive operations)
v smc.h (medium changer operations)
v svc.h (service aid operations)
v oldtape.h (downward compatible tape drive operations, obsolete)

Chapter 5. Solaris tape and medium changer device driver 299

300 IBM Tape Device Drivers: Programming Reference

Chapter 6. Windows tape device drivers

Windows programming interface

The programming interface conforms to the standard Microsoft Windows Server
2003, Windows Server 2008, and Windows Server 2012 tape device drivers
interface. It is detailed in the Microsoft Developer Network (MSDN) Software
Development Kit (SDK) and Driver Development Kit (DDK). Common
documentation for these similar devices are indicated by 200x.

Windows IBMTape is conformed by two sets of device drivers,
v ibmtpxxx.sys, which supports the IBM TotalStorage or Magstar tape drives,

where
– ibmtp2k3.sys, ibmtpbs2k3.sys, ibmtpft2k3.sys are used for Windows Server

2003
– ibmtp2k8.sys, ibmtpbs2k8.sys, ibmtpft2k8.sys are used for Windows Server

2008
– ibmtp2k12.sys, ibmtpbs2k12.sys, ibmtpft2k12.sys are used for Windows

Server 2012
v ibmcgxxx.sys, which supports the IBM TotalStorage or Magstar medium

changer, where
– ibmcg2k3.sys, ibmcgbs2k3.sys, ibmcgft2k3.sys are used for Windows Server

2003
– ibmcg2k8.sys, ibmcgbs2k8.sys, ibmcgft2k8.sys are used for Windows Server

2008
– ibmcg2k12.sys, ibmcgbs2k12.sys, ibmcgft2k12.sys are used for Windows

Server 2012

The programming interface conforms to the standard Microsoft Windows 200x tape
device driver interface. It is detailed in the Microsoft Developer Network (MSDN)
Software Development Kit (SDK), and Driver Development Kit (DDK).

User-callable entry points

The following user-callable tape driver entry points are supported under
ibmtpxxx.sys.
v CreateFile
v CloseHandle
v DeviceIoControl
v EraseTape
v GetTapeParameters
v GetTapePosition
v GetTapeStatus
v PrepareTape
v ReadFile
v SetTapeParameters
v SetTapePosition

© Copyright IBM Corp. 1999, 2016 301

v WriteFile
v WriteTapemark

Tape Media Changer driver entry points

If the Removable Storage Manager is stopped, then the following user-callable tape
media changer driver entry points are supported under ibmcgxxx.sys:
v CreateFile
v CloseHandle
v DeviceIoControl

Users who want to write application programs to issue commands to IBM
TotalStorage device drivers must obtain a license to the MSDN and the Microsoft
Visual C++ Compiler. Users also need access to IBM hardware reference manuals
for IBM TotalStorage devices.

Programs that access the IBM TotalStorage device driver must complete the
following steps:
1. Include the following files in the application.

#include <ntddscsi.h>
#include <ntddchgr.h>
#include <ntddtape.h> /* Modified as indicated below */

2. Add the following lines to ntddtape.h.
#define LB_ACCESS FILE_READ_ACCESS | FILE_WRITE_ACCESS
#define M_MTI(x) CTL_CODE(IOCTL_BASE+2,x,METHOD_BUFFERED, LB_ACCESS)
#define IOCTL_TAPE_OBTAIN_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x0819,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_OBTAIN_VERSION CTL_CODE(IOCTL_TAPE_BASE, 0x081a,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_LOG_SELECT CTL_CODE(IOCTL_TAPE_BASE, 0x081c,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_TAPE_LOG_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x081d,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_LOG_SENSE10 CTL_CODE(IOCTL_TAPE_BASE, 0x0833,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_ENH_TAPE_LOG_SENSE10 CTL_CODE(IOCTL_TAPE_BASE, 0x0835, METHOD_BUFFERED,
FILE_READ_ACCESS)
#define IOCTL_TAPE_REPORT_MEDIA_DENSITY CTL_CODE(IOCTL_TAPE_BASE, 0x081e,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_OBTAIN_MTDEVICE (M_MTI(16))
#define IOCTL_CREATE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0826, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0825, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_ACTIVE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0827, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0823, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0824, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_ALLOW_DATA_OVERWRITE CTL_CODE(IOCTL_TAPE_BASE, 0x0828, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_PEW_SIZE
CTL_CODE(IOCTL_TAPE_BASE, 0x082C, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_QUERY_PEW_SIZE
CTL_CODE(IOCTL_TAPE_BASE, 0x082B, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_VERIFY_TAPE_DATA
CTL_CODE(IOCTL_TAPE_BASE, 0x082A, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_QUERY_RAO_INFO CTL_CODE(IOCTL_TAPE_BASE, 0x082E, METHOD_BUFFERED,
FILE_READ_ACCESS)

302 IBM Tape Device Drivers: Programming Reference

#define IOCTL_GENERATE_RAO CTL_CODE(IOCTL_TAPE_BASE, 0x082F, METHOD_BUFFERED,
FILE_READ_ACCESS)
#define IOCTL_RECEIVE_RAO CTL_CODE(IOCTL_TAPE_BASE, 0x0834, METHOD_BUFFERED,
FILE_READ_ACCESS)

CreateFile

The CreateFile entry point is called to make the driver and device ready for
input/output (I/O). Installing the driver in non-exclusive mode allows several
handles to the same TotalStorage device. If the driver was installed in exclusive
mode, by default only one active handle is allowed to a given TotalStorage device.
However, if more than one handle is needed for the same device, the
dwCreationDisposition parameter can be set to OPEN_ALWAYS in CreateFile()
function to create an extra handle. By using this flag the resulting handle has
limited functions. The driver allows the following IOCTLs only:

IOCTL_STORAGE_PERSISTENT_RESERVE_IN
IOCTL_STORAGE_PERSISTENT_RESERVE_OUT
IOCTL_SCSI_PASS_THROUGH_DIRECT with Cdb[0] set to INQUIRY (0x12)

The following code fragment illustrates a call to the CreateFile routine:
HANDLE ddHandle0, ddHandle1; // file handle for LUN0 and LUN1

/*
** Open for reading/writing on LUN0,
** where the device special file name is in the form of tapex and
** x is the logical device 0 to n - can be determined from Registry
**
** Open for media mover operations on LUN1,
** where the device special file name is in the form of
** changerx and x is the logical device 0 to n - can be determined from Registry

ddHandle0 = CreateFile(
"\\\\.\\tape0",
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
);

ddHandle1 = CreateFile(
"\\\\.\\changer0",
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);
/* Print msg if open failed for handle 0 or 1 */
if(ddHandlen == INVALID_HANDLE_VALUE)
{

printf("open failed for LUNn\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

The CloseHandle entry point is called to stop I/O to the driver and device. The
following code fragment illustrates a call to the CloseHandle routine:
BOOL rc;

rc = CloseHandle(

Chapter 6. Windows tape device drivers 303

|
|
|
|
|
|
|

ddHandle0
);

if (!rc)
{

printf("close failed\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

where ddHandle0 is the open file handle returned by the CreateFile call.

ReadFile

The ReadFile entry point is called to read data from tape. The caller provides a
buffer address and length, and the driver returns data from the tape to the buffer.
The amount of data that is returned never exceeds the length parameter.

See “Variable and fixed block read/write processing” on page 331 for a full
discussion of the read/write processing feature.

The following code fragment illustrates a ReadFile call to the driver:
BOOL rc;

rc = ReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nBufferSize,
LPDWORD lpBytesRead,
LPOVERLAPPED lpOverlapped

);
if(rc)
{

if (*lpBytesRead > 0)
printf("Read %d bytes\n", *lpBytesRead);

else
printf("Read found file mark\n");

}
else
{

printf("Error on read\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

Where hFile is the open file handle, lpBuffer is the address of a buffer in which
to place the data, nBufferSize is the number of bytes to be read, and lpBytesRead
is the number of bytes read.

If the function succeeds, the return value rc is nonzero.

WriteFile

The WriteFile entry point is called to write data to the tape. The caller provides the
address and length of the buffer to be written to tape. The physical limitations of
the drive can cause the write to fail. One example is attempting to write past the
physical end of the tape.

See “Variable and fixed block read/write processing” on page 331 for a full
discussion of the read/write processing feature.

The following code fragment illustrates a call to the WriteFile routine:

304 IBM Tape Device Drivers: Programming Reference

BOOL rc;

rc = WriteFile(
HANDLE hFile,
LPCVOID lpBuffer,
DWORD nBufferSize,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped
);

if (!rc)
{

printf("Error on write\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

Where hFile is the open file handle, lpBuffer is the buffer address, and
nBufferSize is the size of the buffer in bytes.

If the function succeeds, the return value rc is nonzero. The application also
verifies that all the requested data was written by examining the
lpNumberOfBytesWritten parameter. See “Write Tapemark” for details on
committing data on the media.

Write Tapemark

Application writers who are using the WriteFile entry point to write data to tape
must understand that the tape device buffers data in its memory and writes that
data to the media as those device buffers fill. Thus, a WriteFile call might return a
successful return code, but the data might not be on the media yet. Calling the
WriteTapemark entry point and receiving a good return code, however, ensures
that data is committed to tape media properly if all previous WriteFile calls were
successful. However, applications that write large amounts of data to tape might
not want to wait until writing a tapemark to know whether previous data was
written to the media properly. For example:
WriteTapemark(
HANDLE hDevice,
DWORD dwTapemarkType,
DWORD dwTapemarkCount,
BOOL bImmediate
);

dwTapemarkType is the type of operation requested.

The only type that is supported is
TAPE_FILEMARKS

The WriteTapemark entry point might also be called with the dwTapemarkCount
parameter set to 0 and the bImmediate parameter that is set to FALSE. This action
commits any uncommitted data that is written by previous WriteFile calls (since
the last call to WriteTapemark) to the media. If no error is returned by the
WriteFile calls and the WriteTapemark call, the application can assume that all
data is committed to the media successfully.

SetTapePosition

The SetTapePosition entry point is called to seek to a particular block of media
data. For example:

Chapter 6. Windows tape device drivers 305

SetTapePosition(
HANDLE hDevice,
DWORD dwPositionMethod,
DWORD dwPartition,
DWORD dwOffsetLow,
DWORD dwOffsetHigh,
BOOL bImmediate
);

dwPositionMethod is the type of positioning.

For Magstar devices, the following types of tapemarks and immediate values are
supported.

TAPE_ABSOLUTE_BLOCK bImmediate TRUE or FALSE
TAPE_LOGICAL_BLOCK bImmediate TRUE or FALSE

For Magstar devices, there is no difference between the absolute and logical block
addresses.

TAPE_REWIND bImmediate TRUE or FALSE
TAPE_SPACE_END_OF_DATA bImmediate FALSE
TAPE_SPACE_FILEMARKS bImmediate FALSE
TAPE_SPACE_RELATIVE_BLOCKS bImmediate FALSE
TAPE_SPACE_SEQUENTIAL_FMKS

GetTapePosition

The GetTapePosition entry point is called to retrieve the current tape position. For
example:
GetTapePosition(
HANDLE hDevice,
DWORD dwPositionType,
LPDWORD lpdwPartition,
LPDWORD lpdwOffsetLow,
LPDWORD lpdwOffsetHigh
);

dwPositionType is the type of positioning.

TAPE_ABSOLUTE_POSITION or TAPE_LOGICAL_POSITION might be
specified but only the absolute position is returned.

SetTapeParameters

The SetTapeParameters entry point is called to either specify the block size of a
tape or set tape device data compression. The data structures are
struct{ // structure used by operation SET_TAPE_MEDIA_INFORMATION
ULONG BlockSize;
}TAPE_SET_MEDIA_PARAMETERS;

struct{ // structure used by operation SET_TAPE_DRIVE_INFORMATION
BOOLEAN ECC; // Not Supported
BOOLEAN Compression; // Only compression can be set
BOOLEAN DataPadding; // Not Supported
BOOLEAN ReportSetmarks; // Not Supported
ULONG EOTWarningZoneSize; // Not Supported
}TAPE_SET_DRIVE_PARAMETERS;

306 IBM Tape Device Drivers: Programming Reference

SetTapeParameters(
HANDLE hDevice,
DWORD dwOperation,
LPVOID lpParameters
);

dwOperation is the type of information to set
(SET_TAPE_MEDIA_INFORMATION or SET_TAPE_DRIVE_INFORMATION).
For SET_TAPE_DRIVE_INFORMATION, only compression is changeable.

lpParameters is the address of either a TAPE_SET_MEDIA_PARAMETERS or a
TAPE_SET_DRIVE_PARAMETERS data structure that contains the parameters.

GetTapeParameters

The GetTapeParameters entry point is called to get information that describes the
tape or the tape drive.

The data structures are
struct{ // structure used by GET_TAPE_MEDIA_INFORMATION

LARGE_INTEGER Capacity; /* invalid for Magstar */
LARGE_INTEGER Remaining; /* invalid for Magstar */
DWORD BlockSize;
DWORD PartitionCount;
BOOLEAN WriteProtected;

}TAPE_GET_MEDIA_PARAMETERS;

struct{ // structure used by GET_TAPE_DRIVE_INFORMATION
BOOLEAN ECC;
BOOLEAN Compression;
BOOLEAN DataPadding;
BOOLEAN ReportSetmarks;
ULONG DefaultBlockSize;
ULONG MaximumBlockSize;
ULONG MinimumBlockSize;
ULONG MaximumPartitionCount;
ULONG FeaturesLow;
ULONG FeaturesHigh;
ULONG EOTWarningZoneSize;

}TAPE_GET_DRIVE_PARAMETERS;

The following code fragment illustrates a call to the GetTapeParameters routine.
DWORD rc;

rc = GetTapeParameters(
HANDLE hDevice,
DWORD dwOperation,
LPDWORD lpdwSize,
LPVOID lpParameters
);

if (rc)
{
printf("Error on GetTapeParameters\n");
printf("System Error = %d\n",GetLastError());
exit (-1);

}

Where hDevice is the open file handle, dwOperation is the type of information
requested (GET_TAPE_MEDIA_INFORMATION or
GET_TAPE_DRIVE_INFORMATION), and lpParameters is the address of the
returned data parameter structure.

If the function succeeds, the return value rc is ERROR_SUCCESS.

Chapter 6. Windows tape device drivers 307

PrepareTape

The PrepareTape entry point is called to prepare the tape for access or removal.
For example,
PrepareTape(
HANDLE hDevice,
DWORD dwOperation,
BOOL bImmediate
);

dwOperation is the type of operation requested.

The following types of operations and immediate values are supported:

TAPE_LOAD bImmediate TRUE or FALSE
TAPE_LOCK bImmediate FALSE
TAPE_UNLOAD bImmediate TRUE or FALSE
TAPE_UNLOCK bImmediate FALSE

EraseTape

The EraseTape entry point is called to erase all or a part of a tape. The erase is
completed from the current location. For example:
EraseTape(
HANDLE hDevice,
DWORD dwEraseType,
BOOL bImmediate
);

dwEraseType is the type of operation requested.

The following types of operations and immediate values are supported.

TAPE_ERASE_LONG bImmediate TRUE or FALSE

GetTapeStatus

The GetTapeStatus entry point is called to determine whether the tape device is
ready to process tape commands. For example,
GetTapeStatus(
HANDLE hDevice
);

hDevice is the handle to the device for which to get the device status.

DeviceIoControl

The DeviceIoControl function is described in the Microsoft Developer Network
(MSDN) Software Developer Kit(SDK) and Device Driver Developer Kit (DDK).

The DeviceIoControl function sends a control code directly to a specified device
driver, causing the corresponding device to complete the specified operation.
BOOL DeviceIoControl(
HANDLE hDevice, // handle to device of interest
DWORD dwIoControlCode, // control code of operation to perform
LPVOID lpInBuffer, // pointer to buffer to supply input data
DWORD nInBufferSize, // size of input buffer

308 IBM Tape Device Drivers: Programming Reference

LPVOID lpOutBuffer, // pointer to buffer to receive output data
DWORD nOutBufferSize, // size of output buffer
LPDWORD lpBytesReturned, // pointer to variable to receive output byte count
LPOVERLAPPED lpOverlapped // pointer to overlapped structure for \

asynchronous operation
);

Following is a list of the supported dwIoControlCode codes that are described in
the MSDN DDK and used through the DeviceIoControl API.

IOCTL_SCSI_PASS_THROUGH
Tape and medium changer.

IOCTL_SCSI_PASS_THROUGH_DIRECT
Tape and medium changer.

IOCTL_STORAGE_RESERVE
Tape and medium changer.

IOCTL_STORAGE_RELEASE
Tape and medium changer.

IOCTL_STORAGE_PERSISTENT_RESERVE_IN
Tape and medium changer.

IOCTL_STORAGE_PERSISTENT_RESERVE_OUT
Tape and medium changer.

IOCTL_CHANGER_EXCHANGE_MEDIUM
Medium changer not all changers.

IOCTL_CHANGER_GET_ELEMENT_STATUS
Medium changer if bar code Reader then VolTags supported.

IOCTL_CHANGER_GET_PARAMETERS
Medium changer.

IOCTL_CHANGER_GET_PRODUCT_DATA
Medium changer.

IOCTL_CHANGER_GET_STATUS
Medium changer.

IOCTL_CHANGER_INITIALIZE_ELEMENT_STATUS
Medium changer with range not supported by all changers.

IOCTL_CHANGER_MOVE_MEDIUM
Medium changer.

IOCTL_CHANGER_SET_ACCESS
Medium changer for IE Port only and not for all changers.

IOCTL_CHANGER_SET_POSITION
Medium changer only some devices support the transport object.

An example of the use of SCSI Pass Through is contained in the sample code
SPTI.C in the DDK.

The function call DeviceIoControl is described in the SDK and examples of its use
are shown in the DDK.

Chapter 6. Windows tape device drivers 309

|
|

|
|

Medium Changer IOCTLs

The Removable Storage Manager (RSM) must be stopped to use these ioctl
commands. RSM can be stopped from Computer Management (Local) > Services
and Applications > Services > Removable Storage.

IOCTL commands

Not all source or destination addresses, exchanges, moves, or operations are
allowed for a particular IBM Medium Changer. The user must issue an
IOCTL_CHANGER_GET_PARAMETER to determine the type of operations that
are allowed by a specific changer device. Further information on allowable
commands for a particular changer can be found in the IBM hardware reference
for that device. It is recommended that the user have a copy of the hardware
reference before any applications for the changer device are constructed.

IOCTL_CHANGER_EXCHANGE_MEDIUM

The media from the source element is moved to the first destination element. The
medium that previously occupied the first destination element is moved to the
second destination element (the second destination element might be the same as
the source) by sending an ExchangeMedium (0xA6) SCSI command to the device.
The input data is a structure of CHANGER_EXCHANGE_MEDIUM. This
command is not supported by all devices.

IOCTL_CHANGER_GET_ELEMENT_STATUS

Returns the status of all elements or of a specified number of elements of a
particular type by sending a ReadElementStatus (0xB8) SCSI command to the
device. The input and output data is a structure of
CHANGER_ELEMENT_STATUS.

IOCTL_CHANGER_GET_PARAMETERS

Returns the capabilities of the changer. The output data is in a structure of
GET_CHANGER_PARAMETERS.

IOCTL_CHANGER_GET_PRODUCT_DATA

Returns the product data for the changer. The output data is in a structure of
CHANGER_PRODUCT_DATA.

IOCTL_CHANGER_GET_STATUS

Returns the status of the changer by sending a TestUnitReady (0x00) SCSI
command to the device.

IOCTL_CHANGER_INITIALIZE_ELEMENT_STATUS

Initializes the status of all elements or a range of a particular element by sending
an InitializeElementStatus (0x07) or IntializeElementStatusWithRange (0xE7)
SCSI command to the device. The input data is a structure of
CHANGER_INITIALIZE_ELEMENT_STATUS.

310 IBM Tape Device Drivers: Programming Reference

IOCTL_CHANGER_MOVE_MEDIUM

Moves a piece of media from a source to a destination by sending a MoveMedia
(0xA5) SCSI command to the device. The input data is a structure of
CHANGER_MOVE_MEDIUM.

IOCTL_CHANGER_REINITIALIZE_TRANSPORT

Physically recalibrates a transport element by sending a RezeroUnit (0x01) SCSI
command to the device. The input data is a structure of CHANGER_ELEMENT.
This command is not supported by all devices.

IOCTL_CHANGER_SET_ACCESS

Sets the access state of the changers IE port by sending a
PrevenAllowMediumRemoval (0x1E) SCSI command to the device. The input data is
a structure of CHANGER_SET_ACCESS.

IOCTL_CHANGER_SET_POSITION

Sets the changers robotic transport to a specified address by sending a
PositionToElemen (0x2B) SCSI command to the device. The input data is a
structure of CHANGER_SET_POSITION.

Preempt reservation

A reservation can be preempted by issuing the appropriate IOCTL. The current
reservation key is needed to successfully preempt the reservation. The current
reservation key can be queried by issuing an
IOCTL_STORAGE_PERSISTENT_RESERVE_IN IOCTL:

PERSISTENT_RESERVE_COMMAND prcmd = { 0 };
PPRI_RESERVATION_LIST prsl = NULL;
ULONG AdditionalLength = 0;
DWORD BytesReturned = 0;
INT iStatus = 0, i, j;

UCHAR *bufDataRead = (UCHAR *) malloc(SENSE_BUFFER_SIZE * 2);

ZeroMemory(bufDataRead, SENSE_BUFFER_SIZE * 2);

prcmd.Size = sizeof(PERSISTENT_RESERVE_COMMAND);

prcmd.PR_IN.ServiceAction = RESERVATION_ACTION_READ_KEYS;
prcmd.PR_IN.AllocationLength = sizeof(PRI_REGISTRATION_LIST);

for (i = 0; i < 2; i++) {
if (0 == i)

AdditionalLength = sizeof(PRI_RESERVATION_LIST);

iStatus = DeviceIoControl(tape,
IOCTL_STORAGE_PERSISTENT_RESERVE_IN,
&prcmd,
prcmd.Size,
bufDataRead,
AdditionalLength,
&BytesReturned,
NULL);

if (0 == iStatus) {
free(bufDataRead);

Chapter 6. Windows tape device drivers 311

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

return FALSE;
}
prsl = (PPRI_RESERVATION_LIST)bufDataRead;

if (0 == i) {
AdditionalLength = (ULONG)((prsl->AdditionalLength[0] & 0xff) << 12);
AdditionalLength |= (ULONG)((prsl->AdditionalLength[1] & 0xff) << 8);
AdditionalLength |= (ULONG)((prsl->AdditionalLength[2] & 0xff) << 4);
AdditionalLength |= (ULONG) (prsl->AdditionalLength[3] & 0xff);

AdditionalLength += sizeof(PRI_RESERVATION_LIST);

prcmd.PR_IN.AllocationLength = AdditionalLength;
} else if (1 == i) {

for (j = 0; (j * sizeof(PRI_RESERVATION_DESCRIPTOR)
+ sizeof(PRI_RESERVATION_LIST))<= AdditionalLength; j++) {

printf("\nReservation 0x%08x%08x being examined at
descriptor index %d.\n",
((LARGE_INTEGER*)(prsl->Reservations[j].ReservationKey))
->HighPart,
((LARGE_INTEGER*)(prsl->Reservations[j].ReservationKey))
->LowPart,

j);
}

}
}

When the reservation key is known, it can be preempted, meaning a new host can
be the reservation holder, thus being able to interact with the target as needed.
PRI_RESERVATION_DESCRIPTOR reservation = { 0 };

PERSISTENT_RESERVE_COMMAND prcmd = { 0 };
PRO_PARAMETER_LIST prolist = { 0 };
DWORD BytesReturned = 0;
INT iStatus = 0;

UCHAR bufDataRead[sizeof(PERSISTENT_RESERVE_COMMAND)
+ sizeof(PRO_PARAMETER_LIST)] = { 0 };

prcmd.Size = sizeof(PERSISTENT_RESERVE_COMMAND) + sizeof(PRO_PARAMETER_LIST);

prcmd.PR_OUT.ParameterList[1] = 0x18;
prcmd.PR_OUT.ServiceAction = 0x3;
prcmd.PR_OUT.Type = 0x3;

query_reserve(tape, &reservation);

RtlCopyMemory(prolist.ReservationKey, reservation.ReservationKey, 8);
RtlCopyMemory(prolist.ServiceActionReservationKey,
reservation.ReservationKey, 8);

RtlCopyMemory(bufDataRead, &prcmd, sizeof(PERSISTENT_RESERVE_COMMAND));
RtlCopyMemory(bufDataRead + sizeof(PERSISTENT_RESERVE_COMMAND),
&prolist, sizeof(PRO_PARAMETER_LIST));

iStatus = DeviceIoControl(tape,
IOCTL_STORAGE_PERSISTENT_RESERVE_OUT,
bufDataRead,
sizeof(bufDataRead),
bufDataRead,
sizeof(bufDataRead),
&BytesReturned,
NULL);

The query_reserve function can be implemented as explained earlier. Finally, if the
reservation needs to be preempted on a different system than the original

312 IBM Tape Device Drivers: Programming Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

reservation holder, the OPEN_ALWAYS flag comes in handy. It allows the user to
query the target's serial number, then queries the reservation key, and preempts the
reservation.

Caution is advised when preempting reservations due to inherent risk of data loss
if done incorrectly. Applications must make sure that they are clearing or
preempting the appropriate reservation.

Vendor-specific (IBM) device IOCTLs for DeviceIoControl

The following descriptions are of the IBM vendor-specific ioctl requests for tape
and changer.
/*

This macro is defined in ntddk.h and devioctl.h
#define CTL_CODE(DeviceType, Function, Method, Access) \

(((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))
*/

The following ioctl commands are supported by the ibmtp.sys driver through
DeviceIoControl.
#define LB_ACCESS FILE_READ_ACCESS | FILE_WRITE_ACCESS
#define M_MTI(x) CTL_CODE(IOCTL_BASE+2,x,METHOD_BUFFERED, LB_ACCESS)
#define IOCTL_TAPE_OBTAIN_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x0819,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_OBTAIN_VERSION CTL_CODE(IOCTL_TAPE_BASE, 0x081a,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_LOG_SELECT CTL_CODE(IOCTL_TAPE_BASE, 0x081c,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_TAPE_LOG_SENSE CTL_CODE(IOCTL_TAPE_BASE, 0x081d,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_LOG_SENSE10 CTL_CODE(IOCTL_TAPE_BASE, 0x0833,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_ENH_TAPE_LOG_SENSE10 CTL_CODE(IOCTL_TAPE_BASE, 0x0835, METHOD_BUFFERED,
FILE_READ_ACCESS)
#define IOCTL_TAPE_REPORT_MEDIA_DENSITY CTL_CODE(IOCTL_TAPE_BASE, 0x081e,
METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_TAPE_OBTAIN_MTDEVICE (M_MTI(16))
#define IOCTL_CREATE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0826, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0825, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_ACTIVE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0827, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_QUERY_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0823, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0824, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_ALLOW_DATA_OVERWRITE CTL_CODE(IOCTL_TAPE_BASE, 0x0828, METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define IOCTL_SET_PEW_SIZE
CTL_CODE(IOCTL_TAPE_BASE, 0x082C, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_QUERY_PEW_SIZE
CTL_CODE(IOCTL_TAPE_BASE, 0x082B, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_VERIFY_TAPE_DATA
CTL_CODE(IOCTL_TAPE_BASE, 0x082A, METHOD_BUFFERED, FILE_READ_ACCESS)
#define IOCTL_QUERY_RAO_INFO CTL_CODE(IOCTL_TAPE_BASE, 0x082E, METHOD_BUFFERED,
FILE_READ_ACCESS)
#define IOCTL_GENERATE_RAO CTL_CODE(IOCTL_TAPE_BASE, 0x082F, METHOD_BUFFERED,
FILE_READ_ACCESS)
#define IOCTL_RECEIVE_RAO CTL_CODE(IOCTL_TAPE_BASE, 0x0834, METHOD_BUFFERED,
FILE_READ_ACCESS)

Chapter 6. Windows tape device drivers 313

|
|
|

|
|
|

IOCTL_TAPE_OBTAIN_SENSE

Issue this command after an error occurs to obtain sense information that is
associated with the most recent error. To guarantee that the application can obtain
sense information that is associated with an error, the application must issue this
command before other commands to the device are issued. Subsequent operations
(other than IOCTL_TAPE_OBTAIN_SENSE) reset the sense data field before the
operation is run.

This IOCTL is only available for the tape path.

The following output structure is completed by the IOCTL_TAPE_OBTAIN_SENSE
command that is passed by the caller.
#define MAG_SENSE_BUFFER_SIZE 96 /* Default request sense buffer size for \

Windows 200x */

typedef struct _TAPE_OBTAIN_SENSE {
ULONG SenseDataLength;
// The number of bytes of valid sense data.
// Will be zero if no error with sense data has occurred.
// The only sense data available is that of the last error.
CHAR SenseData[MAG_SENSE_BUFFER_SIZE];
} TAPE_OBTAIN_SENSE, *PTAPE_OBTAIN_SENSE;

An example of the IOCTL_TAPE_OBTAIN_SENSE command is
DWORD cb;
TAPE_OBTAIN_SENSE sense_data;
DeviceIoControl(hDevice,

IOCTL_TAPE_OBTAIN_SENSE,
NULL,
0,
&sense_data,
(long)sizeof(TAPE_OBTAIN_SENSE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_OBTAIN_VERSION

Issue this command to obtain the version of the device driver. It is in the form of a
null terminated string.

This IOCTL is only for the tape path.

The following output structure is completed by the IOCTL_TAPE_OBTAIN_VERSION
command.
#define MAX_DRIVER_VERSIONID_LENGTH 12

typedef struct _TAPE_OBTAIN_VERSION {
CHAR VersionId[MAX_DRIVER_VERSIONID_LENGTH];
} TAPE_OBTAIN_VERSION, *PTAPE_OBTAIN_VERSION;

An example of the IOCTL_TAPE_OBTAIN_VERSION command is
DWORD cb;
TAPE_OBTAIN_VERSION code_version;
DeviceIoControl(hDevice,

IOCTL_TAPE_OBTAIN_VERSION,
NULL,
0,

314 IBM Tape Device Drivers: Programming Reference

&code_version,
(long)sizeof(TAPE_OBTAIN_VERSION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SELECT

This command resets all log pages that can be reset on the device to their default
values. This IOCTL is only for the tape path.

An example of this command to reset all log pages follows.
DWORD cb;
DeviceIoControl(hDevice,

IOCTL_TAPE_LOG_SELECT,
NULL,
0,
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SENSE

Issue this command to obtain the log data of the requested log page from IBM
Magstar tape device. The data that is returned is formatted according to the IBM
Magstar hardware reference.

This IOCTL is only for the tape path.

The following input/output structure is used by the IOCTL_TAPE_LOG_SENSE
command.
#define MAX_LOG_SENSE 1024 // Maximum number of bytes the command will return
typedef struct _TAPE_LOG_SENSE_PARAMETERS{

UCHAR PageCode; // The requested log page code
UCHAR PC; // PC = 0 for maximum values, 1 for current value, 3 for power-on values
UCHAR PageLength[2]; /* Length of returned data, filled in by the command */
UCHAR LogData[MAX_LOG_SENSE]; /* Log data, filled in by the command */

} TAPE_LOG_SENSE_PARAMETERS, *PTAPE_LOG_SENSE_PARAMETERS;

An example of the IOCTL_TAPE_LOG_SENSE command is
DWORD cb;
TAPE_LOG_SENSE_PARAMETERS logsense;
logsense.PageCode=0;
logsense.PC = 1;

DeviceIoControl(hDevice,
IOCTL_TAPE_LOG_SENSE,
&logsense,
(long)sizeof(TAPE_LOG_SENSE_PARAMETERS,
&logsense,
(long)sizeof(TAPE_LOG_SENSE_PARAMETERS,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_LOG_SENSE10

Issue this command to obtain the log data of the requested log page/subpage from
IBM Magstar tape device. The data returned is formatted according to the IBM
Magstar hardware reference. This IOCTL is only for the tape path.

Chapter 6. Windows tape device drivers 315

The following input/output structure is used by the IOCTL_TAPE_LOG_SENSE10
command.
#define MAX_LOG_SENSE 1024 // Maximum number of bytes the command will return
typedef struct _TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE{

UCHAR PageCode; /* [IN] Log sense page */
UCHAR SubPageCode; /* [IN] Log sense subpage */
UCHAR PC; /* [IN] PC bit to be consistent with

previous Log Sense IOCTL */
UCHAR reserved[2]; /* unused */
ULONG PageLength; /* [OUT] number of valid bytes in data

(log_page_header_size+page_length)*/
ULONG parm_pointer; /* [IN] specific parameter number at which

the data begins */
CHAR LogData[MAX_LOG_SENSE_DATA]; /* [OUT] log sense data */

} TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE, *PTAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE;

An example of the IOCTL_TAPE_LOG_SENSE10 command is
DWORD cb;
TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE logsense;
logsense.PageCode=0x10;
logsense.PageCode=0x01;
logsense.PC = 1;
DeviceIoControl(hDevice,
IOCTL_TAPE_LOG_SENSE10,
&logsense, (long)sizeof(TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE,
&logsense, (long)sizeof(TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE,
&cb, (LPOVERLAPPED) NULL);

IOCTL_ENH_TAPE_LOG_SENSE10

Issue this command to obtain the log data of the requested log page/subpage from
IBM TotalStorage tape device. The data that is returned is formatted according to
the IBM TotalStorage hardware reference. This IOCTL is only for the tape path and
is enhanced so the application can set the page length and provide the buffer
enough to get the data back. The following input/output structure is used by the
IOCTL_ENH_TAPE_LOG_SENSE10 command.
typedef struct _ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE{

UCHAR PageCode; /* [IN] Log sense page */
UCHAR SubPageCode; /* [IN] Log sense subpage */
UCHAR PC; /* [IN] PC bit */
UCHAR reserved[5]; /* unused */
ULONG Length; /* [IN][OUT] number of valid bytes in data */

/* (log_page_header_size+page_length) */
ULONG parm_pointer; /* [IN] specific parameter number at which */

/* the data begins */
CHAR LogData[1]; /* [IN] log sense buffer allocated by */

/* application */
/* [OUT] log sense data */

} ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE, *PENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE;

An example of the IOCTL_ENH_TAPE_LOG_SENSE10 command is
DWORD cb;
char *logsense;
int pageLength = 256;
long lsize = sizeof(ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE) - sizeof
(CHAR) /*LogData[1]*/ + pageLength

logsense = malloc (lsize);
(ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE)logsense->PageCode=0x10;
(ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE)logsense->SubPageCode=0x01;
(ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE)logsense->PC = 1;
(ENH_TAPE_LOG_SENSE_PARAMETERS_WITH_SUBPAGE)logsense->Length = pageLength;
DeviceIoControl(hDevice,

316 IBM Tape Device Drivers: Programming Reference

IOCTL_ENH_TAPE_LOG_SENSE10,
&logsense, (long)lsize,
&logsense, (long)lsize,
&cb, (LPOVERLAPPED) NULL);

IOCTL_TAPE_REPORT_MEDIA_DENSITY

Issue this command to obtain the media density information on the loaded media
in the drive. If there is no media load, the command fails. This IOCTL is only for
the tape path.

The following output structure is completed by the
IOCTL_TAPE_REPORT_MEDIA_DENSITY command.
typedef struct_TAPE_REPORT_DENSITY{
ULONG PrimaryDensityCode; /* Primary Density Code */
ULONG SecondaryDensityCode; /* Secondary Density Code */
BOOLEAN WriteOk; /* 0 = does not support writing in this format */

/* 1 = support writing in this format */
ULONG BitsPerMM; /* Bits Per mm */
ULONG MediaWidth; /* Media Width */
ULONG Tracks; /* Tracks */
ULONG Capacity; /* Capacity in MegaBytes */

} TAPE_REPORT_DENSITY, *PTAPE_REPORT_DENSITY;

An example of the IOCTL_TAPE_REPORT_MEDIA_DENSITY command is
DWORD cb;
TAPE_REPORT_DENSITY tape_reportden;

DeviceIoControl (hDevice,
IOCTL_TAPE_REPORT_MEDIA_DENSITY,
NULL,
0,
&tape_reportden,
(long)sizeof(TAPE_REPORT_DENSITY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_OBTAIN_MTDEVICE

Issue this command to obtain the device number of a 3590 TotalStorage device in
an IBM 3494 Enterprise Tape Library. An error is returned if it is issued against a
3570 drive.

The following output structure is filled in by the IOCTL_TAPE_OBTAIN_MTDEVICE
command.
typedef ULONG TAPE_OBTAIN_MTDEVICE, *PTAPE_OBTAIN_MTDEVICE;

An example of the IOCTL_TAPE_OBTAIN_MTDEVICE command is
int *rc_ptr
DWORD cb;
TAPE_OBTAIN_MTDEVICE mt_device;

*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_TAPE_OBTAIN_MTDEVICE,
NULL,
0,
&mt_device,
(long)sizeof(TAPE_OBTAIN_MTDEVICE),
&cb,
(LPOVERLAPPED) NULL);

Chapter 6. Windows tape device drivers 317

if(*rc_ptr)
printf(fp, "\nntutil MTDevice Info : %x\n\n", mt_device);

else
/* Error handling code */

IOCTL_TAPE_GET_DENSITY

The IOCTL code for IOCTL_TAPE_GET_DENSITY is defined as follows.
#define IOCTL_TAPE_GET_DENSITY \
CTL_CODE(IOCTL_TAPE_BASE, 0x000c, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS).

The IOCTL reports density for supported devices by using the following structure.
typedef struct _TAPE_DENSITY
{

UCHAR ucDensityCode;
UCHAR ucDefaultDensity;
UCHAR ucPendingDensity;

} TAPE_DENSITY, *PTAPE_DENSITY;

An example of the IOCTL_TAPE_GET_DENSITY command is
TAPE_DENSITY tape_density = {0};

rc = DeviceIoControl(hDevice,
IOCTL_TAPE_GET_DENSITY,
NULL,
0,
&tape_density,
sizeof(TAPE_DENSITY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_DENSITY

The IOCTL code for IOCTL_TAPE_SET_DENSITY is defined as follows.
#define IOCTL_TAPE_SET_DENSITY \
CTL_CODE(IOCTL_TAPE_BASE, 0x000d, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

The IOCTL sets density for supported devices by using the following structure.
typedef struct _TAPE_DENSITY
{

UCHAR ucDensityCode;
UCHAR ucDefaultDensity;
UCHAR ucPendingDensity;

} TAPE_DENSITY, *PTAPE_DENSITY;

ucDensityCode is ignored. ucDefaultDensity and ucPendingDensity are set by using
the tape drive’s mode page 0x25. Caution must be taken when this IOCTL is
issued. An incorrect tape density might lead to data corruption.

An example of the IOCTL_TAPE_SET_DENSITY command is
TAPE_DENSITY tape_density;

// Modify fields of tape_density. For details, see the SCSI specification
// for your hardware.

rc = DeviceIoControl(hDevice,
IOCTL_TAPE_SET_DENSITY,
&tape_density,
sizeof(TAPE_DENSITY),

318 IBM Tape Device Drivers: Programming Reference

NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_GET_ENCRYPTION_STATE

This IOCTL command queries the drive's encryption method and state.

The IOCTL code for IOCTL_TAPE_GET_ENCRYPTION_STATE is defined as follows.
#define IOCTL_TAPE_GET_ENCRYPTION_STATE CTL_CODE(IOCTL_TAPE_BASE, 0x0820,

METHOD_BUFFERED, FILE_READ_ACCESS)

The IOCTL gets encryption states for supported devices by using the following
structure.
typedef struct _ENCRYPTION_STATUS
{

UCHAR ucEncryptionCapable; /* (1)Set this field as a boolean based on
the capability of the drive */

UCHAR ucEncryptionMethod; /* (2)Set this field to one of the
defines METHOD_* below */

UCHAR ucEncryptionState; /* (3)Set this field to one of the
#defines STATE_* below */

UCHAR aucReserved[13];
} ENCRYPTION_STATUS, *PENCRYPTION_STATUS;

#defines for METHOD.
#define ENCRYPTION_METHOD_NONE 0 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_METHOD_LIBRARY 1 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_SYSTEM 2 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_APPLICATION 3 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_CUSTOM 4 /* Only used in

GET_ENCRYPTION_STATE */
#define ENCRYPTION_ METHOD_UNKNOWN 5 /* Only used in

GET_ENCRYPTION_STATE */

#defines for STATE.
#define ENCRYPTION_STATE_OFF 0 /* Used in GET/SET_ENCRYPTION_STATE */
#define ENCRYPTION_STATE_ON 1 /* Used in GET/SET_ENCRYPTION_STATE */
#define ENCRYPTION_STATE_NA 2 /* Only used in GET_ENCRYPTION_STATE*/

An example of the IOCTL_TAPE_GET_ENCRYPTION_STATE command is
ENCRYPTION_STATUS scEncryptStat;
DeviceIoControl(hDevice,

IOCTL_TAPE_GET_ENCRYPTION_STATE,
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
,&cb
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_ENCRYPTION_STATE

This IOCTL command allows only set encryption state for application-managed
encryption.

Chapter 6. Windows tape device drivers 319

Note: On unload, some drive settings might be reset to default. To set the
encryption state, the application must issue this IOCTL after a tape is loaded and
at BOP.

The data structure that is used for this IOCTL is the same as for
IOCTL_GET_ENCRYPTION_STATE.
#define IOCTL_TAPE_SET_ENCRYPTION_STATE CTL_CODE(IOCTL_TAPE_BASE, 0x0821,

METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

An example of the IOCTL_TAPE_SET_ENCRYPTION_STATE command is
ENCRYPTION_STATUS scEncryptStat;
DeviceIoControl(hDevice,

IOCTL_TAPE_SET_ENCRYPTION_STATE,
&scEncryptStat,
sizeof(ENCRYPTION_STATUS),
,&scEncryptStat
sizeof(ENCRYPTION_STATUS),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_TAPE_SET_DATA_KEY

This IOCTL command is used to set the data key only for application-managed
encryption.

The IOCTL sets data keys for supported devices by using the following structure.
#define IOCTL_TAPE_SET_DATA_KEY CTL_CODE(IOCTL_TAPE_BASE, 0x0822,

METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define DATA_KEY_INDEX_LENGTH 12
#define DATA_KEY_RESERVED1_LENGTH 15
#define DATA_KEY_LENGTH 32
#define DATA_KEY_RESERVED2_LENGTH 48
typedef struct _DATA_KEY
{

UCHAR aucDataKeyIndex[DATA_KEY_INDEX_LENGTH];
UCHAR ucDataKeyIndexLength;
UCHAR aucReserved1[DATA_KEY_RESERVED1_LENGTH];
UCHAR aucDataKey[DATA_KEY_LENGTH];
UCHAR aucReserved2[DATA_KEY_RESERVED2_LENGTH];

} DATA_KEY, *PDATA_KEY;

An example of the IOCTL_TAPE_SET_DATA_KEY command is
DATA_KEY scDataKey;
/* fill in your data key and data key length, then issue DeviceIoControl */
DeviceIoControl(hDevice,

IOCTL_TAPE_SET_DATA_KEY,
&scDataKey,
sizeof(DATA_KEY),
&scDataKey,
sizeof(DATA_KEY),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_CREATE_PARTITION

This command is used to create one or more partitions on the tape. The tape must
be at BOT (partition 0 logical block id 0) before the command is issued or it fails.
The application must either issue this IOCTL_CREATE_PARTITION after a tape is

320 IBM Tape Device Drivers: Programming Reference

initially loaded or issue the IOCTL_SET_ACTIVE_PARTITION with the
partition_number and logical_clock_id fields that are set to 0 first.

The structure that is used to create partitions is
#define IOCTL_CREATE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0826,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _TAPE_PARTITION{

UCHAR type; /* Type of tape partition to create */
UCHAR number_of_partitions; /* Number of partitions to create */
UCHAR size_unit; /* IDP size unit of partition sizes below */
USHORT size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
/* Size can not be 0 and one partition */
/* size must be 0xFFFF to use the */
/* remaining capacity on the tape. */

UCHAR partition_method; /* partitioning type */
char reserved [31];
} TAPE_PARTITION, *PTAPE_PARTITION;

An example of the IOCTL_CREATE_PARTITION command is
DWORD cb;
TAPE_PARTITION tape_partition

...
DeviceIoControl(gp->ddHandle0,

IOCTL_CREATE_PARTITION,
&tape_partition,
(long)sizeof(TAPE_PARTITION),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_PARTITION

This command returns partition information for the current loaded tape.

The following output structure is completed by the IOCTL_QUERY_PARTITION
command.
#define IOCTL_QUERY_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0825,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define MAX_PARTITIONS 255
typedef struct _QUERY_PARTITION{

UCHAR max_partitions; /* Max number of supported partitions */
UCHAR active_partition; /* current active partition on tape */
UCHAR number_of_partitions; /* Number of partitions from 1 to max */
UCHAR size_unit; /* Size unit of partition sizes below */
USHORT size[MAX_PARTITIONS]; /* Array of partition sizes in size units */

/* for each partition, 0 to (number - 1) */
UCHAR partition_method; /* partitioning type */

char reserved [31];
} QUERY_PARTITION, *PQUERY_PARTITION;

An example of the IOCTL_QUERY_PARTITION command is
DWORD cb;
QUERY_PARTITION tape_query_partition;
DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_PARTITION,
NULL,
0,

Chapter 6. Windows tape device drivers 321

|

&tape_query_partition,
(long)sizeof(QUERY_PARTITION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_ACTIVE_PARTITION

This command is used to set the current active partition that is used on tape and
locate to a specific logical block id within the partition. If the logical block id is 0,
the tape is positioned at BOP. If the partition number specified is 0 along with a
logical block id 0, the tape is positioned at both BOP and BOT.

The structure for IOCTL_SET_ACTIVE_PARTITION command is
#define IOCTL_SET_ACTIVE_PARTITION CTL_CODE(IOCTL_TAPE_BASE, 0x0827,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _SET_ACTIVE_PARTITION{

UCHAR partition_number; /* Partition number 0-n to change to */
ULONGLONG logical_block_id; /* Blockid to locate to within partition */
char reserved[32];

} SET_ACTIVE_PARTITION, *PSET_ACTIVE_PARTITION;

An example of the IOCTL_SET_ACTIVE_PARTITION command is
DWORD cb;
SET_ACTIVE_PARTITION set_partition;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_SET_ACTIVE_PARTITION,
&set_partition,
(long)sizeof(SET_ACTIVE_PARTITION),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_DATA_SAFE_MODE

This command reports if the Data Safe Mode is enabled or disabled.

The following output structure is completed by the IOCTL_QUERY_DATA_SAFE_MODE
command.
#define IOCTL_QUERY_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0823,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _DATA_SAFE_MODE{

ULONG value;
} DATA_SAFE_MODE, *PDATA_SAFE_MODE;

An example of the IOCTL_QUERY_DATA_SAFE_MODE command is
DWORD cb;
DATA_SAFE_MODE tapeDataSafeMode;
DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_DATA_SAFE_MODE,
NULL,
0,
&tapeDataSafeMode,
(long)sizeof(DATA_SAFE_MODE),
&cb,
(LPOVERLAPPED) NULL);

322 IBM Tape Device Drivers: Programming Reference

IOCTL_SET_DATA_SAFE_MODE

This command enables or disables Data Safe Mode.

The structure that is used to enable or disable Data Safe Mode is the same as
IOCTL_QUERY_DATA_SAFE_MODE.

An example of the IOCTL_SET_DATA_SAFE_MODE command is
#define IOCTL_SET_DATA_SAFE_MODE CTL_CODE(IOCTL_TAPE_BASE, 0x0824,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
DATA_SAFE_MODE tapeDataSafeMode;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_SET_DATA_SAFE_MODE,
&tapeDataSafeMode,
(long)sizeof(DATA_SAFE_MODE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_ALLOW_DATA_OVERWRITE

This command allows previously written data on the tape to be overwritten. This
action happens when append only mode is enabled on the drive with either a
write type command or a format command is allowed on the
IOCTL_CREATE_PARTITION. Before this IOCTL is issued, the application must locate
to the partition number and logical block id within the partition where the data
overwrite or format occurs.

The data structure that is used for IOCTL_ALLOW_DATA_OVERWRITE to enable or
disable is
#define IOCTL_ALLOW_DATA_OVERWRITE CTL_CODE(IOCTL_TAPE_BASE, 0x0828,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct ALLOW_DATA_OVERWRITE{

UCHAR partition_number; /* Partition number 0-n to overwrite */
ULONGULONG logical_block_id; /* Blockid to overwrite to within partition */
UCHAR allow_format_overwrite; /* allow format if in data safe mode */
UCHAR reserved[32];

} ALLOW_DATA_OVERWRITE, *PALLOW_DATA_OVERWRITE;

An example of the IOCTL_ALLOW_DATA_OVERWRITE command is
ALLOW_DATA_OVERWRITE tapeAllowDataOverwrite;
...
DeviceIoControl(gp->ddHandle0,

IOCTL_ALLOW_DATA_OVERWRITE,
&tapeAllowDataOverwrite,
(long)sizeof(ALLOW_DATA_OVERWRITE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_READ_TAPE_POSITION

This command returns Position data in either the short, long, or extended form.
The type of data to return is specified by setting the data_format field to either
RP_SHORT_FORM, RP_LONG_FORM, or RP_EXTENDED_FORM.

Chapter 6. Windows tape device drivers 323

The data structures that are used with this IOCTL are
#define IOCTL_READ_TAPE_POSITION CTL_CODE(IOCTL_TAPE_BASE, 0x0829,
METHOD_BUFFERED, FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define RP_SHORT_FORM 0x00
#define RP_LONG_FORM 0x06
#define RP_EXTENDED_FORM 0x08

typedef struct _SHORT_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj position fields

are unknown */
perr: 1, /* 1 means the position fields have overflowed and

cannot be reported */
bpew :1; /* beyond programmable early warning */

UCHAR active_partition; /* current active partition */
UCHAR reserved[2];
UCHAR first_logical_obj_position[4]; /* current logical object position */
UCHAR last_logical_obj_position[4]; /* next logical object to be

transferred to tape */
UCHAR num_buffer_logical_obj[4]; /* number of logical objects in buffer */
UCHAR num_buffer_bytes[4]; /* number of bytes in buffer */
UCHAR reserved1; /* instead of the commented reserved1 */

} SHORT_DATA_FORMAT, *PSHORT_DATA_FORMAT;

typedef struct _LONG_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
rsvd1:2,
mpu:1, /* 1 means the logical file id field in unknown */
lonu:1,/* 1 means either the partition number or logical obj number field

are unknown */
rsvd2:1,
bpew :1;/* beyond programmable early warning */

CHAR reserved[6];
UCHAR active_partition; /* current active partition */
UCHAR logical_obj_number[8];/* current logical object position */
UCHAR logical_file_id[8]; /* number of filemarks from bop and

current logical position */
UCHAR obsolete[8];

}LONG_DATA_FORMAT, *PLONG_DATA_FORMAT;

typedef struct _EXTENDED_DATA_FORMAT {
UCHAR bop:1, /* beginning of partition */

eop:1, /* end of partition */
locu:1, /* 1 means num_buffer_logical_obj field is unknown */
bycu:1, /* 1 means the num_buffer_bytes field is unknown */
rsvd :1,
lolu:1, /* 1 means the first and last logical obj position fields

are unknown */
perr: 1,/* 1 means the position fields have overflowed and

can not be reported */
bpew :1;/* beyond programmable early warning */

UCHAR active_partition; /* current active partition */
UCHAR additional_length[2];
UCHAR num_buffer_logical_obj[4]; /* number of logical objects in buffer */
UCHAR first_logical_obj_position[8];/* current logical object position */
UCHAR last_logical_obj_position[8]; /* next logical object to be

transferred to tape */
UCHAR num_buffer_bytes[8]; /* number of bytes in buffer */
UCHAR reserved;

} EXTENDED_DATA_FORMAT, *PEXTENDED_DATA_FORMAT;

typedef struct READ_TAPE_POSITION{

324 IBM Tape Device Drivers: Programming Reference

UCHAR data_format; /* Specifies the return data format either
short, long or extended*/

union
{

SHORT_DATA_FORMAT rp_short;
LONG_DATA_FORMAT rp_long;
EXTENDED_DATA_FORMAT rp_extended;
UCHAR reserved[64];

} rp_data;
} READ_TAPE_POSITION, *PREAD_TAPE_POSITION;

An example of the READ_TAPE_POSITION command is
DWORD cb;
READ_TAPE_POSITION tapePosition;
*rc_ptr = DeviceIoControl(gp->ddHandle0,

IOCTL_READ_TAPE_POSITION,
&tapePosition,
(long)sizeof(READ_TAPE_POSITION),
&tapePosition,
(long)sizeof(READ_TAPE_POSITION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_TAPE_POSITION

This command is used to position the tape in the current active partition to either
a logical block id or logical filemark. The logical_id_type field in the IOCTL
structure specifies either a logical block or logical filemark.

The data structure that is used with this IOCTL is
#define IOCTL_SET_TAPE_POSITION_LOCATE16 CTL_CODE(IOCTL_TAPE_BASE, 0x0830,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
#define LOGICAL_ID_BLOCK_TYPE 0x00
#define LOGICAL_ID_FILE_TYPE 0x01

typedef struct _SET_TAPE_POSITION{
UCHAR logical_id_type; /* Block or file as defined above */
ULONGLONG logical_id; /* logical object or logical file to position to */
UCHAR reserved[32];

} SET_TAPE_POSITION, *PSET_TAPE_POSITION;

An example of the SET_TAPE_POSITION command is
DWORD cb;
SET_TAPE_POSITION tapePosition;

*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_SET_TAPE_POSITION_LOCATE16,
&tapePosition,
(long)sizeof(SET_TAPE_POSITION)
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_LBP

This command returns logical block protection information. The following output
structure is completed by the IOCTL_QUERY_LBP command.
#define IOCTL_QUERY_LBP CTL_CODE(IOCTL_TAPE_BASE, 0x0831,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _LOGICAL_BLOCK_PROTECTION {

Chapter 6. Windows tape device drivers 325

UCHAR lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
UCHAR lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT] ioctls */

#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

UCHAR lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT]
ioctls */

UCHAR lbp_w; /* protection info included in write data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR lbp_r; /* protection info included in read data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR rbdp; /* protection info included in recover buffer data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR reserved[26];
}LOGICAL_BLOCK_PROTECTION, *PLOGICAL_BLOCK_PROTECTION;

An example of the IOCTL_QUERY_LBP command is
*rc_ptr = DeviceIoControl(gp->ddHandle0,

IOCTL_QUERY_LBP,
NULL,
0,
&tape_query_LBP,
(long)sizeof(LOGICAL_BLOCK_PROTECTION),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_SET_LBP

This command sets logical block protection information. The following input
structure is sent to the IOCTL_SET_LBP command.
#define IOCTL_SET_LBP CTL_CODE(IOCTL_TAPE_BASE, 0x0832,
METHOD_BUFFERED,
FILE_READ_ACCESS | FILE_WRITE_ACCESS)
typedef struct _LOGICAL_BLOCK_PROTECTION {

UCHAR lbp_capable; /* [OUTPUT] the capability of lbp for QUERY ioctl only */
UCHAR lbp_method; /* lbp method used for QUERY [OUTPUT] and SET [INPUT]

ioctls */
#define LBP_DISABLE 0x00
#define REED_SOLOMON_CRC 0x01

UCHAR lbp_info_length; /* lbp info length for QUERY [OUTPUT] and SET [INPUT]
ioctls */

UCHAR lbp_w; /* protection info included in write data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR lbp_r; /* protection info included in read data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR rbdp; /* protection info included in recover buffer data */
/* a boolean for QUERY [OUTPUT] and SET [INPUT] ioctls */

UCHAR reserved[26];
}LOGICAL_BLOCK_PROTECTION, *PLOGICAL_BLOCK_PROTECTION;

An example of the IOCTL_SET_LBP command is
*rc_ptr = DeviceIoControl(gp->ddHandle0,
IOCTL_SET_LBP,
&tape_set_LBP,
(long)sizeof(LOGICAL_BLOCK_PROTECTION),
NULL,
0,
&cb,
LPOVERLAPPED) NULL);

IOCTL_SET_PEW_SIZE

This command is used to set Programmable Early Warning size.
#define IOCTL_SET_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082C, METHOD_BUFFERED, FILE_READ_ACCESS)

326 IBM Tape Device Drivers: Programming Reference

The structure that is used to set PEW size is
typedef struct _PEW_SIZE{

USHORT value;
} PEW_SIZE, *PPEW_SIZE;

An example of the IOCTL_SET_PEW_SIZE command is
DWORD cb;
PEW_SIZE pew_size;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_SET_PEW_SIZE,
&pew_size, (long)sizeof(PEW_SIZE),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_PEW_SIZE

This command is used to query Programmable Early Warning size.
#define IOCTL_QUERY_PEW_SIZE

CTL_CODE(IOCTL_TAPE_BASE, 0x082B, METHOD_BUFFERED, FILE_READ_ACCESS)

The structure that is used to query PEW size is
typedef struct _PEW_SIZE{

USHORT value;
} PEW_SIZE, *PPEW_SIZE;

An example of the IOCTL_QUERY_PEW_SIZE command is
DWORD cb;
PEW_SIZE pew_size;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_QUERY_PEW_SIZE,
NULL,
0,
&pew_size,
(long)sizeof(PEW_SIZE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_VERIFY_TAPE_DATA

This command is used to verify tape data. It uses the drive's error detection and
correction hardware to determine whether it can be recovered from the tape. It also
checks whether the protection information is present and validates correctly on
logical block on the medium. It returns a failure or a success.
#define IOCTL_VERIFY_TAPE_DATA

CTL_CODE(IOCTL_TAPE_BASE, 0x082A, METHOD_BUFFERED, FILE_READ_ACCESS)

The structure that is used to verify tape data is
typedef struct _VERIFY_DATA {

UCHAR reserved : 2; /* Reserved */
UCHAR vte: 1; /* [IN] verify to end-of-data */
UCHAR vlbpm: 1; /* [IN] verify logical block protection information */
UCHAR vbf: 1; /* [IN] verify by filemarks */
UCHAR immed: 1; /* [IN] return SCSI status immediately */
UCHAR bytcmp: 1; /* No use currently */
UCHAR fixed: 1; /* [IN] set Fixed bit to verify the length of

Chapter 6. Windows tape device drivers 327

each logical block */
UCHAR reseved[15];
ULONG verify_length; /* [IN] amount of data to be verified */

}VERIFY_DATA, *PVERIFY_DATA;

An example of the IOCTL_VERIFY_DATA command is
DWORD cb;
VERIFY_DATA verify_data;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_VERIFY_TAPE_DATA,
&verify_data,
sizeof(VERIFY_DATA),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_QUERY_RAO_INFO

This command is used to query the maximum UDS number and UDS size before
the Recommended Access Order list is generated and received (TS1140 or later).
The structure for the IOCTL_QUERY_RAO_INFO command is
#define UDS_WITHOUT_GEOMETRY 0
#define UDS_WITH_GEOMETRY 1

typedef struct _QUERY_RAO_INF{
CHAR uds_type; /*[IN] 0: UDS_WITHOUT_GEOMETRY

1: UDS_WITH_GEOMETRY */
CHAR reserved[7];USHORT max_uds_number; /* [OUT] Max UDS number supported

from drive */
USHORT max_uds_size; /* [OUT] Max single UDS size supported

from drive in bytes */
USHORT max_host_uds_number; /* [OUT] Max UDS number supported from

driver */
} QUERY_RAO_INFO, *PQUERY_RAO_INFO;

An example of the IOCTL_QUERY_RAO_INFO command is
QUERY_RAO_INFO qRAO;
...
qRAO.uds_type = udstype; //UDS_WITHOUT_GEOMETRY or UDS_WITH_GEOMETRY
*rc_ptr = DeviceIoControl(hDevice,

IOCTL_QUERY_RAO_INFO,&
qRAO,
sizeof(QUERY_RAO_INFO),
&qRAO,
sizeof(QUERY_RAO_INFO),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_GENERATE_RAO

This command is used to generate a Recommended Access Order list (TS1140 or
later). The UDS list is required as input. Use USD_DESCRIPTOR to build this list. The
structure for the IOCTL_GENERATE_RAO command is
#define UDS_WITHOUT_GEOMETRY 0
#define UDS_WITH_GEOMETRY 1

typedef struct _GENERATE_RAO{
CHAR process; /* [IN] Requested process to generate RAO list */

/* 0: no reorder UDS and no calculate locate time */
/* (not currently supported by the drive) */
/* 1: no reorder UDS but calculate locate time */

328 IBM Tape Device Drivers: Programming Reference

/* 2: reorder UDS and calculate locate time */
CHAR uds_type; /* [IN] 0: UDS_WITHOUT_GEOMETRY */

/* 1: UDS_WITH_GEOMETRY */
CHAR reserved1[2];
ULONG grao_list_length; /* [IN] The data length is allocated for GRAO list. */
CHAR reserved2[8];
CHAR grao_list[1]; /* [IN] the pointer is allocated to the size */

/* of grao_list_leng */
/* (uds_number * sizeof(struct grao_uds_desc)
/* +sizeof(struct grao_list_header)) */
/* and contains the data of GRAO parameter list. */
/* The uds number isn’t larger */
/* than max_host_uds_number in QUERY_RAO ioctl. */

} GENERATE_RAO, *PGENERATE_RAO;

typedef struct _UDS_DESCRIPTOR{
CHAR descLength[2];
CHAR reserved[3];
CHAR UDSName[10];
CHAR PartNum;
CHAR beginningLOI[8];
CHAR endingLOI[8];

}UDS_DESCRIPTOR, *PUDS_DESCRIPTOR;

An example of the IOCTL_GENERATE_RAO command is
UDS_SIZE 32
HEADER_SIZE 8

char *pGRAO;
...
long lGRAOsize = sizeof(GENERATE_RAO)-sizeof(CHAR)/*grao_list[1]
*/ + udsamount*UDS_SIZE + HEADER_SIZE;
pGRAO = malloc (lGRAOsize);
...
((PGRAO)pGRAO)->process = process;
((PGRAO)pGRAO)->uds_type = udstype;
((PGRAO)pGRAO)->grao_list_length = udsamount*UDS_SIZE + HEADER_SIZE;
...
((PGRAO_LIST_HEADER)((PGRAO)pGRAO)->grao_list)->addl_data = ((PGRAO)pGRAO)->
grao_list_length - HEADER_SIZE;
PopulateUDS ((PGRAO_LIST_HEADER)(((PGRAO)pGRAO)->grao_list)+HEADER_SIZE, udsamount);

*rc_ptr = DeviceIoControl(hDevice,
IOCTL_GENERATE_RAO,
pGRAO,
lGRAOsize,
NULL,
0,
&cb,
LPOVERLAPPED) NULL);

IOCTL_RECEIVE_RAO

This command is used to receive the generated Recommended Access Order list
(TS1140 and later).

The structure for IOCTL_RECEIVE_RAO command is
typedef struct _RECEIVE_RAO_LIST {

ULONG rrao_list_offset; /* [IN] The offset of receive RAO list to
/* begin returning data */

ULONG rrao_list_length; /* [IN/OUT] number byte of data length */
/* [IN] The data length is allocated for RRAO list
/* by application */
/* the length is (max_uds_size * uds_number + sizeof */

Chapter 6. Windows tape device drivers 329

/* (struct rrao_list_header) */
/* max_uds_size is reported in QUERY_RAO_INFO ioctl */
/* uds_number is the total UDS number requested */

from application */
/* in GENERATE_RAO ioctl */
/* [OUT] the data length is actual returned in RRAO list */
/* from the driver */

CHAR reserved[8];
CHAR rrao_list[1]; /* [IN/OUT] the data pointer of RRAO list */

}RECEIVE_RAO_LIST, *PRECEIVE_RAO_LIST;

An example of the IOCTL_RECEIVE_RAO command is
HEADER_SIZE 8
...
char pRRAO;
...
long lRRAOsize=sizeof(RECEIVE_RAO_LIST)-sizeof(CHAR)/*rrao_list[1]
*/ + udsamount*udssize+UDS_HEADER;
...
pRRAO = malloc (lRRAOsize);
...
((PRECEIVE_RAO_LIST) pRRAO)->rrao_list_offset = offset;
((PRECEIVE_RAO_LIST) pRRAO)->rrao_list_length = udsamount*udssize+UDS_HEADER;
...
*rc_ptr = DeviceIoControl(hDevice,

IOCTL_RECEIVE_RAO,
pRRAO,
lRRAOsize,
pRRAO,
lRRAOsize,
&cb,
(LPOVERLAPPED) NULL);

IOCTL_CHANGER_OBTAIN_SENSE

Issue this command after an error occurs to obtain sense information that is
associated with the most recent error. To guarantee that the application can obtain
sense information that is associated with an error, the application must issue this
command before other commands are issued to the device. Subsequent operations
(other than IOCTL_CHANGER_OBTAIN_SENSE) reset the sense data field before the
operation is run.

This IOCTL is only available for the changer path.
#define IOCTL_CHANGER_BASE FILE_DEVICE_CHANGER
#define IOCTL_CHANGER_OBTAIN_SENSE

CTL_CODE(IOCTL_CHANGER_BASE, 0x0819, METHOD_BUFFERED, FILE_READ_ACCESS)

The following output structure is completed by the IOCTL_CHANGER_OBTAIN_SENSE
command that is passed by the caller.
#define MAG_SENSE_BUFFER_SIZE 96 /* Default request sense buffer size for \
Windows 200x */
typedef struct _CHANGER_OBTAIN_SENSE {
ULONG SenseDataLength; // The number of bytes of valid sense data.

// Will be zero if no error with sense data has occurred.
// The only sense data available is that of the last error.

CHAR SenseData[MAG_SENSE_BUFFER_SIZE];
} CHANGER_OBTAIN_SENSE, *PCHANGER_OBTAIN_SENSE;

An example of the IOCTL_CHANGER_OBTAIN_SENSE command is
DWORD cb;
CHANGER_OBTAIN_SENSE sense_data;
DeviceIoControl(hDevice,

330 IBM Tape Device Drivers: Programming Reference

IOCTL_CHANGER_OBTAIN_SENSE,
NULL,
0,
&sense_data,
(long)sizeof(CHANGER_OBTAIN_SENSE),
&cb,
(LPOVERLAPPED) NULL);

IOCTL_MODE_SENSE

This command is used to get the Mode Sense Page/Subpage.
/**************************** GENERIC SCSI IOCTLS ****************************/
#define IOCTL_IBM_BASE ((’IBM’ << 8) | FILE_DEVICE_SCSI)

#define DEFINE_IBM_IOCTL(x) CTL_CODE(IOCTL_IBM_BASE, x, METHOD_BUFFERED, \
FILE_READ_ACCESS | FILE_WRITE_ACCESS)

#define IOCTL_MODE_SENSE DEFINE_IBM_IOCTL(0x003)

The structure that is used for this IOCTL is
typedef struct _MODE_SENSE_PARAMETERS
{

UCHAR page_code; /* [IN] mode sense page code */
UCHAR subpage_code; /* [IN] mode sense subpage code */
UCHAR reserved[6];
UCHAR cmd_code; /* [OUT] SCSI Command Code: this field is set with */

/* SCSI command code which the
device responded. */

/* x’5A’ = Mode Sense (10) */
/* x’1A’ = Mode Sense (6) */

CHAR data[MAX_MODESENSEPAGE]; /* [OUT] whole mode sense data include header,
block descriptor and page */

} MODE_SENSE_PARAMETERS, *PMODE_SENSE_PARAMETERS;

An example of the IOCTL_MODE_SENSE command is
DWORD cb;
MODE_SENSE_PARAMETERS mode_sense;
...
DeviceIoControl(gp->ddHandle0,
IOCTL_MODE_SENSE,
&mode_sense,
sizeof(MODE_SENSE_PARAMETERS),
NULL,
0,
&cb,
(LPOVERLAPPED) NULL);

Variable and fixed block read/write processing

In Windows 200x, tape APIs can be configured to manipulate tapes that use either
fixed block size or variable block size.

If variable block size is wanted, the block size must be set to zero. The
SetTapeParameters function must be called specifying the
SET_TAPE_MEDIA_INFORMATION operation. The function requires the use of a
TAPE_SET_MEDIA_PARAMETERS structure. The BlockSize member of the
structure must be set to the wanted block size. Any block size other than 0 sets the
media parameters to fixed block size. The size of the block is equal to the
BlockSize member.

In fixed block mode, the size of all data buffers used for reading and writing must
be a multiple of the block size. To determine the fixed block size, the

Chapter 6. Windows tape device drivers 331

GetTapeParameters function must be used. Specifying the
GET_TAPE_MEDIA_INFORMATION operation yields a
TAPE_GET_MEDIA_PARAMETERS structure. The BlockSize member of this
structure reports the block size of the tape. The size of buffers that are used in read
and write operations must be a multiple of the block size. This mode allows
multiple blocks to be transferred in a single operation. In fixed block mode,
transfer of odd block sizes (for example, 999 bytes) is not supported.

When reading or writing variable sized blocks, the operation cannot exceed the
maximum transfer length of the Host Bus Adapter. This length is the length of
each transfer page (typically 4 K) times the number of transfer pages (if set to 16,
the maximum transfer length for variable sized transfers is 64 K). This number can
be modified by changing the scatter-gather variable in the system registry, but this
action is not recommended because it uses up scarce system resources.

Reading a tape that contains variable sized blocks can be accomplished even
without knowing what size the blocks are. If a buffer is large enough to read the
data in a block, then the data is read without any errors. If the buffer is larger than
a block, then only data in a single block is read and the tape is advanced to the
next block.

The size of the block is returned by the read operation in the *pBytesRead
parameter. If a data buffer is too small to contain all of the data in a block, then a
couple of things occur. First, the data buffer contains data from the tape, but the
read operation fails and GetLastError returns ERROR_MORE_DATA. This error
value indicates that more data is in the block to be read. Second, the tape is
advanced to the next block. To reread the previous block, the tape must be
repositioned to the wanted block and a larger buffer must be specified. It is best to
specify as large a buffer as possible so that this issue does not occur.

If a tape contains fixed size blocks, but the tape media parameters are set to
variable block size, then no assumptions are made regarding the size of the blocks
on the tape. Each read operation behaves as described. The sizes of the blocks on
the tape are treated as variable, but happen to be the same size. If a tape has
variable size blocks, but the tape media parameters are set to fixed block size, then
the size of all blocks on the tape are expected to be the same fixed size. Reading a
block of a tape in this situation fails and GetLastError returns
ERROR_INVALID_BLOCK_LENGTH. The only exception is if the block size in
the media parameters is the same as the size of the variable block and the size of
the read buffer happens to be a multiple of the size of the variable block.

If ReadFile encounters a tapemark, the data up to the tapemark is read and the
function fails. (The GetLastError function returns an error code that indicates that
a tapemark was encountered.) The tape is positioned past the tapemark, and an
application can call ReadFile again to continue reading.

Event log

The Magstar or ibmtpxxx, ibmcgxxx, and Magchgr device drivers log certain data
to the Event Log when exceptions are encountered.

To interpret this event data, the user must be familiar with the following
components:
v Microsoft Event Viewer

332 IBM Tape Device Drivers: Programming Reference

|
|

v The SDK and DDK components from the Microsoft Development Network
(MSDN)

v Magstar and Magstar MP hardware terminology
v SCSI terminology

Several bytes of "Event Detail" data are logged under Source = Magstar or
Magchgr (for Windows NT), or under Source = ibmtpxxx or ibmcgxxx (for
Windows 2000; Windows Server 2003, Windows Server 2008, and Windows Server
2012).

The following description texts are expected:
v The description for Event ID (0) in Source (MagStar or ibmtpxxx) was not

found. It contains the following insertion strings: \Device\Tapex.
v The description for Event ID (x) in Source (MagChgr) was not found.

The user must view the event data in Word format to properly decode the data.

Table 6 and Table 7 on page 334 indicate the hexadecimal offsets, names, and
definitions for Magstar or ibmtpxxx and ibmcgxxx event data. Magchgr event data
has a unique format that appears later in this chapter.

Table 6. Magstar ibmtpxxx, and ibmcgxxx event data

Offset Name Definition

0x00-0x01 DumpDataSize Indicates the size in bytes required for any
DumpData the driver places in the packet.

0x02 RetryCount Indicates how many times the driver tried
the operation and encountered this error.

0x03 MajorFunctionCode Indicates the IRP_MJ_XXX from the driver’s
I/O stack location in the current IRP (from
NTDDK.H).

0x0C-0x0F ErrorCode For the Magstar device driver, it is 0. For
the Magchgr device driver, it is always
0xC00400B
(IO_ERR_CONTROLLER_ERROR, from
NTIOLOGC.H).

0x10-0x13 UniqueErrorValue Reserved

0x14-0x17 FinalStatus Indicates the value that is set in the I/O
status block of the IRP when it was
completed or the STATUS_XXX returned by
a support routine the driver called (from
NTSTATUS.H).

0x1C-0x1F IoControlCode For the Magstar device driver, it indicates
the I/O control code from the driver’s I/O
stack location in the current IRP if the
MajorFunctionCode is
IRP_MJ_DEVICE_CONTROL. Otherwise,
this value is 0. For the Magchgr device
driver, it indicates the I/O control code
from the driver’s I/O stack location in the
current IRP.

0x28 Beginning of Dump
Data

The following items are variable in length.
See the DDK and SCSI documentation for
details.

Chapter 6. Windows tape device drivers 333

Table 6. Magstar ibmtpxxx, and ibmcgxxx event data (continued)

Offset Name Definition

0x38 Beginning of SRB
structure

The SCSI Request Block (from NTDDK.H).

0X68 Beginning of CDB
structure

The Command Descriptor Block (from
SCSI.H).

0x78 Beginning of SCSI
Sense Data

(from SCSI.H). If the first word in this field
is 0x00DF0000 (SCSI error marker) or
0x00EF0000 (Non-SCSI error marker), no
valid sense information was available for
this error.

For example, ibmcgxxx logs the following error when a move medium is
attempted and the destination element is full. Explanations of selected fields
follow.
0000: 006c000f 00c40001 00000000 c004000b
0010: bcde7f48 c0000284 00000000 00000000
0020: 00000000 00000000 00000000 000052f4
0030: 00000000 00000000 004000c4 02000003
0040: 600c00ff 00000028 00000000 00000258
0050: 00000000 814dac28 00000000 bcde7f48
0060: 81841000 00000000 a5600000 00200010
0070: 00000000 00000000 70000500 00000058
0080: 00000000 3b0dff02 00790000 0000093e
0090: 00000000

Table 7. Magstar ibmtpxxx, and ibmcgxxx event data

Field Value Definition

DumpDataSize 0x006C 6C hex (108 dec) bytes of dump data, beginning
at byte 28 hex.

RetryCount 0x00 The first time that the operation is attempted (no
retries).

MajorFunctionCode 0x0F IRP_MJ_INTERNAL_DEVICE_CONTROL

FinalStatus 0xC0000284 STATUS_DESTINATION_ELEMENT_FULL

IoControlCode 0x00000000 -

SRB 0x004000C4... From NTDDK.H, the first word of the SRB
indicates the length of the SRB (40 hex bytes, 64
dec bytes), the function code (0x00), and the
SrbStatus (from SRB.H, 0xC4 =
SRB_STATUS_AUTOSENSE_VALID,
SRB_STATUS_QUEUE_FROZEN,
SRB_STATUS_ERROR).

CDB 0xA5... From SCSI.H, the first byte of the CDB is the
operation code. 0xA5 =
SCSIOP_MOVE_MEDIUM.

Sense Data 0x70000500... From SCSI.H, the first word of the sense data
indicates the error code (0x70), the segment
number (0x00), and the sense key (0x05,
corresponding to an illegal SCSI request).

Table 8 on page 335 and Table 9 on page 336 contain definitions for event data that
is logged under Magchgr.

334 IBM Tape Device Drivers: Programming Reference

Table 8. Magchgr event data

Offset Name Definition

0x00-0x01 DumpDataSize Indicates the size in bytes required for any
DumpData the driver places in the packet.

0x02 RetryCount Indicates how many times the driver tried
the operation and encountered this error.

0x03 MajorFunctionCode Indicates the IRP_MJ_XXX from the driver’s
I/O stack location in the current IRP (from
NTDDK.H).

0x0C-0x0F ErrorCode For the Magstar device driver, it is 0. For
the Magchgr device driver, it is always
0xC00400B (IO_ERR_CONTROLLER_ERR)
(from NTIOLOGC.H).

0x10-0x13 UniqueErrorValue Reserved

0x14-0x17 FinalStatus Indicates the value that is set in the I/O
status block of the IRP when it was
completed or the STATUS_XXX returned by
a support routine the driver called (from
NTSTATUS.H).

0x1C-0x1F IoControlCode For the Magstar device driver, it indicates
the I/O control code from the driver I/O
stack location in the current IRP if the
MajorFunctionCode is
IRP_MJ_DEVICE_CONTROL. Otherwise,
this value is 0. For the Magchgr device
driver, it indicates the I/O control code
from the driver’s I/O stack location in the
current IRP.

0x29 PathId SCSI Path ID

0x2A TargetId SCSI Target ID

0x2B LUN SCSI Logical Unit Number

0x2D CDB[0] Command Operation Code

0x2E SRB_STATUS See MINITAPE.H or SRB.H.

0x2F SCSI_STATUS See SCSI.H or a SCSI specification.

0x30-0x33 Timeout Value For the Magstar device driver, this value is
always 0. For the Magchgr device driver,
this value is the command timeout value in
seconds.

0x38 FRU or Sense Byte 14 For the Magstar device driver, this value is
the Field Replaceable Unit Code. For the
Magchgr device driver, this value is Sense
Byte 14.

0x39 SenseKeySpecific[0] Indicates Sense Key Specific byte (Sense
Byte 15).

0x3A SenseKeySpecific[1]
or CDB length

If valid sense data was returned,
SenseKeySpecific[1] (Sense Byte 16) is
displayed. Otherwise, the CDB length is
displayed. See offset 0x3D to determine
whether valid sense data is returned.

Chapter 6. Windows tape device drivers 335

Table 8. Magchgr event data (continued)

Offset Name Definition

0x3B SenseKeySpecific[2]
or CDB[0]

If valid sense data was returned,
SenseKeySpecific[2] (Sense Byte 17) is
displayed. Otherwise, the CDB operation
code is displayed. See offset 0x3D to
determine whether valid sense data is
returned.

0x3C Sense Byte 0 Indicates the first byte of returned sense
data.

0x3D Sense Byte 2 Indicates the second byte of returned sense
data. This byte contains the Sense Key and
other flags. If the byte is set to 0xDF (SCSI
Error Marker) or 0xEF (Non-SCSI Error
Marker), no valid sense information was
available for the error.

0x3E ASC or SRB_STATUS Indicates Sense Byte 12, if there was valid
sense information. Otherwise, the SRB
status value is given here. See offset 0x3D
to determine whether valid sense data is
returned.

0x3F ASCQ or
SCSI_STATUS

Indicates Sense Byte 13, if there was valid
sense information. Otherwise, the SCSI
status value is given here. See offset 0x3D
to determine whether valid sense data is
returned.

For example,
0000: 0018000f 006c0001 00000000 00000000
0010: 00000000 c0000185 00000000 00000000
0020: 00000000 00000000 00000300 0015c402
0030: 00000000 00000000 f50ac607 700b4b00

Table 9. Magchgr event data

Field Value Definition

DumpDataSize 0x0018 -

RetryCount 0x00 -

MajorFunctionCode 0x0F IRP_MJ_INTERNAL_DEVICE_CONTROL

FinalStatus 0xC0000185 STATUS_IO_DEVICE_ERROR

IoControlCode 0x00000000 -

PathId 0x00 -

TargetId 0x03 -

LUN 0x00 -

CDB[0] 0x15 Mode Select, Byte 6

SRB_STATUS 0xC4 SRB_STATUS_AUTOSENSE_VALID,
SRB_STATUS_QUEUE_FROZEN,
SRB_STATUS_ERROR

SCSI_STATUS 0x02 Check condition

FRU 0xF5 -

Sense Key Specific
Sense Bytes 15 - 17

0x0AC607 -

336 IBM Tape Device Drivers: Programming Reference

Table 9. Magchgr event data (continued)

Field Value Definition

Sense Byte 0 0x70 -

Sense Key Sense Byte
2

0xb4 -

ASC 0x4B -

ACSQ 0x00 -

Chapter 6. Windows tape device drivers 337

338 IBM Tape Device Drivers: Programming Reference

Chapter 7. 3494 Enterprise tape library driver

AIX 3494 Enterprise tape library driver

After the driver is installed and a library manager control point (LMCP) is
configured and made available for use, access is provided through the special files.
These special files, which are the standard AIX special files for the character device
driver, are in the dev directory. Each instance of an LMCP has exactly one special
file that is associated with it.

Opening the Special File for I/O

The LMCP special file is opened for access by the standard AIX open command.
The device driver ignores any flags that are associated with the open call (although
the calling convention specifies that the flags parameter must be present). The open
command is
fd = open("/dev/lmcp0", O_RDONLY);

Header definitions and structure

The input/output control (IOCTL) request has the following header definition and
structure.
#include <sys/mtlibio.h>

The syntax of the IOCTL request is
int ioctl(int fildes, int request, void *arg);

Parameters

You can set some of the parameters for the header definitions and structure as
follows:

fildes Specifies the file descriptor that is returned from an open system call.

request
Specifies the command that is completed on the device.

arg Specifies the individual operation.

Reading and writing the Special File

The read and write entry points are not available in the library device driver. Any
call that is made to the read or write subroutine results in a return code of
ENODEV.

Closing the Special File

The file descriptor that is returned by the open command is used as the parameter
for the close routine:
rc = close(fd);

© Copyright IBM Corp. 1999, 2016 339

The errno value that is set during a close operation indicates whether a problem
occurred while the special file is closed. In the case of the LMCP device, the only
value of errno is ENXIO (error occurs from internal code bug).

See “3494 Enterprise tape library system calls” on page 348 for information.

HP-UX 3494 Enterprise tape library driver

After the HP-UX 3494 Enterprise tape library driver is installed and started, an
application might use subroutines that are provided with the software to access an
Enterprise tape library.

Opening the library device

Before you can issue commands to the library, you must first use the open_ibmatl
subroutine to open it. This subroutine call is similar in structure to the open
system call. The syntax of the command is
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library that is defined in the
/etc/ibmatl.conf file. If it is successful, the subroutine returns a positive integer that
is used as the file descriptor for future library operations. If it is not successful, the
subroutine returns -1 and sets errno to one of the following values:

ENODEV
The library that is specified by the lib_name parameter is not known to the
lmcpd.

EIO The lmcpd is not running or a socket error occurred while it was
communicating with the lmcpd.

Closing the library device

In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is
int close_ibmatl(int ld);

The ld is the library file descriptor that is returned for the open_ibmatl command.
If it is successful, the close_ibmatl command returns 0. If it is not successful, this
command returns -1, and the errno variable is set to EBADF. (The library file
descriptor that is passed to the close_ibmatl is not valid.)

Issuing the library commands

To issue commands to the library, use the ioctl_ibmatl command. The format of
the command is the same as the UNIX input/output control (IOCTL) system call.
The syntax of the command is
int ioctl_ibmatl (

int ld,
int request,
void *arg);

Parameters

Certain parameters are set for the library commands, as follows.

340 IBM Tape Device Drivers: Programming Reference

ld Specifies the library file descriptor that is returned from an open_ibmatl
call.

request
Specifies the command that is completed on the device.

arg Specifies the pointer to the data that is associated with the particular
command.

Building and linking applications with the library subroutines

An application that uses HP-UX Tape Library Driver commands and functions
must include the driver interface definition header file that is provided with the
lmcpd package and installed in the /usr/include/sys subdirectory. Include this
header file in the application as follows,
#include <sys/mtlibio.h>

An application that uses the HP-UX 3494 Enterprise Tape Library Driver
commands and functions must also be linked with either the 32-bit
(/usr/lib/libibm.o) or the 64-bit (/usr/lib/libibm64.o) driver interface C object
module that is provided with the lmcpd package, depending on whether the
application is a 32-bit or a 64-bit application. Link a 32-bit application program
with the 3494 object module as follows,
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links
the libibm.o library object module to the myapp.o object module to create the
executable myapp file.

A 64-bit application program is built by following the instructions for a 32-bit
application, except it uses /usr/lib/libibm64.o instead of /usr/lib/libibm.o when
linking.

The two 3494 driver interface C object modules that contain position independent
code (PIC) are also created with the +z or +Z compiler option. An application can
use either the 32 bit (usr/lib/libibmz.o) or the 64 bit (usr/lib/libibm64z.o) in the
lmcpd package. Which one is used to make a shared library with its own PIC
object files depend on whether the application is a 32-bit or a 64-bit application.
Create a 32-bit shared library with the 3494 PIC object module as follows.
ld -b -o lib3494.sl myappz1.o myappz2.o /usr/lib/libibmz.o

The ld command combines the libibmz.o library PIC object module with the
myappz1.o and myappz2.o PIC object modules to build the shared library named
lib3494.sl.

A 64-bit shared library is created by following the instructions for a 32-bit shared
library, except it uses /usr/lib/libibm64z.o instead of /usr/lib/libibmz.o.

Linux 3494 Enterprise tape library driver

After the Linux 3494 Enterprise Tape Library Driver is installed and started, an
application might use subroutines that are provided with the software to access an
Enterprise tape library.

Chapter 7. 3494 Enterprise tape library driver 341

Opening the library device

Before you can issue commands to the library, you must first use the open_ibmatl
subroutine to open it. This subroutine call is similar in structure to the open
system call. The syntax of the command is
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library that is defined in the
/etc/ibmatl.conf file. If it is successful, the subroutine returns a positive integer that
is used as the file descriptor for future library operations. If it is not successful,
then the subroutine returns -1 and sets errno to one of the following values.

ENODEV
The library that is specified by the lib_name parameter is not known to the
lmcpd.

EIO The lmcpd is not running or a socket error occurred while it was
communicating with the lmcpd. An input/output error.

Closing the library device

In the same manner that you close a file with the Linux close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is
int close_ibmatl(int ld);

The ld is the library file descriptor that is returned for the open_ibmatl command.
If it is successful, the close_ibmatl command returns 0. If it is not successful, this
command returns -1, and the errno variable is set to EBADF. (The library file
descriptor that is passed to the close_ibmatl is not valid.)

Issuing the library commands

To issue commands to the library, use the ioctl_ibmatl command. The format of
the command is the same as the UNIX input/output control (IOCTL) system call.
The syntax of the command is
int ioctl_ibmatl(

int ld,
int request,
void *arg);

Parameters

You can set some parameters on the library commands.

ld Specifies the library file descriptor that is returned from an open_ibmatl
call.

request
Specifies the command that is completed on the device.

arg Specifies the pointer to the data associated with the particular command.

342 IBM Tape Device Drivers: Programming Reference

Building and linking applications with the library subroutines

An application that uses Linux Tape Library Driver commands and functions must
include the driver interface definition header file that is provided with the lmcpd
package and installed in the /usr/include/sys subdirectory. Include this header file
in the application as follows,
#include <sys/mtlibio.h>

A 32- or 64-bit application that uses the library driver commands and functions
must be linked with the /usr/lib/libibm.o driver interface C object module
provided with the ibmatl package. Link a 32- or 64-bit application program with
the 3494 object module as follows,
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

Note: libibm.o is a 64-bit object file for Intel IA64 and 64-bit zSeries architectures,
but is a 32-bit object file for the other architectures.

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links
the libibm.o library object module to the myapp.o object module to create the
executable myapp file.

SGI IRIX 3494 Enterprise tape library

The following software development files are installed with the IBM automated
tape library software.
/usr/include/sys/mtlibio.h
/usr/lib/libibm.o

If you are developing software applications for the IBM Enterprise tape library,
you must include the mtlibio.h header file in your source program by adding the
following line.
#include <sys/mtlibio.h>

In addition, you must include the libibm.o object file when you compile and link
your program. For example:
cc -o myprogram myprogram.c /usr/lib/libibm.o

The libibm.o object file provides the open_ibmatl, ioctl_ibmatl, and close_ibmatl
functions for interfacing with the IBM Enterprise tape library. The function
prototypes are defined mtlibio.h. These functions use the same system call
conventions as open, ioctl, and close. If the function fails, -1 is returned and the
global errno value is set to indicate the error. Otherwise, a nonnegative value is
returned.

The following example uses these functions.
#include <sys/mtlibio.h>

int myfunction(char *libname)
{

int rc,fd;
struct mtdevinfo devices;
/* open a library defined in the ibmatl.conf file */
fd=open_ibmatl(libname);

Chapter 7. 3494 Enterprise tape library driver 343

if(fd<0) return errno;

/* query devices */
rc=ioctl_ibmatl(fd,MTIOCLDEVINFO,&devices);
if(rc<0) rc=errno;

/* close library */
close_ibmatl(fd);
return rc;

}

Solaris 3494 Enterprise tape library driver

After the Solaris 3494 Enterprise tape library driver is installed and started, an
application can access an Enterprise tape library by using subroutines that are
provided with the software installation.

Opening the library device

Before you can issue commands to the library, you must first open it by using the
open_ibmatl subroutine. This subroutine call is similar in structure to the open
system call. The syntax of the command is
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library that is defined in the
/etc/ibmatl.conf file. If it is successful, the subroutine returns a positive integer that
is used as the file descriptor for future library operations. If it is not successful, the
subroutine returns -1 and sets errno to one of the following values:

ENODEV
The library that is specified by the lib_name parameter is not known to the
lmcpd.

EIO The lmcpd is not running or a socket error occurred while it was
communicating with the lmcpd. An input/output error.

Closing the library device

In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is
int close_ibmatl(int ld);

The ld is the library file descriptor that was returned for the open_ibmatl
command. If it is successful, the close_ibmatl command returns 0. If it is not
successful, this command returns -1, and the errno variable is set to EBADF. (The
library file descriptor that is passed to the close_ibmatl is not valid.)

Issuing the library commands

To issue commands to the library, use the ioctl_ibmatl command. The format of
the command is the same as the UNIX input/output control (IOCTL) system call.
The syntax of the command is
int ioctl_ibmatl(

int ld,
int request,
void *arg);

344 IBM Tape Device Drivers: Programming Reference

Parameters

Some parameters can be set for the library commands, as follows.

ld Specifies the library file descriptor that is returned from an open_ibmatl
call.

request
Specifies the command that is completed on the device.

arg Specifies the pointer to the data that is associated with the particular
command.

Building and linking applications with the library subroutines

An application that uses the Solaris 3494 Enterprise tape library driver commands
and functions must include the driver interface definition header file that is
provided with the lmcpd package. It is installed in the /usr/include/sys
subdirectory. Include this header file in the application as follows:
#include <sys/mtlibio.h>

An application that uses the library driver commands and functions must be
linked with either the 32-bit (/usr/lib/libibm.o) or the 64-bit (/usr/lib/libibm64.o)
driver interface C object module. It is provided with the ibmatl package. Which
one is used depends on whether the application is a 32-bit or a 64-bit application.
Link a 32-bit or a 64-bit application program with the 3494 object module as
follows:
cc -c -o myapp.o myapp.c
cc -o myapp myapp.o /usr/lib/libibm.o

For 64-bit IBM zSeries systems only, link the application program with the 3494
object module as follows:
cc -c -o myapp64.o myapp64.c
cc -o myapp64 myapp64.o /usr/lib/libibm64.o

The first cc command compiles the user application but suppresses the link
operation, producing the myapp.o object module. The second cc command links
the libibm.o library object module to the myapp.o object module to create the
executable myapp file.

Windows 3494 Enterprise tape library service

After all of the software is installed on the system and the library service is started,
access to the library is accomplished by using the subroutines provided in the
libibm module installed in the c:\winnt\system32 directory.

Opening the library device

Before you can issue commands to the library, you must first open it using the
open_ibmatl subroutine. This subroutine call is similar in structure to the open
system call. The syntax of the command is
int open_ibmatl(char *lib_name);

The lib_name is a symbolic name for a library that is defined in the
/etc/ibmatl.conf file. If it is successful, the subroutine returns a positive integer that

Chapter 7. 3494 Enterprise tape library driver 345

is used as the file descriptor for future library operations. If it is not successful, the
subroutine returns -1 and sets errno to one of the following values:

ENODEV
The library that is specified by the lib_name parameter is not known to the
library service.

EIO The library service is not running or a socket error occurred during
communication with the library service. An input/output error.

Closing the library device

In the same manner that you close a file with the UNIX close system call, close the
library file descriptor when you are finished issuing commands to the library. The
syntax of the close_ibmatl command is
int close_ibmatl(int ld);

The ld is the library file descriptor that was returned for the open_ibmatl
command. If it is successful, the close_ibmatl command returns zero. If it is not
successful, this command returns -1 and the errno variable is set to EBADF. (The
library file descriptor that is passed to the close_ibmatl is not valid.)

Issuing the library commands

To issue commands to the library, use the ioctl_ibmatl command. The format of
the command is the same as the UNIX input/output control (IOCTL) system call.
The syntax of the command is
int ioctl_ibmatl(

int ld,
int request,
void *arg);

Parameters

You can specify some parameters for library commands, as follows.

ld Specifies the library file descriptor that is returned from an open_ibmatl
call.

request
Specifies the command that is completed on the device.

See “3494 Enterprise tape library system calls” on page 348 for commands
that can be issued to the library.

arg Specifies the pointer to the data that is associated with the particular
command.

Building and linking applications with the library subroutines

An application that uses the library service commands and functions includes the
mtlibio.h driver interface definition header file that is provided with the package.
If you used the default installation directory, it is now at C:\Program Files\IBM
Automated Tape Library on 32-bit Windows system or C:\Program Files
(x86)\IBM Automated Tape Library on 64-bit Windows system. Ensure that the
installation directory is included in the compiler path for included files, and
reference the file as follows.
#include <mtlibio.h>

346 IBM Tape Device Drivers: Programming Reference

A 32 or 64–bit application can statically link its application with the libibm.lib or
libibm64.lib driver interface object library during application build time. Or, it can
dynamically link to the libibm.dll or libibm64.dll driver interface DLL at run
time.

The default directory location for libibm.lib or libibm64.lib is

On 32-bit Windows systems:
C:\Program Files\IBM Automated Tape Library.

On 64-bit Windows systems:
C:\Program Files (x86)\IBM Automated Tape Library.

The DLLs (libibm.dll and libibm64.dll) are stored in these locations.

On Windows NT and 2000:
C:\WINNT\system32.

On 32-bit Windows 2003:
C:\Windows\system32.

On 64-bit Windows 2003:
C:\Windows\SysWOW64 for 32-bit libibm.dll.

C:\Windows\System32 for 64-bit libibm64.dll.

To link the interface DLL at run time dynamically, locate the executable file of the
application in the same directory of the DLL file. To link the driver interface object
library statically, specify the driver interface object library during the final link of
the application. The following sample can be used as a starting point for an
application that wants to dynamically link to the subroutines in the DLL. The
subroutines must be called through the pointer, rather than their name. For
example:
fd = t_open_ibmatlP("3494b");
static int dynload_lib();

#define T_INTERFACE_MODULE "LIBIBM"
#define T_OPEN_IBMATL "open_ibmatl"
#define T_CLOSE_IBMATL "close_ibmatl"
#define T_IOCTL_IBMATL "ioctl_ibmatl"
HINSTANCE t_mod_handle = NULL;
typedef int (* t_open_ibmatlF)(char *devNameP);
typedef int (* t_close_ibmatlF)(int fd);
typedef int (* t_ioctl_ibmatlF)(int fc,

int function,
void *parmsP);

t_open_ibmatlF t_open_ibmatlP = NULL;
t_close_ibmatlF t_close_ibmatlP = NULL;
t_ioctl_ibmatlF t_ioctl_ibmatlP = NULL;

static int dynload_lib()
{
t_mod_handle = LoadLibrary(T_INTERFACE_MODULE);
if (t_mod_handle == NULL) /* Handle error */

t_open_ibmatlP = (t_open_ibmatlF)
GetProcAddress(t_mod_handle, T_OPEN_IBMATL);
if (t_open_ibmatlP == NULL) /* Handle error */

t_close_ibmatlP = (t_close_ibmatlF)
GetProcAddress(t_mod_handle, T_CLOSE_IBMATL);
if (t_close_ibmatlP == NULL) /* Handle error */

t_ioctl_ibmatlP = (t_ioctl_ibmatlF)

Chapter 7. 3494 Enterprise tape library driver 347

GetProcAddress(t_mod_handle, T_IOCTL_IBMATL);
if (t_ioctl_ibmatlP == NULL) /* Handle error */

return 0; /* Good return */
}

3494 Enterprise tape library system calls

The system calls are provided to control the operation of the tape library device.

The set of library commands available with the base operating system is provided
for compatibility with existing applications. In addition, a set of expanded library
function commands gives applications access to more features of the tape drives.

The following library system calls are accepted by the library device driver only if
the special file that is opened by the calling program is a Library Manager Control
Point.

The following library commands are supported.

MTIOCLM
Mount a volume on a specified drive.

MTIOCLDM
Demount a volume on a specified drive.

MTIOCLQ
Return information about the tape library and its contents.

MTIOCLSVC
Change the category of a specified volume.

MTIOCLQMID
Query the status of the operation for a specified message ID.

MTIOCLA
Verify that a specified volume is in the library.

MTIOCLC
Cancel the queued operations of a specified class.

MTIOCLSDC
Assign a category to the automatic cartridge loader for a specified device.

MTIOCLRC
Release a category that is previously assigned to a specified host.

MTIOCLRSC
Reserve one or more categories for a specified host.

MTIOCLCSA
Set the category attributes for a specified category.

MTIOCLDEVINFO
Return a list of all devices currently available in the library.

MTIOCLDEVLIST
Return an expanded list of all devices currently available in the library.

MTIOCLADDR
Return the library address, configuration information, and the current
online/offline status of the library.

348 IBM Tape Device Drivers: Programming Reference

MTIOCLEW
Wait until an event occurs that requires the tape device driver to notify the
Library Manager.

Library device number

The device number that is used for library system calls consists of the control unit
serial number with a one-digit device number that is appended to it. For example,
a device number for the second device in a library with the control unit serial
number of 51582 is 515821. The control unit serial number is a hexadecimal
number, where 0123456789ABCDEF are the valid digits. The valid one-digit device
numbers are also hexadecimal. For the IBM 3494 Enterprise tape library, the drives
are numbered from left to right, starting with 0.

For the Library Mount (MTIOCLM), Library Demount (MTIOCLDM), Library
Cancel (MTIOCLC), and Library Set Device Category (MTIOCLSDC) library
system calls, the device number must be a valid device number that is obtained by
the MTDEVICE system call or supplied as described in the previous paragraph.

The remaining library system calls are designed for a user supplied device number
or a zero. If the user supplies a zero, the library support selects a device to
complete the operation that is requested.

The device number can be determined by issuing an OS-specific IOCTL to the
drive. For AIX and Linux, use the MTDEVICE IOCTL. For HP-UX and Oracle
Solaris, use the STIOC_DEVICE_SN IOCTL. For Windows, use the
IOCTL_TAPE_OBTAIN_MTDEVICE vendor-specific device IOCTL. The mtlib
command option -D also displays the device numbers.

MTIOCLM (Library Mount)

This library system call mounts a volume on a specified drive. Passed to this call
are the device number of the device on which the volume is mounted, the
VOLSER of the volume to be mounted, a target category to which the VOLSER is
assigned at the time of the mount, and a source category from which a volume is
mounted. If the target category field in the input argument to this call is specified,
the volume is assigned to the category specified at the time of the mount. If the
target category field in the input argument to this call is not specified, the volume
is not assigned to a category at the time of this library system call. If the VOLSER
parameter is not specified, the next available VOLSER from the category (which is
specified in the source_category input parameter) is mounted.

If the wait_flg in the input argument indicates that the calling process waits until
the mount is completed, the calling process is put to sleep after the call that
initiates the mount command. The subsystem generates an operation completion
notification to indicate the completion status of the mount. The return information
argument is updated to include the completion status of the mount and the calling
process is awakened.

If the wait_flg in the input argument does not indicate that the calling process
waits until the mount is complete, the initial status is updated in the return
information argument and control is returned to the calling process. If the mount
command is initiated successfully, the completion code in the return information
argument indicates success. If it is not successfully initiated, the completion code
indicates the reason for the failure. After the mount completes, the driver

Chapter 7. 3494 Enterprise tape library driver 349

determines which process, if any, is waiting for the status through the MTIOCLEW
library system call. The process, if any, is notified of the completion status of the
mount.

Passed to this library system call is a return information argument structure. After
the completion of the call and before control is returned to the calling process, the
return information structure is updated to indicate the completion status of the
mount request.

Description
arg Points to the mtlmarg structure.

The mtlmarg structure is defined in mtlibio.h as follows.
struct mtlmarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort source_cat; /* category from which a volume is mounted */
char volser[8]; /* specific VOLSER number to mount */
struct mtlmret mtlmret; /* return information structure */

};

struct mtlmret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read from device */
};

On Request

The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the operation
is run. See “Library device number” on page 349 for all device fields.

wait_flg
This field indicates whether the process waits for the completion status of
the operation. A value of zero indicates that the process does not wait for
the completion status. A value other than zero indicates that the process
waits for the completion status of the operation.

target_cat
If this field is non_zero, then it specifies a category to which the VOLSER is
assigned.

source_cat
If the field VOLSER contains all blanks, this field specifies the category
from which a volume is mounted. Otherwise, this field is ignored.

volser This field contains the ASCII value of the specific volume serial number to
be mounted. The field is left-aligned and padded with blanks. If this field
is all blanks, the source_cat field is used to identify a volume to be
mounted. In this case, the next volume in the category that is specified is
mounted.

350 IBM Tape Device Drivers: Programming Reference

On Return

The field usage of struct mtlmret is defined as follows:

cc This field contains the completion code for the operation. See Table 13 on
page 376 for possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

req_id If the mount operation is completed asynchronously (that is, the requester
does not wait until completion of the command processing), this field
contains the message ID corresponding to the mount request issued. The
calling process can use this request ID to query the status of the mount.
The caller must use the Query Message ID library system call to run this
function.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

When a process does not wait until the mount is complete, the completion code is
set to indicate that the request was accepted for processing. The request ID
indicates the message ID associated with the mount request. This request ID can be
used to query the status of the mount operation.

See Table 13 on page 376 for possible return values.

MTIOCLDM (Library Demount)

This library system call demounts a volume from a specified drive. If the target
category field in the mtldarg structure is specified, the volume is assigned to this
category. If the target category field in the mtldarg structure is not specified, the
volume is not assigned to this category.

Description
arg Points to the mtldarg structure.

The mtldarg structure is defined in mtlibio.h as follows:
struct mtldarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort pad; /* pad to maintain alignment */
char volser[8]; /* specific VOLSER number to demount */
struct mtldret mtldret; /* return information structure */

};

struct mtldret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read from device */
};

Chapter 7. 3494 Enterprise tape library driver 351

On Request

The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the operation
is completed. See “Library device number” on page 349 for all device
fields.

wait_flg
This field indicates whether the process waits for the completion status of
the operation. A value of zero indicates that the process does not wait for
the completion status. A value other than zero indicates that the process
waits for the completion status of the operation.

target_cat
If this field is non_zero, it specifies a category to which the VOLSER is
assigned when the demount operation begins. If this field is 0x0000, the
volume category assignment is unchanged.

pad This field contains the pad to maintain alignment.

volser This field contains the ASCII value of the specific volume serial number to
be demounted. The field is left-aligned and padded with blanks. If this
field is all blanks, the volume is demounted. If a target category is
specified, the category assignment of the volume is updated.

On Return

The field usage of struct mtldret is defined as follows:

cc This field contains the completion code for the operation. See Table 13 on
page 376 for possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

req_id If the demount operation is completed asynchronously (that is, the
requester does not wait until completion of the command processing), this
field contains the message ID corresponding to the demount request that is
issued.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

See Table 13 on page 376 for possible return values.

When the demount command is run asynchronously, the completion code is set to
indicate the request was accepted for processing. The request ID indicates the
message ID associated with the demount request. This request ID can be used to
query the status of the demount operation.

352 IBM Tape Device Drivers: Programming Reference

MTIOCLQ (Library Query)

This library system call returns information about the Library Manager and its
contents. Depending on the value of the subcommand that is passed to this call,
the following information is returned.

Volume Data
Information about a specific volume.

Library Data
Configuration data.

Device Data
Information about a specific drive.

Library Statistics
Performance statistics.

Inventory Data
Inventory report for up to 100 volumes.

Category Inventory Data
Category information for up to 100 volumes.

Inventory Volume Count Data
Total number of volumes in the library or the number of volumes in a
specified category.

Expanded Volume Data
Status of commands for the volume that was accepted by the library, but
not completed.

Reserved Category List
List of categories that are reserved for a specific host.

Category Attribute List
List of category attributes.

Description
arg Points to the mtlqarg structure.

The mtlqarg structure is defined in mtlibio.h as follows:
struct mtlqarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int cat_seqno; /* category sequence number */
int subcmd; /* subcommand field */
ushort source_cat; /* source category */
ushort cat_to_read;
char hostid[8] /* host identifier */
char volser[8]; /* VOLSER number */
struct mtlqret mtlqret; /* return information from query system call */

};

struct mtlqret {
int cc /* completion code */
int up_comp /* reserved */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct lib_query_info info; /* query information */
};

Chapter 7. 3494 Enterprise tape library driver 353

See mtlibio.h for struct lib_query_info.

On Request

The field usage is defined as follows:

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which to run the
Query Device Data operation. It is ignored for all other query commands.
See “Library device number” on page 349 for all device fields.

cat_seqno
This field contains the category sequence number. This field is used only
for the Category Inventory Data subcommand. The inventory records are
provided from the specified source category after this category sequence
number. If X'0000' or the number is beyond the last volume in the category,
the inventory records start with the first VOLSER in the category. This
number is represented in hexadecimal.

subcmd
This field contains the subcommand that directs the device driver action.
The possible values are

MT_QVD
Query Volume Data. Request information about the presence and
use of the specific volume and its affinity to the subsystem in the
library. The volume subsystem affinity is a prioritized list of
subsystems closest to the physical storage location of the specified
VOLSER.

MT_QLD
Query Library Data. Request information about the current
operational status of the library.

MT_QSD
Query Statistical Data. Request information about the workload
and performance characteristics of the library.

MT_QID
Query Inventory Data. Request information about up to 100
inventory data records for the library. The end of the list is
indicated with a returned VOLSER name of “ ” all blanks. If the
list contains 100 records, the next set is obtained by setting the
VOLSER field in the input/output control (IOCTL) to the last
volume name in the list (number 100). If the VOLSER field in the
IOCTL is set to 0, the first set is returned.

MT_QCID
Query Category Inventory Data. Request information about up to
100 inventory data records for the VOLSERs assigned to the
category specified. The end of the list is indicated with a returned
category of 0. If the list contains 100 records, the next set is
obtained by setting the cat_seqno in the IOCTL to the last category
sequence number in the list (number 100). If the cat_seqno in the
IOCTL is set to 0, the first set is returned.

MT_QDD
Query Device Data. Request information about the device that is
specified in the device field.

354 IBM Tape Device Drivers: Programming Reference

MT_QIVCD
Query Inventory Volume Count Data. Request either the total
number of volumes in the library or the number of volumes in a
specified category.

MT_QEVD
Query Expanded Volume Data. Request expanding information
about the specified VOLSER in the library.

MT_QRCL
Query Reserved Category List. Request a list of categories that are
reserved for the specified host identifier.

MT_QCAL
Query Category List. Request a list of categories with their
attributes that are reserved by the specified host identifier.

source_cat
This field contains a category number. It is used in the Category Inventory
Data, Volume Count Data, Reserved Category List, and Category
Attribute List subcommands. The effect on each subcommand is as
follows:
v Category Inventory Data. The source_cat parameter specifies the

category from which to return the inventory records. See the cat_seqno
parameter for related information.

v Inventory Volume Count Data. If the source_cat parameter contains
0000, a count of all volumes in the library is returned. If this parameter
is not zero, a count of all volumes in the category is returned.

v Reserved Category List. If the source_cat parameter is not zero, the
categories after this value are returned in the response. If this parameter
is 0000 or beyond the last category that is reserved for the specified host
identifier, the returned data starts with the first category reserved for the
host identifier.

v Category Attribute List. If the source_cat parameter is not zero, the
categories after this value are returned in the response. If this parameter
is 0000 or beyond the last category that is reserved for the specified host
identifier, the list of attributes for the categories starts with the first
category reserved for the host identifier. See the cat_to_read parameter
for information.

cat_to_read
If this field is not zero, the category is read and returned in the response. If
this field is zero, then the source_cat field is used to determine which data
to return.

hostid This field indicates which reserved category list or category attribute list is
returned to the caller. A process can request a reserved category or
category attribute list for any host that is connected to the Dataserver if the
correct host identifier is passed in this parameter. If the hostid parameter
is NULL, the data is returned for the host that issued the command.

volser This field contains the volume serial number. The field is left-aligned and
padded with blanks. This field is ignored when the subcmd parameter
specifies MT_QLD, MT_QSD, MT_QCID, MT_QIVCD, MT_QDD,
MT_QRCL, and MT_QCAL.

On Return

The field usage of struct mtlqret is defined as follows:

Chapter 7. 3494 Enterprise tape library driver 355

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

info This field contains the query information requested based on the subcmd
parameter. The possible values are shown in the following table.

Table 10. Subcmd parameter values.

Value Description

MT_QVD
Query Volume Data.

Provides detailed information about the
VOLSER specified in the tape library. This
information includes

v the current state of the specified VOLSER

v the class of the volume (for example, IBM
3480 1/2-inch cartridge tape)

v the volume type (for example, 160 m
nominal length tape

v the ASCII VOLSER

v the category to which the VOLSER is
assigned

v the subsystem affinity list (which is a
prioritized list of up to 32 subsystems
closest to the physical storage location of
the specified VOLSER)

MT_QLD
Query Library Data

Provides information about

v current library operational state

v number of input/output stations that are
installed in the library

v status of the input/output stations in the
library

v library machine type

v library sequence number

v total number of cells in the library

v number of cells available for inserting
new volumes into the library

v number of subsystem IDs in the library

v number of cartridge positions in each
convenience station

v configuration type of the accessor

v accessor status

v status of the optional components in the
library

356 IBM Tape Device Drivers: Programming Reference

Table 10. Subcmd parameter values. (continued)

Value Description

MT_QSD
Query Statistical Data

Provides detailed information about the
workload and performance characteristics of
the tape library. The statistical information
that is returned includes

v device

v mount

v demount

v eject

v audit

v input

MT_QID
Query Inventory Data

Provides up to 100 inventory data records
for the tape library. The information that is
returned includes

v library sequence number

v number of VOLSERs in the library

v volume inventory data records

The individual volume data records include

v category value

v ASCII physical VOLSER name

v state of the volume

v type or class of the volume

MT_QCID
Query Category Inventory Data

Provides up to 100 inventory data records
for the VOLSERs that are assigned to a
specified category. The information that is
returned is identical to the information from
a Query Inventory Data call. In addition to
this information, the category sequence
number is returned, which can be used to
obtain the next 100 inventory data records in
the category.

MT_QDD
Query Device Data

Provides information about the device to
which the command was issued. The
information that is returned includes

v mounted VOLSER if it is available

v mounted category if a VOLSER is
mounted

v assigned device category if the device is
assigned

v device states

v device class

MT_QIVCD
Query Inventory Volume Count Data

Provides either the total number of volumes
in the library or the number of volumes in a
specified category.

Chapter 7. 3494 Enterprise tape library driver 357

Table 10. Subcmd parameter values. (continued)

Value Description

MT_QEVD
Query Expanded Volume Data

Provides expanded information about a
specific VOLSER in the tape library. The
information that is returned includes

v volume states

v volume class

v volume type

v VOLSER

v category to which the VOLSER is assigned

MT_QRCL
Query Reserved Category List

Provides a list of categories that are reserved
for the host that is specified in the hostid
parameter. The total number of categories is
returned with a list of the categories that are
reserved.

MT_QCAL
Query Category Attribute List

Provides a list of category attributes for the
categories that are reserved for the host
identifier that is specified in the hostid
parameter. The total number of categories
that are reserved for the host and a list of
reserved categories and their attributes are
returned to the calling process.

Return Value

See Table 13 on page 376 for possible return values.

MTIOCLSVC (Library Set Volume Category)

This library system call changes the category of a specified volume in the tape
library. This process includes assigning a volume to the EJECT category or BULK
EJECT category so it can be removed from the tape library. If the EJECT category
or BULK EJECT category is specified, the command is executed asynchronously.
Otherwise, the command is executed synchronously.

Description
arg Points to the mtlsvcarg structure.

The mtlsvcarg structure is defined in mtlibio.h as follows.
struct mtlsvcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
ushort target_cat; /* category to which the VOLSER is assigned */
ushort source_cat; /* source category of the VOLSER */
char volser[8]; /* VOLSER number assigned to a category */
struct mtlsvcret mtlsvcret; /* return information structure */

};

struct mtlsvcret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */

358 IBM Tape Device Drivers: Programming Reference

int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

wait_flg
This field indicates whether the process waits for the completion status of
the operation. A value of zero indicates that the process does not wait for
the completion status. A value other than zero indicates that the process
waits for the completion status of the operation. This field is ignored
unless the target category specifies the eject category.

target_cat
This field contains the target category to which the VOLSER is assigned.

source_cat
This field contains the category to which the volume is assigned. This field
must contain X'FF00' if the volume is in the insert category. If this field
contains X'0000', it is ignored.

volser This field contains the volume serial number to be assigned to a category.
The field is left-aligned and padded with blanks.

On Return

The field usage of struct mtlsvcret is defined as follows.

cc This field contains the completion code for the operation. See Table 13 on
page 376 for possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

req_id If the operation is completed asynchronously (that is, the requester does
not wait until the command processing completes), then this field contains
the message ID corresponding to the operation issued. This field is defined
only when the target category specified is an eject category.

device This field is ignored.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

See Table 13 on page 376 for possible return values.

Chapter 7. 3494 Enterprise tape library driver 359

MTIOCLQMID (Library Query Message ID)

This library system call queries the status of a specified message ID. The two types
of status responses are
v Delayed Response Message Status. The Library Manager keeps a list of the last

600 delayed response messages for mount, demount, audit, and eject commands.
If the message ID is for a command with a delayed response message, all the
delayed response information is returned to the calling application.

v Unknown or Pending Status. If the message ID supplied to the Library
Manager is pending execution or is no longer in the 600 item delayed response
message list, a single status byte is returned as a response to this command.

Description
arg Points to the mtlqmidarg structure.

The mtlqmidarg structure is defined in mtlibio.h as follows.
struct mtlqmidarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
uint req_id; /* message ID for an asynchronous operation */
struct mtlqmidret mtlqmidret; /* return information structure */

};

struct mtlqmidret {
int cc; /* completion code */
int up_comp; /* reserved */
int device; /* device number the operation was performed on */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct qmid_info info; /* information about queried message id */

};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

req_id This field contains the ID of a request that was previously initiated.

On Return

The field usage of struct mtlqmidret is defined as follows.

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

360 IBM Tape Device Drivers: Programming Reference

info See mtlibio.h for a description of the qmid_info structure.

Return Value

See Table 13 on page 376 for possible return values.

MTIOCLA (Library Audit)

This library system call verifies that a specified volume is in the library. The
specified VOLSER is physically verified as being in the tape library. The operation
is asynchronous and completes when the volume is audited.

Description
arg Points to the mtlaarg structure.

The mtlaarg structure is defined in mtlibio.h as follows.
struct mtlaarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int wait_flg; /* indicates requester will wait or not wait */
int audit_type; /* audit type */
char volser[8]; /* specific VOLSER number to audit */
struct mtlaret mtlaret; /* return information structure */

};

struct mtlaret {
int cc /* completion code */
int up_comp /* reserved */
uint req_id; /* message ID for an asynchronous operation */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored.

wait_flg
This field indicates whether the process waits for the completion status of
the operation. A value of zero indicates that the process does not wait for
the completion status. A value other than zero indicates that the process
waits for the completion status of the operation.

audit_type
This field contains the type of audit. The only possible value is
VOL_AUDIT.

volser This field contains the volume serial number to be audited. The field is
left-aligned and padded with blanks.

On Return

The field usage of struct mtlaret is defined as follows.

Chapter 7. 3494 Enterprise tape library driver 361

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

req_id If the operation is completed asynchronously (that is, the requester does
not wait until completion of the command processing), then this field
contains the message ID corresponding to the operation issued.

device This field is ignored.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

See Table 13 on page 376 for possible return values.

MTIOCLC (Library Cancel)

This library system call cancels all queued operations of a specified class. The
caller can request this function for a specific device or a specific asynchronous
operation. If an operation completion notification was owed for any operation that
is canceled before execution, a notification indicates that the operation was
canceled at the program’s request. Any operation that began or completed
execution is not canceled.

Description
arg Points to the mtlcarg structure.

The mtlcarg structure is defined in mtlibio.h as follows.
struct mtlcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
uint req_id; /* message ID for an asynchronous operation */
int cancel_type /* type of cancel requested */
struct mtlcret mtlcret; /* return information structure */

};

struct mtlcret {
int cc /* completion code */
int up_comp /* reserved */
int device; /* device number */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field is ignored unless the cancel_type field specifies CDLA. This field
contains the device number. See “Library device number” on page 349 for
all device fields.

362 IBM Tape Device Drivers: Programming Reference

req_id This field contains the message ID of the queued operation to cancel. This
field is ignored unless the cancel type that is specified in the cancel_type
field is Message ID Cancel (MIDC).

cancel_type
This field defines the type of cancel. The possible values are:

CDLA Cancel Drive Library Activity. All library mount operations queued
for the specified drive are canceled.

CAHA
Cancel all host-related activity. All queued commands that are
issued by this host are canceled.

MIDC Message ID Cancel. The queued operation that is identified by the
req_id field is canceled.

On Return

The field usage of struct mtlcret is defined as follows.

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

device This field is ignored.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

See Table 13 on page 376 for possible return values.

MTIOCLSDC (Library Set Device Category)

This library system call assigns a category to a device in the IBM 3494 Enterprise
tape library. This command also specifies how and when cartridges are mounted
on the device when the assignment takes place. The following parameters can be
set with this command.
v Enable Category Order

When active, the Library Manager selects volumes to mount based on the order
in which they were assigned to the category, starting with the first volume
assigned. After the end of the category is reached, the subsequent requests
receive a Category Empty error.
In addition, when this parameter is active, only one device can be assigned to
this category. Therefore, multiple devices can be assigned the same category
when this parameter is not active. If multiple devices are assigned to the same
category, the volumes are picked in the order in which they were assigned.
There is no method to determine which volumes are mounted on a particular
device.
If the specified category is in use by another device and the enable category bit
is set, the operation fails and the command is presented unit check status with
associated sense data that indicates ERA X'7F'.

Chapter 7. 3494 Enterprise tape library driver 363

v Clear Out ICL (integrated cartridge loader)

When active, the category assignment that is previously set on the specified
device is removed. All other parameters that are specified in the Library Set
Device Category command are ignored when this parameter is active. Any
cartridge in the specified drive is unloaded and returned to a storage cell.

v Generate First Mount

When active, the Library Manager queues a mount for the first volume in the
category that is specified in the category parameter. A delayed response
message is not generated for this mount. If the mount fails, an unsolicited
attention interrupt is generated and sent to the host. This command can be used
with the Enable Auto Mount command.

v Enable Auto Mount

When the device is issued an unload command, the Library Manager queues a
demount for the volume that is mounted in device. Additionally, a mount
command is queued for the next volume in the category. This mount command
does not generate a delayed response message. If the mount fails, an unsolicited
attention interrupt is generated and sent to the host. When Enable Auto Mount
is cleared, an unload command is sent to the device. This parameter can be used
with the Generate First Mount command.

Description
arg Points to the mtlsdcarg structure.

The mtlsdcarg structure is defined in mtlibio.h as follows.
struct mtlsdcarg {

int resvd /* reserved */
int versn /* version number field */
int device; /* device number */
int fill_parm; /* fill parameters */
ushort category; /* category to be assigned to the device */
ushort demount_cat;
struct mtlsdcret mtlsdcret; /* return information structure */

};

struct mtlsdcret {
int cc /* completion code */
int up_comp /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the operation
is run. See “Library device number” on page 349 for all device fields.

fill_parm
This field contains the following fill parameters.

MT_ECO(0x40)
Category Order. When it is active, the Library Manager fills the
loader index stack by selecting volumes from the specified category
that is based on how they were assigned to the category.

364 IBM Tape Device Drivers: Programming Reference

MT_CACL(0x20)
Clear Automatic Cartridge Loader. The Library Manager resets the
category assignment to the specified device. If this value is
specified, then all other parameter values that are sent with this
command are ignored.

MT_GFM (0x10)
Generate First Mount. The Library Manager queues a mount
request for the first volume in the category. No delayed response
message is generated.

MT_EAM (0x08)
Enable Auto Mount. The Library Manager queues the mount
requests for the next volume in the category when the device
receives a rewind/unload command. If this field is cleared, then
the Library Manager issues a rewind/unload command to the
specified device.

category
This field contains the category to be assigned to the device. If this field
contains X'0000', then it causes the Library Manager to remove all volumes
from the cartridge loader. This operation has the same effect as specifying
MT_CACE_ACL in the fill_parm parameter.

demount_cat
This field specifies the category in which to place the volume when it is
demounted from the device. If this field is X'00', then the category is not
changed for the demount operation.

On Return

The field usage of struct mtlsdcret is defined as follows.

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility (which is zero).

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes read from the device.

Return Value

See Table 13 on page 376 for possible return values.

MTIOCLRC (Library Release Category)

This library system call releases a category that was assigned to the specified host
with the MTIOCLRSC command. Passed to this command are the category identifier
to be released and the host identifier. The category identifier was reserved when a
Library Reserve Category command was issued for the specified host identifier.
The category must not contain any volumes when this command is issued. If the
category contains any tape volumes, the command fails. The host ID specifies the
host for which the category was reserved.

Chapter 7. 3494 Enterprise tape library driver 365

Description
arg Points to the mtlrcarg structure.

The mtlrcarg structure is defined as follows.
struct mtlrcarg {
int resvd;
int versn;
int device;
ushort release_cat; /* category to release */
ushort pad; /* maintain alignment */
char hostid [8]; /* host identifier */
struct mtlrcret mtlrcret;
};

struct mtlrcret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
cha sense_bytes[MT_SENSE_LENGTH]; /* sense bytes */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

device This field contains the device number of the device on which the operation
is run. See “Library device number” on page 349 for all device fields.

pad This field contains the pad to maintain alignment.

release_cat
This field contains the category to be released.

hostid This field specifies the host identifier that reserved the category that is
released. Only the same host identifier that reserved the category can
release it.

On Return

The field usage of struct mtlrcret is defined as follows.

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility.

number_sense
This field contains the number of valid sense bytes.

sense_bytes
This field contains the sense bytes.

MTIOCLRSC (Library Reserve Category)

This library system call reserves one or more categories for the host that issues this
command. The host that issues this command either chooses the category to
reserve or allows the Library Manager to choose the categories to reserve. If the

366 IBM Tape Device Drivers: Programming Reference

host chooses the category, only one category at a time can be reserved. If the host
allows the Library Manager to choose the categories, more than one category at a
time can be reserved.

Description
arg Points to the mtlrscarg structure.

The mtlrscarg structure is defined as follows.
struct mtlrscarg {
int resvd /* reserved, must be zero */
int versn /* version number */
int device /* device number */
ushort num_cat /* number of categories to reserve */
ushort category /* category to reserve if num_cat == 1 */
char hostid [8]
struct mtlrscret mtlrscret /* return information structure */
};

struct mtlrscret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
struct reserve_info info;
};

struct reserve_info
{
char atl_seqno[3]; /* library sequence number */
char ident_token[8]; /* token for which categories are reserved */
char count[2]; /* total number of categories in list */
uchar cat[256][2] /* reserved category records */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains zero.

device This field is ignored.

num_cat
The number of categories to reserve.

category
If the num_cat field = 1, the library attempts to reserve the specified
category.

hostid Eight character host identifier for which the category is reserved.

On Return

The field usage of struct mtlrscret is defined as follows.

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

up_comp
This field is reserved for upward compatibility.

number_sense
This field contains the number of valid sense bytes.

Chapter 7. 3494 Enterprise tape library driver 367

sense_bytes
This field contains the sense bytes.

reserve_info
This structure contains a list of categories that are reserved with the
Library Reserve Category command.

MTIOCLSCA (Library Set Category Attribute)

This library system call allows the host to specify the attributes for a category that
is previously reserved for this host with the MTIOCLRSC library system call. The
only attribute that can be set is category name. The name is a 10 character string,
which does not have to end with a null character. The following naming
conventions are allowed.
v Uppercase letters A-Z
v Numbers 0-9
v Blank, underscore (_), or asterisk (*)
v Blanks in any position

Description
arg Points to the mtlscaarg structure.

The mtlscaarg structure is defined as follows.
struct mtlscaarg {
int resvd /* reserved, must be zero */
int versn /* version number */
int device /* device number */
ushort attr /* attribute description */
ushort category /* category whose attribute to set */
char attr_data[ATTR_MAXLN] /* data to assign to the category */
struct mtlscaret mtlscaret /* return information structure */
};

struct mtlscaret {
int cc; /* completion code */
int up_comp; /* reserved */
int number_sense; /* number of valid sense bytes */
char sense_bytes[MT_SENSE_LENGTH]; /* sense bytes read */
};

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains zero.

device This field is ignored.

attr This field describes the attribute. It contains the following value.
MT_SCM (0x01) Set Category Name

category
This field specifies the category.

attr_data
This field contains the 10 character category name.

368 IBM Tape Device Drivers: Programming Reference

MTIOCLDEVINFO (Device List)

This library system call returns a list of all devices currently available in the library
and their associated device numbers. See “Library device number” on page 349 for
a description of device numbers. The MTIOCLDEVLIST library system call
returns the same device list in an expanded format.

The mtdevinfo structure is defined in mtlibio.h as follows.
struct mtdevinfo {

struct {
int device; /* device number */
char name[32]; /* device name */

} dev[MAXDEVICES];

On Return

The field usage of struct mtdevinfo is defined as follows.

device This field contains the device number. The end of the list is indicated with
a device number equal to -1.

name This field is the name of the device. It consists of 6 bytes for the device
type, 3 bytes for the model number, and 2 bytes for the decimal index
number in the device list array.

Return Value

See Table 13 on page 376 for possible return values.

Example:

The following code is used in the mtlib utility for the -D option:
struct mtdevinfo dinfo;

int devices(int lib_fd)
{
int rc;
int i;

rc = ioctl(lib_fd, MTIOCLDEVINFO, &dinfo);
if (rc)
{
printf("Operation Failed - %s\n", strerror(errno));
return errno;
}

for (i=0; i < MAXDEVICES; i++)
{
if (dinfo.dev[i].device == -1) break;

printf("%3d, %08X %s\n",i, dinfo.dev[i].device, dinfo.dev[i].name);
}

return(0);
}

MTIOCLDEVLIST (Expanded Device List)

This library system call returns a list of all devices currently available in the library
and their associated device numbers in an expanded format. See “Library device

Chapter 7. 3494 Enterprise tape library driver 369

number” on page 349 for a description of device numbers. The
MTIOCLDEVINFO library system call returns the same device list in a different
format.

The mtdevlist structure is defined in mtlibio.h as follows.
struct mtdevlist {

struct {
char type[6];
char model[3];
char serial_num[8];
unsigned char cuid;
unsigned char dev;
int dev_number;
int vts_library;

} device[MAXDEVICES];
};

On Return

The field usage of struct mtdevinfo is defined as follows.

dev_number
This field contains the device number. The end of the list is indicated with
a device number equal to -1.

type This field contains the device type.

model This field contains the model number of the device.

serial_num
This field contains the serial number of the device.

cuid and dev
These fields contain the library subsystem ID (cuid) and device (dev)
within the subsystem for this device in the library.

vts_library
This field indicates whether the device is in a VTS library, and if so, which
logical VTS library. A value of 0 indicates that the device is not in a VTS
library.

Return Value

See Table 13 on page 376 for possible return values.

Example:

The following code is used in the mtlib utility for the -DE option:
struct mtdevlist dlist;

int device_list(int lib_fd)
{
int rc;
int i;
char type[7];
char model[4];
char sn[9];
int pass = 1;

rc = ioctl(lib_fd, MTIOCLDEVLIST, &dlist);
if (rc)
{
printf("Operation Failed - %s\n", strerror(errno));

370 IBM Tape Device Drivers: Programming Reference

return errno;
}

for (i=0; i <MAXDEVICES; i++)
{
if (dlist.device[i].dev_number == -1) break;
strncpy(type, dlist.device[i].type,6);
type[6] = ’\0’;
strncpy(model, dlist.device[i].model,3);
model[3] = ’\0’;
strncpy(sn, dlist.device[i].serial_num,8);
sn[8] = ’\0’;
if (pass == 1)

{
printf(" Type Mod Serial # Devnum Cuid Device VTS Library\n");
pass++;
}

if (dlist.device[i].vts_library)
{
printf("%s %s %s %08X %2d %2d %2d\n", type,model,sn,

dlist.device[i].dev_number, dlist.device[i].cuid,
dlist.device[i].dev,
dlist.device[i].vts_library);

}
else

{
printf("%s %s %s %08X %2d %2d \n", type,model,sn,

dlist.device[i].dev_number, dlist.device[i].cuid,
dlist.device[i].dev);

}
}

return(0);
}

MTIOCLADDR (Library Address Information)

This library system call returns the library address and configuration information
from the ibmatl.conf config file and the current online or offline status of the
library. A 3494 Enterprise Model HA1 (High Availability) has two addresses that
are configured, but only one address is online at a time.

The mtlibaddr structure is defined in mtlibio.h as follows.
#define MT_LIBADDR_INVALID 0 /* Address not configured */
#define MT_LIBADDR_OFFLINE 1 /* Library is offline with this address */
#define MT_LIBADDR_ONLINE 2 /* Library is online with this address */

struct mtlibaddr {
char library_name[32]; /* Logical name of library */
char host_ident[8]; /* Host identification for library */
char primary_addr[16]; /* Primary address of library */
char primary_status; /* Primary status as defined above */
char alternate_addr[16]; /* Alternate address of library */
char alternate_status; /* Alternate status as defined above */
char reserved[32];

};

On Return

The field usage of struct mtlibaddr is defined as follows.

library_name
This field contains the logical name of the library that is defined in the
ibmatl.conf file.

Chapter 7. 3494 Enterprise tape library driver 371

host_ident
This field contains the host identification for the logical library.

primary_addr
This field contains the primary address for the logical library, either a tty
serial port connection or an IP address.

primary_status
This field contains the status of the primary address connection as defined
in the primary_addr field and is always either online or offline.

alternate_address
This field contains the alternate address for the logical library if configured
in the ibmatl.conf file. If an alternate address is not configured, the
alternate_status field is set to MT_LIBADDR_INVALID.

alternate_status
This field contains the status of the alternate address connection as defined
in the alternate_address field: either online, offline, or not configured.

Return Value

See Table 13 on page 376 for possible return values.

Example:

The following code is used in the mtlib utility for the -A option:
struct mtlibaddr addrlist;

int libaddr(int lib_fd)
{
int rc;

rc = ioctl(lib_fd, MTIOCLADDR, &addrlist);
if (rc)
{
printf("Operation Failed - %s\n", strerror(errno));
return errno;
}

printf("Library Address Information: \n");
printf(" library name...........%0.32s\n",addrlist.library_name);
printf(" host identification....%0.8s\n",addrlist.host_ident);
printf(" primary address........%s\n",addrlist.primary_addr);
if (addrlist.primary_status == MT_LIBADDR_ONLINE)
printf(" primary status.........Online\n");

else
printf(" primary status.........Offline\n");

if (addrlist.alternate_status == MT_LIBADDR_ONLINE)
{
printf(" alternate address......%s\n",addrlist.alternate_addr);
printf(" alternate status.......Online\n");
}

else if (addrlist.alternate_status == MT_LIBADDR_OFFLINE)
{
printf(" alternate address......%s\n",addrlist.alternate_addr);
printf(" alternate status.......Offline\n");
}

else
printf(" alternate address......Not configured\n");

return(0);
}

372 IBM Tape Device Drivers: Programming Reference

MTIOCLEW (Library Event Wait)

This library system call reads the state information that is associated with a logical
library device entry. Then, it optionally waits for a state change to occur before the
state information is returned.

Description
arg Points to the mtlewarg structure.

The mtlewarg structure is defined in mtlibio.h as follows.
struct mtlewarg {

int resvd /* reserved */
int versn /* version number field */
int subcmd; /* subcommand field */
int timeout; /* timeout in seconds *

/* if set to zero, no timeout is performed */
struct mtlewret mtlewret; /* return information structure */

};

struct mtlewret {
int up_comp /* reserved */
int cc /* completion code */
int lib_event /* detected library event */
int msg_type /* type of message */
struct msg_info msg_info; /* operation completion or unsolicited */
};

See mtlibio.h for struct msg_info.

On Request

The field usage is defined as follows.

resvd This field contains zero.

versn This field contains the version number (zero) of the block structure.

subcmd
This field contains the LEWTIME subcommand. It is returned only when an
error or exception condition is detected or after a timeout occurs
(whichever happens first).

timeout
This field contains the timeout time in seconds. If it is set to zero, no
timeout is completed.

On Return

The field usage of struct mtlewret is defined as follows.

up_comp
This field is reserved for upward compatibility (which is zero).

cc This field contains the completion code. See Table 13 on page 376 for
possible values.

lib_event
This field contains the detected event. The possible values are shown in
Table 11 on page 374.

msg_type
This field contains the type of message if it is reported. The possible values
are:

Chapter 7. 3494 Enterprise tape library driver 373

NO_MSG
No message.

UNSOL_ATTN_MSG
Unsolicited notification.

DELAYED_RESP_MSG
Operation completion notification.

msg_info
This field contains the operation completion or unsolicited notification.

alternate_status
This field contains the status of the alternate address connection as defined
in the alternate_address field: either online, offline, or not configured.

Table 11. Unsolicited Attention Interrupts

Event ERA Code Description

None 0x27 Command reject

MT_NTF_ERA60 0x60 Library attachment facility equipment check

MT_NTF_ERA62 0x62 Library Manager offline to subsystem

MT_NTF_ERA63 0x63 Control unit and Library Manager incompatible

MT_NTF_ERA64 0x64 Library VOLSER in use

MT_NTF_ERA65 0x65 Library volume reserved

MT_NTF_ERA66 0x66 Library VOLSER not in library

MT_NTF_ERA67 0x67 Library category empty

MT_NTF_ERA68 0x68 Library order sequence check

MT_NTF_ERA69 0x69 Library output stations full

MT_NTF_ERA6B 0x6B Library volume misplaced

MT_NTF_ERA6C 0x6C Library misplaced volume found

MT_NTF_ERA6D 0x6D Library drive not unloaded

MT_NTF_ERA6E 0x6E Library inaccessible volume restored

MT_NTF_ERA6F 0x6F Library vision failure

MT_NTF_ERA70 0x70 Library Manager equipment check

MT_NTF_ERA71 0x71 Library equipment check

MT_NTF_ERA72 0x72 Library not capable – Manual mode

MT_NTF_ERA73 0x73 Library intervention required

MT_NTF_ERA74 0x74 Library informational data

MT_NTF_ERA75 0x75 Library volume inaccessible

MT_NTF_ERA76 0x76 Library all cells full

MT_NTF_ERA77 0x77 Library duplicate VOLSER ejected

MT_NTF_ERA78 0x78 Library duplicate VOLSER in input station

MT_NTF_ERA79 0x79 Library unreadable or invalid VOLSER in input station

MT_NTF_ERA7A 0x7A Read library statistics

MT_NTF_ERA7B 0x7B Library volume ejected manually

MT_NTF_ERA7C 0x7C Library out of cleaner volumes

MT_NTF_ERA7F 0x7F Library category in use

MT_NTF_ERA80 0x80 Library unexpected volume ejected

374 IBM Tape Device Drivers: Programming Reference

Table 11. Unsolicited Attention Interrupts (continued)

Event ERA Code Description

MT_NTF_ERA81 0x81 Library I/O station door open

MT_NTF_ERA82 0x82 Library Manager program exception

MT_NTF_ERA83 0x83 Library drive exception

MT_NTF_ERA84 0x84 Library drive failure

MT_NTF_ERA85 0x85 Library environmental alert

MT_NTF_ERA86 0x86 Library all categories reserved

MT_NTF_ERA87 0x87 Duplicate volume add requested

MT_NTF_ERA88 0x88 Damaged volume ejected

MT_NTF_ATTN_CSC None Category state change

MT_NTF_ATTN_LMOM None Library Manager operator message

MT_NTF_ATTN_IOSSC None I/O station state change

MT_NTF_ATTN_OSC None Operational state change

MT_NTF_ATTN_DAC None Device availability change

MT_NTF_ATTN_DCC None Device category change

MT_NTF_ATTN_VE None Volume exception

MT_NTF_DEL_MC None Mount complete

MT_NTF_DEL_DC None Demount complete

MT_NTF_DEL_AC None Audit complete

MT_NTF_DEL_EC None Eject complete

MT_NTF_TIMEOUT None Timeout

Return Value

If a library system call is successful, the return code is set to zero. If the library
system call is not successful, the return code is set to -1. If the library system call
is not successful, the errno variable is set to indicate the cause of the failure. The
values in Table 12 are returned in the errno variable.

Table 12. MTIOCLEW errors

Return Code errno cc Value Description

0 ESUCCESS 0 0

X'0'

Completed successfully.

-1 ENOMEM Undefined - Memory allocation failure.

-1 EFAULT Undefined - Memory copy function failure.

-1 EIO MTCC_NO_LMCP 32

X'20'

The Library Manager Control
Point is not configured.

-1 EINVAL MTCC_INVALID_SUBCMD 41

X'29'

An invalid subcommand is
specified.

-1 EIO MTCC_LIB_NOT_CONFIG 42

X'2A'

No library devices are
configured.

Chapter 7. 3494 Enterprise tape library driver 375

Table 12. MTIOCLEW errors (continued)

Return Code errno cc Value Description

-1 EIO MTCC_INTERNAL_ERROR 43

X'2B'

Internal error.

Error description for the library I/O control requests

If a library system call is successful, the return code is set to zero. If the library
system call is not successful, the return code is set to -1. If the library system call
is not successful, the errno variable is set to indicate the cause of the failure. The
completion code in the return structure of the library system call is set with a
value that indicates the result of the library system call.

Table 13 shows the return codes, the errno variables, and the completion codes for
the library I/O control requests. See mtlibio.h for the code values.

Table 13. Error description for the library I/O control requests

Code errno Value cc Value Description

0 ESUCCESS 0 MTCC_COMPLETE 0

X'0'

Completed successfully.

-1 EIO 5 MTCC_COMPLETE_VISION 1

X'1'

Completed. Vision system
not operational.

-1 EIO 5 MTCC_COMPLETE_NOTREAD 2

X'2'

Completed. VOLSER not
readable.

-1 EIO 5 MTCC_COMPLETE_CAT 3

X'3'

Completed. Category
assignment that is not
changed.

-1 EIO 5 MTCC_CANCEL_PROGREQ 4

X'4'

Canceled program
requested.

-1 EIO 5 MTCC_CANCEL_ORDERSEQ 5

X'5'

Canceled order sequence.

-1 EIO 5 MTCC_CANCEL_MANMODE 6

X'6'

Canceled manual mode.

-1 EIO 5 MTCC_FAILED_HARDWARE 7

X'7'

Failed. Unexpected
hardware failure.

-1 EIO 5 MTCC_FAILED_VISION 8

X'8'

Failed. Vision system not
operational.

-1 EIO 5 MTCC_FAILED_NOTREAD 9

X'9'

Failed. VOLSER not
readable.

-1 EIO 5 MTCC_FAILED_INACC 10

X'A'

Failed. VOLSER
inaccessible.

376 IBM Tape Device Drivers: Programming Reference

Table 13. Error description for the library I/O control requests (continued)

Code errno Value cc Value Description

-1 EIO 5 MTCC_FAILED_MISPLACED 11

X'B'

Failed. VOLSER misplaced
in library.

-1 EIO 5 MTCC_FAILED_CATEMPTY 12

X'C'

Failed. Category empty.

-1 EIO 5 MTCC_FAILED_MANEJECT 13

X'D'

Failed. Volume that is
ejected manually.

-1 EIO 5 MTCC_FAILED_INVENTORY 14

X'E'

Failed. Volume not in
inventory.

-1 EIO 5 MTCC_FAILED_NOTAVAIL 15

X'F'

Failed. Device not
available.

-1 EIO 5 MTCC_FAILED_LOADFAIL 16

X'10'

Failed. Irrecoverable load
failure.

-1 EIO 5 MTCC_FAILED_DAMAGED 17

X'11'

Failed. Cartridge damaged
and queued for eject.

-1 EIO 5 MTCC_COMPLETE_DEMOUNT 18

X'12'

Completed. Demount
signaled before execution.

-1 EIO 5 MTCC_NO_LMCP 32

X'20'

Failed. LMCP not
configured.

-1 EINVAL 22 MTCC_NOT_CMDPORT_LMCP 33

X'21'

Failed. Device not
command-port LMCP.

-1 EIO 5 MTCC_NO_DEV 34

X'22'

Failed. Device not
configured.

-1 EIO 5 MTCC_NO_DEVLIB 35

X'23'

Failed. Device not in
library.

-1 ENOMEM 12 MTCC_NO_MEM 36

X'24'

Failed. Memory failure.

-1 EIO 5 MTCC_DEVINUSE 37

X'25'

Failed. Device in use.

-1 EIO 5 MTCC_IO_FAILED 38

X'26'

Failed. Unexpected I/O
failure.

-1 EIO 5 MTCC_DEV_INVALID 39

X'27'

Failed. Invalid device.

-1 EIO 5 MTCC_NOT_NTFPORT_LMCP 40

X'28'

Failed. Device not
notification-port LMCP.

Chapter 7. 3494 Enterprise tape library driver 377

Table 13. Error description for the library I/O control requests (continued)

Code errno Value cc Value Description

-1 EIO 5 MTCC_INVALID_SUBCMD 41

X'29'

Failed. Invalid
subcommand parameter.

-1 EIO 5 MTCC_LIB_NOT_CONFIG 42

X'2A'

Failed. No library device
configured.

-1 EIO 5 MTCC_INTERNAL_ERROR 43

X'2B'

Failed. Internal error.

-1 EIO 5 MTCC_INVALID_CANCELTYPE 44

X'2C'

Failed. Invalid cancel type.

-1 EIO 5 MTCC_NOT_LMCP 45

X'2D'

Failed. Not LMCP device.

-1 EIO 5 MTCC_LIB_OFFLINE 46

X'2E'

Failed. Library is offline to
host.

-1 EIO 5 MTCC_DRIVE_UNLOAD 47

X'2F'

Failed. Volume is still
loaded in drive.

-1 ETIMEDOUT 78 MTCC_COMMAND_TIMEOUT 48

X'30'

Failed. Command that is
timed out by the device
driver.

-1 EIO 5 MTCC_UNDEFINED -1

X'FF'

Failed. Undefined
completion code.

378 IBM Tape Device Drivers: Programming Reference

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries (or regions) in which IBM
operates.

Any references to an IBM program or other IBM product in this publication is not
intended to state or imply that only IBM’s program or other product may be used.
Any functionally equivalent program that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product. Evaluation
and verification of operation in conjunction with other products, except those
expressly designed by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You may send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country (or region) where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states (or regions) do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement
cannot apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes are
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the products and/or programs described in this publication at
any time without notice.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2016 379

The ITDT-SE and ITDT-GE software uses Henry Spencer's regular expression
library that is subject to the following copyright notice:

"Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved. This software
is not subject to any license of the American Telephone and Telegraph Company or
of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on any
computer system, and to alter it and redistribute it, subject to the following
restrictions:
1. The author is not responsible for the consequences of use of this software, no

matter how awful, even if they arise from flaws in it.
2. The origin of this software must not be misrepresented, either by explicit claim

or by omission. Since few users ever read sources, credits must appear in the
documentation.

3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users ever read
sources, credits must appear in the documentation.

4. This notice cannot be removed or altered.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries (or regions), or both:

AIX IBMLink RS/6000® System z®

AIX 5L™ Magstar S/390® Tivoli®

FICON® Micro Channel StorageSmart TotalStorage
HyperFactor® Netfinity System i® Virtualization Engine
i5/OS™ POWER5 System p xSeries
iSeries ProtecTIER® System Storage z9
IBM pSeries System x zSeries

Adobe and Acrobat are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

Intel, Itanium, and Pentium are trademarks of Intel Corporation in the United
States, other countries (or regions), or both.

Java™ and all Java-based trademarks are trademarks of Oracle, Inc. in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and Windows 2000 are trademarks of Microsoft
Corporation in the United States, other countries (or regions), or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries (or regions).

Other company, product, and service names may be trademarks or service marks
of others.

380 IBM Tape Device Drivers: Programming Reference

Index

Numerics
3494 Enterprise library driver 339
3494 Enterprise tape library

support 348, 349, 351, 353, 358, 360,
361, 362, 363, 365, 366, 368, 369, 371,
373, 376

A
AIX 3494 Enterprise library driver 339
AIX Device Driver (Atape) 7, 8, 9, 10,

12, 13, 14, 24, 41, 81, 92

B
Base operating system tape drive IOCTL

operations 278
Base OS tape drive IOCTL

operations 149
building and linking applications with

the library subroutines 343, 345, 346
Building and linking applications with

the library subroutines 341

C
Close error codes 218, 294
Closing a special file 298
closing the library device 340, 342, 344,

346
Closing the special file 13
Closing the Special File 339
common functions 1
CreateFile 303

D
Device and volume information

logging 14
DeviceIoControl 308
Downward compatibility tape drive

IOCTL operations 281

E
EraseTape 308
Error description for the library I/O

control requests 376

F
features 1
fixed block read/write processing 331

G
General error codes 217, 293
General IOCTL operations 24, 161, 162
General SCSI IOCTL operations 100, 221
GetTapeParameters 307
GetTapePosition 306
GetTapeStatus 308

H
Header definitions and structure 339
HP-UX 3494 Enterprise library

driver 340, 341
HP-UX Device Driver (ATDD) 97, 100,

108, 118, 149, 151

I
Introduction 7
IOCTL commands 310
IOCTL error codes 219, 295
IOCTL operations 100, 108, 118, 149,

151, 221, 232, 242, 278, 281, 287
Issuing IOCTL operations to a special

file 299
issuing library commands 346
issuing the library commands 340, 342,

344

L
library access 340, 341, 342, 343, 344,

345, 346
library device number 349
Linux 3494 Enterprise library driver 341,

342, 343
Linux device driver (IBMtape) 159, 161,

162, 173, 208, 209, 217, 218, 219
Linux-defined entry points 159
Log file 14

M
media partitioning 1
Medium changer devices 161
Medium changer IOCTL operations 81,

209
Medium Changer IOCTLs 310
MTIOCLA (Library Audit) 361
MTIOCLADDR (Library Address

Information) 371
MTIOCLC (Library Cancel) 362
MTIOCLDEVINFO (Device List) 369
MTIOCLDEVLIST (Expanded Device

List) 369
MTIOCLDM (Library Demount) 351
MTIOCLEW (Library Event Wait) 373
MTIOCLM (Library Mount) 349
MTIOCLQ (Library Query) 353

MTIOCLQMID (Library Query Message
ID) 360

MTIOCLRC (Library Release
Category) 365

MTIOCLRSC (Library Reserve
Category) 366

MTIOCLSCA (Library Set Category
Attribute) 368

MTIOCLSDC (Library Set Device
Category) 363

MTIOCLSVC (Library Set Volume
Category) 358

O
Open error codes 217, 293
Opening a special file 295
opening the library device 340, 342, 344,

345
Opening the special file for I/O 10
Opening the Special File for I/O 339
overview 162, 173
Overview 24, 41, 81

P
parameters 339, 340, 342
Persistent reservation support 15
PrepareTape 308
programming interface 97, 301, 302, 303,

304, 305, 306, 307, 308, 310, 313, 331

R
Read error codes 218, 294
ReadFile 304
Reading and writing the Special File 339
Reading from a special file 297
Reading from the special file 12
Reading with the TAPE_READ_REVERSE

extended parameter 13
Reading with the TAPE_SHORT_READ

extended parameter 12
Return codes 92, 217, 218, 219, 292, 293,

294, 295, 296, 297, 298, 299

S
SCSI IOCTL commands 209
SCSI medium changer IOCTL

operations 108, 232
SCSI tape drive IOCTL operations 118,

242
Service aid IOCTL operations 151, 287
SetTapeParameters 306
SetTapePosition 305
SGI IRIX 3494 Enterprise tape

library 343
software development 343

© Copyright IBM Corp. 1999, 2016 381

software interface 159, 161
Software interface for medium changer

devices 7
Software interface for tape devices 7
Solaris 3494 Enterprise library

driver 344, 345
Solaris Device Driver (IBMtape) 221,

232, 242, 278, 281, 287, 292, 293, 294,
295, 296, 297, 298, 299

special files 339
Special files 8, 9, 10, 12, 13
Special files for 3490E, 3590, Magstar MP

or 7332 tape devices 8
Special files for 3575, 7331, 7334, 7336, or

7337 medium changer devices 9
system calls 348, 349, 351, 353, 358, 360,

361, 362, 363, 365, 366, 368, 369, 371,
373, 376

T
tape device driver 15
Tape drive compatibility IOCTL

operations 208
Tape drive IOCTL operations 173
Tape IOCTL operations 41
tape Media Changer driver entry

points 302, 303, 304, 305, 306, 307, 308
The extended open operation 10

V
variable block read/write

processing 331
Vendor-specific device IOCTLs for

DeviceIoControl 313

W
Windows 200x 301, 302, 303, 304, 305,

306, 307, 308, 310, 313, 331
event log 332

Windows NT 3494 Enterprise library
service 345, 346

Windows NT device driver
event log 332

Write error codes 218, 294
Write Tapemark 305
WriteFile 304
Writing to a special file 296
Writing to the special file 12

382 IBM Tape Device Drivers: Programming Reference

Readers’ Comments — We'd Like to Hear from You

IBM Tape Device Drivers
Programming Reference

Publication No. GA32-0566-09

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your
IBM business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use
the personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Send your comments to the address on the reverse side of this form.

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
GA32-0566-09

GA32-0566-09

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Building 9032-2 Department GZW
Information Development
9000 South Rita Road
Tucson, AZ
USA 85744-0002

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Printed in USA

GA32-0566-09

	Contents
	Note!
	Preface
	Chapter 1. Common extended features
	Tape drive functions and device driver ioctls
	Media partitioning
	Data safe (append-only) mode
	Read Position long/extended form and Locate(16) commands
	Logical Block Protection
	Programmable Early Warning (PEW)
	Log Sense page and subpage
	Mode Sense page and subpage
	Verify Tape
	RAO - Recommended Access Order

	Chapter 2. AIX tape and medium changer device driver
	Software interface for tape devices
	Software interface for medium changer devices
	Special files
	Special files for tape devices
	Special files for medium changer devices
	Opening the special file for I/O
	The extended open operation
	Writing to the special file
	Reading from the special file
	Reading with the TAPE_SHORT_READ extended parameter
	Reading with the TAPE_READ_REVERSE extended parameter
	Closing the special file

	Device and volume information logging
	Log file

	Persistent reservation support and IOCTL operations
	ODM attributes and configuring persistent reserve support
	Default device driver host reservation key
	Preempting and clearing another host reservation
	Openx() extended parameters
	AIX tape persistent reserve IOCTLs
	Atape persistent reserve IOCTLs

	General IOCTL operations
	Overview
	IOCINFO
	STIOCMD
	STPASSTHRU
	SIOC_PASSTHRU_COMMAND
	SIOC_INQUIRY
	SIOC_REQSENSE
	SIOC_RESERVE
	SIOC_RELEASE
	SIOC_TEST_UNIT_READY
	SIOC_LOG_SENSE_PAGE
	SIOC_LOG_SENSE10_PAGE
	SIOC_MODE_SENSE_PAGE
	SIOC_MODE_SENSE_SUBPAGE
	SIOC_MODE_SELECT_PAGE
	SIOC_MODE_SELECT_SUBPAGE
	SIOC_QUERY_OPEN
	SIOC_INQUIRY_PAGE
	SIOC_DISABLE_PATH
	SIOC_ENABLE_PATH
	SIOC_SET_PATH
	SIOC_DEVICE_PATHS
	SIOC_QUERY_PATH
	SIOC_RESET_PATH and SIOC_CHECK_PATH
	SIOC_RESET_DEVICE
	SIOC_DRIVER_INFO

	Tape IOCTL operations
	Overview
	STIOCHGP
	STIOCTOP
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS or STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY
	STIOC_LOG_SENSE
	STIOC_RECOVER_BUFFER
	STIOC_LOCATE
	STIOC_READ_POSITION
	STIOC_SET_VOLID
	STIOC_DUMP
	STIOC_FORCE_DUMP
	STIOC_READ_DUMP
	STIOC_LOAD_UCODE
	STIOC_RESET_DRIVE
	STIOC_FMR_TAPE
	MTDEVICE (Obtain device number)
	STIOC_PREVENT_MEDIUM_REMOVAL
	STIOC_ALLOW_MEDIUM_REMOVAL
	STIOC_REPORT_DENSITY_SUPPORT
	STIOC_GET_DENSITY and STIOC_SET DENSITY
	STIOC_CANCEL_ERASE
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	SET_ACTIVE_PARTITION
	QUERY_PARTITION
	CREATE_PARTITION
	ALLOW_DATA_OVERWRITE
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	STIOC_READ_ATTRIBUTE
	STIOC_WRITE_ATTRIBUTE
	VERIFY_TAPE_DATA
	QUERY_RAO_INFO
	GENERATE_RAO
	RECEIVE_RAO

	Medium changer IOCTL operations
	Overview
	SMCIOC_ELEMENT_INFO
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_INIT_ELEM_STAT
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_INVENTORY
	SMCIOC_LOAD_MEDIUM
	SMCIOC_UNLOAD_MEDIUM
	SMCIOC_PREVENT_MEDIUM_REMOVAL
	SMCIOC_ALLOW_MEDIUM_REMOVAL
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_READ_CARTIDGE_LOCATION

	Return codes
	Codes for all operations
	Open error codes
	Write error codes
	Read error codes
	Close error codes
	IOCTL error codes

	Chapter 3. HP-UX tape and medium changer device driver
	HP-UX programming interface
	IOCTL operations
	General SCSI IOCTL operations
	IOC_TEST_UNIT_READY
	IOC_INQUIRY
	IOC_INQUIRY_PAGE
	IOC_REQUEST_SENSE
	IOC_LOG_SENSE_PAGE
	IOC_LOG_SENSE10_PAGE
	IOC_MODE_SENSE
	IOC_RESERVE
	IOC_RELEASE
	IOC_PREVENT_MEDIUM_REMOVAL
	IOC_ALLOW_MEDIUM_REMOVAL
	IOC_GET_DRIVER_INFO

	SCSI medium changer IOCTL operations
	SMCIOC_MOVE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_ELEMENT_INFO
	SMCIOC_INVENTORY
	SMCIOC_AUDIT
	SMCIOC_LOCK_DOOR
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_READ_CARTRIDGE_LOCATION

	SCSI tape drive IOCTL operations
	STIOC_TAPE_OP
	STIOC_GET_DEVICE_STATUS
	STIOC_GET_DEVICE_INFO
	STIOC_GET_MEDIA_INFO
	STIOC_GET_POSITION
	STIOC_SET_POSITION
	STIOC_GET_PARM
	STIOC_SET_PARM
	STIOC_DISPLAY_MSG
	STIOC_SYNC_BUFFER
	STIOC_ REPORT_ DENSITY_ SUPPORT
	STIOC_GET_DENSITY and STIOC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	QUERY_PARTITION
	CREATE_PARTITION
	SET_ACTIVE_PARTITION
	ALLOW_DATA_OVERWRITE
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	VERIFY_TAPE_DATA

	Base operating system tape drive IOCTL operations
	MTIOCTOP
	MTIOCGET

	Service aid IOCTL operations
	STIOC_DEVICE_SN
	STIOC_FORCE_DUMP
	STIOC_STORE_DUMP
	STIOC_READ_BUFFER
	STIOC_WRITE_BUFFER
	STIOC_QUERY_PATH
	STIOC_DEVICE_PATH
	STIOC_ENABLE_PATH
	STIOC_DISABLE_PATH

	Chapter 4. Linux tape and medium changer device driver
	Software interface
	Entry points
	Medium changer devices

	General IOCTL operations
	Overview
	SIOC_INQUIRY
	SIOC_REQSENSE
	SIOC_RESERVE
	SIOC_RELEASE
	SIOC_TEST_UNIT_READY
	SIOC_LOG_SENSE_PAGE, SIOC_LOG_SENSE10_PAGE, and SIOC_ENH_LOG_SENSE
	SIOC_MODE_SENSE_PAGE and SIOC_MODE_SENSE
	SIOC_INQUIRY_PAGE
	SCSI_PASS_THROUGH
	SIOC_QUERY_PATH
	SIOC_DEVICE_PATHS
	SIOC_ENABLE_PATH
	SIOC_DISABLE_PATH

	Tape drive IOCTL operations
	Overview
	STIOCTOP
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS
	STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY
	STIOC_LOCATE
	STIOC_READ_POSITION
	STIOC_RESET_DRIVE
	STIOC_PREVENT_MEDIUM_REMOVAL
	STIOC_ALLOW_MEDIUM_REMOVAL
	STIOC_REPORT_DENSITY_SUPPORT
	MTDEVICE (Obtain Device Number)
	STIOC_GET DENSITY and STIOC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	STIOC_QUERY_PARTITION
	STIOC_CREATE_PARTITION
	STIOC_SET_ACTIVE_PARTITION
	STIOC_ALLOW_DATA_OVERWRITE
	STIOC_READ_POSITION_EX
	STIOC_LOCATE_16
	STIOC_QUERY_BLK_PROTECTION
	STIOC_SET_BLK_PROTECTION
	STIOC_VERIFY_TAPE_DATA
	STIOC_QUERY_RAO
	STIOC_GENERATE_RAO
	STIOC_RECEIVE_RAO
	STIOC_SET_SPDEV

	Tape drive compatibility IOCTL operations
	MTIOCTOP
	MTIOCGET
	MTIOCPOS

	Medium changer IOCTL operations
	SCSI IOCTL commands
	SMCIOC_ELEMENT_INFO
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_INIT_ELEM_STAT
	SMCIOC_INIT_ELEM_STAT_RANGE
	SMCIOC_INVENTORY
	SMCIOC_LOAD_MEDIUM
	SMCIOC_UNLOAD_MEDIUM
	SMCIOC_PREVENT_MEDIUM_REMOVAL
	SMCIOC_ALLOW_MEDIUM_REMOVAL
	SMCIOC_READ_ELEMENT_DEVIDS

	Return codes
	General error codes
	Open error codes
	Close error codes
	Read error codes
	Write error codes
	IOCTL error codes

	Chapter 5. Solaris tape and medium changer device driver
	IOCTL operations
	General SCSI IOCTL operations
	IOC_TEST_UNIT_READY
	IOC_INQUIRY
	IOC_INQUIRY_PAGE
	IOC_REQUEST_SENSE
	IOC_LOG_SENSE_PAGE
	IOC_LOG_SENSE10_PAGE
	IOC_ENH_LOG_SENSE
	IOC_MODE_SENSE
	IOC_MODE_SENSE_SUBPAGE
	SIOC_MODE_SENSE
	IOC_DRIVER_INFO
	IOC_RESERVE
	IOC_RELEASE

	SCSI medium changer IOCTL operations
	SMCIOC_MOVE_MEDIUM
	SMCIOC_EXCHANGE_MEDIUM
	SMCIOC_POS_TO_ELEM
	SMCIOC_ELEMENT_INFO
	SMCIOC_INVENTORY
	SMCIOC_AUDIT
	SMCIOC_AUDIT_RANGE
	SMCIOC_LOCK_DOOR
	SMCIOC_READ_ELEMENT_DEVIDS
	SMCIOC_READ_CARTRIDGE_LOCATION

	SCSI tape drive IOCTL operations
	STIOC_TAPE_OP
	STIOC_GET_DEVICE_STATUS
	STIOC_GET_DEVICE_INFO
	STIOC_GET_MEDIA_INFO
	STIOC_GET_POSITION
	STIOC_SET_POSITION
	STIOC_GET_PARM
	STIOC_SET_PARM
	STIOC_DISPLAY_MSG
	STIOC_SYNC_BUFFER
	STIOC_REPORT_DENSITY_SUPPORT
	STIOC_GET_DENSITY
	STIOC_SET_DENSITY
	GET_ENCRYPTION_STATE
	SET_ENCRYPTION_STATE
	SET_DATA_KEY
	QUERY_PARTITION
	CREATE_PARTITION
	SET_ACTIVE_PARTITION
	ALLOW_DATA_OVERWRITE
	READ_TAPE_POSITION
	SET_TAPE_POSITION
	QUERY_LOGICAL_BLOCK_PROTECTION
	SET_LOGICAL_BLOCK_PROTECTION
	VERIFY_TAPE_DATA

	Base operating system tape drive IOCTL operations
	MTIOCTOP
	MTIOCGET
	MTIOCGETDRIVETYPE
	USCSICMD

	Downward compatibility tape drive IOCTL operations
	STIOCQRYP or STIOCSETP
	STIOCSYNC
	STIOCDM
	STIOCQRYPOS or STIOCSETPOS
	STIOCQRYSENSE
	STIOCQRYINQUIRY

	Service aid IOCTL operations
	STIOC_DEVICE_SN
	IOC_FORCE_DUMP
	IOC_STORE_DUMP
	IOC_READ_BUFFER
	IOC_WRITE_BUFFER
	IOC_DEVICE_PATH
	IOC_CHECK_PATH
	IOC_ENABLE_PATH and IOC_DISABLE_PATH

	Return codes
	General error codes
	Open error codes
	Close error codes
	Read error codes
	Write error codes
	IOCTL error codes
	Opening a special file
	Writing to a special file
	Reading from a special file
	Closing a special file
	Issuing IOCTL operations to a special file

	Chapter 6. Windows tape device drivers
	Windows programming interface
	User-callable entry points
	Tape Media Changer driver entry points
	CreateFile
	ReadFile
	WriteFile
	Write Tapemark
	SetTapePosition
	GetTapePosition
	SetTapeParameters
	GetTapeParameters
	PrepareTape
	EraseTape
	GetTapeStatus
	DeviceIoControl

	Medium Changer IOCTLs
	IOCTL commands

	Preempt reservation
	Vendor-specific (IBM) device IOCTLs for DeviceIoControl
	IOCTL_TAPE_OBTAIN_SENSE
	IOCTL_TAPE_OBTAIN_VERSION
	IOCTL_TAPE_LOG_SELECT
	IOCTL_TAPE_LOG_SENSE
	IOCTL_TAPE_LOG_SENSE10
	IOCTL_ENH_TAPE_LOG_SENSE10
	IOCTL_TAPE_REPORT_MEDIA_DENSITY
	IOCTL_TAPE_OBTAIN_MTDEVICE
	IOCTL_TAPE_GET_DENSITY
	IOCTL_TAPE_SET_DENSITY
	IOCTL_TAPE_GET_ENCRYPTION_STATE
	IOCTL_TAPE_SET_ENCRYPTION_STATE
	IOCTL_TAPE_SET_DATA_KEY
	IOCTL_CREATE_PARTITION
	IOCTL_QUERY_PARTITION
	IOCTL_SET_ACTIVE_PARTITION
	IOCTL_QUERY_DATA_SAFE_MODE
	IOCTL_SET_DATA_SAFE_MODE
	IOCTL_ALLOW_DATA_OVERWRITE
	IOCTL_READ_TAPE_POSITION
	IOCTL_SET_TAPE_POSITION
	IOCTL_QUERY_LBP
	IOCTL_SET_LBP
	IOCTL_SET_PEW_SIZE
	IOCTL_QUERY_PEW_SIZE
	IOCTL_VERIFY_TAPE_DATA
	IOCTL_QUERY_RAO_INFO
	IOCTL_GENERATE_RAO
	IOCTL_RECEIVE_RAO
	IOCTL_CHANGER_OBTAIN_SENSE
	IOCTL_MODE_SENSE

	Variable and fixed block read/write processing

	Event log

	Chapter 7. 3494 Enterprise tape library driver
	AIX 3494 Enterprise tape library driver
	Opening the Special File for I/O
	Header definitions and structure
	Parameters
	Reading and writing the Special File
	Closing the Special File

	HP-UX 3494 Enterprise tape library driver
	Opening the library device
	Closing the library device
	Issuing the library commands
	Parameters

	Building and linking applications with the library subroutines

	Linux 3494 Enterprise tape library driver
	Opening the library device
	Closing the library device
	Issuing the library commands
	Parameters

	Building and linking applications with the library subroutines

	SGI IRIX 3494 Enterprise tape library
	Solaris 3494 Enterprise tape library driver
	Opening the library device
	Closing the library device
	Issuing the library commands
	Parameters

	Building and linking applications with the library subroutines

	Windows 3494 Enterprise tape library service
	Opening the library device
	Closing the library device
	Issuing the library commands
	Parameters

	Building and linking applications with the library subroutines

	3494 Enterprise tape library system calls
	Library device number
	MTIOCLM (Library Mount)
	Description
	On Request
	On Return
	Return Value

	MTIOCLDM (Library Demount)
	Description
	On Request
	On Return
	Return Value

	MTIOCLQ (Library Query)
	Description
	On Request
	On Return
	Return Value

	MTIOCLSVC (Library Set Volume Category)
	Description
	On Request
	On Return
	Return Value

	MTIOCLQMID (Library Query Message ID)
	Description
	On Request
	On Return
	Return Value

	MTIOCLA (Library Audit)
	Description
	On Request
	On Return
	Return Value

	MTIOCLC (Library Cancel)
	Description
	On Request
	On Return
	Return Value

	MTIOCLSDC (Library Set Device Category)
	Description
	On Request
	On Return
	Return Value

	MTIOCLRC (Library Release Category)
	Description
	On Request
	On Return

	MTIOCLRSC (Library Reserve Category)
	Description
	On Request
	On Return

	MTIOCLSCA (Library Set Category Attribute)
	Description
	On Request

	MTIOCLDEVINFO (Device List)
	On Return
	Return Value

	MTIOCLDEVLIST (Expanded Device List)
	On Return
	Return Value

	MTIOCLADDR (Library Address Information)
	On Return
	Return Value

	MTIOCLEW (Library Event Wait)
	Description
	On Request
	On Return
	Return Value

	Error description for the library I/O control requests

	Notices
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	V
	W

	Readers’ Comments — We'd Like to Hear from You

